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Abstract

With the ever-increasing amount of data available through
various kinds of search engines, the need for better ways of
identifying what users are looking for increases as well. In
recent years, there have been many attempts at improving
search results by trying to identify the true nature of the
users’ intent. An aspect of this that is often overlooked is
that the intent of users is dynamic. One example of this
comes from health care. Queries such as flu or fever occur
at a regular frequency under normal circumstances. How-
ever, a search for bird flu may indicate that an outbreak of
the disease is at hand.

In this paper we present a novel method for discovering
hidden, time-varying interaction patterns in search query
relationships. The method revolves around a probabilistic
graphical model, capable of inferring interactions between
groups of queries. Given sequences of query expressions and
a base graph, the model produces sequences of interaction
strengths. We perform synthetic experiments confirming the
effectiveness of our model in recovering latent interaction dy-
namics. Furthermore, we compare the performance of our
model to existing methods for network dynamics. In an ap-
plication to search query data, we use our model to perform
keyword suggestion and evaluate the results.

The results of evaluating our model, shows that it has the
potential to benefit a wide variety of applications within
web-search including keyword suggestion and suggestion for
related queries.
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1 Introduction

W ith the ever-increasing amount of data available through var-
ious kinds of search engines, understanding the intent of users be-

comes all the more important. In recent years, there have been many at-
tempts at improving search results by trying to identify the true nature of
the users’ intent based on additional information. An aspect of this that
is often overlooked is that the intent of users is dynamic. One example of
this comes from health care. Queries such as flu or fever occur at a regular
frequency under normal circumstances. However, a search for bird flu may
indicate that an outbreak of the disease is at hand.

In many applications related to search, discovering user intent is of great im-
portance. Examples of such applications include result ranking, suggestions
for related queries and various kinds of statistics. When searchable content
and the number of users grow large enough, the importance grows as well.
To gain a more accurate knowledge of user intent, we propose an approach
incorporating the dynamics of intent, resulting in a finer grained analysis.

In this thesis, we present a novel method for discovering hidden, changing
interaction patterns in search query relationships. We argue that knowing
when and how queries are related can help identifying user intent. In Figure
1 is a graph representation of three queries (nodes), cough, flu and allergy.
The edges between them, and the weight of the edges represent relation-
ships and strength of the relationships. The example depicted in the figure
attempts to visualize the importance of incorporating time dynamics in the
analysis of query interactions. In the summer, we might see that cough is
more related to allergy than to flu. In the winter, we may see the opposite,

cough

allergy flu

cough

allergy flu

Summer Winter

Figure 1: Example of query interaction dynamics. Nodes represent queries
and edges interactions between them. The thickness of an edge indicates the
strength of the interaction.
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that cough and flu are more related. Using this knowledge, we could for in-
stance rank results about flu higher when searching for cough in the winter,
than in the summer.

In this thesis, we construct a probabilistic model for query interactions.
We then use this model in an application to keyword suggestion. Keyword
suggestion is a problem arising when entering new documents into a search
engine. In such a setting, documents are often tagged with keywords to
summarize them or boost their rank in the result list, cluster them, etc.
Traditionally, documents are tagged with keywords either manually or by
using keyword extraction software. Both approaches, however, neglect the
search behavior of users and the queries that are actually used to find a
document. Using a model for query interactions, we can make intent-aware,
search-driven suggestions for keywords.

The methods presented in this thesis revolves around a probabilistic, Marko-
vian graphical model, capable of inferring dynamic interactions in groups of
queries. Rather than considering only pairwise interactions, it allows any
number of queries to interact as one group. Given sequences of query ex-
pressions and a base graph, the model produces sequences of interaction
strengths. We perform synthetic experiments confirming the effectiveness
of our model in recovering latent interaction dynamics. Furthermore, we
compare the performance of our model to existing methods for network dy-
namics.

1.1 Purpose and aims

With this thesis, we explore the possibility of applying probabilistic models
to identify hidden interactions between search queries. The purpose of this
is to open up new possibilities in search technology and to contribute to the
research in probabilistic models.

The aims of the project behind this report are three-fold:

1. Apply and adapt an existing graphical model for network dynamics to
the problem of identifying dynamic query interactions

2. Generalize and enhance the model mentioned in 1)

3. Apply the model to the problem of keyword suggestion

We aim to produce an implementation of the model mentioned above that
can serve as a proof-of-concept for industry applications.
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1.2 Scope

Within the realm of search technology, there has been an immense increase
in research in recent years. This means that many models are available,
attempting to solve problems closely related to the ones examined in this
thesis. This thesis is not focused on such models, but rather attempts to
apply a probabilistic model initially not intended for search applications.
We therefore limit our result comparisons to other probabilistic models. In
short, this thesis is more focused on the application and generalisation of
an existing model to a new area, then to create a competitor for existing
models.

In problems related to web search, typical datasets are often made up of
search logs – records of search activity containing information on queries,
time and what documents are accessed. Often, the documents themselves
are not available, but only a link to them. Here, we only consider datasets
where the documents are accessible as full texts.

In the tests we perform related to search queries, we only use datasets in
Swedish, and only from one source. This is because there are very few pub-
licly available datasets where full query logs and documents are accessible.
However, there is no built in bias in our model, or the implementation we
produce, towards any language.

Because of the fact that none of the datasets used are labeled, we can only
compare the performance of our model with other unsupervised models.

1.3 Method

This thesis work was set up in a collaboration between Chalmers and Find-
wise AB, a company working with web search. The interest for the thesis
work proposed is grounded in that it is closely related to research performed
at Chalmers. From the point of view of Findwise, the interest lies in that
the work is intended to make it easier for search engines to return better
search results.

The model we are introducing is inspired by the NETGEM model [21], which
makes it a good starting point for our studies. One of the main contribu-
tions of this thesis is to cast the problem of query correlations and keyword
suggestion into a probabilistic framework. This allows systematic study of
time-varying query relationships and allows us to discover hidden patterns
in global user search behaviour. In order to handle the large amounts of
query logs, we introduce a tractable probabilistic model inspired from re-
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cent work in NETGEM which identifies time-varying interactions. However,
the NETGEM model is geared towards biological networks and is unsuited
for query interaction partly because it considers only pairwise interactions.
Furthermore, NETGEM is not suitable for datasets of the size that are han-
dled in the applications we consider in this thesis. Last, the notion of gene
functional categories does not apply to queries.

Our thesis proposes a hyper-graph based approach for modeling query rela-
tionships. We incorporate query intent models using the topic model LDA.
We compare our approach to existing state-of-the-art methods and show
that our approach performs significantly better by leveraging the multi-way
interactions between queries.

The methods underlying our model and the NETGEM model are first stud-
ied to provide a full understanding of the model. We describe these general
methods in the theory section of this thesis. Understanding these meth-
ods fully is necessary for us to be able to implement the model, as well as
generalise it for our use.

Studies also need to be done in the query field to understand the problems
that exist with previous attempts. This is to be able to motivate that our
model is usable as well as propose use cases for in what way it is intended
to be used.

The original NETGEM implementation is done in MATLAB, and the first
step is to implement it in Java instead. This is to make the model more
widely usable. Also, Findwise uses Java implementations for their search
tools, therefore this model needs to be implemented using Java to be useful
for the application it is intended. All parts of the model will be implemented
by us, partly to be able to provide the model with almost no dependencies
in the code, as well as giving a deeper understanding of the inner workings
of the model. The only dependency used is an implementation of a topic
model, described later in the thesis.

For increasing performance, our model is implemented with support for par-
allel estimation of variables. The specifics of this is described later in the
thesis. Our model also differs from NETGEM as in it handles hypergraphs
instead of simple, pairwise graphs. This change is done with the intention
that the model will be able to handle interactions between multiple related
queries, instead of just interactions between two.

The evaluation of our model is done using data provided by Findwise. This
data consist of search logs from which we model the correlation changes
between queries over time. To evaluate these results we need to find a
measurement of the accuracy of the resulting correlations. This has proven
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to be a very difficult, since there is no correct solutions available. What we
can do instead is to find queries that the model decides is correlated and
say if this is reasonable or not. This, however, is not something that can
be easily done for every example since some correlations can be unintuitive
while still correct.

To get some measurable results we conduct a few other experiments. First
we use synthetic data, generated to fit our model. We then use this data to
compare with the original NETGEM model. We also use the search data
from Findwise in a different application, namely keyword suggestion. The
point of this application is that, given a new document, we want to suggest
keywords for this document based on what users have searched for when
looking for similar documents. For this application we can use one set of
documents for the training of our model, and another set of documents for
the testing procedure. The testing is done by checking what keywords are
suggested by the model for a document, and checking to see if these keywords
have been used to search for the document.

1.4 Report outline

The structure of this thesis is strongly related to the chronology of our
project execution. In Section 2, we review the theoretical framework needed
to understand the model we present in later sections. We cover concepts like
graphical models, hidden Markov models and expectation-maximization.

In Section 3 we briefly survey research related to this thesis including prob-
abilistic models and query applications.

After covering relevant research and theory, we present our approach to mod-
elling query interactions in Section 4. The section covers the construction
of our general graphical model and specifics regarding query applications.

In Section 5 we cover possible applications of our model and continue in
Section 6 with a description of experiments conducted in the project behind
this thesis. We cover both experiments on synthetic and real-world data.

The thesis ends with a discussion on results in Section 7 and conclusions in
Section 8.

The very last part of this thesis is an appendix with some texts on theory
detailed descriptions that did not fit into the main sections.
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2 Theoretical framework

2.1 Graphical models

A graphical model is a way of representing random variables and the joint
distribution of them as a graph [26]. Throughout this text we denote a graph
with nodes V and edges E by,

G = (V, E) (1)

In the graph of a graphical model, edges represent variable dependencies and
nodes random variables. Suppose that we have N random variables, some of
which are dependent on each other. An example of a graphical model, and
the joint distribution of the variables in the model, can be seen in Figure 2.

