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Building Performance Design  
ANNA KAROLINA SABAT 
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Steel and Timber Structures  
Chalmers University of Technology 

 

ABSTRACT 

The focus of this Master’s thesis project has been on a stability problem in steel 
structures. The problem of lateral-torsional buckling of steel frames, consisted of 
tapered members with plane and corrugated webs, has been investigated.  

A literature review has been undertaken focusing on lateral-torsional buckling 
analysis of prismatic and non-prismatic beams of I-profiles with corrugated webs. The 
most recent available calculation models have been investigated and discussed. This 
Master’s thesis project has also investigated the stability problem of columns in 
compression as well as simply supported beams under uniform bending. Load-
displacement response has been investigated by performing several finite element 
analyses in ABAQUS. The obtained results have been compared to hand calculations 
based on Eurocode3 and the Polish Code PN-90/B-00320. In addition, parametric 
studies have been conducted using available calculation models for obtaining the 
elastic critical moment for I-beams with corrugated webs. Finally, the comparison 
between buckling behaviour of the frames with plane webs and the frames with 
corrugated webs has been made. In order to make such comparison several linear and 
non-linear finite element analyses have been carried out using the computer program 
ABAQUS.  

The analyses have given the general result that the frame with corrugated webs and 
the frame with plane webs with vertical stiffeners have similar lateral-torsional 
buckling resistance. However, the behaviour of the frames differs to some extent. The 
results from the case study have shown that the out-of-plane deflection for the frame 
with plane webs has been higher than for the frame with corrugated webs. Further on, 
it has been found that, for the analysed frame geometry, the distance between the 
purlins does not affect the buckling capacity of analysed frames. However, it is 
important to keep in mind that all analyses have been performed only for one type of 
frame geometry and one load combination. In addition, one value of initial 
imperfections has been applied and one material type has been taken into 
consideration. That is why further investigation should be carried out for various 
frame geometries, loads combinations and initial imperfections.  

Key words: Lateral-torsional buckling, Stability problem, Steel frames, Trapezoidally 
corrugated webs, Tapered Beams, Finite Element Analysis,   
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Analiza problemu zwichrzenia na przykladzie ram stalowych zbudowanych z profili o 
zmiennym przekroju oraz o srodniku z blachy falistej  
Praca Magisterska, Katedra Konstrukcji Stalowych  
ANNA KAROLINA SABAT 
Wydzial Inzynierii Ladowej i Srodowiska 
Budownictwo 
Konstrucjie Stalowe  
Politechnika Gdanska 

 

STRESZCZENIE 

Celem ninejszej Pracy Magisterskiej jest analiza problemu stabilnosci konstrukcji 
stalowych. Zagadnienie zwichrzenia stalowych ram zlozonych z elementow o 
zmiennym przekroju oraz o srodnikach z blachy trapzowej i plaskiej zostalo 
przeanalizowane. 

Zostal rowniez przeprowadzony przeglad literatury dotyczacej zwichrzenia zarowno 
profili I o zmiennym przekroju jak rowniez profili I o srodnikach z blachy trapezowej. 
W tej Pracy Magisterskiej przeanalizowano rowniez problem stabilnosci osiowo 
sciskanych slupow oraz wolnopodpartych belek rownomiernie zginanych. Wykresy 
sily do przemieszczenia zostaly przeanalizowane przez przeprowadzenie serii Analiz 
wykorzystujacych metode elementow skonczonych przy uzyciu programu ABAQUS. 
Otrzymane wyniki zostaly porownane z recznymi obliczeniami przeprowadzonymi na 
podstawie Eurokodu3 oraz Polskeij Normy PN-90/B00320. Co wiecej, najnowsze 
dostepne procedury pozwalajace na obliczenie elastycznego momentu krytycznego 
dla profili I o srodniku z blachy  trapezowej zostaly przedstawione. Ostatecznie, 
porownany zostal sposob wyboczenia ramy stalowej z plaskimi srodnikami oraz ram 
stalowej ze srodnikami z blachy trapezowej. Do tego celu seria liniowych oraz 
nieliniowych analiz wykorzystujacych Matode Elementow Skoczonych zostala 
przeprowadzona w programie ABAQUS. 

Ogolnie zaobserwowano, ze zarowno rama z plaskimi srodnikami jak i rama ze 
srodnikami z blachy trapezowej zachowuja sie z sposob podobny pod zwgledem 
stabilnosci. Mimo to, do pewnego stopnia ich zachowanie sie rozni. Zauazono ze 
ramy z plaskimi srodnikami doznaja wiekszych odksztalcen z plaszczyzny dzialania 
sily niz ramy ze srodnikamia z balchy trapezowej. Idac dalej, stwierdzono, ze dla 
badanej ramy rozstaw platew nie odgrywa wiekszego znaczenia na stabilosc calej 
konstrukcji. Nalezy jednak pamietac, ze w przedstawionej analizi tylko jedna 
geometria ramy i jedna kombinacja obciazej zostala uwzgledniona. Co wiecej, 
zastosowano jedna wartosc imperfekcji oraz jeden gatunek stali. Dlatego tez, dalsze 
badania biarace pod uwage rozne wymiary ram, kombinacje obciazen i imperfekcjie 
powinny byc przeprowadzone. 

 

Slowa kluczowe: Zwichrzenie, hale, ramy, problem stabilnosci, wyboczenie, 
srodnik z blachy trapezowej, przekroje o zmiennym przekroju, metoda 
elementow skonczonych,  
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Notations 
Roman upper case letters 

wC  Warping constant 
,cw coC  Warping constant of I-girder with corrugated webs 

,w FEMC  Warping constant of I-girder with corrugated webs from Finite Element 
Analysis 

,w flatC  Warping constant of I-girder with flat webs 
*
wC  Warping constant of I-girder with corrugated webs from results of Lindner 

E  Young modulus of elasticity 
G   Shear modulus of flat plates 

coG  Shear modulus of corrugated plates 
,x coI  Second moment of inertia about the strong axis (x-axis) of I-girder with 

corrugated webs 
,y coI  Second moment of inertia about the weak axis (y-axis) of I-girder with 

corrugated webs  
coJ  Pure torsional constant of I-girder with corrugated webs 

L   Member length 
crM  Elastic critical moment for lateral-torsional buckling 

,b RdN  Design buckling resistance of a compression member 

crN  Elastic critical force  

,b RdM  Design buckling resistance moment 

yW  Section modulus about weak axis 

niW  Normalized unit warping at point i of any element (i-j) 
njW  Normalized unit warping at point j of any element (i-j) 
ijL  Length of plate element (i-j) 

,ocr FEMM  Elastic lateral-torsional buckling strength of I-girder with corrugated webs 
from Finite Element Analysis 

,ocr flatM  Elastic lateral-torsional buckling strength of I-girder with flat webs  
 

ocrM  Elastic lateral-torsional buckling strength of I-girder with corrugated webs 
*
ocrM  Elastic lateral-torsional buckling strength of I-girder with corrugated webs 

from results of Lindner  
A  Cross-sectional area 

xI  Second moment of inertia about the strong axis (x-axis) of the beam´s 
cross-section 

yI  Second moment of inertia about the weak axis (y-axis) of the beam´s 
cross-section 



 

maxM  Maximum bending moment acting on beam 
AM  Smaller end moment acting on a beam 
BM  Larger end moment acting on a beam 
1,2,3M  Absolute values of the bending moments at the quarter point, midpoint 

and three-quarter point of the beam span, respectively 
1 5M −  Values of the bending moment at different sections of the beam 

refP  Reference load 

1C   Coefficient depending on the loading and end restraint conditions 

2C   Coefficient depending on the loading and end restraint conditions 

bC   Equivalent moment factor 
J  Torsion constant 

RW  Warping restraint contribution to the girder’s resistance to lateral buckling 
I    Second moment of inertia of the investigated section 
W  Warping restraint contribution to the girder’s resistance to lateral buckling 

of I-girders with corrugated webs 
xoS  First moment of area of tapered member 
yoI  Second moment of inertia about the weak axis (x-axis) of tapered 

members 
woC  Warping constant of tapered members 

 Pure torsional constant of tapered members 
crP  Critical force/buckling load 

0,crM  Elastic critical moment in general case 

refM  Reference moment 
 

Roman lower case letters 
a  Length of flat panel 
b  Projection length of inclined panel 

fb  Width of flange 
c  Length of inclined panel 

avgd  Average corrugation depth 

maxd  Maximum depth of corrugation 

yf  Yield strength 
h  Height of a tapered section at some distance from the small end 

Lh  Distance between the centroids of two flanges at the large end of tapered 
section  

Sh  Distance between the centroids of two flanges at the small end of tapered 
section 

wh  Height of web 

oJ



 

 
VI

k   Effective length factor 
1k  Coefficient depending on the lateral bending condition  

2k  Coefficient depending on the warping condition  

wk   Effective length factor 
n  Generalized imperfection parameter assigned to the type of the buckling 

curve 
ft  Thickness of flange 

ijt  Thickness of plane element (i-j) 

wt  Thickness of web 
z  Distance from the small end to the point where the height is needed to be 

calculated in the tapered section 
gz   Distance between the point of load application and the shear centre  

 

Greek lower case letters 

α  Imperfection factor  
LTα  Imperfection factor for lateral-torsional buckling 

α  Tapering angle 
β  Correction factor for the lateral-torsional buckling curves for rolled 

sections 
1Mγ  Partial factor for resistance of members to instability assessed by member 

checks 
η  Ratio of actual length of corrugated webs and projected length of 

corrugated webs 
χ  Reduction factor 

LTχ  Reduction factor for lateral-torsional buckling 
ν  Poisson’s ratio 
ϕ  Reduction factor according to polish code 
λ  Eigen value 
λ  Non dimensional slenderness 

LTλ  Non dimensional slenderness for lateral-torsional buckling  
,0LTλ  Plateau length of the lateral-torsional buckling curves for rolled sections 

θ  Corrugation angle 
oiρ  Distance from shear centre to element 
crtσ  Critical stress of a tapered member 

 
 

Greek upper case letters 

Φ  Value to determinate the reduction factor χ  



 

LTΦ  Value to determinate the reduction factor LTχ  
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1 Introduction 
Presented Master’s Project is an investigation concerning lateral-torsional buckling 
behaviour of steel frames consisted of tapered I-girders with trapezoidally corrugated 
and plane webs.  

 

1.1 Problem definition 
Steel halls with primary framing consisted of rigid frames, based on a welded built-up 
sections are nowadays commonly used for buildings designed for warehouses, sport, 
agricultural, industry and offices. In the past these frames in majority have been  
build-up from prismatic I-profiles with plane webs, commonly built from rolled 
sections. However, such profiles are not economically effective and require using 
vertical stiffeners in order to prevent losing the stability of the web subjected to patch 
loading and compressive axial forces.  

Nowadays it becomes more and more popular to construct the frames from welded 
tapered built-up, which is an optimal solution, both with regard to economy and 
aesthetics. In low-rise metal buildings, both the columns and the rafters started to be 
constructed as tapered to place the structural material according to the moment 
envelope. Consequently by using welded tapered frames following advantages can be 
obtained in comparison to rolled section prismatic frames: 

- Weight and costs reduction, while adopting effective automated fabrication 
and computer aided design, 

- Increased stiffness, as welded sections are deeper with the same resistance 
in comparison to the rolled sections, 

- More efficient utilization of structural material, 
- Very economical structural geometries for primary framing members. 

However, mentioned advantages of beam tapering can only be fully exploited if 
accurate and easy-to-use design methodologies are available. At present, many design 
codes deal exclusively with the case of prismatic beams. 

Furthermore, to avoid the need to use vertical stiffeners a solution of using I-girders 
with trapezoidally corrugated webs has been proposed. There are several advantages 
of such solution as has been pointed out by Moon et al. (2009), namely:   

- Higher out-of-plane stiffness and shear buckling resistance in comparison 
to I-girders with plane webs, which allows to avoid using vertical 
stiffeners,  

- Costs reduction, obtained by eliminating a need of using vertical stiffeners 
and other torsional restraints,  

- Weight reduction as a consequence of higher strength to weight ratio. 

In order to utilize the benefits of using corrugated webs it is crucial to thoroughly 
understand the flexural and torsional behaviour of the I-girders with corrugated webs. 
Nevertheless, studies on lateral-torsional buckling behaviour of such I-girders are 
rather scarce. Only three papers, namely: Linder (1990), Sayed-Ahmed (2005) and 
Moon et al. (2009) elaborate particularly on this issue. Other studies regarding I-
girders with corrugated webs have been carried out by Elgaaly et al. (1997) who have 
been investigating the bending strength of these beams and Abbas et al. (2006), who 
have studied the behaviour of these girders under in-plane loads.  
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It is rather a new concept in steel frameworks to combine a usage of tapered beams 
and an application of I-girders with trapezoidally corrugated webs. In order to 
efficiently construct this new type of steel frames, accurate knowledge regarding this 
issue is required. Available codes do not contain any calculation models for stability 
problem of lateral-torsional buckling for this case. They deal predominantly with the 
case of prismatic beams with plane webs. As a consequence, by adopting these 
models for the case of tapered I-beams with corrugated webs, rather conservative 
results are obtained. Therefore, to fully exploit the advantages of using tapered 
members and corrugated webs, further studies regarding this problem need to be 
carried out. 

 

1.2 Aim of the Master’s Project 
This Master’s Project has elaborated on the stability problem of steel frames consisted 
of tapered members with trapezoidally corrugated webs. Particularly it has 
investigated the problem of lateral-torsional buckling which is still insufficiently 
explored. By such investigation it may be possible to find more effective solutions of 
how to design and evaluate steel frames consisted of the examined profiles. 
Consequently it could be possible to reduce production costs and material usage. That 
is why this Master’s Project has aimed to gain deeper knowledge about the behaviour 
of the frames consisted of tapered profiles with corrugated webs.   

This Master’s Project has intended to answer the following questions: 

1) Is there any optimal model for calculating lateral-torsional capacity of frames 
consisted of I-profiles with tapered and corrugated webs that can be applied in the 
regarded case? 

2) Are there any validated results available? 

3) What is gained from using I-profiles with tapered and corrugated webs in terms of 
lateral-torsional buckling strength? 

4) What calculation model should be applied in this case?  

5) What is the difference in lateral-torsional behaviour between the I-girders with 
plane and with corrugated web, which parameters have the most crucial influence? 

6) What practical solutions can be proposed to obtain the most efficient results? 

 

1.3 Method 
In order to achieve the aim of this Master’s Project and get theoretical knowledge of 
the problem, literature studies have been undertaken and analyses of stability 
problems for different models have been carried out. A comparison with more basic 
models, which can be verified with results based on available codes and literature, has 
been made. Moreover, two types of frames have been studied in term of lateral-
torsional stability: one consisted of tapered profiles with plane webs and the second 
one consisted of tapered profiles with corrugated webs. The current study has utilized 
Finite Element Method to study the lateral-torsional behaviour of I-shaped beams with 
tapered and trapezoidally corrugated webs. Finite Element Method is a numerical 
method for solving complicated systems which could be impossible to solve in the 
closed form. For Finite Element Analyses program IDEAS and the software package 
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ABAQUS have been used to execute linear and non-linear analyses. Studies using 
validated non-linear Finite Element Methods have been performed. In this Master’s 
Project the results which have been obtained from performing validated Finite 
Element Analyses have been presented and discussed. Moreover, the most accurate 
calculation models and structural solutions, specially focused on the optimization of 
using torsional restraints, have been presented. 

 

1.4 Scope and limitations 
The scope of this Master’s Thesis Project has been focused on a stability problem of 
lateral-torsional buckling of frames consisted of tapered I-girders with trapezoidally 
corrugated and plane webs.  

Aspects which are also essential for constructing mentioned type of frames have been 
stated as follows: 

- In-plane stability problem, 
- Capacity of the welds connecting webs and flanges, 
- Patch loading, 
- Shear buckling resistance, 
- The strength of the purlins. 

 
These aspects should also be considered in the design process, however they are 
outside the scope of this document. 
 

1.5 Outline of the Thesis  
Below, the content of the following chapters has been described. 

In Chapter 2 the literature review has been undertaken.  

In Chapter 3 an analysis of stability behaviour of columns in compression and beams 
under uniform bending has been presented. 

In Chapter 4 parametric studies which have been carried out for I-profiles with 
corrugated webs has been described. 

In Chapter 5 Finite Element Analyses of frames consisted of tapered I-profiles with 
trapezoidally corrugated and plane webs have been studied.  

In Chapter 6 conclusions have been presented and suggestions for further research 
have been pointed out. 
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2 Literature Review 
In this Chapter an overview of the procedures proposed by various researches to 
obtain the elastic critical moment and lateral-torsional buckling resistance for various 
cases has been described. First, formulas adopted for the case of beams with 
corrugated webs and web-tapered beams have been presented. Secondly, different 
load and support conditions have been considered by introducing the moment gradient 
factor. Finally, studies which already have been carried out regarding this issue have 
been concluded and what still should be investigated in the considered case has been 
pointed out.  

 

2.1 Lateral-torsional buckling behaviour of I-beams with 
corrugated webs 

Although lateral-torsional buckling behaviour is an important issue, especially in case 
of thin-walled I-girders, studies regarding this problem for I-beams with corrugated 
webs are still insufficient. That is why further investigation need to be carried out. 
The main conclusions drawn from previous studies regarding this particular issue 
have been summarized below. 

Researches along the years have tried to find a simple and accurate methodology for 
calculating the lateral-torsional buckling resistance of I-girders with corrugated webs 
subjected to uniform bending. In order to do that, available formulas for I-girders with 
plane webs have been used with applied new section properties.  

Elgaaly et al. (1997) have investigated the bending strength of beams with corrugated 
webs using Finite Elements Analysis. They have conducted parametric studies and 
have examined the effect of the corrugation configuration, the panel aspect ratio, 
stress-strain relationship, as well as the ratio between the flange and the web thickness 
and yield stresses. As a result Elgaaly et al. (1997) have found that the flexural 
strength of I-girders with corrugated webs can be determined based on the flange 
yielding only with negligible contribution of the web, due to the accordion effect. 
Investigations carried out later have confirmed this statement. Additionally, Moon et 
al. (2009) have stated that this effect influences section properties of I-girders. 
Consequently, after considering the effect of corrugation of the web, the second 
moment of inertia about the strong axis (x-axis) has been defined as:  

2

, 2
f f w

x co

b t h
I =  (2.1) 

Analogically, the second moment of inertia about the weak axis (y-axis) assuming no 
contribution of the web to the flexure has been given as:  

3

, 6
f f

y co

t b
I =  (2.2) 

Lindner (1990), after studying the interaction between local flange buckling and the 
overall lateral-torsional buckling, has found out that the pure torsional constant coJ is 
the same for the case of I-girders with flat webs and with corrugated webs. Recent 
studies performed by Moon et al. (2009) have agreed with this assertion.  The pure 
torsional constant coJ for I-girders with corrugated webs has been expressed in the 
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same way as for the case of I-girders with flat webs, that is by the sum of the pure 
torsional constants of the two flanges and the corrugated web:  

3 31 (2 )
3co f f w wJ b t h t= +  (2.3) 

Lindner (1990) has also discovered that the warping constant is the parameter which 
influences the lateral-torsional buckling strength of studied I-beams. Consequently, on 
the basis of test results he has proposed the empirical formula for calculating the 
warping constant for I-girders with trapezoidally corrugated webs. It has been stated 
as: 

2 2 2
* max

, 2

(2 )
8 ( )

w
w w flat

x

d h LC C
u a b Eπ

= +
+

     (2.4) 

Where: 
2 3

, ,
2

, ,

( ) ( )
2 600

w x co y cow
x

w x co y co

h a b I Ihu
Gat a EI I

+ +
= +  (2.5) 

Moon et al. (2009) also have investigated the methodology for evaluating the warping 
constant and as a result they have determined the improved procedure for computing 
it. They have noticed that in order to calculate the lateral-torsional buckling strength 
in the most accurate way it is essential to study the location of a shear centre in case 
of I-girders with corrugated webs and adopt it into determination of the warping 
constant for such profiles. The location of the shear centre of I-girder with corrugated 
webs has been derived by presuming that the shear flow is evenly distributed over the 
total depth of the web. It has been found that the unbalanced shear force on the flange 
is generated due to the corrugation depth d. The location of the shear centre has been 
finally determined by the moment equilibrium and it has been found to be located at a 
distance of 2d from the centre of the upper and lower flange. Subsequently, the 
proposed shear centre has been used for calculating the warping constant ,w coC of the 
I-girder with corrugated webs.  The warping constant has been determined by 
assuming that the whole section is composed of several interconnected plate elements. 
The procedure for calculating ,w coC can be described in three major steps: 

First, the average corrugation depth avgd is calculated using formula: 

max(2 )
2( )avg
a b dd

a b
+

=
+

 (2.6) 

Next, the normalized unit warping niW at point i with application of avgd obtained from 
the first step can be evaluated from the formula: 

0

1 ( )
2

n

ni oi oj ij ij oiW w w t L w
A

= + −∑  (2.7) 

Where: 

oi oi ijw Lρ=  (2.8) 

ij ijA t L=∑  (2.9) 
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In the equations above oiρ is the distance from the shear centre to the element, ijt is the 
thickness of the element and ijL is the length of considered element. (Extended 
description of above formulas can be found in the document of Moon et al. (2009).)    

Finally, by using niW obtained from the second step the warping constant ,w coC of the 
I-girder with corrugates webs has been determined as: 

2 21 ( )
3w ni nj ni nj ij ijC W W W W t L= + +∑  (2.10) 

Additionally, Moon et al. (2009) have stated that the shear modulus of the corrugated 
plates is smaller than the one of the flat plates.  For calculating the shear modulus for 
profiles with corrugated webs the following formula has been proposed: 

co
a bG G G
a c

η+
= =

+
 (2.11) 

Where G  is the shear modulus of the flat plates and η is the ratio of the projected 
length (a+b) to the actual length of the corrugated plates (a+c). The corrugation 
profile proposed by Moon et al. (2009) has been pictured in Figure 2.1 below. 

