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Abstract
Satellite connections are often the only option for Internet connectivity in remote or
isolated regions. One low-cost example is the Iridium GO! satellite Internet device,
with a bandwidth of just 2.4 kbit/s, at which many web pages would take several
hours to load. Furthermore, satellite Internet is prone to connection issues and
packet loss, increasing loading times even further.

The possibility of enabling basic web browsing over such very slow connections is
investigated. As a proof of concept, a prototype functioning under these conditions
was developed. The prototype consists of a performance enhancing proxy server,
a browser client, and a protocol. In the prototype certain content is filtered and
rendered into plain text. This text is then streamed in smaller parts to the client.

The prototype was tested with Iridium GO! and compared to some similar software
solutions. The tests show that the proposed solution is both reliable and sufficient
for basic web browsing on very low bandwidth. The prototype is a good foundation
for further development of a browser for low bandwidth connections.

Keywords: satellite Internet, low bandwidth web browsing, Iridium, performance
enhancing proxy, content extraction, networking.

v





Very Low Bandwidth (Marine) Web Surfing
A Fault-Tolerant Content Streaming Web Browsing Solution

Arvid Hast, Frej Karlsson, Jesper Lindström
Lina Blomkvist, Tobias Andersson, Tobias Sundell

Department of Computer Science and Engineering
Chalmers University of Technology

Sammandrag
Satellituppkopplingar är ofta de enda tillgängliga alternativen för internetanslut-
ningar i avlägsna eller isolerade regioner. Ett exempel på en sådan uppkoppling
är Iridium GO!, ett modem för satellit-internet med en bandbredd på endast 2.4
kbit/s. Med en så låg bandbredd tar många webbsidor flera timmar att ladda.
Satellit-internet lider också av uppkopplingsproblem och tappade nätverkspaket,
vilket får laddtiderna att öka ytterligare.

Huruvida det går att möjliggöra enkelt webbsurfande över sådana anslutningar un-
dersöks. Som konceptvalidering utvecklades en prototyp som fungerade under dessa
omständigheter. Prototypen består av en prestandaförbättrande proxyserver, en
webbläsarklient och ett protokoll. I prototypen filtreras visst innehåll och återges
som ren text. Texten strömmas sedan i små delar till klienten.

Prototypen testades på Iridium GO! och jämfördes med några liknande mjukvarulös-
ningar. Testen visade att den föreslagna lösningen både är pålitlig och tillräcklig
för enkelt webbsurfande på en mycket låg bandbredd. Prototypen är en god ut-
gångspunkt för ytterligare utveckling av en webbläsare för uppkopplingar med låg
bandbredd.

Nyckelord: Satellit-internet, låg bandbredd, webbsurfande, Iridium, prestandaför-
bättrande proxy, extrahering av innehåll, nätverkande.
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Cookies A piece of data sent as part of the HTTP header which allows web pages
to store small amounts of information in a user’s browser and access said information
again. Often used to remember the state of a certain user, such as whether he is
signed in or not.

CRC A Cyclic Redundancy Check is a common type of error-detecting code.
CRC8 is an 8-bit variant.

DOM A "Document Object Model" (DOM or DOM-tree) is a tree model repre-
sentation of the HTML elements on a web page.

Handshake A process where two communicating parties negotiate the parameters
of communication, for example establishing a TCP connection.

HTML A markup language used to define the content and structure of a web
page.

HTTP A network protocol used to transmit hypertext. Commonly used to trans-
mit web pages.

Multiplexing A process of combining several different signals into a single signal.
Usually followed by the inverse process of demultiplexing, to regain the original
signals.

NAT A "Network Address Translation" allows several devices with unique local
IP addresses to share a single external IP address, by forwarding ports from the
external address to internal addresses on demand.

Network protocol A specification of how to communicate with certain software,
such as accepted packet header values.

Nonce Short for "Number Used Once". A cryptographic concept of a number that
should never be reused but need not be kept secret.

Packet A sequence of bits which are transmitted together to another device in the
network.
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Packet header The part of a packet containing control information, such as ad-
dress information about the recipient and sender. Always the first part of a packet
sent.

Padding Meaningless bits added to something to ensure that it meets certain size
requirements.

Payload The part of a packet containing the transmitted data, excluding control
information.

RTO Short for "Retransmission Time Out". The time after which an unacknowl-
edged packet is retransmitted in TCP.

RTT Short for "Round Trip Time". The time it takes for a sender to receive an
acknowledgment from the receiver after transmitting a packet over TCP.

TCP A network protocol providing reliable in-order delivery.

UDP A simple, "best effort" network protocol. A sent packet is not guaranteed
to arrive at its destination.
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1
Introduction

In many remote locations, Internet access is very slow and costly compared to that
of an average city in the developed world. For instance, seagoing ships use satellite
Internet solutions to stay connected. Large vessels have more advanced communi-
cation solutions, but many recreational boats depend on slow entry-level solutions.
The slower solutions provide access to weather reports and text-based emails through
specialized software.

The average bandwidth of mobile and broadband connections has increased greatly
over time, while the bandwidth of mobile satellite Internet solutions has remained
largely unchanged. The size of an average web page has also increased, and graph-
ics, advertisements, and layout can make up several megabytes of the web page.
Because of this, transmitting an average web page on a consumer grade satellite
Internet connection can take hours. However, the actual text content is often only
a few kilobytes.

Consumer grade satellite Internet connections are sufficient for phone calls and sim-
ple text-based messages but it is practically impossible to download full web pages
in a reasonable time frame. Recreational sailors might still want to access certain
web-based content, such as news articles or technical information. The development
of a web browsing solution that allows a user to access such content on a very slow
satellite Internet connection is therefore desirable.

1.1 Current State of Mobile Satellite Internet
Entry-level satellite Internet solutions, such as Iridium GO!, provide a very low
bandwidth (Abdul Jabbar & Frost, 2003), about 50 000 times smaller than that of a
modern 4G connection. The Iridium GO! device is widely used where Internet access
is scarce, and the service is a good example of a consumer grade satellite Internet
connection. Enterprise-grade solutions with higher bandwidth do exist (KVH Indus-
tries, 2018), but these are costly compared to slower satellite Internet connections.

Iridium, as well as some third-party developers, offers specialized applications for
various services such as weather, email and web browsing. However, web browsing
applications such as XWeb only reduce the web page by a factor of three to five
(Global Marine Networks, 2018), which is not enough to make web browsing with
reasonable loading times possible. No published research on how to enable web

1



1. Introduction

browsing on high latency low bandwidth connections was found.

1.2 Purpose
The purpose is to investigate how to enable basic web browsing on a connection with
very low bandwidth and high latency. Specifically, a prototype of a fault-tolerant
content streaming web browsing solution has been designed, constructed, and tested.

1.3 Challenges and Subproblems
The goal is to achieve basic web browsing with an acceptable loading speed so that
new content of a web page is loaded before the reader has finished viewing the pre-
viously loaded content of the page. The size of an average web page also needs
to be reduced by a factor of over 1000 to be viewable on an entry-level satellite
connection within a reasonable time. This may possibly be achieved by extracting
only the relevant text content. If the resulting text content can also be streamed to
allow the user to read from the top almost instantly, pages of larger size may still
be possible to access.

Apart from removing excessive information, several parts of the web browsing tech-
nology, such as the network protocol and the text markup language, need to be
optimized and adapted for the connections’ low bandwidth, high latency, and in-
stability. The different subproblems identified can be grouped into the following
categories:

Content Extraction To be able to efficiently browse the web on a low bandwidth
connection, excessive information and resources need to be removed from web pages
prior to transmission to the client. Only the most important parts of the web page
should be kept, such as the text content and navigational links.

Web Searching and Forms An important aspect of web browsing is the ability
to interact with the web pages, such as searching for a particular topic on a search
engine. This project investigates how basic HTML server-side forms can be made
usable on a low bandwidth connection, without loading the entire web page.

Network Protocol As the data may be transmitted on an unstable connection,
packages may fail to be delivered. Therefore, the handling of errors is of high impor-
tance. For instance, the solution must support automatic or manual re-transmission
of missing content.

Compression Compression is needed to reduce the bandwidth usage further. In
many compression algorithms, a single bit error might corrupt the entire compressed
message. A compression solution that is less vulnerable to bit errors is therefore
needed.

2
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Encryption Encryption is problematic if bit errors are to be tolerated. For most
ciphers, a single bit error will leave the whole package unreadable.

1.4 Delimitations
The goal of this project is to make web pages viewable with a low bandwidth con-
nection, primarily regarding information filtering, content streaming, and how to
efficiently transfer data over a slow connection. Because of time constraints, the
scope of the project is limited and does not include:

• Any physical work to improve Internet connection.
• An advanced user interface.
• Web page scripting on the client.
• Multi-media streaming.
• Displaying or downloading of images.

1.5 Outline
The rest of the thesis is divided into seven chapters. The relevant theory is presented
in Chapter 2. In Chapter 3 the methods of the project are presented. Some possible
technical solutions for the prototype are evaluated in Chapter 4, and Chapter 5
describes the final implementation of the prototype.

Test results for both field tests and simulations are presented in Chapter 6. Chapter
7 discusses the test results and the relative importance of the different sub-problems.
This chapter also includes suggestions for further development of the prototype and
takes up a few ethical aspects. Finally, Chapter 8 presents the conclusions drawn
from the discussion and evaluates the purpose presented in 1.2.

3



1. Introduction

4



2
Theory

This chapter introduces the relevant theory behind networking, web browsing, proxy
servers, and encryption. To clarify the constraints of satellite Internet solutions, this
chapter also provides a brief introduction to communication satellites. The theory
presented is required to understand the particular difficulties and considerations of a
fault-tolerant text-streaming web browsing solution on low bandwidth connections.

2.1 Network Communication

Computer networking can be divided into several communication layers, where each
layer hides the details of the underlying layers. As seen in Figure 2.1, the com-
munication layers of the Internet protocol stack range from low-level electronics to
high-level software and are the following: physical, data-link, network, transport,
and application (Kurose & Ross, 2012, Ch. 1.5.1). As the physical and data-link
layer are tied to the hardware and thus are beyond the scope of this project, they
are only introduced briefly for the purpose of completeness.

Data Link Layer: Ethernet

Network Layer: IP

Transport Layer: TCP / UDP

Application Layer: HTTP

Physical Layer: Wireless

Figure 2.1: Communication layers with example applications.

2.1.1 Physical and Data-Link Layer

The physical layer defines how the transmission of data should be performed by the
electronics, such as how to transmit a certain bit pattern in terms of voltage levels.
The data-link layer is responsible for grouping the received bit patterns into frames,
and to ensure that these are correct (Kurose & Ross, 2012, Ch. 5.1.1).

5



2. Theory

2.1.2 Network Layer
In the network layer, data is sent as a packet, which contains a payload and a packet
header. The packet header contains information used by the protocol, such as infor-
mation about how to reach the destination. This information is called metadata.

A common network layer protocol is the Internet Protocol (IP), which defines how
devices can communicate with each other in terms of routing the packets. Each
device is assigned an IP address which contains information on where to deliver the
packets. All packets that are transmitted to another device through such a com-
puter network, therefore, need to contain the sender and recipient IP address. This
is called the IP header (Kurose & Ross, 2012, Ch. 4.4).

2.1.3 Transport Layer
Similarly to how the network layer defines how devices communicate with one an-
other, the transport layer defines how data should be transferred between applica-
tions running on the devices (Kurose & Ross, 2012, Ch. 3.1.5). The transport layer
provides different services to the applications, such as connections, guaranteed deliv-
ery, and fair sharing of network resources. The two major transport level protocols,
TCP and UDP, are described in Section 2.5.

2.1.4 Application Layer
The application layer defines how software applications communicate at a high level.
It defines how authentication between two devices should happen, as well as how
to compress and decompress the data. Finally, the application layer is where a
software application defines how it is communicating with applications on other
devices (Kurose & Ross, 2012, Ch. 2.1). An example of an application layer protocol
is HTTP which is used for web browsing (Goralski, 2017, Ch. 6).

2.2 HTTP

The Hypertext Transport Protocol (HTTP) is a protocol used to transfer web con-
tent, primarily in hypertext, which is the text format used by the World Wide Web
(The Internet Society, 1999). HTTP relies on a transport level protocol for commu-
nication between applications (for example, a web server and a web browser). The
transport protocol most often used is TCP, and most web servers will not respond
to any other transport protocol.