W1 W3

W4W2

P(W1, W2, W3, W4) = P(W1) × P(W2 | W1)
       × P(W3 | W1) × P(W4 | W1, W2, W3)P(W1) P(W3 | W1)

P(W2 | W1) P(W4 | W1, W2, W3)

cloudy

sprinkler

rain

wet ground

Figure 2: Directed graphical model of four variables. Arrows indicate
dependencies betwen the variables. At the bottom is the joint distribution of
the variables.

There are two main kinds of graphical models, corresponding to two kinds
of graphs, namely directed and undirected graphical models [26]. An edge
e = (vi, vj) in a directed graphical model specifies that the variable vj is
dependent on vi. In an undirected graphical model, the same edge means
that both variables depend on the other. The choice between directed and
undirected graphical models depends on the application, as we will see in
Section 2.2 about hidden Markov models.

In Figure 2, we have represented a classic example of 4 random variables.
This example has an often repeated weather-related interpretation where all
four variables are boolean. The variable W4 is said to represent the variable
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wet ground, W2 and W3 the events sprinkler on and rain and W1 represents
cloudy weather. In other words, if we observe the ground being wet, this is
assumed to depend on whether it has rained or if a sprinkler has been turned
on, or both. Furthermore, the probability of rain depends on whether it is
cloudy or not, and similarly the probability of using the sprinkler is also
affected by the weather.

In many practical applications, we know the values of only a few of the
variables in a graphical model. However, knowing the probabilities of the
events means that we can draw conclusions based on the data at hand. In the
weather example, if we observe the ground being wet and that the weather is
cloudy, the likely cause of the wet ground is that it has rained. The process
of drawing conclusions on the probability of unknown variable values from
observing some variables in the model is called inference [7]. Inference and
modelling are the two main uses of graphical models.

Inference algorithms for graphical models is a large topic and we intend only
to cover a small fraction of it in this report. For a treatment of a sampling-
based algorithm, see Section 2.5. In some cases, even the probabilities of the
model are unknown and become parameters. Given some observations of the
model, and suitable prior probabilities, such parameters can be estimated us-
ing a process known as parameter estimation [26]. Inference and parameter
estimation are general terms within the realm of machine learning. In this
report however, we only cover inference and parameter estimation directly
related to graphical models. An example of algorithms for parameter esti-
mation is Expectation Maximization (EM) [27], which we cover in Section
2.3.

Graphical models are widely used within the field of machine learning. Ex-
amples of applications include speech recognition [32], genetics [21], and as
we will see later in this report, web search. A common type of graphical
model is the hidden Markov model, described in the next section.

2.2 Hidden Markov models

In the previous section, we introduced the concept of graphical models. A
common example of graphical models is the hidden Markov model. In this
section we first briefly review the concept of Markov chains and Markov
processes, before move onto the case of hidden Markov models.

A stochastic process is an ordered collection of variables that take on values
from the same state space [35]. Markov processes are stochastic processes
that evolve according to the Markov property, that transitions from one
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state to another depend only on the most recent state [31]. Formally, for a
stochastic process X = (Xt)t=1,..., we have

P (Xt = xt | Xt−1 = xt−1, ..., X1 = x1) = P (Xt = xt | Xt−1 = xt−1) (2)

Markov processes that can take on only a finite number of states are of-
ten called Markov chains. In many applications when modelling data as a
Markov chain, the state of the Markov chain isn’t observable directly, but
only through some function. This is sometimes referred to as the state being
partially observable [26]. A Markov chain with a partially observable state
is called a hidden Markov model or HMM [32].

We proceed to introduce some notation for HMM:s. We denote the state of
the HMM by wt taking on values from the set W = {Wi}Ni=1 and t = 1,2,...
being the time. Observations at time t are denoted xt and take on values in
a discrete set, xt ∈ {Xk}Mk=1.

At the core of an HMM are two smaller models, governing the behavior of
the state and observations of the model. One is called the evolution model
and determines how transitions from one state to the next behave. The
second is called the observation model and governs the observations of the
HMM.

A HMM can be specified using two model parameters, N and M and three
probability measures, A, O and π [32]. N is the number of states that the
model can take on. M is the number of values, or symbols, that the observed
variables can take.

A = {aij} is a transition probability matrix, representing the evolution
model, where element aij is the probability of moving from state i to state
j where i,j ∈ {1,...,N}.

aij = P (wt+1 = Wj | wt = Wi) i,j ∈ {1,...,N} (3)

O = {oj(k)} is the measure of observation probabilities, the observation
model, where oj(k) is the probability of observing symbol Xk when the
model is in state Wi.

oi(k) = P (xt = Xk | wt = Wi) i ∈ {1,...,N}, k ∈ {1,...,M} (4)

π = {πi} is the initial state distribution, where πi is the probability of the
model being in state i at the beginning of the process.

πi = P (w1 = Wi) (5)
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Representing A and B as matrices, N and M can be determined by the sizes
of A and B and we can therefore specify the entire HMM by the parameter
set λ = (A,O, π). For the parameters to be probabilities, we need,

N∑
j=1

aij = 1 for all i ∈ {1,...,N} (6)

M∑
k=1

bi(k) = 1 for all i ∈ {1,...,N} (7)

N∑
i=1

πi = 1 (8)

A hidden Markov model can be represented as a directed graphical model
[26] where the state of the process is represented by a random variable, a
node, and transitions are represented by dependencies, edges. Also, observed
variables are represented as nodes with edges coming from the states. An
graph representation of a typical HMM can be seen in Figure 3.

w(t)w(t-1) w(t+1)

x(t-1) x(t) x(t+1)

Figure 3: Hidden Markov model. Circles represents the state of the model
at a given time and boxes the observations.

A common problem faced when modelling data with HMMs is to find the
posterior marginal distribution for the state variables given a sequence of
observations [32]. Finding the posterior is a problem of inference and can
be done using the forward-backward algorithm, explained in Section 2.2.1.
To perform inference, however, the parameter set λ must be specified. If the
parameters are unknown, as in most practical cases, parameter estimation
must be performed. This can be done using expectation-maximization which
is covered in Section 2.3.

2.2.1 Forward-backward algorithm

When performing inference on an HMM, the popular choice is the forward-
backward algorithm [32]. Based on a sequence of observations, the algo-
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rithm and its results can be used to estimate the likelihood of the model,
the probability of the observations etc. Formally, the algorithm computes
the posterior marginals of the hidden state variables given an observation se-
quence x = (xt)Tt=1. At the core of the forward-backward algorithm are three
model parameters λ = (A,O, π) , specifying the HMM, and two variables as
defined below.

The model parameters consists of the transition probabilities, A = {aij},
the observation probabilities O = {oi(k)} and the initial state probabilities
π = πi as defined in Section 2.2. With the definition of the model parameters
λ we can begin the description of the forward-backward algorithm. The key
variables mentioned in the beginning of this section are the so-called forward
iterates, f t(i) and backward iterates, bt(i).

The forward iterates, f t(i) represent the probability of observing the partial
sequence x1, ..., xt − 1 and ending up in state wt = Wi given the model
parameters λ. Formally, we have,

f t(i) = P ((x1,...xt), wt = Wi | λ) (9)

Using the definitions from earlier, we can compute the forward iterates using
an inductive algorithm.

f1(i) = πioi(x1) for i ∈ {1,...,N} (10)

f t+1(j) =

 N∑
j=1

f t(i)aij

 oj(xt+1) (11)

for j ∈ {1,...,N}, t = 1,...,T − 1 (12)

In a similar way, we define the backward iterates bt(i) as the probability
of observing the partial sequence xt+1, ..., xT after being in state wt = Wi

given the model parameter λ.

b1(i) = 1 for i ∈ {1,...,N} (13)

bt(i) =

 N∑
j=1

bt+1(j)aij

 oj(xt+1) (14)

for j ∈ {1,...,N}, t = T − 1, T − 2, ..., 1 (15)

Now, with f and b, we can compute, for instance, the probability γt(i) of
being in a particular Wi state at a particular time t,

γt(i) = P (wt = Wi | O, λ) (16)

=
f t(i)bt(i)

N∑
j=1

f t(j)bt(j)

. (17)
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To compute the most likely state sequence, we can use,

wtML = arg max
i=1,...,N

[
γt(i)

]
(18)

The calculations above can be performed only if we know the model param-
eters, λ. In the case where these are unknown, we can still use the forward-
backword algorithms by estimating the parameters. One way of estimating
the parameters is using the expectation-maximization (EM) algorithm, see
Section 2.3. In the case of HMM:s, the parameter updates of the EM is
identical to those of an algorithm called the Baum-Welch algorithm [32].

Here, we present the parameter updates according to Baum-Welch without
proof. First we define the variable ξt(i,j) for convenience.

ξt(i,j) =
f t(i)aijoj(x

t+1)bt+1(j)
N∑
i=1

N∑
j=1

f t(i)aijoj(x
t+1)bt+1(j)

(19)

Now, we write the update equations,

π∗i = γ1(i) (20)

a∗ij =

T−1∑
t=1

ξt(i,j)

T−1∑
t=1

γt(i)

(21)

b∗j (k) =

T∑
t=1

s.t. xt=vk

γt(i)

T∑
t=1

γt(i)

. (22)

This concludes our description of the forward-backward algorithm.