 
Figure 2.1 Profile of I-girder with corrugated webs: a) I-girder with corrugated webs 

and global coordinates, b) cross-section of I-girder with corrugated 
webs, c) corrugation profile 
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In order to verify the accuracy of proposed formulas for calculating the warping 
constant, both methodologies of Lindner (1990) and Moon et al. (2009) have been 
compared to the warping constant obtained from Finite Element Analysis. The 
following formula has been used for this purpose: 

22 2
,

, 2 2
,

ocr FEM co co
w FEM

y co

M L G J LC
E I Eπ π

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (2.12) 

In the formula above the elastic critical moment ,ocr FEMM determined from Finite 
Element Analysis has been used and derived section properties for the I-girder with 
corrugated webs ( ,, ,co y co coG I J ) have been adopted. 

A comparison of the results obtained by Moon et al. (2009) has been shown in    
Figure 2.2 below. 

 
Figure 2.2 A comparison of the warping constants of I-girders with corrugated webs. 

It has been proved that the lateral-torsional buckling strength is influenced by the 
warping constant and the shear modulus. The results have shown that the warping 
constant for I-girders with corrugated webs is larger than for I-girders with plane 
webs, while the shear modulus is smaller for I-girders with corrugated webs. The 
strengths evaluated from the method proposed by Moon et al. (2009) show better 
correlation with the values obtained from Finite Element Analysis. It can be observed 
that the shear modulus for the corrugated webs differs more significantly from the 
shear modulus for the plane web proportionally as the corrugation angle θ  increases 
(up to 20% in the practical ranges).  This fact explains the reason why the results of 
the method proposed by Moon et al. (2009) have given a better correlation with the 
results obtained from Finite Element Analysis. Moreover, it clarifies why the 
difference between Finite Element Analysis results and those obtained by Lindner 
(1990) get larger along the web corrugation angleθ .  

For calculating the lateral-torsional buckling strength a simple method has been 
suggested using the lateral-torsional buckling strength formula of the I-girder with flat 
webs with derived new section properties for corrugated webs. Consequently, the 
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formula for the elastic lateral-torsional buckling strength crM of the I-girder with 
corrugated webs has been expressed as: 

2
, 1ocr y co co coM EI G J W

L
π

= +  (2.13) 

Where: 

,w co

co co

EC
W

L G J
π

=  (2.14) 

In the equations above L is the length of the I-girder with corrugated webs and W  
represents the effect of warping torsional stiffness. 

 

2.2 Lateral-torsional buckling behaviour of I-beams with 
tapered webs 

Nowadays thin-walled tapered I-beams are one of the most popular tapered beams 
used in practice. In this case, lateral buckling failure is the one governing the strength 
of laterally unrestrained thin-walled beams. However, most of the studies have 
considered only the case of prismatic beams. State-of-the-art review concerning one-
dimensional analytical formulations for the lateral-torsional buckling behaviour of 
tapered beams can be found in the work of Andrade and Camotim (2005).  

Analogically as in the case of I-beams with corrugated webs, also in the case of I-
beams with tapered webs researches have tried to develop efficient and easy to use 
design methodology, which would be valid for prismatic beams as well as for tapered 
beams. To obtain this goal researches have tried to modify existing procedures and 
calculation models in current steel design codes for prismatic beams in order to extend 
their applicability also to tapered beams.  

One method to investigate tapered members is to divide a beam into several segments 
and consider each of them as a prismatic beam as has been adopted by Brown (1981) 
in Finite Difference Analysis. However, further investigations lead for example by 
Andrade and Camotim (2005) have stated that this solution is rather incorrect in Finite 
Element modelling and that it may lead to rather inaccurate results, which would 
underestimate or overestimate the value of critical moment. It has been stated that the 
lateral-torsional buckling behaviour is different for prismatic and tapered beams. This 
fact precludes using prismatic Finite Elements.  

Another methodology, for adopting existing procedures for the case of tapered beams, 
has been proposed by Lee et al. (1972) and Morrell and Lee (1974). This concept has 
been based on the length modification factor which allows converting the tapered 
beams into appropriately proportioned prismatic beams, so the available procedures 
for prismatic beams can be applied. Obtained equivalent prismatic beam acquires 
section properties of the smaller end of the tapered beam. As a result the critical stress 
of a tapered member with applied length modification factor has been introduced as: 

2 2 2

2 4

1
( ) ( )

yo o yo wo
crt

xo

EI GJ E I C
S hL hL

π π
σ = +  (2.15) 
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From this equation the length modification factor h can be solved for as follows: 

( )
( )

22

22 2 2 1 1 crt xo S

crt xo o

S h
h

L S GJ
σπ

σ

⎡ ⎤
⎢ ⎥= + +
⎢ ⎥
⎣ ⎦

 (2.16) 

The equation above contains mostly material and section properties, only crtσ is the 
only unknown and it is suggested to calculate using Rayleigh-Ritz method with the 
most severe moment ratio (Lee et al (1972)). The most severe end moment ratio has 
been defined as the ratio between the end moments of a web-tapered beam that causes 
the maximum bending stress to be equal at both ends of the member.  

Recently lateral-torsional buckling of tapered beams has been investigated by 
employing Finite Element Method based on their total potential energy. Andrade and 
Camotim (2005) have followed this concept and have derived improved formula for 
the beam total potential energy, which has been validated using Finite Element 
Analysis. From that, the critical moment has been determined using numerical 
procedure, which has employed Rayleigh-Ritz method. More recent work which is 
also has been based on this concept has been carried out by Zhang and Tong (2008) 
and it has given more accurate results than obtained by Andrade and Camotim (2005).  

Zhang and Tong (2008) after studying the relationship between strains and 
displacements for each plate of the tapered beam presented new equivalent section 
properties of web tapered beams. As a result equivalent second moment of area about 
the strong axis (x-axis) has been determined as: 

2 3
3cos 1

2 12
f f

x w

t b h
I t h

α
= +  (2.17) 

Where α  is the tapering angle and h  is the height of section at a distance of z from 
the small end, given as: 

( )S L S
zh h h h
L

= + −  (2.18) 

Where L is length of the beam, Sh  and Lh  are respectively the distances between the 
centroids of two flanges at the small and large ends, which have been pictured in 
Figure 2.3 below. 

 
Figure 2.3 Web-tapered I-beam. 
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The equivalent second moment of area around the weak axis (y-axis) has been derived 
from analysis of bending about y-axis as follows: 

3 3cos
6

f f
y

t b
I

α
=  (2.19) 

Moreover, the torsional constant of section for tapered members has been presented 
as: 

3 3
32

cos
3 3
f f w wt b t bJ α= +  (2.20) 

Finally, the warping constant for tapered beam has been defined analogically as for 
the case of prismatic beams and has been equal to: 

2

4
y

w

h I
C =  (2.21) 

Where h  and yI  are new section properties described previously. 

Having above section properties it has been possible to calculate lateral-torsional 
buckling strengths by using equations for the case of prismatic beams, which has been 
described in Section 2.1.  

Having above new equivalent section properties subsequently it has been possible to 
follow the procedure of the new theory presented by Zang and Tong (2008) and 
obtain the total potential energy and critical moment for lateral buckling analysis. As 
long as this procedure is quite complicated it has not presented in this report, only 
proper references have been given. 

 

2.3 Equivalent moment factor - different load and 
support conditions 

In order to calculate the elastic critical moment for different load and support 
conditions it is necessary to introduce the equivalent moment factor bC . 

Sayed-Ahmed (2005) has stated that equivalent moment factor adopted in design by 
most codes of practise for calculating critical moment for traditional plate girders with 
plate webs is also valid in the case of girders with corrugated webs. Consequently, all 
equations and tables, which have been given for girders with plane webs are relevant 
for girders with corrugated webs. 

According to formulas given by AICS-LRFD specifications, for girders with unequal 
end moments AM and BM , the equivalent moment factor has been given as: 

2

1,75 1,05 0,3 2,3(2,5)A A
b

B B

M MC
M M

⎛ ⎞
= + + ≤⎜ ⎟

⎝ ⎠
 (2.22) 

Moreover, AICS-LRFD specifications provide the equation considering the effect of 
the moment gradient along the beam span, which has been given as: 

max

1 2 3 max

12,5
3 4 3 2,5b

MC
M M M M

=
+ + +

 (2.23) 
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Sayed-Ahmed (2005) has also considered the effect of the load location with respect 
to the shear centre, and as a result the following equivalent moment factor has been 
proposed: 

- For beams subjected to concentrated loads: 

Loads acting at the top flange 

Loads acting at the shear centre     (2.24) 

Loads acting at the bottom flange 

 

 

- For beams subjected to uniformly distributed loads: 

 

Loads acting at the top flange  

Loads acting at the shear centre   (2.25) 

Loads acting at the bottom flange 

 

Where: 

w
R

ECW
L GJ
π

=  (2.26) 

The last two equations for calculating the equivalent moment factor bC  has not been 
adopted by codes of practice up to 2005, however they have been validated and can be 
considered as the general form for determining the value of the equivalent moment 
factor bC . 

Recently Lopez et al. (2006) have derived a closed-form expression for calculating the 
equivalent uniform moment factor which gives significantly closer results than those 
obtained from AICS-LRFD specifications, which is applicable to any moment 
distribution. Proposed formula has taken into account situation with prevented lateral 
bending and warping at one or both ends. According to this method the equivalent 
uniform moment factor may be obtained by: 

2

1 2 2

1

(1 ) (1 )
2 2

b

k kk A A A
C

A

⎡ ⎤− −
+ +⎢ ⎥
⎣ ⎦=  (2.27) 

Where k  is a factor depending on the lateral bending and warping condition 
coefficients 1k and 2k : 

1 2k k k=  (2.28) 

For free lateral bending and warping at both ends 1 2 1k k= = . 

 

2

2

1,35
1 0,649 0,18
1,35
1,35(1 0,649 0,18 )

R R

b

R R

W W
C

W W

⎧
⎪ + −⎪⎪= ⎨
⎪ + −⎪
⎪⎩

2

2

1,12
1 0,535 0,154
1,12
1,12(1 0,535 0,154 )

R R

b

R R

W W
C

W W

⎧
⎪ + −⎪⎪= ⎨
⎪ + −⎪
⎪⎩
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1A  and 2A have been given as: 

2 2 2 2 2 2
max 1 1 2 2 3 3 4 4 5 5

1 2
1 2 3 4 5 max(1 )

M M M M M MA
M

α α α α α
α α α α α

+ + + + +
=

+ + + + +
 (2.29) 

1 2 3 4 5
2

max

2 3 2
9

M M M M MA
M

+ + + +
=  (2.30) 

Where: 

1 21 kα = −  (2.31) 

3
1

2 2
2

5 k
k

α =  (2.32) 

3
1 2

1 15
k k

α
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 (2.33) 

3
2

4 2
1

5 k
k

α =  (2.34) 

5 11 kα = −  (2.35) 

In Equations (2.41) and (2.42) maxM  is the maximum moment and  

1 2 3 4 5, , , ,M M M M M  are the values of the moment at different sections of investigated 
beam, each taken with corresponding sign. It has been proved by numerical results 
that this new closed expression gives better results than those obtained by the AISC 
and moreover it does not overestimate the moment gradient factor.  

 

2.4 Conclusions 
As has been presented in this Chapter, there are separate methods proposed for 
calculating lateral-torsional buckling capacity for I-girders with corrugated webs and 
for web-tapered I-girders, respectively. However, there are no solutions how to 
combine these two cases, according to author’s knowledge.  

Moon et al. (2009) have concluded that available methods of calculating critical 
moment for I-girders with plane webs are underestimating the capacity of I-girders 
with corrugated webs. The elastic lateral-torsional buckling strength is increased up to 
10% for I-girders with corrugated webs in comparison to I-girders with flat webs (the 
results vary with increasing corrugation angle). In comparison, Sayed-Ahmed (2005) 
has stated that the resistance to lateral torsion-flexure buckling for I-girders with 
trapezoidally corrugated webs is 12%-37% larger than the resistance of I-girders with 
plane webs. As can be observed the difference in their results is significant. It can be 
explained by the fact that Moon et al. (2009) have investigated the girders subjected to 
uniform bending moment and Sayed-Ahmed (2005) has studied different load and 
boundary conditions. Knowledge regarding this issue is insufficient and consequently 
it is impossible to fully explore the advantages of web corrugation.  
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Elgaaly (1997) concluded that the bracing requirements of the compression flange in 
beams and girders with corrugated webs are less severe compared to conventional 
beams and girders with flat webs. However, there are no clear suggestions how to 
apply these properties in practise.  

In conclusion, for the case of tapered beams with corrugated webs knowledge how 
lateral-torsional buckling capacity should be computed and how elastic critical 
moment should be calculated is insufficient and further studies should be carried out.  
Without sufficient background information it is impossible to efficiently use the 
advantages of using these new profiles. Further investigation is needed.  
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3 Stability problem in general 
Instability phenomenon can be defined as a case when large displacement of a 
member is caused by a small change in magnitude of the load which is applied. Here 
it should be noted that, in the case of axially loaded members in compression, this 
large displacement is not in the same direction as the acting load.  Three classes of 
instability phenomenon can be distinguished, namely: local instability e.g. flange or 
web buckling in a beam, member instability e.g. buckling of the entire, isolated 
element and system instability which occurs when a critical member in a structure 
buckles and consequently the whole structure becomes unstable and collapses. The 
last two problems are especially significant during erection of a structure, before the 
construction is braced properly and stiffened by claddings. This is the reason why it is 
important to understand the behaviour of all components in a structure in order to be 
able to design safe constructions.  

This Chapter has focused on the second type of instability, i.e. member instability. In 
the following Chapter two basis stability problems have been exemplified by a case 
study of a column subjected to compression force and a beam subjected to uniform 
bending. Such investigation allows gaining a general overview and a basic 
understanding of the stability problem. It also gives a good opportunity to compare 
and verify the accuracy of calculation models presented in design codes. In the current 
study, Eurocode3 and the Polish Code PN-90/B-03200 have been considered. Design 
procedures available in these codes treating stability problems have been presented 
and compared with results obtained from Finite Element Analysis. 

The profile which has been analysed in both case studies is an I-section in class 3, 
corresponding to a profile HEA300, with the dimensions shown in Figure 3.1:  

 
Figure 3.1 Dimensions of the investigated I-section. 

Material properties which have been adopted: 

• Steel grade: S355 
• Yield strength: 355yf MPa=   
• Young Modulus:  210E GPa=  
• Poisson’s ratio: 0,3ν =  
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3.1 Case study of columns in compression 
The first problem which has been analysed is a simple case of a pinned column 
subjected to compressive force. Axially loaded columns in compression experience a 
mode of in-plane instability defined as ‘bifurcation’. This term relate to the           
load-deflection behaviour of an ‘ideal’ element, which is perfectly straight, has no 
initial imperfections or residual stresses and is centrally loaded. Such idealized 
member subjected to compressive force deforms subsequently while the load is 
increasing, until reaching the critical load. At this point the failure occurs and the 
element deforms into a different pattern. In the linear analysis the instability can be 
captured at the maximum point on the load-deflection curve. In reality the value of 
ultimate load does not coincide with the results obtained from the linear analysis. 
Material non-linearities, residual stresses and initial imperfections need to be taken 
into account which influences the ultimate load capacity of a column.  

Eurocode3 presents two alternative methods for obtaining the design buckling 
resistance of a member in compression. The first suggested procedure allows 
obtaining the design buckling resistance by performing hand calculations. The second 
method adopts procedures given in parts 6.3.1 and 5.3.2 of Eurocode3 to carry out 
second order analysis. The second option requires using numerical methods and 
appropriate Finite Element software need to be used. In this investigation, the 
commercial Finite Element program ABAQUS has been used for this purpose. Both 
methodologies take into account initial imperfections, material non-linearities and 
residual stresses, although in different ways. 

In order to capture the behaviour of columns with different slenderness parametric 
studies of three elements with various lengths have been carried out. The investigated 
columns are two, five and ten meters long. This procedure allows gaining knowledge 
about the behaviour of columns with different slenderness, which fail in 
fundamentally different ways. Analyses have been carried out using procedures 
suggested in Eurocode3 and PN-90/B-03200 as well as numerical methods using 
software package ABAQUS. The results have been compared and commented.  

 

3.1.1 Hand calculations of design buckling resistance 
In order to estimate design bucking resistance of a member in compression Eurocode3 
as well as PN-90/B-03200 give appropriate formulas to perform hand calculations. 
This is the easiest method, which does not require any specialized computer software 
and is very useful for design procedures. For the purpose of this analysis the design 
buckling resistance of three columns with the cross-section shown in Figure 3.1, and 
three different lengths (L1=2m and L2=5m and L3=10m) has been calculated. 
Computer program MathCAD has been used for this purpose. Calculations from 
MathCAD can be found in Appendix A.  

In the performed calculations columns have been assumed to be prismatic, pinned at 
both ends and centrally loaded. Moreover they have been said to buckle in the most 
unfavourable direction which – in the investigated case - is around the weak axis of 
the I-section. 

In this Section the formulas given in Eurocode3 and PN-90/B-03200 have been 
presented and the results obtained from hand calculations have been compared.  
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For members subjected to compression, Eurocode3 gives the formula for calculating 
the design buckling resistance for cross-sections in class 1, 2 and 3 as: 

,
1

y
b Rd

M

Af
N

χ
γ

=  (3.1) 

Where χ  is the reduction factor, which corresponds to the appropriate buckling 
mode. This reduction factor governs how much the design buckling resistance needs 
to be reduced due to the slenderness of the element and its properties. It can be 
calculated as: 

22

1 1χ
λ

= ≤
Φ + Φ −

  (3.2) 

Where:  
2

0,5[1 ( 0, 2) ]α λ λΦ = + − +   (3.3) 

The reduction factor stated above takes into account two parameters, that is: the 
imperfection factor α  and the non-dimensional slendernessλ defined as: 

y

cr

Af
N

λ =  (3.4) 

crN
 
is a theoretical critical buckling load (Euler buckling load). Theoretical value of 

crN can be calculated according to Euler’s theory.  It assumes that the analysed 
column is ‘perfect’, which means that it is prismatic, it has neither initial 
imperfections nor material non-linearities and that it is loaded centrally without any 
eccentricities. For a pinned column, the critical buckling load has been defined as: 

2

2cr
EIN

L
π

=  (3.5) 

Where: 

L  is the element length, 

E  is the Young modulus ( 210E GPa= ), 

I  is the second moment of area of the investigated section. 

In order to obtain the value of the imperfection factor α it is necessary to identify the 
appropriate buckling curve for the specific column under consideration. In Eurocode3 
five different buckling curves obtained in semi-empirical manner have been defined. 
The selection of a buckling curve depends on the cross-section properties (such as: the 
shape of the section, and its dimensions), the steel grade and buckling direction (i.e. if 
buckling occurs around weak or strong axis of the section). By using an appropriate 
curve it is possible to cover the effects of residual stresses and initial imperfections of 
a member. 

In comparison to Eurocode3, Polish Code PN-90/B-03200 suggests analogical 
procedure for calculating the design buckling resistance. However, the results form 
Polish Code insignificantly differ from the ones obtained using Eurocode3. 
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As introduced in PN-90/B-03200 the design buckling resistance of members in 
compression with cross section in class 1, 2 or 3 should be calculated as: 

Rc yN Afϕ ϕ=  (3.6) 

Where ϕ  is buckling reduction factor, which depends directly on the relative 
slenderness λ  and on the selected buckling curve. Properties of the factor ϕ  
correspond to those of the factor χ   introduced by Eurocode3.  Buckling reduction 
factor ϕ  in PN-90/B-03200 has been given as: 

1
2

(1 )
n

nϕ λ
−

= +  (3.7) 

In the equation above n  is a generalized imperfection parameter assigned to the type 
of the buckling curve. PN-90/B-03200 as opposed to Eurocode3 presents only four 
buckling curves, which also depend on the cross-section shape and dimensions, the 
steel grade and the buckling direction. The relative slenderness λ  has been defined 
as:  

1,15 y

cr

Af
N

λ =  (3.8) 

Where crN  is a critical load which has been described previously and given in 
Equation (3.5). 

It can be observed that the formulas for calculating the relative slenderness given in 
Equations (3.4) and (3.8) look almost the same. The difference is that the relative 
slenderness λ   introduced in PN-90/B-03200 is additionally multiplied by a factor 
1,15, which consequently gives larger values than those obtained from Eurocode3. 
Moreover, the number of buckling curves is different and the way how they influence 
the buckling reduction factor. Although in both cases the method of calculating the 
buckling reduction factor differs, it has given similar results, the difference being 
about 5%.  

The values of the reduction factor for both cases have been presented in Table3.1 
below. 

Table 3.1 Buckling reduction factor. 

Columns:  Buckling reduction factor [-] 
EN-1993-1-1:2005 PN-90/B-03200 

Column 2m 0,929 0,97 
Column 5m 0,631 0,663 
Column 10m 0,258 0,244 
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The values of the design buckling resistance obtained from hand calculations using 
formulas given in Eurocode3 and PN-90/B-03200 have been presented in Table 3.2 
below. 

Table 3.2 Design buckling resistance obtained from hand calculations. 

