

Designing an Automated Guided
Vehicle configuration software

Master’s thesis in Industrial design engineering

PETRA AHNELL & SOFIA ROSENGREN

DEPARTMENT OF INDUSTRIAL AND MATERIALS SCIENCE
Division of Design & Human Factors

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021
www.chalmers.se

MASTER’S THESIS 2021

Designing an Automated Guided Vehicle
configuration software

PETRA AHNELL & SOFIA ROSENGREN

Department of Industrial and Materials Science

Division of Design & Human Factors
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2021

Designing an Automated Guided Vehicle configuration software

© PETRA AHNELL & SOFIA ROSENGREN, 2021

Examiner: Pontus Wallgren, Department of Industrial and Materials Science

Master of Science Thesis 2021
Department of Industrial and Materials Science
Division of Design and Human Factors
Chalmers University of Technology
SE-412 96 Gothenburg

Cover illustration: Girl sitting on an AGV and using a laptop
Cover made by Sofia Rosengren

Printed by Repro Service Chalmers

Gothenburg, Sweden 2021

Designing an Automated Guided Vehicle configuration software

© PETRA AHNELL & SOFIA ROSENGREN, 2021

Examiner: Pontus Wallgren, Department of Industrial and Materials Science

Master of Science Thesis 2021
Department of Industrial and Materials Science
Division of Design and Human Factors
Chalmers University of Technology
SE-412 96 Gothenburg

Cover illustration: Girl sitting on an AGV and using a laptop
Cover made by Sofia Rosengren

Printed by Repro Service Chalmers

Gothenburg, Sweden 2021

Abstract

Automation in terms of automated guided vehicles (AGVs) may sound very modern, but has
been around longer than one may think. The first automated guided vehicle systems were
invented in the 1950s, and have since become a huge factor for successful logistics in larger
warehouses [15]. One of the early adopters of the then-new technology were Kollmorgen Au-
tomation (KMA), called NDC at the time. KMA installed the first global application of AGV
systems in 1976 at Tetra Pak’s factories and have since played a key role in advancing the
technology [3].

When implementing an AGV system in a warehouse, or developing a new AGV vehicle, various
software are used, and KMA develop some of this software. A crucial step of developing a
new vehicle is the vehicle configuration, and it is around this software that this project has
revolved. This master’s thesis project investigates what factors are important when designing
a vehicle configuration tool for AGVs, and presents a design concept for such software. The
project has been conducted together with KMA.

In this study, two user groups have been studied: Expert users and beginner users. The
expert users of vehicle configuration tools are engineers at KMA and their partner companies.
An interview study was conducted to understand their needs and to construct a user journey.
In order to get a representation of users less accommodated with the current KMA, beginner
users were also investigated. This since one of the major issues with the current software is
that they are difficult to learn. In order to understand the usability issues and flaws of the
current software tools that beginners might encounter, a usability test was conducted. Based
on the user studies, design guidelines were created. A design proposal was also created in
the form of a clickable prototype. The prototype was redesigned and refined through several
iterations evaluated with usability tests and expert interviews. The result of the project is a set
of guidelines for designing these types of software tools, and a design proposal for the KMA
case, utilizing said guidelines.

Keywords: AGV, Automated guided vehicle, vehicle configuration, Application engineer, Au-
tomation, User interface, User experience, Interaction design, design guidelines, Usability, Us-
ability testing

Acknowledgements

We would like to thank the people involved in this project and that made this work possible.

To our supervisor and examiner Pontus Wallgren at Chalmers University of Technology, for
guiding us, for your constructive feedback, and for giving us confidence in the academic parts
of this project.

To our supervisor at Kollmorgen, Cecilia Boström, for your tireless support and encourage-
ment, and for sharing your deep UX knowledge. Thank you for the many hours that you have
spent on guiding us and setting our project straight, and for your valuable feedback.

To Daniel Lindqvist, for your patience explaining the software systems and technical details,
and for your many good ideas.

To all the lovely people at Kollmorgen Automation who welcomed us with open arms, en-
couraged us throughout the project, and for making us feel part of the KMA team.

To all of our participants for taking the time to participate and for your reflective thoughts
and ideas. This project would not have been possible without you.

Thank you.

Glossary

AGV - Automated guided vehicle
CTA - Call to action, such as a button in an interface
Figma - Software tool for constructing clickable interface prototypes
GEW - Geneva emotion wheel
KMA - Kollmorgen Automation
LD - Layout designer, a Kollmorgen path drawing software
Microsoft Teams - Communications software with video call functionality
Miro - Software tool for collaborative work
PLC - Programmable logic controller
Site - Where the AGVs drive, e.g. a warehouse
UI - User interface
UX - User experience
VAD - Vehicle application designer, a Kollmorgen vehicle software
Zoom - Communications software with video call functionality

Contents

1. Introduction 1
1.1. Design brief . 1
1.2. Users: Application engineers . 2
1.3. Objectives and aim . 2
1.4. Research questions . 2
1.5. Scope . 2

2. Background 4
2.1. Automated guided vehicles . 4
2.2. Kollmorgen Automation . 4
2.3. KMA software . 5

3. Theory 10
3.1. Design thinking . 10
3.2. Accessible web design . 10
3.3. User experience (UX) . 10
3.4. Usability . 11
3.5. Usability testing . 12
3.6. Success rate . 12
3.7. Geneva emotion wheel . 13

4. Empathize 15
4.1. Users . 15

4.1.1. Expert users . 15
4.1.2. Novice users . 16

4.2. Interviews and observations with expert users 17
4.2.1. Key insights from interviews with expert users 17

4.3. Usability test with novice users . 19
4.3.1. Emotional response . 19
4.3.2. Usability issues . 20

5. Define 22
5.1. KJ analysis . 22
5.2. Hierarchical task analysis . 22
5.3. Impact map . 24
5.4. Function tree . 24
5.5. User journey . 24
5.6. User needs . 25

6. Ideate 30
6.1. Brainwriting 6-3-5 . 30
6.2. Brainstorming with random words . 32
6.3. Morphological matrix . 33
6.4. Pugh matrix . 35

7. Prototype and Test 37
7.1. Prototype 1 . 37
7.2. Prototype 2 . 38

Contents

1. Introduction 1
1.1. Design brief . 1
1.2. Users: Application engineers . 2
1.3. Objectives and aim . 2
1.4. Research questions . 2
1.5. Scope . 2

2. Background 4
2.1. Automated guided vehicles . 4
2.2. Kollmorgen Automation . 4
2.3. KMA software . 5

3. Theory 10
3.1. Design thinking . 10
3.2. Accessible web design . 10
3.3. User experience (UX) . 10
3.4. Usability . 11
3.5. Usability testing . 12
3.6. Success rate . 12
3.7. Geneva emotion wheel . 13

4. Empathize 15
4.1. Users . 15

4.1.1. Expert users . 15
4.1.2. Novice users . 16

4.2. Interviews and observations with expert users 17
4.2.1. Key insights from interviews with expert users 17

4.3. Usability test with novice users . 19
4.3.1. Emotional response . 19
4.3.2. Usability issues . 20

5. Define 22
5.1. KJ analysis . 22
5.2. Hierarchical task analysis . 22
5.3. Impact map . 24
5.4. Function tree . 24
5.5. User journey . 24
5.6. User needs . 25

6. Ideate 30
6.1. Brainwriting 6-3-5 . 30
6.2. Brainstorming with random words . 32
6.3. Morphological matrix . 33
6.4. Pugh matrix . 35

7. Prototype and Test 37
7.1. Prototype 1 . 37
7.2. Prototype 2 . 38

7.3. Prototype 3 . 41
7.4. Prototype 4 . 44

8. Deliverables 53
8.1. Design guidelines . 53
8.2. Final design proposal . 54

9. Discussion 65
9.1. Process and methods . 65

9.1.1. Transcription as a part of qualitative studies 65
9.1.2. Geneva emotion wheel . 65
9.1.3. Remote user studies . 66
9.1.4. Product development mindset . 66
9.1.5. Early concepts . 66

9.2. Result . 67
9.2.1. Success rate . 67
9.2.2. Generalizability . 67

9.3. Future work . 68
9.4. Social sustainability and automation . 68

10.Conclusion 70

A. Success rate metrics II

B. Morphological matrix III

C. Complete user needs list VIII

1. Introduction

Automation is in many ways a part of our everyday life, even though we may not be aware of
it at first glance. For example, when ordering a nice new jacket via an e-commerce website,
there is a good chance that the logistics are automated and that your jacket was picked up
by an automated guided vehicle (AGV), a load carrier that drives around the warehouse au-
tonomously. Our ways of living, and expectations of companies, shape the development and
demands of automation. To meet the future challenges of automated solutions, it is important
that the tools used for development are not only functional and technically advanced but that
they also are easy to use.

Kollmorgen Automation AB (KMA), a Gothenburg-based company that specializes in providing
partner companies with AGV systems and software tools, is aiming for just that: Developing
tools for the implementation of autonomous systems. KMA provide tools for drawing paths
where the vehicles drive, software that controls the AGV system once in place, and also soft-
ware for configuring vehicle parameters when creating a new vehicle, among else. The software
is used by a vast range of AGV manufacturers, and in many ways, KMA act at the very core
of the industry and have made many technological advancements over the years. However,
when developing these tools, there has not been much focus on usability or user experience
(UX), and much of the functionality is spread out across multiple software. With these two
incentives, KMA aim to redesign and rethink their current software.

In this project the result of multiple user studies and usability testing will be presented along
with a new software concept used for vehicle configuration, designed according to better ac-
commodate usability principles. The focus has lied on understanding the process of the vehicle
configuration software and how users use the current software to create new vehicles, and how
that process can be better supported by changes in the software design.

1.1. Design brief

Many of the KMA software have an outdated look to the UI since many of the software were
created during the 80’s and 90’s. Since then, features have been added and functionality
reworked. However, the UI design is largely the same as it was when the programs were first
developed. The UX and UI have not been considered much throughout the history of the
company, and professionals working solely with UX and UI of the KMA software have just
recently been hired. Therefore, the UI of these software is in need of a redesign and usability
is now a high priority for the company when redesigning the software.

In several of these tools, a vehicle configuration must be done. This is a set-up that must be
made for each new vehicle created. Since the different software that KMA provides in many
cases do not communicate, the same vehicle configurations are performed in the different
software. This causes a user to have to remember to update a vehicle over several programs
if a change is made and to type in the same parameters multiple times, which is both time-
consuming and can lead to errors. Hence there is a need for a new software where all vehicle
configurations are collected in one place, and that has good usability and is designed with the
end users’ ways of working in mind.

1

1.2. Users: Application engineers

The primary users of the solution designed in this project are so-called application engineers.
Application engineers work as a bridge between the customers, sales team, and in-house engi-
neers. Generally, the users of the KMA software all have good technical knowledge and skills,
and a majority have different engineering backgrounds or other technical backgrounds. The
users vary in their experience of working with the specific software, and there are users who
have worked with the software since they were developed, and there are users who are new
at their positions and can in many ways be considered beginner users. Hence, the software
has to be developed with both these types of users in mind. Furthermore, the way of working
differs between users working at different companies, something that will be addressed later
in this text. In the case of the in-house KMA application engineers, they often help partners
functioning as customer support or educating partners about the software. They are very well
acquainted with the usage of KMA products and also generally know how different partner’s
application engineers prefer to work when setting up new AGV systems.

1.3. Objectives and aim

The objectives of this project are to understand the needs of the users of the current vehicle
configuration software and construct a user journey, to based on this create guidelines on what
to consider when creating a vehicle configuration software, and to create a clickable prototype.
The aim is to create a prototype that fulfills the user needs and has better usability than the
current software.

1.4. Research questions

• What does the user journey look like for application engineers today?

• What are the needs and requirements of the users of today?

• How can the vehicle configuration software be improved in terms of usability?

• What is important to consider when designing a vehicle configuration software?

1.5. Scope

In this project, a graphic software interface concept represented by a clickable prototype has
been designed and built using Figma. The software includes the same functionality as the
functions tested in the KMA software but does not include all parameters or functions since it
is superfluous for the representation. The focus lies on creating a design with better usability
for the overall tool, and that is better equipped to match how users prefer to work.

When analyzing the effects of better usability and efficiency, the focus has been on the benefits
for the individual user. However, the impacts that the new design could have on the company
in terms of sales or savings have not been further analyzed.

The focus has been creating the design of the new tool, and no implementation has been
done in code. Since the project focuses on UX and design, the final outcome is a detailed
model of the final software concept and not an actual program.

2

1.2. Users: Application engineers

The primary users of the solution designed in this project are so-called application engineers.
Application engineers work as a bridge between the customers, sales team, and in-house engi-
neers. Generally, the users of the KMA software all have good technical knowledge and skills,
and a majority have different engineering backgrounds or other technical backgrounds. The
users vary in their experience of working with the specific software, and there are users who
have worked with the software since they were developed, and there are users who are new
at their positions and can in many ways be considered beginner users. Hence, the software
has to be developed with both these types of users in mind. Furthermore, the way of working
differs between users working at different companies, something that will be addressed later
in this text. In the case of the in-house KMA application engineers, they often help partners
functioning as customer support or educating partners about the software. They are very well
acquainted with the usage of KMA products and also generally know how different partner’s
application engineers prefer to work when setting up new AGV systems.

1.3. Objectives and aim

The objectives of this project are to understand the needs of the users of the current vehicle
configuration software and construct a user journey, to based on this create guidelines on what
to consider when creating a vehicle configuration software, and to create a clickable prototype.
The aim is to create a prototype that fulfills the user needs and has better usability than the
current software.

1.4. Research questions

• What does the user journey look like for application engineers today?

• What are the needs and requirements of the users of today?

• How can the vehicle configuration software be improved in terms of usability?

• What is important to consider when designing a vehicle configuration software?

1.5. Scope

In this project, a graphic software interface concept represented by a clickable prototype has
been designed and built using Figma. The software includes the same functionality as the
functions tested in the KMA software but does not include all parameters or functions since it
is superfluous for the representation. The focus lies on creating a design with better usability
for the overall tool, and that is better equipped to match how users prefer to work.

When analyzing the effects of better usability and efficiency, the focus has been on the benefits
for the individual user. However, the impacts that the new design could have on the company
in terms of sales or savings have not been further analyzed.

The focus has been creating the design of the new tool, and no implementation has been
done in code. Since the project focuses on UX and design, the final outcome is a detailed
model of the final software concept and not an actual program.

2

Furthermore, since KMA already has a set colour palette planned to be used in new soft-
ware, creating a colour palette for the software has not been a part of the project.

Lastly, the project has focused on looking at centralizing the vehicle configuration over three
KMA software: Layout Designer (LD), Vehicle Application Designer (VAD), and Reflector Sur-
veyor (RS), with the main focus on the two first mentioned. Although vehicle configuration
exists over some other software, the three mentioned were deemed most important and or
representative enough by representatives from Kollmorgen.

3

2. Background

2.1. Automated guided vehicles

An automated guided vehicle (AGV) is a load carrier that can move around autonomously.
They are used for material handling in a wide array of applications, ranging from transporting
food trays and linen in hospitals to heavy loads in industrial settings. One of the most common
applications is transporting pallets in warehouses, using forklift AGVs.

Most commonly, the AGVs drive along predetermined paths that have been designed to fit
the environment in which they drive and the tasks that they are to perform. The path drawing
is conducted within the KMA software Layout Designer. When the system is set up at a site,
the AGV is connected to a master system that provides each vehicle in the fleet with orders
on where to drive and what to pick up.

To navigate, the AGVs most commonly use reflectors that have been mounted on the walls
at known locations. The vehicle sends out signals via a scanner mounted on top of it and
gets a response from the reflectors that can tell it where in the room it is. This technology is
known as reflector navigation. However, there is a whole range of navigation methods, such as
following a magnetic track in the floor, which requires antennas under the vehicle, as well as
”natural” navigation, in which the vehicle scans the environment of the site itself. One vehicle
can also use a combination of several methods, for example, reflectors in the open areas of a
warehouse, but magnetic track navigation in aisles where it is difficult to mount reflectors.

There is also a safety system on every AGV, making sure it does not collide with a person or
an object. The safety system consists of one or multiple sensors and safety fields deriving from
each sensor. The sensor uses different safety fields for different situations or ”safety cases”.
Safety cases are defined by, for example, the speed that the vehicle is driving and the steering
angle of the vehicle. Typically, each sensor for each case has two fields, a slow down-field
and a stop field where the slow down field stretches further from the vehicle. If there is an
obstacle very close to the AGV (in its stop-field), it engages the emergency brake and stops
immediately. If there is an obstacle in the larger slow down-field, the AGV simply slows down.

AGVs can have different wheel configurations and drives. Steer Drive (SD) is the most com-
mon configuration, where the vehicle has one SD front wheel and two fixed back wheels. The
SD wheel is both driving the vehicle forward and steering it by controlling the wheel angle.
Other common configurations are Quad Drive, with two SD wheels in front of each other, and
Differential Drive, with two parallel drive wheels.

2.2. Kollmorgen Automation

Kollmorgen Automation AB (KMA) is a Gothenburg based division of the global technology
company Kollmorgen. On a larger scale, Kollmorgen develops technical solutions within a
vast field, including aerospace, food, and packaging industry, whereas KMA solely focuses on
automation and AGV systems.

The division has a long history of developing AGV electronics and software. It started as
a Swedish company named Netzler & Dahlgren Co AB (NDC), which was founded in 1962.
In the beginning, they developed specialized electronic equipment for various industries, and

4

in 1972 they took part in their first AGV project. Since then, the company has grown and
now partners with many AGV manufacturers around the world. In 2001 NDC was acquired
by a company called Danaher, and the name was changed to Danaher Motion and later Koll-
morgen Automation. The name NDC lives on in the form of the product name NDC Solutions.

KMA develops AGV control software, navigation technology, and drive units. They part-
ner with AGV manufacturers to create entire AGV systems. The partner company sell the
system to the end customer, usually to be set up in a warehouse or manufacturing facility.
Both application engineers from KMA and the partner company can be involved in installing
and maintaining the system. Usually, long-time partners set up the system themselves. KMA
helps in the cases where the customer is inexperienced, or the system is complicated. They
also help with more difficult support cases.

2.3. KMA software

The KMA software includes software to be run by a master computer on site for traffic and
flow control, navigation software used by the individual AGV, and software tools for designing
and servicing the system. The tools are used by application engineers at KMA and at partner
companies.

The tools consist of a large number of software. There are tools for designing the paths
the AGVs should follow, programming the behaviour of the vehicles, setting up the reflectors
used for navigation, troubleshooting a malfunctioning AGV, simulating the system, and more.
Many of the tools need a digital model of the vehicle, and in those cases, the user needs to
make a configuration of the vehicle. This means that the user needs to set some parameters
relevant for that tool, for example, physical parameters like width or length of the vehicle.
Some of the software that include a vehicle configuration are Vehicle Application Designer
(VAD), Layout Designer (LD), and Reflector Surveyor (RS).

Vehicle Application Designer
The configuration of the vehicle is done mainly in a software called Vehicle Application De-
signer (VAD). In this software, parameters are set for drives, scanners, and other objects on the
vehicle. There is also a built-in tool for programming the PLC (the control unit) of the vehicle,
which controls the vehicle behaviour. From the VAD, a file is downloaded to the vehicle in
order to transfer the input from the software to the vehicle.

The software is, in general, based on a two-column tree structure, but there are some dif-
ferences depending on what view you are in. For example, the PLC programming view looks
completely different from the rest of the views since it is based on external software. There are
also some views in the software from which you can send commands to the vehicle in real-time
while connected to it. These, too, have a different look with not only fields but buttons as well.
The scope of this study includes the parameters that can be set from VAD, and to a minimal
extent, the PLC programming. It does not include the functionality of sending commands to
a connected vehicle since this does not fall under the category of vehicle configuration.

An overview of the software is displayed in Figure 1. On the left-hand side, there are sev-
eral symbol buttons where you can navigate to different views. The next column contains a
tree structure with varying content depending on the selected view. In the main window, a list

5

in 1972 they took part in their first AGV project. Since then, the company has grown and
now partners with many AGV manufacturers around the world. In 2001 NDC was acquired
by a company called Danaher, and the name was changed to Danaher Motion and later Koll-
morgen Automation. The name NDC lives on in the form of the product name NDC Solutions.