2.3 Expectation-maximization algorithm

The Expectation Maximization (EM) algorithm can be used to find max-
imum likelihood (ML) estimate of parameter values in problems with in-
complete data [12]. The point of ML estimation of the parameters of a
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model is to find values of these parameters such that the observed data is
most likely [29]. The algorithm involves two steps. The first step is the
expectation step, where the missing or hidden data are estimated using the
observed data. In the second step, the estimated data from the first step
combined with the observed data is assumed to be the complete data. The
maximization step then calculates the parameters that maximizes the likeli-
hood function for this complete data. The two steps are typically called the
E-step and M-step and can be defined as below, adapted from [12].

• E-step: Compute the log-likelihood of the model given the current
estimate of parameters

• M-step: Choose parameters so as to maximize the log-likelihood

After this brief overview, we examine the details of the algorithm for better
understanding.

Consider the complete data denoted by the random vector X and the model
parameter θ. The log likelihood function for the complete data can be formed
as

L(θ) = lnP (X | θ). (23)

Here, the maximum likelihood (ML) estimate of the data X is what we are
interested in [14]. This means to find θ that maximizes L(θ), in other words,
finding a value of the model parameter that maximizes the likelihood of the
complete data.

As stated in the introduction to this section, there are many situations where
complete data is not available. For these cases the missing data has to be
considered together with the observed data [29]. In this case, consider the
observed data Y and the missing data Z, where the log likelihood function
is now given by

L(θ) = lnP (Y,Z | θ) (24)

A straightforward approach for this would try every possible missing data Z,
which in general is intractable. Also, the parameter θ is unknown. Clearly,
another approach is needed here.

The EM algorithm suggests dividing this problem into two steps where es-
timating Z using an estimate of θ and then estimating θ using this estimate
of Z [29].
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The E-step:
Z(n) = EZ|Y,θ(n) lnP (Y,Z | θ(n)) (25)

The M-step:
θ(n+1) = E(Z | Y,θ(t)) (26)

Iterating these steps an estimated solution can be found. It should also be
noted that the expectation maximization algorithm never results in decreas-
ing likelihood for each iteration, thus ensuring convergence [24].

The EM-procedure for an HMM is not covered in detail, but the results are
stated in Section 2.2.1.

2.4 Generative models & mixture models

A generative model uses the assumption that the observed data is gen-
erated from some probability distribution. Using a simple example of a
sequence of zeroes and ones, the generative model assumes that these are
generated by some probability distribution. Consider the following sequence
S = 00101110110001010101 (12 zeroes and 8 ones), this could have been cre-
ated by the probability distribution described by

p(si = 0|S) =
12

20
= 0.6 (27)

p(si = 1|S) =
8

20
= 0.4 (28)

where si is value number i in the sequence.

By constructing a mixture model, generative models can be combined en-
abling more closely modelling of complex data. Consider the observable
variable v. In the simple, generative model this would be the observed dis-
tribution, but in a mixture model this variable will depend on other mod-
els [7]. Let those models be the the probability distributions forming the set
H = {h1,...,hm}. The probability density of the observed variable v is now
given by

p(v) =
m∑
h=i

p(v | hi)p(h) (29)

The most common application for mixture model is to assume the data is
divided into clusters. Consider an example where the data to be generated
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consists of points in 2D space. In this example hi will describe the process of
generating points in cluster i. Then v will describe the process of generating
the observable points by choosing the points generated by all h ∈ H.

2.5 Inference in graphical models

As mentioned in Section 2.1 about graphical models, inferring values of the
hidden variables of the model that maximizes the likelihood of the observed
data must be done.

To compute the likelihood of the data, it can be seen that it must be possible
to calculate the marginal distribution p(xA) over a subset A of the nodes N
of the graphical model [36]. For a small example using a bivariate random
variable X = (x,y), finding the marginal distribution of a single node i ∈ N
includes summing over all possible configurations [36] of the form {x′ ∈ X |
i′ = i}

Since there are only two possible values of i and |X| nodes in the graph,
the set of possible configurations consist of 2|X|−1 elements. This quickly
becomes intractable to solve using a brute force approach, even for this small
case with a bivariate random variable.

There are however a number of algorithms known that can be used to solve
this approximately, such as Variational approximation [10], Laplace approx-
imation [4] and Gibbs sampling [28].

In the following section Gibbs sampling is described, to introduce a sampling
based algorithm for an approximate solution to the problem.

2.5.1 Gibbs sampling

Gibbs sampling is a Markov-chain Monte Carlo method [28]. The idea be-
hind Markov chain Monte Carlo is that a Markov chain is created, where
every state is an assignment of values to the variables which are being in-
ferred [3]. This Markov chain can then be sampled via Gibbs sampling with
the intent to find a state representing a probability distribution close to the
target distribution [28].

Consider the small example with a bivariate variable X = (x,y). Here we
want to find the joint density p(x,y). However, as mentioned earlier, in
some cases this becomes intractable. The Gibbs sampler instead calculates
a sequence of conditional probabilities, p(x | y) and p(y | x). The sampler
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then uses two steps (for the bivariate case)

xi ∼ p(x | y = yi−1) (30)

yi ∼ p(y | x = xi) (31)

iteratively, starting with some initial values x0 and y0.

After a sufficient burn-in period of n runs of this algorithm, xn and yn will
in this case make up an approximate joint probability distribution [28]. The
burn-in period can be motivated by the fact that the contribution of the
initial values x0 and y0 becomes small.

When working with distributions of more variables than two, the bivariate
example can be extended in the obvious way. Consider the distribution θ,
in this case the update equations can be generalised to

θ
(k)
i ∼ p(θ(k) | θ(1) = θ

(1)
i , ..., θ(k−1) = θ

(k−1)
i , θ(k+1) = θ

(k+1)
i−1 , ...

, θ(n) = θ
(n)
i−1) (32)

where the components are updated in order from θ
(k)
1 to θ

(k)
n in each iteration.

2.6 Probabilistic topic models

A way of categorizing large collection of documents is usable in many appli-
cations, such as helping search engines find similar documents or returning
documents of a particular topic. There are many available methods for per-
forming such tasks. In this section probabilistic topic models are described.

Even with the focus on probabilistic topic models there are a number of
algorithms, all using statistical methods to analyse and categorize texts.
These algorithms do not require any preprocessing on the documents, using
only the text itself to assign topics to the documents.

To describe more closely how these algorithms work, we look at one of the
most popular [9, 34] topic models available, Latent Dirichlet Allocation.

2.7 Latent Dirichlet Allocation

The Latent Dirichlet Allocation model (LDA) introduced by Blei et al. in
2003 [11] is a generative probabilistic model for discrete data collections.
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Table 1: Latent Dirichlet Allocation, generative process

1: Choose N ∼ Poisson(ξ)
2: Choose θ ∼ Dir(α)
3: for all N words wn do
4: Choose a topic zn ∼ Multinomial(θ)
5: Choose a word wn from the probability p(wn | zn, β)

More specifically, Blei uses the notion of documents as the data to describe
the model. The point of the model is to represent each document i in a
corpus as a topic distribution θi with

m∑
j=1

θij = 1 (33)

with the number of topics m for document. θij represents the probability
that document i has the topic j. Comparing these topic distributions can
be used as a measure of similarity between documents. [11]

Consider a corpus C containing n documents [D1,D2,...,Dn]. The generative
model for each document Di is assumed to be as shown in table 1 [11].

The randomness of the number of words N is not critical for the model’s
behaviour and a suitable value N can be selected depending on the ap-
plication. The word probabilities, β decides with which frequency spe-
cific words is drawn, depending on the chosen topic. They are given by
βij = p(wi = 1 | zj = 1) and is a parameter in the model that needs to be
estimated. This estimation procedure is described in Section A.2. α acts
as a prior for selecting the topic distribution θ, and is to be supplied to the
model. In this model the dimensionality of the distribution θ is assumed
to be known and fixed for the entire corpus. This, in turn, means that the
number of possible topics, Z is set before the start of the process.

The generative process is divided into three levels. The parameters ξ and
α are corpus level parameters, set to the same value for the entire corpus
C. The parameters θ and N are sampled for each document Di, while the
parameters zn and wn are sampled for each word. This means that a doc-
ument d can be associated with more than one topic, specifically at most
min(Z,Nd) topics. The inference of the hidden variables is done using Gibbs
sampling, described in Section 2.5. Some details of the application to LDA
can be found in Section A.1.
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2.7.1 Implementation

The implementation of LDA used for our model is part of M allet - A Machine
Learning for Language Toolkit [25]. The M allet implementation provides an
easy to use interface for LDA, taking α and β as input parameters together
with the input corpus. α and β are symmetric dirichlet parameters [25],
which means that we assume no prior knowledge of the topic distribution
over the words [11]. The Latent Dirichlet Allocation inference and parameter
estimation is then performed by Mallet using Gibbs sampling for the infer-
ence. Returned from Mallet is a topic distribution for each of the documents
from the input corpus.

Mallet uses a multi-threaded implementation of the topic model, which has
a linear time complexity in the total number of words N and the number of
topics K, NK [30].
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3 Related research

In this paper we present a generative, graphical model to identify latent,
dynamic interactions in a set of actors, for instance queries. Applications
for such a model exist in a wide variety of settings, such as social [2, 17],
technical [1] and biological [21, 33], and several related attempts of solving
the problem have been presented earlier. While most such attempts are set in
a specific application setting, almost all of them can be generalised to handle
data independent of the context. Here, we present an overview of models
related to the one presented in this paper, and highlight key differences.