HTTP is a text-based protocol, in contrast to unreadable binary protocols. For ex-
ample, part of an HTTP request might be written as GET /index.html HTTP/1.1.
Apart from the message body, HTTP messages contain so-called headers consist-
ing of additional information not part of the message itself. Since the number of

6



2. Theory

commonly used headers is large, and the headers are in plain text, the overhead
introduced by HTTP is frequently thousands of bytes.

2.3 Web Browsing

A web browser is a client that requests web pages from a web server. When a user
enters a web address into the web browser, an HTTP request is sent to the web server
which in turn replies with a document, normally written in the markup language
HTML. The HTML document contains information about the page’s layout, its
content, and its resources such as images and scripts. The web browser is responsible
for displaying the page according to the HTML document and also makes new
requests for any resources needed to fully display the web page. Once all resources
have been requested and retrieved, the web page is completely visible in the web
browser window (Stanford, n.d.).

2.4 Proxy Servers

A proxy server is an application used as an intermediate step in a resource request
between a client and a server. There are different kinds of proxy servers with different
use cases and applications. A relevant application is Performance Enhancing Proxies
(PEP), which are used to improve performance in either the transport or applica-
tion layer (Border, Griner, Montenegro, Shelby, & Kojo, 2001). At the transport
layer, a PEP can be used to improve the stability of communications over unreliable
networks, including satellite communication links (Caini, Firrincieli, & Lacamera,
2006). An example of an application layer PEP is the "Data Saver" mode in Google
Chrome, which compresses the HTTP traffic (Google, n.d.).

Low bandwidth High bandwidth 

Proxy Server Client Internet website

Figure 2.2: Performance enhancing proxy server.

A performance enhancing proxy server is illustrated in Figure 2.2, where the client
has a low bandwidth connection and the proxy server has a high bandwidth con-
nection. Hence, such a proxy server can perform performance enhancing operations,
such as compression, before transmitting the result to the client. The proxy server
described in 5.2 is a performance enhancing proxy.
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2.5 Major Transport Level Protocols
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are the
two major transport layer protocols. They are discussed in this section at some
length because they are later considered for the prototype in Section 4.3. TCP pro-
vides reliable, in-order delivery of packets while UDP does not.

Both UDP and TCP have checksums that are used to detect any errors that occur
during transmission. Such an error is called a "bit error" and occurs when at least
one bit has changed value during the transmission. If a TCP packet is found to be
faulty, it will be retransmitted until it is correctly received. By default, a faulty
packet is simply discarded by UDP. On IPv4, the fourth version of IP, the UDP
checksum is optional and if disabled even faulty packets are accepted (Postel, 1980).

2.5.1 TCP
A core mechanic in TCP is automatic retransmission. The receiver sends acknowl-
edgments (ACK) for any correctly received packet, and the sender retransmits un-
acknowledged packets after a certain period called Retransmission Timeout (RTO).
RTO is based on the estimated Round Trip Time (RTT), which is the time it takes
for the sender to receive an acknowledgment from the receiver after transmitting a
packet. TCP continually estimates the RTT in order to adapt to any changes in the
network conditions (Goralski, 2017, Ch. 12).

TCP also provides flow control and congestion control algorithms to avoid overflow-
ing buffers, which otherwise would result in packet loss. Flow control adjusts the
rate of the data transmission by having the recipient continually adjusting a limit
on the amount of data it can receive, and the sender never exceeding this limit
(Goralski, 2017, Ch. 12).

Network congestion occurs when excessive data is sent over a network channel. The
congestion control algorithm is designed to use as much of the available bandwidth
as possible while sharing it fairly with other users (Goralski, 2017, Ch. 12). The
algorithm assumes that every packet loss is caused by congestion. Therefore, if a
packet has exceeded the RTO unacknowledged, the data transmission rate is lowered.

When a TCP connection is established, a process known as handshake is initiated.
The client sends a synchronize (SYN) packet to the server containing a sequence
number x. The server responds with a SYN-ACK packet containing a sequence
number y and an acknowledgment of x. Finally, the client responds with an ac-
knowledgment of y (Kurose & Ross, 2012, Ch. 3.5.6).

Because of its in-order delivery guarantee and congestion control, TCP is suitable
when reliability and fair sharing of the bandwidth between multiple parties is more
important than a timely delivery of data. For example, when a packet is lost during
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transmission, no subsequent packets can be delivered until the lost packet has been
successfully retransmitted, incurring a delay (Kurose & Ross, 2012, Ch. 3.5.4).

2.5.2 UDP
UDP is a simple protocol, with a tiny overhead: the headers are just 8 bytes, as
opposed to TCP at typically 20 bytes. The only services provided by UDP are in-
formation about the sender port, destination port, and a checksum (Postel, 1980).
The absence of services presents many opportunities for customization, and make
UDP suitable as a basis for the development of alternative protocols.

UDP does not provide correct ordering of packets or guarantee that they are suc-
cessfully delivered. This makes it less vulnerable to connection errors and network
congestion. Therefore, UDP is often preferable to TCP in, for example, Internet
phone services, where some slightly broken speech is preferred over pausing and
waiting for correct delivery of the audio (Cowley, 2013, pp. 81-109).

2.6 Encryption
Encryption can be used to ensure the confidentiality of data sent over an inse-
cure communication channel, ensuring that the data is viewable only to the sender
and the intended receiver (Menezes, Oorschot, & Vanstone, 2001, Ch. 1). This is
achieved by encoding the data using a secret value s1, usually called a key, in such
a way that only someone who has a certain secret value s2 can decode it to get the
original data. Encryption schemes are generally divided into two types: symmetric
encryption where s1 = s2, and asymmetric encryption where s1 6= s2.

Asymmetric encryption requires more processing power, and therefore symmetric
encryption is generally used to encrypt any larger amounts of data. Asymmetric
encryption is often used to first establish the key used in symmetric encryption so
that the data can then be sent using symmetric encryption. Both symmetric and
asymmetric encryption are used in the prototype. Asymmetric encryption is used
to generate a shared key between the server and client, and symmetric encryption
is used to encrypt the data (see 4.5 and 5.5).

The most common type of symmetric encryption schemes is block ciphers (Menezes
et al., 2001, Ch. 7). They encrypt blocks of data of a specific size (usually 16-32
bytes large depending on the scheme). The block ciphers themselves only define
how to encrypt and decrypt single blocks, but complete messages are often longer
than one block. There are therefore different block cipher modes of operation that
defines how to encrypt messages spanning several blocks.

When decrypting, a single bit change in the encrypted data may propagate, affecting
a large number of bits in the decrypted data. Therefore, a single bit error during
communication affects the whole block (and, depending on the block cipher mode
used, could also affect subsequent blocks). A common mode of operation that avoids
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bit error propagation is Counter mode and this is the mode chosen for the prototype
(see 4.5).

Counter mode uses the block encryption algorithm as a pseudo-random number
generator (PRG) that, with the secret key and a counter as parameters, generate
a block of pseudo-random bits (Menezes et al., 2001, pp. 232-233). These bits
are then bitwise XOR-ed with the block that is to be encrypted. Decryption is
performed by the receiver generating the same pseudo-random block and XOR-ing
it with the encrypted data. Since the XOR is performed per bit, a single bit error
during transmission only results in a bit error at the same position in the decrypted
data. Counter Mode essentially uses the block encryption algorithm as part of a
stream cipher.

2.7 Data Integrity
Encryption provides protection against passive attackers, who can only view the
transmitted data. However, it does not protect against active attackers, who can
also modify data in transmission (Menezes et al., 2001, Ch. 1). Ensuring data in-
tegrity protects against such unauthorized modifications.

To provide data integrity when using symmetric ciphers, a Message Authentication
Code (MAC) is commonly used (Menezes et al., 2001, Ch. 9). The MAC is a func-
tion of the message and a shared key and is transmitted along with the message.
The receiver, knowing the shared key, produces a MAC of the received message. If
the MACs are not equal, either the message or the transmitted MAC must have
been modified during transmission.

Active attacks are particularly effective against block cipher modes that do not
propagate bit errors (for example counter mode) if data integrity is not ensured.
Without data integrity, an attack on a cipher working in counter mode can target
and modify specific bits, whereas controlled modifications of the decrypted data are
much more difficult when single bit modifications get propagated to many bits in
unpredictable ways. It proved difficult to ensure data integrity in the prototype,
leaving the protocol vulnerable to active attacks (see 4.5).

2.8 Communication Satellites
Communication satellites communicate with the earth using radio waves of different
frequencies and wavelengths, depending on the use case. Satellites can be positioned
at different altitudes, which result in different advantages and disadvantages.

2.8.1 Types of Satellite Orbits
Satellites in Geosynchronous Equatorial Orbit (GEO) operate at an altitude of about
36 000 km above the equator and have their orbital speed synchronized with the
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Earth’s rotation. Because of this, the satellite appears to be fixed in the sky, and
this type of orbit is also known as geostationary. Due to the long distance to the
earth and the constraint of the speed of light, communication with GEO-satellites
have one-way delays of around half a second, with a total response time of about
1.5 seconds (Kruse, 1995).

Satellites in Low Earth Orbit, often shortened as LEO, are positioned at much lower
altitudes with lower latency as a result (Sturza, 1995). The orbits are at different
altitudes, but the response time of a typical LEO-satellite is usually around 40 mil-
liseconds. Since they are not in the geostationary orbit, they need to move around
the globe at high velocity to stay in orbit.

A single GEO-satellite can cover one-third of the earth, while the LEO-satellites
only covers a small part each. As shown in Figure 2.3, the Iridium Constellation,
consisting of LEO satellites, requires 66 satellites to cover the entire earth. (Mellow,
2004). Another difference is that satellite networks in GEO often have a higher
bandwidth than their LEO counterparts.

2.8.2 The Iridium Network
Iridium is a commercial satellite provider for voice and data that covers the entire
globe by its satellite constellation. The users of the network range from military
and disaster recovery teams to journalists and sailors. The current generation of
the Iridium network was planned in the late eighties and designed for voice calling,
which explains the slow bandwidth of 2.4 kbit/s. By the time it was deployed in
1998, the bandwidth was already many times slower than an average wired dial-up
connection (Mellow, 2004).

Figure 2.3: Iridium network coverage (GrandDeluxe@Wikipedia, 2011)

The LEO-satellite constellation used by Iridium uses 66 active satellites, distributed
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in 6 orbital planes. As seen in Figure 2.3, the satellites overlap slightly to cover
the entire earth at any given time. The satellites operate at around 781 km, travel
at speeds of 27,000 km/h, and communicates with each other using inter-satellite
cross-links. The cross-link communication occurs both within the same orbital plane
and to nearby satellites in the neighboring planes (Weintrit, 2011, p. 199).

The cross-links are necessary to handle the hand-off to another satellite when the cur-
rently connected satellite is about to move out of the user’s field of view. (Geoborders
Satellite Ltd, 2012). Due to the high velocity, such a hand-off happens regularly; a
satellite only stays in view for seven minutes at the equator. If successful, the hand-
off is only noticeable as a delay of 1/4 second, however, if no nearby satellite exists
or if the signal is interrupted by an obstacle, the connection is dropped (Voyage
Adviser, 2015).

Due to the satellite cross-links, the Iridium network works even if the nearby satellite
does not have immediate access to a ground station. (Geoborders Satellite Ltd,
2012). In the absence of an available ground station, the signal is simply relayed
through the constellation until it reaches a satellite close enough to one. According
to an experiment performed by the US Navy (McMahon & Rathburn, 2005), the
average total RTT for a packet sent over the Iridium satellite constellation is 1700
milliseconds, and the mode total RTT is about 1350 milliseconds. This is remarkably
high for a LEO network.
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To investigate the possibility of reducing the size of a web page enough to enable
effective web browsing on an extremely low bandwidth connection, a prototype was
developed. The prototype consists of a client in the form of a web browser and
a performance enhancing proxy server. The client accesses the web via the proxy
server, which loads the entire requested web page and provides a reduced version
back to the client in a stream. The stream allows the client to display the web page
as packets arrive, without having to wait for the complete set before presenting it.

The goals of the prototype were to not only be functional, but also reliable, robust
and easy to use for the average user. To achieve reliability and robustness, the client
had to be able to handle faults during transmission, such as bit errors and temporary
connection losses.

