
Bayesian Network Approach for Modelling
and Inference of Communication Networks

Master’s thesis in Engineering Mathematics and Computational Science

Themis Mouliakos

Department of Mathematics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Master’s thesis 2019

Bayesian Network Approach for Modelling and
Inference of Communication Networks

Themistoklis Christos Mouliakos

Department of Mathematics
Chalmers University of Technology

Gothenburg, Sweden 2019

Bayesian Network Approach for Modelling and Inference of Communication Net-
works
Themistoklis Christos Mouliakos

© Themistoklis Christos Mouliakos, 2019.

Student: Themistoklis Christos Mouliakos
Supervisor/Examiner: Larisa Beilina, Chalmers University of Technology

Master’s Thesis 2019
Department of Mathematics
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Telephone +46 (0)31 772 1000

Gothenburg, Sweden 2019

iv

Abstract
A collection of radio base stations defines the radio access network which is responsi-
ble for connecting the user equipment with the core network which in turn connects
to the internet through a gateway. The radio base station provides the uplink and
downlink communication of the user equipment and its cover region is divided in
cells. There can be thousands of parameters affecting the functionality of a radio
base station and a primary concern of this thesis is to estimate probabilistic relations
between those parameters and the key performance indicators.
Bayesian Networks is a powerful mathematical tool which can model complex sys-
tems and present possible co-influences between variables. In the last decades there
was a great advancement on creating Bayesian Networks from data, mainly be-
cause of new algorithms and the increase of computational power. The power of
the Bayesian Networks to represent in a compact and visually easy way the joint
probability of a set of variables, make it ideal candidate for the complex data of a
communication network.
In this thesis work, most of the focus will be put on learning an acceptable structure
by a combination of expert’s knowledge and appropriate learning methods. Two
main approaches were investigated by using a Hybrid Network(mix of continuous
and discrete data) and a full discretization of the variables. Although both networks
managed to capture expected associations between the variables, the hybrid network
poses serious restrictions that are not well supported by the data.
In order to investigate more approaches to structure learning, the Hill Climbing algo-
rithm was enhanced with random restarts. As a third option the bootstrap method
was tested also as a different way to construct more robust models and estimate the
strength confidence of both the arcs and their direction. Finally a comparison of the
predictive power for the different learning techniques was evaluated through cross
validation.

v

Acknowledgements
I would like to thank my supervisors Erik Eklund ,David Andersson from Ericsson
and Professor Larisa Beilina from the Chalmers university of Technology for their
support and guidance during he completion of the thesis.

Themistoklis Christos Mouliakos, Gothenburg, December 2019

vii

Contents

List of Figures xi

List of Tables xiii

1 Theoretical Background 5
1.1 Some notions and definitions of Probability theory 5
1.2 Notions of Graph Theory . 7
1.3 Conditional Independence and DAGS 9

1.3.1 D-Separation . 12
1.4 Markov equivalence and PDAGs . 14
1.5 Discretization of continuous variables 15
1.6 Conditional Linear Gaussian Bayesian Networks 17
1.7 Causality in DAGs . 18
1.8 Summary . 19

2 Bayesian Networks : Learning and Inference 21
2.1 Structure learning . 21

2.1.1 Constraint based algorithms 22
2.1.2 Score based algorithms . 26

2.2 Scoring Functions . 27
2.3 Maximum Likelihood Parameter learning 29
2.4 Inference . 30

2.4.1 Logic Sampling . 30
2.5 Bootstrap and Model Averaging . 32
2.6 Summary . 34

3 Computational Results 35
3.1 Domain Insights . 35
3.2 Hybrid/Gaussian Model Results . 36
3.3 Discrete Model . 38

3.3.1 Results . 39
3.4 Discussion . 41

A Data Plots III

B Discrete Data Tables IX

ix

Contents

C Hartemink Method XI

D Maximum likelihood XV

E Number of parameters XVII

x

List of Figures

1.1 Directed graph with four nodes. A is the root. B has A as parent. C
and D are leafs because they have no children. A and B are ancestors
of D. B and C are children of A. Nodes B and D are descendants of A. 8

1.2 A directed cycle. 9
1.3 A Directed acyclic graph. 9
1.4 Undirected graph. Nodes 3 and 1 define a clique but not a max clique

since we can always add node 2 and still have a clique. The maximal
cliques are {1, 2, 3}, {2, 3, 4}, {3, 5}. 10

1.5 Proposed structure for a hypothetical example. 10
1.6 Serial connection . 11
1.7 Converging connection . 11
1.8 Diverging connection . 11
1.9 Example graph to illustrate the d-separation concept. 13
1.10 Markov blanket in DAGS. 14
1.11 Markov blanket in Markov graphs. 14
1.12 The first three graphs belong to the class [(X ⊥ Z|Y),¬(X ⊥ Z)|∅],

the fourth graph belongs to the class [(X ⊥ Z|Y),¬(X ⊥ Z)|∅]. The
last two graphs illustrate the corresponding PDAGs. 15

2.1 Calculating the Markov Blanket for node A. The structure of the
original BN is shown with dashed lines (source : [21]) 25

2.2 Example of three nodes representing the connections between three
discrete variables. 32

2.3 Query run using Logic sampling with 10,000 trials on the left and
100,000 on the right. Each run consisted of 500 repetitions of the
query. The counts in the histogram, sum up to 500. 32

3.1 Auto correlation plot for one of the KPIs before re sampling. Since
the vertical lines are way above the limits set by the horizontal lines,
suggests strong correlation between the consecutive data points. . . . 36

3.2 Auto correlation plot for one of the KPIs after re sampling. The auto
correlation reduces over time due to random sampling of the data set. 36

3.3 Structure estimation from mixed data using HC algorithm starting
from an empty initial graph. The model is a CLGN where arcs from
KPIs to A variables and arcs between the KPIs, where blacklisted
due to domain knowledge. 37

xi

List of Figures

3.4 Structure estimation from mixed data using HC algorithm together
with 10 random restarts, 20 perturbations on starting graphs on each
restart and random initial graph. The red dashed lines are the false
positive arcs and the blue dashed lines the false negatives. 38

3.5 Structure estimation from mixed data using HC with bootstrap with
200 replications and a pre-estimated threshold. The red dashed lines
are the false positive arcs whereas the blue dashed lines the false
negative arcs. 38

3.6 Structure learnt from data after discretization. The HC algorithm
was used with random initial graph. The edges from KPIs to A vari-
ables were blacklisted together arcs between KPIs based on domain
knowledge. 39

3.7 Structure learnt from discrete dataset. The HC algorithm used with
10 random restarts and 20 random permuted arcs after each restart.
The red dashed lines correspond to the false positives arcs and with
dashed blue lines the false negatives arcs. 40

3.8 Structure learnt from discrete dataset. The HC algorithm used with
bootstrap approach with 200 number of replicates.The blue dashed
lines correspond to the false negatives arcs. 40

A.1 Barplot of A variables. IV
A.2 Histogram of continuous variables before discretisation. IV
A.3 Histogram of continuous variables before discretisation. V
A.4 Discretised variables with quantile method. Ir creates bins of equal

frequency of points. Does not preserve initial distribution of data. . . V
A.5 Discretised variables with interval method. It creates uneven distri-

bution of points in bins and it resembles the initial distribution. . . . V
A.6 Time evolution of the KPI1. Different colours correspond to different

levels. VI
A.7 Time evolution of the KPI2. Different colours correspond to different

levels. VII

E.1 Toy dataset with mixed type of variables XVII

xii

List of Tables

C.1 Toy data frame based on the iris data set. XI
C.2 The dataframe after the initial discretization using the interval method.

The variables are binned into four levels each. XI
C.3 The dataframe after the after collapsing [4.4, 4.65], (4.65, 4.9]. XII
C.4 The dataframe after the after collapsing (4.65, 4.9], (4.9, 5.15]. XII
C.5 The dataframe after the after collapsing (4.9, 5.15], (5.15, 5.4]. XIII

E.1 Number of parameters learnt for each variable in the toy DAG. XVIII

xiii

List of Tables

xiv

List of Tables

§

1

List of Tables

2

Introduction

I basically know of two principles for treating complicated systems in simple
ways: the first is the principle of modularity and the second is the principle of
abstraction. I am an apologist for computational probability in machine learning
because I believe that probability theory implements these two principles in deep
and intriguing ways — namely through factorization and through averaging.
Exploiting these two mechanisms as fully as possible seems to me to be the way
forward in machine learning

Michael I. Jordan from [1]

Trying to model complex systems, involves great deal of uncertainty and using the
power of probabilities is a great way to go [2]. Going this way though we need to
deal with the joint distributions which can be both computationally and statistically
expensive. With graphical models one tries to represent a joint distribution with a
small number of edges allowing, in that way, to create models with reasonable both
the computational cost and the number of parameters needed to estimate. The fun-
damental idea is to factorize the probability distribution in a way that the individual
parts are easier to compute. There exist two great families for graphical models,
directed and undirected ones, where the main difference from a computational point
of view is the existence of a normalisation constant called partition function, for the
undirected graphs.

Historically, probabilistic models in combination with graphs can be found at the
early 1900’s, for example, the path diagrams of the geneticist Sewall Wright [3]. Al-
though the term Bayesian Networks can be traced back to Judea Pearl in 1985 and
mainly because of Thomas Bayes (1702-1761) work on the way of updating prob-
abilities in the light of new evidence. Soon Bayesian Networks became a popular
tool in Artificial Intelligence and expert system’s community for modelling uncer-
tainty. Example of graphical models are Markov chains, Naive Bayes, Neural
Networks etc.

Another term closely related in modelling joint distributions, is generative mod-
els and they have the great advantage that they need fewer number of parameters
to learn than the size of training dataset. An example from deep learning in im-
ages is given in [4] where the authors trained a generative model to assign high
and low probabilities on whether an image shows a bedroom. By sampling from
this distribution, they created realistic images of bedrooms. Transferring the same
principles, one can apply probabilistic models for speech recognition and speech syn-

3

List of Tables

thesis. Fascinating experiments with recurrent neural networks, like in [5], resulted
in text generation. Probabilistic models were also applied in computational biology,
as presented in [6]. In medical diagnostics we see the efforts in an older paper [7]
to construct a Bayesian network to distinguish patients with pneumonia from other
deceases, with very good results.

The thesis structure is as follows : chapter one will introduce a basic understand-
ing of the Bayesian Networks. This includes definitions and terms from probability
theory and graph theory together with topics related to Bayesian Networks and dis-
cretization techniques. In chapter two the topic of learning a Bayesian Network
will be illustrated that consists of the structure learning and parameter learn-
ing. The inference phase is also discussed. There will be a small presentation of
the algorithms for structure learning with most attention to score based type and
specifically theHill Climbing search. Computational results, discussion and future
work, will be the topic of chapter three.

