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Abstract

This paper describes the tools, methods and problems of converting Simulink
models to IP blocks for FPGA and run them in the LabVIEW FPGA environ-
ment. The conversion from Simulink models is performed with Mathworks
Simulink HDL Coder, Xilinx System Generator and by manually writing
HDL code to investigate the different aspects of the workflow.

A proof-of-concept model is implemented with different parts converted
with different methods. The analysis show that the automatic tools are useful
for quickly implementing and verifiying DSP models. It is also noticed that
the tools in many cases produce suboptimal code and in these cases hand-
written code is the only option. The target platform, National Instruments
compactRIO, is considered useful as there are high-level communication read-
ily available, simplifying the integration with other components. The biggest
problem with the RIO platforms is the lack of control a developer has, once
the IP is inserted in the LabVIEW FPGA design flow.
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1 Introduction

Traditionally there have been different design flows for developing systems
for hardware and software. This forces the system designer to decide where
to deploy the different parts of a system and define an interface between
them early in the development process. Later on, these choices can turn
out to produce a suboptimal solution. When the need arises to refactor a
system between the different platforms, it has to be reimplemented for the
new platform, using the old system as a reference. As the two platforms
require different tool chains, design methodologies and engineering skills, a
lot of manual development and verification might be needed. Lately there
have been attempts to overcome this problem. The RIO[2] platforms from
National Instrumens tries to bridge the gap between software and FPGA
development by providing hardware units with FPGA, I/O, and a processor
running a realtime OS. FPGA development for these platforms is incorpo-
rated in the LabVIEW design flow and high-level communication protocols
between the components allow easier refactoring of a system between FPGA,
realtime OS and a PC. External IP blocks can be integrated on the FPGA,
allowing access to existing systems developed for FPGA.

One class of such systems especially well suited for FPGA is DSP appli-
cations. For developing DSP applications in software, Simulink is often used.
Simulink is a data flow programming tool with a large number of function
blocks and an environment for simulation and verification. The advantages of
using high-level data flow programming to build DSP systems for FPGA has
been recognized and several tools have been created to aid in the transition
to FPGA.

The purpose of this master thesis is to examine some of the tools, meth-
ods and potential problems of converting existing Simulink models written
for execution in software to HDL code, for implementation in the LabVIEW
FPGA environment. The idea is to combine and benefit from the high speed
and low latency of FPGA, the consistent programming environment of Lab-
VIEW and the widespread use of Simulink models.

In Section 2 the proposed workflow is presented, together with a few
alternative methods, when applicable. Section 3 describes a model that has
been implemented as a proof-of-concept. This model, along with general
observations is analyzed in Section 4 and a summarized conclusion is found
in Section 5, together with notes of what was left out in the writing of this
thesis.

Figure 1 on page 5 shows an overview of the different formats that can
be used and how to translate between them.
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2 Workflow

Integrating a Simulink model written for execution in software into the Lab-
VIEW FPGA environment requires several intermediate steps, and can be
done in different ways with different tools. The ultimate goal, however is to
have a net list or synthesisable HDL code which is functionally equivalent to
the original Simulink model and can be imported into LabVIEW.

Every modification that occur to the model during the conversion may
have an impact on function, chip area, precision and speed. It is therefore
important to be able to verify the correctness of the model at all stages in
the conversion. In some cases this can be done by testing for equivalence
with the previous iteration. When changes to the model has to be made in a
way that no longer makes it equivalent to the previous iteration, the model
should instead be checked against the original specifications. An outline of
the workflow is summarized in Figure 2 on page 6.

2.1 Preparing the model

Only a subset of the function blocks and features in Simulink can be real-
ized in FPGA. Therefore the first step to make the model ready for HDL
generation is to identify incompatibilities. This includes:

• Using a fixed-step discrete time solver instead of continuous states to
emulate clocked logic design.
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• Replacing all floating point arithmetics with fixed-point.

• Only use blocks for which there exists a corresponding HDL implemen-
tation.

