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Abstract

In structures like for instance an aircraft we would like to predict the sound pressure

levels in the cabin due to the engines or aeroacoustically induced vibrations. A nowadays

common method within the aerospace and automotive industries is Statistical Energy

Analysis (SEA).

Many structures nowadays are (partially) composed of composite materials. Compos-

ites are used basically everywhere, and for different purposes. An example would be to

improve the damping of a structure by adding a viscoelastic layer to the material of the

structure.

Several models exist for the calculation of elastic moduli of composite laminates, and

one such model is Classic Laminate Theory. An extension to Classic Laminate Theory

makes it possible to calculate the frequency-dependent loss factor of a laminate as well.

Inspired by SEALAB the goal of this project is to write a free and open-source SEA

implementation. Additionally the implementation should support the calculation of

elastic properties of composite lamina using Classic Laminate Theory and the mentioned

extension.

In this report the design of the SEA implementation will be discussed. The successful

validation of the composites model is shown as welll. Several severe problems were

encountered while writing the SEA implementation. The main issues are discussed and

solutions are proposed. In its current state the SEA implementation cannot be used.

Keywords: Statistical Energy Analysis, SEA, Composite Materials, Laminates
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Notations

Roman uppercase letters

A Area m2

B Bending stiffness N m2

C Conductivity rad−1

C Stiffness Pa

D Flexural rigidity N m2

E Energy J

E Young’s modulus Pa

G Shear modulus Pa

H Height m

K Bulk modulus Pa

L Length m

M Modal overlap rad−1

M Moment resultant N

N Force resultant or traction N m−1

N Mode count rad−1

P Power W

P Perimeter m

Q Reduced stiffness Pa

S Compliance Pa−1

S Cross-section m2

T Transformation matrix -
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Roman lowercase letters

c Wave velocity m s−1

cφ Phase velocity m s−1

cg Group velocity m s−1

e Modal power W rad

f Frequency Hz

j Imaginary unit -

k Wavenumber rad m−1

m Mass kg

m Component of θ -

n Component of θ -

n Modal density s rad−1

p Stiffness or elastic modulus Pa

t Time s

x Direction m

y Direction m

z Direction m

Greek uppercase letters

Γ Correction term
-

Greek lowercase letters

δ Correction term -

ε Strain -

η Displacement m

η Loss factor rad−1

λ

Lambda
m

ω Angular frequency rad s−1

σ Stress Pa

ν Poisson’s ratio -

γ Engineering shear strain -

ρ Density kg m−3

τ Stress when engineering shear strain is used Pa

θ Fibre orientation angle of layer rad
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Acronyms

API Application Programming Interface

CAD Computer-Aided Design

CLF Coupling Loss Factor

CPT Classic Plate Theory

CLT Classic Laminate Theory

GUI Graphical User Interface

MVA Model-View-Adapter

MVC Model-View-Controller

SEA Statistical Energy Analysis
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1 Introduction

In structures like for instance an aircraft we would like to predict the sound pressure levels

in the cabin due to the engines or aeroacoustically induced vibrations. Several techniques

exist for predicting the response of a structure to an excitation. A nowadays common

method within the aerospace and automotive industries is Statistical Energy Analysis

(SEA). SEA consists of procedures for predicting reverberant motion in structures [17].

The dynamical problem is reduced to a set of linear equations relating energetic variables

associated with subsystems of the complete structure. Due to this description SEA can

be a relatively quick technique for predicting the response of a structure.

The amount of vibrational energy transferred depends on the conductivities and modal

overlap factors of the couplings and components along the transfer path as well as their

’acoustic temperatures’ [20]. The conductivities and modal overlap factors strongly

depend on the losses per cycle in the coupling and the component, values known as

respectively the coupling loss factor and damping loss factor. A good estimation of

these loss factors is therefore important.

Many structures nowadays are (partially) composed of composite materials. Com-

posites are used basically everywhere, ranging from buildings to gears to the hull of

an aircraft, and they can be applied for different purposes. An example would be to

improve the damping of a structure. In such case a viscoelastic material is added to the

structure.

Several models exist for the calculation of elastic moduli of composite laminates, and

one such model is Classic Laminate Theory. An extension to CLT makes it possible to

calculate the frequency-dependent loss factor of a laminate.

Inspired by SEALAB [14] the goal of this project is to write a free and open-source

SEA implementation. Additionally the implementation should support the calculation

of elastic properties of composite laminae. In this report the theory of SEA will briefly

be treated as well as a model for the prediction of elastic properties of laminae. The

technical design of the SEA implementation will be discussed and a validation will be

shown of the composites model. While the focus of the project was on developing an

SEA implementation, the design and actual implementation will be discussed only briefly.

Instead, the focus in the report is on a model for composite laminae, though limited time

and effort was actually spend on this topic.

1
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2 Statistical Energy Analysis

Statistical Energy Analysis (SEA) is a method for predicting reverberant motion in a

system. SEA was originally developed during the Apollo program to facilitate predictions

of acoustic fatigue occurring during launch [20]. Successful advances were made later

enabling noise and vibrations predictions in buildings. Nowadays SEA is used more

widely, including the automotive industry.

Statistical Energy Analysis is a method with an energy perspective. It is assumed the

system is in steady state. The first part in a Statistical Energy Analysis is to subdivide

the structure into subsystems. For each subsystem a power balance equation can be

written. For subsystem i the power balance equation would be written as

P iin = P idiss +
∑
j 6=i

P i,jc (2.1)

where P iin is the input power to the subsystem from external sources, P idiss is the power

dissipated through internal damping, and P i,jc is the power transmitted from subsystem

i to a neighbouring subsystem j through a mechanical coupling. All powers are time-

averaged.

Power dissipation in a subsystem is given by

P idiss = ηiωEi (2.2)

where ηi is the damping loss factor, ω the angular frequency and Ei the time-averaged

energy stored in subsystem i.