For ease of use, the prototype had to be easy to install and run on the common
desktop operating systems Windows, Mac OS, and Linux. The need for manual
configuration was desired to be minimal. The client interface also had to be intu-
itive so that no instructions or tutorial would be needed.

The development of the prototype was divided into three separate parts: the browser
client, the proxy server, and the communication protocol. The protocol defines how
the client and server communicate with each other. Once the protocol was defined,
the client and server were planned to be developed in a fairly independent manner.
For the implementation, JavaScript was chosen, primarily to allow for the client and
the server to be written in the same language, but also so that certain code could
be used by both, such as the implementations of compression and encryption.

3.1 Browser Client
A browser client desktop application was implemented using Electron, a framework
for using web technology such as JavaScript, HTML, and CSS to develop cross-
platform desktop applications. Electron is used by several successful projects, such
as Atom and Discord. It was due to these reasons as well as personal preference
Electron was used.

As the content, extracted from the proxy server described in 3.2, only consists of
plain text and links, the client was implemented to be able to display content in a
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readable and user-friendly manner. To navigate, the user may enter a specific URL
in the browser as well as click the links on the web pages displayed. The client
also supports basic web searching, using Google, as well as basic history navigation,
such as going back to a previous page. In the beginning, there was also a plan to
implement support for general forms, but the feature wasn’t prioritized and did not
make it into the final prototype.

The resulting prototype is able to be distributed as a standalone desktop applica-
tion for Windows, Linux and Mac OS. Most computers use one of these operating
systems, making this application readily available for most users. No corresponding
phone application was developed.

3.2 Proxy Server
A proxy server was developed using Node.js, which is a JavaScript runtime for using
the JavaScript language in a server environment, i.e. outside the web browser. The
language is well suited for handling web pages, such as modifying the DOM-tree. As
the proxy server operates on a high bandwidth connection it can load the full web
pages, as requested by the browser client, and utilize content extraction techniques
to return only the relevant content to the client. To limit the size of the packets and
for simplicity, the content is sent as plain text to the client.

3.3 Network Protocol
A custom network protocol was developed that keeps the communication between
client and proxy server at a minimum and can handle the connections typical faults.
The protocol had to be able to tolerate bit errors in the page content in such a
way that the content is still intelligible in most cases. In case it is not intelligible,
it should be possible to retransmit it when requested, either by the user or by an
algorithm. It should also allow that content arrives out of order, so it can be shown
to the user as soon as possible.

Apart from fault tolerance, a goal was also to have the protocol handle sudden
disconnects smoothly. This goal was necessary to be able to provide the user with
the possibility to resume communications directly, without the need for any new
protocol handshakes.

3.4 Testing
After each big iteration, the solution was tested using an Iridium GO! satellite In-
ternet device to see that it was working in practice as well as with the simulator.
At the end of the project, a final field test was performed using the Iridium GO!
device. The purpose of the field test was to evaluate how well the resulting solution
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performs compared to the alternative browser solutions.

It was discovered that Iridium GO! did not let packets containing bit errors through
to the application. Thus, to test the performance of the prototype when subjected
to bit errors a simple simulator was developed. Apart from simulating bit errors,
it also simulates packet loss, temporary connection losses, limited bandwidth, and
packet delay, to ensure that the prototype can handle all these faults.

The browsers that were compared to the prototype were XWeb and ELinks via
SSH. XWeb by Global Marine Networks is a commercially available web browser
intended for satellite Internet. The text web browser ELinks was run remotely on a
high bandwidth server and controlled and viewed via SSH. Since the remote access
protocol SSH only transmits the currently visible part of the loaded page, similar
to how the prototype streams part by part, the goal was to provide a slightly more
comparable alternative in terms of time required to see the first part of the content.

Each browser was used to load four different web pages while measuring the total
transferred data (if possible), the time until the first content was displayed, and the
time until the page was fully loaded. The measurements were done manually using
a stopwatch since the time it would take to fully load a page usually would be in
the order of minutes. The following pages were tested:

1. A link archive page (Aftonbladet) http://aftonbladet.se
2. An article page (Wikipedia) http://en.wikipedia.org/wiki/Sweden
3. A company page (Iridium) http://iridium.com
4. A small page (Example) http://example.com

The web pages were considered representative of common types of web pages that ex-
ist. Since content extraction was part of the problem, it was important to test pages
with varying amount of media, text, and links. News front pages, here denoted "link
archive pages", primarily consist of photos, links, and shorter paragraphs of text.
Article pages, such as news or wiki articles, consist of longer text and may include
additional figures such as media and tables. Company pages are often lightweight in
terms of text but may contain media such as photos and videos. Apart from these
commonly visited page types, a small page was included to enable testing in case
the ordinary page types were too large for the browsers to load.
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4
Evaluation of Technical Solutions

Several possible solutions to each of the five subproblems; content extraction, web
searching and forms, network protocol, compression, and encryption, were evaluated.
In some cases, existing technologies could be used as part of the solutions, while in
other cases a new approach was necessary. This chapter summarizes the key findings
of the evaluation and presents the resulting design of the technical solutions.

4.1 Content Extraction
To minimize the amount of data sent to the client, content extraction can be per-
formed on a proxy server, as presented in 3.2. By removing all irrelevant data from
a web page and picking out the relevant content, no unnecessary information is sent
to the client. Several techniques for delivering only relevant content are available,
but most focus on removing clutter like pop up ads or images to simply make a web
page easier and faster to read (Rahman & Hartono, 2001) (Gupta, Kaiser, Neistadt,
& Grimm, 2003). This differs from the goal of reducing the web page in terms of
bytes. However, since these algorithms by removing clutter also reduce the size of
a web page, the same techniques can be used in this project. The most common
example of this type of content extraction is the different versions of Reader Modes,
as discussed in 4.1.1, available in most modern browsers.

Another approach to content extraction is to evaluate each HTML-element and try
to decide if it is part of the content or irrelevant data based on a number of criteria.
This approach was attempted in the prototype but with unsatisfying results. An-
other way to achieve content extraction could be using algorithms utilizing machine
learning (Chau & Chen, 2008) (Yunis, 2016). Due to the complexity of machine
learning, this was not evaluated further. Text-based web browsers like w3m and
ELinks can also be used to remove unnecessary information since they convert the
HTML into plain text, thus removing multimedia and HTML overhead, while still
trying to display the web page’s intended structure.

4.1.1 Reader Mode
The reader mode provided in many browsers removes clutter from an article when
used, showing only the actual text and images related to the article. Safari, Mi-
crosoft Edge, and Mozilla Firefox all provide this feature (Microsoft Corporation,
n.d.) (Apple Inc., n.d.) (Mozilla Corporation, n.d.). Out of these only Firefox uses
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an open source library for their content extraction, called Readability.

The Readability algorithm uses a scoring system that identifies the primary text
content of a web page (Mozilla Organization, 2010). For example, HTML elements
such as "article" and "post" are given a positive score, while "comment" and "footer"
are given a negative score. The algorithm finally selects the element with the high-
est score, but also requires that the content consists of more than 500 characters
in order to provide any result at all (Mozilla Organization, 2010). Hence, the algo-
rithm turned out to work well on articles, but not on pages that consist of several
shorter pieces of text. For example, a website’s main page consisting of multiple
links leading to other content.

Since Readability works well for articles but not general web pages, an option is to
use Readability in cases where the content is an article. Long texts can be extracted
into a well-structured format, removing everything except the actual content while
still allowing regular web browsing using another method. Although Readability
was found to be unsuitable as a general solution, and thus not implemented in the
prototype, the same approach used to extract an article can be used to extract other
content as well.

4.1.2 Content Scoring
Based on the Mozilla Readability library a custom algorithm was developed. By cre-
ating a DOM-tree of the specified web page’s HTML and traversing it using depth-
first search the nodes were scored based on a number of different criteria. Some of
these include link density, text length, how high up in the hierarchy a specific node is
and the score of the node’s children. Based on the content of a node three things can
happen: the node and its children are removed, the score of the node is increased,
or the score of the node is decreased. After evaluating every criterion the node’s
score is compared to a predefined threshold, and if the score is below that threshold
it is removed. After evaluating the entire DOM-tree the HTML is rendered into text.

The algorithm was able to reduce web pages to a level where the content could be
transferred over low bandwidth in a reasonable time. However, without a proper
HTML-renderer, the content was not formatted particularly well, especially for lists
and tables.

4.1.3 Text-Based Web Browsers
To maintain the structure of a web page after converting HTML into plain text the
text-based web browsers w3m and ELinks were evaluated. Text-based web browsers
can be used when a graphical user interface is unavailable or when rendering a web
page quickly is preferred over visual style. Both w3m and ELinks support a headless
mode that reads an HTML file or URL and outputs the content as plain text, as
opposed to running them interactively (Ito, n.d.) (Elinks, 2012).
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A problem with rendering HTML into plain text using these browsers is that there
are no clickable links. Instead, both w3m and ELinks print all links at the bottom
of the text output. The w3m browser was initially chosen and modified to provide
a separate list of links as well as their start and stop character positions. The links
and their text indexes were then used to add the links back to the text. However, an
issue occurred due to what seemed to be a mismatch between character encoding in
w3m and the Node.js content extraction code, which caused the character positions
to be slightly off in many situations. By performing equivalent changes to ELinks
the same result was achieved without these mismatches.

Another positive effect of using text-based web browsers is that they reduce the size
of a web page significantly on their own. Even to the degree that the resulting con-
tent can be transferred over low bandwidth within a reasonable time. Running the
algorithm mentioned in 4.1.2 before rendering the HTML using ELinks was tested,
but the difference in page size between that and only running ELinks was in most
cases negligible.

Figure 4.1: The text-based web browser ELinks

19



4. Evaluation of Technical Solutions

4.1.4 Link Extraction
Links between web pages are an integral part of the web, and on a regular web
page, there can be thousands of links. By removing the links and only storing an
ID corresponding to each link, the size of a web page is reduced significantly. The
links are stored on the server, and when the client requests an ID the corresponding
web page is loaded.

Since the actual link never reaches the client, the user will not know the link desti-
nation before clicking it. This might be a problem for some users, but the impact
was considered small. Because of the large reduction in size and low user impact,
link extraction was considered viable for the prototype.

4.2 Web Searching and Forms
Optimally, full forms should be supported by a web browser to enable features such
as searching, payments, and registration. The arguably most elementary use case
for forms is to be able to use search engines. Hence, a specific solution to basic
searching was prioritized, before evaluating general form support.

4.2.1 Web Searching
To perform a search query on Google one would normally fill in the search field and
press submit. This is not possible when the extracted content only contains plain
text and not any HTML elements since the search field will be removed as well.
Instead, one could utilize the fact that the Google search result page is accessible
via a URL that contains the search query. Hence, by navigating directly to the
Google search result URL, such as google.com/search?q=example a search query
can be performed despite the lack of general HTML form support. By letting the
browser client provide a search field that constructs and requests the URL of the
search a user is able to perform searches without support for general forms.

4.2.2 General Forms Support
Support for general forms was evaluated but determined to be of low priority and
was thus never implemented. However, it was concluded that to enable general
forms only a few functions are required.

Since ELinks remove form information while rendering HTML as plain text, ELinks
would have to be modified to output form information the same way as link informa-
tion. Forms are a bit more complex than links and contain many elements of different
types with different properties. For example, all form elements belong to a <form>,
and certain elements, such as <select>, have subelements, such as <option>. As
with links, the server should replace the names with ID:s. It should then encode
the form information into plain text, similar to how the links are encoded (see 5.3.3).
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After receiving the content, the client would have to decode the form information
and present the form to the user. Whenever the user submits a form, a request for a
URL containing the form identifier and values should be made. The server, having
saved the form information not sent to the client, could then submit the form to the
target web page.

Arguably, apart from search fields, log in and checkout forms are the most common
use cases and these also require cookies to function. Hence, to support most forms,
cookie handling would have to be implemented on the server as well. Support for
cookies is possible but was not implemented due to time constraints. The plan was
to have the server save any cookies the web page returns in the current session and
then submit them whenever a request is made to a web page for which it has cookies.

4.3 Network Protocol
Two types of data are transported between the proxy server and the client: the
content of a web page and commands to control the transmission of the content (for
example requesting a web page or aborting the transmission of a web page). The
transport layer was therefore split into two different logical channels, a data channel
and a control channel, each requiring a different set of services from the transport
layer protocol.