The model may not be able to directly use a fixed-step discrete time solver,
which is a prerequisite for converting the model. In some cases models may
need to undergo too drastic changes to be candidates for implementation in
FPGA, while others can be used after some redesign.

The use of fixed-point arithmetics instead of floating point will in most
cases introduce some precision loss. The amount of precision loss is related
to the size of the fixed-point signal paths and the method used to round
fixed-point numbers. This is a trade-off between silicon area and precision
and must be taken into consideration.

Simulink HDL Coder maintains a list of blocks that have a HDL imple-
mentation, and any model can be checked against this list. The number of
supported blocks increase for every version of Simulink HDL Coder, and at
the time of writing, the list included most arithmetic operations, tools for
filter design and support writing embedded M Code. Some blocks, such as
graphical output or file I/O, have no equivalent implementation in FPGA
and are therefore excluded. Other native Simulink blocks may not yet be
ported and must therefore be built from more primitive blocks.

2.2 Generating HDL code

Starting out from a Simulink model there are three proposed ways to turn
this into HDL. The whole model can be implemented using one method or
different methods can be used for subsets of the model. The three methods
analyzed here are:

• Convert with Simulink HDL coder
Mathworks Simulink HDL Coder[3] is a tool for converting a model
built in Simulink directly to VHDL or Verilog, and is aimed at rapid
prototyping. All native Simulink blocks however are not supported by
Simulink HDL Coder and the model must therefore be built using the
supported subset of blocks. To automate the process Simulink HDL
Coder can analyze a model and inform the designer of what needs to
be done. If all criterias are met, the model can be translated to HDL.
If changes were made to the model it should be compared with the
original model by cosimulating them inside of Simulink. In addition to
the generated code, Simulink HDL Coder can also provide test benches
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with stimuli to aid in the HDL verification process. Using Simulink
HDL Coder is assumed to be the preferred way of generating HDL
code in this report, since it requires the least effort when dealing with
existing Simulink models. The other methods are primarily used as
complements when using Simulink HDL coder is not applicable.

• Build an equivalent Xilinx System Generator model
Xilinx System Generator[8] provides a library of Simulink blocks that
are designed for implementation in Xilinx FPGA. Using only these
blocks, Xilinx System Generator can synthezise the model into netlists
with an optional HDL wrapper. The blocks on the Simulink block
diagram are mostly implemented as Xilinx IP blocks, such as those
available from Xilinx Core Generator. Xiling System Generator also
generates a large amount of VHDL macro functions to handle data
conversion between the blocks. As only System Generator blocks are
supported in this workflow, a Simulink model must be manually con-
verted from using native Simulink blocks. For verification of model
correctness, the two models can be cosimulated inside of Simulink to
check for equivalence.

• Write equivalent HDL code
By analyzing the behaviour of the model, HDL code representing an
equivalent model can be written manually. In order to test the equiv-
alence of the HDL implementation with the Simulink model, Simulink
HDL Coder can provide test benches for ModelSim and a few other
logic simulators. These test benches contain pregenerated input and
output vectors based on the original model to be used as stimuli. This
is meant as a last resort, as the emphasis of this paper is on automated
conversion methods.

2.3 Optimizing HDL code

Even if the generated HDL code can be synthezised and meets the specifi-
cations, the design might be suboptimal for FPGA implementation. Many
of the default implementations of the Simulink blocks are optimized for low
latency, to mimic their software equivalents, which generally have no latency.
This can however have a negative impact on speed and area when a FPGA is
the target. A test build of the generated code is therefore needed to ensure
that the code meets these requirements.

Should the code not satisfy the demands for area and speed the problem
should be localized. There are then several ways of improving the code, while
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still taking advantage of the automatically generated test benches and the
Simulink environment.

2.3.1 Tuning the model

Many arithmetic blocks grow linearly or even exponentially depending on the
size of the bus width of the input and output data. For a DSP application
there can be much to gain by minimizing the needed bus width in the signal
chain, as a too wide bus will use up excessive resources without adding any
benefit. Narrowing down the bus too much will have a negative impact on
SNR1 due to rounding errors, and can also effect the functional requirements
on the design. The SNR can often be related to the bit width as 6dB per
extra bit[6].