The coupling power is assumed to be

P i,jc = Ci,j
(
Ei
ni
− Ej
nj

)
(2.3)

where Ci,j is the vibration conductivity and ni and nj the modal densities in respectively

subsystems i and j. The fractions are sometimes also called acoustic temperatures. The

modal density is the number of modes per unit angular frequency band

n = n(ω) =
∆N

∆ω
(2.4)

The modal energy of subsystem i is obtained by dividing the energy stored in the

subsystem with its modal density

êi =
Ei
ni

(2.5)
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Combining this equation with 2.2 gives

P idiss = ηiωEi = ηiωniêi = Miêi (2.6)

where Mi is the modal overlap

Mi = ηiωni (2.7)

The modal overlap is the parameter that describes dissipation in subsystems of an SEA

model. The other parameter describing dissipation in an SEA model is the conductivity.

Often equation 2.3 is written as

P i,jc = ω
(
ηi,jc Ei − ηj,ic Ej

)
(2.8)

where ηi,jc and ηj,ic are coupling loss factors. The coupling loss factor ηi,jc describes

the apparent loss factor of subsystem i, because of energy flow to subsystem j, when

ηj � ηj,ic .

Often the SEA consistency relation is valid

niη
i,j
c = njη

j,i
c (2.9)

in which case

Ci,j = ηi,jc ωni = ηj,ic ωnj = Cj,i (2.10)

It can clearly be seen that the expression for the conductivity has a similar shape as

that of the modal overlap.

By expressing the conservation of energy in modal powers, modal overlap factors and

conductivities, it is possible to assemble the power balance equations of every subsystem

in the following matrix form

M1 +
∑
j

C1j −C12 · · · −C1n

−C12 M2 +
∑
j

C2j · · · −C2n

...
...

. . .
...

−C1n −C2n . . . Mn +
∑
j

Cnj




ê1
ê2
...

ên

 =


P 1
in

P 2
in
...

Pnin

 (2.11)

This formulation allows efficient solution. No numerical difficulties are involved since

the matrix is real, symmetric and positive definite.

Next is to specify the modal overlap factors and conductivities for respectively the

subsystems and the couplings. These factors (though often expressed as (coupling) loss

factors or averaged frequency spacings [17]) can readily be found in literature and will

not be repeated here.

Since the modal overlap factors and conductivities depend on the material properties of

the structure we shall have a look at elastic material properties and composite laminates

in the next two chapters.
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3 Solid materials

Solid materials are characterised by their structural rigidity and their resistance to

changes of shape. Not all solids behave similarly to for example an applied load; certain

solids show linear elastic behaviour while other solids exhibit non-linear phenomenon

like hysteresis. This section gives an overview of elastic solids, viscosity and composite

materials.

3.1 Elastic materials

Elastic materials are characterised by their elasticity, which is the property to return

to the original shape after deformation. When an external force applied to an elastic

material would deform the material, then, unlike plastic materials, elastic materials

restore to its original state when the external force is removed.

The elasticity of materials is described by a stress-strain curve, as shown in figure 3.1.

Figure 3.1: Stress as function of strain. Below the yield point this material appears to be linear

elastic. Figure adapted from [5].

Below the yield point the material is said to be elastic while above the yield point it

becomes non-elastic. If the material is elastic, and the curve is linear, then Hooke’s law

can be applied.

Different measures of stiffness as a resistance to deformation exist. These measures are

known as elastic moduli and each of the moduli applies to a different kind of deformation.

5



Common moduli are:

• the Young’s modulus E, which is defined as the ratio of the stress along an axis

over the strain along that axis;

• the shear modulus G, which is defined as the ratio of shear stress to the shear

strain;

• the Poisson’s ratio ν, which defined as the negative ratio of transverse to axial

strain

• the bulk modulus K, which is defined as the ratio of the infinitesimal pressure

increase to the resulting relative decrease of the volume.

The first three moduli are mechanical quantities, while the fourth one is in fact a ther-

modynamic quantity.

Besides these common elastic moduli the flexural rigidity (often denoted D) or bending

stiffness B is a common measure of the stiffness of a structure. Stiffness is the rigidity

of an object and describes to what extent it resists deformation. The type of stiffness

depends on how the stress is caused, and in which direction the strain is measured.

It should be emphasised that stiffness is not the same as elastic modulus; an elastic

modulus is a material property while a stiffness is a structural property.

Many physical properties of materials are direction-dependent because of the arrange-

ment of the atoms in the crystal lattice. If a material has direction dependent properties,

it is called anisotropic. Figure 3.2 illustrates a cubic material with forces acting on it.

By dividing the forces with the surface area over which the forces are acting, the stresses

on the cube can be obtained. A stress state can be decomposed into nine components.

Tensors are used to describe the direction dependency of the direction-dependent phys-

ical properties. Stress σ and strain ε can be described using the following second-order

tensors

σ =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 (3.1)

ε =

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

 (3.2)

The stress tensor is a second-order tensor since it is a quantity associated with two

directions. The first number of the subscript indicates the direction of the surface nor-

mal upon which the stress acts. The second number indicates the direction of the stress

component. The diagonal values represent normal stresses while the values off the di-

agonal represent tangential or shear stresses. The stress tensor is symmetric as a result

CHALMERS, Master’s Thesis 2013:81 6



of static equilibrium, so σ21 = σ12, σ31 = σ13, σ32 = σ23, and thus describes six stress

values. Like the stress tensor a strain tensor is a second-order tensor as well. The strain

tensor is also symmetric, representing six strain measures.

Figure 3.2: Stress directions.

3.2 Linear elastic materials

When Hooke’s law applies, a material is linear elastic, and is called Hookean. Hooke’s

law for elastic materials can be described as

σ = Cε (3.3)

or

ε = Sσ (3.4)

where σ is the stress, ε the strain, C the stiffness and S the compliance.

In order to relate the stress and strain, both second-order tensors, a fourth-order tensor

is required, describing in total 81 terms. Since both stress and strain are symmetric

tensors only 36 terms have to be described. Matrix notation is used instead of tensor

notation. Table 3.1 shows the mapping.

7 CHALMERS, Master’s Thesis 2013:81



Tensor subscript 11 22 33 23,32 13,31 12,21

Matrix subscript 1 2 3 4 5 6

Table 3.1: A mapping was created to write the stress and strain tensors as vectors and the

stiffness or compliance as a matrix. Examples of the mapping are C1111 = C11,

C1122 = C12, C1123 = C14, C1112 = C16.