The content of a web page should be displayed even if it arrives out-of-order or is
corrupted during transmission. Therefore, it is not required that the protocol pro-
vides in-order delivery or that it automatically discards corrupt packets. Neither
should it try to retransmit lost packets uncontrollably since this can result in the
application halting. UDP fits these requirements if the optional discarding of cor-
rupt packets is disabled (Postel, 1980).

An ordinary UDP packet cannot hold a sequence number or similar information.
This is required to reassemble a web page in the client. A simple Data Transport
Protocol (DTP), described in Section 4.3.1, was developed to run on top of UDP
and provide this service.

The control channel should provide in-order delivery and retransmit lost or corrupted
packets. TCP is typically used for this (see 2.5.1), but it was found to be ill-suited for
a high latency, low bandwidth connection (see 4.3.2). Because of this, the alternative
protocols RUDP, ENet, and KCP were evaluated. One of them, KCP, was used in
the prototype for a time (see 4.3.3). Eventually a new protocol, Control Transport
Protocol (CTP), was developed (see 4.3.4), since none of the alternatives were found
satisfying (see Section 4.3.3).

4.3.1 Data Transport Protocol
The Data Transport Protocol transfers the content of a web page as a sequence of
packets. The content is displayed to the user at arrival and in its correct place even
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if it arrives out-of-order. To achieve this each packet contains a sequence number
that indicates where in the sequence of packets it belongs. The bits used to encode
the sequence numbers must be large enough to ensure that numbers are not reused
until a reasonable amount of time has passed.

Depending on how the sequence numbers are implemented, packets belonging to
one web page might be mistaken for packets belonging to another. For example, if
sequence numbers are reset to 0 at each page request and the user requests page B
while another page A is still being transmitted, packets in transmission belonging
to A will be assumed to belong to B and the page will be garbled.

To prevent this some way of identifying old, invalid packets is required. One solu-
tion is to transmit a page number alongside the sequence number that is changed
between each request. Another way is to assign a new set of sequence numbers to
each request. For DTP, the second alternative was chosen as it uses the limited bits
more efficiently.

The intelligibility of a web page can be impaired if the sequence number is corrupted
during transmission and a block of characters ends up in the wrong place. Therefore
an error-detecting code is required for the sequence number. If the code is invalid,
the packet is discarded.

Another error-detecting code is required for the page content of the packet. This
code is used to notify the receiver when the payload is faulty. DTP does not auto-
matically retransmit packets since this could be a bad use of the limited bandwidth;
the content might still be fully legible, or irrelevant to the user. Instead, what to
retransmit is selected by the user, or by a higher level automatic retransmitting
scheme (see Section 5.1.2).
In summary, a DTP packet consists of the following parts:

• A sequence number
• An error-detecting code for the sequence number
• The payload (web page content)
• An error-detecting code for the payload

4.3.2 Standard TCP (New Reno)
As mentioned in Section 2.5.1, one core component of standard TCP is congestion
control. Congestion control is useful when a connection is shared by several devices
or the bandwidth of a connection varies. Since an Iridium GO! connection is used by
only one device and the bandwidth is fixed, congestion control is unnecessary and
might even be detrimental since all packet loss is assumed to be a result of congestion.

Satellite links have high latency and therefore high RTT (Caini & Firrincieli, 2006).
On connections with very low bandwidth, TCP may queue up too much data, and
this might result in an even higher RTT. Packet loss in TCP always results in de-
lay, and a high RTT increases the resulting RTO which increases the delay even
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further. However, the control channel should only transmit a small amount of data
and therefore should not queue up any data under normal circumstances.

In TCP, the parameters for congestion control and RTT-algorithms are fixed. Hence
it is hard to adapt the networking protocol to work better on high latency low
bandwidth connections. The absence of options made TCP undesirable for the
application, as the efficiency could not be improved.

4.3.3 Alternatives to TCP

RUDP (Bova & Krivoruchka, 1999), KCP (skywind3000, 2018) and ENet (ENet:
Enet, 2015) all provide reliable in-order delivery. They run on top of UDP and offer
a higher degree of customization than TCP. By adjusting parameters for RTT and
congestion control for a specific connection, some of the typical issues with TCP can
be mitigated.

Available implementations of RUDP either requires heavy modification (klueska,
2014), or is in an early stage of development (shovon, 2015), and would require
much work to make viable for this project. Both ENet (Naamani, 2015) and KCP
(leenjewel, 2018) has libraries for Node.js ready for use. The ENet code base is larger
than KCP and thus harder to modify and extend. KCP was the best alternative,
but a bug was encountered in the Node.js package, where some packets were not
delivered correctly.

4.3.4 Control Transport Protocol

The Control Transport Protocol is simple and provides reliable, in-order delivery of
packets. It uses a selective repeat process to retransmit corrupt or missing packets,
sending an acknowledgment for every packet received and retransmitting packets not
acknowledged within a fixed time. Sequence numbers are used to identify packets.
An error-detecting code is used to determine if a packet is corrupt.

Sequence numbers are maintained by a sliding window. An example of a sliding
window is shown in Figure 4.2a. Here there are 8 possible sequence numbers, 0-7,
and the window has a size of 4 sequence numbers. Blue numbers correspond to
sent and acknowledged packets, orange to sent but unacknowledged, and gray to
unused sequence numbers. Only the numbers inside the window are available when
transmitting packets. At this point no numbers are available and no further packets
can be sent. In Figure 4.2b the first packet in the window is acknowledged (in
this case number 1), the window is moved forward, and a packet can be sent with
sequence number 5.
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window
... 7 0 1 2 3 4 5 6 7 0 1 ...

(a)

window
... 7 0 1 2 3 4 5 6 7 0 1 ...

(b)

Figure 4.2: Example of a sliding window

Since numbers are reused when using a sliding window, the sequence numbers can
be encoded using only a few bits, resulting in less overhead. The window should be
kept small since few packets are sent over the control channel. Also, keeping the
window small ensures that few packets are being retransmitted simultaneously so
that packets are delivered in a more timely manner. On the other hand, the window
should be kept large enough that CTP will not have to wait for acknowledgments
in normal circumstances.

In summary, a CTP packet has the following components:
• A flag indicating if the packet is an acknowledgment
• A sequence number
• The payload
• An error-detecting code for the whole packet

4.4 Compression
Compression would allow faster loading of web pages, but in the context of stream-
ing over a connection potentially prone to bit errors, a viable compression algorithm
must meet certain criteria:

1. It should support UTF-8 so that all characters used on the web can be repre-
sented.

2. It should not be sensitive to bit errors. A bit error should affect as few charac-
ters as possible when decompressed. In the end, this criterion is measured as
the resulting readability of the decompressed data and is difficult to quantify.

3. It should not require any data to be sent reliably. This excludes compression
algorithms that create a dictionary that has to be transferred correctly before
decompression can begin, which could incur long delays, especially if it has to
be retransmitted.

4. It should allow random access, i.e. it should be possible to decompress data
that arrives out-of-order so it can be shown to the user as soon as possible.

4.4.1 Common Compression Algorithms
Ordinary web servers and web browsers already make use of compression, commonly
using the Gzip algorithm (McAnlis, 2013). Gzip uses the DEFLATE compression
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algorithm, which in turn uses a combination of LZ77 (Salomon & Motta, 2010, pp.
334-339) and Huffman coding (Salomon & Motta, 2010, pp. 214-234). Because of
the properties of LZ77 and Huffman coding, Gzip cannot be directly applied in this
context.

LZ77 replaces repeated sequences of characters with references to the first occurrence
of that sequence (Salomon & Motta, 2010, pp. 334-339). This means that data can
only be decoded sequentially, breaking criterion 4. Bit errors could produce several
kinds of faults. If an original sequence is affected, that corruption will be reproduced
by all references to it. If a reference is affected, it could reference a wrong sequence,
change length, or become invalid. If a reference that is often referenced is affected,
a single bit error could affect a huge number of characters. In essence, a bit error
can be bad enough that LZ77 arguably breaks criterion 2.

Huffman coding uses a dictionary, a Huffman tree, when decompressing, breaking
criterion 3 (Salomon & Motta, 2010, pp. 214-234). The dictionary can however be
pre-computed on some representative data set, meeting criterion 3 at the cost of
a lower compression ratio. The Huffman codes are of variable length, but if care
is taken not to break them when splitting the compressed data into packets, cri-
terion 4 can be met. Bit errors can change one Huffman code into one of another
length, breaking the synchronization of the codes, and potentially rendering a whole
packet unreadable, breaking criterion 2. Resynchronizing Huffman Codes (Salomon
& Motta, 2010, pp. 190-193) would meet criterion 2 at the cost of a lower compres-
sion ratio, but its use has not been investigated further.

4.4.2 Byte Pair Encoding for UTF-8
BPE generally works by replacing the most commonly occurring pairs of bytes with
unused byte values (Salomon & Motta, 2010, pp. 424-247). Fault tolerance is
achieved, according to criterion 2; if one or more bytes are corrupted, all other bytes
can still be correctly recovered.

General BPE creates a dictionary based on the compressed data, mapping the un-
used byte values of that data to the most frequently occurring pairs. To meet
criterion 3, not requiring the reliable transmission of a dictionary, a variant of BPE
was developed. The BPE variant meets criterion 3 by using pre-computed dictio-
naries that are stored in the server and client. Thus, the BPE variant can only use
byte values that are never used in plain UTF-8 text, and meets criterion 1 by using
invalid UTF-8 sequences and ASCII control codes.

The BPE algorithms proposed by Robert & Nadarajan are designed to be used with
ASCII encoded text only (Robert & Nadarajan, 2009). ASCII uses 7 bits but en-
codes characters using a whole byte, always leaving the most significant bit 0, which
means that 128 byte values are not used in ASCII. Additionally, ASCII contains a
number of unprintable control codes (values 0-9, 11-31 and 127) that are not used
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in normal text documents. All these unused values can be used in BPE. UTF-8 is
compatible with ASCII but uses the most significant bit of the first byte to be able
to encode many more characters than ASCII. Thus, to use BPE for UTF-8, some
unused values in a UTF-8 sequence had to be found.

Table 4.1 shows the possible values of a valid UTF-8 character, where x denotes
an arbitrary value (The Unicode Consortium, 2017, pp. 125-127). Any value not
appearing in the table is invalid. Thus, the first byte of a valid UTF-8 character
will never have a value of 10xxxxxx or 11111xxx. Also, the 32 unprintable ASCII
control codes are included in UTF-8 for backward compatibility. Therefore, there
are a total of 104 unused values, of which 102 can be used to encode frequently
occurring character pairs (the last 2 being used to encode links, see Section 5.3.3).
Since there are only 102 values usable by BPE compared to the 160 values of ASCII,
compression will be slightly less efficient for UTF-8.

First byte Second byte Third byte Fourth byte
0xxxxxxx
110xxxxx 10xxxxxx
1110xxxx 10xxxxxx 10xxxxxx
11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Table 4.1: Valid UTF-8 Byte Sequences

BPE requires a dictionary mapping the available unused byte values to the most
frequently occurring character pairs. For optimal compression, a unique dictionary
should be constructed for each text document. However, as mentioned in Section
4.4, having to transfer a dictionary before decompression can begin is not an option.
Therefore, dictionaries are pre-computed using a selection of representative web
pages. The web pages are first converted from HTML to plain text using content
extraction so that any artifacts generated by the conversion (e.g. pairs of spaces)
are also compressed. Since character sequence frequencies can differ a lot between
languages, a dictionary could be created for every language to improve the compres-
sion ratio.

The BPE algorithm runs recursively, meaning that when a pair has been encoded
as a single byte, that byte can be part of another pair that is encoded as a byte.
For example, th could be encoded as the byte A, and then Ae encoded as B, so that
the whole word the is encoded as B. Since only invalid UTF-8 characters are used,
the number of recursions do not need to be known beforehand – the recursion stops
when there are no more character combinations to replace.

The algorithm is more prone to bit errors than plain text, but still quite tolerant. A
bit error in a non-compressed byte will only affect one character, however, a bit error
in a compressed byte will affect the characters that it replaced. Hence, if a bit error
occurs while transferring B, the whole word the will be affected when decompressed.
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4.5 Encryption
Under the conditions established in Section 4.3, there are two unusual criteria for a
possible encryption scheme:

1. The mode of operation should allow for random access. That is, any packet
should be decipherable without knowing any other packet, since packets may
arrive out of order.