A different approach is to completely change the implementation of some
block. Complex blocks generally have more options to choose from, but even
a simple function such as an adder can have several implementations, each
focused on small area, high clock speed or low latency. There are also more
generic parameters to take into consideration, such as providing synchronous,
asynchronous or no reset at all to a block.

Simulink HDL coder provides a way to specify these parameters in a con-
trol file, which is consulted when the HDL code is generated. The parameters
can be set for individual blocks, classes of blocks or whole subsystems. Parts
of a commented control file is included in Listing 5 on page 23. Using System
Generator these parameters are instead specified directly in the blocks used.

2.3.2 Black-boxing

If changing bit widths or tweaking model parameters won’t give the desired
results, or if there is no feasible way to implement a part of the design
with Simulink HDL Coder or System Generator, that part of the model can
be black-boxed. Black-boxing a subset of a model prevents the tool from
generating HDL code for that part. Instead it can be replaced with a netlist
or external HDL code which is compiled with the rest of the model after
synthesis. The black box can still contain a Simulink model which is used
for simulating the behaviour inside of Simulink.

1Signal to Noise Ratio. Defines the amplitude of a signal compared to the background
noise
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2.4 Integrating with LabVIEW

The LabVIEW software environment is a dataflow programming language
for software development for many targets, including Mac and PC as well
as several embedded platforms. The user interface together with a block
diagram containing functional code is called a VI (Virtual Instrument), as
it originally was made to emulate desktop instruments such as oscilloscopes
and signal generators.

This concept has also been expanded to generate FPGA load files for
the RIO platforms from a block diagram. The RIO platforms are a series
of hardware units from National Instruments containing a FPGA and I/O.
Several of these systems also contain a CPU running a realtime OS and
onboard memory, effectively turning it into an embedded computer with a
dedicated FPGA for I/O handling.

The generated load file contains the code generated from the block di-
agram and a wrapper which LabVIEW uses internally to handle all FPGA
I/O. The I/O consist both of communication with the host system for the
FPGA, and any I/O modules that may be present on the selected platform.
This prevents the developer from having direct access to the I/O, and instead
relying on higher-level LabVIEW defined communication protocols. The in-
tention of this is to reduce the amount of custom protocols and glue logic
that needs to be written.

When building a block diagram, the developer has access to many Lab-
VIEW function blocks, such as integer and fixed-point arithmetics, signal
generation and analysis tools and many of the built-in dataflow design pat-
terns. In addition to the built-in function blocks, there is also a system called
CLIP[5] to include external IP blocks. CLIP allows developers to access the
top-level entity of a IP block as if it was a built-in function block. To insert
a CLIP into a LabVIEW project an XML description file is used to provide
information about the IP to LabVIEW. The XML file describes the following:

• Connection between HDL entity names and LabVIEW signal names

• Which HDL entity signals that should be used for clock and reset.

• The frequency the CLIP should be compiled for

• Files that should be included when building the CLIP

• Name of the top entity

Clock and reset signals are handled transparently in LabVIEW. All other
signals are passed to the VI and can be used to connect the CLIP to other
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Figure 3: FPGAFX structure

LabVIEW blocks. This makes it possible for seamless integration with the
native block diagram units. To compile and build a load file, LabVIEW
FPGA uses the Xilinx ISE toolchain.

