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Abstract

This thesis covers finite element (FE) analysis and optimization of a spring or-
thosis, constructed from a pre-impregnated carbon-fibre epoxy composite material.
The spring orthosis is one of the most advanced aids that are used in the orthopedist
industry today and is made for people with weak calf muscles. The work has been
performed in collaboration with Ortopedteknik, Bor̊as Hospital, at FS Dynamics in
Gothenburg.

The purpose of the analyses was to find weaknesses of how the orthosis is built
today and to give suggestions of how to change its properties and behaviour. The
orthosis has two major interesting areas, the spring and the toe. Both of these
areas were analysed regarding rotation angles of the plies, ply stacking sequence and
manufacturing procedure. The geometry of the orthosis, material type and number
of composite plies in toe and spring were kept constant during the analysis.

The material was modelled as a balanced orthotropic lamina, with a plane stress
assumption. To validate the material model a four point bending test of a composite
plate was modelled in Abaqus/CAE and compared with experimental data. The
interactive Tsai-Wu failure criterion was used as a relative stress measurement.

The FE model of the orthosis was created from a scan of the real orthosis. From
this the front surface was extracted and used as a thin shell model. The compos-
ite layup of the orthosis was created in the way to best imitate the manufacturing
procedure used by the engineers at Ortopedteknik.

To be able to analyse the orthosis a walking cycle was recorded from a person
wearing the orthosis. This walking cycle was then applied to the model in Abaqus
by prescribing reference points and using boundary conditions and multi point con-
straints. The maximum Tsai-Wu values in the toe and spring part during this walking
cycle indicating that the orthosis is not close to failure.

The Design Of Experiment (DOE) methodology was used to analyse how the
stacking sequences of both the spring (18 plies) and the toe (5 plies) affects the
bending stiffness. This was done for the four point bending test in Abaqus where
the vertical reaktion force was used as stiffness measure. It was found that the angle
variation of the outermost plies of the spring has the most effect on the bending
stiffness and that the six innermost plies can be rotated arbitrary without significantly
affecting the bending stiffness. For the toe the rotation of the two outermost plies
are almost alone deciding the bending stiffness of the toe.

From the DOE data approximations were created and then used to optimize stack-
ing sequences based on requested bending stiffnesses. This was used to investigate
how various bending stiffnesses of the spring and toe affect the deformation of the
spring and toe. The result showed that an increased bending stiffness of the spring
will increase the deformation of the toe and vice versa. The bending stiffness of the
toe has no significant effect on the deformation of the spring. A study of the Tsai-Wu
value also showed that the toe cannot be too weak since this resulted in failure.

Keywords: Abaqus CAE, Carbon fibre, Composite material, Composite modeler, Design
of experiment, Draping, Finite element analysis, Four point bending test, Isight, Laminate,
Optimization, Orthosis, Ply, Shell, Tsai-Wu
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1 Introduction

This thesis covers FE-analysis and optimization of a spring orthosis1. A spring orthosis is
one of the most advanced aids that are used in the orthopedist industry today. The work
has been performed in collaboration with Ortopedteknik, Bor̊as Hospital.

1.1 Background

In recent years the usage of carbon fibre materials in orthoses has increased. Carbon fibre
has the highest strength and stiffness of any composite-reinforcements [1]. The major
advantages of carbon fibre is its high stiffness to density ratio. One disadvantage is its
brittleness.

The orthoses are designed individually to match the needs of each unique patient. The
orthosis is made from a pre-preg material (pre-impregnated carbon fibre with epoxy) and
is manufactured by hand by the engineers at Ortopedteknik. Today experiences from
previously built orthoses form the ground of how new orthoses are built [Interview with
engineers at Ortopedteknik, February-May, 2010]. In order to develop the product fur-
ther and deeper, analysis is needed, which includes calculations using FEM. A deeper
understanding would improve the possibilities of creating a better aid for each individual
patient.

The spring orthosis is primarily used to keep the user in an upright position. The
majority of the persons using the product have weak calf muscles, most of theme are
suffering from Myelo Meningocele (MMC) also known as spinal cord hernia [Interview with
engineers at Ortopedteknik, February-May, 2010]. Figure 1.1(a) shows how the orthosis
looks when its ready to be used and Figure 1.1(b) shows how the orthosis looks when all
buckles are removed. The attached reflectors in Figure 1(b) were used when recording the
walking cycle with position cameras.

(a) With buckles. (b) With all exteriors re-
moved.

Figure 1.1: Photos of the spring orthosis.

1An orthosis is an artificial device or brace, worn by a patient. The word orthosis is derived from the
Greek word ortho which means ”to straighten”.
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1.2 Purpose

The purpose of the FEM analysis is to find weaknesses of how the orthosis is built today
and to give suggestions in order to change its behaviour and properties. The orthosis has
two major interesting areas, the spring part and toe part, marked in Figure 1.2. In these
areas the main part of the deformation occur. The spring deforms when there is a relative
motion between the arch of the foot and the calf. The toe part deforms when there is
relative motion between the arch and the toes.

Figure 1.2: Marking of the two areas of interest, the spring and the toe.

The following questions are investigated:

• Where and when do the largest stresses occur during an ordinary walking cycle?

• How does the orientation of the composite plies change the bending stiffness of the
spring and the toe?

• Which plies have most impact of the bending stiffness of the toe and the spring?

• Is there a way to obtain a ply stacking sequence based on requested bending stiffness?

• How does the composite layup affect the relation of the deformation between toe and
spring?

• How does the manufacturing procedure affect the stress distribution in the spring
and the toe.

1.3 Scope and limitations

To change the behaviour and properties of the orthosis the change of the following param-
eters were analysed:

• Ply rotational angles

• Ply stacking sequence

• Manufacturing procedure

2 , Applied Mechanics, Master’s Thesis 2010:40



Not more than one orthosis was analysed in this thesis and the following parameters
were not taken into account but kept constant during the project:

• Geometry of the orthosis

• Type of material

• Number of plies in toe and spring

Only one walking cycle was recorded, performed by a person without disabilities. The
following softwares were used; Abaqus/CAE v.6.9-1 , Composite modeler v.1.0h ANSA
v.13.0.2, Isight v.4.0 and Matlab R2009b.

1.4 Methodology

The FEM model of the orthosis was created by using ANSA starting from a scanned
geometry in stl-format. The model was set up using Abaqus/CAE and Composite Modeler.
Composite Modeler (CM) is an Abaqus plug-in and was used to create composite layups for
the orthosis. The orthosis with original composite layup was subjected to static analysis
of each single time step from a recorded walking cycle. The time steps with maximum
stresses both in the spring and the toe were extracted and used as a reference state, for
comparison to other layups.

To validate the composite material model a four point bending test was simulated and
compared to a real test. The model of the bending test was also used to investigate how
the composite layup affects the bending stiffness. This was done by creating DOEs (design
of experiments) using Isight.

1.5 Thesis outline

This thesis starts with a theory chapter (chapter 2), describing composite-, contact- and
computer experiment theories. Further it follows three chapters describing the methods
used when analysing the material and the orthosis: Material modelling (3), Orthosis model
(4) and Laminate stacking sequence analysis (5). Then the results are presented (6), which
is followed by conclusions (7), discussion (8) and finally recommendations (9).
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2 Theory

This theory chapter will cover theories of composite materials, contact mechanics and
computer experiments. The composite section describes micro- and macromechanics and
different strength theories. The contact theories describe different contact methods used
when modelling the four point bending test. The computer experiment section describes
theories and vital concepts needed to be able to follow the stacking sequence analyses.

2.1 Composite materials

A composite material is built from laminas containing matrix- and reinforcement materials.
A lamina can also be denoted as a ply, whereas ply is more used when referring to the sheets
of material received form manufacturers. The matrix material binds the reinforcement
together and gives the composite its shape, surface and environmental tolerance. The
objective of the fibrous reinforcement is to carry most of the structural loads. A composite
lamina can have different configurations. The fibres can be continuous or discontinuous,
aligned or randomly oriented, unidirectional or woven, see Figure 2.1(a)-2.1(e) [1].

Composites are heterogeneous materials where the stress-strain relations changes from
one point to another, i.e. the elastic modulus for the fibre differs from the elastic mod-
ulus of the matrix. Thus, when analysing composites it is more convenient to deal with
averaged stresses and strains which are related by the ”effective modulus” of an equivalent
homogenous material. Analysis of composite materials is often divided into micro- and
macromechanics. Micromechanics is about defining effective material parameters of the
composite while macromechanics describe the constitutive relations [2].

(a) (b) (c) (d) (e)

Figure 2.1: Different configurations of composite materials. The configuration of the fibres
is important regarding the macroscopic properties of the composite. The configurations are;
(a) Discontinuous, randomly oriented (b) Continuous, randomly oriented (c) Discontinu-
ous, aligned (d) Continuous, aligned, unidirectional (e) Continuous, aligned, woven

2.1.1 Micromechanics

Micromechanics of composite materials is the analysis of effective composite properties
in terms of constituent material properties. One of the key elements in micromechanics
analysis is the relative volume. For any number of constituent materials, n, the sum of all
volume fractions must be equal to one:

n∑
i=1

vi = 1 (2.1)

where vi is the volume fraction of the i:th constituent

vi =
Vi
Vc
. (2.2)
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Vi is the volume of the i:th constituent and Vc is the total volume of the composite. For a
composite material only consisting of matrix- and fibre material, equation (2.1) reduces to

vm + vf = 1 (2.3)

where vm and vf are the volume fractions of the matrix and fibre respectively. Figure
2.2(a) illustrates a representative volume element of a unidirectional composite, i.e. a
composite with fibres running in only one direction. If assuming that the stresses, strains,
displacements and dimensions of this composite do not change in the lengthwise direction
then area averages can be used accordingly:

σ̄ =
1

V

∫
V

σ dV =
1

A

∫
A

σ dA (2.4)

ε̄ =
1

V

∫
V

ε dV =
1

A

∫
A

ε dA (2.5)

δ̄ =
1

V

∫
V

δ dV =
1

A

∫
A

δ dA (2.6)

where σ̄ = average stress, ε̄ = average strain and δ̄ = average displacement.

Matrix

Fibre

Matrix

2

1

(a) Representative volume ele-
ment

Matrix

Fibre

Matrix

(b) Longitudinal normal stress

Matrix

Fibre

Matrix

(c) Transverse normal stress

Figure 2.2: Representative volume element and normal stress states

Other assumptions needed to be able to use averages is that there is a no slip condition
between the fibres and matrix and that both materials are linearly elastic and homogenous
[2]. By considering a longitudinal normal stress, see Figure 2.2(b), and static equilibrium,
meaning that the sum of the forces acting on the matrix and fibre equals the total resultant
force, the following equation can be stated:

σ̄c1A1 = σ̄f1Af + σ̄m1Am (2.7)

Since area fractions are equal to volume fractions, equation (2.7) can be rewritten to give
the so called rule of mixtures[3].

σ̄c1 = σ̄f1vf + σ̄m1vm (2.8)

By using Hooke’s law and that
ε̄c1 = ε̄f1 = ε̄m1 (2.9)

equation (2.8) becomes the rule of mixture for longitudinal effective stiffness modulus:

E1 = Ef1vf + Emvm (2.10)
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The modulus of the fibre has two indices since it can be anisotropic and thus the longitudi-
nal module differs from the transverse. The epoxy matrix material is isotropic. When the
composite is subjected to stresses in the transverse direction, see Figure 2.2(c), the total
transverse composite displacement must be equal to the sum of the displacements in the
fibre and the matrix:

δ̄c2 = δ̄f2 + δ̄m2 (2.11)

With the definition of normal strain, e.g. δ̄c2 = ε̄c2L2 and that the length fraction is equal
to the volume fraction the rule of mixture for transverse strain is obtained:

ε̄c2 = ε̄f2vf + ε̄m2vm (2.12)

By using Hooke’s law and that
σ̄c2 = σ̄f2 = σ̄m2 (2.13)

equation (2.12) becomes the inverse rule of mixture for the transverse modulus:

1

E2

=
vf
Ef2

+
vm
Em

(2.14)

However the assumption in equation (2.13) is not accurate for most composites which
has lead to the development of semi-empirical equations. These equations result from basis
in mechanics but also have curve-fitting parameters from experiments. The most widely
used is the Halpin-Tsai equation, which for the transverse modulus yields:

E2

Em
=

1 + ξηvf
1− ηvf

(2.15)

where

η =
(Ef2/Em)− 1

(Ef2/Em) + ξ
(2.16)

and ξ is the curve-fitting parameter. The shear modulus, G12, is obtained by simply
replacing E2, Ef2 and Em with G12, Gf and Gm in equations (2.15)-(2.16). The major
(in-plane) Poisson’s ratio is calculated by another rule of mixture formulation:

ν12 = vfνf + vmνm [2] (2.17)

In the following sections all stresses are averaged stresses according to equation (2.4),
but denoted σ instead of σ̄.

2.1.2 Macromechanics

The most general stress-strain relations at a point in an elastic material is given by the
equation

σij = Cijklεkl, i, j, k, l = 1, 2, 3 (2.18)

where σij and εkl are the stress and strain tensor with 9 components each and Cijkl is
the stiffness matrix with 81 components. If no further restrictions are made the mate-
rial is called anisotropic and equation (2.18) is known as the generalized Hooke’s law for
anisotropic material.

In practice there is no need to deal with all the 81 components since various symmetry
conditions simplify the equations. Firstly, the stress and strain tensors are symmetric and
reduces the number of independent stress and strain components to 6 and the number of
nonzero elastic constants to 36, i.e. symmetry with respect to the the first two subscript
and with respect to the last two subscript Cijkl = Cjikl and Cijkl = Cijlk.
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Secondly, the stresses can be derived from the strain energy density function, W =
1
2
Cijklεijεkl, according to

σi =
∂W

∂εij
= Cijklεkl (2.19)

and then by taking the second derivative:

∂2W

∂εij∂εkl
= Cijkl ⇔

∂2W

∂εkl∂εij
= Cklij (2.20)

Since the results of the differentiation is the same regardless of the order it shows that
the stiffness matrix is symmetric, Cijkl = Cklij. Now, there are 21 of the 36 anisotropic
components that are independent. Those symmetry conditions are derived without saying
anything about the symmetry of the material. All real materials have some form of sym-
metry which will reduce the number of nonzero components further, no known material is
completely anisotropic[2].