4

1
Theoretical Background

A Bayesian network is a Directed Acyclic Graph which aims to represent in a
compact way the joint probability distribution of a set of random variables. In sit-
uation where the random variables are all boolean, in order to learn all the entries
of the conditional probability table is 2N where N is the number of variables. This
number becomes huge as N becomes large and quickly the task of calculating the
empirical frequencies(or empirical probabilities) becomes intractable. In theory, if
the joint probability is known, one can answer to any type of queries of interest. This
task can be made more easy if we introduce/exploit any conditional Independence
between the variables which will reduce the number of probabilities to learn.

This Chapter introduces background knowledge in probability and graph theory in
order to support more advanced notions needed for introducing Bayesian Networks.
Because the thesis is going to investigate both discrete and continuous networks,
transformation of continuous variables to discrete is needed, thus there will be also
a presentation of discretization methods of continuous models.

1.1 Some notions and definitions of Probability
theory

Now is going to follow a brief presentation of some notions which will be used through
the thesis.
Definition 1.1. Discrete variables case rule. The probability P (X = x) of a variable
X to be in the state x, is represented by a value between 0 and 1. If P (X = x) = 1
then it is certain for the random variable to be in that state and if P (X = x) = 0
it is certain that the variable is not in that state. If dom(X) the domain of the
random variable X, then ∑x∈dom(X) P (X = x) = 1, i.e the sum of the probabilities
over the space of all states is 1.

Definition 1.2. Marginals. If we have the joint probability distribution of two
random variables P (X = x, Y = y) then the distribution of one of them is given by
:

P (X = x) =
∑
i

P (X = x, Y = yi)

5

1. Theoretical Background

here, for the interaction of two variables we have the following form :

P (X=a or Y=b) = P (X = a) + P (Y = b)− P (X=a and Y=b)

where P (X and Y) = P (X, Y).

Definition 1.3. Conditional Probability and Baye’s rule. The probability of X
occurring given that Y is true :

P (X|Y) = P (X, Y)
P (Y) (1.1)

for P (Y) 6= 0. Using that P (X, Y) = P (X, Y), we arrive at Baye’s rule :

P (X|Y) = P (Y |X)P (X)
P (Y) (1.2)

Bayes theorem is in the center of probabilistic reasoning i.e. detecting conditional
probability relationships from data. Looking at eq. (1.2) the term P (X|Y) is the
posterior or conditional probability of observing X given we have observed Y. The
term P (Y |X) is called the likelihood for a given x ∈ X and it is the probability of
observing Y given the evidence on X and P (X) is the probability distribution of
X, known as the prior. Finally the term P (Y) is the probability distribution of the
evidence of Y and acts as a normalization constant. If we cannot compute P (Y),
then we get the unnormalized posterior.

Definition 1.4. Probability density function. In the case of a continuous random
variable x, the probability density f(x) is defined such that :∫ +∞

−∞
f(x)dx = 1, f(x) ≥ 0

If instead someone wants the probability of the random variable inside a specific
interval [A,B], then it is computed as :

P (A ≤ x ≤ B) =
∫ B

A
f(x)dx.

Definition 1.5. Independence. Mathematically we say that two random variables,
X and Y, are independent if it holds :

P (X, Y) = P (X)P (Y), (1.3)

which is equivalent also to say :

p(X|Y) = p(X) ⇔ p(Y |X) = p(Y). (1.4)

if eqs. (1.3) to (1.4) are valid for all states of X and Y, then they are independent.

6

1. Theoretical Background

The notions of independence and conditional independence play an import role in
Bayesian networks. Despite their mathematical formulation, human reasoning can
understand those concepts without using any mathematics [8] or a need to perform
numerical calculations. It is more of a common sense to argue that the probability
of a nuclear war happening in the next years is independent of winning the lottery
without having to verify something like P (X, Y) = P (X)P (Y). An event A is said
to be independent of event B, for a given K and stated as :

P (A|B,K) = P (A|K)

The notion of conditional independence give us the the intuition in how depen-
dencies change in the light of new information. Since K is given , knowing B will not
change the probability of A. Later in the thesis it is shown how those concepts relate
to Bayesian networks and probabilistic graphical models in general. Generalizing
eq. (1.1) and using the chain rule, we have the following expression

P (X1 . . . Xn) =
1∏
i=n

P (Xi|P (Xi−1 . . . P (X1).

1.2 Notions of Graph Theory
Now it follows a brief presentation of some definitions from graph theory.

Definition 1.6. A graph G consists of set of nodes, X = {X1 . . . Xn} and a set
of edges E = {(Xi, Xj) : Xi, Xj ∈ X} , connecting those nodes and it is defined
as G = G(X , E). An edge connecting two nodes, Xi, Xj, can have a direction i.e.
Xi → Xj or not, Xi −Xj. If all edges in the graph fall into the first case we have
a directed graph whereas if they fall in the second case we have an undirected
graph.

Definition 1.7. A graph can be represented by the so called adjacency matrix
A, which is a square matrix of the size n× n, where n is the number of nodes. The
entries of the matrix are usually, 0’s and 1’s. If we have the edge Xi → Xj then
Aij = 1, but if there is no connection between Xi, Xj then Aij = 0. In the case of
an undirected graph the table is symmetric.

Definition 1.8. If the following holds

G(Xi, Xj) = 1 IFF G(Xj, Xi) = 1,

then the graph is undirected. If now

G(Xi, Xi) = 0.

holds, there are no self loops.

7

1. Theoretical Background

Definition 1.9. For a node Xj, in a directed graph, the set

pa(Xj) .= {Xi : G(Xi, Xj) = 1},

is called parents of Xj. Further, for the same node, the set

ch(Xj) .= {Xj : G(Xj, X1) = 1},

is called children of Xj. For a node Xj, its family is the node and its parents i.e.

fam(Xj) = {Xj} ∪ pa(Xj).

A node without parents is called root and a node without children is called leaf.
We call all the parents, grandparents and so on, ancestors of a node. We call all
the children, grandchildren and so on, descendants of a node (See fig. 1.1).

Figure 1.1: Directed graph with four nodes. A is the root. B has A as parent. C
and D are leafs because they have no children. A and B are ancestors of D. B and

C are children of A. Nodes B and D are descendants of A.

Definition 1.10. Path or trail Xi Xj, is a series of edges from Xi to Xj. By
cycle we define a series of nodes that if we follow them we get to the node we
started, X1 −X2 − . . . Xn −X1 where n ≥ 2. If the graph is directed then we have
a directed cycle(See fig. 1.2).

Definition 1.11. A directed graph with no directed cycles is called directed
acyclic graph or DAG. In fig. 1.1 we see such an example.

Definition 1.12. A topological ordering of a DAG is when the parent nodes have
lower numbers than those of their children. For example in fig. 1.3 the topological
orderings can be written as {1, 2, 3, 4} or {1, 3, 2, 4}.

8

1. Theoretical Background

Figure 1.2: A directed cycle.

Figure 1.3: A Directed acyclic graph.

Definition 1.13. A Directed tree is a DAG where every node has at most one
parent. Undirected tree is an undirected graph where there exists only a single
path between any pair of nodes (no cycles).

Definition 1.14. By neighbors of node we mean any other node that is directly
connected to it. This is true for any graph.

Definition 1.15. In the case of an undirected graph, a clique is the set of nodes
that are all neighbors to each other. By maximum clique we call the clique that
cannot be made any larger and remain a clique (See fig. 1.4).

1.3 Conditional Independence and DAGS
Assume that the structure in fig. 1.5 represents the connections of a set of variables
for a hypothetical problem .

For constructing the network under consideration, the assumption that every vari-
able is independent of its non-descendants given its parentsis made. This is called

9

1. Theoretical Background

Figure 1.4: Undirected graph. Nodes 3 and 1 define a clique but not a max
clique since we can always add node 2 and still have a clique. The maximal cliques

are {1, 2, 3}, {2, 3, 4}, {3, 5}.

Figure 1.5: Proposed structure for a hypothetical example.

local Markov property and for in this example it states that if variable D is
given, then B and R don’t depend on T. In order to do perform inference we need
to make queries on the joint distribution but without the need to use directly the
full conditional probability table (for discrete variables). Bayesian networks have
the benefit to read from this table with fewer calculations. To get some intuition
and for small number of variables, we can list our variables in order such that there

10

1. Theoretical Background

are no non-descendants on the left : C,D,B,T,R. For the joint probability we have
then :

P (C,D,B, T,R) = P (C|D,B, T,R)P (D|B, T,R)P (B|T,R)P (T |R)P (R)
= P (C|D)P (D|B,R)P (B)P (T |R)P (R)

Thus every entry from joint probability table can be calculated since any entry is
some combination of the above variables.
There are three types of connections in Bayesian networks : Serial (or head-tail),
Converging (or head-head) and Diverging (tail-tail).

Figure 1.6: Serial connection

Figure 1.7: Converging connection

Figure 1.8: Diverging connection

In terms of conditional independence and for the serial connection, knowing D makes
B and C independent (intermediate cause). In fig. 1.7 NOT knowing D or C makes
R and B independent (common effect). For the last case in fig. 1.8, knowing R
makes T and D independent (common cause). More specifically :

• For the Serial connection (fig. 1.6) the statement is knowing D makes B, C
conditionally independent, P (B,C|D) = P (B|D)P (C|D) :

P (B,C|D) = P (B,C,D)
P (D)

= P (B)P (D|B)P (C|D)
P (D)

= P (B|D)P (C|D)

the last equality is because :

P (D|B)P (B) = P (B,D)
= P (D|B)P (D).

So B and C are conditionally independent given D.

11

1. Theoretical Background

• For the Diverging connection (fig. 1.8) the statement is knowing R makes T
and D independent :

P (R,D, T) = P (R)P (D|R)P (T |R) (1.5)
Conditioning on R it holds that

P (D,T |R) = P (R,D, T)/P (R)
= P (D|R)P (T |R)

So here also D and T are conditionally independent given R.

• For the Converging connection (fig. 1.7)the statement is NOT knowing D or
C makes R and B independent :

P (R,D,B) = P (R)P (B)P (D|R,B)

but now

P (R,B|D) = P (R,B,D)/P (D)
= P (R|D)P (B|D)

is not true in general. Instead now R and B aremarginally independent because

P (R,B) =
∑
D

P (R,B,D)

= P (R)P (B)
∑
D

P (D|R,B)

= P (R)P (D)

1.3.1 D-Separation
The concept of D-separation is very important for studying directed acyclic graphical
models and is ,in a sense, a generalisation of the conditional independence relations
that were presented above. The letter d in d-separation stands for dependence ac-
cording to some authors1. Following [8] we have the following definition :

Definition 1.16. If X,Y,Z are three disjoint subsets of nodes of a DAG. We will
say that Z d-separates X from Y if along every path between a node in X and a
node in Y there is a node w satisfying one of the following conditions :

1. w has converging arrows and none of w and its descendants are in Z, or
2. w does not have converging arrows and w is in Z.