3 Implementation

In order to perform analysis on the toolchain, a DSP model is created. The
constructed model to be analyzed is built with the intent of processing audio
signals. The reason for choosing an audio signal is the ability to analyze the
behaviour of the system by listening to the processed signal through speakers
in addition to viewing the waveform on an oscilloscope. The implemented
model, called FPGAFX, contains three sub blocks that adds audible effects
on the input signal. These three blocks are an echo block that delays the
source signal by a specified amount of time, a tremolo block that multiplies
the source signal with a slow changing sinus carrier with configurable fre-
quency, and a tubewarmth block that emulates the effect of a signal passing
through a vacuum tube. A fourth block, called mixer, blends the processed
signal and the unprocessed signal. A fifth block contains a simple interface
for setting parameters in the other blocks and choose which of the three
effects that should be applied to the source signal. Together, these blocks
make up a multieffect unit for audio processing. The resource usage and
implementation details of the three main effect units are chosen to be diverse
enough to make it possible to analyze different aspects of the workflow. The
structure of the model is shown in Figure 3 on page 11, and all blocks are
explained in greater detail in this chapter

The target for the model implementation is the Spartan 3 FPGA con-
tained in a compact RIO 9074. The compact RIO is a stand-alone hardware
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Figure 4: Compact RIO overview

unit with a FPGA situated between pluggable IO modules and a 400MHz
PPC CPU running a real-time OS. The I/O modules used in this setup con-
sists of a NI cRIO-9215 A/D converter and a NI 9263 D/A converter. The
CPU runs a VxWorks OS with an application to monitor and control the
FPGA. The load file for the FPGA consists of both HDL code generated
from LabVIEW block diagrams and external HDL code imported as a CLIP,
that make up the user defined parts of the FPGA. During the building of the
load file, LabVIEW also inserts code for I/O handling, as seen in Figure 4
on page 12

3.1 Test environment

As seen in Figure 5 on page 13, the model recieves its input from an analog
source via a NI cRIO-9215 A/D converter. The processed signal is sent to a
PC over ethernet or directly to a NI 9263 D/A converter.

The FPGA uses the fsys = 40MHz onboard clock available on the com-
pact RIO platform, and a common sampling rate, which is a fraction of fsys

for the A/D and the D/A converters. As audio is the intended input, a sam-
pling rate of fsys/1814 ≈ 22050Hz is used for the system. The word length
of the system is 16 bits.

The model under analysis is packaged as a CLIP called FPGAFX and
is placed between FIFOs to provide protection from jitter in communication
both with the I/O module and the CPU.

The analog output is connected to an oscilloscope and a speaker to provide
both visual and audible feedback.

Configuration of the FPGA parameters are controlled from the CPU on
the compact RIO.
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3.2 Mixer

The purpose of the mixer is to mix two audio sources, in this case the un-
processed (dry) signal with the processed (wet) signal. Assuming the mix
signal has a range [0 : mixmax[ the mixed output signal can be described as
sout = swet ·mix + sdry · (mixmax −mix).

For the fixed-point implementation mix is implemented as a 8-bit un-
signed number without a decimal part, and therefore mixmax = 1. Using
mod((2n−1)−mix, 2n) = mod(2n−1+mix+1, 2n) = mix the equation can
be simplified to sout = swet ·mix + sdry ·mix). The original implementation
is shown in Figure 6 on page 13

3.3 Delay

The delay model shown in Figure 7 on page 14 is implemented as a chain
of delay elements, each delaying the signal k cycles. The signal is tapped
off between every shift register, and a multiplexer selects which tap to out-
put, thereby controlling the delay time. The algorithm can be described as
sout[t] = sin[t− k · delay · Ts].

The maximum delay time is limited by the available FPGA resources that
can be used for the delay chain, and was found to be around 12000 elements,
resulting in a maximum delay of ≈ 0.5s for the given sampling rate. The
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delay parameter, controlling the multiplexer size was set to 32 as a trade-off
between resource usage and sufficiently fine-grained control over the delay.
Since we want the k parameter to be a integer multiple of 16, for reasons
explained in Section 4.1, this was set to 384.