A continuous fibrous composite ply having unidirectional fibres has two mutually per-
pendicular planes of material property symmetry, see Figure 2.3, and is said to be an
orthotropic material2. Since a woven ply is also an orthotropic material all the expression
for the unidirectional ply will be equally valid for a woven ply [4]. Unlike the anisotropic
stiffness matrix in equation (2.18), which is independent of how the principal directions are
defined, an orthotropic material stiffness matrix is dependent on how the principal axes are
defined. When dealing with composites the principal material coordinate axes are referred
since they are directed in and transverse the reinforcement direction, see Figure 2.3. An
orthotropic material defined in this way is called a specially orthotropic material.

Figure 2.3: Lamina showing the principal material coordinate axes and symmetry planes.
The 1-axis is directed in the reinforcement direction, 2- and 3-axis are directed transversely
to the reinforcement.

Now there are 12 nonzero elastic constants and 9 independent elastic constants for the
specially orthotropic material. If the coordinate system is not in the material principal
direction the stiffness matrix takes the same form as for the anisotropic material with 36
nonzero elastic components, 21 independent, this type of material is called a generally
orthotropic material [2].

When a composite has a plane with isotropic material properties, i.e for parallel fibres
with the 1-direction along the fibres, the 23-plane will be the isotropic plane: This type of
material is called transversely isotropic.

2An orthotropic material is a material that has different material properties in different directions, i.e
x,y and z. The three planes xy,yz and zx must form the three mutually perpendicular planes of material
property symmetry [4].
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Engineering constants are measured experimentally to describe the stress-strain rela-
tions of a material. The stiffness matrix will then be populated of engineering constants
such as Young’s modulus, shear modulus and Poisson’s ratio instead of Cijkl. For an
isotropic material where the material properties are the same in all directions there is no
need of subscript for the engineering constants. This is not the case for the orthotropic
material because of the different properties in the different directions, e.g. E1 6= E2 and
ν12 6= ν21. For the specially orthotropic material, with principal axis 1 along the fibre re-
inforcement, normal stresses only induces normal strains and all shear strains are equal to
zero as with isotropic material. For any other set of coordinate system for an orthotropic
material this will not be the case, i.e. a ”shear-coupling” effect will be present. In a gen-
eral three-dimensional state with all possible normal and shear stresses associated with the
1-2-3 axes the stress-strain relations can be written as

ε1
ε2
ε3
γ23
γ31
γ12

 =


1/E1 −ν21/E2 −ν31/E3 0 0 0
−ν12/E1 1/E2 −ν32/E3 0 0 0
−ν13/E1 −ν23/E2 1/E3 0 0 0

0 0 0 1/G23 0 0
0 0 0 0 1/G31 0
0 0 0 0 0 1/G12




σ1
σ2
σ3
τ23
τ31
τ12

 (2.21)

Due to symmetry of the compliance matrix, νij/Ei = νji/Ej, nine of the engineering
constants are independent for the specially orthotropic material. As previously mentioned
the generally orthotropic material has 21 dependent elastic components because of its off
principal axes defined coordinate system and all the components of the compliance matrix
in equation (2.21) will be populated. All the components of the generally orthotropic mate-
rial can be derived from the engineering constants from a testing of a specially orthotropic
material along the principal material directions, according to equation (2.25). Hence, when
testing a material it is preferable to do the testing for a specially orthotropic material. If
the material is transversely isotropic and specially orthotropic the subscript 2 and 3 are
interchangeable in equation (2.21) which means that G13 = G12, E2 = E3, ν21 = ν31 and
ν23 = ν32. Because of the isotropic material properties in this plane the relations for the
shear modulus for an isotropic material can be used

G23 =
E2

2(1 + ν32)
(2.22)

leaving it to 5 independent constants. In laminate analysis, the lamina is often assumed to
be in a two-dimensional plane stress state. This reduces the relations in equation (2.21) to ε1

ε2
γ12

 =

 1/E1 −ν21/E2 0
−ν12/E1 1/E2 0

0 0 1/G12

 σ1
σ2
τ12

 (2.23)

since in plane stress σ3 = τ23 = τ31 = 0. Now there are 4 independent constants for the
plane stress specially orthotropic transversely isotropic lamina. The experimental charac-
terisation of the orthotropic lamina involves the measurement of 4 different engineering
constants E1, E2, G12 and ν12. Those are the engineering constants needed in equation
(2.23). In cases when a three dimensional analysis is required for an orthotropic material
having a plane of isotropy more than those four constants are needed. The constants E3,
G13, G23 and ν23 are also needed, 5 of them being independent. In absence of these values
it is usually assumed that ν23 = ν12(= ν13) and G23 = G12(= G13) [4]. For the case of
woven lamina or cross-plied at 0◦ and 90◦ the number of independent elastic constants
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reduces to 3 since E1 = E2, because of the double symmetry of properties with respect to
the 1 and 2 axes [2]. This type of material is called a balanced orthotropic lamina.

When analysing a laminate, containing multiple laminas, the stress-strain relations for
the off axis laminas are needed. Those can be expressed with four independent elastic
constants in the principal coordinates and the lamina orientation angle. With the sign
convention used in Figure 2.4 the static equilibrium for an element can be written as

σ1 = σxcos
2θ + σysin

2θ + 2τxysinθcosθ

σ2 = σxsin
2θ + σycos

2θ − 2τxysinθcosθ (2.24)

τ12 = −σxsinθcosθ + σysinθcosθ + τxy(cos
2θ − sin2θ)

or in matrix form σ1
σ2
τ12

 =

 cos2θ sin2θ 2sinθcosθ
sin2θ cos2θ −2sinθcosθ

−sinθcosθ sinθcosθ cos2θ − sin2θ

 σx
σy
τxy

 (2.25)

where the matrix in equation (2.25) is the transformation matrix from the principle to the
off-axis coordinate system[5]. It can also be shown that the strain tensor transforms in the
same way.

τ12

σ1

σy

σx

τxy

τxy

φ

x

y

φ

σy

τxy

σx

τxy

τ12σ2

Figure 2.4: Triangular element showing the different stresses in an off axis coordinate
system. The 1-direction is in the reinforcement direction and 2-direction is transverse the
reinforcement.

In the same way the engineering constants can be transformed from the principal axes to
the off axes coordinate system. The stress-strain relation transformation from a principal
coordinate system (1,2,3) to the off-axis coordinate system (x,y,z), when the transformation
matrix is denoted by T and the compliance matrix in equation (2.23) is denoted by S, can
be written as

εεε = T>STσσσ (2.26)

.

Here σ and ε are the stresses and strains for the off axis coordinate system (x,y,z). For
example, equation (2.26) inserted into Hooke’s law, Ex = σx

εx
, will give the equation for the

Young’s modulus in an off axes coordinate system under uniaxial loading. Figure 2.5 shows
the Young’s modulus Ex/Ey, shear modulus Gxy and the Poisson’s ratio νxy/νyx variation
over the angle for a woven ply.
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(a) Young’s modulus Ex/Ey. (b) Poissons ration νxy/νyx.

(c) In plane shear modulus Gxy.

Figure 2.5: Different variables variation over the angle for a woven ply, where the fibres
are running in two directions perpendicular to eachother.

2.1.3 Lamina Strength

In section 2.1.1 the stress-strain relations have been described by effective moduli, repre-
senting a homogenous material instead of a heterogeneous material. This can also be done
for the strength of the material. The effective strength is defined as the ultimate value of
the volume averaged stresses which causes failure of the lamina under the averaged state
of stress. When analysing the strength of the lamina the compressive longitudinal s

(−)
L

and transversal s
(−)
T , tensile longitudinal s

(+)
L and transversal s

(+)
T and the in-plane shear

strength sLT are used. The longitudinal, L, direction is in the fibre direction and the trans-
verse, T, direction is transverse to the unidirectional fibres. The stress-strain relations, in
the case of uniaxial stress and pure shear stress respectively, can then be written as

s(−)/(+)
α = Eαe

(−)/(+)
α , α = L, T (2.27)

sLT = GLT eLT (2.28)

where e is the corresponding strain. The shear strength sLT is independent of the sign.
For unidirectional fibres the longitudinal tensile strength is generally greater than the

compressive and in the transverse direction the compressive strength is generally greater
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than the tensile strength which is the lowest of all strengths [2]. There is also an inter-
laminar strength parameter that does not follow the plane stress assumption often used
when analysing laminas. Those stresses can create delamination and is further discussed
in section 2.1.5.

2.1.3.1 Failure criteria There are different semi-empirical failure criteria that are
used to estimate when lamina failure will occur. These criteria apply even under complex
loading conditions other than uniaxial or shear stresses and involves the strengths described
in section 2.1.3. They do not take into account the details of specific micro-mechanical
failure modes such as fibre pullout, fibre breakage, fibre micro-buckling, matrix cracking
or delamination. The failure process is very complex since these micro-failure modes may
occur in various combinations and sections. The existence and growth of cracks and other
defects in the composite are also ignored in these approaches. To take into account such
failure modes a fracture mechanical approach is needed. None of the available theories
have been shown to accurately predict failure for all materials and loading conditions, and
there is no agreement on which is the best [2].

Many of the failure criteria for anisotropic composite materials are based on previ-
ously developed criteria for predicting the transition from elastic to plastic behaviour in
anisotropic metallic materials. They use the concept of failure surface or failure envelope
generated by plotting stress components in stress space. The axes usually represent the
material principal axes. Failure are predicted when the combination of stresses fall on or
outside the failure surface. Example of failure criteria are the maximum stress criterion
and maximum strain criterion that are non interactive criteria, i.e. they do not take into
account the interaction between the different stress components.

The interactive failure criteria Tsai-Wu and Tsai-Hill take into account the interaction
between the different stress components, for more literature about failure criteria see for
example [2]. The Tsai-Wu and Tsai-Hill theories are based on the macromechanical be-
haviour of the composite without regard for the micromechanical behaviour of the fibre and
matrix materials. The main difference between the interactive stress criteria mentioned is
that Tsai-Wu takes into account different strengths in tension and compression, of which
Tsai-Hill does not.

2.1.3.2 Tsai-Wu failure criterion The failure surface for the Tsai-Wu stress theory
in stress space is described by

Fiσi + Fijσiσj = 1, i, j = 1, 2, ..., 6 (2.29)

where Fi and Fij are experimentally determined strength tensors of the second and fourth
order respectively. The stresses σi represent the symmetric part of the stress tensor in
Voigt notation. Failure is predicted when the LHS of equation (2.29) is ≥ 1. In the case
of plane stress, equation (2.29) reduces to

F11σ
2
1 + F22σ

2
2 + F66σ

2
6 + F1σ1 + F2σ2 + 2F12σ1σ2 = 1 (2.30)

The linear terms for σ1 = σ11 and σ2 = σ22 takes into account the different strengths in
tension and compression. These terms are not included in the Tsai-Hill failure criterion.
The term 2F12σ1σ2 takes into account the interaction between the normal stresses. All
the components of the strength tensor in equation (2.30) can be expressed in the different
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strengths according to

F11 =
1

s
(+)
L s

(−)
L

; F1 =
1

s
(+)
L

− 1

s
(−)
L

(2.31)

F22 =
1

s
(+)
T s

(−)
T

; F2 =
1

s
(+)
T

− 1

s
(−)
T

; F66 =
1

s2LT
(2.32)

F12 = F ∗12
√
F11F22 (2.33)

where the numerical values of s
(−)
T and s

(−)
L , defined in section 2.1.3.1, are assumed to be

positive.
The coefficient F ∗12 is often estimated, otherwise it has to be determined from a bi-

axial test that is not straightforward to perform. In the absence of a measured value the
coefficient is generally set to −1/2 without any significant loss in accuracy [4]. The Tsai-
Wu failure criteria is called a quadratic interaction criteria and the failure surface has the
shape of an ellipse and because of the differences in tensile and compressive strength the
elliptic shape becomes convex.

2.1.4 Laminate theory

A coordinate system is put in the middle surface of the laminate with the z-axis being
parallel to the normal of the laminate. The laminate will then have the height h and
z goes from −h/2 ≤ z ≤ h/2. The forces and moment acting on the laminate can be
integrated as

N =

 Nx

Ny

Nxy

 =

∫ h/2

−h/2
σσσdz; M =

 Mx

My

Mxy

 =

∫ h/2

−h/2
σσσzdz; σσσ =

 σx
σy
τxy

 (2.34)

The deformation of the laminates is defined from the strains and curvatures of the middle
surface according to

εεε =

 εx
εy
γxy

 = εεε0 + κκκz. (2.35)

This gives the stress strain relation in a lamina according to

σσσ = Q(εεε0 + κκκz) (2.36)

where Q is the stiffness matrix. With this inserted into equation ((2.34)) and integrating
between −h/2 ≤ z ≤ h/2, with the stiffness matrix being constant in each lamina then
the forces and moments can be written as

N = Aεεε0 + Bκκκ (2.37)

M = Bεεε0 + Dκκκ (2.38)

where

A =
∑
k

Qkhk (2.39)

B =
∑
k

Qkhkzk (2.40)

D =
∑
k

Qkhk(z
2
k + 1/12h2k) (2.41)
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and the subscript k denotes laminae number k and z is the distance to the mid surface of
a lamina. Equation (2.37) and (2.38) can be written in matrix form;[

N
M

]
=

[
A B
B D

] [
εεε0
κκκ

]
. (2.42)

This describes the linear relation between the loads N and M and the deformations εεε0
and κκκ [5]. The extensional stiffness matrix A relates the force N to the strains εεε and
the bending stiffness matrix DDD relates the moments M to the curvature κκκ . The coupling
stiffness matrix B couples the membrane bending behaviour of the laminate, i.e. relates
the forces N to the curvature κκκ and the moments M to the strains εεε. Dependent on how
the plies are stacked the matrices will be populated in different ways. For example in some
cases, depending on the ply angle and the stacking sequence, the moment Mx can cause a
twisting curvature κxy in addition to the bending curvatures κx and κy.