If a path satisfies any of the above, is said to be active and when it does not satisfies
any of the above, is said to be blocked by Z. Checking the example in fig. 1.9, if

1https://www.andrew.cmu.edu/user/scheines/tutor/d-sep.html

12

1. Theoretical Background

Z = {1} and Y = {3}, X = {2} then the path 2 ← 1 → 3 is said to be blocked
because the node 1 ∈ Z satisfies the second condition. Thus Z = {1} d-separates
X and Y. Further, the path 2→ 4← 3 is blocked because node 4 satisfies condition
1. But if instead Z = {1, 5} then the path 2→ 4← 3 becomes active.

Figure 1.9: Example graph to illustrate the d-separation concept.

Intuitively, the statement Z d-separates X from Y says that X and Y are condi-
tionally independent given the variable Z in all the probability distributions that the
specific graph can represent. Further an active path allows information/dependence
to flow between the variables of the two nodes. If there is any active path between
two nodes, the it is said that they are d-connected. A very efficient and popular
algorithm to test if Z d-separates X from Y, is the Bayes ball algorithm as
described in [9].

Assume the graph G and I(G) is the set of all conditional statements encoded in
G. It is said that G is an I-map for P iff I(G) ⊆ I(P), where I(P) the set of
all conditional statements that hold for the distribution P. In words, the previous
statement means that the graph is a I-map only if the conditional independence
statements made, hold true for the distribution also. The converse is not true : a
distribution may factorize over G but there are independencies not captured by G.
In the special case when no conditional independence assumptions are made, the

13

1. Theoretical Background

graph is fully connected and is a I-map for all distributions. It is said that G is
a minimal I-map of the distribution P, if G is a I-map of P and there exists no
G ′ ⊆ G which is a I-map of P. A relevant definition to I-map is the D-map : a graph
G is a D-map of the distribution P if every conditional independence statement in
P holds true for G. If G is both a D and a I map for P, then it is called perfect map.

Definition 1.17. Markov blanket is the minimal set of nodes for a node Xi that
if observed, Xi becomes independent of the rest of the nodes in the graph. The
notion is common for both directed and undirected graphs. In undirected graphs
the Markov blanket is just the neighbouring nodes of Xi whereas in DAGs it is the
union of parents, children and the co-parents(other parents of its children) of Xi. In
fig. 1.10 and fig. 1.11 the Markov blanket of node three is shown in dark grey colour.

Figure 1.10: Markov blanket in DAGS. Figure 1.11: Markov blanket in Markov
graphs.

1.4 Markov equivalence and PDAGs
Despite any differences in their structure, two DAGs can encode the same condi-
tional independencies and are equivalent in this way. This concept was studied and
presented by TS Verma and Judea Perl in [10] giving the formal definition that two
DAGs are equivalent iff they have the same skeleton and the same v-structure.
The skeleton is the graph when the direction from the edges is removed and v-
structure are three nodes with two edges starting from two disjoint nodes, converge
to the third (the head to head connection show in fig. 1.7). The equivalence between
DAGs plays an important role since it is involved heavily in algorithms that try to
learn the structure of a Bayesian network from data and a lot of research is done in
that area, like in [11].
A set of Markov equivalence classes can be represented uniquely by a PDAG(partially
DAG) which is a graph that contains both directed and udirected edges. By assign-
ing directions to the undirected edges from a given PDAG, with the constraints of
not making any directed cycles and no new v-structures, one can extract Markov
equivalent DAGs. For example, the skeleton X-Y-Z, has two equivalent classes :

14

1. Theoretical Background

one when [(X ⊥ Z|Y),¬(X ⊥ Z)|∅] and [(X ⊥ Z|Y),¬(X ⊥ Z)|∅] (see fig. 1.12)
(example taken from [12]).

Figure 1.12: The first three graphs belong to the class [(X ⊥ Z|Y),¬(X ⊥ Z)|∅],
the fourth graph belongs to the class [(X ⊥ Z|Y),¬(X ⊥ Z)|∅]. The last two graphs
illustrate the corresponding PDAGs.

One important observation is that diverging and serial connections have equivalent
factorizations. This means that one can lead to the other by applying the Baye’s
rule. This kind of equivalence is characteristic to Markov equivalent structures and
the set of all equivalent structures is called equivalent class.

1.5 Discretization of continuous variables
Lot of the research and applications of Bayesian networks deals with cases where
either the variables are discrete or they discretize the continuous variables. This of
course comes at a cost of losing information during the process of binning the data
and also increases the number of parameters that have to be learned because more
levels for a variable are produced. A very simple and easy to implement method,
is the interval approach. It only breaks the variable into equally width levels .
Some of the drawbacks of this method are : sensitivity to outliers, there might be
intervals with no points at all, it does not take into account the mutual informa-
tion inside the data set. Also it does not modify the shape of the distribution. A
second method is the Quantile which tries to create levels of equal size. It is also
fast to implement and it is not sensitive to outliers. Quantile method balances the
shape of the distribution and keeps more information than the interval method. In
both cases the number of intervals to create, is not known. Some approaches are:
Brooks-Carruthers, Huntsberger, Sturges, Scott, Freedman-Diaconis 2.

A more sophisticated approach that tries to preserve the mutual information between
the variables, is the method described by Hartemink in [13]. Next we describe the
Hartemink discretization algorithm , as presented in [14].
The algorithm 1 starts with an initial discretization of variables into k1 intervals.
Then it iterates inside the variables and looks at the adjacent intervals and collapses
the ones that minimise the loss of information between the intervals. The algorithm
stops when k2 << k1. The Hartemink approach is a better at keeping information
compared to quantile and interval methods. The method does not take into account
more complex relationships and there is still information loss.

2http://eric.univ-lyon2.fr/ ricco/cours/slides/en/discretisation.pdf

15

1. Theoretical Background

Algorithm 1: Hatermink Discretization algorithm.
1. Discretize each variable independently using an initial discretization method

like quantile, using a large number of intervals k1 like eg. 50 or 100.

2. Repeat the following steps until each variable has k2 << k1 intervals,
iterating over each variable Xi, i = 1 . . . , p :
(a) Compute :

MXi
=
∑
j 6=i

MI(Xi, Xj) (1.6)

(b) For each pair of adjacent intervals l of Xi, join them into one interval
and with the resulting variable X∗i (l) compute :

MX∗
i (l) =

∑
j 6=i

MI(X∗i (l), Xj) (1.7)

(c) set Xi = argmaxXi(l)MX∗
i (l) .

The mutual information between two discrete variables X and Y, gives a measure
of the dependence or the amount of information for one random variable when
observing the other one. Given a data set of N observations, were the columns are
the variables, the mutual information is calculated though the empirical probabilities
:

MI(X, Y) =
N∑
i

N∑
j

p(xi, yj) log
(
p(xi, yj)
p(xi)p(yj)

)
(1.8)

Another way to define the mutual information is through the entropy :

H(X) = −
N∑
i

p(xi)log(p(xi)), (1.9)

and for the two random, variables case :

H(X, Y) = −
N∑
i

N∑
j

p(xi, yj)log(p(xi, yj)). (1.10)

In terms of the entropy, the mutual information of two discrete random variables,
is given as :

MI = H(X) +H(Y)−H(X, Y).
Sometimes it is very common to use the log2 instead of the log in eqs. (1.8) to (1.10)
and then the results are measured in units of bits.
The mutual information is linked also to the G− test which is a likelihood ratio
test, by :

G = 2NMI(X, Y) (1.11)
where N is the total observations of the dataset. It is often the case that many
software libraries use eq. (1.11) as a scaled version of the mutual information score.
A toy example for the method is shown in appendix C.

16

1. Theoretical Background

1.6 Conditional Linear Gaussian Bayesian Net-
works

Conditional Linear Gaussian Bayesian Networks (CLGN) are a popular class of
Bayesian networks for applying in the case of mixed variables type. They have the
restriction that discrete variables cannot have continuous parents. Those limita-
tions arise from the fact that the joint probability distribution must factorise in a
discrete part and a mixed part. The joint CPD of a CGN is a mixture of Gaussian
distributions. There exists a Gaussian distribution for each level of the discrete vari-
ables. The weight of each Gaussian in the mixture is the probability of this level [15].

The discrete nodes have conditional probability tables as their local distributions
and the continuous variables have a linear regression model for each level of their
discrete parent(s). Let ∆Xi

be the discrete parents of the node Xi and ΓXi
be the

continuous parents. Then we can express the local distributions as :

Xi|ΠXi
∼ N (µXi,δXi

+ ΓXi
βXi,δXi

, σXi,δXi
) (1.12)

where for the linear regressions we have :

Xi = µXi,δXi
+ ΓXi

βXi,δXi
+ εXi,δXi

εXi,δXi
∼ N (0, σXi,δXi

) (1.13)

where δXi
is the levels of the discrete variables. If a node has no discrete parents

then its local distribution is given by the linear regression :

Xi = µXi
+ ΓXi

βXi
+ εXi

εXi
∼ N (0, σXi

) (1.14)

Two main restrictions of this models are that discrete nodes in the DAG cannot have
continuous parents and that they allow linear dependencies between the variables
because of the linear regression relationships.

Below, in eqs. (1.15) to (1.20), the number of parameters and the log-likelihoods are
shown for the local distributions in the cases of Bayesian networks.
The log-likelihood and the parameters for a conditional linear Gaussian network are
given by :

LL(Xi,ΠXi
) =

n∏
m=1
N (xm;µXi,δm + γmβXi,δm , σ

2
Xi,δm

) (1.15)

|ΘXi
| = |∆Xi

| × (|ΓXi
|+ 1) (1.16)

The log-likelihood and the parameters for a Gaussian Bayesian network are given
by :

LL(Xi,ΠXi
) =

n∏
m=1
N (xm;µXi

+ γmβXi
, σ2

Xi
] (1.17)

17

1. Theoretical Background

|ΘXi
| = |ΠXi

|+ 1 (1.18)

and in the case of a discrete Bayesian network :

LL(Xi,ΠXi
) =

n∏
m=1

P(Xi = xm|Pii = πm), (1.19)

|ΘXi
| = R× |ΠXi

| (1.20)

In appendix E a simple example is shown, on how to calculate the number of pa-
rameters in CLGN.