The notion of finding interactions in a set of actors, e.g. queries, can be
thought of as a clustering problem. Airoldi et al. [2] presented Mixed-
Membership Stochastic Blockmodels (MMSB) for discovering latent clusters
based on measurements of actor interactions. The original model was gen-
eralised by Song et al. [17] to Dynamic mixed-membership blockmodel for
evolving networks, to consider evolving clusters. In both models however,
only pairwise interactions were considered, representing interactions as a
matrix. The matrix representation makes the model unsitable for handling
interactions in groups of larger size than two since the matrix quickly be-
comes too large to handle. Furthermore, the model requires measurements
of interactions as input, and that is partly what we want to infer.

Also related is Timeline [1], a model for discovering the birth and death
of topics in streams of documents. While this methods are related in that
they deal with dynamic relationships, they do not produce a measure of
interaction strength at each time step.

In biology, one problem of interest is to discover how genes interact by
inducing or repressing each other. This has motivated models such as
KELLER [33]. KELLER produces a series of graphs, modelling gene in-
teractions, based on sequences of gene expression measurements. While
demanding little input, it has a problem with sparsity for low-expression
input. This is mainly due to the fact that gene expression is assumed to be
solely responsible for interactions.

A second model motivated by biology is NETGEM [21]. Given sequences
of gene expressions and a base graph of interactions, NETGEM infers time
sequences of interaction strength between genes. The inference is based on
the assumption that interactions evolve according to, not only on gene ex-
pression, but on the functional category of the gene as well. By introducing
the functional category, a type of class, NETGEM overcomes the problem
of high sparsity found in KELLER. However, like KELLER, NETGEM con-
siders only pairwise interactions, making it unsuitable for certain types of
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data. Of the related models we have examined, NETGEM is closest to the
model presented in this thesis.

Identifying relationships among queries is of interest in many applications
including query recommendation and query expansion. Attempts at creating
methods for finding these relationships have been made using measures of
query similarity and clickthrough URLs [5,6] and intent models [19].

Baeza-Yates et al. [5] approached the problem of query recommendation
by relating queries through a similarity measure based on word occurrence
in click-through URLs and query popularity. Another attempt [6], relates
queries by analyzing a bipartite query-document graph created using query
logs. Guo et al. [19] approached the problem using clickthrough documents
to create an intent model related to topic models. The model does not take
into account the time of the query.

In an application of the model presented in this thesis, we approach the prob-
lem of keyword suggestion for new documents in a search engine. Related
to this problem is that of keyword extraction. Keyword extraction methods
are typically used to assign new documents with a set of keywords when
they are entered into a search engine. Such methods include approaches
based on statistics, linguistics, machine learning and heuristics [22]. To the
best of our knowledge, no existing approaches are search-driven, they do not
consider search behavior of users. Basing our solution on query interaction
allows us to suggest intent-aware keywords aimed at reflecting user search
behavior.
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4 Our approach

In this thesis, we present a model capable of inferring dynamic relationships
between a set of actors given expression data for these actors at a number of
time points an an initial interaction graph. While the model can be adapted
to fit different settings, we will use terminology from an application to search
query data throughout the paper.

4.1 Model overview

In many applications within the realm of search, it is of great importance
to know the intent behind user search queries – what the user is looking for.
Modelling how queries interact and how these interactions change over time
enables us to give a good estimate of the users’ intent. Applications of this
knowledge should enable a better search experience for users in the future.
We now proceed to describe our model for dynamic query interactions.

The model requires two sets of input data, consisting of a search log and
a set of click-through documents. This is a log of queries performed by
users, keeping the queries together with an associated document the user has
clicked on after searching for the query. The query interactions are modelled
using two steps. First, a graph of static interactions is calculated, using
topic similarity between documents associated with queries. The second
step involves inferring the dynamics of query interactions. To consider time-
varying interactions, the query log needs to be divided in a small number of
time periods.

The focus of this model is to find query interactions that changes smoothly
and slowly over time, and therefore the periods should not be chosen too
short. This also means we do not intend to capture extreme cases where a
query is very popular for a very short time and otherwise not at all. The
time frame should not either be divided into too long periods, as this would
affect the significance of the time correlation aspect negatively. For instance,
a query with a popularity heavily influenced by the changing of seasons will
not be captured at all if the lengths of the time periods are 12 months.

The changes of interaction is then based on how the number of searches for
a specific query changes with time. Also the interaction between queries
changes if their association with documents changes. Using two example
queries President of USA and Barack Obama. The correlation between these
two is assumed to go from weak to very strong with time (and weaker yet
again in the future). The idea behind our model is to capture this by using
the documents the queries are associated with. For this example the docu-
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ments will start of being very different for the two queries. However, now
they will instead probably be associated with the same documents, or at
least documents that are very similar.

The focus on smooth time-varying interactions motivates a model based
on Markov dynamics. Because we cannot observe interactions directly, we
model the data as a hidden Markov model. We assume that interactions are
affected by the topic of the queries involved. The notion of topic is brought
into the evolution model of our HMM, using the probabilistic topic model
LDA. The model is trained using expectation-maximization.

An overview of our model from an application perspective can be seen in
Figure 4. The notation, terminology and concepts of the figure will be
explained in detail in the following sections.

4.2 Hypergraph representation

For certain types of data, arising from interactions among actors, simple
(pairwise) graphs are too crude models to properly represent relationships
between the actors. One reason is that graphs can only represent pairwise re-
lationships and not relationships in larger groups. This can lead to problems
when trying to identify the nature of such groups and how their members
interact.

In an application to query data, actors are queries, many of which are very
similar because of the nature of search queries. Misspellings and different
wordings cause similar phrases to be different queries, different nodes in a
graph, but they should be strongly related. Because of this, the model we
propose is based on hypergraphs [8] rather than graphs.

NETGEM [21], is an interaction model originally applied to gene interactions
in cell evolution. The original model considers simple graphs and assumes
that edges are independent of each other. This assumption can prevent the
model from identifying relationships in groups of more than two members,
since all interactions are assumed to be pairwise. We propose a generali-
sation to the approach of [21] by considering hypergraph representations of
interactions. In doing so, we aim to indentify interactions in larger groups.
Instead of edges, we assume hyperedges to be independent of each-other.

We proceed to introduce some notation for graphs and hypergraphs. In this
thesis, we take hypergraph to be the norm and pairwise graphs to be a special
case. We denote simple (pairwise) graphs G = (V, EP ) and hypergraphs
H = (V, E). V denotes the set of nodes, V = {v1, ..., vN} where N is the
total number of nodes. The edge sets are denoted EP = {eP1 , ..., ePMP } and
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Querylog Q = ({q1,t1,dq,1}, ..., {qN,tN,dq,N}) Documents D = (d1, ..., dM)

Query expressions
Xt

Interaction hypergraph
H = (N, E)

Prior on edge topic 
components Λ

Prior on transition 
probability Θ

Model training

Expectation

Maximization
αe,h we

(n)

Qh

(n)

(n+1)
t

Output
Query interaction weight sequences       we

t

Document topics Ad

Figure 4: An overview of our model for query interaction from an appli-
cation perspective. From the top, going down is the work flow of the model.
At the top are the raw query inputs, the documents D and the query log,
Q. Using the querylog data and the topic distribution of the documents, we
construct the inputs to the model, X and H. The model also need prior
distributions, Λ and Θ for the parameters of the model. Λ is created us-
ing query topic distributions. In the middle is the model training using
expectation-maximization depicted. At the bottom is the output, the inferred
weight sequences wte

E = {eH1 , ..., eHM} respectively.

An pairwise edge is a pair of nodes eP = (vi,vj) and a hyperedge is a tuple
(or a subset of V), e = (vi,vj ,vk,...) of arbitrary size ke ≥ 2. The size ke of
an hyperedge is also called cardinality. Note that a hypergraph (V, E) can
be converted into a pairwise graph by adding an edge eP = (vi,vj) to EP for
every pair of nodes vi,vj in a hyperedge e = (vi,vj ,vk,...).

We use the notation n ∈ e to indicate a node n part of the hyperedge
e. We will sometime use the notation e = (i,j,..) to mean e = (vi,vj ,...)
for convenience. In general, we consider edge to mean hyperedge, unless
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Figure 5: Hypergraph representation of query interaction. Each node in
the hypergraph represent a unique query. A hyperedge (circle) represents
the interaction of the queries inside it. Each hyperedge is associated with a
weight representing the strength of the interaction.

otherwise specified. This means that ke ≥ 2,∀e ∈ E . In Figure 5 is a
hypergraph representation of query interactions.

4.3 Data description

The input to our model consists of two components, node expression data,
x and a hypergraph H, such as that of Figure 5. Node expressions are
expected in the form of time sequences of actor expressions x = ((xtj)

T
t=1)Nj=1

with j the index of the actor and t the time point of expression. We let
t ∈ {1,...,T} be an index representing the interval [τ(t), τ(t+ 1)] where τ(t)
is the starting time of the time period with index t. τ(0) is the earliest
measurement point and τ(T ) the latest.

In general, expressions are real numbers. In query data, actors are queries,
uniquely identified by the words that make up the query and the expressions
xtj represents the number of times a query j has been made at time t.

Our model also requires an initial specification of which interactions to con-
sider. The hypergraph H = {V, E} is a specification of which edges to infer
interactions for. Each node in the graph represents a unique query. Edges
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represent query interactions and are denoted e = (ve,1, ..., ve,ke) where ke is
the cardinality of edge e. Note that the nodes {ve,1, ..., ve,ke} are a subset
of the node V. This graph can be thought of as a static representation of
relationships between the queries involved, i.e. which interactions that are
expected to take place at all during the entire time period of the data.

Furthermore, our model requires a parameter to be set, namely the number
of classes that a query or interaction can belong to. This can be thought of
as the number of topics if the application is related to text data as in this
case, or the number functional categories if actors are genes for example.