KMA develops AGV control software, navigation technology, and drive units. They part-
ner with AGV manufacturers to create entire AGV systems. The partner company sell the
system to the end customer, usually to be set up in a warehouse or manufacturing facility.
Both application engineers from KMA and the partner company can be involved in installing
and maintaining the system. Usually, long-time partners set up the system themselves. KMA
helps in the cases where the customer is inexperienced, or the system is complicated. They
also help with more difficult support cases.

2.3. KMA software

The KMA software includes software to be run by a master computer on site for traffic and
flow control, navigation software used by the individual AGV, and software tools for designing
and servicing the system. The tools are used by application engineers at KMA and at partner
companies.

The tools consist of a large number of software. There are tools for designing the paths
the AGVs should follow, programming the behaviour of the vehicles, setting up the reflectors
used for navigation, troubleshooting a malfunctioning AGV, simulating the system, and more.
Many of the tools need a digital model of the vehicle, and in those cases, the user needs to
make a configuration of the vehicle. This means that the user needs to set some parameters
relevant for that tool, for example, physical parameters like width or length of the vehicle.
Some of the software that include a vehicle configuration are Vehicle Application Designer
(VAD), Layout Designer (LD), and Reflector Surveyor (RS).

Vehicle Application Designer
The configuration of the vehicle is done mainly in a software called Vehicle Application De-
signer (VAD). In this software, parameters are set for drives, scanners, and other objects on the
vehicle. There is also a built-in tool for programming the PLC (the control unit) of the vehicle,
which controls the vehicle behaviour. From the VAD, a file is downloaded to the vehicle in
order to transfer the input from the software to the vehicle.

The software is, in general, based on a two-column tree structure, but there are some dif-
ferences depending on what view you are in. For example, the PLC programming view looks
completely different from the rest of the views since it is based on external software. There are
also some views in the software from which you can send commands to the vehicle in real-time
while connected to it. These, too, have a different look with not only fields but buttons as well.
The scope of this study includes the parameters that can be set from VAD, and to a minimal
extent, the PLC programming. It does not include the functionality of sending commands to
a connected vehicle since this does not fall under the category of vehicle configuration.

An overview of the software is displayed in Figure 1. On the left-hand side, there are sev-
eral symbol buttons where you can navigate to different views. The next column contains a
tree structure with varying content depending on the selected view. In the main window, a list

5

of parameters is shown depending on what is selected in the tree structure. At the bottom,
there is an explanation shown for the selected parameter.

Figure 1: Vehicle Application Designer software.

Layout Designer
In the Layout Designer (LD) software, the routes that the vehicles drive at the site are drawn.
In order to do this, a setup of the vehicles is necessary. The type of vehicle in terms of wheel
configuration is set, as is the size, wheel placement, safety sensor system, and eventual nav-
igation antennas. Only the vehicle configuration part of LD was considered for this project,
and not the route drawing.

Part of the vehicle configuration of LD is done when initiating a new system, such as what
type of vehicles will be used in terms of wheel configuration, their wheelbases, and physical
measurements (see Figure 2). When the system has been initiated, additional settings can
be made to the vehicles that were added initially, and additional vehicles can be imported
from other systems. Here the antennas can be placed (see Figure 3). The reason antennas
are placed, but not other navigation equipment such as reflector scanners is that these other
methods do not affect the path drawing.

There is also the possibility to place safety sensors and define their fields (see Figure 4).
This is copied straight from the sensor software. It is preferred to import the settings, but this
is not always possible. The safety cases are defined as well (see Figure 5). The cases define
during which circumstances which safety field should be used.

6

Figure 2: Layout Designer initial setup.

Figure 3: Layout Designer antenna setup.

7

Figure 2: Layout Designer initial setup.

Figure 3: Layout Designer antenna setup.

7

Figure 4: Layout Designer safety sensor and field setup.

Figure 5: Layout Designer safety case setup.

8

Reflector Surveyor
To create a map of a site, a survey must be made with the present navigation method. The
survey is done by driving around with an AGV and using different surveyor tools depending
on the navigation method. When preparing for reflector navigation, the software Reflector
Surveyor is used. This features a setup of the vehicle to be used, although its parameters can
most often be imported from the connected vehicle. For the cases this is not possible, the
setup is made as can be seen in Figure 6. In the figure, an image is shown over the vehicle
with components such as wheelbase and scanner. The image is a mere representation so that
the user will know what the position parameters mean and is a static image.

Figure 6: Reflector Surveyor vehicle setup.

9

Reflector Surveyor
To create a map of a site, a survey must be made with the present navigation method. The
survey is done by driving around with an AGV and using different surveyor tools depending
on the navigation method. When preparing for reflector navigation, the software Reflector
Surveyor is used. This features a setup of the vehicle to be used, although its parameters can
most often be imported from the connected vehicle. For the cases this is not possible, the
setup is made as can be seen in Figure 6. In the figure, an image is shown over the vehicle
with components such as wheelbase and scanner. The image is a mere representation so that
the user will know what the position parameters mean and is a static image.

Figure 6: Reflector Surveyor vehicle setup.

9

3. Theory

3.1. Design thinking

The process that this study followed can be described by the five stages of design thinking:
Empathize, Define, Ideate, Prototype, Test. It is a methodology developed to help the
designer understand the human needs in a problem and can help a designer to solve complex
or badly formulated problems.

• Empathize is the phase where the designer gains knowledge about the user and the
problem and their experiences and what motivates them. This can be done by, for
example, consulting experts through interviews.

• The Define phase is when the designer analyzes and interprets the data found in the
empathize phase. During this phase, the user needs and the problem description is
defined. A clear image of the problem and the user is produced.

• During the Ideate phase, the designer starts the ideation of new ideas. By having
performed the two phases prior to ideation, the designer is allowed to think freely but
relevantly.

• During the Prototype phase, the designer builds a prototype of the ideas, or combina-
tions of them, that have come up during the Ideate phase.

• Lastly, the designer tests out the prototypes in the Test phase. This can be done either
together with users or not. The important thing is to test how well the prototype fulfills
the user needs and the criteria for success defined.

Often, the steps can be in a different order and some of the steps, if not all, are revisited many
times during the design process [5]. In this project, mainly the prototype and test phases were
revisited multiple times.

3.2. Accessible web design

During the project, colour combination choices have been made in regard to accessibility so
that it fulfills contrast recommendations for reduced eyesight. In order to do this, the Web
content accessibility guidelines 2.0 (WCAG) published by World wide web consortium were
used. Contrast choices are based on WCAGs recommendation for accessible web design, and
it states that text on background must have a contrast ratio of at least 4.5:1. There are
three levels of accessibility in web design; A, AA, and AAA, where A stands for the lowest
qualifications and AAA for the highest. Usually, governmental websites and official documents
are by AAA standards. Since the designed software is not directed towards the general public,
AA is sufficient and is also in line with KMAs own ambition regarding accessibility [10].

3.3. User experience (UX)

ISO defines user experience or UX as a person’s perceptions and responses from the use and
anticipated use of a product, system, or service. This includes the emotions, beliefs, pref-
erences, perceptions, physical and psychological responses, behaviours, and accomplishments
that the user experience before, during, and after the use. The response is a consequence of

10

the brand image, presentation, functionality, system performance, and interactive behaviour of
the product, system or service, and is hence wider than the term usability. Unlike the common
misconception, usability is a part of the aspects that make up the whole user experience and
not a synonym. UX is hence profoundly connected with feelings and the hedonic qualities
of the user, and not merely functionality. Another common misconception is that UX only
regards graphical interfaces and is limited to apps and websites; however, UX principles are
meant to be applicable for all types of products and services. In this project, to capture the
usability aspects, tests were conducted, and the usability heuristics were taken into consider-
ation. To capture the more hedonic aspects of UX and the emotional response of UX, the
Geneva emotion wheel was used and will be described [13].

3.4. Usability

Jakob Nielsen describes 10 principles for successful interaction design called heuristics, which
have been considered during the project and design of the intermediate and final prototype.
How the heuristics were used and implemented in the design is presented in section 8.2. The
heuristics are presented and described below [1].

• Visibility of system status - Users should be informed of what is going on and have
a reasonable amount of time to process that feedback. Therefore, feedback should be
presented to the user preferably immediately.

• Match between system and the real world - The design should follow the language
and order that the user is already familiar with.

• User control and freedom - If a user makes an action by mistake, the user needs to
be able to exit or regret that action. Therefore, the exit options should always be clear.

• Consistency and standards - The words, situations, and actions should mean the same
thing throughout the design and follow the standards of the entire platform or industry.

• Error prevention - The design should prevent the user from committing errors, or
present a confirmation option before committing to an action.

• Recognition rather than recall - The user should not have to remember information
from one view to another. The information that the user needs in different situations
should be seen or easily retrieved.

• Flexibility and efficiency of use - The interaction should be able to be tailored to
adapt to the way that expert users use the interface, but the expert way of working
should remain hidden from novice users.

• Aesthetic and minimalist design - Interfaces should not contain information or el-
ements that do not help the user; unnecessary elements must not distract from the
necessary elements.

• Help users recognize, diagnose and recover from errors - Error messages should
be clear and understandable and expressed in language and not error codes, as well as
constructively suggest a solution.

• Help and documentation - Even if the solution is preferably self-explanatory, it is
sensible to present help and documentation for the user. The help should be easily
accessible and concise.

11

the brand image, presentation, functionality, system performance, and interactive behaviour of
the product, system or service, and is hence wider than the term usability. Unlike the common
misconception, usability is a part of the aspects that make up the whole user experience and
not a synonym. UX is hence profoundly connected with feelings and the hedonic qualities
of the user, and not merely functionality. Another common misconception is that UX only
regards graphical interfaces and is limited to apps and websites; however, UX principles are
meant to be applicable for all types of products and services. In this project, to capture the
usability aspects, tests were conducted, and the usability heuristics were taken into consider-
ation. To capture the more hedonic aspects of UX and the emotional response of UX, the
Geneva emotion wheel was used and will be described [13].

3.4. Usability

Jakob Nielsen describes 10 principles for successful interaction design called heuristics, which
have been considered during the project and design of the intermediate and final prototype.
How the heuristics were used and implemented in the design is presented in section 8.2. The
heuristics are presented and described below [1].

• Visibility of system status - Users should be informed of what is going on and have
a reasonable amount of time to process that feedback. Therefore, feedback should be
presented to the user preferably immediately.

• Match between system and the real world - The design should follow the language
and order that the user is already familiar with.

• User control and freedom - If a user makes an action by mistake, the user needs to
be able to exit or regret that action. Therefore, the exit options should always be clear.

• Consistency and standards - The words, situations, and actions should mean the same
thing throughout the design and follow the standards of the entire platform or industry.

• Error prevention - The design should prevent the user from committing errors, or
present a confirmation option before committing to an action.

• Recognition rather than recall - The user should not have to remember information
from one view to another. The information that the user needs in different situations
should be seen or easily retrieved.

• Flexibility and efficiency of use - The interaction should be able to be tailored to
adapt to the way that expert users use the interface, but the expert way of working
should remain hidden from novice users.

• Aesthetic and minimalist design - Interfaces should not contain information or el-
ements that do not help the user; unnecessary elements must not distract from the
necessary elements.

• Help users recognize, diagnose and recover from errors - Error messages should
be clear and understandable and expressed in language and not error codes, as well as
constructively suggest a solution.

• Help and documentation - Even if the solution is preferably self-explanatory, it is
sensible to present help and documentation for the user. The help should be easily
accessible and concise.

11

3.5. Usability testing

The usability tests were designed according to theory presented by Joseph S. Dumas and Janice
C. Redish. In their book, Dumas and Redish support that working iteratively with testing and
design is likely to lead to a useful design. The nature of the usability test can, and should, be
different depending on context and the user, but generally, all usability tests share the following
characteristics, according to the authors [14].

• ”The primary goal of the testing is to improve the usability of the product. For
each test you also have more specific goals and concerns that you articulate
when planning the test.” Furthermore, the authors state that the focus on improving
the usability of the product is what largely separates a usability test from pure research.

• ”The participants in the test represent actual users.” The users partaking in the
study need to be people who use the product today or might come to use the product in
the future. It is further stated that the test must take into consideration not to have too
experienced or inexperienced users, since in the first case, the user might not experience
all of the usability problems that the product has, and in the latter, the test might lead
to changes that are not, in fact, helpful for the real user.

• ”The participants do real tasks.” This means that before conducting the user test, it
is important to actually understand the users and how they use a product. Furthermore,
it is stated that in complex software that contain a large number of functionalities, a
selection of the tasks should be made but should still be tasks that the user is likely to
perform ”naturally” and that have a likeliness to uncover usability problems.

• ”Observe and record what the users do and say.” The usability test consists of both
observations of the users’ actions and evaluation from the user. It provides a balance
between opinions and actions.

• ”Analyze the data, diagnose the real problems and recommend changes to
change those problems.” Both the qualitative and quantitative data are analyzed,
and along with the observation used to diagnose the product’s usability and recommend
solutions that might solve the problems found.

Furthermore, according to the authors, at least two or three users should be included per
subgroup and test to ensure that the behaviour studied is not idiosyncratic. This is further
strengthened by the Nielsen/ Norman group that claims that having 5 users per test is sufficient
to uncover most usability problems of that test. Nielsen/ Norman group further states that
having at least 15 users in total is sufficient to uncover most usability problems of a software,
but that dividing the number of participants over multiple tests is the most successful way to
help improve the usability of the tested software. By iterating and testing each redesign, it is
likely to lead the design to become more usable for the users [12].

3.6. Success rate

When trying to improve something, it is helpful to measure the results before and after. The
area of usability is no different. With usability metrics, it is possible to track how the usability
changes over time or compare different interfaces. However, measuring the usability in quan-
titative terms might interfere with gathering qualitative data such as user insights. A typical

12

usability metric is the time it takes for users to complete a task. However, to accurately time
users, you cannot ask them to think aloud while doing the task, thus missing out on valuable
insights. Therefore success rate metrics were used in this study.

The success rate is a usability metrics that show the ”percentage of tasks that users com-
plete correctly”[8]. With success rate, every successful task is rated 1, and every partially
successful task is rated a fraction of 1, in this case 0.5. It is then possible to compute the
success rate of each task by taking the average score of the participating users. For example,
five users can be asked to complete a set of 6 predefined tasks. A user can either be granted
1 point for complete success or 0.5 points for partial success (partial success is also defined
forehand). The success rate is then decided by the total score granted to all users divided by
the total number of attempts. In the example above, let us say the total score of all six users
was 10; the success rate would then be 10/6*5=0.33, a success rate of a total of 33 percent.

3.7. Geneva emotion wheel

Emotions can be difficult to evaluate, especially when it regards something that does not trig-
ger much emotion, such as the usage of an interface. However, emotion and hedonic aspects
are central in UX theory [13].

The Geneva Emotion Wheel (GEW) is a tool used for measuring emotions. It consists of
20 emotions, arranged from bottom to top from low control to high control, and from left to
right by negative valence to positive valence [17], [16] (see Figure 7).

When using it to evaluate the emotional response of using an interface, participants are asked
for every emotion of the wheel to what intensity they felt that emotion. They answer on a
scale from zero to six, with zero being that they didn’t feel the emotion at all, and six being
that they felt it strongly.

13

usability metric is the time it takes for users to complete a task. However, to accurately time
users, you cannot ask them to think aloud while doing the task, thus missing out on valuable
insights. Therefore success rate metrics were used in this study.

The success rate is a usability metrics that show the ”percentage of tasks that users com-
plete correctly”[8]. With success rate, every successful task is rated 1, and every partially
successful task is rated a fraction of 1, in this case 0.5. It is then possible to compute the
success rate of each task by taking the average score of the participating users. For example,
five users can be asked to complete a set of 6 predefined tasks. A user can either be granted
1 point for complete success or 0.5 points for partial success (partial success is also defined
forehand). The success rate is then decided by the total score granted to all users divided by
the total number of attempts. In the example above, let us say the total score of all six users
was 10; the success rate would then be 10/6*5=0.33, a success rate of a total of 33 percent.

3.7. Geneva emotion wheel

Emotions can be difficult to evaluate, especially when it regards something that does not trig-
ger much emotion, such as the usage of an interface. However, emotion and hedonic aspects
are central in UX theory [13].

The Geneva Emotion Wheel (GEW) is a tool used for measuring emotions. It consists of
20 emotions, arranged from bottom to top from low control to high control, and from left to
right by negative valence to positive valence [17], [16] (see Figure 7).

When using it to evaluate the emotional response of using an interface, participants are asked
for every emotion of the wheel to what intensity they felt that emotion. They answer on a
scale from zero to six, with zero being that they didn’t feel the emotion at all, and six being
that they felt it strongly.

13

Figure 7: Geneva emotion wheel [17], [16]

14

4. Empathize

In this first step of the design thinking process, the users’ ways of working, their needs, and
how they use the current product were investigated. This was done by conducting interviews
and observations with expert users and a usability test with success rate and an emotional
response evaluation of the current KMA software with novice users.

4.1. Users

For the interview studies, in-house and partner application engineers were chosen as subjects
since they are the primary users of the studied software. To be able to cover the needs of
several different types of users, application engineers from three partner companies were inter-
viewed (in addition to the interviews performed with application engineers at Kollmorgen). It
was thought that these expert users would be able to tell us about issues that they had been
experiencing with the software today and if they had come up with any strategies that resolved
those issues.

The usability testing and success rate testing were performed with novice users since it was
thought that they could give us further insight into how it can be to be a new user using the
software for the first time. It would also be more just to compare the tests of KMA software to
the new design since these users would have had as much experience with the current version
as the redesign, which was not the case with expert users. The different users will be explained
below, as well as some characteristics that were found in the study during the empathize phase.

4.1.1. Expert users

In-house application engineers
The application engineers’ tasks at KMA vary, and they can act both as customer support
and help partners set up systems at site. The idea of KMA software is, however, that the
partner companies’ own application engineers should be able to handle the software and set
up the system for the end customer more or less independently. KMA does not manufacture
AGV vehicles or sell to the end customer; the programs are seldom used by in-house applica-
tion engineers to actually set up entire vehicles or formally set up entire AGV systems (the
latter sometimes occurs when partner companies need much help). The application engineers
at KMA have extensive knowledge about partnering companies, the ways in which they are
working and the software they use.

Partner company users
For partner application engineers, their primary tasks are to adapt their products to their cus-
tomers’ needs, such as drawing the paths the AVGs will eventually drive in the warehouses
and recommending suitable vehicle models. In some cases, they also adapt the vehicles to
customers wishes, whereas in other cases, partner companies work with set models. During
the studies, interviews were conducted with both in-house application engineers and represen-
tatives from three partner companies: Company 1, Company 2 and Company 3. The three
companies differ in that Company 1 does not make customizable vehicles, Company 2 makes
somewhat customizable vehicles, and Company 3 only manufactures very niche and customized
vehicles.

Company 1 is a major global supplier of AGV and AGV systems and has a wide range of

15

set models. This means that Company 1 does not usually adapt their vehicle to the customer
needs, and the environments in which the AGV models are meant to work in are also set.
This means that vehicle configuration should only have to be done when a new vehicle is
being developed, which is not very often, and when updates are made on the existing vehi-
cles. However, the software that handles drawing the paths of the AGVs (Layout Designer)
also requires the user to do some vehicle configuration. Company 1 has come around this by
implementing so-called templates, already configured vehicles that the user imports into the
different software. Since Company 1 is a large company, handling the layout for a site (in
Layout Designer) and setting up a new vehicle template, or changing something in the vehicle
templates are conducted by different people. Company 1 has a low need for flexibility in terms
of adapting software to tailor-made vehicles.

Company 2 manufactures a wider range of different types of AGVs and can also customize
different vehicles to their customers’ wishes. This means that they both work with templates
(already configured vehicles) and regularly set up entirely new vehicles. Working this way
means a more frequent vehicle configuration, and users spend much time using Vehicle Appli-
cation Designer. Company 2 have a mid-range need for flexibility. Often when constructing a
custom vehicle, a user at company 2 will look back at previous vehicles that they have worked
on in the past, and consider what parts of the configuration that can be put into the current
vehicle project. This means that a user from company 2 relies much on experience working
on similar projects and their own “library” of vehicles that they have built up over time. The
users in Company 2 do not either have a set way of sharing previous projects with each other.
This leads to new users at Company 2 often having issues in knowing what to do.

Company 3 only custom makes vehicles, and this means that Company 3 do not use vehi-
cle templates. At Company 3, there are “as many different models of vehicles as there are
customers”. Their vehicles are primarily directed towards industry, but they also have ex-
perience in manufacturing, for example, autonomous vehicles for clinical environments. This
means that they work much with vehicle configuration, and also have a high need for flexibility,
and have also come up with their own workarounds allowing them to push the boundaries of
the software’s ability to be flexible. However, even if all of their vehicles look and function
differently, they take parts from old configurations when working on new projects, as Company
2 does.