Furthermore, the notation of the stress and strain vectors are contracted. Table 3.2

shows the contracted notation of the stress vector.

Tensor subscript σ11 σ22 σ33 σ23 σ31 σ12

Contracted subscript σ1 σ2 σ3 σ4 σ5 σ6

Table 3.2: Tensorial subscript and contracted subscript of the stress vector. Contraction is done

similarly for the strain vector.

Hooke’s law can then be written in compliance form as

ε1
ε2
ε3
ε4
ε5
ε6


=



S11 S12 S13 S14 S15 S16
S21 S22 S23 S24 S25 S26
S31 S32 S33 S34 S35 S36
S41 S42 S43 S44 S45 S46
S51 S52 S53 S54 S55 S56
S61 S62 S63 S64 S65 S66





σ1
σ2
σ3
σ4
σ5
σ6


(3.5)

Due to further symmetries only 21 material constants are required for an anisotropic

material, resulting in the following symmetric compliance and stiffness matrices

Sanisotropic =



S11 S12 S13 S14 S15 S16
S12 S22 S23 S24 S25 S26
S13 S23 S33 S34 S35 S36
S14 S24 S34 S44 S45 S46
S15 S25 S35 S45 S55 S56
S16 S26 S36 S46 S56 S66


(3.6)

Canisotropic =



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66


(3.7)

When other symmetries are present the amount of required material constants drops

further.

CHALMERS, Master’s Thesis 2013:81 8



3.2.1 Orthotropic

Orthotropic materials have elastic moduli which are different along only three perpen-

dicular directions. Due to this symmetry only nine constants are required to describe

an orthotropic material. The compliance matrix of an orthotropic material is given by

Sorthotropic =



S11 S12 S13 0 0 0

S12 S22 S23 0 0 0

S13 S23 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 S66


(3.8)

and can be expressed in terms of elastic moduli

Sorthotropic =



1
E1

−ν21
E2

−ν31
E3

0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0

−ν13
E1

−ν23
E2

1
E3

0 0 0

0 0 0 1
2G23

0 0

0 0 0 0 1
2G31

0

0 0 0 0 0 1
2G12


(3.9)

where νij , Ei and Gij are respectively Poisson’s ratio, Young’s moduli and shear moduli.

9 CHALMERS, Master’s Thesis 2013:81



3.2.2 Isotropic

Isotropic materials require only two independent material constants. Most metallic alloys

and certain types of polymers are considered isotropic, where by definition the material

properties are independent of direction. The stiffness matrix of an isotropic material is

given by

Cisotropic =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


(3.10)

The stiffness and compliance are usually expressed in terms of the Young’s modulus E

and the Poisson’s ratio ν.

Cisotropic =



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1− 2ν 0 0

0 0 0 0 1− 2ν 0

0 0 0 0 0 1− 2ν


· E

(1 + ν) (1− 2ν)
(3.11)

3.3 Viscoelasticity

Certain materials, like polymers, exhibit both viscous and elastic characteristics when

undergoing deformation. The viscosity of a viscoelastic material gives such a material

a strain-rate dependent on time. Ideal elastic materials do not dissipate energy when

a load is sequentially applied and removed. Viscoelastic materials however lose energy

when a load is temporarily applied. This can be seen on a stress-strain curve which shows

hysteresis, where the area of the loop represents the energy lost during one loading cycle.

In a linear viscoelastic material the stress and strain time-dependency can be written

as

σ∗ij = σije
jωt (3.12)

ε∗ij = εije
jωt (3.13)

Several models exist for incorporating damping losses. A common method in dynamic

analysis is to use a complex stiffness or modulus p∗

p∗ = p′ + jp′′ = p (1 + jη) (3.14)

CHALMERS, Master’s Thesis 2013:81 10



where η is the damping loss factor, defined as the ratio between lost energy per period

Plossand reversible energy Erev

η =
Ploss

2πErev
(3.15)

The real part p′ of the complex modulus p∗ is called the storage modules and represents

the elasticity whereas the imaginary part p′′ is called the loss modulus and represents

viscosity and losses through heat.

Viscoelastic materials are often used to add damping to a structure. A common way

of doing so is by adding damping layers to a stiff material, resulting in a composite

material.

3.4 Composite materials

Composite materials are materials consisting of two or more distinct materials. The

composition can be done at microscopic and macroscopic, which means the composites

consist of respectively mixed fibres or several joined layers.

The materials that a composite consists of are divided into two groups, matrix and

reinforcement. Matrix materials are used to maintain the relative positions of reinforce-

ment materials. Reinforcement materials are there to enhance the matrix properties by

their special properties.

Focus within this thesis is on composite laminate. Composite laminates are structures

consisting of several layers. An example of composite laminates are sandwich layers.

Figure 3.3 shows a picture of a sandwich structure.

Figure 3.3: Glass Reinforced Aluminum (GLARE) honeycomb composite sandwich structure.

Figure taken from [1].

11 CHALMERS, Master’s Thesis 2013:81



3.4.1 Modelling elastic properties of composites

Different approaches have been used to determine the elastic properties of composites.

These approaches can be grouped into micromechanical, macromechanical and struc-

tural approaches. Whereas micromechanical methods try to predict material properties

based on their microstructure, macromechanical methods are mainly based on contin-

uum mechanics, assuming that materials can be seen as a continuous mass rather than

as discrete particles. Predictions on composites are done through homogenisation, i.e.,

the material is modelled as consisting of several homogeneous materials with a given

geometry. Structural approaches take the composite as the fundamental building block

and thus offer no possibilities for predicting the properties of the composite.

3.4.2 Plate theory applied to composites

Macromechanical approaches are generally based on beam- and plate-theory. Two well-

known plate-theories are Kirchhoff-Love theory and Mindlin-Reissner theory. The Kirch-

hoff–Love theory of plates, also known as Classic Plate Theory (CPT), is an extension

of Euler-Bernoulli beam theory to two dimensions, and can be applied to thin plates.