Columns:  Design buckling resistance Nb,Rd [kN] 
EN-1993-1-1:2005 PN-90/B-03200 

Column 2m 3504 3660 
Column 5m 2380 2502 
Column 10m 972,6 921,5 

As can be noticed, the results obtained from hand calculations using both codes do not 
differ significantly. For slender columns calculations based on PN-90/B-03200 have 
given the result which is more on the safe side while for intermediate and stocky 
columns the value of design buckling resistance has been smaller when calculated 
according to Eurocode3. In further discussion of the results only the ones obtained 
from procedures given by Eurocode 3 have been compared to the results obtained 
from Finite Element Analysis. It has been sufficient in the investigated case and more 
reasonable as long as performed Finite Element Analysis includes methodologies 
proposed by Eurocode3. 

 

3.1.2 Finite Element Analysis of design buckling resistance 
The second method to calculate the design buckling resistance of columns subjected 
to compression combines the methodology presented in Eurocode3 with the use of 
second-order analysis. In the investigated cases the commercial software package 
ABAQUS has been used to perform these analyses. 

For the purpose of this studeis 3D models consisted of Wire Planar type element have 
been used. Three columns of lengths equal to two, five and ten meters have been 
modelled. Two beam element types have been analyzed and compared, namely 
‘Euler-Bernoulli’-type beam element B33 and ‘Timoshenko’-type beam element  
B31OS. According to the ABAQUS User’s Manual, the first one is recommended to 
analyse slender columns while the second one can be applicable to thick as well as 
slender columns. Every element has been analyzed by meshing with the deviation 
factor equal to 0,1. The default number of integration points has been adopted, which 
is a three-point Simpson integration scheme for each segment making up the section. 
Buckling of columns consisted of a profile pictured in Figure 3.1 has been analysed. 
Material properties which have been used in all models correspond to the ones 
presented in the beginning of Chapter 3. 

All investigated columns have been simply supported with fixed rotation around Y 
axis (UR2) in order to ensure in-plane buckling mode. Columns are centrally loaded 
and subjected to compression.  
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The boundary conditions and the applied load for this case have been shown in  
Figure 3.2 below. 

 
Figure 3.2 Boundary conditions and applied load.  

As a first step linear buckling analysis has been performed. By using this type of 
analysis the linear buckling load capacity can be estimated. This method assumes 
small deformation before the collapse. In the first order analysis the initial geometry 
of the structure has been used. The linearized eigenvalue problem can be stated as: 

( ) 0GK Kλ φ− =  (3.9) 

The buckling load capacity has been obtained by multiplying the value of applied 
reference load by obtained eigenvalue as follows:  

cr refP Pλ=   (3.10) 

Usually the first eigenvalue and eigenmode are of interests.  

By performing linear Finite Element Analysis buckling capacity has been obtained for 
both beam element types: B33 and B31OS.  All results have been collected in      
Table 3.3 below. 

Table 3.3 Theoretical buckling load: Euler’s Theory vs. Finite Element Analysis 

Columns:  The buckling load Pcr [kN] 
Euler's Theory FEA - B33 FEA -B31OS 

Column 2m 32650 32644 30048 
Column 5m 5224 5223 5152 
Column 10m 1306 1305,7 1301,3 
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The results obtained from Finite Element Analysis have given a good accuracy in 
comparison to the results calculated by hand calculations using Euler’s theory.  Since 
beam element type B33 is based on Euler’s theory, the values of the buckling load are 
almost equal to the theoretical ones. However, values of the buckling load for a beam 
element type B31OS differ insignificantly from the theoretical ones, they have the 
same magnitude which confirms that they are also valid. 

In the calculations above the case of ‘perfect’ columns has been analysed. In reality 
structures would never reach this magnitude of load due to its material properties, 
geometrical imperfections, residual stresses and other circumstances. This analysis 
has theoretical value and moreover it in Finite Element Analysis it is a basis to 
perform a second order non-linear analysis described in the following Section of this 
report.  

Second step of Finite Element Analysis which has been performed is a non-linear 
analysis. For this case step module Static Risks, which computes buckling load 
capacity, has been used. It takes into account second order effects, material non-
linearities and it implies initial imperfection and residual stresses by applying initial 
bow imperfection as has been pictured in Figure 3.3. The value of this bow 
imperfection has been calculated from Table 5.1 from Eurocode3. It depends on the 
length of a member, which is analysed and on the buckling curve corresponding to the 
investigated section.  

 
Figure 3.3 Initial bow imperfection. 

In the second step two kinds of analyses have been performed, namely for elastic and 
plastic material model. In the elastic analysis material non-linearities and initial 
imperfections have been taken into account. In the plastic analysis the same criteria 
have been implied and moreover material properties have been added.  
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The plastic material model which has been adopted is presented in Figure 3.4 below.  

 

                                                       
                                                       

 

 

 

Figure 3.4 Stress-strain curve. 

From the non-linear analysis the results obtained for beam element type B33 and 
B31OS have given compatible results. Therefore it has been sufficient to discuss only 
the results for one of these beam element types, which has been made in the following 
Section of this report.  
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3.1.3 Results and discussion 
In this Section in-plane buckling of a centrally loaded column in compression has 
been analysed by both non-linear Finite Element Analysis and theoretical calculations. 
In both cases initial imperfections and material nonlinearities have been taken into 
account as described before.  

The first column which has been analysed is a case of a stocky column with the 
relative slenderness equal to 0,34λ =  and the buckling reduction factor equal to 

0,929ϕ = . It is the case when a member is not sensitive to a loose of stability and the 
failure occures due to yielding. Theoretical value of critical force for a stocky column 
with length equal to 2m is very large. In reality such magnitude of the load would 
never be reached as long as the failure due to yielding would occur at a load level 
approximately ten times lower than the buckling load. Initial imperfections which 
have been applied in this case are equal to 10mm. The results obtained from elastic 
material model analysis has been shown in Figure 3.5 below. 

 
Figure 3.5 Load-displacement chart: elastic analysis of  the cloumn of length L1=2m. 

In the beginning of the analysis the load-displacement curve has been linear and while 
the load has been increasing it has changed its shape. It has bended and has got closer 
to the theoretical value of the buckling load. Finite Element Analysis has stopped 
when the program has noted the negative eigen value, which means that at that load 
level the buckling has occured. Initial imperfections and material non-linearities can 
explain why  the theoretical value of a buckling load obtained from Finite Element 
Analysis is lesser than the theoretical value calculated according to Euler’s theory. 
Moreover a stocky column is maybe not the best exapmle to ilustrate the buckling 
behaviour of columns.  
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The second column which has been analysed is a case of an intermediate column with   
the relative slenderness equal to λ = 0,85 and the buckling reduction factor equal to                              

0,631ϕ = . In this case a member is also rather not sensitive to a stability loose and a 
failure of the element is governed by yielding. Theoretical value of buckling load for  
intermediate columns is also rather large. In reality such magnitude of the load would 
not be reached as long as the failure due to yielding would occure at a load level 
approximately two and a half times lower than the buckling load. Initial imperfections 
which have been applied in this case are equal to 25mm. The results obtained from 
elastic material model analysis can be seen in Figure 3.6 below. 

 
Figure 3.6 Load-displacement chart: elastic analysis of  the cloumn of length L2=5m. 

As can be observed from the chart above, the load-displacement curve first has been 
linear, then it has bended and got asymptotic to the value of a critical load. Further on.  
buckling has occured and the analysis has finished.  

The results obtained from Finite Element Analysis have given a good accuracy to the 
theoretical values of the bucklng load. The behaviour of the investigated element in 
Finite Element Analysis has been as expected, which confirms its corectness. 
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The third column which has been analysed is a case of a slender column with the 
relative slenderness equal to 1,7λ =  and the buckling reduction factor equal to 

0,258ϕ = . This column is more sensitive to the instability than the ones described 
before. It is an example when the failure is governed both by the losse of stability and 
material failure due to yielding. Here the difference between the magnitude of the 
load when the buckling occurs and the load magniture when a member yields is not so 
significant as in the examples of two-meter and five-meter columns. Initial 
imperfections which have been applied in this case are equal to 50mm. The results 
obtained from elastic material model analysis has been pictured in Figure 3.7 below.  

 
Figure 3.7 Load-displacement chart: elastic analysis of  the cloumn of length 

L3=10m. 

As can be observed from the chart above, the load-displacement curve first has been 
linear, then it has bended and got asymptotic to the value of the critical load. Then the 
buckling has occured and the analysis has finished. The reason why the load-
displacement curve has reached the value which is larger than the value of the critical 
load can be explained by the step size or by the fact that theoretical calculations for 
slender elements are more on the safe side. Generally the results obtained from Finite 
Element Analysis have given a good accuracy to the theoretical values of the buckling 
load. The behaviour of the investigated element in Finite Element Analysis has been 
as expected, which confirms its corectness. 
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Next analysis which has been performed is a non-linear analysis additionally taking 
into account plastic material properties of all considered elements. Material plastic 
model from Figure 3.4 has been implied. Consequently buckling resistance has been 
obtained and compared to the values of ultimate load calculated using procedures 
from Eurocode3.  

The first column which has been analysed is a case of a stocky column. The results 
obtained from plastic material model analysis can be seen in Figure 3.8 below.  

 
Figure 3.8 Load-displacement chart: plastic analysis of  the cloumn of length L1=2m. 

As can be observed from the chart above, the results obtained from Finite Element 
Analysis are comparable to the expected values obtained from hand calculations. The 
load-displacement relations have risen linearly until stresses in the sections have 
reached the value of the yield strength, which is 355MPa in the investigated case. 
After yielding the load could still be increased since stress distribution in the section 
has been possible. Horizontal displacement has been very small in this case and equal 
to: 10mm due to input initial imperfections and around 2mm due to displacement 
caused by the applied load. Failure has been governed only by yielding.  
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The second column which has been analysed is a case of an intermediate column with 
section properties as described before. As previously the non-linear analysis adopting 
platic material model has been performed taking into account second order effects, 
initial imperfections, residual stresses and material non-linearities. The results 
obtained from plastic material model analysis have been shown in Figure 3.9 below.  

 
Figure 3.9 Load-displacement chart: plastic analysis of  the cloumn of length L2=5m. 

As can be observed from the chart above, the results obtained from Finite Element 
Analysis have given a good accuracy to the expected values obtained from 
calculations based on Eurocode3. The load-displacement relations have risen linearly 
until stresses in the sections have reached the value of the yield strength, which is 
355MPa in the investigated case. At this point failure of the element can be captured. 
There has been no further stress distribution in the section. Horizontal displacement in 
this case has been equal to: 25mm due to input initial imperfections and around 30mm 
due to displacement caused by the applied load. Consequently, second order effects 
have occurred, which need be taken into account in the analysis. This phenomenon 
has been described in a more detailed manner in the following part of this report. In 
this case failure also has been governed by yielding.  
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The third column which has been analysed is a case of a slender column. As 
previously the non-linear analysis adopting platic material model form Figure 3.4 has 
been performed. Second order effects, initial imperfections, residual stresses and 
material-non-linearities have been also taken into account. The results obtained from 
plastic material model analysis can be seen in Figure 3.10 below. 

 
Figure 3.10 Load-displacement chart: plastic analysis of  the cloumn of length 

L3=10m. 

As can be observed from the chart above, the results obtained from Finite Element 
Analysis also have given a good accuracy to the expected values obtained from hand 
calculations. The load-displacement relations first have raised linearly, then the curve 
has bended until stresses in the sections have reached the value of the yield strength, 
which is 355MPa in the investigated case. At this point failure of the element can be 
captured. There has been no further stress distribution in the section. From the shape 
of this load-displacement chart it can be inferred that the factors which have 
influenced the failure of the element have been both yield strength of the section and 
the fact that it is slender and sensitive to stability loose. Horizontal displacement in 
this case has been equal to: 50mm due to input initial imperfections and around 
130mm due to displacement caused by the applied load. Consequently, second order 
effects have occurred, which are significant and need be taken into account. This 
phenomenon has been described in details in the following part of this report  
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What has been interesting in all cases is the load-point when the yielding has 
occurred. For different types of columns different distribution of initial forces can be 
observed. Consequently, failure of the element has been governed by different factors. 
Having this kind of knowledge is important to understand the behaviour of various 
types of columns. In all investigated cases yielding has occurred when stress 
distribution in the section has reached the yield strength which for applied material 
properties in the investigated case is equal to 355MPa.  

Figures which have been presented in this Section of the report are supposed to 
illustrate the stress distribution at the point when yielding in the first fibres has 
occurred. Moreover, it has shown the distribution due to compressive force compared 
to the distribution due to second order moment.  

For the first considered case of stocky column stress distribution in the section has 
been presented in Figure 3.11 below.  

 
Figure 3.11 Stress distribution while yielding in the column of length L1=2m. 

As can be observed from the drawing above, the factor which has governed the failure 
due to yielding is a compressive force. Contribution of a moment has been much 
smaller. In this case of stocky columns second order effects have no significant 
influence, therefore they could be neglected. The reason why there has been a small 
contribution from a moment is the presence of initial imperfections equal to 10mm, 
which have been input in the second order analysis. In this case the whole section has 
been in compression. 

Values of compressive force and bending moment, as well as partial stresses caused 
by them have been pictured in Figure 3.11 above.  
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The second column of interests has been an intermediate column. For this case a stress 
distribution in the section has been presented in Figure 3.12 below. 

 
Figure 3.12 Stress distribution while yielding in the column of length L2=5m. 

As can be observed from the drawing above, in the second case the factors which 
have governed the failure due to yielding are a compressive force and a second order 
moment. Contribution from both of them is comparable. In this case of intermediate 
columns second order effects have an influence on the behaviour of the column, thus 
they should be taken into account. In this case similarly as for the case of two-meter 
column the whole section has been in compression, although stress distribution in the 
section at the point of yielding has differed significantly. 

Values of compressive force and bending moment, as well as partial stresses caused 
by them have been pictured in Figure 3.12 above.  
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The last considered element has been a case of a slender column. For this case stress 
distribution in the section has been presented in Figure 3.13 as follows: 

 
Figure 3.13 Stress distribution while yielding in the column of length L3=10m. 

It can be noticed from the drawing above, that the factor which has governed the 
failure due to yielding is mainly a second order moment. In this case of a slender 
column second order effects have a significant influence on the behaviour of the 
column, thus they always should be taken into account. In this case in opposition to 
the cases described before, one part of a section has been in compression while the 
other part has been in tension. Stress distribution in the section at the point of yielding 
has differed significantly. 

Values of compressive force and bending moment, as well as partial stresses caused 
by them have been pictured in Figure 3.13 

In conclusion, Finite Element Analysis for all described models has given the results, 
which are comparable to the theoretical ones. This confirms the accuracy of the Finite 
Element models which have been used.  
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3.2 Case study of beams subjected to uniform bending 
The second problem which has been analyzed is a case of a beams subjected to 
uniform bending. In this case lateral-torsional buckling resistance of a double 
symmetric cross-section has been analysed. It is a type of instability when a member, 
loaded by forces in plane of symmetry, deforms in this plane until reaching the 
buckling load. At this point a member deflects out of its plane and twists 
simultaneously. Lateral-torsional buckling differs from the column buckling because 
it occurs as an out-of-plane buckling mode. In case of columns the deformation 
caused by the loading and eventual buckled configuration are restricted to the same 
plane. Thus it can be defined as in-plane behaviour. 

Lateral-torsional buckling is especially important in the design of beams without 
lateral supports. In this case the bending stiffness of the beam in the plane of loading 
is large in comparison to the lateral flexural rigidity. The beam becomes unstable if 
the load increases beyond the critical value. Lateral-torsional buckling risk should be 
taken into account particularly during the erection of the stricture, before the lateral 
restrains are installed.  

In the linear analysis the instability can be captured at the maximum point on the  
load-deflection curve. In reality the value of ultimate moment does not coincide with 
the results obtained from the linear analysis. Material non-linearities, residual stresses 
and initial imperfections need to be taken into account, which influences the      
lateral-torsional resistance of a beam. Modern steel structures codes, which are based 
on a limit state concept, contain design procedures to calculate lateral-torsional 
buckling resistance of prismatic beams. As one of the first steps these procedures 
generally require the determination of the elastic critical buckling moment. 
Subsequently, by the use of buckling curves initial imperfections, residual stresses and 
inelastic buckling are taken into account.  

Eurocode3 presents several alternative methods for obtaining lateral-torsional 
buckling resistance of members subjected to bending. In the investigated case two 
methods of hand calculations proposed by Eurocode3 have been compared with the 
third method using numerical methods and commercial Finite Element program 
ABAQUS. Two procedures for performing hand calculations are: a method proposed 
for a general case and a method proposed for rolled and equivalent welded sections. 
The third method adopts procedures given in parts 6.3.2 and 5.3.2 of Eurocode3 to 
carry out second order analysis. All methodologies take into account initial 
imperfections, material non-linearities and residual stresses, although in different 
ways. 

In order to capture the behaviour of beams with different slenderness, parametric 
studies of three elements with various lengths have been carried out. The investigated 
beams have been two, five and ten meters long. This procedure allows gaining 
knowledge about the behaviour of beams with different slenderness, which fail in 
fundamentally different ways. Analyses have been carried out using two procedures 
suggested by Eurocode3 as well as numerical methods using software package 
ABAQUS. The results have been compared and commented.  
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3.2.1 Hand calculations of lateral-torsional buckling resistance 
In order to estimate the design buckling resistance moment of a laterally unrestrained 
beam subjected to uniform bending Eurocode3 presents appropriate formulas to 
perform hand calculations. This is the easiest method, which does not require any 
specialized computer software and is very useful for design procedures. For the 
purpose of this studies lateral-torsional buckling resistance of three beams with cross-
section shown in Figure 3.1, with lengths (L1=2m and L2=5m and L3=10m) has been 
calculated. Computer program MathCAD has been used for this purpose. Calculations 
from MathCAD can be found in Appendix B.  

In the performed calculations beams have been assumed to be prismatic, simply 
supported and subjected to bending moment at both ends. Out-of-plane buckling has 
been studied. In this case bending occurs about the strong axis of the I-section. 

In this Section the formulas given in Eurocode3 for two alternative methodologies 
have been presented and the results obtained from hand calculations have been 
compared and commented.  

The first methodology which has been presented in Eurocode3 corresponds to a 
general case. This case is recommended for bending members of constant            
cross-section. Eurocode3 is considering lateral-torsional buckling of beams as an 
ultimate limit state related to member buckling resistance. To obtain this buckling 
resistance the resistance of the cross-section is multiplied by the reduction factor LTχ , 
which is defined as follows: 

22

1 1LT

LTLT LT

χ
λ

= ≤
Φ + Φ −

  (3.11) 

Where:  
2

0,5[1 ( 0,2) ]LT LTLT LTα λ λΦ = + − +   (3.12) 

Reduction factor stated above takes into account two parameters, that is: the 
imperfection factor LTα  and the non-dimensional slenderness LTλ defined as: 

y y
LT

cr

W f
M

λ =   (3.13) 

The imperfection factor LTα  takes into account the influence of the initial 
imperfections, residual stresses and other nonlinear effects and it corresponds to the 
appropriate buckling curve taken from Eurocode 3. Whereas LTλ  is the                   
non-dimensional slenderness and it is related to the elastic critical moment for   
lateral-torsional buckling crM . It should be pointed out that Eurocode3 does not 
provide any information how to compute crM . However, formulas for calculating the 
elastic critical moment for the simplest case of prismatic beam with plane webs can be 
found in separate sources. The method for calculating the elastic critical moment crM
given in Access Steel SN003a-EN-EU (2007) is valid for double symmetric cross-
sections with uniform straight members.  
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The formula for the elastic critical moment has been derived from the buckling 
theory, as follows:  

2 2
2 2

1 2 22 2
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kL k I EI

π
π
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 (3.14) 

 

For uniform moment, with assumption that there are lateral restraints or when the 
force is applied in the shear centre crM  is given as: 
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= +  (3.15) 

The formula for elastic critical moment for the simplest configuration, of simply 
supported beam of constant section subjected to uniform moment has been also given 
by Galambos (1988) as follows: 

2
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Where: 
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Equations (2.5) and (2.6) are equivalent with an assumption that the ends of the beam 
are prevented from lateral deflection. 

The warping constant wC in the above cases has been given as: 
2 2( )

4 4
y f y w
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I h t I h
C

−
= =  (3.18) 

Having these data it is possible to calculate crM and then, by inserting it to      

Equation (2.3), the non-dimensional slenderness LTλ . After selecting the proper 
buckling curve the initial imperfection factor LTα  is obtained, which allows finding 
the reduction factor LTχ .Consequently, the design buckling resistance moment of a 
laterally unrestrained beam can be calculated using formula: 

,b Rd LT y yM W fχ=  (3.19) 

Second methodology proposed by Eurocode3 and applicable in the investigated case 
is a method particularly recommended for rolled sections and equivalent welded 
sections in bending. It differs from the general case by the way how the reduction 
factor LTχ  and the factor LTΦ  are calculated. Formulas for these factors have been 
defined as: 

22
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  (3.20) 
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Where:  
2

,00,5[1 ( ) ]LT LT LTLT LTα λ λ βλΦ = + − +   (3.21) 

The parameters β  and ,0LTλ which appear in the equations above, concerning the 
beam depth or h/b ratio, may be taken from National Annex. Eurocode3 recommends 
adopting 0,75β =  and ,0 0, 4LTλ =  as the most unfavourable case.   

Moreover, the value of the imperfection factor differs as long as buckling curve is 
selected from other Table from Eurocode 3, i.e. Table 6.5. 

Other formulas needed to calculate the design buckling moment of laterally 
unrestrained beams are the same as for the general case. 

A comparison of obtained results of the buckling reduction factor and design buckling 
moment has been made in Table 3.4 and Table 3.5 below.  