4.1.2. Novice users

During the Empathize phase and testing of the current KMA software, the number of novice
users was five in total, plus three pilot test users. The group of users consisted of both
KMA employees (3) who had not been in contact with the software before and non-employees
(2). The non-employees were people with various technical backgrounds such as electrical
engineering, IT, design engineering and automation and mechatronics. They were in many
ways used to handle complex technical interfaces. Both user groups were thought to represent
a user who might be new in their position and opens the software for the first time. It was
expected that the two different user groups would get different results and perhaps that the
group consisting of KMA employees would do considerably better on the usability tests since
they were more familiar with the terminology used at KMA. However, the two groups got very
similar results on both the tests performed with the old software and the test performed with
our prototype.

16

set models. This means that Company 1 does not usually adapt their vehicle to the customer
needs, and the environments in which the AGV models are meant to work in are also set.
This means that vehicle configuration should only have to be done when a new vehicle is
being developed, which is not very often, and when updates are made on the existing vehi-
cles. However, the software that handles drawing the paths of the AGVs (Layout Designer)
also requires the user to do some vehicle configuration. Company 1 has come around this by
implementing so-called templates, already configured vehicles that the user imports into the
different software. Since Company 1 is a large company, handling the layout for a site (in
Layout Designer) and setting up a new vehicle template, or changing something in the vehicle
templates are conducted by different people. Company 1 has a low need for flexibility in terms
of adapting software to tailor-made vehicles.

Company 2 manufactures a wider range of different types of AGVs and can also customize
different vehicles to their customers’ wishes. This means that they both work with templates
(already configured vehicles) and regularly set up entirely new vehicles. Working this way
means a more frequent vehicle configuration, and users spend much time using Vehicle Appli-
cation Designer. Company 2 have a mid-range need for flexibility. Often when constructing a
custom vehicle, a user at company 2 will look back at previous vehicles that they have worked
on in the past, and consider what parts of the configuration that can be put into the current
vehicle project. This means that a user from company 2 relies much on experience working
on similar projects and their own “library” of vehicles that they have built up over time. The
users in Company 2 do not either have a set way of sharing previous projects with each other.
This leads to new users at Company 2 often having issues in knowing what to do.

Company 3 only custom makes vehicles, and this means that Company 3 do not use vehi-
cle templates. At Company 3, there are “as many different models of vehicles as there are
customers”. Their vehicles are primarily directed towards industry, but they also have ex-
perience in manufacturing, for example, autonomous vehicles for clinical environments. This
means that they work much with vehicle configuration, and also have a high need for flexibility,
and have also come up with their own workarounds allowing them to push the boundaries of
the software’s ability to be flexible. However, even if all of their vehicles look and function
differently, they take parts from old configurations when working on new projects, as Company
2 does.

4.1.2. Novice users

During the Empathize phase and testing of the current KMA software, the number of novice
users was five in total, plus three pilot test users. The group of users consisted of both
KMA employees (3) who had not been in contact with the software before and non-employees
(2). The non-employees were people with various technical backgrounds such as electrical
engineering, IT, design engineering and automation and mechatronics. They were in many
ways used to handle complex technical interfaces. Both user groups were thought to represent
a user who might be new in their position and opens the software for the first time. It was
expected that the two different user groups would get different results and perhaps that the
group consisting of KMA employees would do considerably better on the usability tests since
they were more familiar with the terminology used at KMA. However, the two groups got very
similar results on both the tests performed with the old software and the test performed with
our prototype.

16

4.2. Interviews and observations with expert users

The interviews were carried out remotely via Microsoft Teams with expert users. The intervie-
wees were in-house application engineers at KMA (3 in total) and three application engineers
from the three partner companies. The interviews were recorded and transcribed. The inter-
views were changed and were tailored for each type of user in order to get as much relevant
data from each interview. Prior to conducting the interviews, a loosely formed user journey had
been constructed in dialogue with KMA employees. This user journey was then continuously
formed together with users throughout the interviews and was used as a mediating tool. The
interviews and the iterated user journey were conducted to investigate the user needs expert
users had.

The interviews were of semi-structured nature where the researchers could both ask spe-
cific questions that were decided beforehand, questions that arose in the moment and quick
observations in relevant software. During the interviews in this part of the project, Miro was
used to construct a schematic user journey with the user. The board was later developed and
evaluated with the next users interviewed. During the interviews, the participants were asked
and encouraged to open the software that were discussed and share their screen. This was
done in order to use the software as mediating objects and to let the researchers observe how
the users worked with the software.

Using the iterated user journey as a probe provided insights into the ways that the users
were working. The users described their process of setting up a new AVG system and con-
figuring vehicles, from getting the first inquiry from a customer to setting up the system at
the site. The questions, both the predetermined and the questions that arose in the moment,
together with the usage of the KMA software as mediating objects, provided insights on what
parts of the process were the most challenging and what strategies the users performed in
order to overcome those challenges.

In the case of studying expert users, interviews and observations were also favoured before
usability testing of the current KMA software since it was reasoned that they were likely to
have discovered and learned to avoid most mistakes caused by poor usability and that their
struggles were likely to be better described in an interview. The choice was also based on the
fact that interviews were possible to perform remotely and preferred over a survey also since it
often provides researchers with deeper knowledge. The interviews with the expert users were
transcribed and analyzed using a KJ method.

4.2.1. Key insights from interviews with expert users

Some of the main themes that experts brought up during the interviews are presented below:

Users

• Generally, different people work with the Layout Designer and Vehicle Application De-
signer

• The KMA software are difficult to learn for novice users. One user suggested that ”The
program could include tips for the user on what to do next”

17

Import and export

• Expert users find it time-consuming that they are not able to import one vehicle at a
time into LD

• Importing and exporting different types of files to and from the different KMA software
is time-consuming

• Being able to import components from manufacturers is useful, such as importing a
safety scanner or separate antenna.

Templates and flexibility

• The solution must be able to be used with both custom vehicles and standard vehicles
(both for template and non-template vehicles)

• Expert users who use templates find it time-consuming not being able to update multiple
templates at the same time

• Users rarely start from scratch when configuring a new vehicle, but use parts from old
vehicles. Parts from up to 5-6 vehicles can be used.

• Some users copy and paste from the HTML code of VAD. It is time-consuming to copy
and paste parameters. This is why it is ”shortcut-ed” using HTML. Drag and drop would
be preferred.

• Adapting what is being presented to the user depending on what type of vehicle is being
configured would be a good idea.

• There is a need to be able to divide different vehicles into subgroups both regarding
physical qualities and behavioural qualities

Errors and documentation

• If an error occurs, it needs to be easily detected since users are often working with many
parameters at the same time, slips occur

• It is not recommended to tamper with the templates since there is no way to document
what has been changed

• Documentation about the vehicle is needed, users usually write in a Word document to
communicate changes that have been made

Other

• For VAD, there is no need for shared usage today, but for LD, there might be

• The software are in need of a modernization regarding aesthetic qualities

18

Import and export

• Expert users find it time-consuming that they are not able to import one vehicle at a
time into LD

• Importing and exporting different types of files to and from the different KMA software
is time-consuming

• Being able to import components from manufacturers is useful, such as importing a
safety scanner or separate antenna.

Templates and flexibility

• The solution must be able to be used with both custom vehicles and standard vehicles
(both for template and non-template vehicles)

• Expert users who use templates find it time-consuming not being able to update multiple
templates at the same time

• Users rarely start from scratch when configuring a new vehicle, but use parts from old
vehicles. Parts from up to 5-6 vehicles can be used.

• Some users copy and paste from the HTML code of VAD. It is time-consuming to copy
and paste parameters. This is why it is ”shortcut-ed” using HTML. Drag and drop would
be preferred.

• Adapting what is being presented to the user depending on what type of vehicle is being
configured would be a good idea.

• There is a need to be able to divide different vehicles into subgroups both regarding
physical qualities and behavioural qualities

Errors and documentation

• If an error occurs, it needs to be easily detected since users are often working with many
parameters at the same time, slips occur

• It is not recommended to tamper with the templates since there is no way to document
what has been changed

• Documentation about the vehicle is needed, users usually write in a Word document to
communicate changes that have been made

Other

• For VAD, there is no need for shared usage today, but for LD, there might be

• The software are in need of a modernization regarding aesthetic qualities

18

4.3. Usability test with novice users

A usability test was made in order to map out the most common use errors and obvious us-
ability flaws in the software conducted by novice users, and why the users had difficulties in
understanding parts of the program. The success rate of the users was measured for later
comparison with the final design. The usability tests were conducted remotely via Microsoft
teams, where the participants got to remotely control a computer with all of the programs
tested installed. At the end of the test, the users got to reflect on the usage. They were
continuously encouraged to think aloud when performing the tasks to obtain some qualitative
data. All tests were recorded and used for analysis.

The participants were asked to perform tasks that had been previously designed to test parts
of the programs. The tasks could be described as sub-tasks expert users would perform when
setting up a new AGV system. It could be, for example, to import a vehicle from a previous
project or to configure a vehicle with certain parameters. The test consisted of 20 tasks with
some sub-tasks. The success rate of the users was measured for later comparison (see Ap-
pendix A).

Throughout the tests, the users kept the researchers informed about their thought process
by verbally explaining how they guessed a certain situation should be handled or other things
that they thought of during the test. After the test was conducted, the participants were
asked to reflect on the usage and the emotions that the usage raised. The comments and the
reflections were also analysed using a KJ method, and the usability of the tested software was
evaluated using success rate.

4.3.1. Emotional response

An evaluation of the novice users’ emotional response to using the software was conducted.
It was reasoned that it could provide more insight into the users’ holistic impression of the
software, in addition to evaluating mere usability. In order to help users identify their emotions,
a Geneva emotion wheel was used as a basis for reflection after each usability test with novice
users.

The participants were asked to reflect upon how the usage of the interface made them feel,
and to what level of intensity. They were also asked to motivate why they would rate the
intensity of the feeling in a certain way, although it was made clear that they did not have to
motivate the emotion if they could not find a motivation.

The most prominent emotion users felt was interest, with an average of 3.7, followed by
pride, relief and anger, all with an average of 2.3.

Positive response
Some of the comments regarding positive emotions, or lack of negative emotions, were:

• ”This old interface looked pretty advanced, so I felt a bit proud when I got it right”

• ”When I found what I was looking for, I felt content”

• ”You can change everything afterwards. If you couldn’t, I would have felt more regret”

19

Negative response
On the other hand, some comments about negative emotions, or lack of positive emotions,
were:

• ”If I would have gotten a confirmation that I had done the right thing, I would have felt
very happy, but I didn’t. So now I’m left with a feeling of insecurity.”

• ”Getting more feedback would have been good in order to feel more relief ... Now I’m
not sure whether it will work”

• ”I understand that this is done by engineers, for engineers”

• ”It made me a bit sad how inconsistent things were”

• ”It didn’t feel shameful to make a mistake, it felt like reasonable things to get wrong”

• ”It’s difficult to understand what you’re supposed to do, it makes you feel stupid”

• ”I feel technology anxiety, anxious to start messing with the system”

4.3.2. Usability issues

Based on the usability tests with novice users, some of the usability issues that were found
throughout the three software are presented below:

Visualizations

• The icons used in the software are difficult to interpret for novice users

• The vehicle representation images used to represent the vehicles in the software are
difficult to interpret for novice users; the image used in Reflector Surveyor is easier to
interpret than the one used in Layout Designer

• Novice users expect vehicle representation images to be updated depending on the input
perimeters

• Novice users expect to be able to interact with the vehicle representation images. In the
current software, the visualizations are a mere representation

• The antenna representation is not visible

• In RS, the vehicle representation image does not correspond to the default values that
the program has when opening it, which leads to confusion

Feedback

• Novice users, in general, feel insecure if what they have done is correct

• Novice users are in need of visual feedback that their inputs have been executed

20

Negative response
On the other hand, some comments about negative emotions, or lack of positive emotions,
were:

• ”If I would have gotten a confirmation that I had done the right thing, I would have felt
very happy, but I didn’t. So now I’m left with a feeling of insecurity.”

• ”Getting more feedback would have been good in order to feel more relief ... Now I’m
not sure whether it will work”

• ”I understand that this is done by engineers, for engineers”

• ”It made me a bit sad how inconsistent things were”

• ”It didn’t feel shameful to make a mistake, it felt like reasonable things to get wrong”

• ”It’s difficult to understand what you’re supposed to do, it makes you feel stupid”

• ”I feel technology anxiety, anxious to start messing with the system”

4.3.2. Usability issues

Based on the usability tests with novice users, some of the usability issues that were found
throughout the three software are presented below:

Visualizations

• The icons used in the software are difficult to interpret for novice users

• The vehicle representation images used to represent the vehicles in the software are
difficult to interpret for novice users; the image used in Reflector Surveyor is easier to
interpret than the one used in Layout Designer

• Novice users expect vehicle representation images to be updated depending on the input
perimeters

• Novice users expect to be able to interact with the vehicle representation images. In the
current software, the visualizations are a mere representation

• The antenna representation is not visible

• In RS, the vehicle representation image does not correspond to the default values that
the program has when opening it, which leads to confusion

Feedback

• Novice users, in general, feel insecure if what they have done is correct

• Novice users are in need of visual feedback that their inputs have been executed

20

Import and export

• It is difficult to import a vehicle

• It is not possible to only import one vehicle in LD; the user has to import all vehicles
within a drawing

• It is difficult to see where the imported vehicles end up

Consistency

• Layout designer vehicle configuration behaves inconsistent. For example, for some pa-
rameters, a dialog box opens up, and for some, the user is expected to input parameters
in the main view

• Short commandos such as tab are not available

Navigation

• Novice users find it difficult to navigate within the vehicle configuration window and
forget where different parameters are within the window if they need to go back

• It is difficult to find the safety system cases

• Settings are not where the user expects them to be

• Users mistake the ”next” button for creating a new vehicle

• Users feel insecure if ”next” is the same thing as ”save” and if they are able to go back
if they press ”next”

Other

• The PLC check-box setting in LD is difficult to understand

• The roman letter system over carrier types is confusing

• The software uses acronyms instead of typing out the entire names of things which makes
it difficult for novice users to find things

21

5. Define

In this step, the data gathered from the Empathize step was organized with a KJ analysis, a
Hierarchical Task Analysis (HTA), an impact map, a function tree, and a user journey map.
These were then translated into user needs.

5.1. KJ analysis

The KJ analysis, also known as the Affinity diagram, is a method used for structuring raw
data. It is useful for grouping data to enable solving problems on a higher level, rather than
addressing every issue separately [2]. It is usually done by writing every data on a post-it note,
organizing the notes into groups, naming the groups, and prioritizing them.

To organize the raw data from the interviews and the usability tests, a KJ analysis was carried
out. This method was chosen since it is suitable for organizing qualitative, unstructured data,
such as the recordings from the semi-structured interviews with expert users. The recordings
of the usability tests with beginner users also contained a lot of comments and user behaviour
not included in the actual test. Therefore the KJ method was also chosen to analyze the
usability test.

Due to the restrictions of physical meetings during the Covid-19 pandemic, the analysis was
done digitally and not with physical post-it notes. The software Miro, which is an online
software for visual collaboration, was used.

One analysis was conducted for the three in-house application engineers at KMA, and three
for each of the partner companies. This was done to be able to separate the needs of different
user segments. For the usability test with the beginner users, one analysis was made.

The first step of the analysis was to gather interesting quotes from the interviews and the
usability tests. These were things like indications of how the users use the software, needs that
are not fulfilled by the current software, what the expected behaviour is, or anything that is
unclear.

The quotes were written onto digital post-it notes in Miro. These were then sorted into
groups of notes with similar contents. After the groups were formed, they were named based
on the contents of the notes. In some cases, large groups were divided further into smaller
groups.

5.2. Hierarchical task analysis

The hierarchical task analysis (HTA) was conducted to help understand in what order the user
performed certain tasks within the program. An HTA was performed on Layout designer (see
Figure 8), and Vehicle application designer (see Figure 9). The results were to be used as
a guide to understanding how the hierarchy of the different functions should be placed in a
future design concept.

22

Figure 8: Hierarchical task analysis for Layout Designer.

Figure 9: Hierarchical task analysis for Vehicle Application Designer.

23

Figure 8: Hierarchical task analysis for Layout Designer.

Figure 9: Hierarchical task analysis for Vehicle Application Designer.

23

5.3. Impact map

The process of impact mapping is used for connecting features, or deliverables, to the over-
all goal of the project. It can be done to identify needs, and how to solve those needs, by
presenting some form of deliverable [11]. In this project, it was used to create a map of how
the different user needs would impact the product, and in turn, its overall goal. This way, the
impacts could be prioritized to help in the process of prioritizing the user needs.

The impact map was done by first defining the overall goal of the project. Then the ac-
tors related to this goal were defined. After this, the impacts on each actor were identified,
and user needs were correlated to the impacts. The resulting impact map had ”Improve cus-
tomer satisfaction (of the product)” stated as the project goal. The actors were defined as the
different types of users, KMA application engineers, partner company application engineers
making custom vehicles, ditto making standard vehicles, beginner users, and service techni-
cians. Seventeen impacts were found, factors impacting the actors’ use of the product (see
Figure 10).

Since the overall goal of the project was defined as ”Increase customer satisfaction” of the
product, the impacts were closely related to usability and could be seen as primary user needs.
The actors, in this case, were the different segments of users.

5.4. Function tree

A function tree is a tool for functional analysis. It is a map of how all functions in a system are
related to each other. It includes one main function, and any number of sub-functions [18].
It is useful for defining what functions are needed or wanted in a product, without assuming
what solutions are used. The current interfaces were used as a base when constructing the
function tree.

The main function was defined as ”Configure a vehicle”. Primary sub-functions were identified,
such as ”Input information”. Auxiliary functions were also taken in regard, functions that help
the user but are not directly a sub-function of the main task. This was for example ”Visualize
input”. One level down the functions was broken down further, and at the next and lowest
level were possible solutions to the sub-functions. For example, the primary function ”Guide
user” is broken down into the secondary functions ”Describe fields”, ”Explain functions”, and
”Avoid complexity”. At the next level, ”Explain functions” has the possible solutions ’”Help”-
function’, ”Clear symbols” (see Figure 12).

The possible solutions were included in the Ideate-phase. Since it was already decided that the
resulting product would be software meant to be used on a PC, the possible solutions were all
applicable to this criteria.

5.5. User journey

A user journey was constructed throughout the Empathize phase of the project. The user
journey was based on findings from the interviews and consisted of the whole process of devel-
oping and implementing a new AGV system at a customer site. It provided a structured view
of what the most important functions and software were for the user in different stages of the
development and implementation of a new system and placed the user in a context.

24

The user journey starts with the construction of the vehicle. For the application engineer,
this means working in VAD to set drives, wheel configuration, and sensors. Usually, the user
starts with an old configuration that is similar to the new vehicle, and makes modifications to it.

They receive the site blueprints from the customer, and after this start preparing the routes in
LD. When doing this, they also make vehicle configurations to be able to draw routes correctly.
This includes entering sensor data, which is available in the sensor software that is separate
from the KMA software. Sometimes it is possible to import it directly, other times it must
be copied manually. After the layout is created, a capacity simulation is performed to see
how many vehicles will be needed at the site. This can be done in iterations while having a
conversation with the end customer. After the capacity is established, the system is sold.

In the case of reflector navigation, the next step is to make a suggestion for reflector position-
ing. This often includes site visits. When it has been decided where the reflectors should be
placed, the end customer mounts the reflectors. A site visit is then made to scan the reflectors
to get their actual exact positioning. When doing this, the software Reflector Surveyor is used.
This is connected to the vehicle and in most cases receives the vehicle information automat-
ically. For older vehicle types it might however be necessary to enter this information manually.

Trimming of the vehicle is also done, usually during the same site visit. A brake test is
done to see how long the stopping distance is and adjusting the safety system accordingly.
The vehicle is also calibrated and these parameters are set in VAD.

After this the layout may be modified with the reflector positioning, a test drive is made
and a final flow and capacity simulation. After this, the system goes live, and the tasks of
the application engineer change, and the role becomes more of a supporting role with trou-
bleshooting errors and maintaining the system.

5.6. User needs

A user needs list is a list of all the needs of the user that have been identified through previous
user research. It is useful as a base for ideation, to find solutions to each separate need. It
is also useful as a means to evaluate concepts later on in the process, by seeing how well the
concepts fulfill the most important user needs.