The Mindlin-Reissner theory is an extension of Kirchhoff–Love plate theory that takes

into account first-order shear deformations through-the-thickness of a plate and can be

applied to thick plates. Depending on the thickness relative to the planar dimensions of

the plate the right theory should be chosen.

Based on these two theories are models for predicting the elastic moduli of composite

laminates. Classic Laminate Theory (CLT) is based on the former theory. CLT has a

range of applicability despite the fact that it suffers from a major deficiency associated

with the transverse behaviour of laminates. Crane and Gillespie then extended CLT to

model complex moduli [11]. Ghinet presented a model based on Mindlin-Reissner theory

[13] for the prediction of complex moduli.

CHALMERS, Master’s Thesis 2013:81 12



4 Composite laminae

We shall now have a look an analytic, macromechanical model presented by Crane and

Gillespie in 1992 [11]. This model is based on the elastic viscoelastic correspondence

principle and is an extension to Classic Laminate Theory. It should be emphasised that

this model applies only to thin composite laminates as it is .

The correspondence principle states that if the elastic solution for any dependent

variable having a time-varying component exists, then the viscoelastic problem can be

solved by replacing the equations of the elastic material by the equations that describe

the viscoelastic material. The model is capable of predicting the elastic moduli and their

respective loss factors of composite laminates.

Several assumptions were made in the model. The first assumption is that the compos-

ite can be approximated as a homogeneous orthotropic material, reducing the number

of elastic constants required to nine, as explained in 3.2.1. The second assumption is

that the material is in a state of plane stress, where the stresses normal to the plane of

the plate are assumed to be zero. Composite laminae are used in structural shapes like

beams and plates which have at least one characteristic geometric dimension an order of

magnitude less than the other two dimensions. The stresses in the direction of this one

characteristic dimension are generally also much smaller and can be considered to be

zero. The third assumption made is that the composite is linearly viscoelastic, adding a

time-dependency as shown in section 3.3. Note that in this chapter ejωt is omitted.

4.1 Stress-strain relations

Following the previously mentioned assumptions the stress-strain relations become



ε1
ε2
ε3
γ23
γ13
γ12


=



S11 S12 S13 0 0 0

S12 S22 S23 0 0 0

S13 S23 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 S66





σ1
σ2
0

0

0

τ12


(4.1)
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Note that engineering shear strain1 instead of shear strain is used from here on. Since

three equations result in zero these can now be removed for the system, resulting in the

reduced system of equations.
ε1
ε2
γ12

 =

S11 S12 0

S12 S22 0

0 0 S66



σ1
σ2
τ12

 (4.2)

While the perpendicular stresses are assumed to be zero, it does not yet mean that there

is no strain in the 3-direction. They are simply left out of the analysis, though strain

does occur since

ε3 = S13σ1 + S23σ2 (4.3)

The 3x3 matrix of compliances is called the reduced compliance matrix. Writing in

inverse form the reduced stiffnesses are obtained
σ1
σ2
τ12

 =

Q11 Q12 0

Q12 Q22 0

0 0 Q66



ε1
ε2
γ12

 = Q


ε1
ε2
γ12

 (4.4)

The reduced stiffnesses can be written in the form of a reduced stiffness matrix Q. For

orthotropic layers the reduced stiffnesses are

Q11 = C11 −
C2
13

C33
=

E1

1− ν12ν21
(4.5)

Q12 = C12 −
C13C23

C33
=

ν12E1

1− ν12ν21
=

ν21E1

1− ν12ν21
(4.6)

Q22 = C22 −
C2
23

C33
=

E2

1− ν12ν21
(4.7)

Q66 = C66 = G12 (4.8)

and for isotropic layers the reduced stiffnesses are

Q11 =
E

1− ν2
(4.9)

Q12 =
νE

1− ν2
(4.10)

Q22 = Q11 (4.11)

Q66 = G =
E

2 (1 + ν)
(4.12)

1Engineering shear strain γxy is a total measure of shear strain in the xy-plane. Shear strain εxy is

the average of the shear strain on the x face along the y-direction, and on the y face along the x-

direction. They can be related through γxy = 2εxy . When engineering shear strain is used the stress

is written as τxy though τxy = σxy.
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4.2 Coordinate system transformation

Usually, the coordinate system used to analyse a structure is based on the shape of the

structure rather than the direction of the fibres of a particular lamina. Therefore it is

necessary to perform a coordinate transformation. A transformation matrix T is defined

as

T =

 m2 n2 2mn

n2 m2 −2mn

−mn mn m2 − n2

 (4.13)

with

m = cos θ (4.14)

n = sin θ (4.15)

where θ is the fibre orientation angle of the layer, relative to a chosen reference which is

identical for all layers. The transformation has to be done for both the stress and strain

vectors. 
εx
εy
γxy

 = T−1ST


σx
σy
τxy

 = S


σx
σy
τxy

 =

S11 S12 S16

S12 S22 S26

S16 S26 S66



σx
σy
τxy

 (4.16)

where S is the transformed reduced compliance matrix. The transformed reduced stiff-

ness matrix of a layer is given by

Q = T−1QT (4.17)

and consists of nine transformed reduced stiffnesses

Q =

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

 (4.18)

15 CHALMERS, Master’s Thesis 2013:81



4.3 Forces and moments

In order to continue it is necessary to define the forces and moments that act on the

composite. The force resultants or tractions are defined as

Nx =

∫ H
2

−H
2

σxdz (4.19)

Ny =

∫ H
2

−H
2

σxdz (4.20)

Nxy =

∫ H
2

−H
2

τxydz (4.21)

where H is the laminate thickness and z the position in z-direction. The resultants Nx

and Ny are normal force resultants and Nxy is a shear force resultant. The moment

resultants are

Mx =

∫ H
2

−H
2

σxzdz (4.22)

My =

∫ H
2

−H
2

σxzdz (4.23)

Mxy =

∫ H
2

−H
2

τxyzdz (4.24)

where Mx and My are bending moment resultants and Mxy is a twisting moment resul-

tant. Stress and strain were related through the transformed reduces stiffnesses as
σx
σy
τxy