In the query application, data comes in the form of a query log Q =
{Q1, ..., QM} made up of tuples Qi = (qi, τi, di). We call such a tuple a
search query instance or simply instance. Each such instance represents the
event of a user searching for something and then clicking on a result. qi are
the query words for instance i, τi is the time stamp and di is a document
identifier associated with the document the user clicked on after making the
query. To transform the query logs into expression data, we simply count
the occurrences of each query in each interval t,

xtj =
M∑
i=1

δj(qi, τi) (34)

δtj(qi, τi) =

{
1 qi = q̃j and τi ∈ [τ(t), τ(t+ 1)]
0 otherwise

(35)

with Q̃ = {q̃j}M̃j=1 the set of unique queries.

Note that each set of query words qi or document identifier di may occur
arbitrarily many times in the log. This simply means that the same query
has been made, or the same document has been clicked on at different times.
These re-occurrences is what we count to form expression data. For instance,
if the query flu has been made 13 times in February and our time intervals
are the months of the year, we get x2

flu = 13.

4.4 Observation model

Here we begin the description of the components of our graphical model. In
essence, our model is a type of hidden Markov model, a concept described
in Section 2.2. The first component described here is the observation model.

We model the query expression data as observations in a hidden Markov
model. This means that we assume that expression values occur with a
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probability governed by the state of the model. Specifically, our observa-
tion model models the probability of the expression levels ~xt = {xtv}v∈V ,
conditioned on the interaction strengths ~wt = {wte}e∈E .

We assume that observations are formed according to a nearest-neighbour
model, where edges are independent,

P ( ~Xt = ~xt | ~W t = ~wt) =
1

Z(wt)
exp

(
−
∑
e∈E

wteφ(e,t)

)
(36)

=
1

Z(wt)

∏
e∈E

exp
(
−wteφ(e,t)

)
, (37)

with Z(wt) the normalization factor. Here, φ(e) is a potential function. In
this model we use,

φ(e,t) =
∏
v∈e

xti(v) (38)

with i(v) the index of node v.

We note that the expression above is separable by edges and that this agrees
with the treatment of the weight sequence of every edge as a separate Markov
chain. Now we have our observation model described and we know move on
to our evolution model describing how the weights change with time in our
model .

4.5 Evolution model

To complete the description of our HMM, we introduce the evolution model,
the probability of moving to a given state from the current one. Given, the
Markov assumption and the assumption that edges are independent, the
transition probability of an edge depends only on the most recent state of
the edge,

P (W t
e = wte |W 1, ...,W t−1) = P (W t

e = wte |W t−1). (39)

We denote the probability of an edge e ∈ E moving from state wl to wk,
both in W,

Qe(k,l) = P (W t
e = wl |W t−1

e = wk) (40)

with
K∑
l=1

Qe(k,l) = 1 for all k = 1,...,K. (41)
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We call Qe the edge transition probability. The rows of Qe can be thought of
as drawn from a multinomial. We will use a Dirichlet distribution with pa-
rameter Θ = {θi,h} as a prior for Qe because it is the conjugate distribution
to the multinomial [15].

~Qe(i, :) | Θ ∼ Dir(Qe(i,1), ..., Qe(i, |H|); θi,1, ..., θi,|H|) (42)

At this stage, we need to incorporate the notion of topics. We want transi-
tions to be governed not just by edge weights, but by topic as well. To do
this we formulate a mixture model.

4.6 Topic mixtures for evolution model

To allow edge weights, interactions strengths, to be governed by topics, we
bring the notion of topics into the evolution model. We assume that there
exists a set of topics H = {h1,...,hNH

}. In other applications, this may be
some other form of class. Also, we assume that for each h ∈ H there exist
some state transition probability matrix Qh, which we call topic transition
probability. Furthermore, we assume that nodes and edges are associated
with at least one topic and at most all of the topics.

In order to incorporate topics into the state evolution model, we construct a
mixture model for edges and topics. In the mixture model, edge transition
probabilitis Qe depend on topic transition probabilities Qh and mixture
proportions αe,h.

We denote the set of mixtures proportions α = {{αe,h}e∈E}h∈H. The αe,h
govern the influence of topic h in the evolution of edge e and the relationship
between Qe and Qh can be written as follows,

Qe(k,l) =
∑
h∈H

αe,hQh(k,l) (43)

with ∑
h∈H

αe,h = 1 for all e ∈ E . (44)

We let Qe be a matrix with elements Qe(k,l) where k denotes the row and
l the column. We interpret an element Qe(k,l) as the probability of edge e
moving from state wk to state wl. Note also that Qh and αe,h completely
specifies Qe. This means that we can now consider only Qh and αe,h as
parameters to be learned, and we calculate Qe only for inference.

α can be thought of as a matrix with element αe,h at index (e,h). We will
sometimes use the notation ~αe = {αe,h}h∈H which can be thought of as a
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row vector of α with dimension |E|. Like with Qe, we put a Dirichlet prior
on αe, with parameter Λ = {λe,h},

~αe | Λ ∼ Dir(αe,1, ..., αe,|H|;λe,1, ..., λe,|H|) (45)

4.7 Generative model

With the definitions made earlier in this section, we can now construct an
overview description of our model as a generative model. We assume that
the data we use are observations generated from the probabilistic model
described here.

As stated previously, we put a Dirichlet prior on the topic transition prob-
ability Qh with hyperparameters Θ = {θe}e∈E such that each row i of Qh,
~qh(i, :) ∼ Dir(~θh(i, :)). Furthermore, we put a similar Dirichlet prior on
the topic mixtures ~αe = {αe,h}h∈H with hyperparameters Λ = {~λe}e∈E such
that for each edge e, ~αe ∼ Dir(λe).

To formalize the generative process we introduce the notion of active topic
Y t
e for edge e, defined by the equation,

P (W t+1 = wm|W t
e = wl, Y

t
e = h) = Qh(l,m). (46)

The generative process based on the priors defined above is summarized
in table 2. In Figure 6 is a plate notation representation of the resulting
generative graphical model.

H

E

Qh

αe

θh

λe T
E

Ye Qe we
ttt

Figure 6: The generative model in plate notation. A box with a letter X
at the bottom right corner indicates a repetition of the contents of the box,
X times.
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Table 2: The generative process of our model

Require: H = (set of topics)
Require: G = (V, E) (static interaction network)
Require: Λ = {~λe}e∈E (prior on topic mixtures)
Require: Θ = {θh}h∈H (prior on topic transition probability)
1: for all h in H do
2: Choose Qh|θh s.t. each row ~qh(i, :) ∼ Dir(~θh(i, :))

3: for all e in E do
4: Choose ~αe|λe s.t. ~αe ∼ Dir(~λe)
5: for t = 1,...,T do
6: for all e in E do
7: Choose Y t

e ∼ P (Y t
e = h) = αe,h

8: Choose Qte|Y t
e where Qte|{Y t

e = h} = Qh
9: Choose wte ∼ Pe(wte|wt−1

e , Qt−1
e )

10: Choose ~Xt| ~W t

4.8 Graph construction in the query application

In the query application, the input hypergraph can be constructed using
querylogs, click-through documents and a topic model. We assume that
data is available in the form of a query log with records of query words, time
of query and the document clicked on after using the query. Furthermore,
we assume that a topic model, for instance LDA, has been used to associate
each document d with a topic distribution ~Ad.

From the query logs, each query qi is associated with a set of documents,
Di = {di,1, ..., di,m}, one document for each instance of the query. From a

topic model, each document is associated with a topic distribution ~Ad =
[Ad,1, ..., Ad,H ]>, such that

∑H
h=1Ad,h = 1 for all d.

We calculate query-topic distributions ~κi = [κi,1, ..., κi,H ]> by averaging over
document-topic distributions for each query.

κi,h =
1

|Di|
∑
d∈Di

Ad,h. (47)

We can construct a static interaction graph by comparing query topic dis-
tributions, κ. First we construct a pairwise graph, which is then converted
to a hypergraph.

We denote the pairwise graph of query interactions, G = (V, EP ). We add
a node vi to V for each unique query qi. Then we calculate the Kullback-
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Leibler [23] divergence for each pair of queries (vi,vj) to get a measure of
how related two queries are by topic.

DKL(i,j) = DKL(~κi||~κj) =
∑
h

κi,h log

(
κi,h
κj,h

)
(48)

We add an edge eP = (vi,vj) to EP if DKL(i,j) > εKL where εKL is a
parameter of the tool.

The pairwise graph is then converted to a hypergraph H = {V, E} using
Bron-Kerbosch algorithm [13].

4.9 Parameter priors in the query application

In our model, as described in Section 4.6, each edge e is assumed to be
associated with a topic mixture ~αe with elements αe,h for topics h ∈ H. αe,h
is a measure of how active the topic h is in the edge e.

In the generative model, the values of ~αe are assumed to come from a Dirich-
let distribution with parameters ~λe, i.e.

P (~αe) ∼ Dirichlet(αe,1, ..., αe,H ;λe,1, ..., λe,|H|) . (49)

We interpret the topic mixture hyperparameter, Λ = {~λe}e∈E as a set of
topic distributions, one for each edge e. When constructing a prior in the
query application, e exploit the fact that we have calculated a static topic
distribution for queries, as described in a previous section. As a prior ~λe for
an edge e = (v1, v2, ..., vke), we simply use the mean topic distribution over
the queries in e,

λe,h =
1

ke

∑
v∈e

κi(v),h, e ∈ E , h ∈ H. (50)

where κi is the topic distribution for query i, ke is the cardinality of edge e,
and i(v) is the query index of node v.