The correlation between the predicted values from the laminate theory of the stiffness,
described in section 2.1.4, and test data for all kinds of symmetric laminate configurations
is consistently very satisfactory. The accuracy of the prediction depends on the accuracy
of the basic elastic properties E1, E2, G12 and ν12 [4].

2.1.5 Interlaminar stresses

In the plane stress assumption, made in section 2.1.2, all the stresses in the z-direction
are neglected. A state of plane stress does exist in the laminas of a laminate in regions
sufficiently far away from discontinuities such as free ends. The plane stress assumption
is most accurate for structures with thin walled elements [4]. It has been shown that even
for laminates under uniaxial loading there is a boundary layer region along the free edges
where a 3-dimensional state of stress exists, a boundary layer region approximately equal to
the laminate thickness [2]. These so called interlaminar stresses associated with the z-axis
can cause delamination, or separation of the laminas. According to [2] the interlaminar
stresses are

τxz(z) = −
∫ z

−t/2

∂τxy
∂y

dz (2.43)

τyz(z) = −
∫ z

−t/2

∂σy
∂y

dz (2.44)

σz(z) = −
∫ z

−t/2

∂τyz
∂y

dz (2.45)

and they are visualised in Figure 2.6. The interlaminar shear stress τxz goes from zero
in the interior region to a very large value approaching the free end, which follows from
equation (2.43). All the interlaminar stresses are equal to zero in the interior region.

Interlaminar stresses in layered laminates arises from the consideration of relative ply
elastic constants in adjacent plies. It can also arise from a consideration of stress equi-
librium along the free edge faces of the laminate subjected to load. Since failure due to
these stresses can occur they have to be taken into account in the designing process [4].
Since this is a three dimensional problem and the laminate analysis only predicts in-plane
stresses additional analysis is required to predict those stresses. How those stresses can be
estimated can be found in [4].

It has been shown both analytically and experimentally that the influence of the in-
terlaminar stresses are dependent on the stacking sequence. The stacking sequence can
change the interlaminar normal stress σz from tensile to compressive. Since tensile inter-
laminar normal stresses tend to separate the plies and compressive stresses would tend to
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Figure 2.6: In-plane and interlaminar stresses in a layered laminate.

keep the plies together the stacking sequence producing tensile stresses would then have
lower strength.

2.1.6 Laminate strength

In section 2.1.3.1 different types of failure criteria for a lamina were discussed. When
analysing a laminate one has to translate the stresses and strains to the lamina level to use
the failure criteria for a lamina. Failure can occur both due to in-plane stresses and due
to interlaminar stresses. As have been discussed in section 2.1.5 the interlaminar stresses
can lead to a mode of failure known as delamination.

In many laminated constructions the ultimate failure occurs soon after first lamina
failure. For many other laminates the stress level of the first lamina failure and the ultimate
stress lever differ quite much. Thus, to predict laminate failure based on first lamina
failure may be too conservative [6]. There will usually be a sequence of lamina failures,
because laminates often have the different laminas oriented in different angles, leading to
an ultimate failure when all laminas have failed.

To model the failure of the different plies the stiffness for the failed ply and the cor-
responding laminate stiffness matrix has to be modified to reflect the effect of the these
failures. Calculation of this modified laminate stiffness requires the knowledge of the mod-
ified ply stiffness. To know this stiffness the type of failure must be known. Alternatively
all the stiffnesses for the failed ply may be set to zero when calculation of the modified
laminate stiffness [2]. When setting the stiffness for the ply to zero this assumes that the
ply fails instantaneously when the failure stress level has been reached. This will create
knees in the load-deformation curves that is sharp for each ply that fails, see Figure 2.7.
This may not be the case in reality when the failure occurs gradually over a finite strain
range.
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Figure 2.7: Load-strain curve for an uniaxial loaded laminate showing multiple ply failure
up to ultimate laminate failure.

When delamination occurs due to interlaminar stresses the failure stress of the laminate
can be reduced below the value predicted by the in-plane failure criteria. The initiation of
delamination is often followed by stable delamination which grows to unstable delamination
and ultimate failure. Hence, initiation and failure are not the same. A fracture mechanics
approach is preferred when dealing with delamination growth and failure stages while
mechanics of material is preferred when dealing with prediction of delamination initiation
[2]. A quadratic failure criteria, a mechanics of material approach, predicting initiation of
delamination can be stated as(

τ̄xz
sXZ

)2

+

(
τ̄yz
sY Z

)2

+

(
σ̄tz

s
(+)
Z

)2

+

(
σ̄cz

s
(−)
Z

)2

= 1 (2.46)

where the overbar means averaging of the interlaminar stresses and s stands for strengths[2].
The averaging in this case is defined as

σ̄ij =
1

λavg

∫ λavg

0

σijdλ (2.47)

where λavg stands for the averaging dimension, e.g distance from the free edge, and σij
stands for the stress components. Since the data for interlaminar strengths are not usually
available the strength value sZ = sT , in the case of transversely isotropy [2], and the
parameters sXZ = sY Z = sLT [6] can be used instead. Interlaminar stresses can not only
cause delamination near free edges in laminates, it may also occur at other discontinuities
such as ply drop offs, see Figure 2.8.
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Figure 2.8: Interlaminar stresses in two different discontinuities, drop off and free edges.

Failure is not the only undesired result of delamination. Delamination does also cause
reduced stiffness which can make the structure unsafe even if fracture does not occur.
Stiffness loss can be used to characterise the growth of delamination and a model for this
is described in [2].

2.2 Contact mechanics

Based on a simple one-dimensional example, this section gives brief descriptions of various
methods used to solve contact problems. Assume that a point mass m is attached to a
spring, stiffness k, which is clamped at the end according to Figure 2.9. Gravity g is acting
on the system and the deflection of the mass is restricted by a rigid surface below the mass.

h

m
u

k

Figure 2.9: Point mass supported by spring.

The total energy of the system without considering any constraint can be written as

Π(u) =
1

2
ku2 −mgu. (2.48)

The restriction of the motion of the mass due to the rigid surface can be described by

c(u) = h− u ≥ 0 (2.49)

which prevents penetration to occur. For c(u) > 0 there is a gap between the mass and
the surface, for c(u) = 0 the gap is closed. As the mass is in contact with the surface a
reaction force fR appears. It is always assumed to be negative, hence the contact pressure
can only be compression. Thus the following statement yields:

c(u) ≥ 0, fR ≤ 0 and fRc(u) = 0 (2.50)
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The Lagrange multiplier method adds this constraint to the energy equation:

Π(u, λ) =
1

2
ku2 −mgu+ λc(u). (2.51)

where λ = fR. The variation of equation (2.51) leads to two equations, since δu and δλ
can be varied independently.

kuδu−mgδu− λδu = 0 (2.52)

c(u)δλ = 0 (2.53)

Equation (2.52) represents the equilibrium for the mass and equation (2.53) states the
fulfilment of the kinematic constraint. By assuming that c(u) = 0 one can now solve for
Lagrange multiplier λ

λ = kh−mg = fR. (2.54)

Still fr ≤ 0 needs to be fulfilled of the solution to equation (2.54) [7] [8].
The penalty method is another contact formulation. Here a penalty term is added to

equation (2.48) (only if c(u) > 0) as follows:

Π(u) =
1

2
ku2 −mgu+

1

2
ε[c(u)]2 with ε > 0 (2.55)

The penalty parameter ε can be interpreted as a spring stiffness in the contact interface
between the mass and the rigid surface, see Figure 2.10.

h

m
u

k

Figure 2.10: Illustration of the penalty spring that appears due to the penalty term.

The variation of equation (2.55) yields

kuδu−mgδu− εc(u)δu = 0 (2.56)

from which the following solution can be derived:

u =
mg + εh

k + ε
(2.57)

The constraint equation is then

c(u) = h− u =
kh−mg
k + ε

(2.58)

Since mg ≥ kh in the case of contact, equation (2.58) means that a penetration of the mass
into the rigid surface occurs. This is physically equivalent to a compression of the spring
with stiffness ε in Figure 2.10. The penetration depends upon the penalty parameter ε. A
high value of ε leads to small penetrations and vice versa.

The Direct method and the augmented Lagrange method are two other contact meth-
ods. Augmented Lagrange combines the penalty method with the Lagrange multiplier
method. The direct method is based on the fact that the contact constraint is enforced
directly, i.e. that the gap is assumed to be closed immediately [7]. For more detailed
description of the above mentioned methods, see [7] and [8].
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2.3 Computer experiments

A good experimental design should minimise the number of runs to acquire as much in-
formation as possible. There are two types of experiments, physical and computer experi-
ments. There always exist random errors in physical experiments, e.g. physical experiment
can give different outputs for the identical experimental settings. Therefore when setting
up and analysing the experiments, statistical experimental designs may be used. Many
physical experiments can often be expensive and time consuming and the experiments can
be modelled by some mathematical model.

An engineering model trying to describe the physics can be of the form

y = f(x1, ...xs) = f(x), x = (x1, ..., xs)
′ ∈ T (2.59)

where x is the input variable, y is the output variable, the function f is the physical system
to be described and T is the input variable space. Equation (2.59) can be regarded as a
solution to many types of equations; linear, nonlinear, ordinary, and/or partial differential
which often can be impossible to solve analytically. To find the relation of the input xi
and y can be time consuming and expensive for the physical model. One of the goals of
computer experiments is to find an approximate model, a metamodel, see equation (2.60),
that is much simpler than the true one [9].

y = g(x1, ...xs), x ∈ T (2.60)

A schematic model of this can be seen in Figure 2.11. The characteristics of the
computer experiments compared to the physical are for example that each experiment
can be reproduced and the same inputs will give identical outputs and it often involves
larger numbers of variables compared to those of a physical experiment[9].

Figure 2.11: Schematic illustration of the system and the metamodel.

For a given number of runs, n, one wants to find a good design Dn = x1, ...,xn, where x
are the input parameters, that minimises the deviations of the metamodel and the function
f in equation (2.59). One method to estimate the deviation is the sample mean method,
for more information see [9]. There are different ways to generate Dn for the sample mean
method, one of them that has been shown to have a good space-filling design is the latin
hypercube sampling (LHS) and its modifications[9].

When the data from the computer experiments have been collected one wants to find
a metamodel that describes the relationship between the input and the output. The aim
is to create an analytical formula that approximates the system in equation (2.59). For a
given true model there are many possible metamodels and it is difficult to say which is the
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best. The purpose is to find a useful model. Two types of metamodels are the polynomial
models that approximates the model with polynomial bases and the radial basis function
(RBF) methods, for more information about metamodels see [9].

There are different ways of estimating the prediction error for the metamodel, g, one
way is to have direct evaluation of the error which is very time consuming. A method for
this that evaluates the approximate error over the whole experimental region is called the
mean squared error (MSE) and is defined as

MSE(g) =

∫
T

{f(x)− g(x)}2dx. (2.61)

For large models that computationally intensive the Cross Validation (CV) procedure is
often used. The CV score is defined as

CVn =
1

n

n∑
i=1

{f(xi)− g(xi)}2. (2.62)

This method can give good approximation of the predicted error of g and is referred to as
”leave-one-out cross validation” [9].
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3 Material modelling

This section describes the material used and how the material model used in Abaqus was
obtained.

The spring orthosis is made from a pre-impregnated(pre-preg) high strength carbon
fibre composite material. The composite is woven as a 4x4 twill, see Figure 3.1, with
material parameters according to Table 3.1. The material parameters were provided by
the manufacturers, Advanced Composite Group. Note that these data are normalised for
50 volume percent carbon fibre, except for in-plane shear and inter laminar shear strength
(ILSS). 50% of the fibres run in one direction and the other 50% run in the perpendicular
direction. This means that vf = 25% in one direction.

Woven composites are often assigned one warp and one weft direction, where the weft
direction is transverse the warp direction (often, but not necessarily, perpendicular to each
other). Depending on how the weft fibres are woven relative the warp fibres different
properties can be obtained in different directions. The 4x4 twill has no differences between
the warp and weft direction.

Figure 3.1: 4x4 twill

Table 3.1: Material parameters for 4x4 twill VTM266/CF0100, vf = 50%
Etensile

1 60.0 GPa

Ecompressive
1 54.1 GPa
Etensile

2 60.0 GPa

Ecompressive
2 54.1 GPa

Tensile strength 700 MPa
Compressive strength 541 MPa

ν12 0.08
G12 3.87 GPa

In-Plane shear strength 95.5 MPa
Interlaminar shear strength 71.4 MPa

The spring orthosis is created from 24 separate plies, or laminas, together forming a
laminate. Of these plies, 18 are used to construct the spring, whereas the rest 6 plies are
mainly to provide comfort for the user. The plies forming the spring are cut to rectangular
strips from a large sheet of carbon fibre received from manufacturer. Each ply is then
separately applied onto a cast of the patient’s foot, this procedure is called draping. Since
this is done by hand the draping procedure varies from one job to another, depending on
who is performing it and the variation of pressure applied by the constructing engineer.
The layup of the plies and further information on how the plies are draped is covered in
section 4.2.
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The variation of applied pressure will result in a variation of amount epoxy pouring
out, i.e. the volume fraction carbon fibre, vf , changes value. As can be read in section
2.1.1 this will affect the material properties. By using micromechanics theory described in
section 2.1.1 these parameters can be determined as a function of fibre volume fraction,
vf , and the corresponding material parameters from carbon fibre and epoxy. The effective
stiffnesses E1 and E2 can be fairly approximated by using equation (2.10). If applying
equation (2.10) with data from carbon fibre and epoxy according to Table 3.2 and using
vf = 25% this will result in the following value:

E1 = Ef1vf + Emvm = 60.5 GPa (3.1)

Table 3.2: Young’s modulus for carbon fibre and epoxy
Carbon fibre Epoxy

230 GPa 4 GPa

The effective value in equation (3.1) is close to the tensile modulus stated in Table 3.1.
However the other parameters, e.g. Poisson’s ratio, shear modulus, tensile and compressive
strengths, will be difficult to calculate for different volume fractions of fibre. This is mainly
because of the uncertainties of how much the weft will affect the composite’s behaviour.
The best choice is to use the material parameters supplied by the manufacturers. Since
epoxy material is lost during manufacturing one has to make sure to use data obtained
from a test specimen with vf ≈ 50 %.