1.7 Causality in DAGs

Although in the literature one can find interpretations of the arrows between two
nodes as causal relationships or sometimes direct dependencies, caution is advised.
The arrows don not necessarily describe causal relationships. As an example, take
the connections : B− > A− > C, B < −A− > C and C− > A− > B. In proba-
bilistic terms those graphs are equivalent because they encode the same conditional
independent statements :

P (A)P (B|A)P (C|A) = P (B)P (A|B)P (C|A)

describing the first graph whereas

P (A)P (B|A)P (C|A) = P (C)P (A|C)P (B|A)

describes the last graph.

In order to make causal interpretation of the graph, we need three assumptions :

1. Every node variable Xi is conditionally independent of its non effects given its
causes. This is called causal Markov condition.

2. The DAG must be faithful, meaning that it is a perfect map between the
probability distribution and the graphical representation.

3. The are no latent variables that may affect the structure of the DAG and act
as confounding factors.

These assumptions are hard to verify in real life and possibly the best one can do is
to check for confounding factor using blocking experimental design3.

3http://www.bnlearn.com/about/teaching/slides-bnshort.pdf

18

1. Theoretical Background

1.8 Summary
Bayesian Networks are Directed Acyclic Graphs and model the joint probability
distribution of a set of variables in a compact way. Bayesian Networks can be used
as causal models but this requires more assumptions and especially the presence or
not of latent variables. Id we want to discretise the continuous variables, then the
Hartemink method is a good method to apply which tries to preserve the mutual
information between the variables compared to more simple approaches. In the case
we have a mixed type of variables, then the popular choice is the conditional linear
gaussian networks. Although it has strong assumptions which may not be a good
choice in a realistic situation.

19

1. Theoretical Background

20

2
Bayesian Networks : Learning and

Inference

This chapter presents a brief review of the concept of learning a Bayesian network.
There are two main phases of learning a Bayesian network : 1) Structure learning
and the 2) Parameters learning. When the structure and parameters are known,
one then can perform inference, which is the task of asking queries from our model.
Although there is a number of structure learning algorithms, the focus was around
score based type algorithms and particularly the Hill Climbing. The choice was
based mostly for the fast approach and ease of interpretation. A brief review of
most known structure learning algorithms will be presented also . For the parameter
learning phase , the Maximum Likelihood method was used. Finally, there will be
an illustration of Logic Sampling algorithm for approximate inference.

2.1 Structure learning
Structure learning is the first step in the process of learning a Bayesian network.
This the stage of estimating a DAG from data. Alternatively structure can be es-
timated using experts knowledge at least in the case of relatively low number of
variables. Learning a DAG from data is not an easy task and one of the reasons is
that the space of possible structures becomes really huge with just a few variables
only. Actually it is shown that the problem of structure learning is NP-Complete
(see [16]) . The space of possible DAGs is super exponential on the number of nodes
n (O(n!2n(n−1)/2)) (see [17]). For example, for five variables there are about 104

DAGs whereas for ten variables, the number goes to about 1018. Further, you can
not find a unique structure for a given dataset, since many structures can encode
the same conditional independence relations [18].

Compactly we can represent the problem of learning a model of a Bayesian network
from a dataset D as :

learning︷ ︸︸ ︷
P (M|D) =

structure learning︷ ︸︸ ︷
P (G|D) ×

parameter learning︷ ︸︸ ︷
P (Θ|G,D) (2.1)

were G = (V,E) is the structure of the Bayesian network that consists of the set of
nodes V and the set of edges E and Θ are the parameters of the global distribution.
Since the whole task of learning can be intractable, breaking into local computa-
tions the problem becomes feasible. Local computations are performed in the local

21

2. Bayesian Networks : Learning and Inference

distributions involving one node Xi by decompose the global distribution X . In
terms of the local distributions the problem of a learning a Bayesian network can
be formulated as :

P (G|D) ∝ P (G)P (D|G) (2.2)

and when using marginalisation :

P (G)P (D|G) = P (G)
∫
P (D|G,Θ)P (Θ|G)dΘ (2.3)

By denoting ΠXi
the parents of node Xi, P (D|G) can be written as :

P (D|G) =
N∏
i=1

(∫
P (Xi|ΠXi

,ΘXi
)P (Θ)

)
(2.4)

and for the parameter learning :

P (Θ|G,D) =
N∏
i=1

P (ΘXi
|ΠXi

,D) (2.5)

were the index i denotes the variables. There are mainly three major groups of
algorithms for structure learning : constraint-based , score-based and hybrid
algorithms.

2.1.1 Constraint based algorithms
Algorithms that fall into this category, originate from the work of Verma and Perl.
In their work [10] Perl introduced the Inductive Causation Algorithm which aims
for structure learning using statistical tests for conditional Independence. In algo-
rithm 2 we can see the details of IC.

Algorithm 2: Inductive Causation Algorithm[19]
1. For each pair of variables A and B in V search for set SAB ⊆ V such that A

and B are independent given SAB and A,B /∈ SAB. If no such a set exists,
place an undirected arc between A and B.

2. For each pair of non-adjacent variables A and B with a common neighbour
C, check whether C ∈ SAB. If it is not, set the direction of the arcs A-C and
C-B to A->C and C<-B

3. Set the direction of arcs which are still undirected by applying recursively
the following two rules:
(a) if A is adjacent to B and there is a strictly directed path from A to B

then set the direction of A−B to A− > B.
(b) if A and B are not adjacent but A− > C and C −B, then change the

latter to C− > B.

4. Return the resulting (partially) directed acyclic graph.

22

2. Bayesian Networks : Learning and Inference

In the first step, finds all the pair of variables that are connected by an arc without
caring for direction. Since those variables they cannot be d-separated they cannot
be conditionally independent. In the second step it tries to find all the v-structures
among non-adjacent variables A,B which have a common neighbour C. If there is
a node C that d-separates A,B then it means that they are all part of the same
v-structure with C as the center. By the end of this step both the skeleton and the
v-structures are learned thus the equivalent class is uniquely identified. The last
steps are all calculating the CPDAG(completed partially DAG). There is a problem
with this is algorithm that in real life applications it is difficult to be applied since
the first steps involve computations of conditional Independence relations which are
exponential in numbers. Later, many algorithms where proposed and are computa-
tionally more efficient.

The PC algorithm was introduced in [20] and it is the first try for real life applica-
tion of IC algorithm. In 2003 the Grow-Shrink algorithm was introduced [21]. In
comparison with the PC algorithm, the Grow-Shrink(and others) make use of the
Markov Blanket.

Algorithm 3: Grow-Shrink Markov Blanket algorithm.
1. S < −∅

2. While ∃Y ∈ U− {X} such that Y,X are not independent given S, do
S < −S ∪Y. [Growing Phase]

3. While Y ∈ S such that Y,X conditionally independent

In its core, the Grow-Shrink algorithm consists of two phases : growing and shrink-
ing. As we can see in algorithm 3, it starts with an empty set S; As long as the
variables examined, are dependent given the current state of S, it adds them to S.
In the shrinking phase, the variables that violate the Markov Blanket property are
deleted from S. In this way it identifies the Markov blanket of the node and further
the direct parents and children of the node inside the blanket in order to create the
local structure around the node. Using the d-separation criterion upon triples of
variables, it then finds the direction of the edges. The GS Markov Blanket algo-
rithm is of order O(n) where n is the number of independence tests. In fig. 2.1, an
example of Grow-Shrink Markov Blanket algorithm is shown.

Since the Markov Blanket is recovered, this information is utilised to estimate the
local structure for each node and thus estimating the whole structure of the Bayesian
network. The plain Grow-Shrink then is presented in algorithm 4.

If maxXB(X) bounded by a constant, then the algorithm is of order O(n2) in con-
ditional Independence tests.

Next the Incremental Association Markov blanket algorithm is presented as
introduced in [22]. The algorithm consists of two phases : the forward selection

23

2. Bayesian Networks : Learning and Inference

Algorithm 4: Grow-Shrink algorithm [21].
1. Compute Markov Blanket : For a node X compute B(X).

2. Compute Graph Structure : Let T the smaller in size set between
B(X)− {X} and B(Y)− {Y } where Y ∈ B(X). If X,Y are dependent
given S for all S ⊆ T, then Y is a direct neigbour of X.

3. Compute Edge Orientation : Y is direct neighbor of X. T is the smaller
set between B(Y)− {X,Z} and B(Z)− {X, Y }. If a variable Z exists such
that Z ∈ N(X)−N(Y)− {Y }(N() :denotes direct neighbor) and Y,Z are
dependent given S ∪ {X} for all S ⊆ T, then orient Y− > X.

4. Remove Cycles : As long as there are cycles in the graph do :
(a) Compute the set of edges C : {X− > Y which is part of a cycle}.

(b) Remove from the current graph the edge in C that is part of the
greatest number of cycles, and put it in R.

5. Reverse Edges : Insert each edge from R in the graph in reverse order of
removal in Step 4, reversed.

6. Propagate Directions : For all nodes and for all Y ∈ N(X) such that
neither Y− > X nor X− > Y execute the following rule until it no longer
applies: If there exists a directed path from X to Y, orient X− > Y .

24

2. Bayesian Networks : Learning and Inference

Figure 2.1: Calculating the Markov Blanket for node A. The structure of the
original BN is shown with dashed lines (source : [21])

and the backward one. Starting with the forward selection, a set CMB is defined
that holds an estimate of the Markov Blanket MB(T). In the forward phase, CMB
fills with variables of the MB(T) and false positives. The backward phase removes
those false positives so that we end up in the end with the correct MB(T). The
Grow-Shrink algorithm and the Incremental Association algorithm are very similar
but the heuristics of the GS algorithm will produce more false positives in the CMB
at the early stage of PHASE I (more on [22]).

25

2. Bayesian Networks : Learning and Inference

Algorithm 5: Incremental Association algorithm [22].
1 [PHASE I] : CMB = ∅
2 while CMB has changed do
3 Find the feature X in V − CMB − {T} that maximizes F(X;T |CMB);
4 if not I(X;T |CMB) then
5 add X to CMB;
6 end
7 end
8 [PHASE II] : Remove from CMB all variables X for which I(X;T |CMB − {X})

Return CMB

In 2005 the Fast Incremental Association algorithm was introduced by Yara-
makala and Margaritis([23]) in order to calculate the Markov Blanket. Although
this variant is very similar to other IAMB methods, it differs that it uses, not one but
a number of attributes at a time after each re-ordering of the remaining attributes
and thus reducing the amount of conditional independence tests needed. Also it
uses G2 test which, by the opinion of the author, is more appropriate. The number
of attributes added to the blanket at each iteration is based on the heuristic : add
dependent variables as long as the conditional Independence tests are reliable(under
the condition that there are enough data to conduct them). The authors claim that
their algorithm gives faster and more reliable results at many occasions compared to
other algorithms, without affecting the accuracy of calculating the Markov Blankets,
in a bad way.