For transition probabilities we use a Laplacian prior,

Θ(i,j) =
e−γ|Wj |

K∑
k=1

e−γ|Wk|

(51)

which controls the sparsity of the output interaction weight sequence by
controlling the probability of reaching a certain weight state using the pa-
rameter γ. In other words, a high γ gives a high frequency of small weights
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(in terms of absolute value), such as 0, while a low γ gives more frequent
larger weights.

4.10 Inference & parameter estimation

To estimate the parameters of our model we use a modified version of the
the expectation-maximization (EM) procedure which itself uses the forward-
backward algorithm. In essence, the algorithm computes the forward and
backward iterates and then computes the maximum likelihood estimates of
the model parameters. The algorithm is run separately on each edge of the
graph, estimating Qh and αe,h in the process.

Here follows the definition of the forward and backward iterates as well as
the observation probabilities used in the forward-backward algorithm.

4.10.1 Expectation-maximization

For the expectation step of the EM-algorithm, we first compute the forward
backward iterates. In order to do this, we need to define our observation
model and evolution model. Because of the assumption that edges are inde-
pendent, we treat each edge as a separate HMM, and perform FB on each
edge individually. Repeating the definition of the observation model from
Section 4.4,

P ( ~Xt = ~xt | ~W t = ~wt) =
1

Z(wt)

∏
e∈E

exp
(
−wteφ(e,t)

)
, (52)

φ(e,t) =
∏
v∈e

xti(v), (53)

we can introduce the vague notion of edge observations xte because of the
fact that the equation above is separable by edges.

For an edge e, ote(l) is the probability of observing xe at time t given that
the edge is in state W t

e = wl. Formally, we have by (52),

ote(l) = P
(
Xt
e = xte |W t

e = wl
)

(54)

=
exp {−wlφ(e,t)}∑|w|
k=1 exp {−wkφ(e,t)}

. (55)

In our model, we assume the observation probabilities to be fixed and do
not reestimate them.
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We denote our set of parameters Ψ
(n)
e = {Q(n)

h , α
(n)
e,h}. The superscript (n)

indicates the nth estimate of Ψ. Qh is a matrix of weight state transition
probabilities with elements Qh(l,m) for topic h, and αe,h are the mixture
proportions for edge e as defined in Section 4.5. We assume a uniform initial
state probability πk = 1/|w| for all k using the notation from Section 2.2.1.

We use the notion of active topic Y t
e for edge e by the equation,

P (W t+1 = wm|W t
e = wl, Y

t
e = h) = Qh(l,m) (56)

as defined in Section 4.7.

We can now formulate the forwards probabilities, incorporating the topic of
an edge, as,

f te(m,h) = P (X1:t
e = x1:t

e ,W
t
e = wm | Ψ(n)

e ) (57)

= P (xte | wm)
M∑
l=1

H∑
h′=1

P (Y t
e = h | α(n)) (58)

× P (wm |W t−1
e = wl, Y

t−1
e = h′)× f t−1

e (l,h′) (59)

= ote(m)

|w|∑
l=1

|H|∑
h′=1

f t−1
e (l,h′)α

(n)
e,hQ

(n)
h′ (l,m). (60)

When going from (57) to (58), we make use of the Markov assumption.

We introduce the backwards probabilities as,

bte(m,h) = P (X(t+1):T
e = x(t+1):T

e |W t
e = wm, Y

t
e = h,Ψ(n)

e ) (61)

=
M∑
l=1

H∑
h′=1

P (Xt+1
e |W t+1

e = wl)P (Y t+1
e = h′ | α(n)) (62)

× P (W t+1
e = wl | wm, Y t

e = h)× bt+1
e (l,h′) (63)

=

M∑
l=1

H∑
h′=1

ot+1
e (l)bt+1

e (l,h′)α
(n)
h′ Q

(n)
h (m,l) (64)

In the expectation step of the EM algorithm, we compute the log-likelihood,
i.e L(Ψ) = lnP (x1:T ,Ω1:T | Ψ), with Ωt = (W t, Y t) the state of the model
including active topic. In the maximization step, we wish to find the pa-
rameters that maximizes L(Ψ). With the procedure of Borman [12], we
transform the problem using the likelihood term L(Ψ; Ψ(n)), resulting in the
algorithm,

E-step: L(Ψ; Ψ(n)) = EΩ

[
lnP

(
x1:T ,Ω1:T | Ψ(1 : T )

)]
(65)

M-step: Ψ(n+1) = arg maxΨ(lnP (Ψ) + L(Ψ; Ψ(n)) (66)
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In order to perform the steps above, we calculate the expected number of
transitions between each pair of states, given the observation sequence (and
the current estimate of parameters). To compute the expectation, we first
need to compute the probability of observing one single transition from one
state (l,h) to another state (m,h′) at a single time point, given the current
estimate of parameters, and the observation sequence,

ξte(l,m,h,h
′) = P

(
Ωt
e = (wl, h),Ωt+1

e = (wl′ , h
′) | x1:T

e ,Ψ(n)
)

(67)

From (54)–(64) and (67) we get,

ξte(l,m,h,h
′) ∝ f te(l,h)ot+1

e (m)bt+1
e (m,h′)α

(n)
e,h′Q

(n)
h (l,m) (68)

Using ξte as defined in (68), we can redefine the likelihood term to maximize
as,

L(Ψ; Ψ(n)) =
∑
e∈E

T−1∑
t=1

Eξte
[
lnQh(l,m) + lnαe,h′

]
(69)

and formulate the maximization problem as,

Ψ(n+1) = arg max
Ψ=(Qh,αe,h)

(lnP (Ψ) + L(Ψ; Ψ(n))) (70)

∑
m

Qh(l,m) = 1, ∀h (71)

∑
h

αe,h = 1, ∀e (72)

The solution to the maximization problem gives us the update equations for
the model parameters.

4.11 MAP estimate of weight sequence

The maximum-likelihood estimate of the edge weight sequences can be com-
puted using the forward-backward iterates defined in the previous section.
The ML estimate is in a broad sense the most likely sequence, emphasizing
transitions rather than states at a particular time. If we want a good es-
timate of the weight at a certain time t, the MAP estimate of the weight
sequence is a better choice. Here we define that sequence using the previous
definition,
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F te(m) = max
l=1,...,M

[
Qe(l,m)F t−1

e (l)
]
· ote(m) (73)

Bt
e(m) = max

l=1,...,M

[
Qe(m,l)B

t+1
e (l)ot+1

e (l)
]

(74)

wtMAP,e = arg max
m=1,...M

(
F te(m)Bt

e(m)
)

(75)
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5 Applications

The uses of a time-varying measure of query interactions are many and var-
ied. Examples include search result ranking, suggestions for related queries,
keyword suggestion and statistical applications.

Regarding suggestions for related queries, the idea is that when a user
searches for a query q, the system should suggest a list of queries q1,...,qn that
are related to q based on how strongly they interact at the time of search.
Such a system is similar to the application proposed by Guo et al. [19], but
with the advantage of being aware not just of intent, but of time.

A second category of use is made up of statistical applications. By analyzing
interaction sequences for query pairs, hidden patterns in user behaviour can
be discovered. An example of such patterns are described in the experiments
Section 6.3. Such an application would not likely need to run in an online
fashion, but rather once for each dataset.

A third example is that of keyword suggestion, tested in this thesis and
described below.

5.1 Keyword suggestions

In search engines, keywords are often used to summarize documents or boost
their rank in the result list, cluster them, etc. Traditionally, documents
are tagged with keywords either manually or by using keyword extraction
software. Both approaches, however, neglect the search behavior of users
and the terms that are actually used to find a document.

In Section 6.5, we explore using query interaction dynamics as part of a
search-driven and intent-aware approach to keyword suggestion for new doc-
uments. We argue that in order for a keyword to be relevant, it should be
used in practice to find a document. Our approach takes user intent into ac-
count by considering past searches reaching similar documents. The model
we present is also sensitive to changes in intent by incorporating the dynam-
ics of user search behavior.
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6 Experiments

In order to verify that our model is capable of identifying the dynamic
interactions of queries in practice, we have conducted a series of experiments.
First we evaluate the performance of our model on synthetically generated
data in Section 6.1.

In Section 6.2 we describe the setting in which we perform experiments on
real-world data. This setting applies for the subsequent sections in which we
perform evaluations first qualitatively and then quantitatively. The quanti-
tative evaluation of our model is set in an application to keyword suggestions
for documents in search engines.

In a final test in Section 6.6 we evaluate our model on the well-known Enron
email dataset.

6.1 Evaluation on synthetic data

As a first experiment, we test the performance of our model, and the im-
plementation of it, on synthetically generated data. The data is generated
according to the generative process described in Section 4.7. We compare
our performance to that of NETGEM, a related model handling only pair-
wise interactions.

We start off generating a random hypergraph, H = (V, E) using the proce-
dure described by Ghosal [18]. A copy of the hypergraph is then converted
to a pairwise (simple) graph G = (V, EP ) by connecting all pair of nodes
(nj , nk) of every hyperedge e with an edge eP = (j,k). This is to enable
comparison with NETGEM. Next, any duplicate edges are removed.

We generate two types of hypergraphs in this procedure, one with uniform
edge cardinality k = 3 and one with random cardinality k ≤ 4. In the general
case, the cardinality of hyperedges follow the distribution P (k = 2) = 0.70,
P (k = 3) = 0.25, P (k = 4) = 0.05, P (k = i) = 0, i 6∈ {2,3,4}.

Then we generate random parameters, the transition matrices Qh and the
mixtures αe,h. These are now assumed to be known throughout the test and
form the origin of the generative process.

