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Abstract
Modern day intelligent vehicles carry advanced sensors that gather data and fuse this
into a map with dynamic objects. This overview of the car’s immediate surroundings
is then utilized by an autonomous-drive pilot to steer the vehicle. There have been
lots of research where the data collection and the data fusion virtually have been
at the same location, on a single vehicle. However, less is known when the data
providers and the consumer are separated, and especially when the providers are
spatially spread. Through this contrasting approach, we envision increased aware-
ness and safety for all involved actors.

The separation introduces a communication problem, where the transmission time
of the data becomes significant. In safety-critical systems, it is integral to receive
new information as fast as possible. Thus, in order to study the dynamics of this
model, we propose a novel test-track environment for Intelligent Traffic Systems
(ITS) involving multiple vehicles where the data are centrally fused. The study is
dissected into three areas: accuracy, network delay, and speed. Through this pro-
totype system, we seek to illuminate difficulties and identify the possibilities of an
on-line fusion server along with performance and scalability.

Our tracking algorithm is based on Bayesian Tracking Theory and tested with data
provided by Volvo Car Corporation. Using this setup, our simulations show signifi-
cant improvements in positional accuracy when the vehicles cooperate. We also find
that the transmission delay is crucial in terms of both speed and precision of the
algorithm. In addition, the bottlenecks were primarily located to algebraic opera-
tions, which put a boundary of the speed of our tracking algorithm. Due to the small
scale of the system and the matrices, the possibility of optimizations was done by
multithreading. The study made on our fusion server suggest that an on-line fusion
server might support a few hundred cars. But what dictates the scalability is the
trade-off between the speed and precision of the fusion server - which is extremely
difficult, if not impossible to balance optimally.

Keywords: data processing, data fusion, algorithms, Bayesian filtering, fusion archi-
tecture, transmission delay, asynchronous fusion.
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1
Introduction

In existing intelligent vehicles, every vehicle has a set of sensors whose data are
merged into their own Local Dynamic Map (LDM). In the action of autonomous
driving, the vehicles will make use of the LDM in order to drive in a safe manner.
The concept of this project is that the information of all actors is sent to a remote
central server, where this data are transformed into a detailed and accurate Global
Dynamic Map (GDM). The possibilities, but also the problems lay in the physical
separation, that the data are collected from multiple sources, but also that the data
are processed remotely, in a high-end ITS. However, the physical separation induces
transmission delay in the model, which reduces the overall performance. Through
simulations, we show the improvements of cooperating cars, but also the magnitude
of the deterioration that the delay poses.

The benefit of cooperating cars can be seen in Figure 1.1. For example, the LDM of
Vehicle 1 is the red area, whereas its GDM is the union of all colored circles. Note
that vehicle 1 is unaware of any pedestrians in its LDM, but gains knowledge of three
pedestrians through its GDM. Thus, through information sharing, the accuracy and
awareness can be enhanced through data fusion, rather than upgrading the quality
of the sensors.

Figure 1.1: A traffic scenario with three vehicles, two buildings and three pedes-
trians. The vehicle’s local dynamic map is plotted in a colored circle around itself,
and its global dynamic map consists of the area within the dashed lines.

1



1. Introduction

1.1 Related Work
Ever since one of the most notable contributions within Sensor Fusion was made by
Kalman [23] in 1960, the topic has been applied to multiple areas. The area of this
thesis, data fusion within the Automotive industry, has been covered in numerous
papers. A common approach is taken by, e.g., Villysson [34], is to implement a
Kalman Filter that merges the data from the vehicle’s own sensors. Vehicles that
use this fusion algorithm run their algorithm independently of the others, meaning
that there is no communication between the vehicles. In a similar problem, Aeber-
hard et al. [3] uses Information Matrix Fusion, but instead focuses on the problem
when the sensors operate at different frequencies. Blanc et al. [12] implements and
compares the Extended Kalman Filter (EKF) and the Particle Filter (PF), and
finds that the EKF is more suitable for a real-time system due to the computational
burden of a PF. Bar-Shalom and Campo [7] presented a technique for fusing the
state vectors that each individual sensor produces, which we extended in our work
to comprise each individual vehicle instead. Chong et al. [15] implemented an op-
timal fusion algorithm under an arbitrary communication pattern, but without a
transmission delay and assumption of no process noise.

In many approaches to data fusion within Automotive, the main challenges have
been to maximize the accuracy of the fused output. Additionally, most approaches
have only considered data fusion on a single vehicle, meaning that information shar-
ing between vehicles is rare. Consequently, multiple systems have been operating
offline, which means that the communication delay has not been an issue. How-
ever, there are some examples such as the surveillance system created by Okello and
Challa [26], that provide on-line communication in order to fuse data from multiple
sources. The communication between actors within Automotive has not generally
concerned Sensor Fusion, but typically Collision Warning systems, such as the ones
found in [10] and [36].

1.2 Challenges
Our work spans over a large area and obliges to combine contributions from multi-
ple studies into a single model. Essentially, we want to provide on-line fusion on a
remote central server. Thus, the main challenges are condensed into the following
areas:

Accuracy: the main assumption is that global data fusion will provide better posi-
tion estimates than using local data fusion. The goal is to show that collaborative
data fusion significantly improves position estimates for the involved actors.

Communication: since the data fusion is performed on-line, there is a need to
analyze how the network delay affects the server’s performance. More specifi-
cally, the network delay can be decomposed to its mean and variance, and we
will investigate how they affect the speed and accuracy of the tracking algorithm.

2



1. Introduction

Performance: an important factor in a fusion server is its speed, and we want
to provide a pilot implementation with real-time execution. We design a fusion
architecture, locate bottlenecks in this pilot, and investigate the scalability of the
fusion server.

1.3 Validation
To evaluate the challenges proposed, we first look into the precision of the output
of the fusion server. To get an average positional error, we compare the estimated
position with the ground truth. Then, we study the precision when the vehicles
cooperate with each other in a global fusion, and when they keep their information
to themselves.

In order to investigate the effect of the transmission delay, we separate the trans-
mission delay into its mean and variance. We test how the precision is affected with
increasing the transmission delay, while keeping the variance fixed. The effect of the
variance is tested through fixing the mean transmission delay, and calculating the
average positional error when the delay span is increased.

The speed of the fusion server is initially located through counting the average
time the process spends in each part of the server throughout the simulation. When
the bottlenecks are found, optimization will be conducted before simulating the scal-
ability of the fusion server. It maintains real-time execution if the total processing
time in the fusion server is lesser than the total simulation time. This shows that
the data packets are processed faster than the newer data packets arrive.

All simulations are done on two scenarios, one with monotone driving, and one
with more turns and interactions between the vehicles. Ideally, the results from
both scenarios should show the same pattern in terms of accuracy and speed.

1.4 Our Contributions
Our proposition has been to provide an on-line system, consisting of an unknown
amount of sources sending data to a remote central server, where the data are fused.
The unique approach has mainly been the physical separation of the data providers
and the consumer in a track fusion problem. Thus, our fusion architecture is pre-
sented to demonstrate possibilities of an on-line fusion along with performance and
scalability, and also how it is affected by the network delay. But more importantly,
our fusion server also indicates bottlenecks of the fusion architecture, which reflect
what possibly could be optimized further.

The results showed that fused output was considerably better than when the cars
are not collaborating. When we introduced a network delay to the system, we saw

3



1. Introduction

a clear correlation between the network delay and the accuracy. However, a trans-
mission delay is not only a fixed length, but a random entity within a span. The
problem that this causes is that the data packets might arrive at the fusion server in
a non-chronological order. Two methods were implemented to handle this, but the
superior one was a method referred to as Rollback. The study shows that the delay
variance degrades the accuracy more seriously than the mean delay, and causes in
significant speed issues.

1.5 Scope
Track fusion: data fusion may refer to two domains: Sensor Fusion and Track
Fusion. This division originates from the fact that sensors are all spatially placed at
different locations on the vehicle, and in addition all vehicles are spread geographi-
cally. Sensor Fusion refers to local fusion at every vehicle, whereas Track Fusion is
when the data are fused again, in a higher hierarchy. This project will only cover
Track Fusion and not Sensor Fusion.

Server feedback: since the simulated paths are done ahead of time, the actors
are unable to adjust their tracks according to the feedback. Thus, the server will
not be able to communicate back to the actors.

Fault tolerance: we consider a system in which the transport layer is reliable,
i.e., no packet loss and assume a packet delivery of every packet within a bounded
period. We do however consider out of order packet delivery. Moreover, the server
is always providing service at all times, i.e., the server does not crash.

Congestion: when the fusion server is unable to maintain real-time execution,
it gets flooded with data packets that are accumulated into a queue. This deterio-
rates the performance, and might also lead to lost data packets. This project will
not cover the problems that congestion pose.

Network security: an adversary is an anonymous client who aims to either modify
or corrupt the services from the server. We assume a system without any adversaries.

4



2
Background

Our system consists of two significant structures: a client to simulate independent
cars, and a fusion server to perform the data fusion. There is a clear separation
between the client simulator and the fusion server, the modularity is to enable dif-
ferent input streams to be tested on the fusion server.

The car data were generated beforehand and consisted of the car’s ground truth
data. Hence, there was a need to invigorate the data to resemble independent cars
sending data through the network. The cars broadcast the data to the fusion server,
where the data are processed through four modules and finally fused together.

The sketch of the server architecture is shown in Figure 2.1, and further elabo-
rated in the following sections. As explained in Section 1.5, the fusion algorithm on
the client side will not be considered.

Figure 2.1: The system architecture

5



2. Background

2.1 Client Simulation
The fusion server is driven by the arrival of data packets, which is considered as its
input. In order to provide the inputs to the fusion server, we need to simulate them
manually, and therefore, client simulation is needed to imitate real-world data in a
real-time scenario.