2. Bit errors should not propagate during decryption to affect more than one bit.

Most block encryption schemes were designed without such requirements in mind.
They assume that the incoming data will be decrypted sequentially, hence not con-
sidering criterion 1. Similarly, criterion 2 was not considered as it assumes that data
integrity is ensured so that bit errors never reaches the decryption stage. Of the
four most common block cipher modes (ECB, CBC, CFB, and OFB), only a variant
of OFB, Counter Mode (Menezes et al., 2001, p. 233), fulfills both requirements
(see Section 2.6). Thus, counter mode was chosen for the prototype. It is essen-
tially a type of stream cipher that uses a block encryption algorithm as a keystream
generator. Since stream ciphers generally have low error propagation (Menezes et
al., 2001, p. 191), other stream ciphers can presumably be used instead of counter
mode. An additional benefit of using counter mode, or other stream ciphers, is that
they do not introduce any bandwidth overhead since padding is not required.

However, it seems impossible to distinguish a bit error during transmission from
an intentional modification, since the receiver can tell only that a modification has
occurred but not why it occurred. The problem of providing data integrity when
bit errors are to be tolerated was deemed to be outside of the project’s scope.
Not ensuring data integrity leaves the system open to active attacks against the
encryption scheme (see Section 2.7), but providing security against passive attacks
is better than providing security against neither passive nor active attacks.

27



4. Evaluation of Technical Solutions

28



5
Implementation of the Prototype

The prototype consists of a proxy server, a custom protocol, and a browser client.
Connections are initiated by the client transmitting an initiation packet to the server.
The server creates a new connection and responds with the connection ID. Encryp-
tion key exchange is performed at the beginning of the connection, also initiated by
the client.

When the client requests a page, the page is downloaded by the proxy server. The
server attempts to remove any unnecessary elements from the page, such as forms
and images. After this initial reduction, links are extracted and the remaining
HTML is rendered into plain text. Finally, the page is streamed to the client from
top to bottom.

The protocol suite contains two transport layer protocols used for transmission of
data. DTP (presented in 4.3.1) is unreliable, while CTP (presented in 4.3.4) is
a reliable in-order protocol. A third protocol, Connection Protocol, is used only
for connection management. Lastly, two application layer protocols are used, Data
Channel Protocol to transmit page content using DTP, and Control Channel Pro-
tocol to exchange encryption keys and control transmission using CTP.

5.1 Browser Client

The browser client was implemented as a standalone desktop application for Win-
dows, macOS, and Linux. The client was developed using Electron, which allows
access to certain operating system API:s, such as low-level networking and file sys-
tem access. As Electron uses web technology such as HTML/CSS for layout and
JavaScript for business logic, the browser client can be compiled for all three plat-
forms at once with minimal additional effort.

The JavaScript framework React was used to make dynamic modification of the
HTML elements easier, as opposed to using the standard JavaScript methods for
modifying HTML elements. Instead of plain CSS, Sass was used to provide a better
development experience. Sass is a superset of CSS that provides some additional
convenient features, such as variables.
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5.1.1 Graphical User Interface

Figure 5.1: The browser client running on Mac OS.

As seen in Figure 5.1, the resulting client is minimalist compared to modern web
browsers. The browser provides a simple navigation bar with an address field and a
stop button that allows the user to stop the current page from loading. Next to the
stop button, there are two history navigation buttons that allow the user to return
to previously visited websites. In the bottom, there is a status bar that shows the
connection status as well as information about progress and download speed.

On a low bandwidth satellite Internet connection, it is especially important that the
status of the application is clearly communicated to the user. If not communicated
properly, the user might think that there is an issue with the connection when the
application seemingly gets stuck for a period of time. Apart from the previously
mentioned status bar, some design features were implemented to make the applica-
tion appear faster and more responsive; informative loading messages and content
placeholders that indicate the length of the document.

The informative loading messages, as seen in Figure 5.2, appear when the user starts
navigating to a web address. Firstly, the client will explain that it is waiting for
the proxy server to acknowledge the navigation request. Once the acknowledgment
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(a) Waiting for communication be-
tween the client and the proxy server.

(b) Waiting for communication be-
tween the proxy server and the web-
site.

Figure 5.2: Loading messages in the browser client.

is received, the second loading message will be displayed, which explains that the
proxy server is currently downloading and processing the web page.

Once the web page has been downloaded and processed by the server, the content
is split into data packets that are sent to the client. The client is given information
about the number of packets that will be sent before the packets start arriving, and
displays an animated content placeholder for each packet that is expected to arrive.
As the packets arrive, the placeholders are replaced by the actual content.

5.1.2 Retransmission of Corrupt or Missing Data
A benefit of using placeholders is that if a packet is lost in transmission, the place-
holder will remain visible. If a packet n has not yet arrived, but the previous (n−1)
and the following (n + 1) have, the packet placeholder will indicate that the packet
is potentially lost. In that case, the user can choose to reload the lost packet by
clicking a button next to the message, as seen in Figure 5.3.

Determining if a particular packet is lost is not obvious; the server only knows
that the packet was sent, and the client only knows that it is expected to receive the
packet. Since the packets come in unpredictable order and may arrive late, the client
can only make a qualified guess on whether the packet is actually lost. A potential
problem with the decided upon solution is that, while not evident during our testing,
several consequent packets could be lost, which would cause the placeholders to
remain in a state where they are still waiting for the packets. While arguably
sufficient for a client prototype, a more robust solution would be desirable to improve
the resilience to networking issues.

Figure 5.3: The content placeholder of a potentially lost packet.
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Similarly, if any content is damaged in transmission due to bit errors, the client will
indicate that to the user. As retransmitting a packet takes time on low bandwidth,
the content is not automatically retransmitted. Instead, the user has the option to
reload the packet if the damaged content is not readable enough. As seen in Figure
5.4, the damaged content is tinted red and presented with an informative message.

Figure 5.4: An example of a damaged packet followed by a correct packet.

Apart from the manual retransmission mechanics, there is also a simple automatic
retransmission logic in place. The client will automatically request for certain pack-
ets to be retransmitted if it has not received web page content from the server for a
long time, despite being able to receive other messages from the server (For example
Ping messages, see Section 5.3.1.1). Missing packets are prioritized over corrupt
packets, but both are retransmitted automatically. This ensures that the entire web
page is loaded if given enough time.

Together, the manual and automatic retransmission mechanics cover two use cases;
the user can be active in choosing what parts of the web page are important and
should be streamed in first, or the user can be passive and simply wait until the
whole web page is loaded. Also, if there is a large number of packets missing, making
manual retransmission tedious, for example, because of a longer connection loss, the
whole page will nevertheless be downloaded in time. The retransmission mechanics
could be much improved, but they are enough to prove that the prototype works.

5.1.3 Web Searching and Forms
Similar to many desktop web browsers, one can enter search queries into the address
field, as seen in Figure 5.5. Visually, the address field will display a search icon if the
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entered text is not a URL. The browser client interprets any address field value that
does not appear to be an URL as a search query, which then requests the equivalent
Google search result URL. The detection is done by the following naive algorithm:

1. If the value does not contain any period, it is not an URL.
2. If the value contains a space, it is not an URL.
3. Otherwise, it is an URL.

Figure 5.5: The address field with a search query entered.

5.1.4 Caching
For large sites, there is a significant delay to access content that is further down the
page. As a way to combat the loading times, a caching solution was implemented.

After a page is fully loaded, the site content is saved on the user’s computer. The
next time a user requests the same site, the old content will be immediately loaded
from the cache. The user is notified that the current content is loaded from cache.
The up to date version of the site is loaded in the background as usual, and the user
is free to switch between the two modes at any time.

A major problem with the cache solution is that the cache never expires and therefore
the page might be outdated. This is mainly a problem with sites that frequently
updates, such as news sites.

5.2 Proxy Server
The proxy server was mainly developed using Node.js and is able to run on both
Linux, Windows, and macOS. For the purpose of testing, the proxy was hosted by a
virtual server in a data center in London operated by DigitalOcean running Linux.
The server is set up to be hosted privately with a low number of users. However,
it could be expanded and set up as a commercial product, hosted by one company
allowing multiple users to connect.

The server retrieves a web page when requested by the client. When retrieving the
web page over HTTP, it uses the User-Agent header field to tell the server that it
is a mobile phone in order to get the mobile version of the web page if available,
since it usually includes less irrelevant content. However, after content extraction,
the difference in size between an ordinary and a mobile web page was found to be
quite small in most cases.

The server then performs three distinct steps to reduce the content of a web page.
These are: content filtering, link extraction, and rendering, and the flow can be seen
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in Figure 5.6. This is handled by modules that are easy to add and remove, allow-
ing the extraction to be expanded relatively easily. Another possible improvement
is to allow a user to decide which steps to include, for example in situations where
bandwidth is not as limited, allowing more data to be sent.

Filter content Extract links HTML Plain textRender

Figure 5.6: Extraction flow chart

5.2.1 Content Filtering
Before rendering the HTML into plain text, elements are removed from the DOM-
tree based on their name. Three different categories are removed outright; styling
and scripts, forms, and non-textual media such as video and pictures. Each category
has a set of predefined elements which are removed and never reach the renderer,
reducing the content size beforehand.

5.2.2 Link Extraction
To reduce the content sent to the server further all links are replaced with an ID
before being rendered. The full link is saved on the server while just the ID is sent
to the client. When a user clicks on a link in the client, a request is sent to the
server for the URL that corresponds to that ID. This leads to significant reductions
in size for web pages that have a high concentration of links, allowing for faster load
times.

5.2.3 Rendering HTML
Using ELinks the size of a web page is reduced significantly while still keeping the
general structure of the original web page. A lot of information is removed, such as
images, scripting, forms, and video, but these are not included in the scope of this
project. The resulting web page is small and well structured and can be sent to the
client relatively fast.

5.3 Network Protocol
Most of the network protocol is implemented as a shared Node.js module between
the proxy server and browser client, which allowed for easy code reuse. All integers in
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the protocol are encoded in big-endian format, which means that the most significant
bytes are sent before the lesser significant bytes.

5.3.1 Transport Layer
The transport layer is split into two different protocols that run on top of UDP to
transfer data (see Section 4.3). Early testing using the Iridium GO! device made
evident that the external UDP port is given by Iridium’s Network Address Transla-
tion (NAT) would change if the Internet connection was broken for a long enough
period. A connection that must endure long connection losses can therefore not be
identified by an IP address and a port. It was also found that, if the connection
is made through a NAT gateway, the client needs to regularly send UDP packets
(keep-alive messages) to the server to keep the gateway from closing the UDP port.
Hence, a simple connection protocol (described in 5.3.1.1) was added to handle con-
nections and send keep-alive messages, as well as multiplex DTP and CTP over a
single UDP port.

A bandwidth limiter was also added to ensure that the bandwidth of the network is
never exceeded. This either averts packet loss if packets that exceed the bandwidth
are dropped or avoids increased response time if excessive packets are queued in the
network. The limiter queues packets in memory if they are expected to exceed the
bandwidth, and can be removed before being sent if requested by the application.
The limiter also has a concept of priority, so packets in the control channel have a
higher priority than packets in the data channel, and packets requested to be resent
by the user have higher priority than ordinary data packets.

5.3.1.1 Connection Protocol

The format of a message for the connection protocol is shown in Table 5.1. CRC8 is
calculated over connection ID and type. Messages with invalid CRC8 are discarded.

bit 0 1 2 3 4 5 6 7
0 connection ID
8 connection ID type
16 CRC8
24
... payload

Table 5.1: Connection protocol format

The possible connection protocol message types and their bit codes are shown in
Table 5.2. The connection ID field contains the ID of the connection the message
belongs to. The message type determines what to do with the payload, if there is
any. The payload is of variable length and is assumed to be the remainder of the
data after the header.
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00 INIT Used for establishing new connections.
01 CTRL Message for control channel.
10 DATA Message for data channel.
11 PING Used to send keep alive messages.

Table 5.2: Connection protocol message types

The payload of an INIT message is ignored. When the message is initially sent by
the client, the connection ID field is also ignored. The server creates a new connec-
tion and responds with an INIT message with the connection ID set to the ID of
the new connection.

The payload of a CTRL message should be passed to the control channel of the
connection. The payload of a DATA message should be passed to the data channel.
The payload of a PING message is ignored. Whenever the client sends a PING
message to the server, it responds with a PING to the client.