We generate a weight sequence W t
e and observations xti for the hypergraph

using the known parameters Qh and αe,h. We construct one instance of our
model using the hypergraph H and one using the pairwise graph G. We
perform inference on both of the models using the observations x and the
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Table 3: Error in inferred weights on synthetic data. k is the cardinality of
hyperedges. The error is the percentage of weights in the sequences inferred
by the models that differed from the true sequence.

Model Error, k = 3 Error, k ≤ 4

NETGEM 66% 37%

Our model 26% 30%

two graphs. This results in two weight sequences, W̃ t
e and W̃P,t

e , one inferred
from each model, to compare to the original weight sequence, W t.

Since the pairwise graph has more and different edges than the hypergraph
used as the ground truth, we need to infer a weight sequence for the cor-
responding hypergraph using the pairwise weight sequence. We do this by
using one of the simplest decision rules - majority vote. For each pairwise
edge ei making up hyperedge ej , we perform majority vote. Furthermore,
we compute Fleiss’ Kappa [16] , κF as a measure of the agreement between
edges in the vote.

As a measure of the error of the inferred weight sequence, we count the
number of elements that differ from the truth in sequences We and W̃e. For
the experiment we use weights W = {−1,0,1}, N = 20 nodes, T = 100 time
points, H = 20 topics, and E = 50 hyperedges. In table 3, we present
the results of comparing performance for pair-wise graphs (NETGEM) and
hypergraphs on synthetically generated data. The average Fleiss kappa was
κF = −0.01 which indicates poor agreement in the majority vote [16].

From table 3, we can clearly see that for data that naturally lends itself to a
hypergraph representation, our model outperforms the graph based method.
For 3-hypergraphs the difference is larger in the general case because every
edge has more than two nodes which means that the pairwise representation
will always have to use majority vote.

6.2 Experimental setting

In our experiments, we have used query logs and a search index containing
document texts from Västra Götalandsregionen, a county council in Swe-
den. Typical queries include “job vacancies”, “smoking” and various disease
names. The query logs contains click-through documents, or at least links
to them, which makes the logs ideal for use with the topic model used in
this project, see Section 2.6.

The logs comprise, in unfiltered form, around 12 000 000 query instances
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and 250 000 documents. The data was collected over nearly two years. In
this setting we take a query instance to be a triple of 1) query words, 2)
time and 3) click-through document URL. Together with the query logs is a
search index that contains the text bodies of the documents that are clicked
on. These texts are complete sentences with punctuation etc. Before doing
any filtering, there are around 250 000 documents in the index.

For the experiments we kept only documents of length > 1000 characters
and removed any document which hadn’t been clicked on. This left around
20 000 documents. Furthermore, we kept only query instances for which
click-through documents were in the filtered document set. This left around
1 000 000 query instances and 18 000 unique query words.

In the topic model we use, LDA, it is assumed that the ordering of words
in a text isn’t relevant. Instead we make the usual assumption [11] that
a document is simply a bag of words. Because of this, we perform some
preprocessing steps, removing any punctuation signs, removing stop words
and making all letters lowercase.

Using the graph construction procedure described in Section 4.8 we can build
an initial, static representation of query interactions, used as input to our
model. An example of such a graph can be seen in Figure 7.

Figure 7: Part of a static interaction graph used as input to our model.
The words in the graph are queries that users have searched for and functions
as nodes in the graph. Edges are between nodes of similar topic according to
LDA. The edges with no nodes at the ends simply exist because this figure
shows only part of a larger graph.
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6.3 Qualitative evaluation of interaction weight sequences

In this experiment we want to examine the results of our model in a quali-
tative fashion using the data described in the previous section. We trained
our model on 75% of the data, sampled uniformly from the entire data set.
The remaining 25% are considered the test set. Parameter estimation was
performed, giving topic distribution αe,h and class transition probability Qh
as results. These results were then used to infer query interaction dynamics
on the test set.

With Qh and αe,h estimated in training, we have calculated the edge tran-
sition probability, Qe for each edge of the test set according to (43). Using
Qe, we calculate the weight sequence MAP estimate for each edge of the
test set, giving the most probable weight at each time step. Details on the
MAP estimation procedure can be found in Section 4.11.

To briefly examine the quality of the weight sequences produced by the
trained model, we have examined thetop 100 weight sequences having the
highest variance. In Figure 8, we see an example weight sequence for the edge
between queries “PM” and “ESBL”. PM stands for promemoria in Swedish,
and means an organizational directive in this setting. ESBL stands for
Extended Spectrum Beta-Lactamase and is an enzyme breaking some types
of down antibiotics. In general, we do not expect these queries to have a
strong relationship since PM is something very general and ESBL something
very specific. However, in january 2011 and august 2011 in the left figure,
we note that the interaction is strong. Studying documents sent out by the
organization, we can see that PMs on the subject of ESBL was sent out
during the times of strong interaction.

We note that where both frequencies increase or both decrease, we see a high
correlation. We also note that where the frequencies diverge, the output
signifies a negative correlation. In general, we expect to see high correlation
at a given time for queries that are of similar topic and of similar frequency
at that time. The example with PM and ESBL indicates that our model is
capable of capturing such events.

6.4 Qualitative comparison with KELLER

We compare our model against KELLER [33], a method for reverse-engineering
dynamic interactions between genes based on gene expressions. In our set-
ting, genes correspond to queries and gene expressions to query frequencies.
KELLER does not consider the impact of functional classes (topics), so we
expect the proposed model to outperform KELLER in cases where query
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Figure 8: Test results for query data. To the left is the interaction weight
sequence for queries PM and ESBL. PM is an organizational directive and
ESBL an enzyme breaking down some types of antibiotics. At times of high
correlation, PMs about ESBL were found out to have been sent out in the
organization. To the right are the query expressions for the two queries.

interactions depend strongly on topic. Because KELLER is a model only
considering pairwise interactions, we limit our own model to consider only
edges of cardinality 2 in this experiment.

For the comparison we use a subset of our data consisting of 22 queries, the
top 20 with highest variance in weight sequences, and the two queries PM
and ESBL. The input to KELLER is made up solely of the instance counts
for each query. From KELLER we get one graph per time period, in this
experiment 15 in total. From our model we get weight sequences for each
edge. We build a graph for each time period t by adding the edges e having
interaction weight wte 6= 0. This enables us to compare the evolving graphs
directly.

In Figure 9 on page 40, the networks are presented at 3 time periods. We
have selected three periods of interest in connection to the example with PM
and ESBL from the previous section. At time 2, we can see that neither of
the models have an edge between PM and ESBL, indicating that the two
queries don’t interact at all. For our model, this is expected from Figure
8. At the other two time points shown, our model captures the strong
interaction between the two queries and KELLER does not.

Another aspect of the graphs in Figure 9 is that we can note very drastic
changes in the graphs produced by KELLER. Almost all edges change over
the course of the three time points, (note however that they are not in direct
sequence). This goes against our assumptions that changes in interactions
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Figure 9: Graph evolution comparison between KELLER and our model.
Nodes corresponds to queries and edges to interactions. Two of the nodes are
marked, esbl (white) and pm (black). An edge (i,j) indicates that queries qi
and qj are interacting.
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are smooth and slow.

KELLER has an unexpected problem with creating graphs where single
nodes have a very high order, as can be seen at time 2 and 11. This is likely
caused by these node having a very high expression compared to other nodes
at that time. This is not the type of event that we want to capture, since we
are more interested in the strength of interactions rather that of expressions.
Furthermore, we note that the interactions our model identifies has better
correspondence with topic than KELLER. This manifests in KELLER hav-
ing edges between seemingly totally unrelated queries, as can be spotted
when examining graphs with query labels at the nodes.

6.5 Evaluation of keyword suggestion

In this section we use the results of our model trained on the query data
training set to suggest keywords for new documents. We will now formalize
what we take to be a suggestion, and what an ideal suggestion is. A high-
level view of the keyword suggestion process can be seen in Figure 10.

As stated in Section 5.1, we want to suggest keywords that are actually
used as search queries. This would make the keywords relevant in terms of
result ranking and query matching. The underlying idea for the suggestions
we make is to make use of the query logs in the training set and suggest
keywords that have been used as queries.

In this application we construct the training and testing sets by partitioning
the data chronologically. Also, we make the training set contain 90% of the
query instances. To do this, we sort the instances making up the total query
log by time and take the first 90% of the to be the training sets and the
remainder the test set.

query1

queryN

query1
query2

query3

Unseen document, d
e1

Suggested keywords
[ query1, query2, query3 ]

topic(e1) closest to topic(d)
e

Querylogs           Query Interaction Dynamics       Keyword Suggestion

Figure 10: Simplified view of the keyword suggestion process.
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Table 4: Algorithm for keyword suggestion

Require: QTr = training query logs with instances of time ∈ [1,T − 1]
Require: Q = testing query logs with instances of time T
Require: DTr = training documents
Require: D = testing documents such that D ⊆ DTr

1: Construct graph G = (V, E) of training queries
2: Train model on G, and QTr

3: for all e in E do
4: Fetch mixture αe from training results
5: Calculate MAP weight sequences we

6: for all documents d in D do
7: Find e ∈ E with minimal DKL(αe||Ad) s.t. |wT−1

e | > 0
8: Suggest keywords KT

d = {q : q ∈ e}

Remember that in our model we partition data into intervals denoted by t
ranging from 1,...,T in order model the data as a HMM. In this application,
we use T − 1 partitions for the training set and one for the test set.

We define a keyword suggestion for document d at time t as a set of queries
Kt
d = {qK,1, ..., qK,m}. Please note that we only suggest keywords that

have been used as queries in the training set, not any words occurring in
documents. Here we differ from for example keyword extraction software
[22].