3.1 Four point bending test

The test was conducted by the Technical Research Institute of Sweden. Nine different test
specimens were separately subjected to a four point bending test according to Figure 3.2.
The specimens consist of 18 plies, stacked [45◦/0◦], and they were hand made in the same
way as the orthosis and thus have varying thickness depending on the pressure applied
during manufacturing. Higher pressure will result in a thinner and a stiffer plate. The
length and width of all specimens were 246 mm and between 43.9− 44.0 mm respectively
while the varying thickness of the plates can be seen in Table 3.3.

The load was applied on the two middle supports until failure occurred, i.e. when the
test specimen lost all its strength. The vertical velocity of the two middle supports was
5 mm/min downwards and the displacement as well as the applied force were recorded
throughout the entire test period. The results of each test can be seen in Table 3.3, where
the maximum load and displacement were obtained at the time when ultimate failure
occurred. c
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Figure 3.2: Set-up of 4-point bending test

Table 3.3: Test results for all nine test specimens from four point bending test
Specimen number Thickness [mm] Max Load [kN] Max displacement [mm]

1 5.58 5.30 20.5
2 5.28 4.39 21.6
3 5.60 4.80 18.0
4 5.30 4.75 23.9
5 5.18 4.40 24.2
6 5.19 4.35 26.9
7 4.78 4.05 27.5
8 4.73 4.17 26.4
9 4.78 3.99 29.2

To be able to verify the material model the four point bending test was reconstructed in
Abaqus/CAE. Calculations, which can be found in Appendix A, show that a test specimen
with vf = 50 % should have a thickness of 5.70 mm. Test specimen number 3 in Table 3.3
has a thickness of 5.60mm which differs less than 2% from a test specimen with vf = 50%.
Thus it seems reasonable to use material data received from manufacturers and comparing
with test data from specimen number 3.

3.1.1 Setup of Abaqus model

The four point bending experiment described in section 3.1 was used to validate the mate-
rial model in Abaqus/CAE. This was done by comparing the force/displacement curve of
the middle supports from the experiment to the force/displacement curve from the finite
element simulations in Abaqus/CAE.

Since the compressive strength is less than the tensile strength, see Table 3.1, the initial
failure was assumed to have occurred at the top of the plate where compressive stresses
are present. This was also detected in the experiments made by SP, and can be seen
in Figure 3.3 where force versus displacement is plotted. After the assumed compressive
failure the strength of the structure was reduced and this appears as a small dip in the
curve. After the first ply failure different types of failure modes could be present, which
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was not modelled. The force, 3.3kN, and the displacement, -11.3mm, recorded at this dip
was used as a reference.

Figure 3.3: Recorded force of test specimen number 3. The dip that is assumed to have
occurred due to compression failure of the top lamina is highlighted. Due to the brittleness
of carbon fibre the dip is quite sharp and sudden.

To set up the test in Abaqus, the following parameters had to be determined:

• Material model and material parameters

• Dimensions of the rolls and the plate

• Boundary conditions

• Finite element mesh

• Element type

• Friction coefficient, µ

• Contact formulation

The following parameters are given; material data sheet, dimensions of rolls and plate,
stacking sequence. The test suppliers have confirmed that there is friction present between
the rolls and the plates, but not the magnitude of it.

3.1.2 Material Model

The material was modelled according to equation (2.23) as a balanced orthotropic lamina
with E1 = E2 described in section 2.1.2. This corresponds to the material model ”lamina”
in Abaqus/CAE, see [10], which is a plane stress orthotropic elasticity material model.
Required parameters in this model are E1(= E2), ν12(= ν21), G12 and G13(= G23). The
out of plane shear moduli G13 and G23, which are not included in equation (2.23), are
needed for the out of plane stiffness needed to model the transverse shear deformation.
This means that there are 4 independent material parameters to determine. Since G13 and
G23 are not given in the material data sheet they were tuned so that the vertical reaction
force would match the force obtained from the test, see Figure 3.3.

The Tsai-Wu failure criterion, described in section 2.1.3.2, was used as an equivalent
stress measure. It was used when comparing different test parameters and to investigate
where and when failure has occurred. The parameters required in the criterion can be seen
in Table 3.4.
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Table 3.4: Parameters used in the Tsai-Wu failure criterion.
F11 [MPa−2] F22 [MPa−2] F1 [MPa−1] F2 [MPa−1] F66 [MPa−2] F12 [MPa−2]

3 ∗ 10−6 3 ∗ 10−6 −0.42 ∗ 10−3 −0.42 ∗ 10−3 0.11 ∗ 10−3 −3
2
∗ 10−6

From the material data sheet one can see that Young’s modulus differs in compression
and tension. There is no possibility to model this in Abaqus. To compensate for this an
average of E1 and E2 was calculated accordingly:

E1,2 =
1

2

(
Ecompressive

1,2 + Etensile
1,2

)
(3.2)

The stacking sequence used is the same as for the original layup of the spring, 18 plies
with [45◦/0◦], see Figure 3.4.

Figure 3.4: Ply stack plot of the plate. The normal of the shell is pointing downwards so
ply 1 is on the top and ply 18 is on the bottom of the plate.

3.1.3 Geometry and boundary conditions

The geometry of the rolls and the plate can be seen in Figure 3.6. Dimensions of the plate
were taken from test specimen number 3, see Table 3.3, and the rolls diameter, D=0.02m,
was measured from the real equipment used in the test. Since the test set up is symmetric
in x- and z-direction, the length and the width was divided into halves i.e from 0.246m
x 0.044m to 0.123m x 0.022m. This meaning that the reaction force used for comparison
will be divided by 4. The thickness of the plate is 0.0056m.

The geometry of the plate was modelled with two different types of shell elements;
conventional shells, which is a thin shell, and continuum shell which is a thick shell, see
Figure 3.5(a) and Figure 3.55(c). When using a continuum shell the thickness is modelled
and it is possible to use one element for each layer of the composite. In the area around the
contact a mesh refinement was made to better capture what happens in this area and to
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model the contact properly. The mesh refinement was chosen such that further refinement
did not affect the result of the simulations.

The rolls were modelled as rigid bodies, see figure 3.55(b). A rigid body is a collection
of nodes, elements and/or surfaces whose motion are governed by the motion of the rigid
body reference point. The relative positions of the elements and nodes remains constant
under the simulations. Therefore, the elements of the rigid body do not deform but can
have large rigid body motions [10].

(a) Mesh of the plate modelled with thin conven-
tional shell elements.

(b) Mesh of the roll.

(c) The plate modelled with continuum thick shell with
one element for each layer.

Figure 3.5: The mesh of the rolls and the plate used in Abaqus/CAE.

Boundary conditions for the rolls were applied to the reference points of the rolls. For
the roll that is acting as a support all the degrees of freedom were fixed and the roll that
moves downwards had a prescribed displacement in the negative vertical direction and all
other degrees of freedoms fixed. All boundary conditions for the four point bending test
can be seen in Figure 3.6 and Table 3.5.
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Figure 3.6: Test setup in Abaqus. Dimensions of the plate are 0.246 x 0.044 x 0.0056 and
the roll diameter is 0.02m. The boundary conditions for the test setup are also shown, the
different boundary conditions can be seen in Table 3.5.

Table 3.5: Boundary conditions tabulated for the four point bending test model.
Boundary ux uy uz rotx roty rotz

BC1, X-symm 0 free free free 0 0
BC2, Z-symm free free 0 0 0 free

BC3 0 -0.0113 0 0 0 0
BC4 0 0 0 0 0 0

3.1.4 Element selection

For the continuum shell the linear continuum shell element with reduced integration SC8R
was used. There are three different types of thin quadrilateral shell elements supporting
computations with layered composites; S8R, S4R and S4. The elements S4 and S4R are
linear elements with 4 nodes and S8R is a 2nd order element with 8 nodes, R stands for
reduced integration. Reduced integration means that a lower order integration is used to
form the element stiffness matrix[10]. For more information about the elements in Abaqus
see [10].

Abaqus will integrate over the thickness of the shell to establish the matrices described
in section 2.1.4. When estimating the transverse shear stiffness and interlaminar shear
stresses Abaqus assumes that the shell section directions are the principal bending direc-
tions. If the layered orthotropic laminate is not symmetric around the mid surface, it may
be so that the shell section direction is not the principal bending direction, which will
make the approximation of the transverse shear stiffness and interlaminar shear stresses
less accurate [10]. The interlaminar shear stresses are only calculated in Abaqus when the
elastic material model is used for each layer of the shell section.

To calculate interlaminar shear stresses it is required that Simpson’s integration rule
and not Gauss quadrature is used. This is since Simpson’s rule has an integration point at
the interface between the composite layers which Gauss quadrature does not have [10]. The
concept of calculating the interlaminar shear stresses relies on the concept of a ”stack” of a
continuum shell elements. A stack is defined as a continuous set of continuum shells with
the first and last element on a free boundary and that are connected through shared nodes
on the top and bottom element surfaces, for more information about stacked continuum
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shells see [10].
Because of the loss in accuracy when modelling the transverse shear stiffness with

elements having asymmetric layered laminate layup, the computations with conventional
shell elements are less accurate. The continuum shell on the other hand models each ply
with one layer of elements, thus each ply is symmetric in itself and there is no loss of
accuracy. A comparison of how the different element types affect the stiffness was made.
The same test setup was used to compare the reaction force of the roll in y-direction. The
results are presented in Table 3.6 and shows that the reaction forces of all thin conventional
shells are equal and the difference when using a continuum shell is less than 0.5%.

Table 3.6: Reaction forces when using different element types for a prescribed y-
displacement of -0.0113m.

Element type S4 S4R S8R SC8R
Reaction force -833N -833N -833N -829N

The computational time of an analysis with a continuum shell (SC8R) is approximately
20 times the computational time of an analysis with a conventional shell (S4R). The main
reasons are that the continuum shell model uses one element per ply to model the thickness
and that more integration points are used.

Failure can occur as an interaction between different failure modes, e.g. delamination
due to interlaminar stresses and failure due to in plane stresses as described in section 2.1.6.
Therefore the continuum shell (SC8R) was chosen when analysing the failure that occurred
in the four point bending test. The differences of modelling the four point bending test
with conventional shells with S4, S4R and S8R compared to stacked continuum shells with
SC8R was analysed. This was done by comparing the different stresses. The result of these
comparisons can be seen in Appendix B, section B.1.

The continuum shell was also used when tuning the value of G13,23. The conventional
element S4R was however used when analysing composite layup effects, see section 5. This
is because of the shorter computational time and the good estimation of the reaction force.

3.1.5 Contact interaction

To simulate the interaction between the rolls and the plate a contact interaction formu-
lation is needed. Each contact formulation in Abaqus is based on a choice of a contact
discretization, a tracking approach and assignment of master and slave surfaces. A surface-
to-surface type of contact was chosen as contact discretization. As a tracking approach
finite sliding was used, which allows for arbitrary separation, sliding and rotation of the
surfaces[10]. The rolls were set as the master surfaces and the upper and lower part of the
plate as slave surfaces. According to [10] discrete rigid surfaces must always be the master
surfaces.

A contact constraint model and the frictional behaviour are also needed, for the nor-
mal and tangential behaviour respectively. If no friction is requested a frictionless type
of tangential behaviour can be used. To model friction, a penalty type of friction be-
haviour was used, which Abaqus recommends since the Lagrange multiplier method will
give convergence problems[10].

The contact constraint enforcement can be modelled in different ways. The direct
method strictly enforces the constraints without approximations or use of augmented it-
erations, which may lead to over constraint issues. The Penalty method, briefly described
in section 2.2, approximates the constraints and some degree of penetration will occur.
This method reduces the number of iterations needed in the analysis. The linear penalty
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method used here uses one value for the penalty stiffness. To lower the amount of pen-
etration this value can be increased. The augmented Lagrange method uses the linear
penalty method with augmented iterations that will lower the penetration tolerance and
improve the accuracy of the approximation. This method may need more iterations but
it avoids the problem with over constraints while lowering penetration. (The penalty and
augmented Lagrange constraint enforcement methods sometimes provides more efficient
solutions compared to the direct method, due to reduced calculation costs per iteration
and a lower number of overall iterations per analysis at some typically small sacrifice in
solution accuracy). For more information about the contact formulations in Abaqus see
[10].

How the constraints enforcement methods for the normal behaviour and the friction
coefficient influenced the results in the simulations were analysed as follows:

• Friction coefficient was changed between 0 ≤ µ ≤ 0.3. Stress distribution of the plate
with and without friction and how the stresses changes for different values of friction
was analysed.

• A comparison between augmented Lagrange, linear penalty and direct contact with
friction being fixed, µ = 0.2. In this comparison the value of the penetration in the
contact area was compared. Also how the methods influenced the stress distribution
in the area around the contact was analysed. The requirement was that the contact
interaction definition should model reality in the best possible way according to the
failure of the test specimen.

The friction coefficient µ was set to 0.2 and augmented Lagrange was chosen as the
contact method. The comparisons can be found in Appendix B, section B.2 and B.3.
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4 Orthosis model

This chapter describes how the FE-model of the orthosis was created, how the walking
cycle was applied, how the maximum stresses during the walking cycle were generated and
how difference composite layups were selected, created and analysed.