We were provided data from Volvo Car Corporation, which were generated from
their internal simulation environment. But it lacks some traits of an actual traffic
scenario, such as the transmission delay between the clients and the fusion server.
Additionally, the client input only contained the ground truth data, but sensor mea-
surements in reality are tainted by noise. Therefore, noise was added to resemble
realistic data produced by noisy sensors. Furthermore, since all cars supposedly are
independent, we also need to provide them independent and asynchronous commu-
nication to the fusion server.

Moreover, the client input only contained ground truth state variables, where the
state of a car could be the coordinates, velocity, acceleration, etc. Therefore, the
client simulation also needs to determine what the cars will detect. To figuratively
mimic car sensors, a car detects another car if it is within a certain radius and angle
from itself. Hence, the data broadcast from each car is composed of ego-data and
possibly data about other objects.

Since we sent the state variables to the fusion server and not raw sensor data, it
implied that the data already had been fused one time. Thus, we figuratively had a
local on-board fusion on every vehicle that sent the tracks to a remote central server,
where they were fused again. This fusion architecture is also known as Hierarchical
Fusion Architecture [25]. It bears the benefit of reducing the amount of data that
needs to be transmitted, keeping the communication to a minimum. This would
supposedly prevent, or at least alleviate a potential bottleneck.

2.2 Fusion Server
Data fusion is a process of an integration of multiple data from various sources
into a holistic and coherent representation. In this case, the data are figuratively
generated at the vehicles, by multiple devices such as GPS, radars, cameras, etc.
Merging the data from these sensors are also known as Sensor Fusion [19]. When
two sensors detect the same object, they will most likely not position this object at
the exact same global coordinates due to noise. The aim of the Sensor Fusion is to
predict the most likely state, using overlapping data from the sensors. Additionally,
it is possible to merge these local estimates in a remote central server to retrieve
a global estimate. However, the tracking algorithm in the fusion server does not
only perform data fusion, but consists of several steps to process the data before the
actual data fusion.

6



2. Background

There are many ways to compose a tracking algorithm, approaches that may not
necessarily be better than any other. For example, the fusion could solely be done
at a local level, or only in a remote central server. Additionally, we need to decide
which partners are allowed to communicate with each other, and if that should be a
two-way communication. Other choices and options regarding the implementations
will be discussed in Chapter 3, and will demonstrate the myriad of paths when de-
signing a tracking algorithm.

When client input arrives at the fusion server, it starts a fusion process in the
tracking algorithm. Since the process primarily follows a sequential schema, the
tracking algorithm may be divided into several modules. Our fusion server consists
of the following modules:

Data alignment: to manipulate the data so they are aligned in time, making them
comparable.

Data association: to associate measurements to the correct tracks in the fusion
server.

Track management: to validate tracks and to adjust the number of tracks in the
server.

Reconfiguration: to adjust parameters in the data fusion according to the type of
sensor setup.

Data fusion: to merge observations of objects together, in order to estimate their
position as accurate as possible.

2.3 Communication
A crucial component to the server architecture is the network communication be-
tween clients and the server. That is, when the data are transmitted, and how
the data are transferred between end-to-end. Ultimately, these choices affect the
performance of the fusion server, and a deciding factor of how the algorithms are
designed.

2.3.1 Communication Strategy
Safety-critical systems, especially within traffic scenarios are oftentimes reliant on
getting information from every actor in a periodic and frequent manner, coupled with
a low latency. One approach is to fuse the data as new information is received [16].
In the case of Figure 2.2, the Fusion server awaits data from the clients. Upon
receiving one data packet from one client, the server starts the first fusion F1. The
listening and fusion continue in a similar manner for all other data packets. This
fusion scheme is referred to as “asynchronous data fusion”, and is the strategy that
we chose to implement.

7
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Figure 2.2: Asynchronous data fusion

However, for a remote central server, problems arise when the number of cars that
the ITS handle gets too high. Since the actors send the data to the fusion server,
the rate at which the server needs to fuse can get critically high.

Synchronous data fusion is another strategy which requires a fewer number of fu-
sions. Instead of fusing when a data packet arrives, the data packets are synchronized
to be sent to the fusion server at the same time. After all packets have arrived, they
are collectively fused one time. By using more data in the data fusion, the fused
output has a better accuracy. The main problem is that the server needs to know
how many packets it should receive before starting the fusion. This means that
the objects in the server need to be fixed or known at all times. Synchronous data
fusion is promising in terms of speed and accuracy, but the inert property is an
undesirable characteristic in a dynamic system, and was the main reason why this
communication strategy was not adopted.

2.3.2 Communication Protocol
A communication protocol is a network mechanism that provides host-to-host com-
munications. The communications may rely on a local network or remote networks
connected by multiple routers. The most commonly known protocols are the Trans-
mission Control Protocol (TCP) and the User Datagram Protocol (UDP) [35].

The UDP was chosen in this project to minimize network latency, since we want to
control the total transmission delay. The term transmission delay should be consid-
ered as the total delay between when the data is collected to when it is collected in
the fusion server. For example, this includes on-board fusion, delay in communica-
tion protocols, and delay in transportation.

Additionally, we assume that we have reliable non-FIFO communication channels
with no packet loss. Also, the delivery time is bounded by a constant, since it is
controlled by the client simulation.

8
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2.4 Parallelization
The speed of a real-time system is paramount. Processing data with a slow pace
degrades its precision, since it becomes outdated. Additionally, processing data at a
fast pace naturally increases the scalability of the fusion server, which is a key factor.
As the server performs a lot of repetitive tasks, a possibility would be to optimize
it through parallelization. Parallel computing is an idea to compute a large scale
of data by making use of multiple hardware-processing units simultaneously [31],
but all parts of a system are seldom feasible to parallelize. Nonetheless, parallel
computing always introduces an additional cost such as memory transfer overhead,
thread synchronization, and thread spawning. However, these overhead time are
considered as negligible when the parallelization significantly improves computation
time with a large set of data.

In this project, the tracking algorithm consists of small but many matrices. This
means that GPU computation may not be suitable due to the memory transfer
overhead, in which the data are transferred between the shared memories in the
CPU and the GPU. Instead, multithreading may be an alternative optimization
step for the fusion server. Multithreading uses multiple threads of the CPU, and
may perform tasks in parallel. Note that the parallelization using multithreading
is therefore limited to the number of threads in the CPU. For example, if the CPU
have 8 threads, and there are a parallelizable block with 64 tasks, the gain from
multithreading is at most 8 times faster than sequential computing.
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3
Tracking Algorithm

To effectively and accurately track objects in a system has been an issue within areas
such as surveillance, automotive, and robotic industry for a long time [16, 18, 25,
30, 34, 37]. These systems may have multiple measurements of each object which
necessarily do not completely match. The errors originate from an inaccuracy of
the sensors, which seldom produce data that match the ground truth. The problem
occurs when merging this data, and then predicting the position of the dynamic
objects in a probabilistic manner.

3.1 Tracking Model
Several techniques have been developed to approach the track fusion problem, such
as Maximum Likelihood and Maximum Posterior, Particle filters, Covariance con-
sistency methods, and Bayesian tracking models. The Bayesian tracking theory is
common in the track fusion area [16, 27, 34], and will be the model of choice in this
project.

The concept of Bayesian tracking theory is to gather and combine the informa-
tion from the multiple actors in order to predict the past, current and future true
“states” of the involved objects. A state contains kinematic information such as
position, velocity, and acceleration. The true state of all objects at time t is denoted
as Xt, that is:

Xt = [(X1
t )T , (X2

t )T , ..., (X
n(t)
t )T ]T

where n(t) is the number of tracked objects in the system at time t, and T denotes
the matrix transpose. Xt is also referred to as the “ground truth”, and is the data
that need to be estimated as good as possible, using only noisy sensor measurements.
These measurements are provided to the tracking algorithm at every time instance
and are denoted yt ∈ Rny(t), where ny(t) is the number of measurements at time t.
Furthermore, all measurements up until time t are defined as:

Y1:t = [(y1)T , (y2)T , ..., (yt)T ]T

Thus, if Xt is estimated with the use of the measurement data up to time k, it is
denoted as X̂t|k. Simply put, the goal of a tracking algorithm is to reproduce the
estimate X̂t|k as close to Xt as possible.
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The tracking model in this project concerns preventive safety systems and autonomous-
drive pilots, and therefore, the parameters that need to be tracked are the informa-
tion about the kinematics of each object i:

Xi
t = [xit, yit, ẋit, ẏit, ẍit, ÿit]

where Xi
t is the state vector for object i, and ẋit is the first time derivative of xit

(velocity) and ẍit is the second time derivative (acceleration).

As described in Section 2.3.1, a fusion process will be initialized as soon as a new
data packet arrives. But irrespective of when to fuse, there are some sequential
steps in the tracking algorithm that needs to take place before the actual data fu-
sion. These steps can be divided into several modules, and a schematic overview of
these and the resulting data flow can be seen in Figure 3.1:

Figure 3.1: How the data is processed when a fusion process is initialized.

The aim of the tracking algorithm is to get as good estimate as possible of Xt. The
estimate X̂t is calculated by getting the expected value of Xt given Y1:t. However,
Xt is a difficult quantity to estimate, but one way to enhance the performance
is to make assumptions of the underlying processes that govern the model. More
precisely, assumptions are made on the motion of the objects, but also the sensor
characteristics. In Bayesian tracking theory, these processes are oftentimes modeled
as:

Xt = ft−1(Xt−1,qt−1) (3.1)
yt = ht(Xt, rt) (3.2)

That is, Xt in Eq. (3.1) is a function of both its previous state and qt−1, which is
a discrete time zero-mean Gaussian white noise process. This noise process is also
referred to as “process noise”, and stems from the fact that the actors are mainly
controlled by humans which in general do not drive smoothly. The measurement
model in Eq. (3.2) assumes that the measurements yt are related to the true stateXt

and the stochastic noise process rt. This process is also a discrete time zero-mean
Gaussian white noise process and describes measurement noise as well as sensor
modelling uncertainty [16, 29, 34].