Formally we define,

Kt
d = {q : q ∈ e, e = arg min

e∈E
[DKL(αe||Ad)] s.t. |wt−1

e | > 0}, (76)

where Ad is the topic distribution for document d and αe is the topic distribu-
tion for edge e. DKL(P ||Q) =

∑
i P (i) ln P (i)

Q(i) is the usual Kullback-Leibler

divergence [23]. wt−1
e is the weight of edge e at time t− 1.

In words, the above definition means that the queries we suggest for key-
words are those making up the edge with topic distribution closest to that
of the document in question. The algorithm for suggesting keyword is de-
scribed in pseudo-code in table 4.

To be able to evaluate our suggestions, we define for a document d a set
Qtd = {qd,1, ..., qd,n} where Qtd is the set of queries used to access d in the
time interval t. We consider Kt

d a successful suggestion of keywords for d at
time t if

Qtd ⊆ Kt
d (77)

or in other words, if we at least suggest as keywords all queries that are used
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Table 5: Results for keyword suggestion on query dataset. A successful
suggestion of keywords for a document is taken to be one where at least one
of the keywords has been used as a query to reach document.

Model Avg. successful suggestions Avg. recall

Our model 66% 0.62

to reach the document.

This definition suggests that we can evaluate suggestions in terms of recall
r defined by,

r(d) =
TP

TP + FN
(78)

where TP , true positives, in this case is the number of queries used to reach
document d AND suggested as keywords. FN are the false negatives, the
number of queries used to reach document d and NOT suggested as keywords.

In addition to the recall calculation, we also simply count the number of
documents that are given successful suggestions according to (77) and cal-
culate a percentage. This is done for every document in the test set. Both
the recall and the percentage of successful suggestions averaged over 10 tests
are presented in table 5.

We see that for 66% of documents, our algorithm is successful in suggesting
keywords that are used as queries to reach the document. One should also
note that this indicates predictive capabilities since suggestions are made
for unseen data.

6.6 Evaluation on Enron email networks

In the last experiment, we apply our model to a social application, rather
than to one of search queries. We use the publicly available email data
set from the Enron corporation to compare our model with the original
NETGEM model as well as the KELLER model. The Enron dataset is
made up of data on employees’ sent and received e-mail. Here we use data
on mail that is sent within the Enron corporation between 2000-11-07 and
2002-06-12.

A pairwise, static graph, G is created, representing the email networks, by
inserting one node per employee and an edge e = (i,j) if at least one email
has been sent from employee i to employee j during the entire measurement
period. Employees who haven’t sent any emails are neglected, leaving a
total of N = 135 nodes and employees. Out of these we select the 30 most
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Table 6: Enron test comparison. The figures indicate precision and recall
for weight sequences inferred using the models in the table compared with the
true sequences of email activity.

Precision Recall

KELLER 0.24 0.14

Our model 0.55 0.51

active people in the network. The graph is then converted to a hypergraph
H using Bron-Kerbosch algorithm [13]. H is taken as the base graph, part
of the input to our model.

We partition the data into 12 different time periods, each representing a
month, {T1,T2, ...,T12} based on the date where the mail was sent. The
node expression xti for person i at time t is taken as the total number of
emails sent in the period [Tt, Tt+1]. For convenience, we also define Sti,j to
be the number of emails sent from person i to j in time period [Tt, Tt+1].

Since we know how many emails have been sent during each time period,
we can construct a true weight sequence to compare to the output of our
model. We set the weight of an edge e to 1 at time t if at least one mail has
been sent from one of the employees in the edge to another in the edge, or
formally

W t
e =

{
1, if ∃(vi,vj) : vi,vj ∈ e, i 6= j, Sti,j > 0

0, otherwise
(79)

We compare our model to an existing model for network interaction dynam-
ics, namely KELLER. KELLER is a pairwise model, so as in the synthetic
experiment, we run it on the pairwise version of H and perform majority
vote on the resulting weight sequence to get weights for the hypergraph.
We compare the resulting weight sequence to the true sequence using preci-
sion and recall calculated by counting where the weight sequences agree and
where not. Recall has been defined earlier, and precision is defined as,

p =
TP

TP + FP
(80)

where TP denotes number of true positives, and FP number of false posi-
tives.

The results of the experiment are presented in table 6. We note that our
model is better than KELLER in terms of both precision and recall.
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7 Discussion

From the qualitative evaluation of weight sequences in Section 6.3, we gain
confidence that our model is capable of recovering hidden interactions be-
tween search queries. We successfully identified a real-world event in the
test set by looking only at the interaction sequence produced by a model
trained on the training dataset. This result shows promise for the use of our
model in a practical application.

In the dataset we have used for our tests, we have no notion of ground truth
since there is no labeled data, no true weight sequences. This is problematic
when evaluating accuracy in a quantitative manner. The problem arises
from the data itself, because it is very hard, even manually, to identify a
true weight sequence for query interactions. In static models, it is easier,
because often a manual labeler has an intuitive feel of what queries should
be related. Also, one can look at which queries are used to find the same
thing. In our case, manual labeling is harder, because of the assumption
that interactions are dynamic. There is little intuition for when two queries
are more related and when they are less so.

In the comparison with KELLER in Section 6.4, we found that our model
produced more intuitive results than KELLER. While this is a vague notion,
we can still note specifics like at least finding clear events of interest (PM-
ESBL) and the drastic changes in the KELLER graphs. We believe that
much of the difference between the two models comes from the fact that
KELLER does not consider the impact of topics, while our model does.
We expect this to be more important for certain queries than for others,
and especially for cases where query expression is low, but the activity of a
certain topic is high. We have yet to identify such a case, and this is work
for the future.

In another application of our model, for instance to social interactions, man-
ual labeling can be easier. For instance, in email networks, we have a mea-
sure of the number of emails sent between people at each time. This is why
we tested our model on the Enron email network dataset, presented in Sec-
tion 6.6. For this data we got good precision and recall, which increases our
belief in that our model performs well for data that can be modelled as a
hypergraph.

Because of the lack of direct comparison with a labeled set, we chose both
to apply the results of our model to a practical application – keyword sug-
gestion and to evaluate the model on synthetically generated data. In the
synthetic evaluation we found that our hypergraph based model outper-
forms an existing graph based model for network interaction dynamics on
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data that is best represented as a hypergraph, see table 3. The difference
was especially large for 3-uniform hypergraphs.

The query data naturally lends itself to a hypergraph representation for
several reasons. First, different users typically use similar queries to find
the same thing. An example of this are queries, found in the health care
dataset used in this project and translated to English, such as “free jobs”,
“job portal”, “job bank” etc. Typically, all such queries are related to each
other in a grouped fashion, and not pairwise. This motivates the use of
hypergraphs. Second, spelling and wording may differ for queries, as well
as word order. In the hypergraph representation, all such variations are
modelled as one group.

To get an indication of the performance of our model in a practical applica-
tion, we applied the results of our model to keyword suggestion, see Section
6.5. We found that the proposed algorithm gave good results in terms of
recall, and suggested keywords that were used to find documents in practice.

We have done very little discussion of time complexity this far. Both training
and inference can be performed in linear time, which indicates that we can
use the model for reasonably large scale dataset. One should note that
linear is in terms of edges and nodes, and not number of query instances.
Also, training complexity depends linearly on the number of iterations. In
tests, we have found that around 10 iterations have sufficed, but we have no
theoretical results backing this up. In all, the time complexity has not been
analyzed to any further extent yet, and more tests are needed to confirm
the usability of our model.
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8 Conclusions & future work

In this thesis we have constructed a probabilistic graphical model for dy-
namic search query interaction. We have found through tests on synthetic
as well as real-world data that our model is capable of recovering hidden
interaction dynamics in search query networks.

We have found that our model can be used in an application to document
keyword suggestions, and that the suggested keywords are relevant in that
they are actually used as search terms.

In synthetic tests, we have found that the hypergraph based model of this
thesis outperforms existing graph-based models. In a small test, we also
found our model to be capable of identifying dynamic social interactions
using the Enron email dataset.

Future work should include theoretical analysis of time complexity to de-
termine the practical usability of our model. A more rigorous set of tests
of the quality of query interaction weight sequences is also needed to con-
firm the accuracy of the model. Another area to explore is that of efficient
training algorithms. Instead of the EM-procedure, we could construct a
parameter-estimation algorithm based on sampling.
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A Topic Modeling

A.1 Inference via Gibbs Sampling

To use LDA we have to do inference of the posterior distribution of hidden
variables given a document,

p (θ, z | w, α, β) =
p (θ, z,w | α, β)

p(w | α, β)
(81)

For this application it can be shown that this is intractable to solve exactly.
If we, for a moment, omit the hyper parameters from eqn. (81) [20]

p(~z | ~w) =
p(~z, ~w)

p(~w)
=

∏W
i=1 p(zi,wi)∏W

i=1

∑K
k=1 p(zi = k,wi = k)

(82)

we can see the main problem which occurs in the denominator where there
exists a sum over KW terms. Using Gibbs sampling this can be done ap-
proximately using a collapsed Gibbs sampling algorithm for LDA [37]. Gibbs
sampling for the application for LDA means using the fixed collections of
words, i.e documents, to guide where the samples of possible topics should
be searched for [9]. The derivation of the collapsed Gibbs sampler for LDA is
not given here but a description can be found written by G. Heindrich [20].

A.2 Parameter Estimation

For the LDA model, the parameters that need to be estimated is α and β.
These parameters should be chosen to maximize the log likelihood of the
data, i.e the words.

L(α,β) =

M∑
d=1

logp(~(w)d | α, β) (83)

This problem is also intractable due to the number of possible combinations
of α and β. However, the collapsed Gibbs sampler for LDA described in [20],
also solves this step of estimating the parameters in an approximate way.
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