4.1 Model geometry

To be able to analyse the orthosis a geometry of the model was needed. The model
was scanned and an stl-file was obtained. This file format describes the raw, unstructured,
triangulated surface by a unit normal and vertices of the triangles using a three-dimensional
Cartesian coordinate system. This format does not have any common CAD attributes so it
has to be reconstructed. As can be seen in Figure 1(a) the edges of the model were uneven
and rough in the stl file. This is because the scan catches all the irregularities that exist
in the model. To obtain a geometry that is easier to work with the pre processor ANSA
was used to create surfaces and to smooth the edges. A shell surface was then extracted.
The created geometry and the extracted front surface can be seen in Figure 1(b) and 1(c).
The main steps in the geometry clean up and shell extraction can be found in Appendix
E. Because of the irregularities at the bottom of the orthosis the extracted middle and
bottom surfaces were irregular in some regions. Therefore the top surface was used.

(a) Scanned geometry as an stl-file. The
zoomed in area shows the irregularities at the
edges

(b) Cleaned up geometry. The zoomed in
area shows the edges after the clean up.

(c) Front surface that was used in
the simulations.

Figure 4.1: Different states of the orthosis model.
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4.1.1 Mesh

The mesh created in ANSA can be seen in Figure 4.2. A mesh refinement was done in
the spring and toe since these areas are of most interest, since this is where most of the
deformations occur. The upper support of the orthosis will not be affected during the
walking cycle, so this part has a rougher mesh. The sides of the arch of the foot have finer
mesh than the top support but rougher than the spring. The elements used are the linear
elements S4 and S3. The second order element S8R was rejected due to poor convergence
properties of the analyses performed.

(a) The mesh of the top and the spring.

(b) The mesh of the arch of the foot and the toe.

Figure 4.2: The mesh used in the analysis.

4.2 Composite layup

The composite layup was created in Composite Modeller (CM), which is an Abaqus plug-
in. CM allows you to create composite plies with varying properties and orientations.
An advantage of CM compared to creating a composite layup in Abaqus/CAE is that it
allows you to choose how the plies are draped onto the model. One option is to let a ply
orientation follow a seed curve. A seed curve is a curve defined on element edges that can
be used to constrain the draping over a surface[11]. By letting the warp of the woven ply
follow a single seed curve the orientation angle of the ply will change along the curve. If
draping without using a seed curve the ply will be cut to fit the corresponding area and
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the angle will remain constant. Figure 4.3 shows the difference between applying a ply
with and without seed curve.

Before choosing how the model is draped one has to specify what type of material to
use. In this case a biaxial material with 90 degrees between warp and weft was used to
model the woven material. A maximum strain angle, the maximum allowed angle between
warp and weft when shearing the fabric, also has to be specified and it was set to be 60
degrees, a default value in CM. This was chosen since the this value was unknown from
the supplier. When draping the plies on to the model one has to specify which coordinate
system that should act as a reference and a point where the seeding should start. The
seeding point will then be the starting point, e.g when draping the plies along the seed
curves. For more information about draping in CM see [11].

When a ply is stretched to be able to follow a curve the angle between the warp and
weft changes, i.e. the warp and weft are no longer perpendicular. CM in Abaqus/CAE
gives warnings of this behaviour by making the ply orientation indicator yellow or red.
If it shows red it means that the angle is close to the maximum strain angle, see Figure
4.3(a), and that the draping may be changed. This is an advise to the user that this is a
bad way of draping. To account for non perpendicular angles between warp and weft the
user must define multiple mechanical property sets for a reference material and specify the
shear state for each set [11]. These properties must be measured from material tests. Since
there were no data for these property sets, Abaqus will not take the shear into account.
Abaqus will however take into account the rotation of the ply that follows by draping along
a seed curve.

(a) Using seed curve. (b) Without using seed curve.

Figure 4.3: Effect of using seed curve on ply orientation. The same area is draped in both
cases, but there is a clear difference between the orientations of the ply.

4.2.1 Creating original composite layup

Based on interviews and observations of the engineers at Ortopedteknik the draping pro-
cedure was reproduced, this is later referred to as the original layup. The spring orthosis
consists of 24 separate plies draped onto various regions. The stacking sequence used can
be seen in Table 4.1. Different element sets were created to match the areas where the
different plies are draped onto. Ply 4-21 are used to build the spring and toe. Figure 4.4
shows the corresponding sets or regions that Table 4.1 refers to.
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(a) Left set. (b) Straight set.

(c) Right1 set. (d) Right2 set.

Figure 4.4: Illustration of different draping regions used when creating the spring.

The sets in Figure 4.4 were created such that they have approximately equal width all
the way from the top of the spring to the toe. The seed curves used can be seen in Figure
4.5. The plies that cover the straight set do not need a seed curve. These plies are not
equal, they are cut shorter and shorter to form something that looks like a stair, illustrated
in Figure 4.6 with ply 5 being the longest and ply 13 being the shortest. The regions of
interest during the analysis are the spring and the toe. These element sets are illustrated
in Figure 4.8. These regions are the ones with largest deformations of the orthosis, while
the arch of the foot and the top support mainly are for comfort. Ply 1-3 and 22-24 are
draped without using seed curves, see Figure 4.7.

Figure 4.5: Seed curves used when creating the spring

Figure 4.6: Solid model created to show how the toe part is built.
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(a) Toe set. (b) Arch set. (c) Top set.

Figure 4.7: Illustration of different draping regions used when creating ply 1-3 and 22-24.

Figure 4.8: Element sets used for analysis, toe element set and spring element set.

The plies were draped in the order of Table 4.1 with ply 1 closest to the foot. They are
added in the direction of the normal pointing to the ground, which means that the ply 24
is closest to the ground.
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Table 4.1: Ply stacking sequence of spring orthosis original layup. The element sets can be
seen in Figure 4.4 and 4.7.

Ply Orientation Element set
1 45◦ Arch
2 0◦ Top
3 0◦ Toe
4 45◦ Left
5 0◦ Straight level 5
6 45◦ Right1
7 0◦ Straight level 4
8 45◦ Right2
9 0◦ Straight level 3
10 45◦ Left
11 0◦ Straight level 2
12 45◦ Right1
13 0◦ Straight level 1
14 45◦ Right2
15 0◦ Left
16 45◦ Right1
17 0◦ Right2
18 45◦ Left
19 0◦ Right1
20 45◦ Right2
21 0◦ Left
22 0◦ Toe
23 0◦ Top
24 45◦ Arch
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4.3 Walking cycle

A walking cycle was recorded at Ortopedteknik to see how the orthosis deforms when
being used. There were 7 reflectors attached to the orthosis, with positions and numbering
according to Figure 4.9. The reflectors were connected by steel connectors glued onto the
orthosis, see Figure 4.10. As the patient walked through the room, there were 8 cameras
recording the positions of each reflector. To obtain only one step cycle, 0.88 seconds of the
recorded time was extracted, containing 213 time steps. This resulted in 3 time histories
each for all 7 reflectors, one for x-movement, y-movement and z-movement.

Figure 4.9: Positions and numbering of reflectors.

(a) Arch of the foot. (b) Toe area. (c) Top of the spring.

Figure 4.10: Close up photos of how the reflectors were connected to the orthosis.

In the Abaqus model the reflectors were replaced by reference points. To control the
movement of the reference points each point was assigned three boundary conditions, one
for each translation direction. No rotational degrees of freedom were controlled. Each
boundary condition has magnitude 1 and is related to an amplitude corresponding to
the recorded data for that degree of freedom. This creates a 3-dimensional movement of
all reference points. However not all are needed to control the motion of the orthosis.
To obtain a statically determined position of the orthosis at least 3 points need to be
controlled, otherwise unwanted rotations can occur. Relative motion between the points
were discovered to cause high stress levels even at the start of the walking cycle. This
relative motion can be explained by measurement inaccuracies. For instance the usage of
both reference point 1 and 2 caused unrealistically high stresses due to the relative motion
between the two points. The more points used to control the motion the more stress
inaccuracies were obtained.
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To capture the relative motion between the arch of the foot and the spring as well as
between the arch and the toe, reference points 2, 4 and 6 were used to control the motion.
To transfer the motion of the points to the orthosis an MPC (Multi Point Constraint)
was used. MPCs transfer degrees of freedom from one master node to a slave node set.
The MPC used is called ”beam” and creates a rigid beam between the reference point and
the node set[10]. This will constrain both translations and rotations but since there are
no rotational boundary conditions only translations are constrained. The beam constraint
was used as an attempt to imitate the steel connectors in Figure 4.10.

However there is a difference between controlling the motion by moving the reference
points and using constraints compared to reality where the reflectors moves due to deforma-
tions of the orthosis. The area close to the slave nodes will show high stress concentrations,
an example of this can be seen in Figure 4.11. This is an issue that is very difficult to get
away from. Therefore it was of importance to choose the points so that they would not
affect the two areas of interest, seen in Figure 4.8.

Figure 4.11: An example of stress concentrations that occur in the area around the slave
nodes.

The slave nodes used for all constraints can be seen in Figure 4.12. These node sets
have been selected to match the areas where the steel connectors are attached to the real
model. In Figure 4.12(a) there is also a link constraint between reference point 1 and 2. A
link constraint keeps the distance between the points constant. This was used to obtain a
more realistic movement of the toe, i.e. to avoid that only the left side of the toe moves in
the vertical direction. Still only point 2 is prescribed.
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(a) MPC constraint beam on reference point
2 with link to reference point 1.

(b) MPC constraint beam on reference point
4.

(c) MPC constraint beam on reference point
6.

Figure 4.12: The constraints and slave nodes used.

To filter out measurement noise each amplitude was recreated by a curve-fitted 10th
order polynomial. The same number of time frames were used. This improved the conver-
gence rate. The original amplitudes are plotted together with the fitted curves in Appendix
C, Figure C.1.

To make the orthosis ”walk” a general static analysis was performed. The step time
period was set to 1 and maximum time increment was set to 1

213
≈ 0.0046948. This made

sure that each of the 213 recorded time steps will be present in the results.

4.3.1 Localising maximum stress during the walking cycle

One purpose of modelling the walking cycle was to determine where, when and in what
ply the maximum stresses occur in both the toe and the spring element set. The Tsai-
Wu failure criteria, described in section 2.1.3.2, was used as a parameter for maximum
stress. To search the Abaqus odb-file3 a Python script was created, this can be found in
Appendix D. The input to the script is the odb-file and the name of the element set of
interest. Outputs are Tsai-Wu value, frame number, element number and ply number. By
running the python script two states were obtained, one with maximum Tsai-Wu value in
the toe (toe state) and one with maximum Tsai-Wu value in the spring (spring state).

4.3.2 Creating reference states from the walking cycle

The spring and toe state were recreated by performing two single step analyses. To reduce
the run time, the translation degrees of freedom of point 6 was set as fixed while point
2 and 4 were subjected to translatory boundary conditions. These boundary conditions
consist of the motion of point 2 and 4 relative point 6.

3An obd-file is an output data base containing output parameters from a simulation.
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To be able to apply these states to other configurations the displacement boundary
conditions were replaced by loads. This allows the orthosis to deform differently depending
on how the composite layup is configured. The reaction forces in point 2 and 4 were
extracted from the analyses made from the recreation of the two states, mentioned above.
These forces were then applied on point 2 and 4. To make sure that the model is statistically
determined, the rotations of point 6 needs to be prescribed. These rotations were also
extracted from the recreation of the two states. The correct rotations of the orthosis
about point 6 make sure that the forces acting in point 2 and 4 are oriented in the correct
direction. Both when using displacement BCs and forces the same result was obtained as
for the original two state of the walking cycle.

4.4 Creating new composite layups

Many orthoses made at Ortopedteknik show tendencies of fracture initialisation in the heel
area, i.e. the area just below the heel. To show how the effect of ply drop offs in this area
of the spring affects the stress distribution, a different composite layup was created. The
same stacking sequence was used as seen in Table 4.1 but different element sets were used
for some plies. Ply 1-3,5,7,9,11,13,22-24 were all draped in same way as in section 4.2.1.
To avoid the drop offs in the heel area a new element set was created, seen in Figure
4.13. This element set was used when applying plies 4,8,12,15 and 19. All other plies,
6,10,14,16,17,18,20 and 21, were applied on the straight element set seen in Figure 4.4(b)
but cut off in different lengths, all ending in the arch of the foot. The spring state described
in section 4.3.1 was used in this analysis.

Figure 4.13: Element set used when creating composite layup with no ply drop offs in the
heel area.
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5 Laminate stacking sequence analysis

This chapter describes analyses created to show how different stacking sequences, ply angles
and draping methods affect the behaviour of the spring orthosis.

To get an understanding of how the laminate stacking sequence and lamina orientation
affect the stiffness of the composite the four point bending test described in section 3.1
was used. The test setup for these analyses was the same as when validating the material
model but using a thin shell element S4R instead. The reaction force obtained in section
3.1.1 was used as a relative measure, i.e. the original layup has a relative stiffness (RS)
of 1. A stacking sequence with relative stiffness larger than one has a larger stiffness than
the original layup and vice verse. A copy of the four point bending test but with 5 plies
was also created. The displacement of the roll was still 11.3mm in the y-direction. The
reaction force obtained from this model was used as a relative measure for the toe, i.e. the
relative stiffness of the toe equals 1 when all plies are oriented 0◦.

To get an understanding on how the different plies affect the stiffness the Design Of
Experiment (DOE) methodology was used. The DOE technique makes it possible to
extract as much information as possible from a limited number of test runs. This was done
in Isight and the DOE loop in Isight can be seen in Figure 5.1.

Figure 5.1: DOE loop in Isight. The loop generates stacking sequences according to Latin
Hypercube sampling. They are then executed in Abaqus.