3.2 Data Alignment
When a data packet arrives at the remote central server, the first thing is to align
the data [14, 25]. Even though the packet only contains information about a few
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actors, all tracks will be processed. The data will be outdated for all tracks, and
needs to be aligned to the correct time. Looking at the scenario in Figure 3.2, Client
1 sends a data packet at time B that arrives in the server at the time C. The most
recent fusion was induced by Client 2 at time A, and thus, we need to align the
tracks from time A to time B. Note that in this case the fusion process is started at
time C, which is the current time, but the fusion is performed for time step B. A
temporary prediction to time step C is performed in the end, to get a fused output
of the current time.

Figure 3.2: Clients communicate with the server, and the data packets arrive in
chronological order.

However, an intricate problem arises when the delivery of some measurements are
delayed, making the data packets arrive in a non-chronological order. That is, when
a measurement is taken at a time A, but arrives much later, at the time D. This
implies that there may be other clients whose data packets are transmitted and
received in between this time period. A scenario can be seen in Figure 3.3:

Figure 3.3: Client 2 sends its data at time A, but it arrives at time D. During
this time, Client 1 has delivered one data packet between time A and D

13
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There are a few approaches to this problem, and the first suggestion is to perform
a rollback of the calculations to the delayed measurement’s chronological place, and
then recalculating the filters again. This method is simply referred to as Roll-
back, and it has an optimal solution, which means that the data provided are fully
used [24]. However, this method has a high computational burden, especially if there
is an actor that persistently delivers delayed measurements. Another approach is
taken by Alexander [4], where it suffices to calculate a correction term when the
delayed measurement arrives. This method is both computationally cheaper and
optimal. However, it requires the measurement sensitivity matrix to be available at
the current time, but this is not always the case [24]. Larsen et al. [24] implemented
a method, referred to as Extrapolating the measurement (EtM), where the delayed
measurement is extrapolated into the current time step, and then fused normally.
This method has a low computational cost but produces suboptimal results.

3.3 Data Association
For every data packet, the sender knows its own identification number, its own ego-
motion, and perhaps has some measurements of some other actors. However, the
cars can not make confident estimates of which object it sees, but only that it sees
an object. However, the remote central server keeps data for all the tracks, and can
match the unidentified measurements with existing tracks.

There are some strategies for associating the measurements with the tracks, and
the simplest way would be to calculate the Euclidean distance between each track
and every measurement. Then, the track and measurement with the shortest dis-
tance are matched together, and this is sequentially done until no more matches
can be made. This strategy is called Nearest Neighbor algorithm (NN) and is a
greedy algorithm [14, 16]. A similar approach would be to consider all the distances
between all tracks and measurements at once, then match as many measurements
to tracks as possible, and find the combination that minimizes its total distance.
This branch of methods is called Global Nearest Neighbor algorithms (GNN), and
Blackman and Popoli [11] suggest that the Auction algorithm is a suitable candidate
for a track fusion problem.

A probabilistic approach proposed by Bar-Shalom and Tse [8] is called Probabilistic
Data Association (PDA). This algorithm associates a probability to all possible hy-
potheses. An extension to PDA is the Joint Probabilistic Data Association (JPDA),
and differs from PDA by considering all of the measurements and all of the tracks
at once [20]. When assigning a probability to a hypothesis, it considers the fact that
this measurement can not be generated by other tracks. Lastly, Multi-Hypothesis
Tracking (MHT) will estimate all possible hypotheses and keep all hypotheses each
iteration. Then, MHT will utilize all its previous hypotheses in order to make an
association [14, 28, 34].
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Gating
One way of making the data association more effective, and remove unlikely track-
measurement associations is to introduce a validation gate [11, 16, 20, 25]. The
basic idea is to create a gate around a track, and only allow measurements that lie
inside the gate to be associated with that track. The gate is an approximation of
the uncertainty of how far the track could have traveled, and thus position, speed,
and acceleration are taken into account when calculating the gate size.

An alternative is to use an elliptic gate, which makes assumptions of the physi-
cal restrictions of the vehicles. Since the vehicles have limited turning radius, it
assumes more uncertainty in the vehicle’s heading. Additionally, the results of the
elliptic gate are used in the Auction algorithm. However, as the elliptic gate and
Auction algorithm synergies with each other, they fit badly with the Information
filter. In fact, both methods are created to be efficient with the Kalman filter.

Therefore, we opted for an easier approach, which would be to implement a cir-
cular gate. However, this implies that no assumptions are made on the motion of
the track, that it is equiprobable to move in any direction. The benefit is that it is a
computationally fast way to exclude improbable track-measurement pairs from the
very beginning. In Figure 3.4, two measurements lie inside the gate, whereas two
measurements lie outside the gate. The ones that are inside the gate are allowed to
be matched to the track.

Figure 3.4: The track is visualized as a rectangle, and the red stars are the mea-
surements. All measurements that lie inside the gate can be matched with the
track.

3.4 Track Management
In the case where a measurement is unable to get matched with a track in the data
association step, it is assumed to be a measurement of a new object. Thus, a new
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track is created with the measurement data, and is initially a “tentative track”. A
new track will be initialized after Data Fusion, since it needs historic data to be up-
dated from. The first measurement is taken as the truth since no better estimation
is available.

A tentative track needs to be detected several times within a short period of time,
or will otherwise be considered as a false detection and be removed. The other track
type is called a “validated track”, whose existence is more certain, and does not
need to be detected within a short period of time again.

Since a tentative track has been tracked for a short period of time, its motion
and existence is more uncertain. Therefore, it may have a larger validation gate
than a validated track in the data association process. However, if a tentative track
is associated a number of times within a short period of time, it gets upgraded to a
validated track.

The last task of the track management is to make sure that tracks that are ir-
relevant get deleted from the server. This means that tracks that have left the
operating area of the remote central server will be removed. This is necessary since
the performance reduces when filters accumulate and memory is unnecessarily used.

3.5 Reconfiguration
Different kind of sensors has a different kind of properties. Some sensors are suited
for detecting range, whereas some are better at detecting the relative angle to the
ego-vehicle, or new sensor models may simply be more accurate than older versions.
Depending on how much the sensors accurateness is trusted, the reconfiguration
module should alter the weights of the noise matrix in the data fusion.

Additionally, the supplier of the sensors should specify how the noise of the mea-
surement data is distributed. In Bayesian tracking theory, the measurement noise
is assumed to be Gaussian [29], but the reconfiguration module could customize the
sensor model for each individual sensor setup.

3.6 Data Fusion
The Data fusion in Bayesian tracking theory can be divided into the following steps:
a filtering step to get the posterior distribution p(Xt|Y1:t), and a prediction step
to get the estimate p(Xt+1|Y1:t) [16, 29, 34]. These two steps will take place on
every track, that is, there will be an individual filter for every track. General theory
regarding Kalman Filtering can be found in [29], and in particular [16].
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3.6.1 Filtering
Filtering consists of a predictive step to get p(Xt|Y1:t−1), and then an update step
to get the posterior distribution p(Xt|Y1:t).

In the prediction step, it is assumed that the density p(Xt−1|Y1:t−1) is known from
the previous recursion, and in the very first iteration an a priori estimate of p(X0|Y0)
is carefully chosen. Then, by using the motion model in Eq. (3.1) and the Chapman-
Kolmogorov equation, the prediction, p(Xt|Y1:t−1), becomes:

p(Xt|Y1:t−1) =
∫
p(Xt|Xt−1,Y1:t−1)p(Xt−1|Y1:t−1) dXt−1

=
∫
p(Xt|Xt−1)p(Xt−1|Y1:t−1) dXt−1

(3.3)

Note that the relation p(Xt|Xt−1,Y1:t−1) = p(Xt|Xt−1) holds, since the motion
model (Eq. (3.1)) that governs Xt, has the Markov property. Then, when a new
measurement yt at time step t arrives, the predicted density in Eq. (3.3) is updated.
Since the measurements yt are independent given Xt, Bayes rule can be used to
retrieve the posterior distribution p(Xt|Y1:t),

p(Xt|Y1:t) = p(Xt|yt,Y1:t−1) = p(yt|Xt,Y1:t−1)p(Xt|Y1:t−1)
p(yt|Y1:t−1)

= p(yt|Xt)p(Xt|Y1:t−1)
p(yt|Y1:t−1)

(3.4)

Analytical solutions for Eq. (3.3) and Eq. (3.4) are in general not retrievable unless
some assumptions are made about the underlying processes. In this project, the
assumption is that the motion and measurement models are linear with additive
Gaussian noise, which is known as the Kalman filter.

3.6.2 Prediction
In the Kalman filter the assumption is that the motion model Eq. (3.1) and the
measurement model Eq. (3.2) can be expressed as the linear system:

Xt = Ft−1Xt−1 + qt−1 (3.5)
yt = HtXt + rt (3.6)

where qt−1 ∼ N (0,Qt−1) and rt ∼ N (0,Rt). In the Kalman filter, it is assumed
that the prior distribution p(X0|y0) is Gaussian. By using the properties of linear
Gaussian systems, the densities of Eq. (3.3) and Eq. (3.4) will also be Gaussian [16],
that is,

p(Xt−1|Y1:t−1) = N (X̂t−1|t−1,Pt−1|t−1) (3.7)
p(Xt|Y1:t−1) = N (X̂t|t−1,Pt|t−1) (3.8)
p(Xt|Y1:t) = N (X̂t|t,Pt|t) (3.9)
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Where P·|· are the covariance matrices of the Kalman filter, and X̂·|· are the esti-
mates of the true states. Thus, the only parameters that needs to be tracked and
calculated are the mean and variance of the densities.