3.4 Tremolo

The tremolo effect is accomplished by amplitude modulating the signal with
a low frequency carrier, usually a sine wave or a saw tooth. The speed
of the tremolo is controlled by changing the frequency of the carrier as in
sout][t] = sin[t] · carrier[i], where i[t] = mod(i[t − 1] + speed, sizeLUT ) . The
carrier signal is implemented as a precalculated look-up table containing a
full period sine wave. The value of the parameter speed is added to the
current address of the look up table, to control the frequency of the sine
wave. The block diagram is shown in Figure 8 on page 15

3.5 Tubewarmth

The purpose of the Tubewarmth model is to emulate the effects on a signal
that is passed through a vacuum tube. Vacuum tubes are nonlinear and begin
to saturate as the amplitude of the input signal increases. This is commonly
used to introduce harmonic distortion in music [1]. Emulating a tube can be
a very complex operation, and it is therefore common to use a simpler model
ignoring frequency related characteristics, and instead concentrating only on
the amplitude relationships of the input and output.

This implementation is based on the TAP Tubewamth plugin [7], written
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in C. It has been converted into a Simulink model and modified to be better
suited for FPGA implementation. The original C code is available from http:

//sourceforge.net/projects/tap-plugins under GPL. The single largest
modification comes from using fixed values for blend and drive, and thereby
being able to use precalculated values for the internal parameters. Also fixed-
point arithmetic is used instead of the original floating point implementation.

3.6 Control

The control block is a interface for setting parameters in the FPGAFX sys-
tem. To minimize the amount of control objects on the front panel, only a
single 16 bit vector is used to enter data, write enable and address. Table 1
on page 15 describes the bit assignment. The address space is described in
Table 2 on page 15

Write enable Address Data
Bits 15 10-8 7-0

Table 1: Structure of the configuration vector

Address Name Range Description
0 select 0-2 Selects which effect to use

0=Delay
1=Tremolo
2=Tubewarmth

1 mix 0-255 Controls balance between dry and wet signal
2 tremspeed 0-255 Controls the speed of the tremolo effect
3 delay 0-31 Controls the delay time of the echo effect

Table 2: Address space of the Control component

15
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4 Analysis

During the conversion of FPGAFX several complications were brought to
attention. Some of these were solved by a slight modification of the model,
or by changing implementation parameters. Others prevented the conversion
from being executed automatically and required manual intervention to solve.
This section describes the specific problems and solutions for the FPGAFX
model, giving a context for some of the general problems that can arise in
the conversion process.

4.1 Delay

The delay model consists primarly of memory capable elements. The number
of elements grow linearly with the length and width of the delay chain. As
there are several different types of memory capable elements in an FPGA,
such as RAM, flip-flops and shift registers, different implementations can
produce vastly different results regarding resorce usage.

By default Simulink HDL coder implements the Integer Delay block as
Listing 2 on page 16 which is a hardware independent behavioural description
of a shift register with an asynchronous reset signal. Using XST from ISE
9.2, which is bundled with LabVIEW 8.6.1, this is synthesized as flip-flops.
The required resource usage on a Spartan 3[4] is width·depth flip-flops. With
two flip-flops per slice this requires at least width · depth/2 slices.

Setting the ResetType parameter to none as in Listing 1 on page 16 in the
control file, produces the code in Listing 3 on page 17. This gives freedom to
the synthesis tool to use the hardware shift registers available in the FPGA
fabric. Still, XST first recognizes this as flip-flops and then spends a long
time optimizing before implementing this as a mixture of flip-flops and shift
registers of varying length.

c.forEach(’fpgafx/fpgafx/delay ’ ,...
’hdldefaults.IntegerDelayHDLEmission ’, {’ResetType ’, ’none’})

Listing 1: Excluding the reset signal from Integer Delay

By black-boxing and explicitly instantiating chains of SRLC16E compo-
nents, which are native 16 bit shift registers in the Spartan 3 architecture,
both compile time and resource usage are drastically reduced, with the down-
side of losing the hardware independence. When the hardware is known, this
implementation is considered the best. The final implementation is illus-
trated in Listing 4 on page 23 and uses width · depth/16/2 slices.