The thickest part of the spring of the orthosis has 18 plies and the toe part has at
the most 5 plies. Both of these set up of plies were analysed where each ply in the stack
can be rotated between 0◦ ≤ θ ≤ 45◦. This means that the number of variables in the
two analysis are 18 and 5. To cover the different possible stacking sequences for the 18
layers it would bee needed almost infinite number of sequences for continuous parameters.
The same holds for the 5 layer stacking sequences. There are different methods to pick
these stacking sequences to get the best possible design space. For these analyses the Latin
hypercube sampling [9] was used. The sample size, and type of analyses that were made
are presented in Table 5.1. From the DOE a regression analysis output was requested
together with basic statistics. These data were then analysed to find interaction properties
between the different plies. The different tools that are available for analysis in Isight are
described in [12]. The tools that were used in this analysis are;

• Pareto plot. This plot is a bar chart showing normalised coefficients which represent
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the percent total effect on the response. If at least (N+1)(N+2)/2 points are available,
where N is the number of inputs, and each inputs have at least 3 distinct levels a full
second order polynomial model, including two-way interactions is fitted to the data.
For the minimum number of responses (N+1) it will result in a linear polynomial fit.
If the number of data is between (N+1) and (N+1)(N+2)/2 a partial second-order
polynomial is constructed. Before the polynomial is fitted the data are first scaled
to between -1 and 1 and a least square fit is made on this data. The coefficients
resulting from the least square fit regression data are normalised by dividing each
coefficient by the sum of all coefficients[12].

• Correlation plot A graphical tool that shows how the parameters are related. The
correlation ranges between -1 and 1 where -1 represents a perfect inverse correlation
and 1 represents a perfect direct correlation, according to Spearman. A value close
to 0 signify a lack of correlation[12].

• Main effect plot Graphs that show the effect of a given factor on a response. A
larger magnitude gives means that the factor has a greater influence on the response.
The slope of the curve indicates if an increase of the factor has a positive or negative
influence on the response. For more information see Appendix G and [12].

The tools described above was not used individually to determine the interaction prop-
erties between the plies. By evaluating all tools together an indication of how the different
plies affect the response was obtained.

Table 5.1: DOEs that were analysed.
Number of layers Number of variables number of samples Parameters NAME

18 18 400 0◦ ≤ θ ≤ 45◦ DOE A

5 5 100 0◦ ≤ θ ≤ 45◦ DOE B

5.1 Creating approximation

From the DOEs presented in Table 5.1 approximations, i.e. metamodels, were created. For
information on metamodels, see theory section 2.3. In Isight there are two different types
of approximations to choose between; response surface method (RSM) and radial basis
function (RBF). The response surface model approximates the surface with polynomials
up the fourth order according to

F (x) = a0 +
N∑
i=1

bixi +
N∑
i=1

ciix
2
i +

N∑
ij(i<j)

cijxixj +
N∑
i=1

dix
3
i +

N∑
i=1

eix
4
i (5.1)

where N is the number of model inputs, xi is the set of model inputs and a, b, c, d and e
are the polynomial coefficients.

The accuracy of the prediction relies on the amount of data used when constructing the
polynomial, the shape of the exact response function that is approximated and the volume
of the design space in which the model is constructed. The RBF method uses radial basis
function to approximate the function. The RSM and RBF methods in Isight are described
in [12].

To validate how good an approximation created out of the estimation is, different error
estimation graphs and error estimation number will be analysed. A cross validation error
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analysis procedure is used with 20 randomly chosen points from the data set. Four different
types of error estimations were considered.

• Average. Average of the difference between the actual (from Abaqus simulations)
and predicted (from approximation) values for all error samples. Low values are
desired.

• Maximum. Maximum difference between the predicted (from approximation) and
actual (from Abaqus simulations) value for all error samples. Low values are desired.

• Root mean square. The squared difference between the actual (from Abaqus
simulations) and predicted (from approximation) values for all error samples are
averaged and then taken the square root of. Low values are desired.

• R-squared. Coefficient of determination. Provides a measure of how well future
outcomes are likely to be predicted by the model. Ranges from 0 to 1, where 1
represents a perfect fit.

The average, maximum and root mean square are normalised by the range of the actual
values for each response[12]. The graph used to analyse the error estimation in Isight was;

• Response fit. This graph shows the actual versus the predicted values. The diagonal
line represents a perfect fit. If all points fall on or close to the line the approximation
model predicts well based on the error points.

Those plots show how the predicted results deviates from the actual results graphically.
From those values the error estimation numbers are computed, for more information see
[12].

To determine which approximation method to use, a comparison between an RBF and
a 1st and 2nd order RSM approximation were made for both DOE A and B. Higher order
approximations were not considered since they were likely to give unphysical behaviour
between the curve fitted data points. In Table 5.2 the error estimations for the chosen
approximations for DOE A and B are shown. The interval of the relative stiffness that was
captured in the test data for the approximation are also shown. The approximation will
not be used to predict responses outside those intervals. In Figure 5.2 the response fit for
the approximations of the these sets are shown.

Table 5.2: Error estimations for DOE A and B
RUN Method Average Maximum Root mean square R-squared Interval

A RSM 2nd order 0.04411 0.08344 0.05061 0.97046 0.554 ≤ RS ≤ 1.129

B RBF 0.02802 0.06551 0.03352 0.98767 0.343 ≤ RS ≤ 0.955
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(a) DOE A (b) DOE B.

Figure 5.2: The response fit for DOE A and B. The dots represent the 20 randomly chosen
points in the cross validation error analysis procedure.

5.2 Stiffness optimization

The approximations created were used to create optimization loops to generate a stacking
sequence for a predefined value of the relative stiffness. This is then compared to the result
for the same stacking sequence in Abaqus. The optimization algorithms used for this are
Multi-Island GA and ASA, described in [12]. The criteria that were used when choosing
these algorithms were that they should be stable and generate values close to the target.
If the target is reached the optimization method works. Outside those loops an DOE are
running where it is possible to define a matrix of values that should be generated and
compared. The Design Gateway from Isight that shows the optimization schedule is shown
in Figure 5.3.

Discrete parameters were used in the optimization of stacking sequences. This was
done due to the fact that the plies are cut by hand. The chosen parameter values are
θ = 0◦, 15◦, 30◦, 45◦. Note that one could also use continuous parameters.
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Figure 5.3: Optimization loop in Isight. The main loop generates relative stiffnesses that
will be targets in the optimization of stacking sequences from the curve fitting approximation
created from data in the DOE A or B. The resulting stacking sequences are then compared
to the result using the same stacking sequence in Abaqus.

To see if the approximations would give predicted values close to the actual values, 30
different relative stiffnesses were chosen for the spring part. These values were equally dis-
tributed from the lowest to the highest value in the approximation, see Table 5.2. The same
thing was done for the toe part with 5 plies but with 10 different relative stiffnesses. The
stacking sequences generated from the optimization based on these values were compared
to the actual results from Abaqus.

5.3 Analysis of relative motion of toe and spring

To show how different stacking sequences affect how the orthosis deforms, 9 different setups
were analysed. These setups were created by combining 3 different spring setups with 3
different toe setups. One weak (denoted 1), one intermediate (denoted 2) and one stiff
setup (denoted 3) were chosen for both the spring and the toe. The combinations of the
setups can be seen in Table 5.3.

Table 5.3: Combinations used when creating the 9 setups. The spring and toe setups can
be seen in Table 6.3.

Setup S1 S2 S3 S4 S5 S6 S7 S8 S9

Spring setup 1 1 1 2 2 2 3 3 3

Toe setup 1 2 3 1 2 3 1 2 3

The purpose of this analysis was to detect how the relative motion between the toe
and the arch foot as well as between the spring and the arch of the foot changes. The two
reference states described in section 4.3.1 were used in the analysis. The toe state was used
when comparing the deformation of the toe and the spring state was used when comparing
the deformation of the spring. To get a good measurement of the relative motion, reference
point 3, see Figure 4.9, was forced to move with the orthosis via a constraint. The change
of distance between point 2 and 3, for the toe, as well as between 3 and 6, for the spring,
was then compared. To account for the stress level of each layup the maximum Tsai-Wu
value was localised in both the toe and the spring.
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One issue that arises when creating a setup from a spring setup and a toe setup is
that a new draping procedure must be applied. When creating the layup of the toe, one
is restricted to use plies that are present in the spring layup. To decide how to create the
spring and toe layup results from the analyses in section 5 were used.
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6 Results

In this chapter the results from the analyses described in section 3, 4 and 5. The results
from Abaqus simulations presented as averaged contour plots are plotted as max absolute
envelopes. An envelope plot of the absolute maximum value plots the highest absolute
value of all plies in the current element, i.e. max(xi), i = 1, 2, 3, ...,number of plies in each
element. For information about contour plot averaging see [10].

6.1 Four point bending test

Tuning the shear stiffness parameters G13 and G23 it was done manually by obtaining a
force ≈ −830N at a displacement of -0.0113m. This force corresponds to a total force of
≈ −3300N for the plate with full dimensions. In Figure 6.1 the obtained force-displacement
curve from the Abaqus simulations together with the curve from the experiments are shown.
The tuned value ofG13 andG23 was 0.22GPa. Note the drop of the force-displacement curve
that shows that a compressive failure probably occurred for the first ply. The compressive
failure of the upper side of the test specimen was also noticed in the fatigue test done by
SP. After this it loses strength until the ultimate failure at ≈ −0.018m.

Figure 6.1: Force displacement curve from the experiment together with the curve from
Abaqus simulations.

In Figure 6.2 a picture of the test specimen 3 of Table 3.3 is shown. As can be seen the
failure probably started in the area where the rolls are in contact with the test specimen
and were then spread out to the edges. It could also been seen that shear stresses probably
contributed to the failure, a presence of delamination at the edges is obvious.
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Figure 6.2: Photo of test specimen 3.

The four point bending test in Abaqus predicted the compressive failure at the dis-
placement of -0.0113m with Tsai-Wu values around 1 for the upper ply, see Figure 6.3.
These values were obtained in the contact area around the roll that pushes the plate down-
wards. In Figure 6.4 the interlaminar stresses for the four point bending test in Abaqus
are shown with an extraction of the ply with the largest interlaminar stresses are shown.
The maximum values of those stresses are around 20MPa, far under the ILSS value of 71.4
MPa. For this analysis the interlaminar stress that can cause separation of the plies σzz
could not be computed.

Figure 6.3: Tsai-Wu for the four point bending test.

46 , Applied Mechanics, Master’s Thesis 2010:40



(a) Interlaminar stress τxz.

(b) Interlaminar stress τyz.

Figure 6.4: The interlaminar shear stresses τyz and τxz shown for the Four point bending
test in Abaqus. The ply with the largest interlaminar shear stress is extracted.

6.2 Maximum Tsai-Wu during walking cycle

Figure 6.5 shows an envelope plot of the maximum absolute Tsai-Wu value. The maximum
Tsai-Wu value for the toe element set is 0.4657 located in ply 5 of Table 4.1. This ply is
subjected to compressive stresses due to bending. The location of the maximum is just by
a ply drop off, i.e. where ply 1 and 24 are cut off. The number of plies in each area can
be seen in Figure 6.5. The time frame for this value is 176 which corresponds to a time
70.03 % of the total step time. Figure 6.6 shows what time state that frame corresponds
to. This is around where the patient uses his/her toes to push off the ground.
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Figure 6.5: Plot of maximum Tsai-Wu value in toe element set (seen from above) and
reference to location of the set in the model.

Figure 6.6: Different states of the walking cycle. The red state corresponds to when maxi-
mum stresses occur in the spring while the blue state corresponds to when maximum stresses
occur in the toe.

The highest Tsai-Wu value for the spring element set can be seen in Figure 6.7(a).
The maximum value of 0.3505 is located in ply 1 of Table 4.1. This ply is subjected to
compressive stresses due to bending. The time frame for this value is 201 which corresponds
to a time 81.77 % of the total step time. Figure 6.6 shows what time state that frame
corresponds to. This is around where the heel leaves the ground. Notable is that there are
two other regions that have almost the same Tsai-Wu value as the maximum, more clearly
visible in Figure 6.7(b). At the opposite side of the shown maximum the same ply has a
Tsai-Wu value of 0.3486. The larger red area just to the right in the figure has a maximum
Tsai-Wu value of 0.3501 localised in ply 4 of Table 4.1.

The highlighted areas in Figure 6.7(b) show stress concentrations that appear due to
drop offs. The different regions of the heel in Figure have various number of plies according
to Table 6.1.
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(a) The entire spring and reference to location in the model.

(b) Close up of heel area.

Figure 6.7: Plot of maximum Tsai-Wu values in the spring element set.

6.3 Composite layup with no drop offs in heel area

The result for the composite layup with no drop offs in the heel area is plotted together
with the original layup in Figure 6.8. The stress concentrations seen in Figure 6.8(b) are
not present in Figure 6.8(a). Noticeable is that the maximum stress is higher and is located
in another area in the model with the new layup. Figure 6.9 shows that the new drop offs
in the arch of the foot does not lead to any stress concentrations.
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(a) Layup with no drop offs in heel area.

(b) Original layup.

Figure 6.8: Plot of spring state for different composite layups.

Table 6.1: Number of plies in different regions of the heel for the original layup, see Figure
6.8(b) to see regions.

Region 1 2 3 4
Number of plies 20 12 7 10

Figure 6.9: Plot of spring state for the entire spring.
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6.4 Laminate stacking sequence

In Figure 6.10 correlation coefficients for the approximation are shown for DOE A and B,
see section 5.1 for more information on the DOEs. In these figures only the plies with the
largest correlation are shown. All the correlations are negative which means that a larger
angle has a negative influence on the relative stiffness. The correlation for DOE A shows
that the outermost layers has the largest correlation to the response. Note that the inner
plies are not represented. For DOE B one can see the same trend. Note that the outermost
plies in DOE B have significantly higher correlation compared to the others.

(a) DOE A.

(b) DOE B.

Figure 6.10: Correlation for DOE A and B.