Now, according to [16], by using Eq. (3.5) and Eq. (3.7), the prediction becomes:

Pt|t−1 = Cov(Xt|Y1:t−1) = Ft−1 Pt−1|t−1 FTt−1 + Qt−1 (3.10)

X̂t|t−1 = E[Xt|Y1:t−1] = Ft−1 X̂t−1|t−1 (3.11)
Then, to get to the update step, a measure called innovation needs to be introduced.
The innovation ỹt describes the new information in yt that is uncorrelated with all
the previous measurements Y1:t−1, that is:

ỹt = yt − E[yt|Y1:t−1] (3.12)

which is ỹt ∼ N (0,St), and where the innovation covariance St is:

St = Cov{ỹt|Y1:t−1} = HtPt|t−1HT
t + Rt (3.13)

and hence the final update step can be formulated as:

Pt|t = (I−KtHt)Pt|t−1 (3.14)
X̂t|t = X̂t|t−1 + Kt(yt −HtX̂t|t−1) (3.15)

where Kt is known as the Kalman gain and defined as:

Kt = Pt|t−1HT
t S−1

t

= Pt|t−1HT
t (HtPt|t−1HT

t + Rt)−1 (3.16)

The Kalman filter is said to operate in the “covariance domain”, and filter that
operates in the inverse covariance domain, or the “information domain” is the Infor-
mation filter [29]. The Information filter is closely related to the Kalman filter [21],
but is manipulated using linear algebra to operate with inverse covariance matrices
[6, 13]. The benefit from using the Information Filter is that the matrices become
computationally easier to work with, and is in general more sparse.

3.6.3 The Information Filter
To arrive at the Information filter, there are a few parts in the Kalman filter that
needs to be changed: the computation of the error covariance (Eq. (3.14)), update
of the state estimates (Eq. (3.15)), prediction of the error covariance (Eq. (3.10)),
and lastly the prediction of the state estimate (Eq. (3.11)).

Error Covariance Computation

The inverse error covariance is retrieved by manipulating the error covariance Eq. (3.14)
as follows:

Pt|t = (I−KtHt)Pt|t−1

KtHtPt|t−1 = Pt|t−1 −Pt|t
(3.17)
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then reworking the Kalman gain that is given in Eq. (3.16):

Kt = Pt|t−1HT
t (HtPt|t−1HT

t + Rt)−1

Kt(HtPt|t−1HT
t + Rt) = Pt|t−1HT

t

KtHtPt|t−1HT
t = Pt|t−1HT

t −KtRt

(3.18)

Eq. (3.17) can then be inserted into Eq. (3.18):

(Pt|t−1 −Pt|t)HT
t = Pt|t−1HT

t −KtRt

KtRt = Pt|tHT
t

Kt = Pt|tHT
t (Rt)−1

(3.19)

Now, Eq. (3.19) is substituted into the error covariance update (Eq. (3.14)):

Pt|t = (I−KtHt)Pt|t−1

Pt|t(Pt|t−1)−1 = I−KtHt

Pt|t(Pt|t−1)−1 = I−Pt|tHT
t (Rt)−1Ht

I = Pt|t
(
(Pt|t−1)−1 + HT

t (Rt)−1Ht

) (3.20)

and by multiplying by (Pt|t)−1, the inverse error covariance becomes:

(Pt|t)−1 = (Pt|t−1)−1 + HT
t (Rt)−1Ht (3.21)

State Estimate Update

Next quantity to rewrite is the State Estimate Update, which needs to be expressed
in terms of (Pt|t)−1. Hence, Eq. (3.15) is firstly multiplied by (Pt|t)−1:

X̂t|t = X̂t|t−1 + Kt(yt −HtX̂t|t−1)
(Pt|t)−1X̂t|t = (Pt|t)−1X̂t|t−1 + (Pt|t)−1Kt(yt −HtX̂t|t−1)

(3.22)

Thereafter, we use the Kalman gain in Eq. (3.19) and insert this into Eq. (3.22):

(Pt|t)−1X̂t|t = (Pt|t)−1X̂t|t−1 + HT
t (Rt)−1(yt −HtX̂t|t−1)

= (Pt|t)−1X̂t|t−1 + HT
t (Rt)−1yt −HT

t (Rt)−1HtX̂t|t−1

=
[
(Pt|t)−1 −HT

t (Rt)−1Ht

]
X̂t|t−1 + HT

t (Rt)−1yt

(3.23)

Lastly, Eq. (3.21) is inserted into Eq. (3.23) to get the new state estimate update:

(Pt|t)−1X̂t|t = (Pt|t−1)−1X̂t|t−1 + HT
t (Rt)−1yt (3.24)

Prediction of the Error Covariance

The prediction of the error covariance in Eq. (3.10) is changed by first taking its
inverse:

Pt|t−1 = Ft−1 Pt−1|t−1 FTt−1 + Qt−1

(Pt|t−1)−1 = (Ft−1 Pt−1|t−1 FTt−1 + Qt−1)−1 (3.25)
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Then, Woodbury’s matrix identity in Appendix A is used:

(S + UTV)−1 = (S)−1 − (S)−1U((T)−1 + V(S)−1U)−1V(S)−1 (3.26)

where
S = Ft−1Pt−1|t−1FTt−1, U = Qt−1 and T = V = I,

and then, by defining Mt−1 = (Ft−1Pt−1|t−1FTt−1)−1, Eq. (3.25) becomes:

(Pt|t−1)−1 = Mt−1 −Mt−1Qt−1(I + Mt−1Qt−1)−1Mt−1 (3.27)

Prediction of the State Estimates

The last equation that needs to be changed is the prediction of the state estimates,
and is reworked by multiplying Eq. (3.11) with (Pt|t−1)−1:

X̂t|t−1 = Ft−1 X̂t−1|t−1

(Pt|t−1)−1X̂t|t−1 = (Pt|t−1)−1Ft−1 X̂t−1|t−1
(3.28)

Then, (Pt|t−1)−1 on the right hand side is substituted by Eq. (3.27), and if (Qt−1)−1

exists, Eq. (3.28) becomes:

(Pt|t−1)−1X̂t|t−1 =
[
Mt−1 −Mt−1Qt−1(I + Mt−1Qt−1)−1Mt−1

]
Ft−1 X̂t−1|t−1

=
[
Mt−1 −Mt−1(Q−1

t−1 + Mt−1)−1Mt−1
]
Ft−1 X̂t−1|t−1

=
[
I−Mt−1(Q−1

t−1 + Mt−1)−1
]
Mt−1Ft−1 X̂t−1|t−1

(3.29)

and by substituting back Mt−1 = (Ft−1Pt−1|t−1FTt−1)−1, the final form is retrieved:

(Pt|t−1)−1X̂t|t−1 =
[
I−Mt−1(Q−1

t−1 + Mt−1)−1
]
(FTt−1)−1(Pt−1|t−1)−1X̂t−1|t−1 (3.30)

These four new relations are used in the Information filter algorithm, the schematic
idea of how the algorithm operates can be seen in Figure 3.5:

Figure 3.5: The Information Filter.
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Implementation

Our architecture consists of two important parts: the client simulator and the fusion
server. The client simulation is necessary, but secondary to our project, and thus
we will only briefly explain its implementation. The focal point of our thesis is on
the Fusion Server, and will be more intensively reviewed.

Both the client simulation and fusion server were written in C++, to be more easily
integrated with an existing software at Volvo Car Corporation. Moreover, an inte-
gral part of a fusion server is its speed. C++ is a fast programming language since
it provides efficient memory usage, low-level optimization and is closer to machine
code [33].

4.1 Client Simulation
Since the client input is static data files that contain the ground truth state vectors
of all cars, the client simulator needs to process the data to replicate a real traffic
scenario with independent cars. Technically, each thread represents a car, and each
thread performs the following operations:

• Extract ego data from the client input
• Extract data from other objects within sensor radius
• Add noise to the measurements
• Add data to a UDP packet
• Transmit the UDP packet with a specified transmission delay

More specifically, the UDP packet can be divided into segments according to Fig-
ure 4.1. Apart from the ego-position, Segment 1 will contain a unique identifier and
the time stamp of the transmission. The following segments contain information of
other car’s state, that is, the position, velocity, and acceleration.

Figure 4.1: Packet segmentation
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The client generates one thread for every car, and will repeatedly transmit data
to the fusion server until the end of the simulation. Thus, the algorithm of the
client is constructed as shown in Algorithm 1. We initially decide how often every
vehicle will transmit data to the fusion server with the DT-value. Line 1 spawns the
number of independent cars in the server. Every thread then initializes their own
simulate_client function. Line 8 signals starting time of the simulation, and since
the simulation is run in real-time, this is the starting reference for the mat_instance.
The lines 10 to 21 gathers all necessary data into a data packet. Lastly, the data is

Algorithm 1: Client simulator
Input: traffic scenario data
Output: transmitted UDP packets to Fusion server

Simulation of the cars, which feeds data packets to the fusion server.

Constant: DT, α, β
1 threads ← new threads equal to number of cars
2 forall threads do
3 simulate_client(unique car_id for each thread)
4 end
5 Function simulate_client(car_id)
6 mat_instance ← parse client input with specific car_id to array instance
7 total_timestamp ← length of mat_instance
8 current_timestamp ← now()
9 while index < total_timestamp do

10 packet ← create empty UDP packet to store data
11 ego_data ← read from mat_instance at current_timestamp
12 noise ← generate normally distributed random variables

// Segment 1
13 packet.push( unique identifier ) // add unique identifier to packet
14 packet.push( ego_data + noise )
15 packet.push( current_timestamp )

// Segment 2...n
16 forall other cars do
17 other_ego_data ← read from mat_instance at current_timestamp
18 if other car inside my sensor radius then
19 packet.push( other_ego_data + noise)
20 end
21 end
22 delay ← generate uniform(α, β) distributed delay
23 new_thread ← spawn a new thread
24 new_thread.sleep(delay)
25 new_thread.send_packet(packet)
26 sleep(DT) // sleep this thread depending on sending rate DT
27 end
28 end
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sent to a new thread to simulate transmission delay, while the car continues to send
data packets. The transmission delay is distributed as uniform(α, β), and is prede-
fined.