Table 3.4 Buckling reduction factor 

Beams:  Buckling reduction factor [-] 
EC3 General case EC3 Rolled sections 

Beam2m 0,976 1 
Beam 5m 0,845 0,867 
Beam 10m 0,544 0,592 

 

Table 3.5 Design buckling resistance obtained from hand calculations 

Beams:  Design buckling moment Mb,Rd [kNm] 
EC3 General case EC3 Rolled sections 

Beam 2m 412,85 423,175 
Beam 5m 357,628 366,825 
Beam 10m 230,071 250,391 

It can be observed that values of the design buckling moment of laterally unrestrained 
beams which have been obtained using second methodology are higher. Second 
method is recommended for rolled sections and equivalent welded sections, thus 
probably more accurate in the investigated case. On the other hand, general method is 
universal and gives the results which are more on the safe side. Both methodologies 
are also compared using Finite Element Analysis in the following Setion of this 
report. 

 

3.2.2 Finite Element Analysis of lateral-torsional buckling 
resistance 

The other method to calculate the design lateral-torsional buckling resistance of 
beams subjected to uniform bending combines the methodology presented in 
Eurocode3 with the use of second-order analysis. In the investigated cases the 
commercial software package ABAQUS has been used to perform these analyses. 
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For the purpose of these studies 3D models consisted of Wire Planar type element 
have been used. Three beams of lengths equal to two, five and ten meters have been 
modelled. Beam element type B31OS have been adopted. According to the ABAQUS 
User’s Manual this is ‘Timoshenko’-type beam element. It is recommended for all 
types of beams with open sections. Every element has been analyzed by meshing with 
the deviation factor equal to 0,1. The default number of integration points has been 
adopted, which is a three-point Simpson integration scheme for each segment making 
up the section.  Lateral-torsional buckling of beams consisted of a profile pictured in 
Figure 3.1 has been analysed. Material properties used in all models correspond to the 
ones presented in the beginning of Chapter 3. 

All investigated beams have been simply supported. Beams have been subjected to 
uniform moment applied at both ends of the element. In Figure 3.14 the boundary 
conditions and the way the applied load has been shown.  

 
Figure 3.14 Boundary conditions and applied load.  

As a first step linear buckling analysis has been performed. By using this type of 
analysis the linear buckling load capacity can be estimated. This method assumes 
small deformation before the collapse. In the first order analysis the initial geometry 
of the structure has been used. The linearized eigenvalue problem can be stated as: 

( ) 0GK Kλ φ− =  (3.22) 

The theoretical critical buckling moment has been obtained by multiplying the value 
of applied reference load by obtained eigenvalue as follows:  

cr refM Mλ=   (3.23) 

Usually the first eigenvalue and eigenmode are of interests.  

By performing linear Finite Element Analysis the theoretical lateral-torsional buckling 
capacity has been obtained.  The results from Finite Element Analysis have been 
compared with the results obtained from hand calculations.  
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All results have been collected in a Table 3.15 below.  

Table 3.15 Theoretical critical buckling moment:  Theory vs. Finite Element Analysis 

Beams:  The critical moment Mcr [kNm] 
Theory FEA -B31OS 

Beam 2m 4459,0 4596,9 
Beam 5m 850,02 878,46 
Beam 10m 304,66 310,28 

The results obtained from Finite Element Analysis have given a good accuracy in 
comparison to the results obtained from hand calculations, with an error around 3%.  

In the calculations above the case of ‘perfect’ elements has been analysed. This means 
they have no initial imperfections, no residual stresses and no material-nonlinearities. 
In reality structures would never reach this magnitude of load due to its material 
properties, geometrical imperfections, residual stresses and other circumstances. This 
analysis has theoretical value and moreover it in Finite Element Analysis it is a basis 
to perform a second order non-linear analysis described in the following Section of 
this report.   

Second step of Finite Element Analysis which has been performed is a non-linear 
analysis. For this case step module Static Risks, which computes the lateral-torsional 
buckling capacity, has been used. This analysis takes into account second-order 
effects, material non-linearities and it implies initial imperfection and residual 
stresses. In order to consider initial imperfections and residual stresses, in the case of 
lateral-torsional buckling of a member in bending, Eurocode3 suggests slightly 
different method than the one presented for columns. In the second order analysis it 
suggests adopting equivalent initial bow imperfections from Table 5.1 in Eurocode3, 
as in the case of columns, but also additionally multiplied by a factor k. The 
recommended value of this factor is equal to k=0,5. By applying this procedure it is 
not needed to consider any additional torsional imperfections. The initial bow 
imperfection has been presented in Figure 3.16. It depends on the length of a member, 
which is analysed and on the buckling curve corresponding to the investigated section.  

 
Figure 3.16 Initial bow imperfection. 

In the second step two kinds of analysis have been performed, namely for elastic and 
plastic material model. In the elastic analysis material non-linearities and initial 
imperfections have been taken into account. In the plastic analysis the same criteria 
have been implied and moreover material properties have been added. The plastic 
material model which has been adopted is the same as for columns and presented in 
Figure 3.4 in the previous Section.                                        

eo - initial bow
imperfection
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3.2.3 Results and discussion 
In this Section the lateral-torsional buckling of beams subjected to uniform bending 
has been analysed by both non-linear Finite Element Analysis and theoretical 
calculations. In both cases initial imperfections and material non-linearities have been 
taken into account as described before.  

Two types of non-linear analysis have been performed, namely for the elastic and 
plastic material model. In the analysis with plastic material model two methods 
presented in Eurocode3 have been compared: a general case and a method 
recommended for rolled and equivalent welded sections. In the case of the analysis 
with elastic material model results for both methodologies have been very close to 
each other. Thus to make charts more understandable it has been sufficient to present 
only the results for the general case.  

The results obtained from the non-linear analysis with elastic material model for all 
beams have been collected in Figures 3.17-3.19 below.  

Relation between the moment and vertical displacement U2 for a stocky beam has 
been presented in Figure 3.17 below. 

 
Figure 3.17 Moment vs vertical displacement chart: elastic analysis of  the beam of 

length L1=2m. 
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Relation between the moment and vertical displacement U2 for an intermediate beam 
has been presented in Figure 3.18 below. 

 
Figure 3.18 Moment vs vertical displacement chart: elastic analysis of  the beam of 

length L2=5m. 

Theoretical value of the buckling load for a stocky and intermediate beam is very 
large. In reality such magnitude of the load is never reached as long as the failure due 
to yielding would occur at a load level much lower than the buckling load. For the 
stocky beam yielding would occur at the load level approximately ten times lower 
than the buckling load. And for the intermediate beam yielding would occur at the 
load level approximately two and a half times lower than the buckling load. Stocky 
and intermediate beams are not sensitive to a loose of stability and in reality the 
failure would occure due to yielding. 
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Relation between the moment and vertical displacement U2 for a slender beam has 
been presented in Figure 3.19 below. 

 
Figure 3.19 Moment vs vertical displacement chart: elastic analysis of  the beam of 

length L3=10m. 

In case of a slender beam, as can be observed from Figure 3.17, the difference 
between the buckling load and the load at which the yielding occurs has been less 
significant than in cases of a stocky and an intermediate beam. Slender beams are 
much more sensitive to the loose of stabiility. The load level at which the yielding 
takes place is very close to the buckling load, thus these two factors interact. 

In all investigated cases, in the beginning of the analyses the load-displacement curve 
has been linear and when the load has been getting closer to the theoretical buckling 
load, it has changes its shape. After reaching the theoretical critical buckling load 
post-buckling response can be observed in all cases. However, this response is 
decreasing as the slenderness of the beam is increasing. It can be explained by the 
way how ABAQUS is performing non-linear elastic analyses for this specific beam 
element type. The results from plastic non-linear analyses, presented in the following 
Section, have given a good accuracy to the expected values obtained from hand 
calculations, which confirm that the models have been modelled correctly.  

Initial imperfections which have been applied in the investigated cases are equal to: 
3,333mm for the two-meter-beam, 8,333mm for the five-meter-beam and 16,667mm 
for the ten-meter beam.  
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Next analysis which has been performed is a non-linear analysis, additionally taking 
into account plastic material properties of all considered elements. Material plastic 
model from Figure 3.4 has been implied in all models. Consequently, lateral-torsional 
buckling resistance has been obtained and compared to the values of the design 
buckling resistance calculated using two procedures from Eurocode3.  

The first beam which has been analysed is a case of a stocky beam. The results 
obtained from the analysis with plastic material model have been presented in    
Figure 3.20 and 3.21.  

Relation between the moment and vertical displacement U2 for a stocky beam has 
been presented in Figure 3.20 below. 

 
3.20 Moment vs vertical displacement chart: plastic analysis of  the beam of length 

L1=2m. 

As can be observed from Figure 3.20, the results obtained from Finite Element 
Analysis have been comparable to the expected values obtained from hand 
calculations. The load-displacement relations have risen linearly until stresses in the 
sections have reached the value of the yield strength, which is 355MPa in the 
investigated case. After yielding the load could still be increased insignificantly since 
stress distribution in the section has been possible. Vertical displacement has been 
very small in this case and equal to: 3,33mm and 4mm due to input initial 
imperfections and around 6mm due to displacement caused by the applied load. In 
this case the failure has been governed only by yielding. 
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Relation between the moment and horisontal displacement U3 for a stocky beam  has 
been presented in Figure 3.21 below: 

 
Figure 3.21 Moment vs horisontal displacement chart: plastic analysis of  the beam of 

length L1=2m. 

In case of a stocky beam horizontal displacement has been very small, around 1mm. 
As expected, a stocky beam has not been sensitive to the lateral-torsional buckling. 
The failure ha been governed only by yielding. Results obtained from Finite Element 
Analysis have been very similar both when adopting the general case and the case of 
rolled sections presented in Eurocode3. Thus only one curve can be visible in     
Figure 3.21. In Figure 3.20 the shape of the curves has been also the same, however 
one is shifted since different initial imperfections have been applied. It can be 
concluded that a stocky beam is not sensitive for initial imperfections and loose of 
stability. 

The results obtained from Eurocode3 are very close to the values obtained from Finite 
Element Analysis. Especially the second proposed method has given a good accuracy. 
In comparison: the error between hand calculations and Finite Element Analysis has 
been equal to 7% for the 1st method presented in Eurocode3 (a general case), and 
4,4% for the 2nd method (for rolled and equivalent welded sections). The results which 
have been obtained from hand calculations are more conservative.  
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The second beam which has been analysed is a case of an intermediate beam. The 
results obtained from the analysis with plastic material model have been presented in  
Figure 3.22 and 3.23   

Relation between the moment and vertical displacement U2 for an intermediate beam 
has been presented in Figure 3.22 below. 

 
Figure 3.22 Moment vs vertical displacement chart: plastic analysis of  the beam of 

length L2=5m. 

As can be observed from the chart above, the results obtained from Finite Element 
Analysis have given a good accuracy with expected values obtained from hand 
calculations. The load-displacement relations have risen linearly until stresses in the 
sections have reached the value of the yield strength, which is 355MPa in the 
investigated case. After yielding the load could still be increased insignificantly since 
stress distribution in the section has been possible. Vertical displacement in this case 
has been equal to: 8,33mm/10mm due to input initial imperfections and around 30mm 
due to displacement caused by the load applied. In this case failure has been governed 
also by yielding.  
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Relation between the moment and horisontall displacement U3 for an intermediate 
beam  has been presented in Figure 3.23 below: 

 
Figure 3.23 Moment vs horisontal displacement chart: plastic analysis of  the beam of 

length L2=5m. 
In the case of an intermediate beam horizontal displacement has been also rather 
small, around 4mm. As expected, an intermediate beam is also not very sensitive to 
the lateral-torsional buckling. Results obtained from Finite Element Analysis have 
been very similar both when adopting the general case and the case of rolled sections 
presented in Eurocode3. Thus in the second case the value of the buckling resistance 
moment has been slightly lower, since larger initial imperfection has been applied. It 
can be concluded that an intermediate beam, is more sensitive to initial imperfections 
and loose of stability than a stocky beam. However, these factors have not governed 
the failure of a member. The failure has been governed by yielding 

The results obtained from Eurocode3 are very close to the values obtained from Finite 
Element Analysis. Especially the second proposed method has given a good accuracy. 
An estimation of the point when yielding has occurred is very good in this case.  

In comparison: the error between hand calculations and Finite Element Analysis has 
been equal to 9% for the 1st method presented in Eurocode3 (a general case), and 
4,5% for the 2nd method (for rolled and equivalent welded sections). The results 
obtained from hand calculations have been more on the safe side.  
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The third beam which has been analysed is a case of a slender beam. For this case the 
results obtained from the analysis with plastic material model have been presented in  
Figure 3.24 and 3.25  

Relation between the moment and vertical displacement U2 for a slender beam has 
been presented in Figure 3.24 below. 

 
Figure 3.24 Moment vs vertical displacement chart: plastic analysis of  the beam of 

length L3=10m. 

The load-displacement relations have risen linearly until stresses in the sections have 
reached the value of the yield strength, which is 355MPa in the investigated case. 
Exactly when reaching the yield point the failure has occurred. Stress distribution in 
the section in this case has not been possible. As can be observed from the chart 
above, the results obtained from Finite Element Analysis have given quite good 
accuracy with expected values obtained from hand calculations. However, in this case 
the difference between them has been larger than in the cases of a stocky and 
intermediate beam Vertical displacement in this case has been equal to: 
16,667mm/20mm due to input initial imperfections and around 110mm due to 
displacement caused by the load applied. In this case failure has been influenced both 
by yielding and by the loose of stability.  
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Relation between the moment and horisontal displacement U3 for a slender beam  has 
been presented in Figure 3.25 below. 

 
Figure 3.25 Moment vs horisontal displacement chart: plastic analysis of  the beam of 

length L3=10m. 

In the case of a slender beam a horizontal displacement has been larger than in the 
other cases and it has been equal almost 40mm. Results obtained from Finite Element 
Analysis have been very similar both when adopting the general case and the case of 
rolled sections presented in Eurocode3. Thus in the second case the value of the 
buckling resistance moment has been slightly lower, since larger initial imperfection 
has been applied.  

It can be concluded that a slender beam, has been most sensitive to initial 
imperfections and loose of stability in comparison with the other investigated beams. 
The failure has been governed both by yielding and by the loose of stability. 

In the case of a slender beam the results obtained from Eurocode3 are not so close to 
the values obtained from Finite Element Analysis as in the previous cases. Again the 
2nd method proposed by Eurocode3 (for rolled and equivalent welded sections) have 
given better accuracy than the 1st method (a general case).  

In comparison: the error between hand calculations and Finite Element Analysis has 
been equal to 19% for the 1st method presented in Eurocode3 (a general case), and 
10% for the 2nd method (for rolled and equivalent welded sections). The results 
obtained from hand calculations have been much more on the safe side.  
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4 Parametric studies of the I-section with 
corrugated web  

In order to gain deeper knowledge about the problem of lateral-torsional buckling of 
I-girders with corrugated webs under uniform bending parametric studies have been 
performed. Three calculation models for obtaining theoretical critical moment have 
been compared, namely: the one proposed by NCCI (2007), second proposed by 
Lindner (1997) and third, most recent, proposed by Moon et al. (2009). MathCAD has 
been used to perform all calculations. Calculations can be found in Appendix C. 

Eurocode3 does not provide any formulas for obtaining theoretical critical moment; 
however, it is using it to obtain the slenderness in the procedure of calculating   
lateral-torsional buckling resistance moment. Design codes, like NCCI (2007) in this 
case, give only formulas for theoretical critical moment for the simplest case of 
prismatic, simply supported beams subjected to uniform moment and restrained 
against lateral defection. There is lack of information in the available design codes 
how to deal with more complex examples. Further investigations should be 
performed. 

In the parametric studies which have been carried out parameters which have been 
changing in all examples are: the depth of the beam hw and the thickness of the 
corrugated web tw. Investigated I-girder and the corrugation of the web have been 
shown in Figure 4.1.  

 
Figure 4.1 The dimensions of the investigated profile.  

Methodologies proposed by NCCI (2007), Lindner (1997) and Moon et al. (2009) for 
obtaining the elastic critical moment have already been presented in Chapter 2 and 
Chapter 3. Formulas for the elastic critical moment can be found in equations (2.13), 
(3.14) and (3.15) of this report. 
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The results obtained from calculations using computer program MathCAD have been 
collected in Tables 4.1-4.3 below. 

Methodology presented in NCCI (2007) assumes that the investigated beam is 
prismatic, has a flat web and that it is restrained against lateral torsion. The values of 
the theoretical critical moment, obtained using this method, have been presented in 
Table 4.1 below. 

Table 4.1 Theoretical critical buckling moment:  NCCI (2007). 

Mcr – flat web hw = 2mm hw = 3mm hw = 4mm 
hw = 400mm 184,264 184,591 185,227 
hw = 600mm 226,472 226,872 227,648 
hw = 800mm 274,865 275,304 276,157 

Methodology presented by Lindner (1997) deals with the case of the simply supported 
beam which is prismatic and has a trapezoidally corrugated web. The beam is 
subjected to uniform bending. This method applies the formula for the warping 
constant for the I-section with corrugated web from Equation (2.4). The values of the 
theoretical critical moment, obtained using this method, have been presented in   
Table 4.2 below. 

Table 4.2 Theoretical critical buckling moment:  Lindner (1997).  

Mcr – Lindner hw = 2mm hw = 3mm hw = 4mm 
hw = 400mm 226,887 245,632 263,23 
hw = 600mm 278,488 301,355 322,814 
hw = 800mm 332,479 358,028 382,088 

Methodology presented by Moon et al. (2009) deals with the case of the simply 
supported beam which is prismatic and has a trapezoidally corrugated web. The beam 
is subjected to uniform bending.  This method applies the formula for the warping 
constant from Equation (2.10). The values of the theoretical critical moment, obtained 
using this method, have been presented in Table 4.2 below. 

Table 4.3 Theoretical critical buckling moment:  Moon et al. (2009).  

Mcr – Moon et al. tw = 2mm tw = 3mm tw = 4mm 
hw = 400mm 178,993 179,382 180,057 
hw = 600mm 222,527 223,126 224,068 
hw = 800mm 272,141 272,99 274,213 

It can be observed from the tables above that the results obtained from the 
methodology proposed by Moon et al. (2009) have been slightly smaller than the ones 
obtained using the procedure for a flat web. According to the article of Moon et al. 
(2009) the results obtained using their methodology for I-girders with corrugated 
webs should be larger than for the case of flat webs. They have proven it using Finite 
Element Analysis.   The accuracy of Finite Element model used by Moon et al. has 
been validated by the comparison of the obtained theoretical critical moment with 
theoretical values.  
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The results have been presented in Figure 4.2 below. 

 
Figure 4.2 Verification result of Finite Element model. 

It has been proven by Moon et al. (2009) that for the profiles which they have 
investigated formulas proposed for flat webs have been less accurate than using their 
method. The parameters which they have investigated in Finite Element Analysis 
have been the warping constant and the shear modulus. The comparison of these 
parameters made by Moon et al. (2009) has been presented in Figure 4.3 below. 

 
Figure 4.3 Variation of Cw,co/Cw, flat and Gco/G with corrugation angle θ. 
To illustrate how the warping constant and the shear modulus influence the value of 
the theoretical critical moment the variation of the critical moment of the girder with 
flat and with corrugated web has been presented in Figure 4.4 .  
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Figure 4.4 Variation of Mocr/Mocr,flat with corrugation angle θ. 
The reason why in the parametric studies, which has been carried out, the results have 
been not as expected is that Moon et al. (2009) have used different dimensions of their 
profile. Thus the results for other magnitude of the dimensions may differ. The 
dimensions used by Moon et al. have been much larger and have been presented in 
Figure 4.5 below.  

 
Figure 4.5 Dimensions of analysis model investigated by Moon et al. (2009). 

In comparison, the results obtained using the methodology proposed my Lindner 
(1997) have been larger than using two other methodologies. However, the 
confirmation of the methodology proposed by Lindner (1997) by Finite Element 
Analysis has not been available to the author, thus it is difficult to relay on these 
method. 

In conclusion, Moon and al. (2009) provides the results from Finite Element Analysis 
which confirm they calculation model. Thus the accuracy of their methodology for 
calculating the theoretical critical moment has been validated. According to the 
studies performed by Moon et al. (2009) a practical design procedures from        
NCCI (2007) and Eurocode3 can be applicable to the I-girders with corrugated webs. 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2009:NN 50

No matter how large are the dimensions of the investigated section, the corrugation 
has an influence on a value of the critical moment only when the corrugation angle is 
larger than 40o. Moreover, it has no significant meaning then this angle is less        
than 40o. When the corrugation angle is around 60o the value of the critical moment is 
increased of around 10%. When the corrugation angle is 45o the value of the critical 
moment is increased of around 5%. 

By applying this new methodology proposed by Moon et al. (2009) for the case of not 
very big steel frames, obtained values of critical moment have been even slightly 
smaller than these obtained from calculations based on Eurocode3. In conclusion it is 
rather useless to adopt this new methodology in our case. The methodology for 
calculating the theoretical critical moment proposed for I-profiles with the flat webs is 
sufficient in the investigated case. When considering structures consisted of profiles 
with medium dimensions it is sufficient to base calculation on a procedures presented 
in NCCI (2007) and Eurocode3. They are applicable in the case of interests of this 
report. The new methodology proposed by Moon et al. (2009) is applicable and useful 
for large-scale structures which are consisted of profiles with big dimensions. 

There are no Finite Element models available for structures with medium dimensions, 
consisted of tapered I-girders with trapezoidally corrugated webs. Further 
investigations should be carried out. It is difficult to say if the methodology proposed 
by Moon et al. (2009) or Lindner (1997) is applicable in our case. Finite Element 
Analysis should be performed.  
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5 Frame analysis 
Previous Chapters of this report have focused on a stability of single members which 
have failed due to axial force and bending moment. In this Chapter the limit state of 
elastic frame buckling has been investigated and described. According to Galambos 
(1998) the principal mode of frame failure is instability. That is the reason why frame 
buckling must be taken into account as one of the possible limit states in the design of 
the final structure. Frame buckling is especially dangerous during the erection of a 
structure, when the bracing and the cladding has not been installed yet. Thus the 
erection process needs to be analysed at every step of it. In order to be able to design 
safe constructions it is essential to understand and recognize the behaviour of frames 
subjected to external loads. 