5.3.1.2 Data Transport Protocol

The format of a DTP packet is displayed in Table 5.3. Checksum is a modular sum
calculated over sequence number. CRC16 is calculated over payload. The payload
length is determined by the packet length.

bit 0 1 2 3 4 5 6 7
0
8 sequence number

16 seq. num. checksum
24
...

n-24
payload

n-16
n-8 CRC16

Table 5.3: Data Transport Protocol format

A new interval of sequence numbers is assigned to each new page to be transmitted
over DTP, to ensure that packets for different pages are not mixed up (see 4.3.1).
Even if a page is not fully transmitted, the sequence numbers are considered used.
For example, if page A is assigned sequence numbers x to y, then page B is assigned
y+1 to z. Sequence numbers are allowed to wrap back to 0, so if S is the maximal
sequence number value (inclusive), then S − 1 to 1 is an interval of 4 sequence
numbers: S − 1, S, 0 and 1. The user of DTP gets indexes (beginning at 0), that
are relative to the sequence number interval, for each payload received.
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5.3.1.3 Control Transport Protocol

The format of a CTP packet is displayed in Table 5.4. A determines whether this
packet is an acknowledgment (ACK) packet (A=1) or a data packet (A=0). u
denotes an unused bit and is ignored. CRC16 is calculated over all other fields:
sequence number, A, u, and payload. The payload length is determined by the
packet length. Whenever a data packet is received, the receiver should send an
ACK packet with the same sequence number as the data packet. Since the sequence
number is encoded using 6 bits, there are 26 = 64 sequence numbers. The window
(see 4.3.4) size is 32, which is half of the sequence numbers.

bit 0 1 2 3 4 5 6 7
0 sequence number A u
8
...

n-24
payload

n-16
n-8 CRC16

Table 5.4: Control Transport Protocol format

In the prototype implementation, the user of CTP can be notified when a packet is
acknowledged. This is used to inform the user of the application about the current
state of a request. It is also used in the automatic retransmission logic so that it
knows when the server has correctly received a Resend request and is expected to
begin transmitting data.

5.3.2 Control Channel Protocol

The Control Channel Protocol was only required to do a few things: request web
pages, abort the current transmission, and retransmit specified web page content.
To enable encryption, it should also provide a way to exchange cryptographic pa-
rameters. All the message types are shown in the tables below. The first byte of
each message determines the message type. If a request has a corresponding re-
sponse message, the server always sends a response to that request.

The ExchangeKey request and response contain the cryptographic parameters public
key and nonce. These parameters are explained in 5.5.
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bit 0 1 2 3 4 5 6 7
0 0
8
...
520

public key

528
...
648

nonce

Table 5.5: ExchangeKey request

bit 0 1 2 3 4 5 6 7
0 1
8
...
520

public key

528
...
648

nonce

Table 5.6: ExchangeKey response

The RequestURL request (Table 5.7) tells the server to load a certain web page and
transmit it over the data channel to the client. The web page is identified by a URL,
the length of which is determined by the packet length. The server responds with a
RequestURL response (Table 5.8) containing: content length, the sequence numbers,
and the compression parameter. The sequence numbers, first sequence number to
and including last sequence number, are used when transferring the content in the
data channel. The compression parameter, when using the BPE compression (see
5.4), refers to the dictionary used when compressing.

bit 0 1 2 3 4 5 6 7
0 2
8
... URL

Table 5.7: RequestURL request

bit 0 1 2 3 4 5 6 7
0 3
8
16
24
32

content length

40
48
56

first seq. num.

64
72
80

last seq. num.

88 compression parameter

Table 5.8: RequestURL response

The RequestLink request (Table 5.9) and response (Table 5.10) are similar to Re-
questURL. The request includes a link (see 5.3.3), encoded using 32 bits, instead of
a URL. The response includes the URL corresponding to the link, so that it can be
shown to the user.
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bit 0 1 2 3 4 5 6 7
0 4
8
16
24
32

link number

Table 5.9: RequestLink request

bit 0 1 2 3 4 5 6 7
0 5
8
16
24
32

content length

40
48
56

first seq. num.

64
72
88

last seq. num.

88 compression parameter
96
... URL

Table 5.10: RequestLink response

The Abort request (Table 5.11) tells the server to stop transmitting content over the
data channel by removing all data channel packets queued in the limiter (see 5.3.1).
However, the web page request is not aborted, and the client can still request that
certain packets of the request be resent.

The Resend request (Table 5.12) tells the server to retransmit specific packets. The
packets are specified by a variable number of intervals of sequence numbers, for
example, a single request can ask the server to retransmit packets with sequence
numbers a-b, c-d, and e-f. The intervals are inclusive, so a request for packets a-a
will retransmit the single packet a. The number of intervals is determined by the
packet length. The sequence numbers refer to the last requested URL or link and
must be within the interval contained in the response to that request. The packets
will be sent in the order they are requested.
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bit 0 1 2 3 4 5 6 7
0 6

Table 5.11: Abort request

bit 0 1 2 3 4 5 6 7
0 7
8
16
24

first seq. num. 1

32
40
48

last seq. num. 1

56
64
72

first seq. num. 2

80
88
96

last seq. num. 2

... ...

Table 5.12: Resend request

5.3.3 Data Channel Protocol
The Data Channel Protocol is very simple, it consists only of the server transmitting
packets to the client using DTP. The server splits the data into packets of at most
288 bytes. 288 bytes was chosen since it is divisible by 32 and is transmitted in
close to 1 second over a 2.4kbit/s connection, which is a good compromise between
transfer time and overhead ratio. A packet is made up to a few bytes smaller if it
would otherwise break a multi-byte UTF-8 character or link marker.

The content of a web page is sent over the data channel as plain text encoded in
UTF-8 together with links encoded using invalid UTF-8 byte values. The process of
transforming the web page’s original hypertext into formatted plain text is described
in 4.1 and 5.2. Because it is plain text, no symbol or sequence of symbols has any
special relation to any other symbols (unlike HTML where an opening tag is related
to closing tag), so a bit error will usually affect only a single symbol. In rare cases
a bit error could produce a multi-byte UTF-8 symbol, thus affecting several symbols.

Links (see 5.2.2) are sent inline with the plain text content, and are encoded using a
"begin" and "end" marker like HTML <a> and </a> tags. A link-begin marker con-
sists of 5 bytes: fe xx xx xx xx in hexadecimal, where x denotes the link number
(in big-endian format). A link-end marker consists of a single byte: ff in hexadec-
imal. fe and ff are invalid and unused by UTF-8, so using those values avoids
conflicts with UTF-8.

5.4 Compression
The implementation of the BPE algorithm described in 4.4 consists of two parts: a
standalone script to create a dictionary from a given file, and the compression and
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decompression methods. Optimally, the file from which the dictionaries are created
should be both specific enough to provide good compression, and general enough to
achieve good compression on a large number of web pages.

For the prototype, a Swedish (see Table 5.13) and an English (see Table 5.14) dic-
tionary were created from a few Wikipedia pages. The web pages were first run
through the content extraction part so that they are in the format that is actually
transferred to the client. The script itself is quite simple: for each available unused
UTF-8 sequence (one byte each), it finds the most frequently occurring pair of char-
acters in the file. The pair is then replaced with the unused byte and the byte-pair
entry is added to the dictionary.

Swedish
https://sv.wikipedia.org/wiki/Sverige
https://sv.wikipedia.org/wiki/P%C3%A5sk
https://sv.wikipedia.org/wiki/Stockholm

Table 5.13: Web pages used for the Swedish dictionary

English
https://en.wikipedia.org/wiki/Droxford_railway_station
https://en.wikipedia.org/wiki/Ice_drilling
https://en.wikipedia.org/wiki/University_of_Washington_station

Table 5.14: Web pages used for the English dictionary

The compression and decompression methods use the dictionaries generated by the
script. The compression algorithm is not guaranteed to replace the pairs in the
exact same order as the dictionary generation script, and might not achieve the
optimal compression ratio. Instead of going through the data several times like the
dictionary generator, the compression algorithm only goes through it once, achieving
a faster runtime.

5.4.1 The Compression Algorithm
At each step, the algorithm considers the next three characters. Assuming that the
algorithm is at character b in the sequence abcd, it proceeds as follows:

1. If bc is not in the dictionary, the algorithm moves forward one character and
repeats step 1 at this position.

2. If bc was replaced before cd when generating the dictionary, bc is encoded as
B and the algorithm moves back one character (to aBd, since aB could also
be a pair in the dictionary) and goes to step 1 at this position.

3. If cd was replaced before bc when generating the dictionary, the algorithm
moves forward one character (skips b to cd) and goes to step 1 at this position.
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There are some cases in which this algorithm does not encode the pairs in the same
order as the dictionary generator, potentially producing a nonoptimal compression
ratio. For instance, consider the sequence abcd. The dictionary generator could have
encoded two pairs in the following way: abC (cd becomes C), then aB (bC becomes
B). However, the compression algorithm could compress this sequence as Acd (if
bc is not in the dictionary). Testing this on a few real web pages, the difference in
compressed size was negligible (less than 1%).

5.4.2 Run-Time Complexity
The compression algorithm can run in O(n) time. Either it moves forward (step 1
and 3) or it encodes one pair, reducing the size by 1, and moves backward 1 step
(step 2). Thus, in the worst case, it takes 2n − 2 = O(n) steps: it always moves
forward from beginning to n− 1, and, for every step forward, it can move one step
back and reduce the remaining length by 1 (so that the number of remaining steps
forward remains the same, in a sense "standing still").

The prototype implementation runs in O(n2) time since it moves all of the remaining
data back one position when encoding. Compressing the Swedish Wikipedia page
on "Sverige" of 96395 bytes takes about 350ms. This is good enough for a prototype
with only two dictionaries. However, if dictionaries for many more languages were
added, the algorithm would need to be optimized, since every web page would be
compressed once for every dictionary (see 4.4).

5.5 Encryption
At the beginning of a connection, the client exchanges cryptographic parameters
with the server, after which all further communication is encrypted. The key ex-
change follows the Elliptic-Curve Diffie-Hellman protocol (a kind of key exchange
protocol), using the NIST P-256 curve (a curve for elliptic curve cryptography, rec-
ommended by NIST). The parameters are exchanged over the control channel using
the ExchangeKey message (see 5.3.2).

Both the public key and a 16-byte nonce are sent in the key exchange. The public key
is used to calculate the shared key, while the nonce is used to initialize the counter
of the symmetric cipher. The nonce generated by each respective party itself is
used for encryption, while the one received from the other is used for decryption.
The symmetric cipher used is AES256 (a common block encryption algorithm) in
counter mode (see 4.5). Because the control channel has in-order delivery while the
data channel can receive packets out of order, the counter handling is different in
the different channels.

5.5.1 Control Channel
The control channel initializes its counters (one for encryption and another for de-
cryption) to 0 and increases the respective counter for every encrypted or decrypted
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block. So the counter value ctri, for block number i ≥ 0, has the following value:

ctri = i

The counter value is added to the nonce before use in encryption/decryption.

5.5.2 Data Channel
The data channel handles encryption/decryption slightly differently. A starting
value for the counter ctr for a specific packet is chosen based on the packet’s sequence
number seq ≥ 0 in the following way, where L is the maximum length of the data
in a packet and b is the block size of the encryption algorithm:

ctr0 = −
(

1 + dseq × L

b
e
)

This ensures that a counter value is not reused between packets in the data channel.
For each block number i of the packet, the counter is decreased:

ctri = ctri−1 − 1

Thus, the counter in the data channel is negative, which ensures that the data
channel and control channel (where the counter is positive) do not use the same
counter values.
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6
Test of the Prototype

To evaluate the performance of the proposed solution, testing was performed both in
a simulated environment and with an Iridium GO! satellite Internet device. In this
chapter, the test results from the prototype and other web browsers are presented
and analyzed.

6.1 Field test using Iridium GO!

An outdoor field test was performed using an Iridium GO! satellite Internet connec-
tion. Four different types of web pages were tested using the prototype, XWeb, and
ELinks via SSH. The averages of the test results are presented below, while the full
test data is provided in appendix A.

Due to firewall issues with the Iridium GO!, full web browsers were not possible to
test. With additional effort, this could be possible, but for the sake of comparison,
theoretical loading times were calculated. The web pages were measured both in full
size, including assets and media, and just the HTML size. The theoretical loading
times were calculated using the maximum Iridium GO! throughput of 2.4 kbit/s,
equivalent of 0.3 kB/s. Ordinary web browsers can be assumed to at best perform as
the theoretical loading times since they do not perform any additional compression.
In a real-world scenario, occasional issues such as lost packets and bit errors likely
cause the loading times of ordinary browsers to increase.