The user needs list was successively built and edited during the Empathize and Define stages.
In the list, each need was written down, along with a category such as ”Clarity”, ”Collabora-
tion” or ”Flexibility”, and an indication of whether the need should be seen as a guideline or
requirement. Guidelines, in this case, are more general about the desired behaviour of the so-
lution, for example, ”Visualizations should be clear and serve a purpose to the situation where
they are presented”, and ”Allow sharing and re-use of configurations”. On the other hand,
requirements are a stricter description about what functionality should be included, such as
”The sensor locations can be configured”. The eight most important guidelines were selected
and condensed down from the complete list of guidelines that are presented in Appendix C.
The following eight guidelines were also the basis for the guidelines presented later in Chapter
8.

• The most important information should be the most visible

25

The user journey starts with the construction of the vehicle. For the application engineer,
this means working in VAD to set drives, wheel configuration, and sensors. Usually, the user
starts with an old configuration that is similar to the new vehicle, and makes modifications to it.

They receive the site blueprints from the customer, and after this start preparing the routes in
LD. When doing this, they also make vehicle configurations to be able to draw routes correctly.
This includes entering sensor data, which is available in the sensor software that is separate
from the KMA software. Sometimes it is possible to import it directly, other times it must
be copied manually. After the layout is created, a capacity simulation is performed to see
how many vehicles will be needed at the site. This can be done in iterations while having a
conversation with the end customer. After the capacity is established, the system is sold.

In the case of reflector navigation, the next step is to make a suggestion for reflector position-
ing. This often includes site visits. When it has been decided where the reflectors should be
placed, the end customer mounts the reflectors. A site visit is then made to scan the reflectors
to get their actual exact positioning. When doing this, the software Reflector Surveyor is used.
This is connected to the vehicle and in most cases receives the vehicle information automat-
ically. For older vehicle types it might however be necessary to enter this information manually.

Trimming of the vehicle is also done, usually during the same site visit. A brake test is
done to see how long the stopping distance is and adjusting the safety system accordingly.
The vehicle is also calibrated and these parameters are set in VAD.

After this the layout may be modified with the reflector positioning, a test drive is made
and a final flow and capacity simulation. After this, the system goes live, and the tasks of
the application engineer change, and the role becomes more of a supporting role with trou-
bleshooting errors and maintaining the system.

5.6. User needs

A user needs list is a list of all the needs of the user that have been identified through previous
user research. It is useful as a base for ideation, to find solutions to each separate need. It
is also useful as a means to evaluate concepts later on in the process, by seeing how well the
concepts fulfill the most important user needs.

The user needs list was successively built and edited during the Empathize and Define stages.
In the list, each need was written down, along with a category such as ”Clarity”, ”Collabora-
tion” or ”Flexibility”, and an indication of whether the need should be seen as a guideline or
requirement. Guidelines, in this case, are more general about the desired behaviour of the so-
lution, for example, ”Visualizations should be clear and serve a purpose to the situation where
they are presented”, and ”Allow sharing and re-use of configurations”. On the other hand,
requirements are a stricter description about what functionality should be included, such as
”The sensor locations can be configured”. The eight most important guidelines were selected
and condensed down from the complete list of guidelines that are presented in Appendix C.
The following eight guidelines were also the basis for the guidelines presented later in Chapter
8.

• The most important information should be the most visible

25

• Images and visualizations should be clear and serve a purpose to the given situation in
which they are presented

• The user should receive feedback when making an input

• Allow sharing and reuse of configurations

• Allow for communication between KMA, customer ,and end-user

• The solution should behave in a consistent way throughout usage

• Ease usage for beginner users

• Allow for iterative work

• Allow for easier copy/ paste options

There were also requirements set about the functionality the solution should contain. Although
there might be more parameters to be added, the work was based on a few central functions.
These were selected as follows:

• Allow the user to divide vehicles into different groups

• The wheel configuration and wheel positions should be set

• Means of navigation, such as antennas or reflector scanner, can be configured

• The sensor locations can be configured

• The safety fields can be configured but also imported

26

Figure 10: Impact map of the goal to increase customer satisfaction.

27

Figure 10: Impact map of the goal to increase customer satisfaction.

27

Figure 11: Function tree of the function to make a vehicle configuration.

28

Figure 12: User journey of the process of setting up a new AGV system.

29

Figure 12: User journey of the process of setting up a new AGV system.

29

6. Ideate

6.1. Brainwriting 6-3-5

To start generating ideas for solutions, the method of brainwriting 6-3-5 was used. This is
a tool used for generating ideas [18]. With this method, the ideas of one participant is built
upon by another. A set of themes or questions are decided upon; these are then written on
the top of a paper. Each participant has a specified amount of time to write as many ideas as
possible. Then they give it to the next participant, who adds more ideas and builds upon the
previous ideas written on the paper.

The method was only used among the two researchers. The themes were selected before-
hand and were based upon some of the central findings of the ”Define”-phase. The themes
were both specific functionalities that were to be developed, such as ”Safety fields” and
”Physical parameters”, but also included some more abstract themes such as ”Learn fast” and
”Flexibility”. The themes that were used were the following:

• Prevent errors - How can errors be avoided or mitigated?

• Templates - How can the use of templates be facilitated?

• Flexibility - How can the flexibility be increased?

• Learn fast - How can the solution be easy to learn?

• Structure - What structure should the solution have?

• Safety fields - How can safety fields be configured?

• Physical parameters - How can physical parameters be configured?

The themes were divided between the two researchers who had 5 minutes to write down
and sketch their ideas. They then switched papers and built upon each other’s ideas. This
procedure was repeated twice so that each person had every paper twice. The session resulted
in a large number of ideas. The results were discussed after the completion of the session and
used for developing two concepts in Figma, called Matlab (see Figure 13) and Tree structure
(see Figure 14).

30

Figure 13: Early concept ”Matlab”.

Figure 14: Early concept ”Tree Structure”.

31

Figure 13: Early concept ”Matlab”.

Figure 14: Early concept ”Tree Structure”.

31

6.2. Brainstorming with random words

To keep exploring the solution space, and to avoid choosing the first concepts that were
developed, a brainstorming session was conducted. The goal of the method was to generate as
many different ideas that could be used in the new software [18]. Prior to the session, themes
were picked. The themes were constructed using the list of user needs and consisted of:

• How can the vehicle and its parts be represented?

• How can this product be incorporated in a bigger system?

• How can users be enabled to work with ”standard vehicles”?

• How can the user be reminded of the real-world system?

• How can the user be encouraged to work in iterations?

• How can communication between users be made easy?

Since the brainstorming session was only conducted by the two researchers, a facilitator of the
session was lacking. This was solved by adding a random words generator as a structure to
the session. The researchers wrote as many ideas as possible, using a random word as a probe
or mean for inspiration.

As in all brainstorming sessions, the researchers made sure not to be critical about the ideas,
and focus on quantity rather than quality. The ideas were sketched or written on post-it notes
and placed visibly during the entire session so that new ideas could be formed from previous
ideas. The ideas were formed individually and in silence, but explained when placed among
the other post-its. The session resulted in around 150 different ideas, many outside-the-box
but also many feasible ideas. Some of the ideas that were later used in some form included:

• Every software in the system is a card on a dashboard

• The vehicles have a short description, like the backside of a book

• It is possible to merge two templates

• Every change is signed by the user, so it is clear who to ask about it

• Receive search suggestions based on previous searches

• Add objects to the vehicle by click-dragging them

• The vehicle representation is built by Lego-style blocks

• A view that is a model of the site where you can click around

• Receive notifications when the configuration needs to be updated due to changes at the
site

32

6.3. Morphological matrix

A morphological matrix was used for combining different ideas into entire concepts. It was
done by assigning key attributes to the columns and putting ideas for each of them in the rows
[4]. In this case, the themes of the prior brainstorming sessions were assigned as the attributes
in the columns. The ideas generated by the brainstorming sessions were inputted into the rows.
Since the brainstorming sessions were very free, sometimes the ideas generated fit better into
one of the other themes or even a new one. In these cases, the ideas were moved around, and
some new attributes were assigned. The morphological matrix in its entirety can be seen in
Appendix B.

The elements from the Morphological matrix were combined in different ways to form complete
concepts. Five concepts were formed. Three in which the elements were chosen intentionally,
two in which the elements were chosen at random. These concepts were developed further and
sketched on paper. The sketches showed different functions from the morphological matrix.
The following concepts were generated with the morphological matrix:

• Social media - An online collaborative concept focused around a 3d model of the
vehicle. The settings are made in a dialog box, and there is a menu at the bottom of the
screen which shows what step of configuration you are at and which you have completed
(see Figure 15).

• Building blocks - The vehicle in this concept is represented by building blocks that you
can use to create any shape. The blocks are positions by click-dragging symbols, as are
sensors and other objects you place (see Figure 16).

• Point and click - The navigation in this concept is done by clicking around in a model
of the site. For example, when clicking on the sensor, you zoom in on it and can set its
parameters (see Figure 17).

• Layers - A concept where the main view is defined by layers, such as a ”Wheels”-layer,
”Sensor”-layer etc, that can be checked or unchecked to be hidden or shown.

• Reality slider - A concept where the vehicle is represented by a model with a varying
degree of ”reality”, from a schematic sketch to a photo, controlled by a slider. It features
voice commands, and you can set parameters by email.

33

6.3. Morphological matrix

A morphological matrix was used for combining different ideas into entire concepts. It was
done by assigning key attributes to the columns and putting ideas for each of them in the rows
[4]. In this case, the themes of the prior brainstorming sessions were assigned as the attributes
in the columns. The ideas generated by the brainstorming sessions were inputted into the rows.
Since the brainstorming sessions were very free, sometimes the ideas generated fit better into
one of the other themes or even a new one. In these cases, the ideas were moved around, and
some new attributes were assigned. The morphological matrix in its entirety can be seen in
Appendix B.

The elements from the Morphological matrix were combined in different ways to form complete
concepts. Five concepts were formed. Three in which the elements were chosen intentionally,
two in which the elements were chosen at random. These concepts were developed further and
sketched on paper. The sketches showed different functions from the morphological matrix.
The following concepts were generated with the morphological matrix:

• Social media - An online collaborative concept focused around a 3d model of the
vehicle. The settings are made in a dialog box, and there is a menu at the bottom of the
screen which shows what step of configuration you are at and which you have completed
(see Figure 15).

• Building blocks - The vehicle in this concept is represented by building blocks that you
can use to create any shape. The blocks are positions by click-dragging symbols, as are
sensors and other objects you place (see Figure 16).

• Point and click - The navigation in this concept is done by clicking around in a model
of the site. For example, when clicking on the sensor, you zoom in on it and can set its
parameters (see Figure 17).

• Layers - A concept where the main view is defined by layers, such as a ”Wheels”-layer,
”Sensor”-layer etc, that can be checked or unchecked to be hidden or shown.

• Reality slider - A concept where the vehicle is represented by a model with a varying
degree of ”reality”, from a schematic sketch to a photo, controlled by a slider. It features
voice commands, and you can set parameters by email.

33

Figure 15: Generated concept ”Social media”.

Figure 16: Generated concept ”Building blocks”.

34

Figure 17: Generated concept ”Point and click”.

6.4. Pugh matrix

A Pugh matrix, also called a decision matrix, was used in order to rate the different concepts.
When performing this method, a set of criteria is decided as a base for rating. One of the
concepts is chosen as a reference and given a rating of 0 on all of the criteria. The other
concepts are given a rating of +1 or -1 depending on if the compared concept performed
better or worse than the reference on the criteria in question. The concept with the highest
score is the concept most likely to fulfill the user needs [18].

The eight most important guidelines from the user needs list were used as criteria, as well
as one requirement. The concepts that were compared were the two from the Brainwriting
session, Matlab and Tree structure, and the five from the morphological matrix. The KMA
software solution was also included. Building blocks was chosen as reference. The other
concepts were compared to the reference and rated (see Figure 18). The winning concept of
the Pugh matrix was the concept Social media, followed by Tree structure.

35

Figure 17: Generated concept ”Point and click”.

6.4. Pugh matrix

A Pugh matrix, also called a decision matrix, was used in order to rate the different concepts.
When performing this method, a set of criteria is decided as a base for rating. One of the
concepts is chosen as a reference and given a rating of 0 on all of the criteria. The other
concepts are given a rating of +1 or -1 depending on if the compared concept performed
better or worse than the reference on the criteria in question. The concept with the highest
score is the concept most likely to fulfill the user needs [18].

The eight most important guidelines from the user needs list were used as criteria, as well
as one requirement. The concepts that were compared were the two from the Brainwriting
session, Matlab and Tree structure, and the five from the morphological matrix. The KMA
software solution was also included. Building blocks was chosen as reference. The other
concepts were compared to the reference and rated (see Figure 18). The winning concept of
the Pugh matrix was the concept Social media, followed by Tree structure.

35

Building
blocks

Reality
slider

Point
and
click Matlab Layers

Social
media

Tree
structure

KMA
softwares

The most
important
information is
most visible 0 + - + + + + -
Images and
visualizations
are clear and
serve a purpose
to the given
situation

0 + + + + + + +
The user
receives
feedback when
making an input

0 0 - 0 + + 0 -
Allow sharing
and reuse of
configurations 0 + - + - + + +

Allow for
communication
between KMA,
customer and
end user 0 0 - - 0 + - -
The solution
behaves in a
consistent way 0 - - 0 0 0 + -

Allow the user
to divide
vehicles into
different groups 0 0 0 0 0 + 0 +
Ease usage for
beginner users 0 0 0 - - - - -
Allow for
iterative work 0 0 - 0 0 - 0 -
Sum 2 −4 1 1 4 2 −3
Rank 4 2 6 3 3 1 2 5

Figure 18: Pugh matrix

36

7. Prototype and Test

Prototypes were created and tested in several iterations. Research has found that using fewer
users in each test, but doing more iterations, is more beneficial than doing fewer iterations with
more users in every test [12]. Therefore the priority was to do as many iterations as possible,
with 3 to 10 users in every test.

In this chapter, the process of how the concept was developed through iterating between
prototyping and test. The prototypes were evaluated with beginners, experts, and UX experts
through either usability testing or interviews.

7.1. Prototype 1

The concept most successful from the Pugh matrix, ”Social media” was used as a base for a
new prototype created in Figma. However, ideas from other concepts that were rated high were
also included. This first prototype provided an overview of how the program would function,
and explanations of some functions on a more detailed level than the sketches could. The
prototype was constructed with a focus on functionality, rather than on graphic design and
consisted of wire-frames with text in grayscale. This was done intentionally in order to first
and foremost focus on the design of the functionality.

Figure 19: Prototype 1 identity view.

The prototype featured a split left menu with navigation buttons and an object tree with all
elements added to the vehicle (see Figure 19). In the center of the screen was a visual model
of the vehicle, and to the right was a menu with different settings depending on where in the

37

navigation the user was. The concept also featured a ”Library”-view that was opened from
the right side. From this view, the user can open other vehicles previously configured. The
concept also featured a merge-tool, used for copying values from a previously defined vehicle
to the current one (see Figure 20).

Figure 20: Prototype 1 merge view.

Evaluation
The concept was evaluated by interviewing one beginner user, one expert user, and one UX
expert. The concept was shown and used as a basis of discussion to receive feedback.
The following feedback was received:

• The word ”Library” does not convey what that view contains.

• It is not clear how to use the merge functionality.

• The design of the buttons panel might be unsuitable since it makes it difficult to expand
the software if new functions need to be added.

• Some vehicles have motor parameters, this would be useful to add.

• It would be useful to be able to generate a list of components from the software.

7.2. Prototype 2

The second prototype was created based on Prototype 1, with changes made according to the
feedback received, as well as UX and UI principles.

38

navigation the user was. The concept also featured a ”Library”-view that was opened from
the right side. From this view, the user can open other vehicles previously configured. The
concept also featured a merge-tool, used for copying values from a previously defined vehicle
to the current one (see Figure 20).

Figure 20: Prototype 1 merge view.

Evaluation
The concept was evaluated by interviewing one beginner user, one expert user, and one UX
expert. The concept was shown and used as a basis of discussion to receive feedback.
The following feedback was received:

• The word ”Library” does not convey what that view contains.

• It is not clear how to use the merge functionality.

• The design of the buttons panel might be unsuitable since it makes it difficult to expand
the software if new functions need to be added.

• Some vehicles have motor parameters, this would be useful to add.

• It would be useful to be able to generate a list of components from the software.

7.2. Prototype 2

The second prototype was created based on Prototype 1, with changes made according to the
feedback received, as well as UX and UI principles.

38

Figure 21: Prototype 2 safety scanners and fields view.

The left menu is a tree where all configurations that have been added are present, such as
scanners and wheels. The middle view in a vehicle representation model. The right menu
is an accordion menu with all settings present at the same time. This is both a means of
navigation as well as input fields for the different parameters. The ”Library” is renamed the
”Vehicles/Assets” menu and is moved to the bottom of the screen, to utilize the screen better
(see Figure 21). The merge menu is moved to the right side of the screen, with the mergeable
vehicles available from the ”Vehicles/Assets” menu (see Figure 22). Several vehicles can be
merged into the current one simultaneously. The prototype also features a ”History”-view,
where the user can see changes that have previously been made (see Figure 23).

39

Figure 22: Prototype 2 merge view.

Figure 23: Prototype 2 version history view.

40

Figure 22: Prototype 2 merge view.

Figure 23: Prototype 2 version history view.

40

Test
An increment usability test was prepared in order to receive feedback from both beginner users
(3 in total) and an expert user (1 in total) on the design. The users were asked to complete
some tasks within the Figma model, and reflect upon what was particularly difficult or easy.
The test included the following:

1. Navigating the studio view

2. Creating a new vehicle

3. Navigating the vehicle settings menu

4. Setting the size of the vehicle

5. Opening vehicles and assets from the lower bar menu

6. Adding safety scanners and safety fields

7. Viewing and understanding version history

8. Using the merge-function

Most of the tasks were completed quickly by all users. Two of the areas, 5 and 8, were difficult
for most of the users. Task 5, the task of using the bottom menu bar for finding assets and
old vehicles, was difficult to find for the users. Some misunderstood the button ”Assets” for
a subtext to ”Vehicles”. Most users looked first in the top menu to find Assets. Task 8 of
using the merge function also caused some confusion for the users. It was unclear to them
that the empty checkboxes were just that and not some other button or symbol. The word
itself, merge, was also not clear for all users (of which none were native English speakers).

7.3. Prototype 3

After having tested the second prototype, a third prototype was constructed according to
insights from the tests and some changes of concepts that needed testing.
The main insight from the test was that the “library function” was difficult to find, even though
it was constantly located at the lower part of the screen, as depicted in Figure 21. The test
subjects, in general, wanted to locate it via the top menu bar and expected this function to
be more “hidden” than what it in fact was. It was also reasoned that the “library function”
took up much space, and could benefit from being able to hide. Hence this was changed to
Prototype 3 and the “library function” would be accessible both via the top menu bar and via
a clickable tab icon at the bottom of the page (see Figure 24). The function was also renamed
“Project explorer” since it was thought to be a more accurate description of the function rather
than “Library”. Because of the confusion regarding the hyperlinks ”Vehicles” and ”Assets”,
these were removed (see Figure 25).

41

Figure 24: Prototype 3 size and shape settings view.

Figure 25: Prototype 3 version history view.

42

Figure 24: Prototype 3 size and shape settings view.

Figure 25: Prototype 3 version history view.

42

Another insight from the test was that it could be difficult for a user to not be able to see
the shape of the vehicle that they were creating before adding both length and width in the
software. In Prototype 2, if the user started by adding the width, this would have been repre-
sented by a horizontal line, something that some test subjects found difficult to interpret. This
was solved by letting the user choose the “shape” of the vehicle first, before adding width and
length (see Figure 24). This would allow the user to have a representation of the body of the
vehicle right from the start.

Further, it was realized that Prototype 2 was not very scalable with the accordion menu
as the main navigation element. With a large number of settings, this choice of navigation
method would require a lot of scrolling for the user and perhaps not be effective. Hence, the
structure of the interface was changed entirely by removing the tree structure and introducing
a new way to navigate. The navigation method was designed with an accordion menu only
for the setting headlines, such as ”Vehicle size”, ”Wheels” etc, whereas the settings them-
selves in a separate menu to the right. The placements, right next to the main menu, were
chosen to indicate that the two parts belonged together. The two menus were connected by a
color indication showing in what part of the menu that the user was at all times (see Figure 25).