Two kinds of frame behaviour considering instability can be distinguished, namely  
in-plane buckling and out-of-plane buckling. In-plane buckling mode can be described 
as the case when the frame buckles in the same plane as the applied load. This type of 
buckling has been shown in Figure 5.1 below.  

 
Figure 5.1 Asymmetric mode (sway mode) and symmetric mode of  in-plane buckling 

For the case of in-plane buckling imperfections which mainly should be taken into 
account in the second order analysis are frame imperfections. They are applied as an 
initial sway or as a system of equivalent horizontal forces. For the case of in-plane 
buckling analysis Eurocode3 suggests methods for performing hand calculations and 
obtaining buckling lengths and buckling resistance; however, this issue is out of the 
scope of this report and has not been elaborated. 

The mode of buckling which is of interests of this report is out-of plane buckling. 
Out-of-plane buckling mode, described also as lateral-torsional buckling, can be 
defined as a case when the frame buckles out of the plane in which the load is applied. 
Members in compression in the frame deflect out of this plane and twist 
simultaneously. For the case of lateral-torsional buckling initial imperfections also 
need to be considered. Geometrical imperfections of the frames result in spatial 
displacement from the beginning of loading. This causes additional moments from the 
second order effects, which need to be taken into account. In order to perform second 
order analysis which would take into account initial imperfections and material     
non-linearities Finite Element Analysis need to be performed. Furthermore, design 
procedures available in Eurocode3 does not treat the complex problem of the frames 
with tapered and corrugated webs, thus Finite Element Analysis is the only reasonable 
solution to obtain accurate results.  
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In this Chapter Finite Element Analysis of two 3D steel frames has been presented 
accounting for lateral-torsional buckling. The first order and the second order analyses 
have been performed. Second order analysis is non-linear and it takes into account 
material non-linearities and initial member imperfections of the structure. It is the 
most exact method for obtaining buckling resistance of the frames with tapered and 
corrugated webs. Moreover, a comparison between the frame with corrugated webs 
and the frame with plane webs has been made, accounting for out-of-plane buckling. 
The most critical points in the structure have been investigated and the frame load 
capacity has been analysed. Such investigation allows gaining a deeper understanding 
of frame instability phenomenon. It also gives a good opportunity to compare and 
verify two types of the frames used recently by companies constructing steel 
structures.  

 

5.1 Investigated models 
As has been mentioned in the previous Sections of this report, there are no clear 
procedures in the available codes, like Eurocode3, to deal with the cases of more 
complex frames. Thus Finite Element Analysis has been performed in order to be able 
to compare the lateral-torsional resistance of the frames consisted of corrugated and 
plane webs. 

The parameter which has been investigated is the required distance between the 
purlins and lateral restraints. The purpose of the purlins is to prevent the            
lateral-torsional buckling of the upper flange of the rafter while the purpose of the 
lateral restrains is to prevent the lateral-torsional buckling of the lower flange of the 
rafter and of the inner flange of the column. 

The frames which have been analysed are 7,6m high with a span of 21,3m. These 
dimensions have been based on the projects delivered by Borga Company and have 
been shown in Figure 5.2 below. 

 
Figure 5.2 Dimensions of all analysed frames. 

Material properties which have been adopted for all models: 

• Steel grade: S355 
• Yield strength: 355yf MPa=   
• Young Modulus:  206, 8E GPa=  
• Poisson’s ratio: 0,29ν =  
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All models have been created in computer software Ideas. In this programme the 
geometry has been created and whole structure has been meshed using thin shell 
elements. The mesh element size which has been used is equal to 25 which is rather 
small and assures the accuracy of the analysis. When section properties have been 
defined all models have been exported do ABAQUS. In ABAQUS the boundary 
conditions and the loads have been defined and required analyses have been 
performed. 

The first model which has been created is a case of the frame with corrugated webs. 
To create the geometry computer program Ideas has been used. The geometry of the 
first frame has been shown in Figure 5.3 below. 

 
Figure 5.3 Analysed frame with corrugated webs. 

Analogically the second model has been created using the same dimensions, section 
properties and material properties. The only difference is the web which in the second 
case has been plane. The geometry of the second frame has been shown in Figure 5.4 
below. 

 

 
Figure 5.4 Analysed frame with plane webs.  

The model which has been presented above has been created only to illustrate the 
difference in the linear buckling behaviour of the frame with the thin web of 3mm in 
case then it is corrugated and in case when it is plane. It is important to keep in mind 
that in the constructions which are realized in reality plane webs are thicker and 
moreover stiffened by vertical stiffeners which are welded to the web and flanges. 
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This is quite problematic and expensive solution. That is why the usage of the 
corrugated web has been suggested. It requires using special equipment for automatic 
welding, however it can be very beneficial in the overall, as has been explained in the 
first Chapters of this report. In order to model the frame with plane webs, which is 
used in practice in steel structures the third model has been created. In this case all 
dimensions have been the same as in the first model, only the web thickness has been 
increased from 3mm to 6mm in the column and the area in the corner of the frame, 
5mm in the middle of the rafter and 4mm in the end of the rafter. Moreover, vertical 
stiffeners have been added along the webs. The geometry of the third frame has been 
shown in Figure 5.5 below. 

 
Figure 5.5 Analysed frame with the plane web with vertical stiffeners  

As long as the frames are is symmetric it has been sufficient to study only one half of 
the frame.  

Boundary conditions which have been applied in all cases have been described as 
follows. At the first support, in the bottom of the column, displacements about 
directions X, Y and Z and the rotation about direction y have been fixed at the point in 
the middle of the web. Moreover displacement about X direction has been restrained 
along the nodes of the edge of the web. Finally, displacement about Z direction has 
been fixed along the nodes of the edge of the flanges. 

At the second support at the end of the rafter the displacement at each node along the 
edge has been prevented about X direction. Moreover displacement about Z direction 
has been prevented along the web. 

In order to prevent tilting of the frame additional boundary condition had been added 
in the corner of the frame. The displacement in the Z direction has been fixed. 

Load case which had been investigates is the major load case of self weight and snow 
load. It has been checked by the additional software programme to be the most critical 
load case accounting for lateral torsional buckling of the investigated frames. Thus it 
is sufficient for the purpose of this report. If more detailed analysis would be required 
it would be recommended also to consider the case of the wind load and other load 
combinations.  
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Boundary conditions and the load which has been applied have been shown in Figure 
5.6 below. 

 
Figure 5.6 Boundary conditions and applied load. 
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5.2 Results and discussion 
For all of the models described previously first order analysis has been performed 
using ABAQUS. The step which has been used for this purpose is Linear Buckling. 
After that, the second order analysis has been performed for the first and the third 
model. The step which has been used for this purpose is Static Riks. Moreover, 
parametric studies have been carried out regarding lateral restraints, both for the frame 
with the corrugated web and for the frame with the plane web with vertical stiffeners. 
The results from linear and non-linear analyses have been presented and compared in 
the following Section.   

 

5.2.1 Linear buckling analysis 
As a first step of this investigation linear buckling analyses of all models have been 
performed. The load which has been applied in the linear analysis has been taken as 
10kN/m.  

The first buckling mode which has been obtained from the linear buckling analysis in 
the case of the frame with corrugated webs has been observed as buckling of the plane 
plate in the corner of the frame. The second buckling mode has been the            
lateral-torsional buckling mode. For the frame with corrugated webs eigen value 
obtained from linear buckling analysis for the second mode has been equal to 2,679 
which corresponds to the load of 26,79kN/m.  

In order to avoid this buckling mode and the problem of yielding in this area in further 
analyses, the thickness of this plate has been increased from 6mm to 8mm. Such 
change has been sufficient to obtain the lateral-torsional buckling mode as a first one, 
which has been of the interests of this report. 

After increasing the thickness of the plate in the corner eigen value obtained from the 
linear buckling analyses has been slightly higher. For the frame with corrugated webs 
eigen value has been equal to 2,8812 which corresponds to the load of 28,812kN/m. 
The buckling mode for this case has been shown in Figure 5.7 below with 
deformation scale factor equal to 300. 

 
Figure 5.7 Lateral-torsional buckling mode of the frame with corrugated webs. 
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As can be observed form Figure 5.7 above, parts of the frame which have buckled are 
the inner flange of the column, the inner flange of the rafter near the corner of the 
frame and the outer flange of the rafter near the middle of the frame. In order to 
prevent these parts to buckle lateral restrains of the inner flanges should be added and 
for the outer flange the purlins should be installed. 

For the second model with thin plane web the eigen value which has been obtained 
has been much lower than in the case of the frame with corrugated web. It has been 
equal to 0,8774 which corresponds to the load of 8,774kN/m . It can be clearly visible 
that the frame with corrugated webs has significantly higher value of buckling 
resistance than the frame with plane webs. Moreover, for the frame with plane webs, 
first 22 buckling modes have been caused by the shear buckling of slender webs. 
While in the case of the frame with corrugated web the first relevant buckling mode 
has been caused by the lateral-torsional buckling.  

The buckling mode for the second model has been shown in Figure 5.8 below with 
deformation scale factor equal to 200. 

 
Figure 5.8 Shear buckling of the thin, plane web. 

In order to prevent the failure caused by shear buckling of the webs in the third model 
the thickness of the webs has been increased and vertical stiffeners have been added. 
In this way shear buckling of the web has been prevented and the eigen value and 
buckling mode obtained from the linear buckling analysis have been analogical to the 
ones obtained from the analysis of the first frame with corrugated webs.  

The first buckling mode which has been obtained from the linear buckling analysis for 
the case of the frame with plane webs with vertical stiffeners has been observed as 
buckling of the plane plate in the corner of the frame. The second buckling mode has 
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been the lateral-torsional buckling mode, analogically as for the first model. For the 
frame with plane webs with vertical stiffeners eigen value obtained from linear 
buckling analysis for the second mode has been equal to 2,796 which corresponds to 
the load of 27,96kN/m. 

 In order to avoid this buckling mode and the problem of yielding in this area in 
further analyses, the same as for the first model, the thickness of this plate has been 
increased from 6mm to 8mm. Such change again has been sufficient to obtain the 
lateral-torsional buckling mode as a first one. The increased thickness of the plane 
plate in the corners of both frames has been adopted in further non-linear analyses.  

As a result eigen value obtained from the linear buckling analyses has been slightly 
higher. For the frame with corrugated webs eigen value has been equal to 2,876 which 
corresponds to the load of 28,76kN/m. The buckling mode for the third model has 
been presented in Figure 5.9 below with deformation scale factor equal to 300. 

 
Figure 5.9 Lateral-torsional buckling mode of the frame with plane webs with  

vertical stiffeners. 

As can be observed form Figure 5.9 above, parts of the frame which have buckled are 
mainly the inner and the outer flange of the rafter and the inner flange of the column. 
This shape of buckling mode is additionally governed by the fact that a part of the 
vertical stiffeners in the rafter has been welded only on the one side of the web.  In 
order to prevent these parts to buckle lateral restrains of the inner flange should be 
added and for the outer flange the purlins should be installed. 

It can be noticed that the buckling load for the frame with corrugated webs and for the 
frame with plane webs with vertical stiffeners has been very similar, around 29kN/m. 
This means that the thin, corrugated web is a good substitute to the thicker plane with 
vertical stiffeners. For the frame with plane, thin web this load has been only equal to 
around 9kN/m.  
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5.2.2 Non-linear buckling analysis 
As the next step non-linear Finite Element Analysis has been performed. For this 
purpose Static Riks analysis has been adopted. In this step material non-linearities and 
member imperfections have been introduced. Member imperfections have been taken 
into account by incorporating the initial bow imperfection. The shape of the 
imperfection has been taken from the first buckling mode from the linear analysis and 
the magnitude of this imperfection has been calculated according to Eurocode3. The 
value ,o de  of the bow imperfection given in Table 5.1 in Eurocode3 has been based on 
a dimension of the longest member in the analysed model. For second order analysis, 
taking into account lateral-torsional buckling of a member in bending, Eurocode3 
gives the value of initial imperfection as ,o dke . The coefficient k  is recommended to 
be taken as equal to 0,5. This method allows disregarding an additional torsional 
imperfection. By following this procedure the value of initial imperfection obtained 
for the investigated frame has been equal to 37,4mm.  

The failure point which has been analysed in the models has been defined as the point 
when stresses in the members exceed the yield stress equal to 355MPa. Second order 
analysis has been performed for the case of the first and the third analysed model. 
This has been done because the second model of the frame with thin, plane web has 
been presented only to show the differences in linear buckling behaviour of 
investigated models.  

The arbitrary load which has been applied has been equal to 5kN/m. The steps which 
have been defined in the Static Riks analysis have been fixed and taken as equal to 
0,2. This value is rather small in order to capture the differences between the 
investigated frames. 

The first analysis which has been performed has corresponded to the case of the frame 
without any restraints: no purlins and no lateral restraints of the inner flanges. This 
analysis has been performed both for the frame with corrugated webs and for the 
frame with plane webs. 

For the case of the frame with corrugated webs yielding of first fibres has been 
observed at one node at the connection between the column and the rafter at load level 
of 15kN/m, which correspond to the reaction force equal to 165kN. When the load has 
approached 15,6kN/m yielding has been captured also to the inner flange of the 
column. For this case the reaction force has been equal to 171,8kN. High stresses 
concentration at only one node could be caused by different aspects, i.e. simplified 
model of the connection, big difference between the thicknesses of connecting 
elements, possibility of the forced position of the nodes in this area, due to merging 
while meshing in Ideas. That is why it is more reliable to take the second mentioned 
value of the load level as the load level where yielding has occurred. 
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The area of yielding has been pictured in Figure 5.10 below. 

 
Figure 5.10 The area of yielding for the frame with corrugated webs without any 

lateral restraints. 

The in-plane deflection of this model has been illustrated in Figure 5.11 below.  

 
Figure 5.11 In-plane deflection of the frame with corrugated webs without any lateral 

restraints. 
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The out-of-plane deflection of this model has been illustrated in Figure 12 below.  

 
Figure 5.12 Out-of-plane deflection of the frame with corrugated webs without any 

lateral restraints. 

In this case, in-plane deflection in U1 direction has been equal to 22mm. Out-of plane 
deflection in U3 direction has been equal to 39mm for the inner flange of the rafter, 
33mm for the outer flange of the rafter and 19mm for the inner flange of the column.  

In the case of the frame with plane webs with vertical stiffeners, the first points of 
yielding have been captured at one node at the connection of the stiffener in the corner 
of the frame at load level of 14,8kN/m, which corresponds to the reaction force equal 
to 162,8kN. When the load has approached 16,24kN/m yielding has been captured 
also to the inner flange of the column. In this case the reaction force has been equal to 
178,6kN. Again the second load level is considered as more reliable. The reason of 
this fact has been explained before. 
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The area of yielding for the frame with plane webs has been pictured in Figure 5.13 
below. 

 
Figure 5.13 The area of yielding for the frame with plane webs without any lateral 

restraints. 

The in-plane deflection of this model has been illustrated in Figure 5.14 below. 

 
Figure 5.14 In-plane deflection of the frame with plane webs without any lateral 

restraints. 
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The out-of-plane deflection of this model has been illustrated in Figure 5.15 below. 

 
Figure 5.15 Out-of-plane deflection of the frame with plane webs without any lateral 

restraints. 

The shape of in-plane deflection has been very similar in every case, which is why the 
figure showing this deflection has not been repeated in the following paragraphs; only 
the proper magnitude of the in-plane deflection has been given.  

In-plane deflection in U1 direction has been equal to 22mm. Out-of plane deflection 
in U3 direction has been equal to 48mm for the inner flange of the rafter, 44mm for 
the outer flange of the rafter and 22mm for the inner flange of the column.  

It can be observed that the in-plane deflection is very similar for both cases, but the 
out-of-plane deflection is larger for the frame with plane webs. Moreover, the load at 
which the first point of yielding has been captured has been slightly lower for the 
frame with the corrugated webs, although generally it has been similar. 

Because yielding in both cases has been observed firstly in the column, the additional 
boundary condition has been added there to prevent the displacement in U3 direction. 
The restraint has been put in the area where high out-of-plane deflection has been 
observed. It corresponds to the lateral restraint of the inner flange of the column. Such 
restraint could be constructed to the ‘purlins’ on the outer flange of the column, 
though the boundary condition has been placed on both sides of the column.  

The analysis of the case of only one side restraint also has been carried out. The 
results of this analysis can be found in Appendix C. Moreover, in order to see what is 
the response of the structure to different additional boundary conditions, i.e. one 
purlin, one lateral restraint of the rafter and one lateral restraint of the column, 
additional analyses have been carried out. These additional boundary conditions have 
been applied at the points where the maximum out-of-plane deflection has been 
observed. The results of these analyses have been collected in the tables and figures in 
Appendix C.  

After adding additional restraints to the column, the following results have been 
obtained. For the frame with corrugated webs yielding of first fibres again has been 
observed at one node at the connection between the column and the rafter at load level 
of 19,7kN/m. When the load has approached 20,5kN/m yielding has been captured 
also to the inner flange of the column. The reaction forces in these cases have been 
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equal to 217,1kN and 225,4kN respectively. Again, yielding at the nodes in the 
connection between the inner flanges of the column and the rafter has been 
disregarded. 

The area of yielding of the lower flange has been pictured in Figure 5.16 below. 

 
Figure 5.16 The area of yielding for the frame with corrugated webs with lateral 

restraints in the column. 

The out-of-plane deflection of this model has been illustrated in Figure 5.17 below.   

 
Figure 5.17 Out-of-plane deflection of the frame with corrugated webs with lateral 

restraints in the column. 
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For the case with additional restraints at the column, in-plane deflection in U1 
direction has been equal to 22,5mm. Out-of plane deflection in U3 direction has been 
equal to 13mm for the inner flange of the rafter, 54mm for the outer flange of the 
rafter and less than 1 mm for the inner flange of the column.  

The same additional boundary conditions have been added to the second model. For 
the frame with plane webs the first area of yielding has been captured at the inner 
flange of the rafter at load level of 18,5kN/m. In this case the reaction force has been 
equal to 203,1kN. The area of yielding has been pictured in Figure 5.18 below. 

 
Figure 5.18 The area of yielding for the frame with plane webs with lateral restraints 

in the column. 

The out-of-plane deflection of this model has been shown in Figure 5.19 below.   

 
Figure 5.19 Out-of-plane deflection of the frame with plane webs with lateral 

restraints in the column. 
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In-plane deflection in U1 direction has been equal to 19mm. Out-of plane deflection 
in U3 direction has been equal to 11mm for the inner flange of the rafter, 62mm for 
the outer flange of the rafter and around 3 mm for the flanges of the column.  

Again the out-of-plane deflection has been larger for the frame with plane webs. 
Moreover, the failure load has been lower for the frame with plane webs. 

It can be observed that the restraints of the column highly influence the deflection of 
the inner flange of the rafter, which is much smaller than it the previous case. 
Moreover, it the load level at which yielding has occurred has increased. What can be 
observed is rather high out-of plane deflection of the outer flange of the rafter. In 
order to prevent lateral-torsional buckling of the outer flange of the rafter purlins have 
been modelled. Moreover, case study has been performed to observe how the distance 
between the purlins influences buckling capacity of the structures. Three distances 
between the purlins have been examined and compared, namely: 1m, 2m and 3m.  

After performing these analyses for both frames, it has been observed that by adding 
the purlins load level at which yielding has occurred has increased, although the 
distance between the purlins has not influenced the results. For the distance between 
the purlins equal to 1m, 2m and 3m the obtained results have been almost the same. In 
case of the frame with corrugated webs yielding had been observed at the load level 
equal to 22,44kN/m. For the second frame, with plane webs, this value has been equal 
to 21,14kN/m. The reaction forces in these cases have been equal to 246,8kN and 
232,2kN respectively. As an example, the case of 2m distance between the purlins has 
been presented. For all these cases buckling has been observed at the inner flange of 
the rafter.  

The area of yielding for the first frame has been shown in Figure 5.20 below. 

 
Figure 5.20 The area of yielding for the frame with corrugated webs with lateral 

restraints in the column and purlins on the outer flange of the rafter. 
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In this case in-plane deflection in U1 direction has been equal to 24mm. Out-of plane 
deflection in U3 direction has been equal to 20mm for the inner flange of the rafter, 
less than 1mm for the outer flange of the rafter and less than 1mm for the inner flange 
of the column.  

The out-of-plane deflection of this model has been illustrated in Figure 5.21 below.   

 
Figure 5.21 Out-of-plane deflection of the frame with corrugated webs with lateral 

restraints in the column and purlins on the outer flange of the rafter. 

The area of yielding for the second frame has been shown in Figure 5.22 below. 

 
Figure 5.22 The area of yielding for the frame with plane webs with lateral restraints 

in the column and purlins on the outer flange of the rafter. 
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In this case in-plane deflection in U1 direction has been equal to 20mm. Out-of plane 
deflection in U3 direction has been equal to 21mm for the inner flange of the rafter, 
less than 1mm for the outer flange of the rafter and less than 1mm for the inner flange 
of the column.  

The out-of-plane deflection of this model has been shown in Figure 5.23 below.   

 
Figure 5.23 Out-of-plane deflection of the frame with plane webs with lateral 

restraints in the column and purlins on the outer flange of the rafter. 

The reaction forces which have appeared in the additional restraints for both frames in 
cases of the distance between the purlins equal to 3m, 2m and 1m have been collected 
in Tables 5.1-5.3 below.  