2.1.2 Score based algorithms
The idea behind this class of algorithms is to pick a candidate structure that max-
imizes a score function. An obvious limitation for these methods is the huge space
of possible DAGs which is super exponential in the number of nodes. Most notable
heuristics used are simulated anealling, greedy search, genetic algorithms (this topic
is covered well in [24]). For our purposes we are going to present the Greedy Search
algorithm as presented in [25] and uses a combination of Hill Climbing, TABU and
random restarts steps.

Looking at algorithm 7, the first three steps are the usual Hill Climbing search
which it can be improved by adding a Tabu search and random restarts. The ran-
dom restarts phase is to assist HC not to get stuck in local minima by trying again
the search from random initial states. The tabu search holds a list of previously
visited states so that the algorithm will not visit them again. This contributes to
both the efficiency and to avoid some local minima(see [24] for more).

Since looking to score all the possible arcs in the DAG space it will become unfeasible
when the number of variables grow, some heuristics will be used. Hill Climbing will
do a local search meaning that it will start from a initial graph structure and will
add/remove/reverse one edge at a time, from the current best scored structure and

26

2. Bayesian Networks : Learning and Inference

Algorithm 6: Fast Incremental Association Markov Blanket algorithm
1 B(T)← ∅
2 S← {A|A ∈ U − {T} andA 6⊥⊥ T}
3 while S 6= ∅ do
4 〈X1 . . . X|S|〉 ← S sorted according to h
5 insufficient data ← FALSE
6 [GROWING PHASE]
7 for i=1 to |S| do
8 if (N/rXi

rT rB(T)) ≥ κ then
9 B(T)← B(T) ∪ {Xi}

10 else
11 insufficient data ← TRUE go to
12 end
13 end
14 [SHRINKING PHASE]
15 for each attribute A ∈ B(T) do
16 if (A ⊥⊥ T |B(T)− {A}) then
17 B(T)← B(T)− {A}
18 end
19 end
20 if insufficient data = TRUE and no attributes were removed in the shrinking

phase then
21 halt
22 else
23 S← {A|A ∈ U − {T} −B(T) and(A 6⊥⊥ T |B(T))
24 end
25 end

score each configuration. Repeating this procedure, it will perform till the score
can grow anymore. This means that at a local optima it will stop. Also since the
space of DAGs grows super exponential with the number of variables,many local
optima might exist and there is no guarantee that HC will find a global optimum.
When enhancing HC with random restarts, we can select the number of random
restarts and how perturbed the initial structure will be relative to the previous best
estimate.

2.2 Scoring Functions

The main algorithm used for structure estimation is the Hill Climbing, which is a
score based method. In order to perform model selection there few well known scores
mainly : Bayesian Information Criterion (BIC) and Akaike Information Criterion
(AIC).

BIC score is given by the formula :

27

2. Bayesian Networks : Learning and Inference

Algorithm 7: Greedy Search algorithm using Hill Climbing and Tabu search to-
gether with a initialisation and random restart phases.

1. Compute the score of G, SG = Score(G,D).
2. Set Smax = SG and Gmax = G.
3. Hill-Climbing : repeat as long as Smax increases:

(a) For every possible arc addition, deletion or reversal in Gmax resulting in
a DAG :
i. Compute the score of the modified DAG G∗, SG∗ = Score(G∗,D)
ii. If SG∗ > Smax and SG∗ > SG and Gmax = G and SG = SG∗

(b) If SG > Smax, set Smax = SG and Gmax = G
4. Tabu search: for up to t0 times :

(a) repeat step 3 but choose the DAG G with the highest SG that has not
be visited in the last in the last t1 steps regardless of Smax;

(b) if SG > Smax set Smax = S0 = SG and Gmax = G0 = G and restart the
search from step 3.

5. Random restart: for up to r times, perturb Gmax with multiple arc
additions, deletions and reversals to obtain a new DAG G′ and:
(a) set S0 = Smax = SG and G0 = Gmax = G and restart the search from

step 3.
(b) if the new Gmax is the same as the previous Gmax, stop and return Gmax.

BIC = ln(n)k − 2ln(L) (2.6)

where n is the sample size, k the number of parameters learnt by the model and
L the maximum likelihood of the data. BIC also has a great property that is very
useful for scoring functions in Bayesian Networks that of being decomposable (i.e
can break into local components- variables and their parents). The total score of a
DAG will be the sum of BIC scores for each variable given its parents. The AIC is
given by :

AIC = 2k − 2log(L) (2.7)

Since the space of DAGs can be huge, in practice some heuristics is used together
with a decomposable score. If G is the structure and ΠXi

the parents of the node
Xi then :

Score(G) =
N∑
i=1

Score(Xi|ΠXi
) (2.8)

and then BIC is given by :

BIC(G) =
N∑
i=1

logP (Xi|ΠXi
)− |ΘXi

|
2 log n (2.9)

which is the version used in the programs tested in this thesis.

28

2. Bayesian Networks : Learning and Inference

For Bayesian Networks with mixed variables a common choice for scoring function
is the Conditional Gaussian Score(CG). CG score has two assumptions : 1) The
data where generated from mixture of Gaussians, one for each level of the discrete
variable and 2) The data are i.i.d because it helps with the computation of the log-
likelihood. Also, CG score uses BIC at its core so it has also the property of being
decomposable.

Let Yi denote the variables in the Bayesian Network and Pai the corresponding
parents. The parents are then divided into two disjoint sets of continuous and
discrete type Pci and Pdi. This method models three different sets : (Yi ∪ Pai)
when Yi is continuous or discrete and the set of Pai. Despite some differences the
procedure is almost the same if Yi is continuous or discrete. In either case, initially
the data must be partitioned to Πi partitions for each combination of the discrete
variable. Further a design matrix is constructed for each p ∈ Πi where it contains
the continuous variables that are to be fitted using the Gaussian. The two last
major steps are to fit also a multinomial distribution for counts and calculate the
BIC score(more details in [26]). BIC score uses the following equations to calculate
the score for the child given parent(s) system :

li(θ̂|X) = l{Yi∪Pai}(θ̂|X)− lPai
(θ̂|X) (2.10)

for the log-likelihood and for the degrees of freedom :

dfi(θ̂) = df{Yi∪Pai}(θ̂)− dfPai
(θ̂) (2.11)

2.3 Maximum Likelihood Parameter learning
After the structure is learnt, the next step is to fit the parameters. Let the index
i goes through the different variables of the network, the index k goes through the
data points, then :

L(Θ : D) =
∏
k

P (xk : Θ) (2.12)

=
∏
k

∏
i

P (xik|Πxi,k : Θi) (2.13)

=
∏
i

∏
k

P (xik|Πxi,k : Θi) (2.14)

=
∏
i

Li(D : Θi) (2.15)

If one can assume that each local conditional probability distribution is independent
from each other(disjoint), then the MLE can be computed by separately maximizing
each local likelihood. In the case of table conditional probability distributions, this
can be decomposed further and result in the following estimate :

θx|p = #occurrences wereX = x|P = p

#occurrences wereP = p
(2.16)

29

2. Bayesian Networks : Learning and Inference

a small example is demonstrated in eq. (D.1).

2.4 Inference

In inference we seek for the computation of marginal distributions of a subset of
variables given some others and in general make predictions given new data. In gen-
eral the most known classes of Bayesian networks that exact inference is possible,
are the discrete, the conditional linear and the Gaussian ones ([27]). In the case of
discrete Bayesian network, the number of parameters to learn grows exponentially
with the number of variables like nX , where n denotes the possible outcomes of
the discrete variable. Famous examples of exact inference algorithms, are variable
elimination, message passing and junction tree.

Since exact inference is impossible for big networks, approximate inference methods
were studied that perform well in real time applications. This kind of inference
is based on Monte Carlo methods. Below we present the logic sampling algo-
rithm as proposed in [28] and discussed in [1]. These algorithms were used in the
computations presented in section 3.

2.4.1 Logic Sampling

The problem can be formulated as follows : given a Bayesian network (G,P) where
G = (V,D) we want to calculate the probabilities of some values in a subset of some
nodes given the evidence (observed values of an other subset of nodes). By V we
denote the set of all nodes in the BN, P the joint probability distribution over the
nodes and D the arcs in the BN. Let E ⊆ V denotes the set of evidence and e their
values. The input to the algorithm is the BN and the evidence. The output are the
conditional probabilities for the values of each node in V-E given E = e. Finally,
denote by Xj ∈ V-E and xjk the kth value in the space of Xj’s, l the number of
nodes inside Xj space , n the number of nodes in V and m the number of trials.

Since the method samples values according to some probability, the conditional
probability will not return the same exact result each time someone runs a query.
As an example, considering a three discrete variables with a structure shown in
fig. 2.2, a possible query is P (KPI6 = 5K1|A16 = 0, A28 = 3) which is performed
with a different number of trials on the logic sampling. The results are shown in
fig. 2.3.
As the number of trials is increased, the resulting probabilities from the query,
gather around a central value. The simulation was repeated two times, one with
ten thousand trials and the second with one hundred thousand trials. In each run,
the query was repeated five hundred times which is the sum of the counts in the
histograms in fig. 2.3.

30

2. Bayesian Networks : Learning and Inference

Algorithm 8: Pseudo code for logic sampling algorithm [29] .
1. Ancestral ordering and Initialisation : Order all the nodes in some

ancestral order and initialise every xjk to zero.

2. for (i=1; i<= m; i++) do
{ j=1;
while (j <= n) do

generate a value x′j for Xj according to P (xj|paj)(pa is the parent nodes of
Xj).
if (Xj ∈ E and x′j 6= ej) then

j=1
else

j++
end

end
for (each Xj) do

for (k=1: k<= l: k++) do
if (xjk == x′j) then

add 1 to occurrences of xjk
end

end
end
}End first For
end

3. for (each Xj) do
for (k=1: k<= l: k++) do

P̂ (xjk|e) = occurrences/m
end
end

31

2. Bayesian Networks : Learning and Inference

Figure 2.2: Example of three nodes representing the connections between three
discrete variables.

Figure 2.3: Query run using Logic sampling with 10,000 trials on the left and
100,000 on the right. Each run consisted of 500 repetitions of the query. The

counts in the histogram, sum up to 500.