A change was also made to the ”Version history”. It was decided that the software should
feature autosaving to prevent loss of work for the user. Inspired by Google docs, a hyperlink
text was added to the top menu, saying when the last edit was made (see Figure 25). To cater
to users expecting a ”Save”-button, the choice to ”Save to version history” was added to the
top menu, under File.

Figure 26: Prototype 3 merge view.

43

Lastly, the merge function was redesigned to better understand what was part of the original
vehicle, and what was the merge window. The button was also redesigned to better indicate
that it was a CTA. The checkboxes were also made more clear with a stroke added around
them. Inspiration was taken from merge functions in some programming software that often
features this kind of function and hence a black arrow icon was added to indicate what was
being merged, resembling how the interface looks like in programming software such as An-
droid Studio (see Figure 26).

Test
To test the redesigned Prototype 3, a test was constructed. The test was conducted with five
new test subjects, all beginner users. The subjects were asked to complete some tasks in the
Figma model, much like the previous tests. The tasks included:

1. Navigating the studio view

2. Creating a new vehicle

3. Navigating the vehicle settings menu

4. Setting shape and size of the vehicle

5. Finding and opening a vehicle from the project explorer function, and testing whether
the name project explorer was descriptive.

6. Finding the version history view

7. Finding and testing the new merge function

Although most of the tasks were completed without problems. Some areas were discovered
to be difficult for the users. When creating a new vehicle, some users had difficulties under-
standing the “add new” option when choosing wheelbase. And most users had difficulties
finding the merge tool and project explorer without getting a thorough description of what
these functions were. One user expressed that this could have to do with him not expecting
these functions to exist at all and that this caused him not to look for a specific function to
perform the merge or project explorer tasks, but rather trying to solve the tasks in another way.

The words merge and project explorer was still difficult for the users to understand, but the
functions in themselves worked mostly well. The users understood how to use them, one user
expressed that the merge function reminded him of the merge functions in programming soft-
ware he had used and that this was a positive thing.

However, an issue with the merge function was discovered: The CTA button with the merge
function was placed at the wrong location since the button needs to be visible even if the user
emerges from multiple parts of the menu at the same time.

7.4. Prototype 4

The most dramatic change made to Prototype 4 from Prototype 3 was that color was added
to Prototype 4. The colors selected were added from a specific pallet for Kollmorgen and were

44

Lastly, the merge function was redesigned to better understand what was part of the original
vehicle, and what was the merge window. The button was also redesigned to better indicate
that it was a CTA. The checkboxes were also made more clear with a stroke added around
them. Inspiration was taken from merge functions in some programming software that often
features this kind of function and hence a black arrow icon was added to indicate what was
being merged, resembling how the interface looks like in programming software such as An-
droid Studio (see Figure 26).

Test
To test the redesigned Prototype 3, a test was constructed. The test was conducted with five
new test subjects, all beginner users. The subjects were asked to complete some tasks in the
Figma model, much like the previous tests. The tasks included:

1. Navigating the studio view

2. Creating a new vehicle

3. Navigating the vehicle settings menu

4. Setting shape and size of the vehicle

5. Finding and opening a vehicle from the project explorer function, and testing whether
the name project explorer was descriptive.

6. Finding the version history view

7. Finding and testing the new merge function

Although most of the tasks were completed without problems. Some areas were discovered
to be difficult for the users. When creating a new vehicle, some users had difficulties under-
standing the “add new” option when choosing wheelbase. And most users had difficulties
finding the merge tool and project explorer without getting a thorough description of what
these functions were. One user expressed that this could have to do with him not expecting
these functions to exist at all and that this caused him not to look for a specific function to
perform the merge or project explorer tasks, but rather trying to solve the tasks in another way.

The words merge and project explorer was still difficult for the users to understand, but the
functions in themselves worked mostly well. The users understood how to use them, one user
expressed that the merge function reminded him of the merge functions in programming soft-
ware he had used and that this was a positive thing.

However, an issue with the merge function was discovered: The CTA button with the merge
function was placed at the wrong location since the button needs to be visible even if the user
emerges from multiple parts of the menu at the same time.

7.4. Prototype 4

The most dramatic change made to Prototype 4 from Prototype 3 was that color was added
to Prototype 4. The colors selected were added from a specific pallet for Kollmorgen and were

44

not decided in this project. Some purely aesthetic details, such as rounded corners and drop
shadows were also added to give the prototype a more finished look.

Figure 27: Prototype 4 front wheel settings view.

The overall structure with the headline menu to the furthest left and the settings in the area
next to it was kept. However, to let the users navigate quickly to elements that they had
configured in the program, the elements also showed up in the menu. For example, if a user
had chosen a certain wheel configuration, the wheels would show up in the menu under a sub-
category called “existing wheels” (see Figure 27). It was thought to be a convenient way to
structure the configured parts for the user, but there were also some concerns about whether
the user would find it confusing that the menu would work as both a menu and somewhat as
the tree structure formerly had done.

To make the project explorer more prominent, the CTA button in closed mode was made
bigger (see Figure 27). And the ”assets” function, that previously let the user drag and drop
certain elements such as wheel configurations into an active drawing was completely excluded.
It was reasoned that the merge function would allow the user to do this if the user wanted.
The project explorer remained hidden when opening the program, and was able to be found in
the top menu under “view”.

Instead of the option “Add new” for adding a new type of custom configuration, the function
was called “create custom” (see Figure 28). This better signaled what it was and would not
be mistaken for an “add” button.

45

Figure 28: Prototype 4 antenna configuration view.

Figure 29: Prototype 4 merge view.

46

Figure 28: Prototype 4 antenna configuration view.

Figure 29: Prototype 4 merge view.

46

The CTA button in the merge view was moved to the menu since it better showed that the
button would merge everything marked rather than the marked configurations of that specific
page (see Figure 29). Merge and project explorer were still called that for Prototype 4.

Test
The tests of Prototype 4 were similar to previously conducted tests. The test was conducted
with five people in total, where two were Kollmorgen employees and the remaining three peo-
ple with no connection to Kollmorgen, but with a technical background. All the test subjects
could be considered beginner users. The test consisted of several tasks that the users were
asked to perform and included:

1. Navigating the studio view and finding the vehicle configuration program.

2. Creating a new vehicle, starting with vehicle information and physical attributes

3. Navigating the vehicle settings menu, including going back to configure multiple elements
and vehicles

4. Setting shape and size of the vehicle as well as configure scanners, safety fields, and
safety cases

5. Finding and opening a vehicle from the project explorer function, and closing the function

6. Finding the version history view

7. Finding and testing the merge function

The users were after the completion of the test of the prototype asked to discuss what emo-
tions they experienced throughout the usage using the Geneva emotion wheel as a means for
discussion and rating the intensity of the emotion.

The test subjects in general were able to complete the tasks with little struggle. They quickly
learned how the program functioned. The feared issue with confusing the multiple-use prop-
erties of the right menu seemed to be no problems for any of the test subjects which was
a relief. Most of the test subjects were prone to not use the illustrative representation as a
means for navigation within the program, which further strengthened our belief that it was
good to include to be able to navigate to already configured components via the menu. The
illustrative representation was used mainly for receiving feedback about the inputs given to the
software.

It was made clear that the history view should include in-text what was changed, and not
only by marking the changed parameter. None of the test subjects were able to point out what
had been changed when asked a question about the version history function. It was also made
clear that the user needs a clearer type of feedback when actively pressing save in some of the
configurations, and not only display this by adding the saved element in the menu.

Most of the test subjects found the prototype harder to use in the beginning of the test
than in the end of the test. A more clear explanation when first opening the program should
be included to redeem this. But partly could also be explained that the users got more used
to the prototype as the test proceeded. The tasks were in many ways repetitive since the

47

program works similarly throughout the usage.

The test subjects in general did not expect the function of autosave to be included.

Success rate
To evaluate the improvement from the existing KMA software to our prototype, a success rate
test was performed. At the beginning of the project, the test was constructed and tested with
beginner users for the existing Kollmorgen software. When Prototype 4 was finished, the same
test was performed for this. Some tweaking of the questions had to be done, but in essence,
they tested similar things and were of similar complexity.

The test was done by defining 17 different tasks for the users to complete in the respec-
tive software. The requirements for partial success and total success were defined beforehand
(see Appendix A). The performance was scored with 1 point for total success, 0,5 points for
partial success, and 0 for failure. The mean score for each task was calculated by taking the
mean average of all the participants’ scores.

In 12 of the 17 tasks, the mean score was higher in Prototype 4 than Layout Designer (LD)
(see Figure 30). The most notable improvements were made in the areas of visualizations
(tasks 3 and 7), safety fields (tasks 13 and 14), and safety cases (tasks 15 to 17). In one of
the tasks, task 1, the score was notably lower for Prototype 4 than for Layout Designer.

48

program works similarly throughout the usage.

The test subjects in general did not expect the function of autosave to be included.

Success rate
To evaluate the improvement from the existing KMA software to our prototype, a success rate
test was performed. At the beginning of the project, the test was constructed and tested with
beginner users for the existing Kollmorgen software. When Prototype 4 was finished, the same
test was performed for this. Some tweaking of the questions had to be done, but in essence,
they tested similar things and were of similar complexity.

The test was done by defining 17 different tasks for the users to complete in the respec-
tive software. The requirements for partial success and total success were defined beforehand
(see Appendix A). The performance was scored with 1 point for total success, 0,5 points for
partial success, and 0 for failure. The mean score for each task was calculated by taking the
mean average of all the participants’ scores.

In 12 of the 17 tasks, the mean score was higher in Prototype 4 than Layout Designer (LD)
(see Figure 30). The most notable improvements were made in the areas of visualizations
(tasks 3 and 7), safety fields (tasks 13 and 14), and safety cases (tasks 15 to 17). In one of
the tasks, task 1, the score was notably lower for Prototype 4 than for Layout Designer.

48

Task nr Task description
Mean score
(LD)

Mean score
 (prototype 4)

1 Create a steer drive vehicle 1 0,4

2 Create another steer drive vehicle 0,83 0,8
3 Interpret vehicle and wheels visualization 0,75 1
4 Create a diff drive vehicle 0,83 0,9
5 Open a vehicle from another project 0,25 0,5
6 Add an antenna 1 1
7 Interpret antenna visualization 0,1 1
8 Move the antenna 0,9 1
9 Delete the antenna 1 1

10 Navigate to safety sensors 0,92 1
11 Add a sensor 0,75 1
12 Move the sensor 1 0,9
13 Find where you can add a safety field 0,75 1
14 Change the size of the safety field 0,33 0,8
15 Change the safety case max velocity 0,92 1
16 Set the PLC bit 3 to "ON" 0,08 1
17 Activate the safety field 0,4 1

Overall mean score 0,69 0,90

Figure 30: Success rate result

49

Emotional response
The prototype was also compared to the KMA software in terms of emotional response. To do
this, a Geneva emotion wheel was utilized when asking participants to rate to what intensity
they felt the different emotions.

Figure 31: Geneva emotion wheel result

As can be seen from Figure 31, the users reported experiencing lower levels of negatively
associated emotions during the usability testing of Prototype 4, compared to the KMA software.
They also experienced higher levels of positively related emotions. Some of the comments were:

• ”It felt nice when it behaved like I wanted it to”

• ”You feel content when you see the visuals”

• ”I felt relieved when I understood the system”

• ”I was a bit nervous since this is all new. But it was easier when it turned out to not be
any problems.”

Feedback from expert users (application engineers)
To get feedback from expert users before the final design was constructed, the same usability
test as the one conducted with beginner users for Prototype 4, was conducted together with

50

Emotional response
The prototype was also compared to the KMA software in terms of emotional response. To do
this, a Geneva emotion wheel was utilized when asking participants to rate to what intensity
they felt the different emotions.

Figure 31: Geneva emotion wheel result

As can be seen from Figure 31, the users reported experiencing lower levels of negatively
associated emotions during the usability testing of Prototype 4, compared to the KMA software.
They also experienced higher levels of positively related emotions. Some of the comments were:

• ”It felt nice when it behaved like I wanted it to”

• ”You feel content when you see the visuals”

• ”I felt relieved when I understood the system”

• ”I was a bit nervous since this is all new. But it was easier when it turned out to not be
any problems.”

Feedback from expert users (application engineers)
To get feedback from expert users before the final design was constructed, the same usability
test as the one conducted with beginner users for Prototype 4, was conducted together with

50

three expert user (application engineers). However, the test was used more as means for dis-
cussion than testing the usability than for the beginner users.

The expert users had overall less trouble than the beginner users finding different functions
in the program, likely because they where more in general familiar with the terminology used
as well as the underlying theory and practice of AGV systems. Generally the solution was
received well and much of the feedback regarded technical details, the major takeaways from
these sessions were:

1. The image of the vehicle representation must be rotated so that the direction of travel
was along the X-axis according to the current standards

2. Have all elements emanate from the reference point, and not from a separate coordinate
system

3. Grouping the functions ”Safety Sensors”, ”Safety fields” and ”Safety Cases” under one
headline ”Safety” to decrease over cluttering the menu

4. Restructuring the Menu so that the headline ”Navigation” was before the headline
”Safety” since this better follows the workflow of today

5. Exclude the subheadline ”existing”, such as ”existing wheels” and just have the added
elements directly under the headline since the sub-headline was considered confusing

6. Splitting up some of the parameters under ”Wheel” and place them under ”Drive”

7. The program must support being able to import safety sensors and antennas

8. Include ability to write a short description of the vehicle under ”vehicle information”

9. Short descriptions of different functionalities while hovering as well as some considera-
tions about specific names of functions

The expert users also stressed the importance of designing the solution in such a way that
it would be easy to add functionality later, since new functions are likely to be developed, or
other functionalities moved into this part of the software system. Furthermore, the users also
brought up some functions from the current software that was not included in the prototype,
that they would like to see included in the final software.

Feedback from in-house UX experts
The evaluation of Prototype 4 also included two feedback sessions with in-house UX experts
at KMA. These users also got to perform the usability test on Prototype 4, but as in the case
of the expert users, the test acted more as means for discussion for the UX experts. The UX
experts were less successful at completing the tasks than the expert users, which was expected
since their knowledge about the software, terminology, and experience in using the software
was lower. The feedback mainly consisted of views on the UI:

1. Exclude the element tree in the vehicle representation window since the menu already
covered this functionality.

51

2. Redesigning the project explorer so that it opens up from the tab instead of always being
present in the UI

3. Grouping the functions ”Safety Sensors”, ”Safety fields” and ”Safety Cases” under one
headline ”Safety”

4. Reconsider the word ”existent”

5. Merge function could be replaced by copy /paste

6. More clear names on functions

7. Splitting up some of the parameters under ”Wheel” and place them under ”Drive”

8. Clearer indication of what element is being configured in the vehicle representation
window

9. Left align all text

10. Chunk text in areas with much information, meaning to present information in pieces
rather than in one large sequence

One of the UX experts also expressed an urge to save after changing a parameter in the
configuration window, even after knowing that the program was thought to use autosave.
This could show that the prototype had some issues regarding feedback on input parameters.
It was also expressed that the ”add” buttons that were used to save some of the settings, such
as for ”safety cases” and ”safety fields”.

52

2. Redesigning the project explorer so that it opens up from the tab instead of always being
present in the UI

3. Grouping the functions ”Safety Sensors”, ”Safety fields” and ”Safety Cases” under one
headline ”Safety”

4. Reconsider the word ”existent”

5. Merge function could be replaced by copy /paste

6. More clear names on functions

7. Splitting up some of the parameters under ”Wheel” and place them under ”Drive”

8. Clearer indication of what element is being configured in the vehicle representation
window

9. Left align all text

10. Chunk text in areas with much information, meaning to present information in pieces
rather than in one large sequence

One of the UX experts also expressed an urge to save after changing a parameter in the
configuration window, even after knowing that the program was thought to use autosave.
This could show that the prototype had some issues regarding feedback on input parameters.
It was also expressed that the ”add” buttons that were used to save some of the settings, such
as for ”safety cases” and ”safety fields”.

52

8. Deliverables

The result of the project is a set of guidelines for what to consider when designing a vehicle
configuration software, and a proposed design for a vehicle configuration software for the KMA
system. Both are based on the user needs found through the studies of the project.

8.1. Design guidelines

From the user research made, the following guidelines were created. In addition to these, it
was found that internal consistency and feedback were important needs to consider. However,
since they are valid in general for all kinds of software, they will not be further discussed.

Include all static settings - The main problem of the Kollmorgen software is that there
exist multiple vehicle configurations in different software. This is time-consuming, creates
confusion, and is a potential source of error. All static settings, settings that do not change
during run time, should be located in the same software. This also gives an overview of the
vehicle and how different settings relate to each other.

Make the solution scalable and allow for the number of parameters to grow as
the technology evolves - Functionality is constantly being added to an AGV system, and
the software tools have to match that. The more difficult it is to add additional settings and
new features to the software, the faster it will be unable to fulfill the user needs. The new
software should be scalable so that it is easy to build upon it. For example, the menus should
be organized in such a way that it is easy to add new items.

Avoid exports and imports - Each configuration file should be accessible for all software
that needs it, without the need for importing a local copy of it. One of the problems with the
Kollmorgen software is the excessive need for importing and exporting across software. This
is time-consuming, frustrating for the user and increases the risk of errors.

Having only one file that other software and/or users can access by reference also makes
the version handling better. This makes it possible to track changes.

Allow for copying settings between vehicles - When configuring a new vehicle, users
rarely start from scratch. They usually base the new vehicle on an old one, and apply changes,
or make a new one but copy parts from other vehicles. To support the need for using parts
of different vehicles, it should be easy to copy both individual settings and groups of settings
from one vehicle to the other.

Place settings in normal use order, but allow free navigation - To help beginner users,
the settings should be placed in an order so that you can follow them step-by-step. This would
reduce the need for a tutorial, something that can make the software seem more difficult to
use than it actually is [6].

However, it should be possible to navigate freely between the settings. Since there are many
different ways the users interact with the software, there should be flexibility in the usage. For
the advanced user, it should be possible to skip a setting or go back and change it later.

53

Limit the number of visible settings - With complex software with many settings, there is
a risk that the user will experience cognitive overload. To reduce this risk, the design should be
minimalist and not contain irrelevant information [1]. For example, settings that are normally
not needed can be hidden under ”advanced settings”. These could be deprecated settings that
only apply to older vehicles, or settings that can be automatically set but in some cases need
to be customized.

Use visualizations for feedback - Visualizations help the user understand what parame-
ter is what, especially when it comes to physical dimensions. Visualizations should be updated
when an input is made to better match reality and to offer feedback when a change has been
made.

Explain difficult concepts - When it comes to complex, highly technical systems like this
one, there may be many parameters that are difficult to understand. The primary goal should
be to use names that are self-explanatory. These can be accompanied by visualizations. In
those cases where it is impossible to sufficiently explain by just the names or visualizations,
an explanatory text should be offered to avoid confusion. A problem with the Kollmorgen
software is that some variables are unknown even to expert users, and some can have different
meaning depending on who you ask.

8.2. Final design proposal

The final design proposal is a desktop software concept named Vehicle Configuration. The
design is based on Prototype 4, described in section 7.4.

Overall layout
The layout of the main view is structured in three parts: a left-side menu for navigation, a
middle menu with all parameters, and a visualization of the vehicle (see Figure 33). The
left-side menu is structured in the same order that users would normally access the settings, in
line with the usability heuristic of Match between system and the real world, described in
section 3.4. However, the user is free to navigate the software as they choose and is not forced
into a certain workflow, following the guideline Place settings in normal use order, but
allow free navigation described in the previous section. The accordion menu allows for more
headers being included when the need arises, in line with the guideline Make the solution
scalable and allow for the number of parameters to grow as the technology evolves.

When the user makes a change to the parameters, the vehicle representation is updated ac-
cordingly. Having this form of visual feedback for a user, and that in a simplistic way represents
the vehicle and its components, satisfies one of the major needs that users expressed: getting
feedback that input parameters are correct and that the final vehicle ends up as the user had
imagined. This is in line with the usability heuristic Visibility of system status, as well as
the guideline Use visualizations for feedback.

Project explorer
When first navigating to the start screen, the user is met with the Project Explorer (see
Figure 32). Here the user is given a choice to open a previous project or create a new one.
The two choices are differentiated by colour and placement and a plus sign. There is also a

54

Limit the number of visible settings - With complex software with many settings, there is
a risk that the user will experience cognitive overload. To reduce this risk, the design should be
minimalist and not contain irrelevant information [1]. For example, settings that are normally
not needed can be hidden under ”advanced settings”. These could be deprecated settings that
only apply to older vehicles, or settings that can be automatically set but in some cases need
to be customized.