Table 5.1 Reaction forces in additional lateral restraints for the frames with purlins 
every 3m. 

Purlins every 3m Frame with  Frame with 
corrugated webs plane webs 

Outer Column 24,388 -28,13 
[kN] 

Inner Column -40,245 44,32 
[kN] 

Corner 15,533 -9,76 
[kN] 

Purlin1 -13,753 8,24 
[kN] 

Purlin2 0,25 -2,23 
[kN] 

Purlin3 13,68 -15,47 
[kN] 

Purlin4 6,68 -7,05 
[kN] 
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Table 5.2 Reaction forces in additional lateral restraints for the frames with purlins 
every 2m. 

Purlins every 2m Frame with  Frame with 
corrugated webs plane webs 

Outer Column 24,4 -28,1 
[kN] 

Inner Column -40,35 44,17 
[kN] 

Corner 20,69 -13,2 
[kN] 

Purlin1 -15,995 6,4 
[kN] 

Purlin2 -3,8 3,93 
[kN] 

Purlin3 1,1 0,677 
[kN] 

Purlin4 9,115 0,9 
[kN] 

Purlin5 8,228 -0,14 
[kN] 

Purlin6 1,39 -1,72 
[kN] 
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Table 5.3 Reaction forces in additional lateral restraints for the frames with purlins 
every 1m. 

Purlins every 1m Frame with  Frame with 
corrugated webs plane webs 

Outer Column 24,36 -28,1 
[kN] 

Inner Column -40,26 44,17 
[kN] 

Corner 18 -13,2 
[kN] 

Purlin1 -10,03 6,4 
[kN] 

Purlin2 -6,2 3,93 
[kN] 

Purlin3 -0,03 0,677 
[kN] 

Purlin4 -0,76 0,9 
[kN] 

Purlin5 0,62 -0,14 
[kN] 

Purlin6 1,6 -1,72 
[kN] 

Purlin7 4,8 -5,37 
[kN] 

Purlin8 5,8 -6,23 
[kN] 

Purlin9 3,9 -4,88 
[kN] 

Purlin10 1,6 -1,57 
[kN] 

Purlin11 0,9 -1,875 
[kN] 

 

It can be observed that in all cases usually in the frame with plane webs reaction 
forces has had a larger magnitude. This fact should be taken into account while 
choosing the appropriate profiles for the lateral restraints. 

Because in all cases yielding has occurred in the lower flange of the rafter, as the last 
step, the lateral restraint has been added there. Boundary condition fixing U3 
deflection has been added to the inner flange of the rafter at the point of where the 
highest out-of plane deflection has been noticed.  
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As a result after performing another analysis the load level which has been reached 
for the case of the frame with corrugated webs has been equal to 25,7kN/m.  Yielding 
has been observed in the column. In this case the reaction force has been equal to 
282,6kN. The case of 3m distance between the purlins has been presented. The area of 
yielding for the second frame has been shown in Figure 5.24 below.

 
Figure 5.24 The area of yielding for the frame with corrugated webs with lateral 

restraints in the column and rafter, and purlins on the outer flange of 
the rafter. 

In this case in-plane deflection in U1 direction has been equal to 28mm. Out-of plane 
deflection in U3 direction has been equal to maximum 4mm for the inner flange of the 
rafter, less than 1mm for the outer flange of the rafter and less than 1mm for the inner 
flange of the column. The out-of-plane deflection of this model has been illustrated in 
Figure 5.25 below.   

 
Figure 5.25 Out-of-plane deflection of the frame with corrugated webs with lateral 

restraints in the column and rafter and purlins on the outer flange of 
the rafter. 
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It can be stated that yielding has been caused by bending of the column. Out-of plane 
deflections for these cases have been rather small, thus adding more lateral restraints 
would not be very efficient. 

After performing analogical procedure for the frame with the plane webs, yielding has 
occurred in the lower flange of the rafter at the load level equal to 27,07kN/m. It 
corresponds to the vertical reaction force in the bottom of the column equal to 
297,8kN. The area of yielding for this case has been presented in Figure 5.26 below. 

 
Figure 5.26 The area of yielding for the frame with plane webs with lateral restraints 

in the column and rafter, and purlins on the outer flange of the rafter. 

In this case in-plane deflection in U1 direction has been equal to 26mm. Out-of plane 
deflection in U3 direction has been equal to maximum 7,5mm for the inner flange of 
the rafter, less than 1mm for the outer flange of the rafter and less than 1mm for the 
inner flange of the column.  
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The out-of-plane deflection of this model has been illustrated in Figure 5.29 below.   

 
Figure 5.29 Out-of-plane deflection of the frame with plane webs with lateral 

restraints in the column and rafter and purlins on the outer flange of 
the rafter. 

For the second case, the out-of-plane deflection has been also rather small, thus there 
is no need to add more lateral restraints.  

The fact that in the last analysis there are different areas of yielding can be explained 
by the fact that the frame with plane webs has thicker web in the column. In the 
second case the thickness of the web is equal to 6mm, while for the second frame the 
thickness of the corrugated web is equal only to 3mm. Moreover, the frame with plane 
webs has vertical stiffeners along the webs. Those two facts cause that the frame with 
plane webs is more resistant to the in-plane deformation of the column. It also 
explains why the load level at which yielding occurs is larger for the frame with plane 
webs.  
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Forces which have appeared in the additional restraints in this case for both frames 
have been collected in Table 5.4 below. 

 Table 5.4 Reaction forces in additional lateral restraints for the frames with purlins 
every 3m. 

Purlins every 3m Frame with  Frame with 
corrugated webs plane webs 

Outer Column 14,85 -22,47 
[kN] 

Inner Column -31,6 42,5 
[kN] 

Corner 10,32 -10,6 
[kN] 

Purlin1 -2,71 3,295 
[kN] 

Purlin2 3,43 -6,36 
[kN] 

Purlin3 14,86 -18,57 
[kN] 

Purlin4 4,91 -6,06 
[kN] 

Lateral restraint -12,3 12,55 
[kN] 

 

It can be noticed that again larger forces has appeared in the case of the frame with 
plane webs. Moreover, additional lateral restraint in the lower flange of the rafter 
visibly decreased the reaction forces in the column for the frame with corrugated 
webs. For the frame with plane webs other reaction forces have not changed in a 
bigger manner compared to the previous analysis without lateral restraint in the lower 
flange of the rafter. 
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6 Conclusions 
Finite Element Analyses which have been carried out have given the general result 
that the frame with corrugated webs and the frame with plane webs with vertical 
stiffeners have similar lateral-torsional buckling behaviour. However, the behaviour 
of the frames has differed to some extent. It has been proven that the frames with 
corrugated webs in most cases have slightly larger load carrying capacity regarding 
the lateral-torsional buckling compared to the frames with the plane webs. Moreover, 
the results from the case study show that the out-of-plane deflection for the frame 
with plane webs has been higher than for the frame with corrugated webs. For the    
in-plane deflection it has been the opposite. The frame with corrugated webs has 
deflected more than the frame with plane webs 

It needs to be kept in mind that in the frame with plane webs had additional vertical 
stiffeners along the webs and that the web has been thicker than in the frame with 
corrugated webs. The purpose of vertical stiffeners is to prevent shear buckling of the 
webs. Welding these stiffeners to the frame is quite problematic and time consuming. 
It also increases the weight of the structure. The frame with corrugated webs has been 
proven to be a good substitute concerning shear buckling of the thin web, in order to 
avoid using vertical stiffeners and thicker webs. Moreover, it can be observed that 
corrugated webs are slightly increasing lateral torsional stiffness of the frame and its 
capacity. For the case of the frames with corrugated webs effective automatic 
processes of welding the webs are already available. Taking all these aspects into 
consideration the frame with corrugated webs has been stated to be a good alternative 
to the frame with plane webs.  

Further on, what is interesting, it has been found that for the analysed frame geometry 
the distance between the purlins does not affect the load carrying capacity of analysed 
frames. The restraint at the outer flange of the rafter is necessary, but the distance 
between the purlins is not essential. Regarding lateral-torsional buckling, possible 
distance between the purlins can be equal to even to 3m or more. However, it is 
important to keep in mind that there are additional regulations concerning the sheeting 
of the construction. For the trapezoidal sheeting it is equal approximately to 1,5m. 
Thus, when choosing the distance of the purlins, it is important to take into account all 
essential parameters.  

Therefore, it is crucial to keep in mind that all analyses have been performed only for 
one type of frame geometry and one loads combination. What is more, one value of 
initial imperfections has been applied and one material type has been taken into 
consideration. That is why further investigation should be carried out for various 
frame geometries, loads combinations and initial imperfections.  

Suggestions for further research: 

• Various dimensions of the frames should be studied 
• Other load cases could be taken into account 
• Various web thickness, spans of the frame, the steel grade could be considered 
• Case study concerning initial imperfections 
• More advanced modelling of boundary conditions and connections between 

the members of the structure 
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Appendix A 
Hand calculations of the buckling resistance 

Case study of columns in compression and beams in bending 
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Data: 
Investigated profile: HEA 300 

 Steel - S355:  
  

   

   
 

 
  

   

  

 

 

 

 

  

 

 

Cross section class: 

a) Flange 

  <  Class 3 

b) Web 

  <  Class 2 

Cross section is in class 3 

bf 300 mm⋅:=
γ M1 1:=

tf 14 mm⋅:= E 210 GPa⋅:=
L1 2 m⋅:=tw 8.5 mm⋅:= ν 0.3:=

fy 355 MPa⋅:= L2 5 m⋅:=h 290 mm⋅:=
L3 10 m⋅:=

G
E

2 1 ν+( )⋅
:=

G 80.769GPa=hw h 2 tf⋅−:=

hw 262 mm= ε
235 MPa⋅

fy
:=

ε 0.814=

Ix
tw hw

3⋅

12
2

bf tf
3⋅

12
⋅+ 2 bf tf⋅

hw
2

tf
2

+
⎛
⎜
⎝

⎞
⎟
⎠

2

⋅
⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅+:= Wx
Ix
h
2

:=

Ix 1.728 104× cm4=

Wx 1.192 103× cm3=

Iy
hw tw

3⋅

12
2

tf bf
3⋅

12
⋅+:=

Iy 6.301 103× cm4=

Wy
Iy
bf
2

:= Wy 420.089cm3=

AI hw tw⋅ 2 bf⋅ tf⋅+:=

AI 106.27cm2=

bf tw−

2 tf⋅
10.411= 14 ε⋅ 11.391=

hw
tw

30.824= 38 ε⋅ 30.917=
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Simple case 1 - Column 

The design buckling resistance of a compression member: 

 

  < 1 

 

Buckling curve for HEA300 : 

  < 1,2 

  < 100mm 

S 355 

Buckling about y-y axis (x-x in this case) => buckling curve b 

An imperfection factor:  

For buckling curve b, from Table 5.1 from EC3, initial bow imperfections are equal to: 

  =    

  

  

Buckling about z-z (y-y in this case) axis => buckling curve c 

An imperfection factor:  

For buckling curve c, from Table 5.1 from EC3, initial bow imperfections are equal yo: 

  

  =    

  

NbRd
χ AI⋅ fy⋅

γ M1
:=

χ

χ
1

Φ Φ
2

λ
2−+

:=
Φ

Φ 0.5 1 α λ 0.2−( )⋅+ λ
2+⎡⎣ ⎤⎦⋅:= α

h
bf

0.967=

tf 14 mm=

αx 0.34:=

e0
L

1
250

e01b
L1
250

:= e01b 8 mm=

e02b
L2
250

:= e02b 20mm=

e03b
L3
250

:= e03b 40 mm=

αy 0.49:=

e01c
L1
200

:= e01c 10mm=
e0
L

1
200 e02c

L2
200

:= e02c 25 mm=

e03c
L3
200

:= e03c 50mm=



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2009:NN 83

 
 

 
 
 

 
 

 
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 

 
 
 

 
 
 
 

 
 

For slenderness l < 0,2 the buckling effects may be ignored and only cross 
sectional checks apply.  

According to Euler's theory, for a straight, prismatic, pin-ended, perfectly centrally 
loaded column, the buckling load can be calculated as: 

According to Eurocode 3:  

  

  

  

 
 

  

  

  

 

 

 

  

  

  

λ
AI fy⋅

Ncr
:=

Ncr

Ncr1
π

2 E⋅ Iy⋅

L1
2

:= Ncr1 3.265 104× kN=

λ1
AI fy⋅

Ncr1
:=

λ1 0.34=

Φ1 0.5 1 αy λ1 0.2−( )⋅+ λ1
2+⎡

⎣
⎤
⎦⋅:= Φ1 0.592=

χ 1
1

Φ1 Φ1
2

λ1
2−+

:=
χ 1 0.929=

NbRd1
χ 1 AI⋅ fy⋅

γ M1
:= NbRd1 3.504 103× kN=

Ncr2
π

2 E⋅ Iy⋅

L2
2

:= Ncr2 5.224 103× kN=

λ2
AI fy⋅

Ncr2
:= λ2 0.85=

Φ2 0.5 1 αy λ2 0.2−( )⋅+ λ2
2+⎡

⎣
⎤
⎦⋅:=

χ 2
1

Φ2 Φ2
2

λ2
2−+

:=

χ 2 0.631=

NbRd2
χ 2 AI⋅ fy⋅

γ M1
:= NbRd2 2.38 103× kN=

Ncr3
π

2 E⋅ Iy⋅

L3
2

:= Ncr3 1.306 103× kN=

λ3
AI fy⋅

Ncr3
:= λ3 1.7=
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According to Polish Code:  

Buckling curve b => n=1,6:  

  

  

  

  

  

  

  

  

  

Φ3 0.5 1 αy λ3 0.2−( )⋅+ λ3
2+⎡

⎣
⎤
⎦⋅:= Φ3 2.312=

χ 3
1

Φ3 Φ3
2

λ3
2−+

:=

χ 3 0.258=

NbRd3
χ 3 AI⋅ fy⋅

γ M1
:= NbRd3 972.653 kN=

λPN1 1.15
AI fy⋅

Ncr1
⋅:=

λPN1 0.391=

φ 1 1 λPN1
2 1.6⋅+⎛

⎝
⎞
⎠

1−
1.6

:= φ 1 0.97=

NPN1 φ 1 AI⋅ fy⋅:= NPN1 3.66 103× kN=

λPN2 1.15
AI fy⋅

Ncr2
⋅:=

λPN2 0.977=

φ 2 1 λPN2
2 1.6⋅+⎛

⎝
⎞
⎠

1−
1.6

:= Φ2 1.02=

NPN2 φ 2 AI⋅ fy⋅:= NPN2 2.502 103× kN=

λPN3 1.15
AI fy⋅

Ncr3
⋅:= λPN3 1.955=

φ 3 1 λPN3
2 1.6⋅+⎛

⎝
⎞
⎠

1−
1.6

:= φ 3 0.244=

NPN3 φ 3 AI⋅ fy⋅:= NPN3 921.492 kN=
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SUMMARY OF THE RESULTS:  

The design buckling resistance of a compression column of length L1: 
 

 

The design buckling resistance of a compression column of length L2: 

 

The design buckling resistance of a compression column of length L2: 

 

The value of critical force obtained from buckling analysis performed using ABAQUS: 

  

  

  

NbRd1 3.504 103× kN=

NbRd2 2.38 103× kN=

NbRd3 972.653kN=

Ncr1 3.265 104× kN= Pcr2m 30048 kN⋅:=

Ncr2 5.224 103× kN= Pcr5m 5152 kN⋅:=

Ncr3 1.306 103× kN= Pcr10m 1301.3 kN⋅:=
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  Simple case 2 - Beam-column 

The design buckling resistance moment of a laterally unrestrained beam: 

 

  < 1 

 

Buckling curve for HEA300: 

  < 2 

Lateral torsional buckling curve for a Rolled I-section, taken from Table 6.4 from EC3 
=> curve a 

An imperfection factor for lateral torsional buckling curve taken from Table 6.3 EC3: 
 

For buckling curve a, from Table 5.1 from EC3, initial local bow imperfections are 
equal: 

  
  =  

 
 

  

For slenderness λLT< 0,4 lateral torsional buckling effects may be 
ignored and only cross sectional checks apply. 

 

Calculation of elastic critical moment, according to Galambos (1988) 

The warping constant: 

 

MbRd χ LT Wx⋅
fy

γ M1
⋅:= χ LT

χ LT
1

ΦLT ΦLT
2

λLT
2−+

:=
ΦLT

Φ 0.5 1 αLT λLT 0.2−( )⋅+ λLT
2+⎡

⎣
⎤
⎦⋅:= αLT

h
bf

0.967=

αLT 0.21:=

1
350

e01a
0.5L1
300

:=e0
L

e01a 3.333 mm=

e02a
0.5L2
300

:=
e02a 8.333mm=

e03a
0.5L3
300

:= e03a 16.667mm=

λLT
Wx fy⋅

Mcr
:=

Mcr

Cw
Iy hw

2⋅

4
:=
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The pure torsional constant: 

 

 
 

  

  

  

  

  

First method proposed in Eurocode3: 

   

   

 

 

 

   

J
2bf tf

3⋅ hw tw
3⋅+

3
:=

W1
π

L1

E Cw⋅

G J⋅
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2+⎛
⎝

⎞
⎠⋅⋅:=

W2
π

L2

E Cw⋅

G J⋅
:= Mcr2

π

L2
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2+⎛
⎝

⎞
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:= Mcr3

π
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⎝

⎞
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Mcr1 4.459 103× kN m⋅= McrFEM2m 4596.9 kN⋅ m⋅:=

Mcr2 850.024kN m⋅= McrFEM5m 878.46 kN⋅ m⋅:=

McrFEM10m 310.28 kN⋅ m⋅:=Mcr3 304.664 kN m⋅=

λLT1
Wx fy⋅

Mcr1
:= λLT2

Wx fy⋅

Mcr2
:= λLT3

Wx fy⋅

Mcr3
:=

λLT1 0.308= λLT2 0.706= λLT3 1.179=
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2+⎡

⎣
⎤
⎦⋅:=
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2+⎡

⎣
⎤
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  < 1 

 
  < 1 

 
  < 1 

The design buckling resistance moment of a laterally unrestrained beam for lengths L1, L2 
and L3: 

 

 

 
 

  

Second method proposed in Eurocode3: 

   

   

  curve b  

 

 

 

χ LT1
1

ΦLT1 ΦLT1
2

λLT1
2−+

:=
χ LT1 0.976=

χ LT2
1

ΦLT2 ΦLT2
2

λLT2
2−+

:=
χ LT2 0.845=

χ LT3
1

ΦLT3 ΦLT3
2

λLT3
2−+

:=
χ LT3 0.544=

MbRd1 χ LT1 Wx⋅
fy

γ M1
⋅:=

MbRd1 412.85 kN m⋅=

MbRd2 χ LT2 Wx⋅
fy

γ M1
⋅:=

MbRd2 357.628 kN m⋅=

MbRd3 χ LT3 Wx⋅
fy

γ M1
⋅:= MbRd3 230.071kN m⋅=

λLT1
Wx fy⋅

Mcr1
:= λLT2

Wx fy⋅

Mcr2
:= λLT3

Wx fy⋅

Mcr3
:=

λLT1 0.308= λLT2 0.706= λLT3 1.179=

αLT2 0.34:= β 0.75:=

ΦLT1 0.5 1 αLT2 λLT1 0.4−( )⋅+ β λLT1
2⋅+⎡

⎣
⎤
⎦⋅:=

ΦLT2 0.5 1 αLT2 λLT2 0.4−( )⋅+ β λLT2
2⋅+⎡

⎣
⎤
⎦⋅:=

ΦLT3 0.5 1 αLT2 λLT3 0.4−( )⋅+ β λLT3
2⋅+⎡

⎣
⎤
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  < 1 

 

 
  < 1 

 
  < 1  

The design buckling resistance moment of a laterally unrestrained beam: 

 
 

 
 

  

For buckling curve b, from Table 5.1 from EC3, initial bow imperfections are equal to: 

 
 

    =  

  

ΦLT1 0.52= ΦLT2 0.739= ΦLT3 1.153=

χ LTβ1
1

ΦLT1 ΦLT1
2

β λLT1
2⋅−+

:=
χ LTβ1 1.035=

χ LTβ1 1:=
χ LTβ2

1

ΦLT2 ΦLT2
2

β λLT2
2⋅−+

:=
χ LTβ2 0.867=

χ LTβ3
1

ΦLT3 ΦLT3
2

β λLT3
2⋅−+

:=
χ LTβ3 0.592=

1

λLT3
2

0.72=

MbRd1β χ LTβ1 Wx⋅
fy

γ M1
⋅:=

MbRd1β 423.175kN m⋅=

MbRd2β χ LTβ2 Wx⋅
fy

γ M1
⋅:=

MbRd2β 366.825kN m⋅=

MbRd3β χ LTβ3 Wx⋅
fy

γ M1
⋅:= MbRd3β 250.391kN m⋅=
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0.5L1
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:=
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1
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e02a
0.5L2
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:=e0
L
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0.5L3
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Appendix B 

Parametric studies of the I-beam with corrugated web 
Evaluation of the elastic critical moment 
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Parametric studies of the I-beam with corrugated web 

Web thickness: 
 

  

 

Web depth: 
 

  

 

 

 

 

 

 

 

 

Corrugation properties : 

 

 

 

 

 

 

 

 

  

 

  

tw1 2 mm⋅:=
tw2 3 mm⋅:= tw 3 mm⋅:=
tw3 4 mm⋅:=

hw1 400 mm⋅:=
hw2 600 mm⋅:= hw 600 mm⋅:=

hw3 800 mm⋅:=
tf 14 mm⋅:=
bf 230 mm⋅:=

E 210 GPa⋅:=
ν 0.3:=
fy 355 MPa⋅:=

Gplane
E

2 1 ν+( )⋅
:=

Gplane 80.769 GPa=

a 140 mm⋅:=
b 50 mm⋅:=

dmax 25 mm⋅:=

L1 10 m⋅:=

c1 b2 2dmax( )2+:=

c1 70.711mm=
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Section properties: 
The second moment of inertia about the strong axis (x-axis) for different depths: 