 =

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66



εx
εy
γxy

 (4.25)

The total strain can be written in terms of extensional strain ε0i and curvature κ0i of the

reference surface 
σx
σy
τxy

 =

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66




ε0x + zκ0x
ε0y + zκ0y
γ0xy + zκ0xy

 (4.26)

Combining the definition of the force resultants with the stress-strain relations, one

obtains the following relation for the force resultant Nx

Nx =

∫ H
2

−H
2

[
Q11

(
ε0x + zκ0x

)
+Q12

(
ε0y + zκ0y

)
+Q16

(
γ0xy + zκ0xy

)]
dz (4.27)
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The strains and curvatures can be taken outside the integral since they are not functions

of position z. Simplifications can be made by considering each integral separately. The

first integral in the previous equation for example is given as

ε0x

∫ H
2

−H
2

Q11dz (4.28)

The reduced stiffnesses are material properties that vary from layer to layer but are

constant within any given layer. Since the reduced stiffnesses are piece-wise constant,

the integral can be expanded through the thickness resulting in the following summation∫ H
2

−H
2

Q11dz =

N∑
k=1

Q11k
(zk − zk−1) (4.29)

where k represents the layer number and zk represents the height of the composite up

to that layer. This value is typically denoted as A11.
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4.4 ABD-matrix

Continuing this process for the moment resultants, and by rewriting the other integrals

the following general summations are obtained

Aij =
N∑
k=1

Qijk (zk − zk−1) (4.30)

Bij = 1/2
N∑
k=1

Qijk
(
z2k − z2k−1

)
(4.31)

Dij = 1/3

N∑
k=1

Qijk
(
z3k − z3k−1

)
(4.32)

Clearly the order of layers has no influence on the Aij terms. By writing the forces and

moments in terms of these Aij , Bij and Dij terms the ABD-matrix is obtained

Nx

Ny

Nxy

Mx

My

Mxy


=



A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66





ε0x
ε0y
γ0xy
κx
κy
κz


(4.33)

Each of the 3x3 A, B and D matrices has a distinct function:

• A is a extensional stiffness matrix,

• B is a extension-bending coupling matrix,

• D is a bending stiffness matrix.
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4.5 Elastic moduli and stiffnesses

The ABD-matrix relates the forces and moments to the strains in the laminate. The

next step is to determine the elastic moduli and loss factors. The effective moduli for a

composite can be obtained from the inverse ABD matrix

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66



−1

(4.34)

The ABD inverse matrix takes into account the stress couplings that may occur from the

various orientations of the fibres used in the laminate. Using the ABD inverse matrix

elastic moduli and loss factors can be calculated. The calculation of several of these

values will now be shown.

The complex Young’s modulus in x-direction is given by

Ex =
1

hA−111

(4.35)

where A−111 is the element A11 from the inverse ABD-matrix. Damping losses were

included through a complex stiffness in equation 3.14 The loss factor along x-direction

is then given by

ηx =
A′′−111

A′−111

(4.36)

The complex Young’s modulus in y-direction is given by

Ey =
1

hA−122

(4.37)

and the loss factor along the same orientation by

ηy =
A′′−122

A′−122

(4.38)

The Poisson’s ratio in xy-direction is given by

νxy = −A
−1
12

A−111

(4.39)

and the Poisson’s ratio in yx-direction is given by

νyx = −A
−1
12

A−122

(4.40)

19 CHALMERS, Master’s Thesis 2013:81



As mentioned before the matrix D is also called the bending stiffness matrix. The

complex bending stiffness in x-direction is given by

Bx =
12

h3D−111

(4.41)

and the loss factor along the same orientation by

ηx =
D′′−111

D′−111

(4.42)
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5 Modelling composites in SEA

Chapter 2 gave a brief overview of Statistical Energy Analysis and showed that the

power balance equations depend on the modal overlap of the subsystems considered.

The modal overlap depends on structural and material properties of these subsystems.

The previous chapter showed how elastic moduli or stiffnesses and loss factors can be

calculated for composite laminates. In this chapter it is shown how composite laminates

can be modelled in an SEA system. One goal is to obtain an expression for the modal

overlap M of a subsystem describing a composite laminate.
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5.1 General result for a plate

Consider a composite laminate consisting of several layers as was shown in figure 6.4.

Depending on the dimensions in relation to the wavelengths this structure can be con-

sidered a 2-dimensional plate. The wavenumber of a mode on a plate is given by

km,n =

√[
(m− δ1)

π

L1

]2
+

[
(n− δ2)

π

L2

]2
(5.1)

where m and n are the mode numbers along the L1 and L2 edges and δ1 and δ2 are

correction terms that depend on the boundary conditions at the edges. The amount of

modes with a wavenumber less than a certain value of k is the mode count function

N(k)2D ' Ak2

4π
+ ΓBCPk (5.2)

where A = L1L2 is the area of the plate, P = 2(L1 + L2) the perimeter and ΓBC
a quantity that depends on the boundary conditions. Differentiating the mode count

function N with respect to the angular frequency ω results in the modal density

n(ω)2D =
dN

dω
=

dN

dk

dk

dω
=

Aω

2πcgcφ
+ Γ

′
BCP (5.3)

where cg and cφ are respectively group and phase velocities of the wave and Γ
′
BC is a

quantity depending on boundary conditions and wave type. For connected subsystems

it is best to assume that this value is zero according to Lyon[17].