Use visualizations for feedback - Visualizations help the user understand what parame-
ter is what, especially when it comes to physical dimensions. Visualizations should be updated
when an input is made to better match reality and to offer feedback when a change has been
made.

Explain difficult concepts - When it comes to complex, highly technical systems like this
one, there may be many parameters that are difficult to understand. The primary goal should
be to use names that are self-explanatory. These can be accompanied by visualizations. In
those cases where it is impossible to sufficiently explain by just the names or visualizations,
an explanatory text should be offered to avoid confusion. A problem with the Kollmorgen
software is that some variables are unknown even to expert users, and some can have different
meaning depending on who you ask.

8.2. Final design proposal

The final design proposal is a desktop software concept named Vehicle Configuration. The
design is based on Prototype 4, described in section 7.4.

Overall layout
The layout of the main view is structured in three parts: a left-side menu for navigation, a
middle menu with all parameters, and a visualization of the vehicle (see Figure 33). The
left-side menu is structured in the same order that users would normally access the settings, in
line with the usability heuristic of Match between system and the real world, described in
section 3.4. However, the user is free to navigate the software as they choose and is not forced
into a certain workflow, following the guideline Place settings in normal use order, but
allow free navigation described in the previous section. The accordion menu allows for more
headers being included when the need arises, in line with the guideline Make the solution
scalable and allow for the number of parameters to grow as the technology evolves.

When the user makes a change to the parameters, the vehicle representation is updated ac-
cordingly. Having this form of visual feedback for a user, and that in a simplistic way represents
the vehicle and its components, satisfies one of the major needs that users expressed: getting
feedback that input parameters are correct and that the final vehicle ends up as the user had
imagined. This is in line with the usability heuristic Visibility of system status, as well as
the guideline Use visualizations for feedback.

Project explorer
When first navigating to the start screen, the user is met with the Project Explorer (see
Figure 32). Here the user is given a choice to open a previous project or create a new one.
The two choices are differentiated by colour and placement and a plus sign. There is also a

54

search bar, where the user can search for projects and vehicles. In this way, the user is greeted
with a choice and not with an empty start screen. The user is also able to open new tabs
directly, where the user is met by the same interface as in the beginning for consistency. This
structure was inspired by browsers such as Firefox and Google Chrome, where suggestions for
recently opened websites are shown as cards on a dashboard. This makes the design consistent
with other software the user might use, in line with the usability heuristic Consistency and
standards.

By introducing this type of working, the user is able to quickly locate old projects, and also
have multiple vehicles open in tabs at the same time. Since users often prefer using old projects
for guidance and using multiple templates or vehicles, it was important to create a structured
way for the user to keep track of old projects, and let the user interact with multiple vehicles
at the same time.

Physical attributes
When further navigating in the software, to Physical attributes, the user can make multiple
choices (see Figure 33). The first parameter is “physical attribute type”. This is a new function
that is thought to replace “carrier type” of the current KMA software. During the Empathize
phase, it was discovered that there existed a need for being able to categorize vehicles based
on physical attributes other than those that are configured. This is why this function was kept
but with modification. ”Carrier type” has been used in two different ways. First, it has been
used to define different behaviours at a site, and in this case, the carrier type of a vehicle
can be changed during run time. Secondly, it has been used to categorize vehicles based on
physical attributes such as height, which can affect the routes the vehicle can take at a site. It
is this second function ”Physical attribute type” is thought to replace, in line with the guideline
Include all static settings. The function of dividing vehicles into behavioural characteristics
is recommended to exist within another software dealing with the dynamic characteristics of
the vehicle and the site, such as Layout Designer.

The shape of the vehicle is set in this view, as is the size. The reference point is also set
in this view. It is a point on the vehicle, usually in the middle of a wheel pair, from which all
other measurements emanate.

55

Figure 32: The Project Explorer

Figure 33: Physical attributes view

56

Figure 32: The Project Explorer

Figure 33: Physical attributes view

56

Wheel configuration
The user sets up the wheel configuration by choosing one of the presets or creating their own
configuration (see Figure 34). The user receives feedback of their choice by the chosen preset
being marked in blue, and that the wheels appear on the vehicle representation. This type of
feedback was also designed with the user need of receiving feedback on input parameters and
selected choices.

Figure 34: Wheel configuration view

When the user has chosen a configuration, the associated wheels can be found in the menu
to the left (see Figure 35). When clicking on the headlines in the menu, or on the wheels in
the image, the options for that wheel are shown. The wheel that the user is changing is also
marked in blue, so that the user can quickly get an overview of the vehicle, and what part the
parameters belong to.

Furthermore, the functionality of moving one wheel at the same time as another wheel (in-
terlocking the wheel with another wheel) was also implemented under the wheel options (see
Figure 36). The parameters that are related to the drives of the wheels are found under the
headline ”Drive”. There each drive is connected to a certain wheel.

57

Figure 35: Settings for the front wheel

Figure 36: Settings for the right wheel

58

Figure 35: Settings for the front wheel

Figure 36: Settings for the right wheel

58

Navigation
When choosing a navigation method, the user gets to choose from different options by inter-
acting with checkboxes (see Figure 37). The checkboxes are used in favour of, for example,
radio buttons since the navigation can be a combination of different technologies, and radio
buttons would signal that the user can only choose one of the methods. In other parts of the
software, radio buttons were more suitable and were implemented. By choosing suitable CTA
representations, the software becomes more clear and easier to understand.

When the user has chosen a navigation method, the options for that navigation method
appear together with the option to “Add new” under “Navigation” in the left side menu. In
the example in Figure 38, only the options for configuring an antenna is shown and not other
options for other navigation methods (see Figure 38). This is a way to only show relevant
information to the user, in line with the guideline Limit the number of visible settings.
Furthermore, if the user clicks on “Advanced settings”, the physical length and width of the
antenna can be configured. However, these are parameters that are rarely changed since they
are set automatically depending on which model is chosen. Therefore these settings are not
shown to the user by default. By only presenting the information that is useful to the user
at given moments, it reduces the information that is presented to the user and increases the
clarity of the software.

Figure 37: Navigation view.

59

Figure 38: Antenna configuration view.

Safety
The safety system consists of safety sensors, safety fields and safety cases. Sensors are config-
ured in the same way as antennas with model and position (see Figure 38). The sensors have
safety fields associated with them; these are configured under safety fields. They are added in
the same way as antennas and sensors, and then accessible from the left menu. The safety
fields are associated with a certain sensor, which acts as its origin (see Figure 39). The size
of the field is set, as is the offset relative to the sensor. The safety cases are also added in the
same way. They are configured by what velocity and angle they are valid for, what PLC bits
are active, and what safety fields the case will use (see Figure 40). The PLC bits are set to
active or inactive, as well as on or off (1 or 0). Toggle buttons together with radio buttons
are used for this purpose. The user can either click the toggle button first to activate the bit,
or click the ”on” or ”off” button directly. This will activate the bit, and at the same time,
set whether it is on or off. It is also set what safety fields of what sensors should be active
for that case. Several fields can be added. When one field is chosen and added, it appears
in a list. It then becomes possible to add another one. The active fields are visualized in the
vehicle representation in a similar fashion as when configuring them (see Figure 39).

60

Figure 38: Antenna configuration view.

Safety
The safety system consists of safety sensors, safety fields and safety cases. Sensors are config-
ured in the same way as antennas with model and position (see Figure 38). The sensors have
safety fields associated with them; these are configured under safety fields. They are added in
the same way as antennas and sensors, and then accessible from the left menu. The safety
fields are associated with a certain sensor, which acts as its origin (see Figure 39). The size
of the field is set, as is the offset relative to the sensor. The safety cases are also added in the
same way. They are configured by what velocity and angle they are valid for, what PLC bits
are active, and what safety fields the case will use (see Figure 40). The PLC bits are set to
active or inactive, as well as on or off (1 or 0). Toggle buttons together with radio buttons
are used for this purpose. The user can either click the toggle button first to activate the bit,
or click the ”on” or ”off” button directly. This will activate the bit, and at the same time,
set whether it is on or off. It is also set what safety fields of what sensors should be active
for that case. Several fields can be added. When one field is chosen and added, it appears
in a list. It then becomes possible to add another one. The active fields are visualized in the
vehicle representation in a similar fashion as when configuring them (see Figure 39).

60

Figure 39: Safety field configuration view.

Figure 40: Safety case configuration view.

61

Merge
A user insight that was found early on was that most users start with an old vehicle configuration
and make changes to it, or copy settings from it, when making a new configuration. This is
what led to the guideline Allow for copying settings between vehicles. This is what the
merge function does. The user navigates to it via the top menu; under ”Tools”, there is a
”Merge” function. They then choose what vehicle they want to copy parts from by a project
explorer. They then check the boxes of everything they want to copy. They can check each
parameter separately or check the headlines to include everything under that headline. To
merge the selected parameters into the vehicle configuration, they click the Merge-button (see
Figure 41).

Figure 41: Merge view.

62

Merge
A user insight that was found early on was that most users start with an old vehicle configuration
and make changes to it, or copy settings from it, when making a new configuration. This is
what led to the guideline Allow for copying settings between vehicles. This is what the
merge function does. The user navigates to it via the top menu; under ”Tools”, there is a
”Merge” function. They then choose what vehicle they want to copy parts from by a project
explorer. They then check the boxes of everything they want to copy. They can check each
parameter separately or check the headlines to include everything under that headline. To
merge the selected parameters into the vehicle configuration, they click the Merge-button (see
Figure 41).

Figure 41: Merge view.

62

Version history
Using a version history functionality enables users to track changes, which is helpful when
troubleshooting an issue. It also allows them to see who made a certain change, so they know
who to ask for advice on that topic. It is also helpful to be able to go back to an earlier version
if a mistake has been made in the current one. The version history function includes dates, the
possibility to name different version, and shows the user who made that change (see Figure
42). To enable version history, the software is recommended to exist within a larger software
universe, where other software and users access the configuration file by reference. This would
also enable the guideline Avoid exports and imports.

Figure 42: Version history view.

Changes made from Prototype 4
The final design was based on Prototype 4. Most of the functionality was kept, as well as the
layout and colouring, but some changes were made. One of the biggest changes was that of
the Project Explorer. Since the previous solution to opening a project explorer at the bottom
of the screen had not been intuitive for most users, the concept was reworked so that the
project explorer is opened when opening the software or a new tab.

Another thing that changes when compared to Prototype 4 is where the reference point is
set. After feedback from expert users in Prototype 4, it was made clear that it is convenient
for expert users to keep all measurements emanating from the reference point. In Prototype
4, most measurements emanated from a coordinate system with the origin in the center back
of the vehicle. Since the reference point hence gets a more central role, it was crucial that it
was set earlier in the workflow.

63

Furthermore, the vehicle has also been rotated so that the direction of travel is along the
X-axis. This choice derives directly from feedback from expert users on Prototype 4, where
the users said that it was crucial to maintain the orientation so that the direction of travel was
along the X-axis due to the fact that users are accustomed to this and that the other KMA
software relies on the vehicle being oriented this way.

A new menu item, ”Drive”, has been added. Since some wheels have multiple drives, and
some have none, it was reasoned it made sense to make it separate. As a result of this, the
number of parameters in the settings screen for an individual wheel has been reduced since
many of them have been moved to the corresponding drive settings screen.

The merge function (see Figure 41) was kept mainly the same as before since it had got-
ten good feedback from both experts and beginners. The checkboxes were moved from the
right side of the options since it was thought to be more clear. A “check all” box next to the
headline was also introduced, as well as an arrow icon on the “merge button” for the ability
to merge whole “parts” of a vehicle.

64

Furthermore, the vehicle has also been rotated so that the direction of travel is along the
X-axis. This choice derives directly from feedback from expert users on Prototype 4, where
the users said that it was crucial to maintain the orientation so that the direction of travel was
along the X-axis due to the fact that users are accustomed to this and that the other KMA
software relies on the vehicle being oriented this way.

A new menu item, ”Drive”, has been added. Since some wheels have multiple drives, and
some have none, it was reasoned it made sense to make it separate. As a result of this, the
number of parameters in the settings screen for an individual wheel has been reduced since
many of them have been moved to the corresponding drive settings screen.

The merge function (see Figure 41) was kept mainly the same as before since it had got-
ten good feedback from both experts and beginners. The checkboxes were moved from the
right side of the options since it was thought to be more clear. A “check all” box next to the
headline was also introduced, as well as an arrow icon on the “merge button” for the ability
to merge whole “parts” of a vehicle.

64

9. Discussion

Generally, the process and methods used were successful and worked well for this project. The
combination of using beginner users for usability tests, but reconnecting with expert users
allowed using the expert users’ knowledge in the most efficient way possible, but still unveiling
some of the more obvious usability flaws of the old software. Some parts of the process and
methods, result and future work, as well as a social sustainability aspect is worth discussing
more and are mentioned in the following chapter.

9.1. Process and methods

9.1.1. Transcription as a part of qualitative studies

Early in the project, it was decided that all interviews with expert users should be transcribed
mainly to be able to use citations from the transcriptions in the KJ analysis during the “define
phase”. Since it was thought that much of the design decisions were going to be made on the
qualitative data found in the interviews with the expert users, the goal was to document the
data as well as possible. Even though transcribing was time-consuming, many hours were in-
vested into the transcriptions, in hindsight, it can be concluded that the time was well invested.

The transcripts are likely to have kept the research rather unbiased and held the researchers
back from interpreting the answers during the interview while taking notes. It kept the research
accurate and true to what the users said. Transcribing (as well as the video recordings of the
expert users using the software) also helped us understand the more complex technical details
of the software and usage, and it was helpful to have the transcription to find information.
During the actual act of transcription, it was also possible to find some details that neither
one of us had picked up.

9.1.2. Geneva emotion wheel

The decision of using the Geneva emotion wheel (GEW) was based on the wish to broader the
perspective from the usage of the software than mere usability. Using an emotional evaluation
method at the end of a usability test did surprise some of the users, and some users were
initially skeptical about the method.

Something we noticed was that the way the participants interpreted the scale was very differ-
ent. Some of the participants expressed the value 4 as “rather high” and others considered
this value to be a “low value”. Hence, the quantitative results of the method might not be
accurate as in being able to tell the reader that a certain software evoked a certain feeling to
a certain degree. However, it does provide the reader with some more general insights such as
”The software generally evoked more positive than negative emotions”.

However, since the participants knew that they were being tested on a concept that the re-
searchers had developed, and were asked to evaluate the emotional response by the researchers,
it might have skewed the results in favor of the final design concept. The participant might
have, even though being asked to judge fairly based on their personal experience, given higher
ratings on the final concept than they felt. This either to please the researchers or that they
knew that the software was new and they found it interesting to test something they knew few
others had tested.

65

The main benefit of using the GEW after a usability test was that it was an effective way
to get users to reflect upon the usage. Users would talk about specific situations during the
test and would say that they did especially dislike or like that part, and the model did provide
some useful qualitative data that could be used in a KJ analysis. It was also an important
insight that a user could have performed well according to the success criteria set up for the
success rate metrics, but still reported feeling insecure when asked to discuss the usage of
the software afterward. For future usage of this method, we would therefore recommend re-
searchers to focus even more on the discussion around the emotions when using GEW and to
set aside time for more discussion than on the rating of the emotions.

9.1.3. Remote user studies

Due to the ongoing Covid-19 pandemic, all the user studies were performed remotely. Both
interviews and user tests were performed via Microsoft teams or Zoom and the participants
were asked to share their screens. The remote user studies did not impose any issues. We
believe that especially for working professionals, it is a lot easier to accept an invitation to a
remote video meeting than it is to find time for a physical interview. And users were also able
to accept meeting invitations on shorter notice when asked to review parts of the concept for
instance.

For the tests performed with the beginner users, the fact that the tests were performed re-
motely might have also in fact had a direct positive result. The participants were able to sit
in the comfort of their own homes and might have not felt as “observed” as in a physical test
where the facilitator sits in the same room. It could have benefited users during the tests.
However, while performing usability tests remotely clearly was no obstacle in this project (it
might even have been beneficial) it is also important to remember that the reason why it was
so easy to perform the tests remotely was that the project revolved around a graphical inter-
face. Had the product developed been a physical object, it might have caused more trouble
than benefit to performing remote usability testing.

9.1.4. Product development mindset

In classic product development, there is an emphasis on gathering information at the beginning
of the project, before any real prototyping starts. In software development, it is more common
to start making basic prototypes very early in the project. When making a digital product, it
is easy and cheap to make prototypes early and often. The benefits of prototyping early are
the possibility to get user feedback faster, to faster understand what works and what does
not work. Possibly, the design could have been refined further if we had started prototyping
activities earlier, having time for more iterations of user feedback. However, the project was
not only about designing a new and improved interface, but also about understanding the
underlying needs of the user and constructing guidelines. These results might not have been
as good if not the first part of the project had had a strong emphasis on understanding the
user.

9.1.5. Early concepts

It can be noted that the final design proposal has a general structure similar to the first two
designs that were made, Matlab and Tree structure, (compare Figure 33 to Figure 13 and

66

The main benefit of using the GEW after a usability test was that it was an effective way
to get users to reflect upon the usage. Users would talk about specific situations during the
test and would say that they did especially dislike or like that part, and the model did provide
some useful qualitative data that could be used in a KJ analysis. It was also an important
insight that a user could have performed well according to the success criteria set up for the
success rate metrics, but still reported feeling insecure when asked to discuss the usage of
the software afterward. For future usage of this method, we would therefore recommend re-
searchers to focus even more on the discussion around the emotions when using GEW and to
set aside time for more discussion than on the rating of the emotions.

9.1.3. Remote user studies

Due to the ongoing Covid-19 pandemic, all the user studies were performed remotely. Both
interviews and user tests were performed via Microsoft teams or Zoom and the participants
were asked to share their screens. The remote user studies did not impose any issues. We
believe that especially for working professionals, it is a lot easier to accept an invitation to a
remote video meeting than it is to find time for a physical interview. And users were also able
to accept meeting invitations on shorter notice when asked to review parts of the concept for
instance.

For the tests performed with the beginner users, the fact that the tests were performed re-
motely might have also in fact had a direct positive result. The participants were able to sit
in the comfort of their own homes and might have not felt as “observed” as in a physical test
where the facilitator sits in the same room. It could have benefited users during the tests.
However, while performing usability tests remotely clearly was no obstacle in this project (it
might even have been beneficial) it is also important to remember that the reason why it was
so easy to perform the tests remotely was that the project revolved around a graphical inter-
face. Had the product developed been a physical object, it might have caused more trouble
than benefit to performing remote usability testing.

9.1.4. Product development mindset

In classic product development, there is an emphasis on gathering information at the beginning
of the project, before any real prototyping starts. In software development, it is more common
to start making basic prototypes very early in the project. When making a digital product, it
is easy and cheap to make prototypes early and often. The benefits of prototyping early are
the possibility to get user feedback faster, to faster understand what works and what does
not work. Possibly, the design could have been refined further if we had started prototyping
activities earlier, having time for more iterations of user feedback. However, the project was
not only about designing a new and improved interface, but also about understanding the
underlying needs of the user and constructing guidelines. These results might not have been
as good if not the first part of the project had had a strong emphasis on understanding the
user.

9.1.5. Early concepts

It can be noted that the final design proposal has a general structure similar to the first two
designs that were made, Matlab and Tree structure, (compare Figure 33 to Figure 13 and

66

Figure 14). These were conceptualized based on the ideas generated by the Brainwriting
session, and rough designs were made using Figma. Having made these designs so early in the
Ideate phase may have affected our view on what the design should look like. After having
made them we had more brainstorming sessions and combined different ideas into concepts
using a morphological matrix. These were then sketched on paper. To be able to make a fair
comparison, it might have been better to just have sketched the first two so that all could
be compared on an equal level. Making only a rough representation of each concept makes it
easier to not get too attached to a certain concept too early on in the process.

9.2. Result

9.2.1. Success rate

The success rate was used as a metric to see how the proposed design was measured compared
to the current KMA software. The result showed that the new design proposal was better.
However, with small test groups such as these, the numbers should not be given too much
weight. The result may also be affected by the fact that the questions had to be adjusted
slightly since the two concepts were so different. Also, the layout of the concepts in relation
to how the questions were posed might affect the result. For example, in task 1 the design
proposal scored significantly lower than the KMA software. This could be explained by the
fact that all settings required for the task were in the same screen for Layout Designer, and
that this screen was already open at the beginning of the task. In Prototype 4, the required
settings were in several different views. The structure of the prototype with these different
views is crucial for the easy-to-navigate interface, and thought to overall increase the usability
of the interface, only not for this specific task.