  

  

  

 

The second moment of inertia about the weak axis (y-axis): 

  

The shear modulus: 

  

The pure torsional constant for different depths: 

  

  

  

 

The pure torsional constant for different web thicknesses: 

  

  

  

 

Ixco1
bf tf⋅ hw1

2

2
:= Ixco1 2.576 108× mm4=

Ixco2
bf tf⋅ hw2

2

2
:= Ixco2 5.796 108× mm4=

Ixco3
bf tf⋅ hw3

2

2
:= Ixco3 1.03 109× mm4=

Ixco
bf tf⋅ hw

2

2
:=

Iyco
tf bf

3

6
:= Iyco 2.839 107× mm4=

Gco
Gplane a b+( )⋅

a c1+
:= Gco 72.83GPa=

Jcoh1
2bf tf

3⋅ hw1 tw
3⋅+

3
:= Jcoh1 4.243 105× mm4=

Jcoh2
2bf tf

3⋅ hw2 tw
3⋅+

3
:= Jcoh2 4.261 105× mm4=

Jcoh3
2bf tf

3⋅ hw3 tw
3⋅+

3
:= Jcoh3 4.279 105× mm4=

Jcoh Jcoh2:=

Jcot1
2bf tf

3⋅ hw tw1
3⋅+

3
:= Jcot1 4.223 105× mm4=

Jcot2
2bf tf

3⋅ hw tw2
3⋅+

3
:= Jcot2 4.261 105× mm4=

Jcot3
2bf tf

3⋅ hw tw3
3⋅+

3
:= Jcot3 4.335 105× mm4=
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Calculations for the plane web: 

   

   

 

 
 

 

 

 

 

 

 

 

Jco11
2bf tf

3⋅ hw1 tw1
3⋅+

3
:= Jco21

2bf tf
3⋅ hw1 tw2

3⋅+

3
:= Jco31

2bf tf
3⋅ hw1 tw3

3⋅+

3
:=
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2bf tf

3⋅ hw2 tw1
3⋅+

3
:= Jco22

2bf tf
3⋅ hw2 tw2

3⋅+

3
:= Jco32

2bf tf
3⋅ hw2 tw3

3⋅+

3
:=

Jco33
2bf tf

3⋅ hw3 tw3
3⋅+

3
:=Jco23

2bf tf
3⋅ hw3 tw2

3⋅+

3
:=Jco13

2bf tf
3⋅ hw3 tw1

3⋅+

3
:=

Cwflat1
bf

3 tf⋅ hw1
2⋅

24
:= Cwflat2

bf
3 tf⋅ hw2

2⋅

24
:= Cwflat3

bf
3 tf⋅ hw3

2⋅

24
:=

Cwflat2 2.555 1012× mm6= Cwflat3 4.542 1012× mm6=Cwflat1 1.136 1012× mm6=

W11
π

L1

E Cwflat1⋅

Gplane Jco11⋅
:=

Mocrflat11
π

L1
E Iy⋅ Gplane⋅ Jco11⋅ 1 W11

2+⎛
⎝

⎞
⎠⋅⋅:=

Mocrflat11 184.108kN m⋅=

W12
π

L1

E Cwflat2⋅

Gplane Jco12⋅
:=

Mocrflat12
π

L1
E Iy⋅ Gplane⋅ Jco12⋅ 1 W12

2+⎛
⎝

⎞
⎠⋅⋅:=

Mocrflat12 226.346kN m⋅=

W13
π

L1

E Cwflat3⋅

Gplane Jco13⋅
:=

Mocrflat13
π

L1
E Iy⋅ Gplane⋅ Jco13⋅ 1 W13

2+⎛
⎝

⎞
⎠⋅⋅:=

W21
π

L1

E Cwflat1⋅

Gplane Jco21⋅
:=

Mocrflat21
π

L1
E Iy⋅ Gplane⋅ Jco21⋅ 1 W21

2+⎛
⎝

⎞
⎠⋅⋅:=
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Method proposed by Lindner: 

The warping constant is derived for the I-beam with corrugated web. 
The torsional constant is the same in case of a plane web and in case of corrugated web.  

 

 

  

W22
π

L1

E Cwflat2⋅

Gplane Jco22⋅
:=

Mocrflat22
π

L1
E Iy⋅ Gplane⋅ Jco22⋅ 1 W22

2+⎛
⎝

⎞
⎠⋅⋅:=

W23
π

L1

E Cwflat3⋅

Gplane Jco23⋅
:=

Mocrflat23
π

L1
E Iy⋅ Gplane⋅ Jco23⋅ 1 W23

2+⎛
⎝

⎞
⎠⋅⋅:=

W31
π

L1

E Cwflat1⋅

Gplane Jco31⋅
:=

Mocrflat31
π

L1
E Iy⋅ Gplane⋅ Jco31⋅ 1 W31

2+⎛
⎝

⎞
⎠⋅⋅:=

W32
π

L1

E Cwflat2⋅

Gplane Jco32⋅
:=

Mocrflat32
π

L1
E Iy⋅ Gplane⋅ Jco32⋅ 1 W32

2+⎛
⎝

⎞
⎠⋅⋅:=

W33
π

L1

E Cwflat3⋅

Gplane Jco33⋅
:=

Mocrflat33
π

L1
E Iy⋅ Gplane⋅ Jco33⋅ 1 W33

2+⎛
⎝

⎞
⎠⋅⋅:=

ux11
hw1

2 Gplane⋅ a⋅ tw1⋅

hw1
2 a b+( )3⋅ Ixco1 Iyco+( )⋅

600 a2⋅ E⋅ Ixco1⋅ Iyco⋅
+:=

cw11
2 dmax⋅( )2 hw1

2⋅

8 ux11⋅ a b+( )⋅
:=

CL11 Cwflat1
cw11 L1

2⋅

E π
2⋅

+:= CL11 2.568 1012× mm6=
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WL11
π

L1

E CL11⋅

Gplane Jco11⋅
:=

MocrL11
π

L1
E Iyco⋅ Gplane⋅ Jco11⋅ 1 WL11

2+⎛
⎝

⎞
⎠⋅⋅:=

MocrL11 226.651 kN m⋅=

ux12
hw2

2 Gplane⋅ a⋅ tw1⋅

hw2
2 a b+( )3⋅ Ixco2 Iyco+( )⋅

600 a2⋅ E⋅ Ixco2⋅ Iyco⋅
+:=

cw12
2 dmax⋅( )2 hw2

2⋅

8 ux12⋅ a b+( )⋅
:=

CL12 Cwflat2
cw12 L1

2⋅

E π
2⋅

+:= CL12 4.703 1012× mm6=

WL12
π

L1

E CL12⋅

Gplane Jco12⋅
:=

MocrL12
π

L1
E Iyco⋅ Gplane⋅ Jco12⋅ 1 WL12

2+⎛
⎝

⎞
⎠⋅⋅:=

MocrL12 278.251kN m⋅=

ux13
hw3

2 Gplane⋅ a⋅ tw1⋅

hw3
2 a b+( )3⋅ Ixco3 Iyco+( )⋅

600 a2⋅ E⋅ Ixco3⋅ Iyco⋅
+:=

cw13
2 dmax⋅( )2 hw3

2⋅

8 ux13⋅ a b+( )⋅
:=

CL13 Cwflat3
cw13 L1

2⋅

E π
2⋅

+:= CL13 7.403 1012× mm6=

WL13
π

L1

E CL13⋅

Gplane Jco13⋅
:=

MocrL13
π

L1
E Iyco⋅ Gplane⋅ Jco13⋅ 1 WL13

2+⎛
⎝

⎞
⎠⋅⋅:=

MocrL13 332.243 kN m⋅=

ux21
hw1

2 Gplane⋅ a⋅ tw2⋅

hw1
2 a b+( )3⋅ Ixco1 Iyco+( )⋅

600 a2⋅ E⋅ Ixco1⋅ Iyco⋅
+:=
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cw21
2 dmax⋅( )2 hw1

2⋅

8 ux21⋅ a b+( )⋅
:=

CL21 Cwflat1
cw21 L1

2⋅

E π
2⋅

+:= CL21 3.283 1012× mm6=

WL21
π

L1

E CL21⋅

Gplane Jco21⋅
:=

MocrL21
π

L1
E Iyco⋅ Gplane⋅ Jco21⋅ 1 WL21

2+⎛
⎝

⎞
⎠⋅⋅:=

MocrL21 245.363 kN m⋅=

ux22
hw2

2 Gplane⋅ a⋅ tw2⋅

hw2
2 a b+( )3⋅ Ixco2 Iyco+( )⋅

600 a2⋅ E⋅ Ixco2⋅ Iyco⋅
+:=

cw22
2 dmax⋅( )2 hw2

2⋅

8 ux22⋅ a b+( )⋅
:=

CL22 Cwflat2
cw22 L1

2⋅

E π
2⋅

+:= CL22 5.772 1012× mm6=

WL22
π

L1

E CL22⋅

Gplane Jco22⋅
:=

MocrL22
π

L1
E Iyco⋅ Gplane⋅ Jco22⋅ 1 WL22

2+⎛
⎝

⎞
⎠⋅⋅:=

MocrL22 301.073 kN m⋅=

ux23
hw3

2 Gplane⋅ a⋅ tw2⋅

hw3
2 a b+( )3⋅ Ixco3 Iyco+( )⋅

600 a2⋅ E⋅ Ixco3⋅ Iyco⋅
+:=

cw23
2 dmax⋅( )2 hw3

2⋅

8 ux23⋅ a b+( )⋅
:=

CL23 Cwflat3
cw23 L1

2⋅

E π
2⋅

+:= CL23 8.826 1012× mm6=

WL23
π

L1

E CL23⋅

Gplane Jco23⋅
:=
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MocrL23
π

L1
E Iyco⋅ Gplane⋅ Jco23⋅ 1 WL23

2+⎛
⎝

⎞
⎠⋅⋅:=

MocrL23 357.739kN m⋅=

ux31
hw1

2 Gplane⋅ a⋅ tw3⋅

hw1
2 a b+( )3⋅ Ixco1 Iyco+( )⋅

600 a2⋅ E⋅ Ixco1⋅ Iyco⋅
+:=

cw31
2 dmax⋅( )2 hw1

2⋅

8 ux31⋅ a b+( )⋅
:=

CL31 Cwflat1
cw31 L1

2⋅

E π
2⋅

+:= CL11 2.568 1012× mm6=

WL31
π

L1

E CL31⋅

Gplane Jco31⋅
:=

MocrL31
π

L1
E Iyco⋅ Gplane⋅ Jco31⋅ 1 WL31

2+⎛
⎝

⎞
⎠⋅⋅:=

MocrL31 262.93 kN m⋅=

ux32
hw2

2 Gplane⋅ a⋅ tw3⋅

hw2
2 a b+( )3⋅ Ixco2 Iyco+( )⋅

600 a2⋅ E⋅ Ixco2⋅ Iyco⋅
+:=

cw32
2 dmax⋅( )2 hw2

2⋅

8 ux32⋅ a b+( )⋅
:=

CL32 Cwflat2
cw32 L1

2⋅

E π
2⋅

+:= CL12 4.703 1012× mm6=

WL32
π

L1

E CL32⋅

Gplane Jco32⋅
:=

MocrL32
π

L1
E Iyco⋅ Gplane⋅ Jco32⋅ 1 WL32

2+⎛
⎝

⎞
⎠⋅⋅:=

MocrL32 322.493 kN m⋅=

ux33
hw3

2 Gplane⋅ a⋅ tw3⋅

hw3
2 a b+( )3⋅ Ixco3 Iyco+( )⋅

600 a2⋅ E⋅ Ixco3⋅ Iyco⋅
+:=
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The method proposed by Moon et al.: 

Average corrugation depth: 

  

Evaluation of the normalized unit warping at point i: 

a ) for different depths 

For h.w = h.w1 

  

  

  

  

  

  

cw33
2 dmax⋅( )2 hw3

2⋅

8 ux33⋅ a b+( )⋅
:=

CL33 Cwflat3
cw33 L1

2⋅

E π
2⋅

+:= CL33 1.024 1013× mm6=

WL33
π

L1

E CL33⋅

Gplane Jco33⋅
:=

MocrL33
π

L1
E Iyco⋅ Gplane⋅ Jco33⋅ 1 WL33

2+⎛
⎝

⎞
⎠⋅⋅:=

MocrL33 381.752 kN m⋅=

davg
2 a⋅ b+( ) dmax⋅

2 a b+( )⋅
:= davg 21.711mm=

Wnh11
2 bf

2⋅ hw1 tf⋅ bf hw1
2⋅ tw⋅+

8 bf⋅ tf⋅ 4 hw1⋅ tw⋅+
:= Wnh11 2.3 104× mm2=

Wnh12
2 bf

2⋅ hw1 tf⋅ bf hw1
2⋅ tw⋅+

8 bf⋅ tf⋅ 4 hw1⋅ tw⋅+

bf
4

davg
2

−
⎛
⎜
⎝

⎞
⎟
⎠

hw1⋅−:= Wnh12 4.342 103× mm2=

Wnh13
2 bf

2⋅ hw1 tf⋅ bf hw1
2⋅ tw⋅+

8 bf⋅ tf⋅ 4 hw1⋅ tw⋅+

bf
4

davg
2

+
⎛
⎜
⎝

⎞
⎟
⎠

hw1⋅−:= Wnh13 4.342− 103× mm2=

Wnh14
2 bf

2⋅ hw1 tf⋅ bf hw1
2⋅ tw⋅+

8 bf⋅ tf⋅ 4 hw1⋅ tw⋅+
1
2

hw1⋅ bf⋅−:= Wnh14 2.3− 104× mm2=

Wnh15 Wnh14:= Wnh15 2.3− 104× mm2=

Wnh16 Wnh11:= Wnh16 2.3 104× mm2=
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For h.w = h.w2 

  

  

  

  

  

  

For h.w = h.w3 

  

  

  

  

  

  

Wnh21
2 bf

2⋅ hw2 tf⋅ bf hw2
2⋅ tw⋅+

8 bf⋅ tf⋅ 4 hw2⋅ tw⋅+
:= Wnh21 3.45 104× mm2=

Wnh22
2 bf

2⋅ hw2 tf⋅ bf hw2
2⋅ tw⋅+

8 bf⋅ tf⋅ 4 hw2⋅ tw⋅+

bf
4

davg
2

−
⎛
⎜
⎝

⎞
⎟
⎠

hw2⋅−:= Wnh22 6.513 103× mm2=

Wnh23
2 bf

2⋅ hw2 tf⋅ bf hw2
2⋅ tw⋅+

8 bf⋅ tf⋅ 4 hw2⋅ tw⋅+

bf
4

davg
2

+
⎛
⎜
⎝

⎞
⎟
⎠

hw2⋅−:= Wnh23 6.513− 103× mm2=

Wnh24
2 bf

2⋅ hw2 tf⋅ bf hw2
2⋅ tw⋅+

8 bf⋅ tf⋅ 4 hw2⋅ tw⋅+
1
2

hw2⋅ bf⋅−:= Wnh24 3.45− 104× mm2=

Wnh25 Wnh24:= Wnh25 3.45− 104× mm2=

Wnh26 Wnh21:= Wnh26 3.45 104× mm2=

Wnh31
2 bf

2⋅ hw3 tf⋅ bf hw3
2⋅ tw⋅+

8 bf⋅ tf⋅ 4 hw3⋅ tw⋅+
:= Wnh31 4.6 104× mm2=

Wnh32
2 bf

2⋅ hw3 tf⋅ bf hw3
2⋅ tw⋅+

8 bf⋅ tf⋅ 4 hw3⋅ tw⋅+

bf
4

davg
2

−
⎛
⎜
⎝

⎞
⎟
⎠

hw3⋅−:= Wnh32 8.684 103× mm2=

Wnh33
2 bf

2⋅ hw3 tf⋅ bf hw3
2⋅ tw⋅+

8 bf⋅ tf⋅ 4 hw3⋅ tw⋅+

bf
4

davg
2

+
⎛
⎜
⎝

⎞
⎟
⎠

hw3⋅−:= Wnh33 8.684− 103× mm2=

Wnh34
2 bf

2⋅ hw3 tf⋅ bf hw3
2⋅ tw⋅+

8 bf⋅ tf⋅ 4 hw3⋅ tw⋅+
1
2

hw3⋅ bf⋅−:= Wnh34 4.6− 104× mm2=

Wnh35 Wnh34:= Wnh35 4.6− 104× mm2=

Wnh36 Wnh31:= Wnh36 4.6 104× mm2=
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b) for different web thicknesses 

For t.w = t.w1 

  

  

  

  

  

  

For t.w = t.w2 

  

  

  

  

  

  

Wnt11
2 bf

2⋅ hw tf⋅ bf hw
2⋅ tw1⋅+

8 bf⋅ tf⋅ 4 hw⋅ tw1⋅+
:= Wnt11 3.45 104× mm2=

Wnt12
2 bf

2⋅ hw tf⋅ bf hw
2⋅ tw1⋅+

8 bf⋅ tf⋅ 4 hw⋅ tw1⋅+

bf
4

davg
2

−
⎛
⎜
⎝

⎞
⎟
⎠

hw⋅−:= Wnt12 6.513 103× mm2=

Wnt13
2 bf

2⋅ hw tf⋅ bf hw
2⋅ tw1⋅+

8 bf⋅ tf⋅ 4 hw⋅ tw1⋅+

bf
4

davg
2

+
⎛
⎜
⎝

⎞
⎟
⎠

hw⋅−:= Wnt13 6.513− 103× mm2=

Wnt14
2 bf

2⋅ hw tf⋅ bf hw
2⋅ tw1⋅+

8 bf⋅ tf⋅ 4 hw⋅ tw1⋅+
1
2

hw⋅ bf⋅−:= Wnt14 3.45− 104× mm2=

Wnt15 Wnt14:= Wnt15 3.45− 104× mm2=

Wnt16 Wnt11:= Wnt16 3.45 104× mm2=

Wnt21
2 bf

2⋅ hw tf⋅ bf hw
2⋅ tw2⋅+

8 bf⋅ tf⋅ 4 hw⋅ tw2⋅+
:= Wnt21 3.45 104× mm2=

Wnt22
2 bf

2⋅ hw tf⋅ bf hw
2⋅ tw2⋅+

8 bf⋅ tf⋅ 4 hw⋅ tw2⋅+

bf
4

davg
2

−
⎛
⎜
⎝

⎞
⎟
⎠

hw⋅−:= Wnt22 6.513 103× mm2=

Wnt23
2 bf

2⋅ hw tf⋅ bf hw
2⋅ tw2⋅+

8 bf⋅ tf⋅ 4 hw⋅ tw2⋅+

bf
4

davg
2

+
⎛
⎜
⎝

⎞
⎟
⎠

hw⋅−:= Wnt23 6.513− 103× mm2=

Wnt24
2 bf

2⋅ hw tf⋅ bf hw
2⋅ tw2⋅+

8 bf⋅ tf⋅ 4 hw⋅ tw2⋅+
1
2

hw⋅ bf⋅−:= Wnt24 3.45− 104× mm2=

Wnt25 Wnt24:= Wnt25 3.45− 104× mm2=

Wnt26 Wnt21:= Wnt26 3.45 104× mm2=
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For t.w = t.w3 

  

  

  

  

  

  

Determination of the warping constant for different web thicknesses and depths 

 

 

Wnt31
2 bf

2⋅ hw tf⋅ bf hw
2⋅ tw3⋅+

8 bf⋅ tf⋅ 4 hw⋅ tw3⋅+
:= Wnt31 3.45 104× mm2=

Wnt32
2 bf

2⋅ hw tf⋅ bf hw
2⋅ tw3⋅+

8 bf⋅ tf⋅ 4 hw⋅ tw3⋅+

bf
4

davg
2

−
⎛
⎜
⎝

⎞
⎟
⎠

hw⋅−:= Wnt32 6.513 103× mm2=

Wnt33
2 bf

2⋅ hw tf⋅ bf hw
2⋅ tw3⋅+

8 bf⋅ tf⋅ 4 hw⋅ tw3⋅+

bf
4

davg
2

+
⎛
⎜
⎝

⎞
⎟
⎠

hw⋅−:= Wnt33 6.513− 103× mm2=

Wnt34
2 bf

2⋅ hw tf⋅ bf hw
2⋅ tw3⋅+

8 bf⋅ tf⋅ 4 hw⋅ tw3⋅+
1
2

hw⋅ bf⋅−:= Wnt34 3.45− 104× mm2=

Wnt35 Wnt34:= Wnt35 3.45− 104× mm2=

Wnt36 Wnt31:= Wnt36 3.45 104× mm2=

Cwco11
1
3

Wnh11
2 Wnh11 Wnh12⋅+ Wnh12

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg−
⎛
⎜
⎝

⎞
⎟
⎠

⋅

Wnh15
2 Wnh12 Wnh15⋅+ Wnh12

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

Wnh12
2 Wnh12 Wnh13⋅+ Wnh13

2+⎛
⎝

⎞
⎠ tw1⋅ hw1⋅+

...

Wnh13
2 Wnh14 Wnh13⋅+ Wnh14

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg−
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

Wnh16
2 Wnh13 Wnh16⋅+ Wnh13

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⋅:=

Cwco11 1.141 1012× mm6=
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Cwco12
1
3

Wnh21
2 Wnh21 Wnh22⋅+ Wnh22

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg−
⎛
⎜
⎝

⎞
⎟
⎠

⋅

Wnh25
2 Wnh22 Wnh25⋅+ Wnh22

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

Wnh22
2 Wnh22 Wnh23⋅+ Wnh23

2+⎛
⎝

⎞
⎠ tw1⋅ hw2⋅+

...