Through this setup, we can regulate the data and its flow. For example, the noise,
the transmission delay, how often the cars transmit the data, a number of cars in
the simulation, and what objects a car detects. Thus, this client simulator enables
investigations to be made under a controlled environment.

4.2 Fusion Server
The fusion server has five important modules: Data Alignment, Data Association,
Track Management, Reconfiguration and Data Fusion. All of whom consists of
algorithms that are explained in the following sections.

4.2.1 Data Alignment
The Data Alignment primary duty is to align the filters to the correct time. This
means that the filters need to be moved from the time of the previous fusion to the
time of the current fusion. Also, the Data Alignment manages data packets that
arrive in a non-chronological order.

The underlying assumption is that the actors move with constant acceleration, which
is known as the Constant acceleration model. This means that the acceleration in-
crements are assumed to be zero-mean Gaussian white noise process, which suggests
that Eq. (3.5) takes the form:

Xt = Ft−1 Xt−1 + Gqt−1 (4.1)

where

Ft−1 =



1 0 Ts 0 T 2
s

2 0
0 1 0 Ts 0 T 2

s

2
0 0 1 0 Ts 0
0 0 0 1 0 Ts
0 0 0 0 1 0
0 0 0 0 0 1


, and G =



T 2
s

2 0
0 T 2

s

2
Ts 0
0 Ts
1 0
0 1


and where Ts is the time since the last update of the ego-vehicle, and is a variable
that varies throughout the simulation. The variable Qt−1, or the covariance matrix
of the noise term in Eq. (4.1) was replaced with the following diagonal matrix:

Qt−1 = Cov{Gqt−1} =



σ2T 4
s

4 0 0 0 0 0
0 σ2T 4

s

4 0 0 0 0
0 0 σ2T 2

s 0 0 0
0 0 0 σ2T 2

s 0 0
0 0 0 0 σ2 0
0 0 0 0 0 σ2


(4.2)
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The inverse of these matrices will be used by the functions generateFInverse and
generateQInverse in Algorithm 2 below.

Algorithm 2 shows the prediction procedure, which aligns the filter to the current
fusion time. The filter is moved forward in time specified by the variable DT, and
the measurement uncertainty is modeled by sigma. The class variable PInv is the
inverse covariance matrix of the track, and PInvX̂ is the inverse covariance matrix
times the state estimates collected into one variable.

The prediction function is divided into three segments: (A) Generate basic ma-
trices, (B) Setup intermediate matrices, and (C) Perform prediction step.

Algorithm 2: Prediction function
Input: amount of time to move the filters, the sensor noise term
Output: aligned filters

The procedure of moving one filter to the time of the current fusion. Filters
are moved by DT time, and the measurement noise will be modelled by sigma.

Class variables: PInv, PInvX̂
1 Function prediction (DT, sigma)

/* Segment (A) */
2 FInv ← generateFInverse(DT)
3 QInv ← generateQInverse(DT, sigma)

/* Segment (B) */
4 M ← FInvT × PInv × FInv
5 C ← M × (M + QInv)−1

/* Segment (C) */
6 PInv ← M − C × M
7 PInvX̂ ← (I − C) × FInvT× PInvX̂
8 end

To the issue of data packets arriving in a non-chronological order, the choices were
to rollback the filters, Alexander’s method [4] and EtM, no method was clearly more
beneficial than the others. But a rollback of the calculations and then recalculating
the filters is chosen as a primary method since both accuracy and consistency are
preserved.

In Figure 4.2, the rollback procedure is shown. If the data packet is in chronological
order, the process will continue as normal to the Data association. Otherwise, a
rollback is performed to the point where it is in chronological order, and then the
subsequent steps are re-fused again. This is an expensive procedure, but good in
terms of accuracy.
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Figure 4.2: An illustration of the procedure of rollback.

4.2.2 Data Association
A global nearest-neighbor algorithm was chosen for associating the measurements
with the tracks. Algorithm 3 below shows the entirety of the association algorithm.
It takes the measurements and all the tracks as input, and returns two lists: all
associated tracks and measurements (associated_PQ), and the measurements that
did not get an association (tentative_tracks).

The algorithm begins in with gating the measurements to the tracks to exclude
improbable pairs (line 2-9). The pass_gate function is simply a function that cal-
culates how far the car might have traveled, and accounts for a small uncertainty.

The lines 10-21 describes how the measurements are chosen, with the best pairs first
while considering that only one measurement can only be paired with one track.
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This consideration is done on the lines 13-18, and removes the entries containing
already matched measurements and tracks.

The line 22 saves all measurements that have not been associated with a track.

Algorithm 3: Data association
Input: all current tracks, all measurements
Output: list with associated measurements, list with tentative tracks

The association module seeks to group the measurements and tracks in a
probabilistic manner. If a measurement is unable to be paired, it is put in
tentative_tracks.

1 Function data_association (tracks, measurements)
/* Gating phase */

2 for measurements i do
3 for tracks j do
4 d ← Euclidean distance between measurement i and track j
5 if pass_gate(track i, measurement j, d) then
6 priority_queue ← {d, j, i}
7 end
8 end
9 end

/* Association phase */
10 while !priority_queue.empty() do
11 [d, T1, M1] ← priority_queue.dequeue()
12 associated_PQ ← { d, T1, M1 }
13 Initialize new priority queue tmp_PQ
14 while !priority_queue.empty() do
15 [d, T2, M2] ← priority_queue.dequeue()
16 if T1 != T2 and M1 != M2 then
17 tmp_PQ ← { d, T2, M2 }
18 end
19 end
20 priority_queue ← tmp_PQ
21 end
22 tentative_tracks ← all measurements with no association
23 end

4.2.3 Track Management
The track management module has primarily three tasks: to initialize new tracks,
to upgrade tentative tracks to validated tracks, and to delete tracks. The entirety
of the algorithm can be found below in Algorithm 4.

Tentative and validated tracks are needed due to uncertainty when tracking new
objects, both in motion and existence. A tentative track can be upgraded if it is
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consistently detected, which means that it needs to be detected several times within
a specific amount of time, and is done between line 15 and 19.

In the deletion step, between line 5 and 14, both tentative and validated tracks
are deleted if they are not detected within a certain period of time.

As mentioned in Section 3.4, the unmatched measurements from the data asso-
ciation process will be initialized as a tentative track. This is done lastly, on the
lines 20 to 22. Note that between the lines 19 and 20, the filter will perform a filter
update since there needs to be a historic measurement to be updated from. Thus,

Algorithm 4: Track management
Input: associated tracks, measurements with no association
Output: update of last detected, upgrade tracks, create new tentative tracks

This module manages all the tracks in the server. The lists from the Data
Association is processed here. It upgrades a tentative track to a validated track if
it has been detected multiple times, and also initializes new tracks.

1 Function track_management ( associated_tracks, new_tracks )
2 for associated_tracks do
3 Update when track was last detected
4 end

/* Deletion */
5 for All validated tracks do
6 if Last update ≥ large time constant then
7 Delete the validated track
8 end
9 end

10 for All tentative tracks do
11 if Last update ≥ small time constant then
12 Delete the tentative track
13 end
14 end

/* Validation */
15 for All tentative tracks do
16 if Detected multiple times within a short period of time then
17 Upgrade tentative track to a validated track
18 end
19 end

/* === Reconfiguration === */
/* === Filter update === */
/* Initialization */

20 for new_tracks i do
21 Initialize new tentative track for measurement i
22 end
23 end
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the first measurement is taken as the best estimate of the track, and hence, new
tracks tend to display volatile behavior.

4.2.4 Reconfiguration
Just before the data fusion process, the reconfiguration module may acquire infor-
mation regarding the quality of the sensor setups of the ego-vehicle. A low-quality
sensor with lower accuracy will be modelled with a larger noise rt in Eq. (3.6). On
the other hand, an accurate sensor will be modeled with less noise, since it is accu-
rate and reliable.

There is no current support for determining the sensor setup in the simulation
environment, thus real implementation of reconfiguration is not possible. However,
the fusion architecture allows reconfiguration, although only one configuration is
used.

4.2.5 Data Fusion
The remaining function to describe is the update steps of the Information filter.
From the simulation environment, the actor has the possibility to not only mea-
sure another object’s position, but also its velocity and acceleration. Therefore the
measurement model will include this information in the filtering, and thus Eq. (3.6)
becomes:

yt = HtXt + rt =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Xt + rt (4.3)

The covariance of the noise term rt was tested with different values, and the following
was the final matrix:

Rt = Cov{rt} =



σ2 0 0 0 0 0
0 σ2 0 0 0 0
0 0 σ2

10 0 0 0
0 0 0 σ2

10 0 0
0 0 0 0 σ2

10 0
0 0 0 0 0 σ2

10


(4.4)

with the parameter σ set to σ = 3. The values representing the velocity and accel-
eration (σ2

10 ), implies better accuracy of the velocity and acceleration, compared to
the GPS data. The noise of the data will be further elaborated in Section 5.3.

Lastly, we assume that there is no priori information, and hence the inverse co-
variance matrix P0 is initialized as a zero matrix. The update steps are then exe-
cuted with the new measurements yt together with the above matrices as shown in
Eq. (3.21) and Eq. (3.24).
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4.2.6 Fusion Server Overview
The fusion server is elaborate and consists of multiple items where timing sometimes
is essential. Generally, the fusion is done for the time when the data packets are
transmitted, and the fused outputs are always the current time. Figure 4.3 gathers
all of the fusion server’s items, and combines this with a timeline.