--data_i : input std_logic_vector(WIDTH -1 downto 0)

--data_o : output std_logic_vector(WIDTH -1 downto 0)

16



--data : signal array(0 to DEPTH -1) of std_logic_vector(WIDTH -1 downto 0)

process (clk ,rst)
begin

if rst = ’1’ then
data <= (others => (others => ’0’));

elsif rising_edge(clk) then
if ce = ’1’ then

data <= data(DEPTH -2 downto 0) & data_i;
end if;

end if;
end process;
data_o <= data(DEPTH -1);

Listing 2: Behavioral description of a shift-register with reset

--data_i : input std_logic_vector(WIDTH -1 downto 0)

--data_o : output std_logic_vector(WIDTH -1 downto 0)

--data : signal array(0 to DEPTH -1) of std_logic_vector(WIDTH -1 downto 0)

process (clk ,rst)
begin

if rising_edge(clk) then
if ce = ’1’ then

data <= data(DEPTH -2 downto 0) & data_i;
end if;

end if;
end process;
data_o <= data(DEPTH -1);

Listing 3: Behavioral description of a shift-register without reset

The resource usage of the different cases is summarized in Table 3 on
page 17

Available SRLC16E Default No reset
Number of Slices 20480 7700 35457 17200
Number of Slice Flip Flops 40960 20 55153 23275
Number of 4 input LUTs 40960 15358 30434 28868

Table 3: Resource usage of the delay block with different implementations

4.2 Tremolo

When implementing the Tremolo block in Simulink HDL Coder, the original
idea was to use the built-in Sine lookup table, which takes advantage of
quarter-wave symmetry. This was not possible due to a flaw in the HDL
generation that prevented a signed and an unsigned number in the internal
representation of the Sine lookup table block. Instead an ordinary lookup
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table was used. In this case this was not a problem since the differences in
resource usage was relatively small. This, however, highlights some of the
unexpected problems that one can come across, and have to work around, in
the conversion stage.

4.3 Tubewarmth

The tubewarmth model uses several arithmetic functions such as multipliers,
adders and a square root. The square root especially has several alternative
implementations that vary in area, speed, accuracy and latency.

Using the tubewarmth block created from the Simulink HDL coder model
was not possible to do on the Spartan 3 FPGA, due to insufficient resources.
Aside from using a large amount of the available logic, the tubewarmth block
uses all available 18x18 multipliers, leaving no resources to the LabVIEW
generated HDL code.

As a first attempt to solve this, the logic for generating the internal pa-
rameters was replaced with precalculated constants. Also, the internal signal
paths were made as narrow as possible without losing noticable audio qual-
ity. Investigation of the RTL schematics and build logs revealed that the
square root blocks was responsible for the largest part of the resource usage.
Simulink HDL coder uses the multiply/add algorithm and produces combi-
natorial code. This has the advantage of being the closest to a model written
for software, but does not incorporate well into the pipelining methodology
used in FPGA/ASIC design. It also uses a lot of chip area.

The solution to this was to black-box the Tubewarmth sub block and
instead build an equivalent model using Xilinx System Generator. Models
created with Xilinx System Generator is targeted at a specific FPGA, and
can therefore take advantage of the hardware resources in a more efficient
way. Also, many of the implementations are based on iterative CORDIC
algorithms, which can save considerable amounts of logic.

For reference, both implementations were synthesized for Spartan 3 out-
side of the LabVIEW environment. The relevant resource usages are sum-
marized in Table 4 on page 19

4.4 CLIP

The integration of the model as a CLIP has some limitations. Most of the
limitations are intentional to easily fit the CLIP into the LabVIEW design
flow, and to hide low level FPGA behaviour.

• CLIP cannot access FPGA pins directly

18



Available HDL Coder System Generator
Number of Slices 20480 10173 2354
Number of Slice Flip Flops 40960 107 3852
Number of 4 input LUTs 40960 18914 3856
Number of 18x18 Multipliers 40 40 15

Table 4: Resource usage for different implementations of the Tubewarmth
model. Notice that the HDL Coder implementation uses less Flip Flops due
to its combinatorial implementation

• Only Boolean, U8, U16 and U32 can be used for passing data

• Not possible to use constraint files

• Not possible to change build parameters

• No way to analyze the RTL code generated from the block diagram

The restriction on data types forces in some cases the designer of the
designer to create a wrapper to cast top entity signals to one of the supported
formats.