Wnh23
2 Wnh24 Wnh23⋅+ Wnh24

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg−
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

Wnh26
2 Wnh23 Wnh26⋅+ Wnh23

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⋅:=

Cwco12 2.572 1012× mm6=

Cwco13
1
3

Wnh31
2 Wnh31 Wnh32⋅+ Wnh32

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg−
⎛
⎜
⎝

⎞
⎟
⎠

⋅

Wnh35
2 Wnh32 Wnh35⋅+ Wnh32

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

Wnh32
2 Wnh32 Wnh33⋅+ Wnh33

2+⎛
⎝

⎞
⎠ tw1⋅ hw3⋅+

...

Wnh33
2 Wnh34 Wnh33⋅+ Wnh34

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg−
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

Wnh36
2 Wnh33 Wnh36⋅+ Wnh33

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⋅:=

Cwco13 4.583 1012× mm6=

Cwco21
1
3

Wnh11
2 Wnh11 Wnh12⋅+ Wnh12

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg−
⎛
⎜
⎝

⎞
⎟
⎠

⋅

Wnh15
2 Wnh12 Wnh15⋅+ Wnh12

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

Wnh12
2 Wnh12 Wnh13⋅+ Wnh13

2+⎛
⎝

⎞
⎠ tw2⋅ hw1⋅+

...

Wnh13
2 Wnh14 Wnh13⋅+ Wnh14

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg−
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

Wnh16
2 Wnh13 Wnh16⋅+ Wnh13

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⋅:=

Cwco21 1.143 1012× mm6=
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Cwco22
1
3

Wnh21
2 Wnh21 Wnh22⋅+ Wnh22

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg−
⎛
⎜
⎝

⎞
⎟
⎠

⋅

Wnh25
2 Wnh22 Wnh25⋅+ Wnh22

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

Wnh22
2 Wnh22 Wnh23⋅+ Wnh23

2+⎛
⎝

⎞
⎠ tw2⋅ hw2⋅+

...

Wnh23
2 Wnh24 Wnh23⋅+ Wnh24

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg−
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

Wnh26
2 Wnh23 Wnh26⋅+ Wnh23

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⋅:=

Cwco22 2.581 1012× mm6=

Cwco23
1
3

Wnh31
2 Wnh31 Wnh32⋅+ Wnh32

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg−
⎛
⎜
⎝

⎞
⎟
⎠

⋅

Wnh35
2 Wnh32 Wnh35⋅+ Wnh32

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

Wnh32
2 Wnh32 Wnh33⋅+ Wnh33

2+⎛
⎝

⎞
⎠ tw2⋅ hw3⋅+

...

Wnh33
2 Wnh34 Wnh33⋅+ Wnh34

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg−
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

Wnh36
2 Wnh33 Wnh36⋅+ Wnh33

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⋅:=

Cwco23 4.603 1012× mm6=

Cwco31
1
3

Wnh11
2 Wnh11 Wnh12⋅+ Wnh12

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg−
⎛
⎜
⎝

⎞
⎟
⎠

⋅

Wnh15
2 Wnh12 Wnh15⋅+ Wnh12

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

Wnh12
2 Wnh12 Wnh13⋅+ Wnh13

2+⎛
⎝

⎞
⎠ tw3⋅ hw1⋅+

...

Wnh13
2 Wnh14 Wnh13⋅+ Wnh14

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg−
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

Wnh16
2 Wnh13 Wnh16⋅+ Wnh13

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⋅:=

Cwco31 1.146 1012× mm6=
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Elastic critical moment for the I-girder with corrugated web:  
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⎛
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⎝
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⎠

⋅
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⎞
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⎜
⎝

⎞
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⋅+
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2+⎛
⎝

⎞
⎠ tw3⋅ hw2⋅+

...

Wnh23
2 Wnh24 Wnh23⋅+ Wnh24

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg−
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

Wnh26
2 Wnh23 Wnh26⋅+ Wnh23

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⋅:=

Cwco32 2.589 1012× mm6=

Cwco33
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Wnh31
2 Wnh31 Wnh32⋅+ Wnh32
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⎝

⎞
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2

davg−
⎛
⎜
⎝

⎞
⎟
⎠

⋅

Wnh35
2 Wnh32 Wnh35⋅+ Wnh32

2+⎛
⎝

⎞
⎠ tf⋅
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2

davg+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

Wnh32
2 Wnh32 Wnh33⋅+ Wnh33

2+⎛
⎝

⎞
⎠ tw3⋅ hw3⋅+

...

Wnh33
2 Wnh34 Wnh33⋅+ Wnh34

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg−
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

Wnh36
2 Wnh33 Wnh36⋅+ Wnh33

2+⎛
⎝

⎞
⎠ tf⋅

bf
2

davg+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+

...

⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⋅:=

Cwco33 4.623 1012× mm6=

Wco11
π

L1

E Cwco11⋅

Gco Jco11⋅
:= Wco11 0.877=

Mocr11
π

L1
E Iyco⋅ Gco⋅ Jco11⋅ 1 Wco11

2+⎛
⎝

⎞
⎠⋅⋅:=

Mocr11 178.848 kN m⋅=

Wco12
π

L1

E Cwco12⋅

Gco Jco12⋅
:= Wco12 1.316=

Mocr12
π

L1
E Iyco⋅ Gco⋅ Jco12⋅ 1 Wco12

2+⎛
⎝

⎞
⎠⋅⋅:=

Mocr12 222.411kN m⋅=
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Wco13
π

L1

E Cwco13⋅

Gco Jco13⋅
:= Wco13 1.756=

Mocr13
π

L1
E Iyco⋅ Gco⋅ Jco13⋅ 1 Wco13

2+⎛
⎝

⎞
⎠⋅⋅:=

Mocr13 272.045 kN m⋅=

Wco21
π

L1

E Cwco21⋅

Gco Jco21⋅
:= Wco21 0.876=

Mocr21
π

L1
E Iyco⋅ Gco⋅ Jco21⋅ 1 Wco21

2+⎛
⎝

⎞
⎠⋅⋅:=

Mocr21 179.237 kN m⋅=

Wco22
π

L1

E Cwco22⋅

Gco Jco22⋅
:= Wco22 1.313=

Mocr22
π

L1
E Iyco⋅ Gco⋅ Jco22⋅ 1 Wco22

2+⎛
⎝

⎞
⎠⋅⋅:=

Mocr22 223.009 kN m⋅=

Wco23
π

L1

E Cwco23⋅

Gco Jco23⋅
:= Wco23 1.749=

Mocr23
π

L1
E Iyco⋅ Gco⋅ Jco23⋅ 1 Wco23

2+⎛
⎝

⎞
⎠⋅⋅:=

Mocr23 272.894 kN m⋅=

Wco31
π

L1

E Cwco31⋅

Gco Jco31⋅
:= Wco31 0.871=

Mocr31
π

L1
E Iyco⋅ Gco⋅ Jco31⋅ 1 Wco31

2+⎛
⎝

⎞
⎠⋅⋅:=

Mocr31 179.911 kN m⋅=
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Ultimate moment for the I-beam with corrugated web: 

  

  

  

Ultimate moment for the I-beam with plane web: 

  

  

  

Wco32
π

L1

E Cwco32⋅

Gco Jco32⋅
:= Wco32 1.304=

Mocr32
π

L1
E Iyco⋅ Gco⋅ Jco32⋅ 1 Wco32

2+⎛
⎝

⎞
⎠⋅⋅:=

Mocr32 223.95 kN m⋅=

Wco33
π

L1

E Cwco33⋅

Gco Jco33⋅
:= Wco33 1.733=

Mocr33
π

L1
E Iyco⋅ Gco⋅ Jco33⋅ 1 Wco33

2+⎛
⎝

⎞
⎠⋅⋅:=

Mocr33 274.115kN m⋅=

Multcoh1
Ixco1 fy⋅

0.5 hw1⋅ tf+
:= Multcoh1 427.327kN m⋅=

Multcoh2
Ixco2 fy⋅

0.5 hw2⋅ tf+
:= Multcoh2 655.28kN m⋅=

Multcoh3
Ixco3 fy⋅

0.5 hw3⋅ tf+
:= Multcoh3 883.556kN m⋅=

Multh1
Ixco1 fy⋅

0.5 hw1⋅ tf+
:= Multh1 427.327 kN m⋅=

Multh2
Ixco2 fy⋅

0.5 hw2⋅ tf+
:= Multh2 655.28kN m⋅=

Multh3
Ixco3 fy⋅

0.5 hw3⋅ tf+
:= Multh3 883.556kN m⋅=
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Summary of the results:  
  

  

    

  

  
  

    

  

  

  

    

  

 

 

  

 

 

 

  

 

 

 

  

 

tw2tw1
Mocrflat11 184.108kN m⋅= Mocrflat21 184.435kN m⋅=

hw1hw1 MocrL11 226.651 kN m⋅= MocrL21 245.363 kN m⋅=

Mocr11 178.848kN m⋅= Mocr21 179.237kN m⋅=

tw1 tw2
Mocrflat12 226.346 kN m⋅= Mocrflat22 226.744kN m⋅=

hw2hw2 MocrL12 278.251 kN m⋅= MocrL22 301.073 kN m⋅=
Mocr12 222.411kN m⋅= Mocr22 223.009 kN m⋅=

tw1 tw2

Mocrflat13 274.761 kN m⋅= Mocrflat23 275.199 kN m⋅=

MocrL13 332.243kN m⋅= hw3 MocrL23 357.739kN m⋅=hw3
Mocr13 272.045 kN m⋅= Mocr23 272.894 kN m⋅=

tw3

Mocrflat31 185.069 kN m⋅=

MocrL31 262.93kN m⋅=hw1
Mocr31 179.911kN m⋅=

tw3
Mocrflat32 227.519 kN m⋅=

MocrL32 322.493kN m⋅=hw2
Mocr32 223.95 kN m⋅=

tw3
Mocrflat33 276.049kN m⋅=

hw3 MocrL33 381.752 kN m⋅=

Mocr33 274.115kN m⋅=
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Appendix C 
Figures and results from Finite Element Analyses of the frames 

with corrugated and plane webs 
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In this Appendix the results of additional Finite Element Analyses presenting    
lateral-torsional behaviour of the frames with corrugated and plane webs have been 
collected.  

The models which have been described in this Section are:  

- the case of the frame without any lateral restraints, with the plane plate in the 
corner 6mm thick, 

- the case of the frame with additional restraint only on the inner flange of the 
column, 

- the case of the frame with additional restraint only on the outer flange of the 
rafter, 

- the case of the frame with additional restraint only on the inner flange of the 
rafter, 

These cases correspond both for the frame with corrugated and with plane webs. 

In figures below the areas of yielding have been pictured and out-of plane deflection 
has been presented.  

The results which have been presented in this section have mainly theoretical value. 
In reality this kind of restraints would not be adopted individually as has been done in 
these analyses. This investigation is supposed to enable better understanding of the 
behaviour of the analysed frames. 

In Tables C.1 and C.2, in the end of this Appendix, the results from Finite Element 
Analyses for both frames have been collected. 
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For the case of the frame with corrugated webs, with the plane plate in the corner 
6mm thick yielding of the first fibres has been observed in the plane plate in the 
corner. The load level which has been obtained has been equal to 13,85kN/m, which 
corresponds to the reaction force equal to 152,4kN. The area of yielding for this case 
has been shown in Figure C.1 

 
Figure C.1 The area of yielding for the frame with corrugated webs without any 

lateral restraints for the frame with the thickness of the plate in the 
corner equal to 6mm. 

In this case in-plane deflection in U1 direction has been equal to 24mm. Out-of plane 
deflection in U3 direction has been equal to maximum 36mm for the inner flange of 
the rafter, 34mm for the outer flange of the rafter and around 18mm for the inner 
flange of the column.  

The out-of-plane deflection of this model has been illustrated in Figure C.2 below.   

 
Figure C.2 Out-of-plane deflection of the frame with corrugated webs without any 

lateral restraints for the frame with the thickness of the plate in the 
corner equal to 6mm. 
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For the analogical case of the frame with plane webs yielding of the first fibres has 
been observed in the plane plate in the corner and in the stiffener. The load level 
which has been obtained has been equal to 15,7kN/m, which corresponds to the 
reaction force equal to 172,6kN. The area of yielding for this case has been shown in 
Figure C.3 

 
Figure C.3 The area of yielding for the frame with plane webs without any lateral 

restraints for the frame with the thickness of the plate in the corner 
equal to 6mm. 

In this case in-plane deflection in U1 direction has been equal to mm. Out-of plane 
deflection in U3 direction has been equal to maximum 36mm for the inner flange of 
the rafter, 34mm for the outer flange of the rafter and around 18mm for the inner 
flange of the column. The out-of-plane deflection of this model has been illustrated in 
Figure C.4 below.   

 
Figure C.4 Out-of-plane deflection of the frame with plane webs without any lateral 

restraints for the frame with the thickness of the plate in the corner 
equal to 6mm. 
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For the case of the frame with corrugated webs, with one additional lateral restraint in 
the inner flange of the column yielding of the first fibres has been observed in the 
lower flange of the rafter and in the inner flange of the column. The load level which 
has been obtained has been equal to 20,9kN/m, which corresponds to the reaction 
force equal to 229,8kN. The area of yielding has been shown in Figure C.5 below. 

 
Figure C.5 The area of yielding for the frame with corrugated webs with one lateral 

restraint on the inner flange of the column. 
In this case in-plane deflection in U1 direction has been equal to 24mm. Out-of plane 
deflection in U3 direction has been equal to maximum 22mm for the inner flange of 
the rafter, 57mm for the outer flange of the rafter and less than 1mm for the inner 
flange of the column. The out-of-plane deflection of this model has been illustrated in 
Figure C.6 below.   

 
Figure C.6 Out-of-plane deflection of the frame with corrugated webs with one lateral 

restraint on the inner flange of the column. 
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For the case of the frame with plane webs, with one additional lateral restraint in the 
inner flange of the column yielding of the first fibres has been observed in the lower 
flange of the rafter. The load level which has been obtained has been equal to 
19,75kN/m, which corresponds to the reaction force equal to 217,3kN. The area of 
yielding for this case has been shown in Figure C.7 below. 

 

 
Figure C.7 The area of yielding for the frame with plane webs with one lateral 

restraint on the inner flange of the column. 
In this case in-plane deflection in U1 direction has been equal to 21mm. Out-of plane 
deflection in U3 direction has been equal to maximum 20mm for the inner flange of 
the rafter, 68mm for the outer flange of the rafter and less than 2mm for the inner 
flange of the column. The out-of-plane deflection of this model has been illustrated in 
Figure C.8 below.   

 
Figure C.8 Out-of-plane deflection of the frame with plane with one lateral restraint 

on the inner flange of the column. 
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For the case of the frame with corrugated webs, with one additional lateral restraint in 
the outer flange of the rafter yielding of the first fibres has been observed in the inner 
flange of the column. The load level which has been obtained has been equal to 
16,53kN/m, which corresponds to the reaction force equal to 181,8kN. The area of 
yielding has been shown in Figure C.9 below. 

 

 
Figure C.9 The area of yielding for the frame with corrugated webs with one lateral 

restraint on the outer flange of the rafter. 
In this case in-plane deflection in U1 direction has been equal to 24mm. Out-of plane 
deflection in U3 direction has been equal to maximum 52mm for the inner flange of 
the rafter, 34mm for the outer flange of the rafter and around 22mm for the inner 
flange of the column. The out-of-plane deflection of this model has been illustrated in 
Figure C.10 below.   

 
Figure C.10 Out-of-plane deflection of the frame with corrugated webs with one 

lateral restraint on the outer flange of the rafter. 
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For the case of the frame with plane webs, with one additional lateral restraint in the 
outer flange of the rafter yielding of the first fibres has been observed in the inner 
flange of the column and in the stiffener. The load level which has been obtained has 
been equal to 17,75kN/m, which corresponds to the reaction force equal to 195,2kN. 
The area of yielding has been shown in Figure C.11 below. 

 

 
Figure C.11 The area of yielding for the frame with plane webs with one lateral 

restraint on the outer flange of the rafter. 
In this case in-plane deflection in U1 direction has been equal to 24mm. Out-of plane 
deflection in U3 direction has been equal to maximum 68mm for the inner flange of 
the rafter, 20mm for the outer flange of the rafter and around 26mm for the inner 
flange of the column. The out-of-plane deflection of this model has been illustrated in 
Figure C.12 below.   

 
Figure C.12 Out-of-plane deflection of the frame with plane webs with one lateral 

restraint on the outer flange of the rafter. 
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For the case of the frame with corrugated webs, with one additional lateral restraint in 
the inner flange of the rafter yielding of the first fibres has been observed in the inner 
flange of the column. The load level which has been obtained has been equal to 
19kN/m, which corresponds to the reaction force equal to 209kN. The area of yielding 
for this case has been shown in Figure C.13 below. 

 

 
Figure C.13 The area of yielding for the frame with corrugated webs with one lateral 

restraint on the inner flange of the rafter. 
In this case in-plane deflection in U1 direction has been equal to 23mm. Out-of plane 
deflection in U3 direction has been equal to maximum 8mm for the inner flange of the 
rafter, 57mm for the outer flange of the rafter and around 9mm for the inner flange of 
the column. The out-of-plane deflection of this model has been illustrated in       
Figure C.14 below.   

 
Figure C.14 Out-of-plane deflection of the frame with corrugated webs with one 

lateral restraint on the inner flange of the rafter. 
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For the last case of the frame with plane webs, with one additional lateral restraint in 
the inner flange of the rafter yielding of the first fibres has been observed in the inner 
flange of the column and in the stiffener. The load level which has been obtained has 
been equal to 18,4kN/m, which corresponds to the reaction force equal to 202,3kN. 
The area of yielding for this case has been shown in Figure C.15 below. 

 
Figure C.15 The area of yielding for the frame with plane webs with one lateral 

restraint on the inner flange of the rafter. 
In this case in-plane deflection in U1 direction has been equal to 21mm. Out-of plane 
deflection in U3 direction has been equal to maximum 7mm for the inner flange of the 
rafter, 69mm for the outer flange of the rafter and around 14mm for the inner flange 
of the column. The out-of-plane deflection of this model has been illustrated in       
Figure C.16 below.   

 
Figure C.16 Out-of-plane deflection of the frame with plane webs with one lateral 

restraint on the inner flange of the rafter. 
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Table C.1 Results from Finite Element Analysis for the frame with corrugated webs. 

CORRUGATED Reaction force Load Area of 
yielding 

U1 U3 lower U3 upper U3 column S column S lower Supper 
[kN] [kN/m] [mm] [mm] [mm] [mm] [MPa] [MPa] [MPa] 

no purlins 152,4 13,85 corner+column 24,3 35,7 34,4 18 355 298 207 corner 6mm 
no purlins 165 15,00 connection 21 36 30 18 363 291 230 

corner 8mm 171,8 15,62 column 22 39 32,8 19 358 311 246 

column 1side 214,3 19,48 connection 22 18 50 1 334 320 291 
229,8 20,89 low. f.+column 24 22 57 1 362 355 326 

column 2 sides 217,1 19,74 connection 21,5 12 51 <1 338 344 286 
225,4 20,49 low. f.+column 22,5 13 54 <1 355 369 303 

one purlin 174,7 15,88 connection 23 49 31 20 340 305 227 
181,8 16,53 column 24 52 34 22 356 324 240 

one lateral rest. 201,2 18,29 connection  22 9 61 9 341 265 255 
209,1 19,01 column 23 8 57 8,5 358 278 285 

purlins every 1m 246,8 22,44 lower flange 24 20 <1 <1 330 355 170 

purlins every 2m 246,8 22,44 lower flange 24 20 <1 <1 340 355 170 

purlins every 3m 246,8 22,44 lower flange 24 20 <1 <1 342 356 170 

purlins every 
3m+ 216,5 19,68 connection  21 3/1,56 <1 <1 280 232 150 

lateral restraint 282,6 25,69 column 27,5 4/-2 <1 <1 362 306 190 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2009:NN 123 

Table C.1 Results from Finite Element Analysis for the frame with plane webs. 

PLANE 
Reaction force Load Area of 

yielding 
U1 U3 lower U3 upper U3 column S column S lower Supper 

[kN] [kN/m] [mm] [mm] [mm] [mm] [MPa] [MPa] [MPa] 
no purlins 161,9 14,72 stiffener 20 40 39 19 329 245 207 

corner 6mm 172,6 15,69 corner 22 45 44 22 360 280 235 
no purlins 162,8 14,80 stiffener 20 39,5 37 18 305 250 211 

corner 8mm 178,6 16,24 column 22 48 44 22 355 293 247 

column 1side 
207,2 18,84 stiffener 20 19 64 2 230 341 286 
213,9 19,45 lower flange 21 20 68 2 238 358 300 

column 2 sides 203,1 18,46 lower flange 19 11 67 3 236 355 257 

one purlin 
178,5 16,23 stiffener 22 58 18 22 307 280 284 
195,2 17,75 column 25 68 20 26 359 330 306 

one lateral rest. 
195,7 17,79 stiffener 20 6 65 13 338 224 271 
202,3 18,39 column 21 6,5 69 14 355 232 283 

purlins every 
1m 232,2 21,11 lower flange 20 21 <1 <1 265 357 155 

purlins every 
2m 232,2 21,11 lower flange 20 21 <1 <1 263 357 155 

purlins every 
3m 232,1 21,10 lower flange 20 21 <1 <1 264 357 155 

purlins every 
3m+ 297,8 27,07 lower flange 26 7,5/2 <1 <1 329 355 190 

lateral restraint 
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