A fusion process is initialized when the data packet arrives at the server at T3, and
commences the Data Alignment. It begins by checking if the data packet arrived
in a chronological order, and starts a rollback procedure if necessary. Otherwise, it
aligns all tracks in the server from the last fusion T1 to the new fusion time T2. Then,
the Data Association module tries to match the measurements in the data packet
with existing tracks in the server and returns two lists: one with all the matches
and one with measurements that did not get matched. These lists are used by the
Track Management, and deletes tracks that have not been observed for a period
of time, but also upgrades tentative tracks to a validated one. If the measurement
arrived with some information of its sensor accurateness, the reconfiguration module
adjusts the covariance of the noise matrix in Eq. (4.4) accordingly. Thereafter, the
data fusion takes place on the matches made from the Data Association module.
Before the output, new tracks are initialized with the measurements that did not
get matched with a track, and the first value is taken as the truth of that track.
Now, the fusion server is fully updated to time T2, but due to delays, the current
time of the server is later, at time T3. Thus, a temporary prediction from time T2
to time T3 is made to get the most up-to-date output.
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Figure 4.3: The fusion server together with all of its functionalities together with
a timeline.
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5
Data Sets

Here, we present the data sets that were used to test our fusion server. The data
sets were provided by Volvo Car Corporation, and were generated by their internal
simulation environment. The data consisted of ground truth data of the vehicles. If
another vehicle was in a range of one vehicle’s sensors, it got information of the other
vehicle’s state vector. This simulation environment had a millisecond precision, but
the client simulator was run in real-time. Thus, it would transmit the measurement
of the current time, and if the transmission frequency was set to 10 Hz, it would
skip the 99 other measurements between the transmissions.

5.1 Scenario 1
The first traffic scenario is visualized in Figure 5.1 below. Car 1 starts driving from
the coordinates (10,−2) and Car 2 from (50,−2). Both vehicles drive horizontally
to the right, towards a still vehicle at coordinates (400,−2). When approaching this
still car, car 2 changes the lane whereas car 1 stops behind it. The total simulation
time was 40 seconds and consisted of 40,000 frames.

Figure 5.1: Two cars drive towards a still vehicle, one stops behind it, whereas one
changes lane and continues driving.
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5.2 Scenario 2
The second scenario in Figure 5.2, shows an interaction in a roundabout between
three cars. Two cars approach from the left side, whereas another car comes in from
the right side. All three cars ended up taking different exits. The total simulation
time is 30 seconds, with a total of 30,000 frames.

Figure 5.2: Three cars enter and exit a roundabout.

5.3 Noise
The data sets provided to us represented the ground truth. Thus, in order to get
relevant results, the data needs to resemble real-world data. According to DoD [17],
GPS receivers have been achieving horizontal accuracy of 3 meters or better 95% of
the time. Additionally, the Velodyne LIDAR sensor HDL-64E achieves an accuracy
of 2 cm and has a range of around 100 m [1]. The velocity and acceleration of the
vehicles are generally very accurate with very small deviations.

Finally, we decided to add zero mean Gaussian noise to the true measurements
with a standard deviation of 3 meters to the GPS data, and 1 meter to the sensor
data. This setup would represent normal sensors, and not high-end sensors.
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Results

Apart from displaying the benefit of fusing data globally, efforts have been placed
upon revealing the problems that network delay presents, and investigating the speed
and scalability of our fusion server.

When comparing the output with fusion (cars collaborate) and without fusion (no
collaboration), we see significant improvements when the cars are sharing informa-
tion and cooperating. Furthermore, our results suggest that the precision deterio-
rates with increasing mean latency. It was also found that data packets that arrived
in a non-chronological order posed significant issues, both in terms of precision and
computational speed.

The speed issues could mainly be traced down to two functions: one to align the
data packets, and one to align the filters. The study ends with attempts to optimize
the found bottlenecks, and investigating the scalability of the fusion server.

6.1 Setup
The data used were tainted by artificial noise, of which considerably deteriorated
the performance of the fusion server. In order to generate different sequences of
noises, seeds for the pseudo-random number generator varied in every run. Since
the precision of the fusion server is closely linked with the client input, we mitigate
the affect of the randomness to some degree through making 100 simulations of each
test.

The performance of the fusion server is connected to the rate of which the vehi-
cles broadcast, and in general we set the broadcasting-rate to 10 Hz. Another factor
is the rollback size, which is a parameter that controls the number of allowable roll-
backs for a data packet. The rollback size needs to be limited since the amount
of historic data that needs to be stored could get infinite. Additionally, it makes
little sense to rollback very far back in time, and if it exceeds the rollback size it is
simply ignored. Nonetheless, a larger rollback size would in theory lead to better
accuracy at the cost of more computational burden. Thus, these parameters need
to be balanced, and in most experiments the rollback size is set to 5.
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6.2 Precision
The tracking algorithm produces estimates, or hypotheses, of how the objects move
in the system. This output can be analyzed in several ways, and one aspect is
to consider the algorithm’s precision to reproduce the ground truth. Bernardin
and Stiefelhagen [9] introduce a metric to quantify the precision of the tracking
algorithm: the Multiple Object Tracking Precision (MOTP). The MOTP estimate
is retrieved by calculating the average positional error between the estimates (x̂t, ŷt)
and the ground truth (xt, yt). The Euclidean distance for track j and frame t is:

djt =
√

(x̂jt − xjt)2 + (ŷjt − yjt )2 (6.1)

This is then averaged over all cars, and for all frames to get the MOTP:

MOTP =
∑
t

∑
j d

j
t∑

t ct
(6.2)

Where ct describes the number of tracks at frame t.

We start with the most basic simulation where the transmission delay is neglected
(0 ms) in order to test the accuracy of the fusion server. To understand the fused
output, recall from Figure 5.1, and especially the path of Car 2. In order to highlight
the inaccuracies, a small piece of the path of Car 2 is displayed in Figure 6.1.

Figure 6.1: The path of Car 2 from Fig 5.1. The ground truth, path with fusion,
and path without fusion. [Simulations: 1, Sending rate: 10 Hz, Rollback size: 5]

In a similar way, Car 3 is extracted from Scenario 2 in Figure 5.2. It drives around
the whole roundabout, but only a small excerpt is shown in Figure 6.2, where it
merely enters the roundabout.
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Figure 6.2: The path of Car 3 from Fig 5.2. The ground truth, path with fusion,
and path without fusion. [Simulations: 1, Sending rate: 10 Hz, Rollback size: 5]

Then, we use the MOTP to quantify the accuracy of the fused output. In Figure 6.3
we see the MOTP of both scenarios, with and without fusion. The maximal and
minimal MOTP found, together with the standard error of the mean.

Figure 6.3: The average positional error when the cars do not collaborate (no
fusion), and when they do (with fusion). [Simulations: 100, Sending rate: 10 Hz,
Rollback size: 5]
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6.3 Transmission Delay Testing
The transmission delay testing is done with regards to two aspects: the length of
the delay and its spread. We start without spread and test the performance for
different values of the delay length, and can be found in Figure 6.4. In this case, all
measurements will arrive in a chronological order, and will never cause any rollbacks.

Figure 6.4: The average positional error and its statistical bounds for different
fixed delays. [Simulations: 100, Sending rate: 10 Hz, Rollback size: 5]

Figure 6.5: The average positional error and its statistical bounds for different
fixed delays. [Simulations: 100, Sending rate: 10 Hz, Rollback size: 5]

Then, we tested the accuracy for different sizes of the spread of the transmission
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delay. In Figure 6.6 and 6.7 all simulations had a mean transmission delay of 100 ms,
and were tested with an increasing uniform transmission delay span.

Figure 6.6: The average positional error and its statistical bounds for a given
transmission delay span. [Simulations: 100, Sending rate: 10 Hz, Rollback size: 5]

Figure 6.7: The average positional error and its statistical bounds for a given
transmission delay span. [Simulations: 100, Sending rate: 10 Hz, Rollback size: 5]

6.4 Bottleneck Localization
This section seeks to evaluate the speed of the fusion server, how fast the internal
modules are, and locate the bottlenecks. The case with a fixed delay of 100 ms
is shown to the left in Figure 6.8. In this case, no rollbacks will take place, but
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the fusion server will however account for the possibility of a rollback. Thus, the
task of the rollback in this case is to store historic data, and will never perform any
rollbacks. However, in the right figure rollbacks are possible, since the delay varies
between [50, 150] ms.

Figure 6.8: The average time spent in every module per packet with the delay
100 ms (left chart) and [50, 100] ms (right chart). [Simulations: 100, Sending rate:
10 Hz, Rollback size: 5]

Since the Data Alignment is a significant part of the total computation time, we
decompose this module further. The Data Alignment have two tasks: to predict,
and to perform rollbacks if necessary. Figure 6.9 divides the items into Prediction,
Rollback, Output and Other, which is the remaining modules.

Figure 6.9: The left figure shows the average computation time when no rollbacks
are present, whereas rollbacks are frequent in the right one. [Simulations: 100,
Sending rate: 10 Hz, Rollback size: 5]

38



6. Results

6.4.1 Extrapolating the Measurement
An alternative method to rolling back the filter and re-fusing it again was intro-
duced in Section 3.2, which was called Extrapolating the Measurements (EtM).
This method simply extrapolated old measurements to the same time as the most
recent fusion, which would adjust the measurements into an artificial chronological
order. The precision for different delay spans for Scenario 1 and 2, can be seen in
Figure 6.10 and Figure 6.11 respectively. These graphs could be compared to the
Figures 6.6 and 6.7.

Figure 6.10: The MOTP for different spans of the delay. [Simulations: 100,
Sending rate: 10 Hz, Rollback size: 5]

Figure 6.11: The MOTP for different spans of the delay. [Simulations: 100,
Sending rate: 10 Hz, Rollback size: 5]
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Precision aside, we also investigate the speed of using rollback and EtM. Table 6.1
shows the total computation time and the relative improvements for these methods.