The inability to use constraint files can be problematic in cases where the
FPGA designer want to use multi cycle paths or ignore timing constraints
completely. Together with the inability to control build parameters, this
leaves the build process to use the settings provided by LabVIEW. If a com-
pilation fails because of a timing violation, there is not much a designer can
do more than redesign the IP, and for example use pipelining on signal paths
where applicable.

When the HDL code from the components on the block diagrams is gen-
erated, these files are encrypted and sent directly through the ISE toolchain.
This prevents any analysis and profiling of the LabVIEW-generated code,
and the only way to see the final design is through the FPGA Editor. This,
however is a time consuming way to reverse-engineer an unknown design.

5 Conclusions

The ability to use existing Simulink models or do rapid prototyping from
scratch with an integrated test environment can speed up development.
Simulink HDL coder and Xilinx System Generator are helpful tools but
they both have limitations, that prevents the process from becoming fully
automatic. If one wishes to use Simulink for models targeted to FPGA im-
plementation, this should be considered early in the design flow to minimize
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manual intervention as much as possible. Still, the ability to black box some
parts of the design is a necessary feature because of the limitations Simulink
HDL Coder currently contains.

With Simulink HDL Coder, implementation of many blocks fails to take
advantage of dedicated hardware resources. In the delay model, the SRLC16E
primitives were far from optimally utilized when synthesized with XST. This
could be compared with other synthesis tools such as Synopsis Synplify pro,
but as there was no access to other tools this was considered to be outside
the scope of this thesis.

Another problem with Simulink HDL Coder is the choice of block im-
plementations that highlight the inherent differences between software and
hardware modelling. Many designs require non-uniform step sizes which
prevent them from being used, at least directly, as a clocked design. The
models that can use fixed step-sizes most probably contain blocks that need
one or none cycles to execute, after which their state is updated to the next
iteration. An equivalent HDL implementation often produces large combi-
natorial logic nets, which is badly suited for FPGA. This can be seen in the
Tubewarmth model where the square root block and the multipliers were so
large that they consumed five times as many LUTs as the System Generator
implementation.

A fundemental reason for this is that Simulink HDL Coder provides no
built-in handshaking mechanism telling the blocks when the previous block
is done calculating and the next are ready to input data. LabVIEW FPGA
and System Generator uses handshaking, which allows the blocks to consume
several cycles while still maintaining the data.

There were also more subtle failings of the HDL generation in Simulink
HDL Coder , such as the inability to use the sine lookup table. Limitations
such as these hinders the workflow when working with Simulink HDL Coder.

On the other hand, Xilinx System Generator requires a manual conver-
sion to the supported blocks. This means that an extra conversion step is
introduced, requiring another round of verification. But once this is done,
the close integration with the rest of the Xilinx platform and the behind-the-
scenes knowledge makes this a powerful tool for resource-efficient implemen-
tations. The downside in this case is that it is not as easy to implement in an
existing design as Simulink HDL coder, and it is directly targeted towards
Xilinx hardware.

Both tools are primarly used for DSP programming. Other types of
systems may still be easier to implement by hand, and it is therefore a good
thing that there are ways to incorporate external HDL Code in the design
flow.

Once the generated IP is in the LabVIEW FPGA environment it is easy
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to incorporate it in the LabVIEW design flow, but there are also more po-
tential problems. LabVIEW FPGA 8.6.1, which is the current version at
this time of writing, uses Xilinx ISE 9.2 as a backend for building the FPGA
load file. ISE 9.2 is a worse performer than ISE 10.1, and as ISE 11 is re-
cently released, it is even more dated. Also, what LabVIEW FPGA gains in
simplicity, it also loses in control. There is no way to specify constraints or
setting parameters for the Xilinx tool chain. Every timing violation makes
the build process fail. Together with the inability to analyse the LabVIEW
generated code, due to the encryption of the HDL files, this makes build-
ing for a LabVIEW supported FPGA targets a trial-and-error process, when
the limits are pushed. Still, LabVIEW FPGA is a powerful platform for
rapid prototyping, and with the CLIP system, designs can easily be moved
to stand-alone FPGA with a different I/O layer if needed.