The modal overlap of the plate is given by [20]

M = ηωn(ω)2D (5.4)

where η is the damping loss factor of the subsystem. The expressions shown in this

section are the general result. We shall now have a look at specific wave types in such a

two-dimensional system.
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5.2 Flexural waves

The wave equation for free bending waves on a plate according to Kirchhoff-Love theory

is given by

Bx
∂4η

∂x4
+ 2Bxy

∂2η

∂x2
∂2η

∂y2
+By

∂4η

∂y4
+m

∂2η

∂t2
= 0 (5.5)

where Bx, By and Bxy are bending stiffness in respectively the x, y and xy-direction

and m the mass of the plate. The displacement η of the plate field at a time t given by

η = ηA

(
e−jkxx + e−jkyy

)
ejωt (5.6)

Combining these relations results in the dispersion relation

k4i =
ω2ρSi
Bi

(5.7)

where ρ is the density of the plate and Si and Bi are respectively the cross-section and

bending stiffness of the plate in the i-direction. Using this relation together with

f = λc (5.8)

results in the phase speed of flexural waves

cφi =
√
ω 4

√
Bi
ρSi

(5.9)

The group speed is given by

cgi =
dω

dki
= 2cφi (5.10)

In Classic Laminate Theory and the model by Crane and Gillespie it was assumed

that a composite laminate can be considered homogeneous and orthotropic. For flexural

waves in orthotropic plates an approximation of the mode count can be obtained through

the geometric mean of the wave speeds in the two principal directions. The modal density

is then given by

n(ω)2D =
Aω

2π
√
cgxcgycφxcφy

(5.11)

Lyon assumed the thickness was small compared to the wavelength, and that the plate

was homogeneous. While the second assumption is not the case, this assumption is made

as well in CLT. Both theories also make the plane-stress assumption.

The damping loss factor describes the losses per cycle. The total loss factor for flexural

waves can also be obtained through the geometric mean of the loss factors

ηB =
√
ηBx

√
ηBy (5.12)

The modal overlap of a subsystem representing bending waves in a thin composite

laminate is then given by

M = ηBωn(ω)2D (5.13)
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5.3 Longitudinal and shear waves

The previous section showed how to calculate the modal overlap for bending waves.

Calculating the modal overlap for longitudinal and shear waves in a composite laminate

gets more troublesome. According to Bosmans [10] the equations of motion cannot be

uncoupled for longitudinal and shear waves in an orthotropic material. This is because

in a directions different from the principal material directions, compression or tension

always induces in-plane shear. Because no expressions can be obtained for the wavenum-

ber it is not possible to calculate the modal overlap of longitudinal and/or shear waves

in a composite laminate using this theory.

5.4 Limitations

The above given method and equations can only be used when the wavelength is much

larger than four times the thickness of the plate [17].

λ� 4H (5.14)

When the thickness of a layer becomes relatively large compared to the wavelength the

differences in wave speed between the layers becomes large and the layers start moving

independently. In this case the layers should be modelled as an individual subsystem.
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6 Software implementation

The goal of the thesis includes writing an easy to use and extend SEA implementa-

tion. The following chapter provides an overview of implementation motivation and

requirements, implementation choices as well as the technical design. The actual imple-

mentation is discussed as well as future improvements.

6.1 Requirements

The following requirements to the implementation were set in advance:

• A low barrier for contributing to the implementation, and especially for those with

specific knowledge/expertise.

• The physics model should be separated from the rest of the program logic for the

above given reason among others. This makes it possible to implement a physics

model describing for instance a subsystem, without knowing anything about how

for example the results can be presented or the input data will be obtained.

• There should be a clear distinction between the different principal components of

an SEA model.

• It should be as simple as possible to quickly implement models without having any

deeper programming knowledge.

• Where possible the model should update values immediately upon a change, thus

always showing the current values instead of old and possibly misleading data.

• The implementation should have access to a powerful geometry-kernel. This eases

the process of designing the geometry and gives the possibility of detecting con-

nections and retrieving their respective shapes

The next step was to conduct a study to possible tools for implementing this.
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6.2 Motivation for new implementation

In 2010 Johansson and Comnell[14] wrote a free and open-source SEA implementa-

tion called SEALAB. A possibility would be to extend SEALAB. Instead of extending

SEALAB the author deems a new implementation necessary because of several reasons.

SEALAB requires MATLAB[18] or GNU Octave[16]. Both languages are very specific

languages i.e., they are meant to be used for mathematics. These two languages offer

few constructs for general programming and are as such very limiting. The graphical

user interface (GUI) is only available in MATLAB due to MATLAB-specific code and

thus requiring a MATLAB license, limiting the availability.

SEALAB does not have access to a geometry-kernel. This means it is necessary to

create all couplings manually. It also means that it is not possible to get a graphical

overview of the structure that is modelled.

Finally, SEALAB is limited through its design. The implementation was written for

specific cases lacking an abstract design.
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6.3 Implementation choices

Writing a geometry-kernel is outside the scope of this project, as well as of the capabilities

of the author, and therefore it was decided to utilise an existing geometry-kernel. A

powerful, free and open-source geometry kernel can be found in Open CASADE [3].

Open CASCADE is a software development platform which includes components for 3D

surface and solid modelling. Open CASCADE is mainly used in CAD programs and can

also be found in finite element analysis software.

Open CASCADE is however found too low-level to work with straight-away. Since

kernels like these are mainly used in CAD programmes, a short study on several free

and open-source 3D CAD programmes was conducted, resulting in the decision to write

a module for FreeCAD.

FreeCAD is a free and open source (LGPL license[8]) 3D CAD modeller [19]. FreeCAD’s

execution model determines which objects are affected by a change and updates them

accordingly. This means FreeCAD’s execution model supports updating/recomputing

values directly when a changed, if this is wished. When a material density is changed

one might want to see immediately how this influences the modal overlap, and thus the

object responsible for calculating the modal overlap should be informed of the change.

However, the modal powers should likely not be updated directly due to their com-

putation time. The calculation of these will therefore be excluded from the execution

model.

With FreeCAD it is possible to programmatically create a geometry, which can be

used as a base for the SEA model. FreeCAD features a Python API1 offering easy

access to the model. It is also possible to extend FreeCAD through this API. Figure 6.1

shows a screenshot of FreeCAD.

Python is a general-purpose, high-level programming language whose design philos-

ophy emphasises code readability [4]. Python’s syntax allows programmers to express

concepts in fewer lines of code than would be possible in languages such as C. As a

high-level programming language it features automatic memory management. Python

has a large and comprehensive standard library. Many third-party modules are available

as well, including NumPy [2] for scientific computing. NumPy is comparable in features

and constructs with GNU Octave [16] and MATLAB [18].