Table 6.1: The average computation time for a data packet in the fusion server
using rollback, compared to a fusion server using EtM. [Simulations: 100, Sending
rate: 10 Hz, Rollback size: 5]

Scenario 1 Scenario 2
[87.5 - 112.5] EtM Rollback EtM Rollback

Average time [ms] 0.1872 0.253 0.1925 0.2547
Min time [ms] 0.1378 0.2161 0.1822 0.1797
Max time [ms] 0.2164 0.2808 0.2029 0.2799

Standard error [ms] 0.0287 0.0242 0.0064 0.0314
[50 - 150]

Average time [ms] 0.2181 0.3413 0.222 0.3344
Min time [ms] 0.1751 0.3069 0.2052 0.3085
Max time [ms] 0.2652 0.3981 0.2327 0.3553

Standard error [ms] 0.0275 0.0318 0.0092 0.0144

Which shows that EtM always was faster than rollback, and reduced the computa-
tion time of the Data Alignment. To understand how much this improved the Data
Alignment, Figure 6.12 displays the average computation time in each module for
one data packet.

Figure 6.12: The average time spent in every module using EtM, with uniform
delay span [50, 150] ms. [Simulations: 100, Sending rate: 10 Hz, Rollback size: 5]

However, as EtM resolves some speed issues, some significant ones still exists. The
Data Alignment and output step have some similarities, and will be further scruti-
nized in the following section.
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6.4.2 Prediction Analysis
Both the Data Alignment and output step performs a procedure called prediction,
and moves all the filters forward to a specific time. In the case of data alignment,
this time is the time of the current fusion, whereas the output step moves the filters
to the current time. The prediction function is explained in detail by Algorithm 2
in Section 4.2.1, and consists of the following steps:
(A) Generate basic matrices
(B) Setup intermediate matrices
(C) Perform prediction step

In Figure 6.13 the items (A) - (C) are timed, but only the prediction function in the
Data Alignment, and not the prediction function in the output step.

Figure 6.13: The average computation time per packet. The prediction function
in Data Alignment is separated into (A), (B) and (C). Note that rollback is put
under the item “Other”. [Simulations: 100, Sending rate: 10 Hz, Rollback size: 5]

6.5 Performance
As explained in Section 2.4, since the Information filter use many but small matrices,
multithreading is a suitable optimization technique. However, only the prediction
function in the Data Alignment and in the output step can be done in parallel,
whereas data association and track management need to be executed sequentially.
However, the Data Fusion module is not a clear candidate for parallelization, since
a car needs to detect a lot of other objects to be beneficial. Hence, this limits the
gain of parallelization and might actually slow down the tracking algorithm.

Thus, the algorithm would in principle work the same as before, but the predic-
tion in Data Alignment and the output step are done in parallel. The parallelized
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modules are highlighted in red in Figure 6.14. Note that the threads need to be
synchronized before proceeding to the next step.

Figure 6.14: The fusion server and the parallelized modules highlighted in red
color.

In order to guarantee that the results are compared with the same criteria, the
pseudo-random number generator for delay and noise are fixed with the same seed
for every observation. Additionally, the performance is tested on the same computer
with the following specifications:

• CPU: Intel Core i7 (4 cores, 8 threads), 2.00 GHz
• Memory: 8 GB, 1333 MHz DDR3
• Operating system: OS X version 10.9.5
• Compiler: LLVM version 6.0 (clang)

Figure 6.15 shows the improvements from multithreading when the delay varies
uniformly in the span [87.5, 112.5] ms, for different amount of cars. Similarily
Figure 6.16 displays the improvements when having a uniform delay in the span
[50, 150] ms.

Figure 6.15: The average computation time per packet with delay span
[87.5, 112.5] ms. [Simulations: 100, Sending rate: 10 Hz, Rollback size: 5]
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Figure 6.16: The average computation time per packet with delay span
[50, 150] ms. [Simulations: 100, Sending rate: 10 Hz, Rollback size: 5]

The results with multithreading are slower with 6 or fewer cars. However, we see
that the fusion server got improved by multithreading algorithm when we have more
than 6 cars. According to this experiment, the multithreaded version performs more
than 20 % faster with 12 cars, and almost 20 % faster for 24 cars for both spans.

Moreover, when the size of the delay span is increased from [87.5, 112.5] ms to
[50, 150] ms, the computation time also increase relatively. For example, the com-
putation time with 24 cars increased by approximately 30 %. This, due to the
fact that larger delay spans increase the probability of data packets arriving non-
chronologically. To further understand the improvements, we display the improve-
ments for each module in Figure 6.17.

Figure 6.17: The average computation time with 24 cars for each module.
[Simulations: 100, Sending rate: 10 Hz, Rollback size: 5]
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The result shows that multithreaded algorithm for Data Alignment and the output
step does improve the computation time noticeably. But they still constitute of the
majority of the total computation time.

6.6 Scalability
Theory dictates that the broadcasting frequency should affect the scalability of the
server, due to the different amount of data packets delivered to the system per
vehicle. Sending with a high frequency is desirable, but simply not feasible in a
large-scaled system. In Figure 6.18, we illustrate the precision when cars broadcast
at different frequencies. The test is performed with 3 cars in the server, and when
the transmission delay varies uniformly between 50 and 150 ms.

Figure 6.18: The MOTP for different sending rates with delay span [50, 150] ms.
[Simulations: 100, Rollback size: 5]

When the cars send data at 1 Hz, the average positional error is very high. But
the experiment suggests that the average positional error exponentially decays with
increasing sending frequency.

6.6.1 Different Sending Rates
Although the server provides more accuracy with increasing number of inputs, it
also comes with higher computational costs. Therefore, we conducted another ex-
periment to show how the fusion server scale up when there are more than 3 cars
in the server by duplicating the same set of data. In order to guarantee that the re-
sults are compared with the same criteria, the pseudo-random number generator for
delay and noise are fixed with the same seed for every observation. The experiments
are set up with a delay between 50 and 150 ms, and with increasing numbers of
cars until real-time execution no longer is maintained. Since Scenario 1 spans over
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30 seconds, the real-time execution criterion is broken when the total computation
time exceeds the total simulation time. Figure 6.19 and 6.20 shows the scalability
when the vehicles communicate with the server at 10 Hz, which is the frequency
most previous experiments have been conducted with.

Figure 6.19: The total computation time with delay span [50, 150] ms.
[Simulations: 100, Sending rate: 10 Hz, Rollback size: 5]

Figure 6.20: The computation time per packet with delay span [50, 150] ms.
[Simulations: 100, Sending rate: 10 Hz, Rollback size: 5]
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We find that the fusion server can support up to 36 cars with the specified settings,
which can be considered as a small system. In order to increase the number of cars
the server can support, the car’s sending frequency is lowered. Figure 6.21 and 6.22
shows the scalability when the transmission frequency is set to 1 Hz.

Figure 6.21: The total computation time with delay span [50, 150] ms.
[Simulations: 100, Sending rate: 1 Hz, Rollback size: 5]

Figure 6.22: The computation time per packet delay span [50, 150] ms.
[Simulations: 100, Sending rate: 1 Hz, Rollback size: 5]
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6.6.2 Rollback Allowance
Another important factor for scalability is rollback size. Previously, the experiments
were tested with the rollback size of 5. This section will demonstrate the result when
rollback size is increased from 5 to 10, since allowing more rollbacks should affect
the scalability of the fusion server significantly.

Figure 6.23: The computation time per packet with delay span [50, 150] ms.
[Simulations: 100, Sending rate: 1 Hz, Rollback size: 10]

Figure 6.24: The computation time per packet with delay span [50, 150] ms on
Scenario 1. [Simulations: 100, Sending rate: 1 Hz, Rollback size: 10]
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As seen in Figure 6.22 and 6.24, the fusion server capacity decreases from 160 cars
to 140 cars. Moreover, computation time per packet also increases noticeably, for
instance, the average computation with 40 cars is increased from 2.78 ms to 3.70 ms,
which is around 33 %.
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Discussion

Due to the open-ended nature of the track fusion problem in general, and our ap-
proach in particular, estimating the reliability of the results and the degree of success
has been a difficult endeavor. There exist a myriad of approaches to the track fu-
sion problem, but the predicament is that very few overlap sufficiently to our study.
Additionally, the absence of real-world testing was a weakness in our study. Our
simplified prototype system may have overlooked critical aspects of a real-world
scenario. These factors make it difficult to draw any definitive conclusions from
our results. Hence, this pilot project should merely be seen as a guideline to the
dynamics of an on-line fusion server.

7.1 Accuracy
The results from comparing cars using local fusion and global fusion are demon-
strated in Figure 6.3. We find a significant difference between the output without
fusion and with fusion and shows that a lot of accuracy is attained when the cars
are collaborating. Apart from the improved accuracy, the maximum and minimum
MOTP was more concentrated around the mean. The decrease in standard error
signified less volatility in the results, and a more stable tracking algorithm.

Comparing the results to different work are however more troublesome, and does not
do any work justice. But to get a grasp of the magnitude of accuracy, we provide the
results made by other tracking algorithms. Numerous studies have used the KITTI
Vision Benchmark Suite [22], which uses a Velodyne LIDAR HDL-64E [1] with a
precision of 2 cm and a OXTS RT 3003 GPS [2] with an accuracy of 1 cm under
perfect conditions. Spinello et al. [32] got a MOTP of 0.16 m, whereas Yves [38]
achieved an average positional error of 0.14 m. Our noise replicated a fairly cheap
sensor setup and obtained a MOTP of approximately 0.32 m for Scenario 1, and
around 0.49 m for Scenario 2.