6.1.1 Total Data Transferred

The total data transferred was only reliably measured for the prototype, due to tech-
nical issues. Since the goal of this project is to achieve reasonable loading times,
the time can be considered more important than the data size. As the transferred
data is compared to both the full page size and the HTML size, this section serves
as a performance review of the content extraction solution in combination with the
compression algorithm.
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Figure 6.1: Total data transferred per page.

In Figure 6.1, the page size is compared to the total data transferred by the pro-
totype. The prototype achieves varying reduction and compression ratio depending
on the type of page, achieving a compression ratio of about 72% on average (not
including the small page). Generally, pages containing non-text media are reduced
the most compared to the full-size, which becomes evident in the results for both the
link archive, article and company page, with full size reductions of 99.4%, 97.4%,
and 99.9% respectively.

As text content is never removed, the reduction depends on how much of the HTML
is actual text content. For instance, the link archive page had a similar HTML size
(871 kB) compared to the article page (803 kB), but the former consisted of more
non-text content. As a result, the prototype proxy server was able to reduce the link
archive page greatly, resulting in 97.3% reduction from the HTML size using text
extraction alone, from 871 kB to 24 kB. The resulting 24 kB of text was then com-
pressed by about 20%, resulting in 19 kB. The article page was not reduced nearly
as much, since a larger part of it’s HTML consisted of text content, reducing only by
75.2%, from 803 kB to 199 kB, resulting in 134 kB after compression of another 32%.

6.1.2 Time to Completion

The time to completion defines the time it takes to fully load all the content for a
specific browser solution. The prototype only loads the text content, while XWeb
tries to load certain assets and images. Therefore, the resulting pages may differ
in content, but the completion times, while not necessarily comparable, are still
relevant to evaluate the user experience.
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Figure 6.2: Average completion times for the link archive page.

The link archive page is quite heavy in terms of both content, images, and assets.
With a size of 3.2 MB for the full page and 871 kB for the HTML. Therefore, as
seen in Figure 6.2, the theoretical loading times for the full page and the HTML
size are about three hours and 48 minutes respectively. Using ELinks via SSH, the
full page was accessed in about five minutes, which is nearly ten times as fast as the
theoretical HTML loading time. The XWeb browser failed to load the link archive
page entirely despite multiple attempts, while the prototype loaded the entire page
in an average of slightly less than two minutes.

Figure 6.3: Average completion times for the article page.

The article page consists of plenty of text content, which is why the prototype
completion time is about five times higher than the link archive page, despite similar
HTML sizes. As seen in Figure 6.3, the prototype loaded the full page in about
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9 minutes, while ELinks and XWeb were estimated to finish in about 22 and 23
minutes respectively. The ELinks test was canceled halfway at 11 minutes due to
time constraints. XWeb failed after 7 minutes at around 30% and did not prove
more reliable in subsequent attempts. To provide a comparison, imagining a stable
connection throughout the test, the ELinks and XWeb results were extrapolated.

Figure 6.4: Average completion times for the company page.

The company page is heavy on assets at 5 MB but relatively small in terms of text
content with an HTML size of just 56 kB, which is reflected in the results seen in
Figure 6.4. The full page has a theoretical loading time of about 5 hours, while
the HTML can be loaded in about three minutes. XWeb again proved unreliable
and never successfully loaded the page, while the prototype performed well at 17.8
seconds. ELinks via SSH did take slightly more than 3 minutes to complete, hence
performing worse than the theoretical HTML loading time.

Figure 6.5: Average completion times for the small page.
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For the smallest page, the time to completion was similar to the theoretical loading
times, as seen in Figure 6.5 above. The prototype received only 0.2 kB worth of
data in 2 seconds, while the HTML page size of 1 kB theoretically would load in
3 seconds. Evidently, the prototype reduced the page to 1/5 of the data, but only
improved loading times by 1/3. A plausible reason for this is the delay induced by
the RTT, which is not included in the theoretical time. Thus, for very small pages,
while still loading slightly faster, the prototype is similar to ordinary web browsers
in terms of loading times.

The proxy server used by the prototype does take some time to request, process and
compress the requested web page. However, the theoretical loading times do assume
a stable connection with no lost packets or bit errors, for which the ordinary web
browsers would retransmit the packets repeatedly until correct arrival, due to the
sole use of TCP in the HTTP protocol. As the prototype is designed to handle such
issues nicely, the prototype can be assumed to provide a better user experience if
the connection is unreliable.

ELinks via SSH performed very poorly at 48 seconds. Since SSH is used to remotely
control the application, every state of the remote ELinks session, including the
loading screen, will be transmitted before the content starts arriving. The XWeb
browser performed better than ELinks via SSH, but poor compared to both the
theoretical loading times and the prototype. The small page of about 1 kB was
loaded in 14 seconds, compared to the theoretical time of 4 seconds and the prototype
results of 2 seconds.
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6.1.3 Time to First Content
As the user may be able to begin reading the text content before the page has
finished loading, it is desirable to measure the time to the first content. Delivering
smaller parts of the content regularly in a streaming manner was a design goal of
the prototype, which is evident in the results.

Figure 6.6: Average time to first content for the link archive page.

For the link archive page, seen in Figure 6.6, the prototype displayed the first part
content after an average of just 15.6 seconds, while Elinks via SSH was able to show
the first part of the page after 77 seconds. The XWeb browser failed to load the
page entirely and is therefore not comparable.

Figure 6.7: Average time to first content for the article page.

As seen in Figure 6.7, the prototype was loaded the first content of the article page
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in twice the time compared to the link archive page, despite its 8% smaller HTML
size. After further investigation, the cause appeared to be the inefficient prototype
implementation of the link extraction, which for the article page needed a large part
of the initial loading time to process the nearly 3500 links of the article page, as
opposed to just about 200 for the link archive page. The XWeb browser successfully
displayed the first part of the content after 360 seconds, more than 10 times as slow
as the prototype.

Figure 6.8: Average time to first content for the company page.

The company page contains relatively little text content, with a HTML size of just
56 kB and about 150 links. Hence, as seen in Figure 6.8, the prototype was able to
process and transmit the first part of the content in just 4.5 seconds, as opposed to
the 91 seconds needed by ELinks via SSH. The XWeb browser again failed to load
the page entirely.

Figure 6.9: Average time to first content for the small page.
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As seen in Figure 6.9, the prototype achieves a loading time of 2 seconds for the
small page. The page is just 1.3 kB, which theoretically loads in about 4 seconds,
yet XWeb needed an average of 14 seconds to display the first part of the content.
All tested solutions managed to display the entire content instantly, which is the
reason why the time to first content and time to completion are the same.

ELinks via SSH differed greatly from the other solutions, requiring 48 seconds.
Generally, the time it takes for ELinks via SSH to display the first content varies
between about half a minute to one and a half minutes. The variation does not
have an obvious correlation to the type of content or size of the page, as the small
page of just about 1 kB displayed in 48 seconds while the article page of 803 kB
needed just 37 seconds. Assumedly, as the ELinks application is displayed from a
remote server, the time required to send the visible part of the page (as seen by the
ELinks browser without scrolling down) might be relatively consistent despite the
page length.

6.1.4 Perceived User Experience

ELinks via SSH sometimes provided a reasonable alternative in terms of loading
times. Since it only transmits the visible parts of the screen, it does allow the user
to view the page faster than the page can be downloaded in full. However, the user
experience is arguably quite bad, as user input such as entering the web address or
scrolling down is very unresponsive. As the actions are performed via SSH, each
keystroke of the user input, such as the web address, is sent individually to the
server. The perceived performance of typing the address into ELinks via SSH is
therefore arguably bad. During testing, delays of several seconds were occasionally
observed, from keystroke until the character becomes visible.

The XWeb browser did not perform well, despite being a commercial solution specif-
ically built for satellite Internet services such as Iridium GO!. While seemingly pro-
viding a robust and responsive user interface that is similar to those of ordinary web
browsers, XWeb proved unreliable and failed to load the requested pages multiple
times, resulting in a bad user experience.

The prototype proved reliable and responsive during the field test, despite a few lost
packets per attempt, and an event where the connection was lost for a few seconds.
When a packet was lost, the prototype continued to stream all the other content,
while providing the user with an option to manually resend the lost packet. The
prototype did successfully resend the packets automatically, after completing loading
the rest of the page. Arguably, the prototype provided a good user experience which
feels responsive due to the continuous stream of content. The prototype also achieved
good resilience to connection issues, compared to both XWeb and ELinks via SSH.
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6.2 Performance in a Simulated Environment
During testing, it was discovered that Iridium GO! did not let any packets with bit
errors through. Hence, in order to test the prototype’s handling of bit errors, in
terms of performance and fault tolerance, a simulator had to be used. The simula-
tor simulates packet loss, bit errors, temporary connections loss, limited bandwidth,
and packet delay. Packet and bit error rates are modeled as uniform probability
distributions, that is, each packet or bit is equally likely to be faulty. Temporary
connection loss is modeled as a Markov chain with two states, updated each mil-
lisecond. The bandwidth and delay are fixed.

The simulator settings for this test are shown in Table 6.1. The Bit Error Rate is
very high at 1

1000 ; if data packets are 288 ∗ 8 = 2304 bits (see 5.3), a data packet

contains approximately 2.3 bit errors on average, and only
(

1− 1
1000

)288×8
≈ 1

10
packets will be error free on average.

Packet Error Rate 0.05
Bit Error Rate 0.001
Bandwidth 2400 bits/s
Average up time 120 seconds
Average down time 30 seconds
Delay 2 seconds

Table 6.1: Simulator test settings

The result of the test is shown in Table 6.2. Only automatic retransmission, no
manual retransmission, was used (see 5.1.2). When the connection is temporarily
lost, all packets are dropped. They are automatically retransmitted once the server
is finished transmitting all packets. Because of the relatively high packet error rate
and connection losses, multiple sequential packets were often lost, which could not
be resent using manual retransmission even if the user wished. A more sophisticated
manual retransmission process would solve this problem.

Web page https://en.wikipedia.org/wiki/Sweden
Time to first content 29s
Time to 100% loaded 16m 35s
Time to 100% correct aborted after 1h 30m
Size 203735 bytes
Compressed size 137787 bytes (67.6%)

Table 6.2: Simulator test result

Examples of the bit errors encountered are shown in Figure 6.10. The bit errors
are clearly noticeable. However, when read in context, the content is easily legible.
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Because of the compression, multiple characters are sometimes affected, but this is
not detrimental to the readability. However, when the content is not normal text,
bit errors could render some content incomprehensible, for example, numbers in a
table. In that case, the user will have to manually select the content to be retrans-
mitted.

Only considering bit errors, the theoretical average best time until all packets have
been loaded correctly can be approximated as a sum of stages, where in each stage
every packet that has not been transmitted correctly is (re)transmitted. This ap-
proximation does not take into account network overhead, packet losses or connec-
tion losses. It gives the following equation, where t is the time in seconds, r is the
rate of corrupt packets, s is the size of the web page in bytes, and b is the bandwidth
in bytes/s:

t =
∞∑

i=0
(1− r)i s

b

Assuming the parameters are the same as in the test, with the correct packet ratio
simplified to r = 0.1, the approximate average best loading time is:

t =
∞∑

i=0
(1− 0.1)i 203735

300 = 6791.17

Which is about 113 minutes. Thus, on connections with very high bit error rates,
the prototype’s tolerance of bit errors results in much lower loading times (16m 35s)
than would otherwise be possible, while still maintaining quite high readability of
the content.
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Figure 6.10: Examples of bit errors
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7
Discussion

In this chapter, the viability of basic web surfing using the developed prototype is
discussed, based on the data presented in Chapter 6. The importance of each of the
five subproblems (content extraction, web searching, network protocol, compression,
and encryption) for these results are also discussed. Suggestions for future work that
could further improve web surfing on very low bandwidth connections are presented.
Lastly, ethical aspects are discussed.

7.1 Field Test
The testing of the prototype indicates that it is possible to browse basic web pages
within a reasonable time (see Chapter 6). The low bandwidth connection does limit
the amount of data that can be transmitted, and it is therefore practically impossible
to transmit large multimedia over such a connection. However, the arguably most
important type of data is handled by the prototype, namely the textual content.
The streaming nature of the prototype should alleviate the long waiting times when
loading a web page, allowing the user to start reading in a few seconds (see 6.1.3).
This result was expected, since the bandwidth is high enough to transmit text faster
than it can be read, which, in absence of unexpected obstacles, is all that is required
to enable basic web surfing.