Pareto plots for DOE A and B are shown in Figure 6.11. The ten coefficients showing
the largest affect of the response are shown. These plots have been computed from the
coefficients of the second order polynomial fits from the regression data. The bars pointing
to the left give a negative effect to the response (relative stiffness) for an increasing angle
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and vice versa. For DOE A the linear terms of the outer most plies have the largest effect,
i.e. ply 1 and 18. After that the effect of the linear terms are decaying for ply 2,3,16 and
17 but they are still affecting nearly as much as the two outer plies. The second order
coefficients for ply 1,2,17 and 18 have almost the same affect but positive. For DOE B one
can see that the outer most plies are dominant compared to the other plies.

(a) DOE A (b) DOE B.

Figure 6.11: Pareto plots for DOE A and B.

In Figure 6.12 main effect graphs are shown. These graphs can be seen as an estimation
on how a change in angle will influence the response. It seems like an increased angle leads
to a lower relative stiffness for almost all plies. Also in this plot one can see that the
outermost plies have more effect on the relative stiffness of the laminate for both DOE A
and B.
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(a) DOE A

(b) DOE B.

Figure 6.12: Main effect graphs for DOE A and B.

To further investigate which plies that have the most influence of the relative stiffness
and to see where in the stacking sequence the plies are losing major effect to the relative
stiffness, two different tests were submitted. The 18 ply spring layup was used. Based on
previous results the assumed weakest, 45◦, and assumed strongest, 0◦, orientation angles
were stacked together. In the first test all plies were set to 45◦ and then the inner plies
where changed to 0◦ two by two until all plies were rotated 0◦. In the second test all the
plies where set to 0◦ and the inner plies where changed to 45◦ two by two until all plies
were rotated 45◦. The results of these tests are presented in Figure 6.13. The complete
stacking sequences can be found in Appendix F. As can be seen in the figures, test run
8,9 and 10 for both cases result in almost the same relative stiffness. This implies that
changing the six innermost plies does not affect the relative stiffness.
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(a) Test 1, changing plies from 45◦ to 0◦. (b) Test 2, changing plies from 0◦ to 45◦.

Figure 6.13: Response of relative stiffness for two different tests.

By studying Figures 13(a) and 13(b) and assuming that an increasing angle of all plies
leads to a lower relative stiffness one can obtain the maximum and minimum relative
stiffness of the spring. These are presented in Table 6.2 together with the maximum and
minimum relative stiffness of the toe, obtained by setting all plies to 45◦ and 90◦.

Table 6.2: Maximum and minimum relative stiffness for spring and toe.
Spring Toe

Maximum 1.32 1
Minimum 0.40 0.35

6.5 Stiffness optimization

How well the different approximations match a requested relative stiffness can be seen in
Figure 6.14. The stiffnesses were selected to cover the entire span of the both approxima-
tions, for more detailed description of how the comparison was made see section 5.2.

(a) Spring, 18 plies. (b) Toe, 5 plies.

Figure 6.14: Comparison of relative stiffness response between the approximation and
Abaqus.
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6.6 Relative motion results

This section contains the results of the analysis described in section 5.3. To decide which of
the plies of the spring that would be used for the toe part of the orthosis, the results from
section 6.4 were used. Those results show that the plies in the middle of the spring laminate
had little effect of the relative stiffness. Therefore these plies can be substituted arbitrary
without significantly affecting the bending stiffness of the spring. The relative stiffnesses
used for the toe and the spring, combined in Table 5.3, as well as the corresponding stacking
sequences can be seen in Figure 6.3. Ply 8,9,10,11 and 12 of the spring were substituted to
the 5 plies used for the toe. The toe layup could then be chosen without any restrictions.
Note that the numbering of the plies in Table 6.3 differs from the numbering of the model
used in section 5.2, illustrated in Figure 3.4. The numbers are reversed, meaning that ply
1 in section 5.2 is ply 18 in Table 6.3. This is because the test piece was put up side down
in the four point bending test performed by SP, see section 3.1.

Table 6.3: Relative stiffness and stacking sequence of the 6 setups.
Spring 1 Spring 2 Spring 3 Toe 1 Toe 2 Toe 3

Actual relative stiffness 0.60 0.90 1.12 0.38 0.57 0.85

Predicted relative stiffness 0.60 0.85 1.10 0.35 0.60 0.85

Ply 1 45◦ 45◦ 0◦ 45◦ 30◦ 0◦

Ply 2 45◦ 15◦ 15◦ 30◦ 0◦ 15◦

Ply 3 45◦ 45◦ 15◦ 30◦ 30◦ 30◦

Ply 4 45◦ 45◦ 30◦ 30◦ 15◦ 15◦

Ply 5 15◦ 45◦ 15◦ 45◦ 30◦ 15◦

Ply 6 0◦ 15◦ 15◦

Ply 7 0◦ 45◦ 0◦

Ply 8 45◦ 45◦ 15◦

Ply 9 45◦ 30◦ 0◦

Ply 10 30◦ 15◦ 30◦

Ply 11 0◦ 0◦ 0◦

Ply 12 45◦ 0◦ 30◦

Ply 13 15◦ 0◦ 15◦

Ply 14 30◦ 0◦ 15◦

Ply 15 45◦ 0◦ 30◦

Ply 16 30◦ 15◦ 0◦

Ply 17 45◦ 0◦ 0◦

Ply 18 30◦ 0◦ 15◦

To verify that these substitutions would not have a significant effect of the relative
stiffness of the spring the different stacking sequences were compared. The result of this
can be seen in Table 6.4 and shows that the relative stiffness remains almost unchanged.
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Table 6.4: The relative stiffnesses of the spring when changing ply 8,9,10,11 and 12 to the
toe stacking sequence of Table 6.3.

Setup Original relative stiffness Modified relative stiffness
S1 0.60 0.59
S2 0.60 0.59
S3 0.60 0.60
S4 0.90 0.91
S5 0.90 0.93
S6 0.90 0.94
S7 1.12 1.11
S8 1.12 1.11
S9 1.12 1.12

The result of change of relative displacement for both the spring and the toe can be seen
in Figure 6.15. In Figure 6.15(a) one can see that for a constant toe setup, an increasing
stiffness of the spring leads to a decreasing relative displacement of the spring. A stiffer toe
setup leads to greater change of relative displacement of the spring when the spring stiffness
varies. In Figure 6.15(b) one can see that for a constant spring setup, an increasing stiffness
of the toe leads to a decreasing relative displacement of the toe. The magnitude change of
relative displacement of the toe decreases almost equally when alternating the toe stiffness.
However for a constant toe stiffness there is large difference of relative displacement of the
toe between spring setup 2 and 3, but not between spring setup 1 and 2.

How the maximum Tsai-Wu value was affected by the same analyses can be seen in
Figure 6.16. Note that the Tsai-Wu value in Figure 6.16(b) exceeds 1 for some setups,
meaning that there lies a restriction of how one can combine spring and tow setups.

(a) The change of the relative displacement of the
spring for 3 different toe setups.

(b) The change of the relative displacement of the
toe for 3 different spring setups.

Figure 6.15: Relative displacement response of the 9 setups.
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(a) The change of maximum Tsai-Wu in the spring
for 3 different toe setups.

(b) The change of maximum Tsai-Wu of the toe
for 3 different spring setups.

Figure 6.16: Maximum Tsai-Wu response of the 9 setups.
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7 Conclusions

The maximum Tsai-Wu value of the orthosis model during a walking cycle is located in
the toe as can be seen in Figure 6.5. The location of the maximum stress is just at a
ply drop off. Ply drop offs cause discontinuities, so one could suspect that this is where
the maximum stress would occur. This phenomena can also be seen by looking at the
stress concentrations obtained in the spring, Figure 6.7(b). These effects appear due to the
change of stiffness when two neighbouring areas contain different amount of plies. Other
examples of discontinuities that often cause stress concentrations are holes and sharp edges.
There is often an urge to reduce these discontinuities from FE-models, this should also be
applied on the orthosis model.

By studying Figure 8(a) the stress concentrations highlighted in Figure 6.7(b) are not
present when drop offs no longer exist in this area. The maximum Tsai-Wu value is higher
in Figure 8(a) which might be a result of a various stiffness of the spring obtained when
a new draping procedure was used. However the purpose of reducing ply drop offs was to
show that the stress concentrations will be reduced. The maximum Tsai-Wu value in the
entire model is not close to 1 which indicates that the model is not close to failure during
an ordinary walking cycle.

Many of the previously built orthoses showed fractures in the heel area, therefor one
should consider to avoid creating ply drop offs here since they can cause crack initiation,
due to interlaminar stresses, see section 2.1.6. In reality there will be contact in this area,
a factor which is not accounted for in this thesis. This together with the fact that the
woven fabric will have large shear strains in the area around the heel when draping the
model, see section 4.2.1, motivates that a new draping procedure should be considered.
Large shear strains for a woven fabric make the fabric weaker and might increase the stress
concentrations further.

The laminate stacking sequence analysis shows that the outermost plies of the spring
have the largest effect on the bending stiffness. This seems reasonable considering that the
strain magnitude of these plies are larger than the innermost. The results also showed that
it is possible set the 6 innermost plies to arbitrary angles without obtaining any significant
change of bending stiffness. Since the orthoses are manufactured by hand other factors
with larger impact than what the change of these plies entails will be added.

Another conclusion is that increasing a ply angle will lead to a weaker bending stiffness.
This is also quite reasonable since a cross-woven ply has a larger Young’s modulus along
the fibres, this is shown in Figure 2.5(a).

When using the optimization loop to obtain stacking sequences for requested relative
stiffnesses one cannot always be certain of that the requested stiffness is obtained. As
seen in Figure 6.14 the actual relative stiffness for a stacking sequence can differ from
the predicted. However this difference might not be of importance since previously stated
factors from manufacturing may cause an even larger error. The most important feature
of this model is that it is possible to create an orthosis where one can modify the stiffness
within reasonable large tolerances.

When it comes to predicting how the spring and toe deforms due to different stiffnesses
some conclusions can be drawn. Although a more thorough analysis might be needed to
obtain a more detailed result. A weaker spring will quite obvious result in a larger defor-
mation of the spring. The combination of a weak toe and a weak spring result in the largest
deformation and a weak toe and a stiff spring result in the smallest deformation. However
the stiffness of the toe does not have any remarkable effect of the spring deformation, thus
it mainly depends on the spring stiffness itself.

The deformation of the toe on the other hand is very much affected by the spring
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stiffness. Independent of spring stiffness a weak toe will result in a larger deformation and
vice versa. How large the toe deformation is depends on how large the spring stiffness is.
For the two stiffest springs used in the analysis the toe deformation was almost identical
but using a weak spring decreased the toe deformation significantly. This seems reasonable
since if a rigid spring would be used, all deformation would take place in the toe.

The Tsai-Wu values plotted indicate that not all toe setups might be used. The stiff-
nesses creating values close to or exceeding 1 should be avoided. This means that toe
relative stiffness should not be less than ≈ 0.6.
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8 Discussion

The tuned value of G13 and G23 is approximately 1/15 of the in-plane shear modulus, G12.
This may seem a bit low but considering that the material is a cross woven composite it
is not unlikely with such a large difference. However there is a number of error sources
affecting the accuracy of this value. First of all the setup of the test performed by SP was
not symmetric, as can be seen in Figure 3.2. The two arm supports are not equal and the
plate does not seem to be centred. When using x- and z-symmetry in the Abaqus model
an ideal case is created which does not correspond to reality. The friction between the rolls
and the plates is another unknown factor.

By studying the force-displacement curve of the test, seen in Figure 6.1, one can see
that the response at the start is not linear. This is almost impossible to model since the
factors causing it are difficult to determine. Therefore the curve from the Abaqus model
has a different slope than the experimental.

Recall that the material has different Young’s modulus in compression and tension.
By averaging Young’s modulus more loss of accuracy is obtained. There might be some
uncertainties of modelling the plate with plane stress since a 3-dimensional stress state
occur in the contact area. Therefore one should consider modelling the plate with 3-
D solid elements to catch all aspects of the interaction between the rolls and the plate.
However this means that more unknown material parameters, E3 and ν13 = ν23, need to be
determined. These can be obtained from theories but this means that more approximations
are required. The theories to compute stiffnesses and strengths contain approximations
and lead to loss of accuracy. Because of this and under the circumstances, the best way
of modelling the plate is by using a continuum shell model. This gave a Tsai-Wu value
around 1 when the laminate was suppose to have its first ply failure, which indicates that
the model gives a fairly good approximation.

The thin shell element S4 used when modelling the orthosis gave a good approximation
of the bending stiffness of the plate. The Tsai-Wu value of the first ply failure was ap-
proximately 0.9, similar to the value of the thick shell model, which implies that this shell
type models the stress state well. Another argument for saying that this type of element
models the stress state in a good way is that it is shown that there exists a plane-stress
state sufficiently far away from the free edges. The results of where and when the largest
stresses occur can be said to be accurate enough to be trustful.

The approximation of DOE A and B (spring and toe) predicts values fairly good, as can
be seen in Figure 6.14 where 30 and 10 values were computed respectively. This conclusion
can also be made by studying the corresponding error values. One will not get the exact
requested value but the model can give a layup that will increase or decrease the stiffness
with a reasonable tolerance. The approximation of DOE B is even better than for DOE A.
This might be because ply 1 and 5 have so much more affect than the others, seen in the
Pareto plots and main effect graph. The relation of numbers of samples versus number of
plies is also much higher for DOE B.

The methods used to evaluate the stacking sequence analysis gave unambiguous results
that the outermost plies have more affect on the bending stiffness. As concluded this
seems reasonable since in pure bending these plies will have larger strain magnitude. The
six innermost plies showed to have almost none effect on the bending stiffness. Therefore
these plies were used to build the toe part, since they could be rotated arbitrary. However
the effect of draping in this way was not analysed. Draping 5 consecutive plies onto the
same area will cause a larger drop-off than those that were present in the original model.

The comparison of the deformation of the toe and spring for different layups showed
that it is possible to change this relation. The analysis using 9 setups gave tendencies but
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to further investigate these tendencies, more setups need to be compared. The loading
case used in this analysis can be used to examine other characteristics of the orthosis since
the prescribed displacements were substituted to forces. Although if the geometry of the
orthosis changes a new walking cycle needs to be recorded, to obtain correct forces.