The toolchain tested is very useful for implementing DSP systems from
Simulink on FPGA. The simulation and verification tools are also of great
help, as it minimizes the amount of redundant test benches that needs to be
written, which also mimimizes the need to verify the verification environment
more than necessary. There are however some rough edges to this, and the
ability to use hand-written HDL code is still required. The toolchain will not
replace the manual work as cutting edge designs need the options to finetune
constraints and analyze every part of the design. On the other hand, this is
not the target application. The tools are developed to give system designers
and LabVIEW programmers the possibility to use FPGA in their design
flow. Experienced FPGA programmers can then provide them with high
performance IP cores that are black boxed for LabVIEW.

During the writing of this paper I also learned about Synplify DSP, with
a scope similar to that of System Generator and Simulink HDL Coder. Un-
fortunately there was no access to the tool.
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A Code listings

entity srlc16e_vec is
generic (width : integer := 20); --Data path width

port (
d : in std_logic_vector(width -1 downto 0);
ce : in std_logic;
clk : in std_logic;
q : out std_logic_vector(width - 1 downto 0));

end srlc16e_vec;

architecture rtl of srlc16e_vec is
--Declare the native 16 bit shift registers of a Spartan 3

component SRLC16E
port (

d : in std_logic;
ce : in std_logic;
clk : in std_logic;
a0 : in std_logic;
a1 : in std_logic;
a2 : in std_logic;
a3 : in std_logic;
q : out std_logic;
q15 : out std_logic );

end component;
begin

--Generate a 20 bit wide Shift registers.

g_srl_w: for i in 0 to width - 1 generate
i_srl : SRLC16E port map(d(i),ce,clk ,’1’,’1’,’1’,’1’,open ,q(i));

end generate g_srl_w;
end rtl;

Listing 4: Hardware specific description of a shift-register

function c = fpgafx_ctrl

c = hdlnewcontrol(mfilename );

c.generateHDLFor(’fpgafx/fpgafx ’);

%Don ’t generate HDL code for delay model. This block will be replaced

%by hand written HDL code

c.forEach(’fpgafx/fpgafx/delay ’ ,...
’built -in/SubSystem ’, {}, ...
’hdldefaults.SubsystemBlackBoxHDLInstantiation ’ ,...
{’AddClockPort ’, ’on’, ’ClockInputPort ’,’clk’ ,...
’AddClockEnablePort ’, ’on’,’ClockEnableInputPort ’,’ce’...
’AddResetPort ’,’off’ ,...
’InlineConfigurations ’,’off’});
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%Don ’t generate HDL code for tubewarmth model. This block will be replaced

%by a model created in Xilinx System Generator

c.forEach(’fpgafx/fpgafx/tubewarmth_sysgen ’, ...
’built -in/SubSystem ’, {}, ...
’hdldefaults.SubsystemBlackBoxHDLInstantiation ’ ,...
{’AddClockPort ’, ’on’, ’ClockInputPort ’,’clk_1 ’ ,...
’AddClockEnablePort ’, ’on’, ’ClockEnableInputPort ’,’ce_1’ ,...
’AddResetPort ’,’off’ ,...
’InlineConfigurations ’,’off’});

%General options. Only a few are shown as example

c.set( ...
’AddInputRegister ’, ’on’ ,...
’AddOutputRegister ’, ’on’ ,...
’AddPipelineRegisters ’, ’off’ ,...
’CheckHDL ’, ’on’ ,...
’ClockEnableInputPort ’, ’ce’ ,...
’ClockEnableOutputPort ’, ’ce_out ’ ,...
’FIRAdderStyle ’, ’linear ’ ,...
’TargetLanguage ’, ’VHDL’);

Listing 5: Control file for FPGAFX model
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