2.5 Bootstrap and Model Averaging

Since the estimation of a Bayesian Network Structure might be uncertain, some
methods where proposed in order to give some degree of confidence. A simple
application of a scoring algorithm to return the highest scored structure, might not
be enough to produce some confidence on the existence e.g. of an arc between the
variables X → Y . In [30] the bootstrap approach was proposed as a technique
to address this issue. In general, with bootstrap we treat our sample data as the
"population" and by using sample with replacement, we create smaller bootstrap
samples where we can make estimates like confidence intervals for the parameters

32

2. Bayesian Networks : Learning and Inference

and such. There is a parametric and non-parametric version of bootstrap. In the
parametric bootstrap, an assumption for the distribution of the data must be made.
The bootstrap approach can by summarised as :

Algorithm 9: Bootsrtap method for arc confidence.
1. for i = 1 · · ·n do

(a) Create D∗i bootstrap samples from the original dataset D using non
parametric bootstrap (although parametric bootstrap can be used also).

(b) Fop each D∗i learn its structure G∗i = (V,Ri).
end

2. Compute the confidence of each possible arc αi to be present in the true
network G0 = (V,A0) :

p̂i = P̂ (αi) = 1
B

n∑
i=1

1ei∈Ai
(2.17)

which will add one each time a specific arc is present in the structures from
the bootstrap datasets.

As explained in [31], they showed a simple rule in order to calculate an arc’s strength
and confidence of the direction from the bootstrap method. If we have B structures
learned from the bootstrap samples created from our dataset D, then if t1 is the
number of occurrences of the arc X− > Y and t2 the corresponding number for the
arc Y− > X then the strength of an arc is given by (t1 + t2/B). If t1 > t2 then it
keeps the arc X− > Y with confidence t1/(t1 + t2).

When the model averaging is performed, one can specify the significance threshold
in a custom way. It is the threshold above which an arc is considered significant
enough to be included in the network and it without taking into account for the
direction. This parameter can pass into the model averaging phase in order to have
the desired outcome.

A∗ = 1
B

B∑
i=1
A∗i (2.18)

where A∗ are the average adjacency matrix and A∗i the adjacency matrices for each
bootstrap estimated high scored structure. Then the matrix is filtered according to
the threshold value :

A = (Xi → Xj|A∗ > threshold) (2.19)
The non parametric bootstrap method is a frequentist’s approach. An other ap-
proach worth mentioning, is the Bayesian one , the full Bayesian approach also, as
described in [32] which uses Monte Carlo sampling from the posterior P (G|D).

33

2. Bayesian Networks : Learning and Inference

Estimating the threshold in eq. (2.19) is usually based on ad-hoc choices but in [33]
a statistical approach was proposed. The analysis is based on calculating the L1
norm between the cumulative distribution function of the empirical strengths, as
explained previously, and the ones calculated from the asymptotic case.

2.6 Summary
Structure learning is the first step for creating a DAG from data. In the years many
algorithms were developed that fall in three categories: scored based approach,
constraint and hybrid. The Hill Climbing search will perform a local search starting
from an initial graph and it will find the structure that maximizes a scoring function.
A great downside is that they can stack to local maxima. After the structure is
learnt, then we perform the task of learning the parameters. One way to do this
is to use the Maximum Likelihood method. In many cases an exact inference is
intractable and the only choice is to try approximate methods. One very common
algorithm for that is the Logic Sampling which is a Monte Carlo method. In order
to create a more robust structure one can perform bootstrap sampling to create
different structures and the do model averaging to produce a proposed structure.

34

3
Computational Results

First, some insights for the data and the domain are presented. Later, two different
approaches are investigated of creating a Bayesian network from data. The data
are naturally a mixed set of discrete and continuous data, but most of the discrete
data had only one values which didn’t contribute anything. Those kind of variables
were removed from the variables pool. which comes with each one assumptions and
restrictions. Later we are going to create a discrete Bayesian network by testing
some techniques that will transform the continuous data into discrete ones. This
approach also comes with serious drawbacks and mainly the loss of information that
comes after discretising our variables.

3.1 Domain Insights

The variables used in the analysis belong mainly into to different categories : the
variables that belong to class A that are more of fixed settings and the variables
that belong to the KPIs class. The time resolution of the two different classes is
different for in class A values are recorded once per day whereas the KPIs every
fifteen minutes. Therefore in order to have a meaningful join, variables of class A
keep the same value between observations. Further the KPIs are considered as a
time series.

The variables of both classes belong to a hierarchy of structures. The most macro-
scopic structure considered here is a network of antennas grouped by region. Each
antenna consists of different nested levels and the data describes the variables in each
different level. Let N = 1 . . . n the number of antennas and L = 1 . . .m all the levels
from all antennas, then we can see our variables as XL:N where X = (A ∪KPIs)
and it gives the value for variable X for level L in antenna N.

Both data sets contained missing values. Although the percentage was very small,
they had to be taken care of in order to be able to run the algorithms. The rows
containing missing values were deleted because the percentage was really small com-
pared to the size of the dataset and would seem to have any negative affects.

Finally, data size was restricted mainly for two reasons : 1) In order to be able
to perform computations locally and 2) because the measurements of the different
data sets, didn’t agreed in most of their time spans. A random re-sampling from the
original data set reduced any auto-correlations effects due to the temporal nature

35

3. Computational Results

Figure 3.1: Auto correlation plot for one of the KPIs before re sampling. Since the
vertical lines are way above the limits set by the horizontal lines, suggests strong
correlation between the consecutive data points.

Figure 3.2: Auto correlation plot for one of the KPIs after re sampling. The auto
correlation reduces over time due to random sampling of the data set.

of the KPIs.

3.2 Hybrid/Gaussian Model Results
The model variables(V) are separated to the sets of discrete(∆) and continuous(Γ)
such that V = ∆ ∪ Γ. If Y denotes the continuous variables and I the discrete
ones, then the joint distribution of the continuous variables given the discrete ones,
is assumed to be a multivariate Gaussian.

For calculating the structure of the Bayesian network, a variety of algorithms were
tested but in the end HC algorithm was used. The choice to focus on the HC al-
gorithm was done mainly for two reasons : 1) it was faster to study the output 2)
can scale better according to literature. In fig. 3.3 we see the results. In order to

36

3. Computational Results

get better estimate for the structure, prior expert knowledge was utilised in order
to exclude/include edges. Since HC is a score algorithm the Bayesian information
criterion(BIC) was used to score structures in the the DAG space. Many nodes are
left without connections and this is something domain experts expected, since they
are not strongly related to KPIs.

Figure 3.3: Structure estimation from mixed data using HC algorithm starting
from an empty initial graph. The model is a CLGN where arcs from KPIs to A

variables and arcs between the KPIs, where blacklisted due to domain knowledge.

Since the Hill Climbing search can stack in local maxima, we could improve the
search by making random restarts with random initial permutations of the initial
graph. Initially, the Hill Climbing search will start with random graph(a graph with
no edges at all or a generated graph based on the variables, but with random arcs
connecting them.) and it will terminate when the highest scoring DAG is found.
When doing a restart, the initial graph will be altered by doing random permutations
on the edges and the search will start again from a different initial point in the space
of DAGs. As noted in previous chapters, since the algorithm does a local search, we
cannot cover all the space of DAGs, but with the random restarts, more graphs will
be examined. In fig. 3.4 we can see the results of running the Hill Climbing search
together with 20 random restarts. In each restart 10 random permutations on the
edges of the initial graph are performed.

Using the bootstrap approach now gives fig. 3.5 with an estimated threshold of about
0.5.
In order to get a robust estimation of the structure, the bootstrap implementation
was let to run with 200 replications and sample sizes of the size of the dataset.

37

3. Computational Results

Figure 3.4: Structure estimation from mixed data using HC algorithm together
with 10 random restarts, 20 perturbations on starting graphs on each restart and
random initial graph. The red dashed lines are the false positive arcs and the blue

dashed lines the false negatives.

Figure 3.5: Structure estimation from mixed data using HC with bootstrap with
200 replications and a pre-estimated threshold. The red dashed lines are the false

positive arcs whereas the blue dashed lines the false negative arcs.

3.3 Discrete Model

Most of the variables are either integers of certain value, categorical and continuous
real numbers. Since lot of the integer variables were representing categories, they
were directly treated as factor variables in R. The variables with small number of

38

3. Computational Results

Figure 3.6: Structure learnt from data after discretization. The HC algorithm
was used with random initial graph. The edges from KPIs to A variables were

blacklisted together arcs between KPIs based on domain knowledge.

integer values, where treated as factors with the appropriate number of levels. Those
where mostly the cases for the variables of class A and one of the KPIs. The rest
of the KPIs where discretized using the hartemink method . Again, arcs going from
KPIs to other variables of the class A were blacklisted together with arcs between
KPIs.

3.3.1 Results

39

3. Computational Results

Figure 3.7: Structure learnt from discrete dataset. The HC algorithm used with
10 random restarts and 20 random permuted arcs after each restart. The red

dashed lines correspond to the false positives arcs and with dashed blue lines the
false negatives arcs.

Figure 3.8: Structure learnt from discrete dataset. The HC algorithm used with
bootstrap approach with 200 number of replicates.The blue dashed lines

correspond to the false negatives arcs.

40

3. Computational Results

3.4 Discussion

Since one of the main goals of this thesis is the application of Bayesian networks in
order to find possible causal relationships between the variables, an a priori struc-
ture is not known but more of insights depended on experts knowledge. There are
significant differences between the two different approaches and there are valid re-
strictions that should be taken into account. The two strictures learnt with the
plain HC with mixed data and discrete data don’t differ a lot and the reason is that
the black list of arcs permitted in the networks, coincides with the restriction that
CLGN have from construction that discrete nodes cannot have continuous nodes as
parents. Maybe the most important aspect is to what data you want to apply the
model to. For this thesis, a small amount of the available variables was used and the
effort was mostly to create a credible test case. The discrete model, although heav-
ily dependent on the number and kind of bins, will allow more complex interactions
between the variables although there will be information loss due to the binning.
But still, it doesn’t requires any normality assumption. On the other hand, much
care should be put in order to transform a continuous variable into a discrete one
and it requires a lot of knowledge on the data.

The plain implementation of HC algorithm, took almost one minute to finish on a
mixed dataset of about half a million entries. Because of the different configura-
tions of parents between the simple implementation and with the random restarts
networks, the number of parameters learned was 684 and 732 respectively although
they had the same number of edges. The bootstrap results converged to a very sim-
ilar structure but with a bit smaller number of arcs. All of the models represent a
conditional linear Gaussian Bayesian network. The number of parameters per node,
is the number of its parents plus an intercept (see eq. (1.14)) for each configuration
of the discrete parents plus any weights for cintinuous parents (see table E.1 also).
In order to test the predictive capabilities of the models, a 10-fold cross validation
was performed with the negative logarithm of the likelihood as the loss function.
The were not significant differences between the three approaches with all the mod-
els reporting a value close(and around) to 28− 31.