According to the Nielsen Norman group, the results from this study can also be regarded
as significantly higher than the average value [8]. This is thought to depend on two things.
The first is that the participants are all either technically skilled or have knowledge about
KMA. This can cause the user to perform better than the ”average” user met with these types
of tests. However, more importantly, the tasks were thought to be rather easy for the users.
Therefore, we do not believe that you should compare the results of the success rate from this
study to results from other studies, but that the results can rather be used to compare round
one and two in this particular test.

9.2.2. Generalizability

This study has only looked at the vehicle configuration made in KMA software, and the needs of
the users using KMA products. Therefore it is not certain that the design guidelines that have
been constructed will apply to vehicle configuration software of other AGV systems. However,
another system of similar complexity and with similar users is likely to face the same challenges.
For example, some issues are believed to have sprung from the fact that the system has grown
organically and has not had a major remake while functions have been added. This could be
true for many systems that have grown over time. Settings such as wheels, navigation method,
and safety system are something all AGVs have, even though there might be differences to
what configurations can be handled by the system. With the guideline “Scalable solution”,
the design becomes more flexible, and differences in AGV systems can be handled in the same
way as adding or changing features of one system.

67

9.3. Future work

This section will describe some remaining questions to be answered for the future, and sug-
gestions for future work.

• Since only a selection of parameters was implemented in the design concept and tested
in the usability test, there is still a need to test the functionality of the software concept
when more parameters have been implemented. The software is built to be expandable,
and new parameters should be able to be included easily. However, it would be interesting
to see how the users perceive the software as a whole when more parameters are added.
Would the result be the same or would the users perceive the whole concept as more
complex?

• Some functions are not fully developed in the concept, and hence have not been tested.
Among the functions that need to be developed for the software to function properly,
creating a custom wheel configuration or creating a custom shape are worth mentioning.
The idea of being able to choose presets of wheel configurations and preset shapes of
the vehicle also indirectly includes being able to create an own configuration or shape
if the user would not find a suitable preset. The functionality of creating these custom
“presets” has not been tested or developed.

Another function that has not been implemented, is to be able to export a compo-
nents list as a PDF. This functionality is in the final concept placed under file and export
as PDF, but the PDF in itself has not been designed or structured. Both these functions
could be something to look further into and develop further in a future project. Further-
more, auto-save is a functionality that has not been tested. The function did not get
much response from the expert users, and it would be interesting to hear if any expert
users would be directly opposed to implementing auto-save.

• Changes from Prototype 4 to the final concept have not been tested in usability tests. It
has received feedback from UX experts and employees at KMA but still requires testing
to assure the usability is good for beginner users. It was reasoned that the changes from
Prototype 4 to the final concept were not very drastic and that due to lack of time it
was not prioritized to do a final test. This is something that is needed in the future.

9.4. Social sustainability and automation

Social sustainability is sustainability in terms of humans and regards issues such as gender
equality, human rights, and future generations and aims to ensure a good quality of life for all
humans and the generations to come [7]. The term as well aims to manage business impacts
on people. Companies have a direct or indirect effect on social sustainability as they affect
employees, are drivers of development and indirectly affect every person and customer in the
value chain [9]. It is, therefore, important to discuss what effects on social sustainability this
project may have.

AGV technology does substitute manual forklift drivers in warehouses, and our project may be
directly connected to that process. The vehicle configuration could ultimately be connected
to the replacement of manual forklifts and drivers, and hence harm social sustainability.

68

9.3. Future work

This section will describe some remaining questions to be answered for the future, and sug-
gestions for future work.

• Since only a selection of parameters was implemented in the design concept and tested
in the usability test, there is still a need to test the functionality of the software concept
when more parameters have been implemented. The software is built to be expandable,
and new parameters should be able to be included easily. However, it would be interesting
to see how the users perceive the software as a whole when more parameters are added.
Would the result be the same or would the users perceive the whole concept as more
complex?

• Some functions are not fully developed in the concept, and hence have not been tested.
Among the functions that need to be developed for the software to function properly,
creating a custom wheel configuration or creating a custom shape are worth mentioning.
The idea of being able to choose presets of wheel configurations and preset shapes of
the vehicle also indirectly includes being able to create an own configuration or shape
if the user would not find a suitable preset. The functionality of creating these custom
“presets” has not been tested or developed.

Another function that has not been implemented, is to be able to export a compo-
nents list as a PDF. This functionality is in the final concept placed under file and export
as PDF, but the PDF in itself has not been designed or structured. Both these functions
could be something to look further into and develop further in a future project. Further-
more, auto-save is a functionality that has not been tested. The function did not get
much response from the expert users, and it would be interesting to hear if any expert
users would be directly opposed to implementing auto-save.

• Changes from Prototype 4 to the final concept have not been tested in usability tests. It
has received feedback from UX experts and employees at KMA but still requires testing
to assure the usability is good for beginner users. It was reasoned that the changes from
Prototype 4 to the final concept were not very drastic and that due to lack of time it
was not prioritized to do a final test. This is something that is needed in the future.

9.4. Social sustainability and automation

Social sustainability is sustainability in terms of humans and regards issues such as gender
equality, human rights, and future generations and aims to ensure a good quality of life for all
humans and the generations to come [7]. The term as well aims to manage business impacts
on people. Companies have a direct or indirect effect on social sustainability as they affect
employees, are drivers of development and indirectly affect every person and customer in the
value chain [9]. It is, therefore, important to discuss what effects on social sustainability this
project may have.

AGV technology does substitute manual forklift drivers in warehouses, and our project may be
directly connected to that process. The vehicle configuration could ultimately be connected
to the replacement of manual forklifts and drivers, and hence harm social sustainability.

68

However, there are plenty of reasons to encourage increased automation in the industry. In-
creased automation leads to people not having to do repetitive, unergonomic, or unhealthy
work tasks, and promises of people having time to do less work, and have more time for leisure.
In our specific case of easing the process of replacing manual forklifts with AGVs, it provides a
more ergonomic environment for the people working at the warehouse, as well as a dramatically
reduced number of lift accidents due to use errors of manual lifts.

We believe that automation has and will continue to provide positive outcomes for humanity
as a whole and decrease the number of people who work in unsafe or unhealthy environments
and that our solution can be a part of that positive development. The promises of every auto-
mated innovation, however, we believe rely much on how the positive outcomes are distributed
among people. The solution to this should not be decreasing the development of automation,
since the ultimate benefits are plenty and contribute to a socially sustainable future. Making
sure that people who suffer from layoffs due to automation get sufficient support is one way
to mend this issue. Another mentioned by United Nations Global is by creating decent jobs [9].

Usability is a way to mend the gap between the highly technical and advanced automation
industry. By enabling user-friendly tools, that ultimately would need less and less technical
competence is hence one way to ensure that people can continue to work in the development of
the AGV industry, without necessarily having to have obtained a degree in a technical subject.
The product and theory presented in this project might be a small step on the way, but it is a
step nevertheless.

69

10. Conclusion

The aim of this project was to investigate the user needs and form a user journey for engineers
working with vehicle configuration in the AGV industry. The research questions were the
following:

• What does the user journey when setting up a new AGV system look like for application
engineers today?

• What are the needs and requirements of the users of today?

• How can the vehicle configuration software be improved in terms of usability?

• What is important to consider when designing a vehicle configuration software?

The user journey is more closely presented in section 5.5. The usage of the vehicle configura-
tion software is likely to happen at the start of the user journey, when creating a new vehicle.
However, the user is likely to use the software multiple times later during the user journey
when updates need to be done. This is especially true when talking about users who work for
companies providing tailored AGVs to their clients.

The user needs regarding what the software lacks in usability and usage are presented be-
low:

• The most important information should be presented most visible

• Images and visualizations must be clear and serve a purpose to the given situation in
which they are presented

• The user should receive feedback when making an input

• Allow sharing and reuse vehicle configurations

• Allow for communication between KMA, customer and end-user The solution should
behave in a consistent way throughout the usage

• Ease usage for beginner users

• Allow for iterative work for easier copy/ paste options and allow for users to update
multiple configurations at the same time

Regarding pure functionality and functions that should be included, the needs were:

• Allow the user to divide vehicles into different groups

• The wheel configuration and wheel positions can be set

• Means of navigation, such as antennas or reflector scanners, can be configured in the
same software but also be imported

• The sensor locations can be configured

• Safety fields can be configured, but also imported

70

The expected results were to formulate guidelines that could be used for designing a vehicle
configuration software for the AGV industry, as well as a design concept prototype of such
software. The final concept is presented in chapter 8.2. A more in-depth description of the
design guidelines can be found in section 8.1. The guidelines are presented below:

• Include all static settings

• Make the solution scalable and allow for the number of parameters to grow as the
technology evolves

• Avoid exports and imports

• Allow for copying settings between vehicles

• Place settings in normal use order, but allow free navigation

• Limit number of visible settings

• Use visualizations for feedback

• Explain difficult concepts

The results of the study performed showed that the new concept was easier to use for beginner
users, and in general, generated a better user experience regarding emotional response as well.
The concept was regarded as easier to use by beginner users. It was generally received well by
expert users, but was thought to become more complex as more functionality was included.

In order to implement the solution, more functionality in terms of parameters need to be
included, and the whole solution should be tested with both beginner users and expert users
with all parameters included. However, we are confident that the user needs that are included
in this report, as well as the design guidelines, represent both the main issues with the current
KMA software and present remedies to those problems.

71

The expected results were to formulate guidelines that could be used for designing a vehicle
configuration software for the AGV industry, as well as a design concept prototype of such
software. The final concept is presented in chapter 8.2. A more in-depth description of the
design guidelines can be found in section 8.1. The guidelines are presented below:

• Include all static settings

• Make the solution scalable and allow for the number of parameters to grow as the
technology evolves

• Avoid exports and imports

• Allow for copying settings between vehicles

• Place settings in normal use order, but allow free navigation

• Limit number of visible settings

• Use visualizations for feedback

• Explain difficult concepts

The results of the study performed showed that the new concept was easier to use for beginner
users, and in general, generated a better user experience regarding emotional response as well.
The concept was regarded as easier to use by beginner users. It was generally received well by
expert users, but was thought to become more complex as more functionality was included.

In order to implement the solution, more functionality in terms of parameters need to be
included, and the whole solution should be tested with both beginner users and expert users
with all parameters included. However, we are confident that the user needs that are included
in this report, as well as the design guidelines, represent both the main issues with the current
KMA software and present remedies to those problems.

71

References

[1] 10 usability heuristics for user interface design. [Online; accessed May 8, 2021].

[2] Affinity diagram (or k-j method). [Online; accessed April 6, 2021].

[3] The history of kollmorgen. [Online; accessed May 25, 2021].

[4] How to generate thousands of ideas in mere minutes; the morphological matrix. [Online;
accessed April 1, 2021].

[5] Interaction design foundation-design thinking. [Online; accessed June 15, 2021].

[6] Mobile tutorials: Wasted effort or efficiency boost? [Online; accessed May 8, 2021].

[7] Social sustainability. [Online; accessed May 21, 2021].

[8] Success rate: The simplest usability metric. [Online; accessed May 18, 2021].

[9] Un global - social sustainability. [Online; accessed May 21, 2021].

[10] Web content accessibility guidelines (wcag) 2.0. [Online; accessed May 18, 2021].

[11] Why use impact mapping? [Online; accessed March 25, 2021].

[12] Why you only need to test with 5 users. [Online; accessed May 8, 2021].

[13] ISO 9241-210:2010. Ergonomics of human-system interaction - part 210: Human-centred
design for interactive systems (iso 9241-210:2010). International Standards Organisation,
2010, 2010.

[14] Joseph S. Dumas and Janice C. Redish. A practical guide to usability testing. Intellect
Books, 1999.

[15] Ullrich Günter. Automated guided vehicles, a primer with practical applications. Springer
Verlag Berlin, 2015.

[16] Klaus Scherer. What are emotions? and how can they be measured? Social Science
Information, 44(4), 2005.

[17] Vera Shuman, Klaus Scherer, Johnny Fontaine, and Cristina Soriano. The GRID meets
the Wheel: Assessing emotional feeling via self-report. 08 2015.

[18] Åsa Wikberg Nilsson, Åsa Ericson, and Peter Törlind. Design: Process och metod.
Studentlitteratur AB, 2015.

72

I

I

A. Success rate metrics

Nr
Task
description Task (LD) Success metric (LD) Task (prototype 4) Success metric (prototype 4)

1

Create a steer
drive (SD)
vehicle

Create an SD vehicle with
* carrier type 1
* wheel base 1000 mm
* length 1200 mm
* width 400 mm
* reference point 50 mm

Full success: Finds and enters every setting on the
first try

Partial sucess: Finds and enters every setting on
the first or second try

Create a vehicle with
* carrier type 1
* wheel base 1000 mm
* length 1200 mm
* width 400 mm
* wheel configuration: SD 1
* reference point 50 mm

Full success: Finds and enters every setting on
the first try

Partial sucess: Finds and enters every setting
on the first or second try

2

Create another
SD vehicle

Create an SD vehicle with
* carrier type 2
* wheel base 900 mm

Full success: Enters wheel base correctly, marks
carrier type (CT) 2 and then unmarks CT 4

Partial sucess: Enters wheel base correctly, marks
CT 2 but doesn't unmark CT 4 OR first unmarks CT
4 and then unmark all but CT 2

Create a vehicle with carrier
type 2

Full success: Finds and enters every setting on
the first try

Partial sucess: Finds and enters every setting
on the first or second try

3

Interpret vehicle
and wheels
visualization Same as task description

Full success: Identifies vehicle and all wheels

Partial sucess: Identifies vehicle and either SD
wheel or back wheels Same as task description

Full success: Identifies vehicles and all wheels

Partial sucess: Identifies either SD wheel or
back wheels

4
Create a diff
drive vehicle

Create a diff vehicle with
* carrier type 3
* gauge 300 mm

Full success: Finds and enters every setting on the
first try

Partial sucess: Needs hint for clicking "Next" to find
diff vehicle OR enters some setting on the second
try

Create a vehicle with
* diff drive
* left wheel y position 150 mm
* right wheel y position 150
mm

Full success: Finds and enters every setting on
the first try

Partial sucess: Finds and enters every setting
on the first or second try

5

Open a vehicle
from another
project

Import the vehicle found in
the system StudySys and
layout StudyLayout

Full success: Imports correctly at first attempt

Partial success: Clicks wrong tab maximum 2 times
OR receives hint that the vehicles in the layout are
not listed

Find the menu "project
explorer" and open "Vehicle
X"

Full success: Finds project explorer and opens
the vehicle on the first try

Partial sucess: -II- second try

6 Add an antenna

Add an antenna with
* Any name
* X-coordinate 0 mm
* Y-coordinate 100 mm
* Length 100 mm
* Width 3 mm

Full success: Finds and enters every setting on the
first try

Partial sucess: Finds and enters every setting on
the first or second try

Add an antenna with
* Any name
* X-coordinate 0 mm
* Y-coordinate 100 mm
* Length 100 mm

Full success: Finds and enters every setting on
the first try

Partial sucess: Finds and enters every setting
on the first or second try

7
Interpret
antenna
visualization

Same as task description
Full success: Identifies antenna

Same as task description
Full success: Identifies antenna

8
Move the
antenna

Put the antenna on the other
longside of the vehicle

Full success: Changes y-coordinate on the first try

Partial sucess: -II- second try
Put the antenna on the other
longside of the vehicle

Full success: Changes y-coordinate OR click-
drags antenna on the first try

Partial sucess: -II- second try

9
Delete the
antenna Same as task description

Full success: Clicks the delete-button of the
interface on the first try

Partial sucess: -II- second try Same as task description

Full success: Clicks delete on keyboard OR
right-clicks antenna and then delete on the first
try

Partial success: -II- second try

10
Navigate to
safety sensors

Navigate to where you can
configure the safety sensors

Full success: Navigates to "safety system setup"
on the first try

Partial sucess: -II- second try
Navigate to where you can
configure the safety sensors

Full success: Navigates to "safety sensors" on
the first try

Partial sucess: -II- second try

11 Add a sensor
Add a sensor and give it a
name

Full success: Clicks "new", then clicks name field,
then writes name

Partial sucess: Tries to write name without having
clicked name field, then clicks name field and
writes name

Add a sensor at the back of
the vehicle

Full success: Navigates to "sensor
configuration" then clicks "Back" on the first try

Partial sucess: Finds everything on the first or
second try

12 Move the sensor
Change the x-position of the
sensor to 100 mm

Full success: Changes x-coordinate on the first try

Partial sucess: -II- second try
Move the sensor to the front of
the vehicle

Full success: Changes y-coordinate OR click-
drags the sensor on the first try

Partial sucess: Deletes sensor and adds a new
one at the front of the vehicle

13

Find where you
can add a safety
field

Find where you can change
the safety field of Sensor1

Full success: Double clicks "Sensor1" OR single
clicks "Sensor1" and then clicks "Properties" on the
first try

Partial sucess: -II- second try
Find where you can add a
safety field

Full success: Navigates to "safety fields" then
clicks "Add new" on the first try

Partial sucess: Finds everything on the first
second try

14

Change the size
of the safety
field

Change the safety field
"Nödstopp" from being 2000
mm long to being 3000 mm
long

Full success: Changes both columns on the right

Partial sucess: First clicks "Max Y" but doesn't
enter a value, then finds and changes the columns
on the right

Change the width and length
of the safety field you just
added

Full success: Finds the safety field and changes
the values on the first try

Partial sucess: Finds everything on the first or
second try

15

Change the
safety case max
velocity

Change the safety system
case "Långsamt" so that the
max speed is 120 mm/s

Full success: Changes the max velocity on the first
try

Partial sucess: -II- second try

Add a new safety case and
change the max speed to 120
mm/s

Full success: Finds safety case, then add new,
and changes the value on the first try

Partial sucess: Finds everything on the first or
second try

16
Set the PLC bit
3 to "ON" Same as task description

Full success: Clicks twice so the bit becomes
"checked"

Partial sucess: First clicks once so the bit becomes
"filled", after a while clicks again so it becomes
"checked" Same as task description

Full success: Activates the bit, then clicks "on"
OR clicks "on" on the first try

Partial sucess: -II- second try

17
Activate the
safety field

Set the safety field
"Nödstopp" to active

Full success: Clicks add, then select fields, then
checks "Nödstopp" on the first try

Partial sucess: -II- second try
Activate the "Field 2" of
"Sensor 1"

Full success: Selects Sensor1 and Field2, and
clicks "Add"

Partial sucess: Selects Sensor1 and Field2,
receives hint that something more needs to be
done and then clicks "Add"

II

Referensenslösning Funktion Ide 1 Ide 2 Ide 3 Ide 4 Ide 5 Ide 6
Referensenslösning Funktion Ide 1 Ide 2 Ide 3 Ide 4 Ide 5 Ide 6

1 Symbol

Representera
fordonet

Som en skrinda
(rätblock + hjul)

rätblock i olika
fomrer Ritning

Cirkelsektor
(pizza-slice) En häst

3D-rätblock

2 Symbol

Representera
säkerhetsfält

Fält som man
drar i för att
ändra storlek.
Kunna lägga till
punkter för att
ändra form

Visa hur
safetyfieldet
påverkar
körvägarna med
simulering (gif
typ)

Välj safetyfields
från bibliotek

Olika färg på
warning och
protection

3 Bild på siten
Påminna användare
om verkligheten Webcam på site

Visualisera i
olika nivåer
(skiss, modell,
3d-modell i
verklig miljö)

Vy med miljön
där man kan
klicka på olika
delar (t ex klicka
på golvet ->
bromstestparame
trar)

Interfacet byter
till mer verkligt
utseende
(blixtrar till)

Kunderna
MÅSTE svara
på vissa frågor
(t ex typ av
golv)

Interface
anpassat för
användning på
site

4 Catia-modell
Medge custom
truckrepresentation

Bygga upp en
truck av
"legoklossar" i
programmet

Stämplar av
"truckformer"
som kan
kombineras

koppla en fysisk
minitruck till
programmet

välja bakgrund
till fordonet

Dra och släppa
olika delar för
att bygga upp
trucken

Olika "skins" på
trucken

5 Google drive
Inkorporering i
större system

Bild på en
kropp, huvudet
hur den tänker
etc, alla
program del av
bilden

Visa kontraktet
mellan kund
och KMA, vad
man har lovat
att göra

En vy med en röd
tråd med noder
som är olika
program i
processen

Färger för de
olika
programmens
faser

Olika
simuleringar
(layout,
sensorer) pågår
samtidigt i
många små
vyer

"Bin" som flyger
från olika delar
av programmet
för att visa var
man är i
processen

6 Progressbar
Process
beskrivning

Trucken blir
"gladare" ju mer
som är
konfigurerat

Olika
bakgrunds-färg
beroende på
vilken del som
konfigureras

Visa ett värde
baserat på hur
mycket som är
konfigurerat

Pie chart över
hur långt man
kommit och vad
som är kvar att
göra

Progressbar
som i linkedin Checklista

7 Chattfunktion

Medge
kommunikation
mellan kollegor

Möjliggöra
"reaktioner" på
ritningar i en
gemensam
miljö

Markera det
som inte är
relevant för
vissa personer

Belöningssystem
för att
kommunicera
mycket

Allt är online
som Miro/
google Dela-knapp

Hål/ plats där
man kan lägga
saker så att
andra kan
komma och titta

8 Printscreens

Medge
kommunikation
externt

Enkelt formulär i
mail som
servicetekniker
kan fylla i så
kommer det
automatiskt in i
programmet

Kunden/
partnern får
automatiska
"snapshot"
uppdateringar

Ser/ får notis om
förändringar utan
att behöva öppna
programmet

Inkorperera
vanliga
kommunikations
plattformar så
som teams och
slack

Importera textfil,
t ex datablad
pdf,
programmet
identifierar och
fyller själv i
parametrar

Exportera pdf
med hur det ser
ut, kort
beskrivning

9 Googla
Söka efter
funktioner

Få förslag på
liknande saker
man sökt efter
innan

"Andra sökte
även efter"

Man hör var olika
funktioner är
genom att ropa
på dem

Valla info,
vallningsverktyg
, drar över ett
hav med info
med ett verktyg
som plockar/
synliggör

Utforska-
verktyg - hovra
över objekt för
att visa
förklaring

Överblick på
fordonet som
man kan klicka
på för att
komma till den
konfigurationen

10
Använda gamla
konfigurationer

Medge användning
av standardfordon

Truckar
rangordnas
efter hur många
funktioner de
har

"Baksidan av en
bok"

"Welcome to my
truck"-video

Man kan
jämföra två
fordon bredvid
varandra

Simulering med
massa vagnar,
man kan plocka
upp en och
lägga in den i
sitt projekt

Ett
fordon/template
har ett
fotavtryck

11
Historik över senast
besökta hemsidor Arbeta iterativt

Push-notiser
"det var länge
sedan du
arbetade på
den här
modellen, vill du
öppna nu?"