The delay before the first content was shown was quite high for some web pages
(see 6.1.3). The bottleneck was identified as an external DOM package (jsdom)
used when exchanging the links’ URL:s with ID:s. Suggestions for removing this
bottleneck, and other ways of improving the response time, are presented in 7.3.

The delay from RTT in the field test was estimated to be around 1.5 seconds, which
is consistent with the usual delay on Iridium (see 2.8.2). While the latency is higher
than most ordinary wired or wireless connections on land, it is a relatively short
time compared to the time of transmitting a website over a connection with very
low bandwidth.

No previous research has been found concerning web browsing on very low band-
width connections, but there are a few commercial products advertised to be op-
timized for such conditions. The main alternative, XWeb, performed much worse
than the prototype (see 6.1) despite being advertised as suitable for connections
such as Iridium GO!, even completely failing to load several of the pages. The
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assumed reason is that XWeb is too similar to a normal web browser, supporting
many of the ordinary web page features. XWeb tries to transmit most of the content
of a web page, including HTML, scripts, and multimedia, albeit more compressed
than a normal web browser would (see 1.1). Hence, it seems that compression is not
enough, and therefore an alternative solution is desirable, such as content extraction.

The field test performed in Chapter 6.1 has several drawbacks that limit the scope
of the conclusions that can be drawn from it. Only four web pages were tested,
although they were chosen under the assumption that they were typical of four
different types of web pages. Furthermore, the number of tests performed for the
different web pages and the different browsers vary. The pages and solutions were
tested a different amount of times due to their high loading times. For instance,
the article page alone was estimated to take about 22 minutes to access in full with
ELinks via SSH, making it very time consuming to test many times.

There are also other tests that could have been performed. For example in terms
of usability, robustness, and reliability, since these were all goals of the prototype
(see Chapter 3). Arguably, these aspects are requirements for basic web browsing.
However, these parts were discussed in 6.1.4 based on the authors’ experience of
using the prototype, which may be of subjective nature.

7.2 Importance of the Subproblems
Content extraction and a suitable protocol appear to be the most vital parts of en-
abling web surfing on very low bandwidth connections. By extracting only the text
of a web page, content extraction reduces page size to levels that in most cases can
be transferred over the low bandwidth connection in reasonable time. Even on an
article page that primarily consists of text, the HTML size is reduced by 1/4, and
much more on other types of web pages (see 6.1.1). This reduction also includes
compression and link encoding.

The importance of the protocol can be inferred from the difference between ELinks
via SSH and the prototype in Chapter 6, since ELinks via SSH is essentially stream-
ing content extracted in the same way as the prototype. Ignoring the problematic
user interface of ELinks via SSH, it takes considerably longer to start streaming
content and to load the whole page, compared with the prototype. This is possibly
due to SSH and TCP not being suitable for Iridium GO!. The exact reason why it
performed worse, and whether it was caused by SSH or TCP, is unclear. Likewise,
it is unclear which parts of the developed protocol provide the most benefits over
SSH and TCP.

The prototype’s tolerance for bit errors proved very important when tested in a
simulated environment (see 6.2). Any application that does not tolerate bit errors
would have much longer load times due to automatic retransmission. However, it
is uncertain if connections as fault-prone as in the simulation are commonly found.
The fault tolerance could therefore prove to be less important in real scenarios.
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Furthermore, since no bit errors were found during the Iridium GO! field test, the
prototype’s tolerance for bit error did not improve the live test results.

The BPE compression (see 4.4 and 5.4) seemed to achieve compression ratios of
up to 60% for real web pages, and an average of 72% in the field test (see 6.1.1).
Hence, while compression would reduce load times by the same ratio, the difference
is much smaller than the one achieved by the content extraction. It is, thus, not of
vital importance for enabling basic web surfing over very low bandwidth connections.

Web searching and encryption do not improve the performance as measured in
Chapter 6 in any way. Arguably, however, web searching is required for basic web
surfing. Encryption is not required for web surfing but provides confidentiality which
is important for many people.

7.3 Suggestions for Future Work
This section presents some suggestions for future work on improving web surfing on
very low bandwidth connections. These include general research with, and possible
improvement of, the prototype. Additional features should primarily be focused on
improving ease of use and loading speed.

Extended testing of the prototype should be performed. For example:
• Improve the field test already performed (see 6 and appendix A). The number

of tries for each web browser should be increased, as well as the number of
web pages tried.

• Tests should be performed in different signal conditions, to test reliability and
robustness.

• Usability testing, to find out if real users find the prototype usable for basic
web surfing, or what improvements are otherwise necessary.

• Tests regarding which parts of the developed solution that are the most im-
portant and why existing solutions perform poorly.

The context extraction can be improved. The user might not be interested in all
content of a web page, so some kind of "selective loading" would be a improvement.
A content scoring system, such as the one described in 4.1.2, could be added, to
remove irrelevant content and let the user decide what content to transfer (for ex-
ample, only the menu, or only the text of an article). A useful feature would be
to only show a sample of each type of content of a web page or a table of contents
and let the user select the interesting ones. It could also be extended to let the user
search for specific content on a web page. This line of reasoning could be extended
very far, even including an AI on the server responding to user queries, trying to
select the information the user seems to be interested in.

The web page processing time on the server can be reduced. The current bottleneck
is the jsdom package. Few of jsdom’s advanced features are used, so a first step
to improve response times would be to replace this package, for example with the
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parse5 package. This could in itself bring down the processing time to under 10
seconds. If this reduction is not enough, ways to start transmitting page content
before the whole page has been processed by the server could be investigated.

Standard features of normal web browsers could be implemented, like tabs and
bookmarks. General forms support could also be implemented, perhaps using the
solution suggested in 4.2.2. The already implemented cache could be improved, for
instance by alerting the user if the cache is outdated.

A more advanced user interface could be designed. The interface should be suitable
for the features required for the low bandwidth connection. Improvements to the
interface would be required for some of the possible improvements mentioned above.

Further research can be performed on the compression scheme used. Little research
was performed before choosing BPE, so it is quite possible that the compression
could be improved. For example, the use of Resynchronizing Huffman Codes could
be investigated (see 4.4.1).

7.4 Ethical Aspects
There are few ethical aspects to take into account for this project. The prototype
only provides faster access to the Internet, and neither censors information (disre-
garding the removal of any visuals or audio) nor saves personal data. The potential
impact is thus largely limited to the user and the owners of any web page that the
user connects to.

The service removes a lot of content before transmission to the client, including
most advertisements, thus acting as an "ad-blocker". Many web pages rely on rev-
enue from advertisements, and users of the prototype will not contribute to their
income. However, the target audience of this service is small and probably visits the
same pages when not in remote locations. Because of this, the negative economic
impact is probably negligible.

Currently, the proxy server only keeps track of links, the current page, and the
IP-address of the user during a session, and when the server is shut down, no in-
formation is kept. While the scope of this prototype is narrow and covers neither
cookies nor forms, some personal data could still be gathered. For example, only a
slight modification of the server is required to save and export the browsing history,
which could be sold to advertisers or other agents.

Since the proxy server is based in London, the solution might also be used to cir-
cumvent censorship. Users in countries like China or Iran might be able to access
sites that are unavailable when using the web services provided by their national
providers. However, it is possible that the Iridium Satellite System already provides
this service.

60



8
Conclusions

This study posed the question of whether it is possible to enable basic web browsing
on a connection with very low bandwidth and high latency, using a fault-tolerant
text streaming approach. Through the development and testing of a working pro-
totype, this was confirmed to be correct. Considerations and decisions made during
development, as well as the finished prototype, have been documented. The solution
seems to be unique, and no previous research on how to enable web browsing under
the specified conditions could be found.

The most important aspects for enabling such web browsing appear to be content
extraction and content streaming. By extracting only the textual content of a web
page, the time it takes to transfer the web page is often reduced to minutes rather
than hours. This is still a long time compared to normal web browsing, but stream-
ing the text allows the user to start reading from the top of a web page before the
whole page is loaded, usually within 30 seconds. However, the content is always
transmitted from the top of the web page, which might not be the content the user
is interested in. Future research on how to allow the user to select which parts of a
web page to transfer could lead to major improvements in this area.

Low bandwidth satellite Internet connection paired with the current web browsing
solutions do not provide a reliable web browsing experience. The prototype gen-
erally worked better than the tested existing solutions and achieved viable loading
times. However, it also has fewer features than other solutions. If the prototype is
expanded further it could be a preferable alternative to existing solutions for web
browsing on slow satellite connections.
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A
Field Test Results

This appendix presents the raw test results as gathered from the field test, where
the implemented prototype was compared to several other web browsers using an
Iridium GO! satellite Internet connection. The bandwidth was 2.4 kbit/s, which is
equal to 0.3 kB/s. The prototype was tested precisely with system time but the other
time measurements were done by manually using a stopwatch. Time varies from test
to test due to external factors such as signal strength, and that the precision of the
measurements is quite low. Therefore, the results have been rounded to integers.
However, as the numbers differ greatly from each other, the results still provide an
indication of how the solutions perform in comparison to each other. The numbers
presented are the mean value of at least one, and sometimes several, tests of the
same page.

A.1 Link Archive Page

This section presents the results from testing the front page of Swedish news website
Aftonbladet. The page consists of many images together with shorter headlines and
paragraphs.

URL https://aftonbladet.se
Full size 3200 kB
HTML size 871 kB

Table A.1: Link archive page meta data

First content (s) Completion (s) Total size (kB)
Full (theoretical) N/A 10666 3200

HTML (theoretical) N/A 2903 871
The prototype 16 105 24 (19 compressed)

ELinks via SSH 77 309 N/A
XWeb Failed 1 Failed 1 N/A

Table A.2: Link archive page results

1 The page did not load at all using XWeb.
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A.2 Article Page
This section presents the results from testing the English Wikipedia page for "Swe-
den". The article is quite long and consists of many thousands of words.

URL http://en.wikipedia.org/wiki/Sweden
Full size 5100 kB
HTML size 803 kB

Table A.3: Article page meta data

First content (s) Completion (s) Total size (kB)
Full (theoretical) N/A 17000 5100

HTML (theoretical) N/A 2676 803
The prototype 31 545 199 (134 compressed)

ELinks via SSH 37 1360 1 N/A
XWeb 360 2 3 failed 4 N/A

Table A.4: Article page results

1 The test was canceled after 680 seconds, at around 50%, due to time constraints.
The full completion time for ELinks over SSH was estimated to be around 1360
seconds.

2 This does not include the time taken to establish an initial connection through the
Iridium Mail & Web app. This typically took multiple minutes.

3 Only 2 out of 15 trials showed any content, one after 300 seconds, one after 420
seconds.

4 The most successful request loaded around 30% of the content loaded. The full
completion time for XWeb can be estimated to be around 1400 seconds.

A.3 Company Page
This section presents the results from testing the front page of the Iridium company
website. The website consists of several photos and a few paragraphs of text.

URL https://iridium.com
Full size 5000 kB
HTML size 56 kB

Table A.5: Company page meta data
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First content (s) Completion (s) Total size (kB)
Full (theoretical) N/A 16666 5000

HTML (theoretical) N/A 187 56
The prototype 5 18 5.4 (3.8 compressed)

ELinks via SSH 91 195 N/A
XWeb failed 1 failed 1 N/A

Table A.6: Company page results

1 The page did not load at all using XWeb.

A.4 Small Page
This section presents the results from testing example.com, which is a very small
web page consisting of only a few sentences.

URL http://example.com
Full size 1.3 kB
HTML size 1.0 kB

Table A.7: Small page meta data

First content (s) Completion (s) Total size (kB)
Full (theoretical) N/A 4 1.3

HTML (theoretical) N/A 3 1.0
The prototype 2 2 0.2 (0.1 compressed)

ELinks via SSH 48 48 N/A
XWeb 13 1 14 1 N/A 2

Table A.8: Small page results

1 This does not include the time taken to establish an initial connection through the
Iridium Mail & Web app. This typically took multiple minutes.

2 Too much variability to get conclusive data. Data varied from 2-17 kB per request,
and to establish a connection through the Iridium Mail & Web app typically 50-100
kB was used.
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