7.2 Transmission Delay
For different lengths of the latency, we see from Figure 6.4 and 6.5 a slight correlation
between the length of the delay and the MOTP. From the best case (0 ms) and the
worst case (200 ms), the MOTP increases around 0.02 m and 0.065 m for Scenario 1
and 2 respectively. The degradation from longer transmission delay was expected,
since it is impossible for the tracking algorithm to foresee turns and velocity changes.
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7. Discussion

The fusion algorithm thrives when the cars drive in a constant and predictable
manner, but is however noticeably affected by the latency. The increased MOTP
for Scenario 2 compared to Scenario 1 is the consequence of having more turns
and velocity changes. This is further demonstrated by Figure 7.1, which shows the
MOTP frame by frame through the simulation of Scenario 2. The MOTP increases
considerably when the cars begin to enter the roundabout and the simulation with
200 ms delay have more difficulty predicting the position of the cars. To get a
message 200 ms late will naturally cause bad precision of the tracking algorithm,
especially when travelling at high speeds.

Figure 7.1: The average positional error frame by frame for Scenario 2. Note that
the total simulation spans between the frames 0 and 900. [Simulations: 1, Sending
rate: 10, Rollback size: 5]

The affect of the transmission delay spread is seen in Figure 6.6 and 6.7, and despite
using an optimal strategy to put the measurements in a chronological order, we find
that the delay span distinctively affects the precision. When comparing the span of
the delay to the length of the delay, we interestingly find that the variance of the
delay causes more troubles than the mean delay.
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7.3 Performance
It is evident that the bottleneck in our fusion server lies within Data Alignment and
the output step. One bottleneck could be localized to the rollback function, and
in order to circumvent this costly feature, EtM was implemented. But as seen in
Figure 6.10 and Figure 6.11, the precision exponentially deteriorates when the delay
span increases. However, this method’s upside can be observed in Table 6.1, where
the fusion server that uses EtM is considerably faster. Despite the improvements
from this new method, we see from Figure 6.12 that the Data Alignment module
and output step still had the highest computational burden. Both contained the
prediction function, and was further analyzed in Section 6.4.2. The largest bottle-
necks were localized to algebraic operations, and specifically matrix inversions and
matrix multiplications.

Thus, we instead optimized parts of the fusion server using multithreading. The
results demonstrated that with multithreading, the fusion server gets approximately
20 % faster compared to the non-optimized version. However, we also found that it
becomes slower when there were around six cars or fewer in the server, due to the
fact that there is additional time for spawning and joining new threads. In addition
to that, the fusion server is unable to benefit from parallel computing in small sys-
tems, since the size of the parallelizable blocks is small. Furthermore, parallelization
covers only a small part of the fusion server, while other parts still run sequentially.
“Amdahl’s law” is often used in parallel explanation, “the theoretical speedup is al-
ways limited by the part of the task that cannot benefit from the improvement” [5].

Additionally, the result in Figure 6.17 shows that the average computation time
for Data Alignment and the output step are suspiciously high. While other modules
take a small portion of the computation time. The limited gain from multithreading
could be explained by the limited amount of threads in the CPU, combined with a
high overhead time.

7.4 Scalability
Since all cars transmit its data to the fusion server, the number of cars significantly
affects the fusion server. Our tests suggest that the average computation time per
data packet grows linearly with every car, and the total computation time tend to
be exponential with every car. But this result should not be fully trusted. Due to
the limited data sets, we had to artificially spawn the same scenario multiple times.
These were isolated simulations, which meant that the cars were unable to detect
each other in-between the simulations. If they were able to detect each other, we
would have gained improved accuracy, but at the cost of more computational power.

From Figure 6.20, we see that the fusion server can support up to 36 cars send-
ing data at 10 Hz. When sending at 1 Hz, the fusion server can support 160 cars
when the rollback size is 5, and 140 cars when the rollback size is 10. The difficulty
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lay in determining the best ratio between all parameters that affect the precision
and speed of the fusion server. For example, we see from Figure 6.18 that the pre-
cision of the fusion server degrades dramatically when cars transmit at 1 Hz. Lower
sending frequencies might be fine in a vehicle dense area, but might not be feasible
otherwise. Furthermore, by comparing Figure 6.22 and Figure 6.24, we see that the
average computation time per packet raised by almost 28% when the rollback size
was increased from 5 to 10. A larger rollback size yields a better precision, but result
in a slower performance. The trade-off between speed and performance has been the
general theme when determining the scalability, and does not have an unambiguous
answer.

7.5 Extensions
The fusion server consists of many modules and features that further can be tuned
and extended. A lot of interesting features becomes possible if the client and fusion
server are allowed to communicate to each other. The primary problems found in
this thesis have been towards the network stability, and doing rollbacks. A way
to lower the randomness by the network and the risk for rollback, is to make the
vehicles broadcast with as far interval to the other vehicles as possible. The bigger
the interval between two transmissions, the lower the probability that the data
packets will arrive in a non-chronological order. Figure 7.2 shows a scenario when
two vehicles send their data from an arbitrary starting position, which happens to be
very close to each other. In this case, the transmission delay on Client 2 needs only
to be at least 11 ms longer than Client 1 to trigger a rollback. Or, the transmission
delay of Client 1 needs to exceed Client 2’s by at least 91 ms to trigger a rollback.
In the case of Broadcast spreading shown in Figure 7.2, the clients need to exceed
the other by at least 51 ms to trigger a rollback. Since the transmission delay should
in average be very close to each other, Broadcast spreading should conceivably lead
to fewer rollbacks.

Figure 7.2: Random broadcasting time for two clients.
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Figure 7.3: Two vehicles spreading their broadcasting times to be as far away of
each other as possible.

On the same theme, if the server would be able to communicate with the cars,
one possibility to increase the scalability of the server would be adjusted the cars
broadcasting frequency depending on the number of cars in the area. Cars within
a small area would detect each other more frequently, rendering it possible to lower
the number of updates to the fusion server. The problem lays however in creating
such an algorithm that is able to optimize the relation between the number of cars
and accuracy.

Furthermore, the Kalman Filter and the Information Filter handles linear motion
well but are both basic approaches. Therefore, other implementations such as the
Extended Kalman Filter, or the Particle Filter should also be evaluated, since they
handle non-linear motion better. In addition to only test one fusion algorithm at a
time, an advanced system could possibly integrate multiple filters, depending on the
traffic situation or the driver. For example, either driving in urban or countryside
environment, and either having a human or autonomous driver. A human driver
in an urban environment could pose a highly non-linear behaviour, whereas an au-
tonomous driver in a countryside environment might be very predictable and linear
in motion.

Apart from preciseness, performance is also an important issue for the fusion server.
Parallel computing was considered as an alternative to enhance a computation ca-
pacity. On the other hand, distributed computing may be suitable for the fusion
server. Ideally, when a single fusion server is not enough to support a large scale of
computations, more fusion servers are built and connected together to a network.
The tasks are communicated by message passing, in which workloads can be shared
among connected servers. However, an additional time between server-to-server
communication must be taken into account in order to maintain the quality of the
fusion service.
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8
Conclusion

We have created a client simulator to resemble the characteristics of independent
cars in a real world scenario. A fusion server was created to fuse the incoming data
into a holistic picture in real-time. We studied the affects when the sources and the
consumer are at different locations. The physical separation causes the transporta-
tion time of the data to become significant, and deteriorate the performance.

The results from our fusion server have been exceedingly difficult to compare to
other work. However, we saw significant improvements when using global data fu-
sion instead of local data fusion. We also found that the length of the network delay
affected the precision of the tracking algorithm. The delay span did not only signif-
icantly impact the precision, but also afflicted the speed of the tracking algorithm.
In particular, the Data Alignment and the output step were by far the largest bot-
tleneck. The rollback feature produced satisfying precision, but had a considerable
computational burden, since its computation time is proportional to the other mod-
ules. Another bottleneck was found to be the prediction function in Data Alignment
and the output step. Attempts were made to optimize this function through par-
allelization, but with limited success. The size of the matrices and the scale of the
system were simply too small, and could not be fully benefited. Altogether, with
a fusion server that still have not been fully optimized, our study indicate that an
on-line fusion server with our approach might support hundreds of cars, rather than
thousands. However, the scalability is linked to numerous parameters, such as the
sending rate and rollback size.

To create a commercial infrastructure that fuses data from multiple vehicles into
a common picture, one has to at the least address two important challenges. The
first one is the speed of the tracking algorithm. A fast-tracking algorithm has more
flexibility, and can choose to be fast, or to be more precise. The other challenge is
the network stability. A lot of precision is lost by a network with high latency. It
helps the tracking algorithm immensely to get a measurement that early indicates a
change in the driving pattern. Stability in the network also relates to a tight delay
span, that the packets oftentimes arrive in chronological order, which in turn lead to
less computation time in the tracking algorithm. The excess computational power
could instead intelligently be spent by the Intelligent Traffic System to adjust the re-
lation between speed and precision. Thus, a stable network forges positive feedback,
and solves a lot of issues by nature. By granting the ITS large margins, it increases
its probability to solve unpredictable and complex traffic scenarios, creating a safer
environment for all actors.
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A
Appendix 1

Lemma (Woodbury matrix identity):

(S + UTV)−1 = (S)−1 − (S)−1U(T−1 + V(S)−1U)−1V(S)−1 (A.1)

Proof: The Woodbury identity matrix is proven by checking that the Woodbury
identity (S + UTV) times its inversion on the right side forms the identity matrix:

(
S + UTV

)−1[
(S)−1 − (S)−1U

(
(T)−1 + V(S)−1U

)−1
V(S)−1

]
= I + UTV(S)−1 −

(
U + UTV(S)−1U

)(
(T)−1 + V(S)−1U)−1V(S

)−1

= I + UTV(S)−1 −UTU
(
(T)−1 + V(S)−1U

)(
(T)−1 + V(S)−1U

)−1
V(S)−1

= I + UTV(S)−1 −UTV(S)−1

= I

Where the matrices S, T, U and V are of the correct conformable sizes.
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