Finally it can be said that the model in this thesis can be useful when designing a
spring orthosis. One can obtain guidance of how to design the spring and the toe in order
to obtain desired properties. The model can also predict how the stresses are increased
when a design change is made. This can be useful when predicting the lifetime of the
orthosis. Almost all questions stated by the engineers at Ortopedteknik were answered
and this thesis has opened many doors to future investigations. Some recommendations
for future work is presented in section 9.
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9 Recommendations

Some recommendations for future work are presented below:

• Use continuum shell element SC8R with one element for each ply to get a better
estimation of the stresses in the model.

• Use fracture mechanics to describe the behaviour after the first ply failure, to be able
to analyse the complete failure.

• Make design changes of the orthosis to investigate how the design could change the
stress distribution during the walking cycle.

• Use an iterative process where also real experiments are used to verify the results
from the prediction of the designs.

• Use the current model to optimise the spring orthosis regarding the torsional be-
haviour as well.

• Make an investigation of the fatigue properties of the model, using data from the
four point bending test.

• Investigate which failure criteria that is to recommend for this case. Tsai-Wu was
chosen with motivation that it is often used and that it takes into account different
strengths in tension and compression.

• Use a walking cycle measured from a disabled person to get a more realistic motion
of the orthosis.

• Try to minimise the effect of the measurement uncertainties from the walking cycle,
so that more points can be used to control the motion. Consider using another
method to deform the orthosis to avoid stress concentrations.

• Construct a standardized test to test different design and loading cases for the spring
orthosis.

• Use more samples in the DOE approximation. Both for the investigation of the
interaction between the plies and to be able to cover the entire span of relative
stiffness.

• A deeper analysis to see how the different plies affect the response may be preferred.
This would make it possible to easier make changes for the manufacturer by changing
minimal number of ply orientations.
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A Calculation of volume percent carbon fibre in test

specimen

Material parameters for Epoxy:

Em = 4 GPa (A.1)

ρm = 1260 kg/m3 (A.2)

νm = 0.35 (A.3)

Gm =
Em

2(1 + νm)
(A.4)

Material parameters for Carbon fibre:

Ef = 230 GPa (A.5)

ρf = 1750 kg/m3 (A.6)

νf = 0.3 (A.7)

Gf =
Ef

2(1 + νf )
(A.8)

Data for test specimen 8

Mass, MTS = 77.07 ∗ 10−3 kg (A.9)

Length, LTS = 248 ∗ 10−3 m (A.10)

Width, WTS = 44 ∗ 10−3 m (A.11)

Thickness, TTS = 4.73 ∗ 10−3 m (A.12)

Volume, VTS = LTSWTSHTS (A.13)

Density, ρTS =
MTS

VTS
(A.14)

Number of layers, n = 18 (A.15)

Data for one layer of prepreg

Mass, MLayer = 8.88 ∗ 10−3 kg (A.16)

Length, LLayer = 142 ∗ 10−3 m (A.17)

Width, WLayer = 132 ∗ 10−3 m (A.18)

Area, ALayer = LLayerWLayer (A.19)

Mass per unit area, MPUA =
MLayer

ALayer
(A.20)

vf = 50 % (A.21)

Mass of layer with same area as test specimen, MLS = MPUALTSWTS (A.22)

Volume of layer with same size as test specimen, VLS =
MLS

vfρf + (1− vf )ρm
(A.23)

Volume percent calculations

Volume of specimen if no loss of matrix material, Vopt = nVLayer (A.24)

Height of specimen if no loss of matrix material, Hopt =
Vopt

LTSWTS

(A.25)

The calculations above result in Hopt = 5.70 ∗ 10−3 m.
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B Analysis of test set up parameters

This appendix contains the resulting plots from the analyses of how element type, different
contact constraint enforcement methods and friction affect the results of the four point
bending test. The analyses are described in section 3.1.4 and 3.1.5.

B.1 Element type

Figure B.1 illustrates the differences of using different elements. When comparing them
one can see that the thin shell elements do not model the change in stress distribution
due to the contact and friction in the same way as the stacked continuum shell. The
only thin conventional shell element type that predicted the highest Tsai-Wu value in the
contact was the 2nd order quadratic element S8R. None of the conventional shell elements
predicted failure, i.e. a Tsai-Wu value larger than 1.
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(a) Tsai-Wu values for the element type S4.

(b) Tsai-Wu values for the element type S4R.

(c) Tsai-Wu values for the element type S8R.

(d) Tsai-Wu values for the element type SC8R.

Figure B.1: Comparison of how different element types affect the Tsai-Wu value.

B.2 Constraint enforcement method

The three different types of constraint enforcement methods; penalty, augmented Lagrange
and direct were analysed, the analysis are described in section 3.1.5. In reality there is
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no penetration between the rolls and the plate. Therefore the direct method is best for
modelling this reality. The augmented Lagrange method tries to minimise the penetration
while the penalty allows penetration. The Tsai Wu value and the contact opening for
the three types of contact enforcement methods can be seen in Figure B.2 and Figure B.3.
The differences were analysed using the stacked continuum shell. Note the penetration that
occurred for the penalty method, this could be reduced with a higher penalty stiffness. Note
also the differences in Tsai Wu values. Because of the penetration of the penalty method
and due to the bad convergence rate of the direct method, augmented Lagrange was used.

(a) Tsai Wu shown for penalty method.

(b) Tsai-Wu shown for augmented lagrange method.

(c) Tsai-Wu shown for direct method.

Figure B.2: Tsai Wu values for the three different types of contact enforcement methods
shown for stacked continuum shells.
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(a) Penetration shown for penalty method.

(b) Penetration shown for augmented lagrange method.

(c) Penetration shown for direct method.

Figure B.3: Penetration shown for the three different types of contact enforcement methods
shown for stacked continuum shells.

B.3 Friction

In this part, the contact enforcement method is augmented Lagrange and the element type
is SC8R which is a continuum shell element. The element type SC8R was chosen in this
analysis because it models the effect of contact in the most accurate way.

As can be seen when comparing the figures, see Figure B.4, with µ = 0.1 and with no
friction the Tsai-Wu value increases quite a small amount in the area around the contact.
It should also be noticed that the distribution of the Tsai- Wu value changes when taking
friction into account. When the friction coefficient is raised the distribution changes even
more. Since there was friction between the rolls and the plate, the effect of friction had to
be taken into account. µ was set to 0.2 due to the convergence problems that occurred for
higher values.
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(a) Stacked continuum shells without friction.

(b) Stacked continuum shells with friction, µ = 0.1.

(c) Stacked continuum shells with friction, µ = 0.2

Figure B.4: Showing how friction affects the stress distribution for 0 ≤ µ ≤ 0.2
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C Curve-fitted amplitudes

Figure C.1 show the 9 curve fitted polynomials plotted together with the original ampli-
tudes. The curve fit was done in Matlab using 10th order polynomials.

(a) Amplitude 2x. (b) Amplitude 2y. (c) Amplitude 2z.

(d) Amplitude 4x. (e) Amplitude 4y. (f) Amplitude 4z.

(g) Amplitude 6x. (h) Amplitude 6y. (i) Amplitude 6z.

Figure C.1: Original amplitudes plotted together with curve-fitted amplitudes.
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D Python Script

"""

odbMaxTsaiWu.py

Code to determine the location and value of the maximum

Tsai-Wu value in an output database.

Usage: abaqus python odbMaxTsaiWu.py -odb odbName

-elset(optional) elsetName

Requirements:

1. -odb : Name of the output database.

2. -elset : Name of the assembly level element set.

Search will be done only for element belonging

to this set. If this parameter is not provided,

search will be performed over the entire model.

3. -help : Print usage

"""

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

from odbAccess import *

from sys import argv,exit

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

def rightTrim(input,suffix):

if (input.find(suffix) == -1):

input = input + suffix

return input

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

def getMaxTsaiWu(odbName,elsetName):

""" Print max TsaiWu location and value given odbName

and elset(optional)

"""

elset = elemset = None

region = "over the entire model"

""" Open the output database """

odb = openOdb(odbName)

assembly = odb.rootAssembly

""" Check to see if the element set exists

in the assembly

"""

if elsetName:

try:

elemset = assembly.elementSets[elsetName]

region = " in the element set : " + elsetName;

except KeyError:

print ’An assembly level elset named %s does’ \

’not exist in the output database %s’ \

% (elsetName, odbName)

odb.close()
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exit(0)

""" Initialize maximum values """

maxTsaiWu = -0.1

maxElem = 0

maxStep = "_None_"

maxFrame = -1

TsaiWu = ’TSAIW’

isTsaiWuPresent = 0

for step in odb.steps.values():

print ’Processing Step:’, step.name

for frame in step.frames:

FrameNo = frame.frameId

print ’Searching frame %d’% FrameNo

allFields = frame.fieldOutputs

if (allFields.has_key(TsaiWu)):

isTsaiWuPresent = 1

TsaiWuSet = allFields[TsaiWu]

if elemset:

TsaiWuSet = TsaiWuSet.getSubset(region=elemset)

laban = -1

for TsaiWuValue in TsaiWuSet.values:

if (TsaiWuValue.data > maxTsaiWu):

maxTsaiWu = TsaiWuValue.data

maxElem = TsaiWuValue.elementLabel

maxStep = step.name

maxFrame = frame.frameId

if(isTsaiWuPresent):

print ’Maximum Tsai-Wu value %s is in element %d’%(

maxTsaiWu, maxElem)

print ’Location: frame # %d step: %s ’% (maxFrame,maxStep)

else:

print ’Tsai-Wu is not available in’ \

’the output database : %s\n’ %(odb.name)

""" Close the output database before exiting the program """

odb.close()

#==================================================================

# S T A R T

#

if __name__ == ’__main__’:

odbName = None

elsetName = None

argList = argv

argc = len(argList)

i=0

while (i < argc):

if (argList[i][:2] == "-o"):
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i += 1

name = argList[i]

odbName = rightTrim(name,".odb")

elif (argList[i][:2] == "-e"):

i += 1

elsetName = argList[i]

elif (argList[i][:2] == "-h"):

print __doc__

exit(0)

i += 1

if not (odbName):

print ’ **ERROR** output database name is not provided’

print __doc__

exit(1)

getMaxTsaiWu(odbName,elsetName)
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E Geometry clean up

The different steps in the shell extraction and geometry clean up is described below. The
steps are related to Figure E.1.

1. Create FEM topology of the triangular stl mesh.

2. Create a mixed mesh that is easier to work with.

3. Split up the model in different sets, one for upper and one for the lower part.

4. Create curves around the model to give smother edges and trim the elements around
the curves to fit on the curves (takes away the irregularities at the edges).

5. Create surfaces out of the geometry for both sides of the geometry

6. Close the gap between the sides, which will give the desired geometry that is easier
to work with

7. Create the inner, outer or middle surface, by just taking the upper och lower face of
the model or by extracting the mid surface.
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(a) Step 1 - 2. Showing the new mesh that
is easier to work with

(b) Step 4. Showing how the curves are
smoothing up the edges around the model.

(c) Step 5. Showing one of the surfaces that
where created of the back and front sets.

(d) Step 6. Showing the coons that are cre-
ated to close the gaps.

(e) Step 6. Showing the model with the
closed gaps.

(f) Step 7. Showing the extracted midsur-
face

Figure E.1: The different steps in the shell extraction and geometry clean up.
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F Stacking sequences

Table F.1 shows the 10 test runs where all plies were substituted from 45◦ to 90◦. Table
F.2 shows the 10 test runs where all plies were substituted from 90◦ to 45◦. Results of
these tests can be seen in section 6.4.

Table F.1: Stacking sequence scheme, 45◦ to 90◦ .
Test run 1 2 3 4 5 6 7 8 9 10

Ply 1 45◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦

Ply 2 45◦ 45◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦

Ply 3 45◦ 45◦ 45◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦

Ply 4 45◦ 45◦ 45◦ 45◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦

Ply 5 45◦ 45◦ 45◦ 45◦ 45◦ 90◦ 90◦ 90◦ 90◦ 90◦

Ply 6 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 90◦ 90◦ 90◦ 90◦

Ply 7 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 90◦ 90◦ 90◦

Ply 8 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 90◦ 90◦

Ply 9 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 90◦

Ply 10 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 90◦

Ply 11 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 90◦ 90◦

Ply 12 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 90◦ 90◦ 90◦

Ply 13 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 90◦ 90◦ 90◦ 90◦

Ply 14 45◦ 45◦ 45◦ 45◦ 45◦ 90◦ 90◦ 90◦ 90◦ 90◦

Ply 15 45◦ 45◦ 45◦ 45◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦

Ply 16 45◦ 45◦ 45◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦

Ply 17 45◦ 45◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦

Ply 18 45◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦

Table F.2: Stacking sequence scheme, 90◦ to 45◦ .
Test run 1 2 3 4 5 6 7 8 9 10

Ply 1 90◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦

Ply 2 90◦ 90◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦

Ply 3 90◦ 90◦ 90◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦

Ply 4 90◦ 90◦ 90◦ 90◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦

Ply 5 90◦ 90◦ 90◦ 90◦ 90◦ 45◦ 45◦ 45◦ 45◦ 45◦

Ply 6 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 45◦ 45◦ 45◦ 45◦

Ply 7 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 45◦ 45◦ 45◦

Ply 8 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 45◦ 45◦

Ply 9 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 45◦

Ply 10 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 45◦

Ply 11 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 45◦ 45◦

Ply 12 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 45◦ 45◦ 45◦

Ply 13 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 45◦ 45◦ 45◦ 45◦

Ply 14 90◦ 90◦ 90◦ 90◦ 90◦ 45◦ 45◦ 45◦ 45◦ 45◦

Ply 15 90◦ 90◦ 90◦ 90◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦

Ply 16 90◦ 90◦ 90◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦

Ply 17 90◦ 90◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦

Ply 18 90◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦ 45◦
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G Main effect
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