As the syntax of Python and NumPy is comparable with that of GNU Octave and

MATLAB, it is expected that the barrier for extending (and contributing to) the im-

plementation is relatively low, since the language should not be an obstruction to a fast

implementation of models.

A motivation has been given for the tools used to construct the implementation. The

next section will be devoted to the technical design of the implementation.

1API is short for application programming interface. An API is a protocol intended to be used as an

interface by software components to communicate with each other.
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Figure 6.1: Screenshot of FreeCAD showing the geometry of two cavities enclosed by plates

resembling two connected rooms. Left of the document window (showing the 3D-

model) is the object tree and property editor. Below the document window a

Python console can be found.

6.4 Technical design

Many different programming paradigms2 exist of which Python support several. Since an

SEA model can be described using several types of objects which all have their respective

characteristic properties it was decided to use object-oriented programming as the main

paradigm. In object-oriented programming objects interact with one another. These

objects are instances of classes. Classes are a type of object which have attributes and

methods, that is, functions that are part of and interact with the class.

2A programming paradigm is a fundamental style of computer programming.
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6.4.1 Classes

In the implementation the different objects constituting an SEA model are represented

by the following abstract base classes3 written in italic:

• Static properties of a physical object are described by a component.

• Components can be described using a geometry and a material.

• Dynamic properties of a component are described in a subsystem.

• Two or more components are connected to each other through a connection.

• A pair of subsystems are connected through a coupling.

Using the descendants of these abstract base classes an SEA model can be created. The

modal powers are obtained through solving a system of equations which is done by an

instance of the system class. This class basically encompasses the entire SEA model.

Figure 6.2 shows how the classes are related.

Figure 6.2: Directed acyclic graph (DAG) showing the relation between the classes. A DAG

does not contain any directed cycles. FreeCAD’s execution model requires a DAG,

since if there would be such a cycle, the execution model could become recursive

and get stuck in an infinite loop.

3Abstract classes are classes that cannot be instantiated themselves. Descendants of the abstract class

that have implemented the attributes and methods required by the abstract class can be instantiated.
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6.4.2 Architectural pattern

The Model-View-Adapter4 (MVA) architectural pattern was adopted in order to separate

the physics model. In MVA the Model and the View oblivious of each other and can

only interact with each other through the Adapter. An example would be separating

the physics model in a simulation (Model) from the user interface (View). An Adapter

is created to mediate between the Model and the View, and potentially to allow for

multiple views (a graphical user interface and a console interface).

In the implementation a clear separation exists between classes describing the physics,

classes describing the GUI and classes that are mediating between the former two, the

Adapter classes. Using such a separation results in cleaner code and allows the model

and view to diverge from each other while not affecting one another. Because the model

is isolated and doesn’t contain anything besides equations describing the physics, it

should also lower the barrier of implementing models for those with less programming

expertise.

Figure 6.3: Communication between Model and View has to happen through the Adapter.

Adapter classes and Model classes shall exist for every object in figure 6.2. Instances

of the Adapter classes point to each other using the directions of the arrows as shown

in that figure.

The Modal and Adapter classes still need to connect to one another. In general

two techniques exist for this, encapsulation and inheritance. Inheritance means that a

descendent of a class takes over properties (attributes and methods) of the parent class.

The Adapter class could for instance inherit the physics model from the Model class, and

then extend upon that. Encapsulation can be achieved by assigning one class as attribute

to the other class. For connecting the Adapter and Model classes encapsulation was

chosen. Every Adapter class has a Model class as attribute. Encapsulation was chosen

because in this way a clear separation remains between the Adapter and respective Model

classes, without any risk of attribute/method name clashing.

6.4.3 Connection between SEA model and geometry

Adapter instances are objects capable of directly communicating with other FreeCAD

objects. In FreeCAD a geometry can be designed with part objects. These part objects

have a shape attribute describing the shape of the geometry using solids or shells.

4Model-View-Adapter (MVA) is also known as mediating-controller MVC where MVC stands for Model-

View-Controller [9].
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Through FreeCAD’s linking system it is for example possible to link from a component

Adapter instance to a part instance, thus connecting the SEA model to the geometry.

Through a set of rules it should also be possible to create a certain type of component

based on a certain part. FreeCAD gives the possibility to detect whether objects are

connected. This gives the possibility of detecting a connection as well as determining its

size.

6.4.4 Support of composites in implementation

Consider a laminate consisting of three layers as shown in figure 6.4. The geometry of

such a laminate can be constructed in FreeCAD using three part objects.

Figure 6.4: Composite laminate consisting of three layers.

Currently the component classes have a material attribute. The idea is to give the

part classes a material attribute as well, and link the component material attribute to

the part attribute. Using FreeCAD it is possible to unite objects into a fusion, while

still keeping the original part objects with their respective solids. The fusion class is

itself also a part, having a material attribute.

If each layer of a laminate would be represented as a part and if a fusion would

represent the laminate, then by assigning the laminate a special material object capable

of calculating the elastic moduli according to the model described in chapter 4, it would

be possible to add support for composites.

6.4.5 Design conclusion

In this section the design of an SEA implementation has been described. The design

meets all the requirements that were initially set. Based on this design the implementa-

tion is written.
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6.5 Current implementation

Based on the technical design a SEA implementation called FreeCAD-SEA was written.

The source code along with documentation can be found at [12] and is released under

the 3-clause BSD license [7]. This section focuses on what is implemented and how that

was done, as well as what is and what is not possible with this implementation.

6.5.1 Design

Initially the design as outlined in the previous section was followed. Unfortunately sev-

eral problems were encountered, which resulted in a change of the design. Encapsulation

was initially the method for connecting the Adapter and Model classes. A significant

problem was encountered when saving the SEA model to file. When saving the SEA

model a text representation of Adapter objects has to be saved. This is done by encoding

all attributes to text. When loading a model, the attributes are decoded and fitted back

into an Adapter instance.

The Adapter objects all had a Model object as an attribute, which could not easily be

encoded as JSON 5. Simple attributes like for example strings or floats are no problem

to encode. While it is technically possible to encode such a complex object as text

it proved to be difficult. Therefore encapsulation was abandoned and inheritance was

adopted instead, solving this problem.