Meny som
ändrar ordning
så att det man
gjorde för länge
sedan ligger
högst upp

Notis när man
behöver
uppdatera
systemet pga
ändringar hos
kunden

Strukturerad
projektdokumen
tation,
drömdagbok

kvitto på vad
som gjorts idag
som kan sparas
till nästa gång

Utgångsdatum
på projekt

12 Manual

Hjälpa användaren
förstå vad som
händer i
programmet

Highlighta det
man har kvar att
fylla i

Inställningarna
uppdelade efter
hårdvaran de
berör Snackbar

Checklista som
uppdateras Bokmärke

Stegvis, peka
på nästa grej
man ska fylla i

13 Steg-för-steg guide Förenkla inlärning Tutorial mode

Crash course
vid
uppdateringar

Advanced mode -
visar fler
inställningar

Olika modes,
advanced,
beginner, on
site

Visa bara
inställningar
som är
relevanta för
den kunden

14
Endast möjligt att inputa
giltig data Förhindra fel

Varningsbox
"do you really
want to do
this?"

Siffror skrivs in i
boxar där
antalet är
bestämt

Autosave-
funktion

Historik där
man kan backa
till tidigare
version

Kräv pinkod för
"farliga"
inställningar

Visualisera vad
som förändras
för varje
inställning

B. Morphological matrix

III

Referensenslösning Funktion Ide 1 Ide 2 Ide 3 Ide 4 Ide 5 Ide 6
Referensenslösning Funktion Ide 1 Ide 2 Ide 3 Ide 4 Ide 5 Ide 6

1 Symbol

Representera
fordonet

Som en skrinda
(rätblock + hjul)

rätblock i olika
fomrer Ritning

Cirkelsektor
(pizza-slice) En häst

3D-rätblock

2 Symbol

Representera
säkerhetsfält

Fält som man
drar i för att
ändra storlek.
Kunna lägga till
punkter för att
ändra form

Visa hur
safetyfieldet
påverkar
körvägarna med
simulering (gif
typ)

Välj safetyfields
från bibliotek

Olika färg på
warning och
protection

3 Bild på siten
Påminna användare
om verkligheten Webcam på site

Visualisera i
olika nivåer
(skiss, modell,
3d-modell i
verklig miljö)

Vy med miljön
där man kan
klicka på olika
delar (t ex klicka
på golvet ->
bromstestparame
trar)

Interfacet byter
till mer verkligt
utseende
(blixtrar till)

Kunderna
MÅSTE svara
på vissa frågor
(t ex typ av
golv)

Interface
anpassat för
användning på
site

4 Catia-modell
Medge custom
truckrepresentation

Bygga upp en
truck av
"legoklossar" i
programmet

Stämplar av
"truckformer"
som kan
kombineras

koppla en fysisk
minitruck till
programmet

välja bakgrund
till fordonet

Dra och släppa
olika delar för
att bygga upp
trucken

Olika "skins" på
trucken

5 Google drive
Inkorporering i
större system

Bild på en
kropp, huvudet
hur den tänker
etc, alla
program del av
bilden

Visa kontraktet
mellan kund
och KMA, vad
man har lovat
att göra

En vy med en röd
tråd med noder
som är olika
program i
processen

Färger för de
olika
programmens
faser

Olika
simuleringar
(layout,
sensorer) pågår
samtidigt i
många små
vyer

"Bin" som flyger
från olika delar
av programmet
för att visa var
man är i
processen

6 Progressbar
Process
beskrivning

Trucken blir
"gladare" ju mer
som är
konfigurerat

Olika
bakgrunds-färg
beroende på
vilken del som
konfigureras

Visa ett värde
baserat på hur
mycket som är
konfigurerat

Pie chart över
hur långt man
kommit och vad
som är kvar att
göra

Progressbar
som i linkedin Checklista

7 Chattfunktion

Medge
kommunikation
mellan kollegor

Möjliggöra
"reaktioner" på
ritningar i en
gemensam
miljö

Markera det
som inte är
relevant för
vissa personer

Belöningssystem
för att
kommunicera
mycket

Allt är online
som Miro/
google Dela-knapp

Hål/ plats där
man kan lägga
saker så att
andra kan
komma och titta

8 Printscreens

Medge
kommunikation
externt

Enkelt formulär i
mail som
servicetekniker
kan fylla i så
kommer det
automatiskt in i
programmet

Kunden/
partnern får
automatiska
"snapshot"
uppdateringar

Ser/ får notis om
förändringar utan
att behöva öppna
programmet

Inkorperera
vanliga
kommunikations
plattformar så
som teams och
slack

Importera textfil,
t ex datablad
pdf,
programmet
identifierar och
fyller själv i
parametrar

Exportera pdf
med hur det ser
ut, kort
beskrivning

9 Googla
Söka efter
funktioner

Få förslag på
liknande saker
man sökt efter
innan

"Andra sökte
även efter"

Man hör var olika
funktioner är
genom att ropa
på dem

Valla info,
vallningsverktyg
, drar över ett
hav med info
med ett verktyg
som plockar/
synliggör

Utforska-
verktyg - hovra
över objekt för
att visa
förklaring

Överblick på
fordonet som
man kan klicka
på för att
komma till den
konfigurationen

10
Använda gamla
konfigurationer

Medge användning
av standardfordon

Truckar
rangordnas
efter hur många
funktioner de
har

"Baksidan av en
bok"

"Welcome to my
truck"-video

Man kan
jämföra två
fordon bredvid
varandra

Simulering med
massa vagnar,
man kan plocka
upp en och
lägga in den i
sitt projekt

Ett
fordon/template
har ett
fotavtryck

11
Historik över senast
besökta hemsidor Arbeta iterativt

Push-notiser
"det var länge
sedan du
arbetade på
den här
modellen, vill du
öppna nu?"

Meny som
ändrar ordning
så att det man
gjorde för länge
sedan ligger
högst upp

Notis när man
behöver
uppdatera
systemet pga
ändringar hos
kunden

Strukturerad
projektdokumen
tation,
drömdagbok

kvitto på vad
som gjorts idag
som kan sparas
till nästa gång

Utgångsdatum
på projekt

12 Manual

Hjälpa användaren
förstå vad som
händer i
programmet

Highlighta det
man har kvar att
fylla i

Inställningarna
uppdelade efter
hårdvaran de
berör Snackbar

Checklista som
uppdateras Bokmärke

Stegvis, peka
på nästa grej
man ska fylla i

13 Steg-för-steg guide Förenkla inlärning Tutorial mode

Crash course
vid
uppdateringar

Advanced mode -
visar fler
inställningar

Olika modes,
advanced,
beginner, on
site

Visa bara
inställningar
som är
relevanta för
den kunden

14
Endast möjligt att inputa
giltig data Förhindra fel

Varningsbox
"do you really
want to do
this?"

Siffror skrivs in i
boxar där
antalet är
bestämt

Autosave-
funktion

Historik där
man kan backa
till tidigare
version

Kräv pinkod för
"farliga"
inställningar

Visualisera vad
som förändras
för varje
inställning

Referensenslösning Funktion Ide 7 8 9 10 11 12
Referensenslösning Funktion

1 Symbol

Representera
fordonet

2 Symbol

Representera
säkerhetsfält

3 Bild på siten
Påminna användare
om verkligheten

4 Catia-modell
Medge custom
truckrepresentation

5 Google drive
Inkorporering i
större system

6 Progressbar
Process
beskrivning

7 Chattfunktion

Medge
kommunikation
mellan kollegor

8 Printscreens

Medge
kommunikation
externt

9 Googla
Söka efter
funktioner

10
Använda gamla
konfigurationer

Medge användning
av standardfordon

11
Historik över senast
besökta hemsidor Arbeta iterativt

12 Manual

Hjälpa användaren
förstå vad som
händer i
programmet

13 Steg-för-steg guide Förenkla inlärning

14
Endast möjligt att inputa
giltig data Förhindra fel

Ide 7 8 9 10 11 12

träbil
fysisk leksaksbil
som man
kopplar in vridbara hjul

Animation över
hur fordonet rör
sig

Mörk färg på
drivhjul för att
behålla mental
modell

3d-bild som går
att rotera

Verklighetskikare
Filmer med t ex
bromstestet

Lyssna på
miljön medans
man
konfigurerar

Lager av
"verklighet" som
går att tända och
släcka

Vy där man ser
saker från
vagnens
perspektiv

"Remember
your safety field
must be .. in
areas that are
.."

man får önska sig
något

Dra i hjul för att
placera ut

Man kan skriva
in siffror i bilden
så uppdateras
bilden

Fält som man drar
i för att ändra
storlek. Kunna
lägga till punkter
för att ändra form

En tråd mellan
delar av projektet
som i figma

Vy med alla
program som
upplagda kort
på en
dashboard

En "hylla" för de
mest använda
programmen

Karta över hur
programmen
hänger ihop

Olika språk

Lägga in polls
för att rösta på
koncept

Personifiera ens
arbetsplats så
att andra kan se
vem som gjort
vad Meddelandekanon

Se om andra är
inloggade

Möjlighet att
"merga"
templates

Templates
öppnas som pdf
om man inte har
programmet
installerats

"Bada" fordon i
olika baljor av
parametrar

Man kan välja
ikon för
fordonen

Varje
standardfordon
får ett
smeknamn

Vikta egenskaper
mot varandra

Man samlar en
grupp med
templates och
så kan man se
vilka
egenskaper
gruppen har

Flaggor för olika
egenskaper

Påminna om att ta
raster/ byta
projektdel

Lätt att "packa
ner" filer att ta
med till site

Det kommer
upp spontant
vad man kan
göra idag. "Vad
kan jag göra
idag"-knapp

Projektdelar
"möglar" när man
inte är inne och
kollar till dom

Google maps i
programmet "här
är jag, hit vill jag"

Extern pryl som
håller koll på
projektet

Bläddra mellan
sidor

Visualisera med
lager

Röst som
berättar vad
som händer i
programmet Kalender

Highlighta
förändringar

Referensenslösning Funktion 13 14 15 16 17 18
Referensenslösning Funktion

1 Symbol

Representera
fordonet

2 Symbol

Representera
säkerhetsfält

3 Bild på siten
Påminna användare
om verkligheten

4 Catia-modell
Medge custom
truckrepresentation

5 Google drive
Inkorporering i
större system

6 Progressbar
Process
beskrivning

7 Chattfunktion

Medge
kommunikation
mellan kollegor

8 Printscreens

Medge
kommunikation
externt

9 Googla
Söka efter
funktioner

10
Använda gamla
konfigurationer

Medge användning
av standardfordon

11
Historik över senast
besökta hemsidor Arbeta iterativt

12 Manual

Hjälpa användaren
förstå vad som
händer i
programmet

13 Steg-för-steg guide Förenkla inlärning

14
Endast möjligt att inputa
giltig data Förhindra fel

13 14 15 16 17 18

Foto på fordonet

Se en överblick
på vad andra
befinner sig
(som Miro)

Varje
användare har
en "store" sär
man kan lägga
vissa funktioner/
egenskaper

"Batsignals" till
kollegor

Ställer frågor i
"etern" och får
svar/filer/länkar
som svar

Vissa
standardfrågor
om miljö/
trucktyp är
mandatory att
fylla i

Inkoorperera
vanliga
kommunikations
plattformar som
teams/ slack

Laddar upp
fordonet -> ett
fordon som kör

Allting har en
signatur så man
vet vem man
ska fråga

Bibliotek i
trädstruktur

Template-mode
i vehicle config

Online-bibliotek
med
standardfordon

Filtrera efter
funktioner

Gamla och nya
filer har olika
färg

Sy fast flikar i
ett fönster så att
de kan flyttas
runt

Dashboard som
man kan dra in
fordon i (som
google drive)

Vy som är en
överblick över
fordonet, klicka
på olika delar
för att komma
till den
inställningen

Referensenslösning Funktion 13 14 15 16 17 18
Referensenslösning Funktion

1 Symbol

Representera
fordonet

2 Symbol

Representera
säkerhetsfält

3 Bild på siten
Påminna användare
om verkligheten

4 Catia-modell
Medge custom
truckrepresentation

5 Google drive
Inkorporering i
större system

6 Progressbar
Process
beskrivning

7 Chattfunktion

Medge
kommunikation
mellan kollegor

8 Printscreens

Medge
kommunikation
externt

9 Googla
Söka efter
funktioner

10
Använda gamla
konfigurationer

Medge användning
av standardfordon

11
Historik över senast
besökta hemsidor Arbeta iterativt

12 Manual

Hjälpa användaren
förstå vad som
händer i
programmet

13 Steg-för-steg guide Förenkla inlärning

14
Endast möjligt att inputa
giltig data Förhindra fel

13 14 15 16 17 18

Foto på fordonet

Se en överblick
på vad andra
befinner sig
(som Miro)

Varje
användare har
en "store" sär
man kan lägga
vissa funktioner/
egenskaper

"Batsignals" till
kollegor

Ställer frågor i
"etern" och får
svar/filer/länkar
som svar

Vissa
standardfrågor
om miljö/
trucktyp är
mandatory att
fylla i

Inkoorperera
vanliga
kommunikations
plattformar som
teams/ slack

Laddar upp
fordonet -> ett
fordon som kör

Allting har en
signatur så man
vet vem man
ska fråga

Bibliotek i
trädstruktur

Template-mode
i vehicle config

Online-bibliotek
med
standardfordon

Filtrera efter
funktioner

Gamla och nya
filer har olika
färg

Sy fast flikar i
ett fönster så att
de kan flyttas
runt

Dashboard som
man kan dra in
fordon i (som
google drive)

Vy som är en
överblick över
fordonet, klicka
på olika delar
för att komma
till den
inställningen

Referensenslösning Funktion 19 20
Referensenslösning Funktion

1 Symbol

Representera
fordonet

2 Symbol

Representera
säkerhetsfält

3 Bild på siten
Påminna användare
om verkligheten

4 Catia-modell
Medge custom
truckrepresentation

5 Google drive
Inkorporering i
större system

6 Progressbar
Process
beskrivning

7 Chattfunktion

Medge
kommunikation
mellan kollegor

8 Printscreens

Medge
kommunikation
externt

9 Googla
Söka efter
funktioner

10
Använda gamla
konfigurationer

Medge användning
av standardfordon

11
Historik över senast
besökta hemsidor Arbeta iterativt

12 Manual

Hjälpa användaren
förstå vad som
händer i
programmet

13 Steg-för-steg guide Förenkla inlärning

14
Endast möjligt att inputa
giltig data Förhindra fel

19 20

Flera kan
redigera samma
fordon samtidigt

Share link: edit /
view and
comment

C. Complete user needs list

VIII

Group Need Pugh matrix Guidelines Requirements Importance
Clarity Information is presented in a clear way x
Clarity The most important information is most visible x
Clarity Images and visualizations are clear and serve a purpose to the given situation in which they are presented x
Clarity Exclude functions that are never used x
Clarity It is clear what actions lead to, and where input information end up x
Clarity It is clear what input affects the system and what is only for visualization x
Clarity The user receives feedback when making an input x
Clarity The vehicle can be identified by physical type x
Clarity Minimize risk of overwhelming amount of information x
Collaboration Allow sharing and reuse of configurations x
Collaboration Allow for collaboration within the software x
Collaboration It is easy to share information from the solution with someone who doesn't have the program x
Communication Allow for communication between KMA, customer and end user x
Consistency The solution behaves in a consistent way throughout usage x
Consistency Information is presented in a similar way throughout the usage x
Context Help the user understand how the environment may affect the system in different warehouses x impact
Context Visually and functionally a part of a bigger software universe x
Context Allow changes further on in the process of creating a new AGV system x
Context Visually be a part of the KMA design universe x
Context Usable on site while interacting with an AGV x
Context Make the user aware of the current state x
Errors Allow automatic update of references to encoder speed etc (ask Michael more about this) x
Errors Prevent use errors, slips and cognitive aware mistakes x
Errors Allow for seing errors comitted x
Errors Allow for fixing errors comitted x
Errors Minimize risk of errors when starting from template/old vehicle config x
Errors Allow tracing changes made x
Export/ Import Minimize errors caused by exessive export/ import x deliverable
Export/import Minimize the need of exporting x
Export/import Possible to import safety fields x
Flexibility Allow working with older vehicle types x
Flexibility Allow for partners making custom, and standard vehicles x
Flexibility Allow working with different types of vehicles x
Flexibility Include a function that fills the need for using carrier types, a tool that allows the user to devide vehicles into diffenet groups x
Flexibility Allow use of other PLC programming softwares x
Flexibility Allow modular use of configuration sets x
Flexibility Enable more PLC bits x
Flexibility Allow easy copying between templates / old vehicles x
Information handling The user only needs to input every information in one place x
Information handling It is clear what information has been inputed x
Information handling It is clear what data and calculations information is based on (when applicable) x
Users Possible to do a vehicle configuration without a lot of experience x
Users Ease usage for beginner users x
Users Help expert users learn the new interface quickly, maintaining mental model x
Users Allow for iterative work x
Function The wheel position can be configured x

Group Need Pugh matrix Guidelines Requirements Importance
Clarity Clarify what units are used x
Flexibility Be able to change units used in the program x
Use experience Decrease negative emotions generated by usage x
Use experience Make the solution look modern or at least up to date x
Users Enable common short commandoes (such as tab and double click) x
Flexibility Enable updating multiple configurations simultaneously x
Collaboration Allow documating information in text about the vehicle x
Clarity It is clear what can be changed in the solution and what can't x
Clarity Selection of words make sense x
Clarity Icons and names of different parts of the studio must me coherent, but easy to separate from eachother x
Function The safety fields can be configured x
Function The sensor locations can be configured x
Function The antenna locations can be configured x
Flexibility It is easy to find what templates include what functionality x

C. Complete user needs list

VIII

DEPARTMENT OF INDUSTRIAL AND MATERIALS SCIENCE
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 20xx
www.chalmers.se