In order to construct the discrete model, the variables of class A were transformed
into factor by almost direct transformation of their values. In order to convert the
KPIs to discrete variables, the hatermink method was used. The structures learnt
with the discrete data had small differences from the structures learnt in the con-
tinuous case. One difference is that the discrete data produced a network with less
adges(37 Vs 41). This is due to the fact that there is loss of information because of
the discretization of the variables. Most of the computational time of learning the
networks went to the structure learning. Calculating the structures for the discrete
models, was much faster than the continuous ones. On possible explanation for this
is that the CLGNs need to perform linear regressions which could have contributed
to the overall running time. The implementation of the simple HC algorithm took
about two seconds for the discrete case compared to almost one minute for the con-
tinuous model. The bootstrap approach, was implemented with various number of

41

3. Computational Results

replicate numbers but the structures were the same so a small number of 200 repli-
cates was kept every time was needed to run the method.

The whole dataset is more complex than the test case used in this thesis. It seems
more possible to try some discretization technique rather than applying a CLGN.
This is mostly for the reason of the normality assumption and because continuous
nodes cannot be parents to discrete nodes. Further an improved implementation
can take into account the structure and ’hierarchy’ of the data for a more accurate
learning procedure.

Finally, since the data include time series, it is worth investigating the case of
Dynamic Bayesian networks which are Bayesian networks for modelling time series
data.

I

3. Computational Results

II

A
Data Plots

III

A. Data Plots

Figure A.1: Barplot of A variables.

Figure A.2: Histogram of continuous variables before discretisation.

IV

A. Data Plots

Figure A.3: Histogram of continuous variables before discretisation.

Figure A.4: Discretised variables with quantile method. Ir creates bins of equal
frequency of points. Does not preserve initial distribution of data.

Figure A.5: Discretised variables with interval method. It creates uneven
distribution of points in bins and it resembles the initial distribution.

V

A. Data Plots

F
igure

A
.6:

T
im

e
evolution

ofthe
K
PI1.

D
ifferent

colours
correspond

to
different

levels.

VI

A. Data Plots

F
ig
ur
e
A
.7
:
T
im

e
ev
ol
ut
io
n
of

th
e
K
PI

2.
D
iff
er
en
t
co
lo
ur
s
co
rr
es
po

nd
to

di
ffe

re
nt

le
ve
ls.

VII

A. Data Plots

VIII

B
Discrete Data Tables

Levels Freq
A2.1 10000 66415
A2.2 15000 26474
A2.3 20000 407111
A5.1 0 133946
A5.2 300 366054
A15.1 400 66982
A15.2 640 26474
A15.3 910 406544
A16.1 0 3814
A16.2 20 65300
A16.3 30 26429
A16.4 40 293517
A16.5 60 110923
A17.1 0 3814
A17.2 10 65867
A17.3 20 26429
A17.4 30 403873
A19.1 0 3814
A19.2 10 496169
A20.1 400 66982
A20.2 640 26474
A20.3 910 406544
A27.1 -120 225378
A27.2 -117 274622
A28.1 3 99458
A28.2 4 400542

IX

B. Discrete Data Tables

X

C
Hartemink Method

Here it follows an example to illustrate how the Hartemink discretization method
works. Given an initial dataframe as in table C.1 :

X SY
1 5.10 3.50
2 4.90 3.00
3 4.70 3.20
4 4.60 3.10
5 5.00 3.60
6 5.40 3.90
7 4.60 3.40
8 5.00 3.40
9 4.40 2.90
10 4.90 3.10

Table C.1: Toy data frame based on the iris data set.

X Y
1 (4.9,5.15] (3.4,3.65]
2 (4.65,4.9] [2.9,3.15]
3 (4.65,4.9] (3.15,3.4]
4 [4.4,4.65] [2.9,3.15]
5 (4.9,5.15] (3.4,3.65]
6 (5.15,5.4] (3.65,3.9]
7 [4.4,4.65] (3.15,3.4]
8 (4.9,5.15] (3.15,3.4]
9 [4.4,4.65] [2.9,3.15]
10 (4.65,4.9] [2.9,3.15]

Table C.2: The dataframe after the initial discretization using the interval
method. The variables are binned into four levels each.

then, the dataframe shown in table C.2 is used as input to the Hartemink method.
The method starts with an initial discretization number of levels (here it is four)
and ends when the desired final number of discretization levels is reached (e.g.
two in this case) which is smaller than the initial number. Then a loop visits
one variable at time. Starting with variable X : it has the four levels, in order,

XI

C. Hartemink Method

[4.4, 4.65], (4.65, 4.9], (4.9, 5.15], (5.15, 5.4]. The method will start to collapse the
adjacent levels and compute the MI in each case :

1. Creating three levels.
(a) Collapse [4.4, 4.65], (4.65, 4.9] to become one level [4.4, 4.65]. the new

dataframe is then table C.3 :

X Y
1 (4.9,5.15] (3.4,3.65]
2 [4.4,4.65] [2.9,3.15]
3 [4.4,4.65] (3.15,3.4]
4 [4.4,4.65] [2.9,3.15]
5 (4.9,5.15] (3.4,3.65]
6 (5.15,5.4] (3.65,3.9]
7 [4.4,4.65] (3.15,3.4]
8 (4.9,5.15] (3.15,3.4]
9 [4.4,4.65] [2.9,3.15]
10 [4.4,4.65] [2.9,3.15]

Table C.3: The dataframe after the after collapsing [4.4, 4.65], (4.65, 4.9].

(b) Compute MI(X, Y) = 0.7069 based on eq. (1.8)
(c) Collapse (4.65, 4.9], (4.9, 5.15], the new dataframe is now table C.4 :

X Y
1 (4.65,4.9] (3.4,3.65]
2 (4.65,4.9] [2.9,3.15]
3 (4.65,4.9] (3.15,3.4]
4 [4.4,4.65] [2.9,3.15]
5 (4.65,4.9] (3.4,3.65]
6 (5.15,5.4] (3.65,3.9]
7 [4.4,4.65] (3.15,3.4]
8 (4.65,4.9] (3.15,3.4]
9 [4.4,4.65] [2.9,3.15]
10 (4.65,4.9] [2.9,3.15]

Table C.4: The dataframe after the after collapsing (4.65, 4.9], (4.9, 5.15].

(d) Compute MI(X, Y) = 0.4297
(e) Collapse (4.9, 5.15], (5.15, 5.4], the new dataframe is now table C.5 :
(f) Compute MI(X, Y) = 0.48205
(g) Keep the collapsing with the highest MI score (which is the first one in

this example). Use table C.3 is input to the next phase. Variable has
now three levels and the goal is to reach two levels

2. Creating two levels. Repeat the above procedure but using now table C.3.
Keep the collapse that scores the highest mutual information. Since the target
number of discretization levels in this example is two, it finishes the calcula-
tions for the variable X in this step.

XII

C. Hartemink Method

X Y
1 (4.9,5.15] (3.4,3.65]
2 (4.65,4.9] [2.9,3.15]
3 (4.65,4.9] (3.15,3.4]
4 [4.4,4.65] [2.9,3.15]
5 (4.9,5.15] (3.4,3.65]
6 (4.9,5.15] (3.65,3.9]
7 [4.4,4.65] (3.15,3.4]
8 (4.9,5.15] (3.15,3.4]
9 [4.4,4.65] [2.9,3.15]
10 (4.65,4.9] [2.9,3.15]

Table C.5: The dataframe after the after collapsing (4.9, 5.15], (5.15, 5.4].

3. When the first variable reached the desired number of discretization levels, the
algorithm is repeated for the next variable in the dataset and performing the
exact same steps as before. It starts with the final dataset produced in the
previous steps.

In this example there were two variables. If we had more variables, e.g. X, Y, Z,W ,
each time an MI needs to be calculated, it is the sum of MI(X,Y), MI(X,Z), M(X,W)
that is used for comparing which collapse is better.

XIII

C. Hartemink Method

XIV

D
Maximum likelihood

Given the data set :

A B C
1 b c b
2 b a c
3 a a a
4 a a a
5 a a b
6 c c a
7 c c b
8 b b a
9 b b b
10 b a b

a possible DAG is A− > B. The conditional probability table for node B would be
then :

A = a A = b A = c
B = a 1 0 0
B = b 0 0.4 0
B = c 0 0.2 1

since, for example θB=b|A=b = 0.4 is given by :

#of occurrences wereB = b|A = b

#of occurrences wereA = b
= 2

5 (D.1)

or θB=c|A=b = 0.2 is given by :

#of occurrences wereB = c|A = b

#of occurrences wereA = b
= 1

5 (D.2)

XV

D. Maximum likelihood

XVI

E
Number of parameters

This chapter gives an example of how to calculate the number parameters on a con-
ditional linear Gaussian Bayesian network.

Given the toy dataset, as shown below, of mixed type of variables

A B C D E F G H
1 a b d 6.46 11.99 b 34.84 2.33
2 b a a 12.76 30.44 b 106.64 2.36
3 b c c 12.18 17.22 a 68.93 2.32
4 b c d 12.01 14.42 b 86.18 2.42
5 b a a 12.33 30.40 b 103.59 2.27
6 b c c 12.61 15.19 b 90.85 2.31
7 b a a 12.09 28.83 b 100.75 2.07
8 b b c 12.40 18.37 a 71.11 2.41
9 b c b 12.01 17.01 a 68.20 2.32
10 b c a 12.33 15.50 a 68.10 2.29

we learn the DAG :
The only discrete variables are A, B, C, F with number of levels (or values) 2, 3,
4, 2 respectively. The node of variable A doesn’t have any parents and since it is

Figure E.1: Toy dataset with mixed type of variables

XVII

E. Number of parameters

a discrete variable with 2 levels, the number of parameters is (2 − 1)20 = 11. The
node of the continuous variable D has one discrete parent only (variable B). Thus
according to eq. (1.13) it needs to learn only the intercept and the residual error for
each value of the discrete parent. This means 2 ∗ 3 = 6 parameters. The node for
the continuous variable G has three parents: the continuous variables D, E and the
discrete variable F. So it is modelled like:

GF=a = β0:a +DβD + EβE + εa (E.1)

GF=b = β0:b +DβD + EβE + εb (E.2)

thus, there are four parameters in each equation and there are two equations for each
value of the discrete parent. This gives a total of eight parameters. The number of
parameters for the whole network are 33.