Despite the fact that Model objects now do not have to be stored anymore, there were

still complications with saving the SEA model. Every Model object contains references

to other Model objects that it requires. As an example, in order to calculate the mass

of a component, the component Model object requires a density described in a material

Model object. When saving the material Adapter object, the material object is saved.

When saving the component Adapter object, not just the reference to the material object

is saved but also a copy of the material object itself. Apparently the objects have become

disconnected and the material is saved twice. It is therefore not possible to restore the

original SEA model. A solution to this problem will be presented in section 6.6.

5JSON is a text format for storing objects.
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6.5.2 Support of composites

Initially it was thought that adding a material attribute to part classes would also benefit

other FreeCAD modules, e.g. a Finite Element Method module which is currently in

development. The part module is however solely intended for geometric modelling. The

required material parameters also depend on the type of analysis and on the geometry

that is considered. For example, in an SEA model certain portions of geometry might

be put together in order to obtain a high enough modal overlap. This piece of geometry

might then require a different set of material parameters, as was explained in the previous

chapter.

For these reasons composites were eventually not supported in the SEA implementa-

tion. Nevertheless a simple implementation was made of the model described in chapter

4, of which a validation is shown in chapter 7.

6.5.3 Features

As mentioned before it is not possible to save and restore a SEA model. A significant

redesign is necessary to make that possible. The next section will explain what changes

are required.

It is currently possible to create a SEA model through both the Python API as well

as the graphical user interface (GUI). Solving the modal powers works as well, though

no validation has been performed. Results are not (yet) shown in the GUI, but can be

retrieved through the Python API.

Plate-room and room-plate couplings have been implemented but were validated nei-

ther. Prediction of structural coupling loss factors is not included. An implementation

was written for the calculation of CLF’s for line junctions but gave wrong values and is

therefore not included. The user is currently supposed to manually enter the CLF’s.
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6.6 Future improvements

In order to make the implementation usable a significant change is needed. First of all,

encapsulation shall be adopted again as the method for connecting Adapter and Model

classes. Next, only the system Adapter shall store a Model instance. The other Adapter

classes will be changed so that they will not store a Model object anymore. Instead,

they control their Model object through the Model object of the system. Figure 6.5

illustrates the new concept.

Figure 6.5: An overview of the new design. Only FreeCAD Adapter classes shall exist for

component, connection, material and system. The Model is entirely contained by

the system. The other Adapter classes communicate with the Model through the

system Adapter.

Using this design means that only the Model object of the system has to be saved.

This is still a quite complex object to encode as JSON. The tool jsonpickle [15] might

be capable of encoding and decoding such a complex object. This has not been tested

yet though.
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7 Validation

Due to the problems encountered with developing the SEA implementation only the

validation of the composite laminate model implementation will be shown. The imple-

mentation was validated against data provided in [11]. Three validations were conducted.

7.1 Material data

In all three validations the laminae consisted of a single material, S-2 Glass/3501-6. The

ply thickness, 2.54 centimetre, was also constant. The Young’s modulus in longitudinal

direction E1 was 57.85 GPa and the loss factor

η1 = 5.15 · 10−7f + 5.99 · 10−3

where f is the frequency of analysis. The Young’s modulus in transverse direction E2

was 19.86 GPa and the loss factor

η2 = 8.37 · 10−4 log f + 4.07 · 10−3

The shear modulus in the 12-direction G12 was 6.1 GPa and the loss factor

η12 = 25.5 · log f − 50.37 · 10−4

Finally the Poisson’s ratio in two directions was required

ν12 = 0.0913

ν21 = 0.346
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7.2 Parametric studies of flexural damping loss factor

The flexural damping loss factor was determined as function of ply orientation for two

different laminates, each entirely consisting of the previously mentioned glass. Fibre

orientations ranged from 0° to 90° in increments of 15°. The first laminate was symmetric

angle-ply and consisted of 16 ply. The second laminate was off-axis and also consisted

of 16 ply.

Figure 7.1 shows the flexural loss factor as function of frequency for the angle-ply

configuration. The model seems to be in agreement with figure 4 shown in [11].

Figure 7.1: Flexural loss factor for different fibre orientations using angle-ply configuration.

Figure 7.2 shows the flexural loss factor as function of frequency for the off-axis con-

figuration. The model seems to be in agreement with figure 5 shown in [11].

Figure 7.2: Flexural loss factor for different fibre orientations using off-axis configuration.
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A final validation was made for three more complex configurations. The three config-

urations are denoted as

(90/0/− 45/45)2S (7.1)

(45/− 45/90/0)2S (7.2)

(0/90/45/− 45)2S (7.3)

The numbers between parenthesis indicate fibre orientation angles. The number 2 in the

subscript indicates that the pattern is repeated twice and the S that it is a symmetric

laminate. The three ply considered thus consist each of 16 layers with orientations as

shown in table 7.1.

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

7.1 90 0 -45 45 90 0 -45 45 45 -45 0 90 45 -45 0 90

7.2 45 -45 90 0 45 -45 90 0 0 90 -45 45 0 90 -45 45

7.2 0 90 45 -45 0 90 45 -45 -45 45 90 0 -45 45 90 0

Table 7.1: The orientations of the three laminates.

Figure 7.3 shows the flexural loss factor as function of frequency for the three config-

urations.

Figure 7.3: Flexural loss factor for three different configurations.

The result matches with figure 7 in [11], in which the results were also compared with

experimental data.
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8 Conclusion

An SEA implementation was designed and implemented as well as a model for the

prediction of complex elastic moduli of composite laminae. The goal was to include the

composites model in the SEA implementation. Several problems were encountered with

the SEA implementation of which some were significant rendering the implementation

practically unusable. A significant change has been motivated which should fix the

main issue that was encountered. The current plan is to fix this issue and continue

development of the implementation.

Due to several reasons the implementation of the prediction of complex elastic moduli

was separated from the SEA code. Both implementations now exist in separate code

bases. The composites implementation was successfully validated against literature val-

ues.
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