Variable A B C D E F G H
Number of parameters 1 2 3 6 6 1 8 6

Table E.1: Number of parameters learnt for each variable in the toy DAG.

1for a discrete BN, the number of free parameters is (L − 1)Lp, p: number of parents and L:
number of values

XVIII

References

[1] Kevin P. Murphy. Machine learning : a probabilistic perspective. Cambridge,
Mass. [u.a.]: MIT Press, 2013. isbn: 9780262018029 0262018020. url: https:
//www.amazon.com/Machine- Learning- Probabilistic- Perspective-
Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=
8-2.

[2] Susan Vineberg. “Dutch Book Arguments”. In: The Stanford Encyclopedia of
Philosophy. Ed. by Edward N. Zalta. Spring 2016. Metaphysics Research Lab,
Stanford University, 2016.

[3] Judea Pearl and Stuart Russell. “Bayesian Networks”. In: (2002). url: https:
//people.eecs.berkeley.edu/~russell/papers/hbtnn-bn.pdf.

[4] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Networks”. In:
4th International Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. 2016. url:
http://arxiv.org/abs/1511.06434.

[5] Andrej Karpathy. The Unreasonable Effectiveness of Recurrent Neural Net-
works. 2015. url: http : / / karpathy . github . io / 2015 / 05 / 21 / rnn -
effectiveness/ (visited on 05/31/2015).

[6] Nir Friedman. “Inferring Cellular Networks Using Probabilistic Graphical Mod-
els”. In: Science 303.5659 (2004), pp. 799–805. issn: 0036-8075. doi: 10.1126/
science.1094068. eprint: https://science.sciencemag.org/content/
303 / 5659 / 799 . full . pdf. url: https : / / science . sciencemag . org /
content/303/5659/799.

[7] Dominik Aronsky and Peter J. Haug. “Diagnosing community-acquired pneu-
monia with a Bayesian network”. In: Proceedings. AMIA Symposium (1998),
pp. 632–6.

[8] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1988. isbn: 1558604790.

[9] Ross D. Shachter. “Bayes-Ball: The Rational Pastime (for Determining Ir-
relevance and Requisite Information in Belief Networks and Influence Dia-
grams)”. In: CoRR abs/1301.7412 (2013). arXiv: 1301 . 7412. url: http :
//arxiv.org/abs/1301.7412.

XIX

https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://people.eecs.berkeley.edu/~russell/papers/hbtnn-bn.pdf
https://people.eecs.berkeley.edu/~russell/papers/hbtnn-bn.pdf
http://arxiv.org/abs/1511.06434
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://doi.org/10.1126/science.1094068
https://doi.org/10.1126/science.1094068
https://science.sciencemag.org/content/303/5659/799.full.pdf
https://science.sciencemag.org/content/303/5659/799.full.pdf
https://science.sciencemag.org/content/303/5659/799
https://science.sciencemag.org/content/303/5659/799
http://arxiv.org/abs/1301.7412
http://arxiv.org/abs/1301.7412
http://arxiv.org/abs/1301.7412

References

[10] Thomas Verma and Judea Pearl. “Equivalence and Synthesis of Causal Mod-
els”. In: Proceedings of the Sixth Annual Conference on Uncertainty in Arti-
ficial Intelligence. UAI ’90. New York, NY, USA: Elsevier Science Inc., 1991,
pp. 255–270. isbn: 0-444-89264-8. url: http://dl.acm.org/citation.cfm?
id=647233.719736.

[11] Eunice Yuh-Jie Chen, Arthur Choi, and Adnan Darwiche. “Enumerating Equiv-
alence Classes of Bayesian Networks using EC Graphs”. In: AISTATS. 2016.

[12] Dana Pe’er. “Bayesian Network Analysis of Signaling Networks: A Primer”.
In: Science’s STKE : signal transduction knowledge environment 2005 (May
2005), pl4. doi: 10.1126/stke.2812005pl4.

[13] Alexander John Hartemink. “Principled computational methods for the vali-
dation discovery of genetic regulatory networks”. PhD thesis. Massachusetts
Institute of Technology, 2001.

[14] Marco Scutari and Jean-Baptiste Denis. Bayesian Networks with Examples in
R. ISBN 978-1-4822-2558-7, 978-1-4822-2560-0. Boca Raton: Chapman and
Hall, 2014.

[15] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles
and Techniques - Adaptive Computation and Machine Learning. The MIT
Press, 2009. isbn: 0262013193, 9780262013192.

[16] David Maxwell Chickering. “Learning Bayesian Networks is NP-Complete”.
In: AISTATS. 1995.

[17] Jin Tian and Ru He. “Computing Posterior Probabilities of Structural Features
in Bayesian Networks”. In: Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence. UAI ’09. Montreal, Quebec, Canada:
AUAI Press, 2009, pp. 538–547. isbn: 978-0-9749039-5-8. url: http://dl.
acm.org/citation.cfm?id=1795114.1795177.

[18] Markus Kalisch et al. “More Causal Inference with Graphical Models in R
Package pcalg”. In: 2014.

[19] Marco Scutari. “Measures of Variability for Graphical Models”. In: 2011.

[20] Peter Spirtes and Clark Glymour. “An Algorithm for Fast Recovery of Sparse
Causal Graphs”. In: 1991.

[21] Dimitris Margaritis. Learning Bayesian Network Model Structure From Data.
Tech. rep. 2003.

[22] Ioannis Tsamardinos, Constantin F. Aliferis, and Alexander R. Statnikov. “Al-
gorithms for Large Scale Markov Blanket Discovery”. In: FLAIRS Conference.
2003.

[23] Sandeep Yaramakala and Dimitris Margaritis. “Speculative Markov blanket
discovery for optimal feature selection”. In: Fifth IEEE International Confer-
ence on Data Mining (ICDM’05) (2005), 4 pp.-.

XX

http://dl.acm.org/citation.cfm?id=647233.719736
http://dl.acm.org/citation.cfm?id=647233.719736
https://doi.org/10.1126/stke.2812005pl4
http://dl.acm.org/citation.cfm?id=1795114.1795177
http://dl.acm.org/citation.cfm?id=1795114.1795177

References

[24] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
3rd. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009. isbn: 0136042597,
9780136042594.

[25] Marco Scutari, Claudia Vitolo, and Allan Tucker. “Learning Bayesian networks
from big data with greedy search: computational complexity and efficient im-
plementation”. In: Statistics and Computing 29.5 (Sept. 2019), pp. 1095–1108.
issn: 1573-1375. doi: 10.1007/s11222-019-09857-1. url: https://doi.
org/10.1007/s11222-019-09857-1.

[26] Bryan Andrews, Joseph Ramsey, and Gregory F. Cooper. “Scoring Bayesian
networks of mixed variables”. In: International Journal of Data Science and
Analytics 6.1 (Aug. 2018), pp. 3–18. issn: 2364-4168. doi: 10.1007/s41060-
017-0085-7. url: https://doi.org/10.1007/s41060-017-0085-7.

[27] Ivar Simonsson and Petter Mostad. “Exact Inference on Conditional Linear
Γ-Gaussian Bayesian Networks”. In: Proceedings of the Eighth International
Conference on Probabilistic Graphical Models. Ed. by Alessandro Antonucci,
Giorgio Corani, and Cassio Polpo Campos. 2016, pp. 474–486.

[28] Max HENRION. “Propagating Uncertainty in Bayesian Networks by Proba-
bilistic Logic Sampling”. In: Uncertainty in Artificial Intelligence. Ed. by John
F. LEMMER and Laveen N. KANAL. Vol. 5. Machine Intelligence and Pattern
Recognition. North-Holland, 1988, pp. 149–163. doi: https://doi.org/10.
1016/B978-0-444-70396-5.50019-4. url: http://www.sciencedirect.
com/science/article/pii/B9780444703965500194.

[29] Richard E. Neapolitan. Learning Bayesian Networks. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 2003. isbn: 0130125342.

[30] Nir Friedman, Moisés Goldszmidt, and Abraham J. Wyner. “Data Analysis
with Bayesian Networks: A Bootstrap Approach”. In: CoRR abs/1301.6695
(2013). arXiv: 1301.6695. url: http://arxiv.org/abs/1301.6695.

[31] Takeshi Kamimura et al. “Bootstrap analysis of gene networks based on Bayesian
networks and nonparametric regression”. In: Genome Informatics 14 (Jan.
2003), pp. 350–351.

[32] Nir Friedman and Daphne Koller. “Being Bayesian About Network Structure.
A Bayesian Approach to Structure Discovery in Bayesian Networks”. In: Ma-
chine Learning 50.1 (Jan. 2003), pp. 95–125. issn: 1573-0565. doi: 10.1023/A:
1020249912095. url: https://doi.org/10.1023/A:1020249912095.

[33] Marco Scutari and Radhakrishnan Nagarajan. “Identifying significant edges in
graphical models of molecular networks”. In: Artificial Intelligence in Medicine.
2011.

XXI

https://doi.org/10.1007/s11222-019-09857-1
https://doi.org/10.1007/s11222-019-09857-1
https://doi.org/10.1007/s11222-019-09857-1
https://doi.org/10.1007/s41060-017-0085-7
https://doi.org/10.1007/s41060-017-0085-7
https://doi.org/10.1007/s41060-017-0085-7
https://doi.org/https://doi.org/10.1016/B978-0-444-70396-5.50019-4
https://doi.org/https://doi.org/10.1016/B978-0-444-70396-5.50019-4
http://www.sciencedirect.com/science/article/pii/B9780444703965500194
http://www.sciencedirect.com/science/article/pii/B9780444703965500194
http://arxiv.org/abs/1301.6695
http://arxiv.org/abs/1301.6695
https://doi.org/10.1023/A:1020249912095
https://doi.org/10.1023/A:1020249912095
https://doi.org/10.1023/A:1020249912095

	List of Figures
	List of Tables
	Theoretical Background
	Some notions and definitions of Probability theory
	Notions of Graph Theory
	Conditional Independence and DAGS
	D-Separation

	Markov equivalence and PDAGs
	Discretization of continuous variables
	Conditional Linear Gaussian Bayesian Networks
	Causality in DAGs
	Summary

	Bayesian Networks : Learning and Inference
	Structure learning
	Constraint based algorithms
	Score based algorithms

	Scoring Functions
	Maximum Likelihood Parameter learning
	Inference
	Logic Sampling

	Bootstrap and Model Averaging
	Summary

	Computational Results
	Domain Insights
	Hybrid/Gaussian Model Results
	Discrete Model
	Results

	Discussion

	Data Plots
	Discrete Data Tables
	Hartemink Method
	Maximum likelihood
	Number of parameters

