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Chengyuan Wang
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Abstract
Purpose Limitation is a GDPR [1] principle that restricts software to only collect
and process personal data for specified purposes to which the user consented. How-
ever, there are few works that implement automatic purpose limitation check in
software. Fortunately, there is a similar policy called confidentiality with lots of
previous works. In practice, to ensure this principle, the policy checks are usually
implemented by an Information-Flow Control (IFC) framework. This technique re-
stricts how data flows within the software to prevent policy violations. Previously,
Stefan et al. have done a series of works to use IFC to ensure confidentiality and
present a concrete implementation as a Haskell Library [2, 3]. In this project, we
present a static IFC system as a type system which checks the purpose limitation
statically. Additionally, we embed this type system into Haskell and formalize it
in Agda. The former implementation presents a concrete example of how our type
system would behave in an industrial language, while the latter proves our type
system’s correctness.

Keywords: Type system, Security & Privacy, Information-flow control, Noninterfer-
ence
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1
Introduction

Nowadays, computer software plays a vital part in our society. On the one hand, it
brings great convenience to our daily life. On the other hand, it increases the risk
of personal privacy leaks and leads to a growing concern about protecting personal
privacy.
This concern results in the adoption of purpose limitation, a privacy protection
principle of the General Data Protection Regulation (GDPR) [1]. Under GDPR,
purpose limitation restricts personal data from being collected and processed for
specified purposes to which the user consented. For example, social media such
as Facebook collect and analyze personal data, such as IP addresses and email
addresses, for personalized advertisements. However, with purpose limitations, these
personal data can only be used for necessary identification, such as login, unless the
user agrees with further processing.
To implement a purpose limitation check for software, an essential part is to im-
plement regulations to data structures in code. Fortunately, similar work has been
done in the security field for confidentiality. Confidentiality is a security policy which
protects sensitive data from leaking. For example, a password should not flow to a
public channel such as the standard output.
In previous work, the confidentiality policy was modeled as a security lattice, in-
dicating different security levels in the software. Subsequently, the policy check is
ensured via Information-Flow Control (IFC) [4], a technique that labels all the data
with a security label and traces them through execution, alerting the programmer
when policy violation occurs. Since both confidentiality and purpose limitation are
policies restricting how the software uses certain data, security and purpose label
behaviour shall have some similarities. Based on this, we can learn from the previous
works in the security field and build our own IFC framework for purpose limitation.
The IFC framework often comes in two flavours, dynamic and static. The dynamic
approach checks policy during runtime and is much easier to implement. The static
approach does the policy check during compile time and needs extra structures to
embed policy labels to data and computations. To avoid runtime overhead intro-
duced by the dynamic approach, we implement the static IFC approach by building
a new type system.
Overall, we build a static IFC framework for purpose limitation check and embed
this framework into a type system. Then, the type checker can check whether the
purpose limitation has been obeyed. Additionally, proof of correctness is given to
ensure our type system does the right thing. The overall pipeline is shown in Figure
1.1.

1
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Input
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Monad
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Type System for Purpose Limitation

Type
Checker

Type checked? 
Policy violation?

Correctness
Proof

Figure 1.1: Overall pipeline of this project

1.1 Research Questions
This project aims to present a static purpose limitation check via a type system and
address the following research questions.

1. What kind of structure are we using to abstract purpose? How can we embed
this purpose label with data and computation statically?

2. How would the type system for purpose limitation behave in an industrial lan-
guage? How would this new feature affect the usability of the host language?

3. How can we ensure the correctness of the presented type system?

1.2 Main Contribution
The main contribution of this project is divided into the following points.

1. We model purpose limitation with data and computation using a mathematical
concept called Graded Monads [5, 6]. (Chapter 3)

2. We encode the purpose label as a side effect in Haskell and write an example
program as a case study to evaluate our approach. (Chapter 4)

3. We mechanize the formal semantics of our type system in Agda, and come up
with a proof of noninterference to show the correctness of our type system.
Additionally, we extend the semantics of our type system to support the write
operation. (Chapter 5)

At the end of this thesis, we also included a discussion about ethical issues in this
project in Chapter 7.
The full version of the Haskell microbenchmark and the proof of noninterference in
Agda can be found in the Appendices A.2 and A.1, respectively.
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2
Background

In this Section, we provide the necessary background for understanding this project.
In Section 2.1 we discuss about confidentiality and purpose limitation and discuss
the similarity and differences between these two policies. Section 2.2 includes the
main idea of IFC and how it is related to purpose limitation. Section 2.3 introduces
the graded monads, a mathematical concept that we use to encode the purpose label
in our type system.

2.1 Confidentiality and Purpose Limitation
Confidentiality is a security policy that protects data from unauthorized viewers.
Usually, the authorization will be abstracted as security levels. For example L for
a public viewer and H for an admin viewer. An admin account can see all security
data and public data in the system, while the public viewer can only see the public
data.
Intuitively, we can see that there exists a partial order between different security
labels [7]. In previous work, this partial order was abstract as a lattice with partial
order ⊑. Admin viewer H can see all public data with level L (L ⊑ H), but not
vice versa. For example, the function that writes directly to the standard output
channel will have a low-security level L. When it tries to print a secured data with a
high-security level H, there would be a policy violation because label H can not flow
to label L (H ⋢ L). More advanced, we can have multi-level security labels (H1...𝑛)
to represent the security data for each independent user and draw a Hasse diagram
to describe the relationship between these labels as shown in Figure 2.1.
A Hasse diagram illustrates a finite partially ordered set. Each vertex represents an
element in the set, the lines between vertexes represent the partial order ⊑. The
partial order always goes upwards, which means the elements live in the upper level
“larger than“ the elements in the lower level. In Figure 2.1, we have three different
users who have their own secure data with security level from H1 to H3, a public level

H0 

L

H1 H2 H3

Figure 2.1: Security label in Confidentiality
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2. Background

L and an administrator with level H0 can see all data in this system.
On the other hand, purpose limitation is a privacy policy that ensures that private
data can only be processed for a specific purpose to which the user consented. For
example, in a login process with purpose Login, the user IP address is usually
allowed to use to verify potential account hacking. If the login IP is not the same as
the previous one, an additional identification email will be sent to the user’s email
address. Here, we mark this usage of data as purpose Verify, so the procedure with
purpose Login can access the user IP address (Login ⊑ Verify). However, this
IP address is also often used for location-based advertisement. Here, we call this
purpose Marketing, which the user does not allow. With purpose limitation, any
use of IP address other than login verification results in a policy violation (Marketing
⋢ Verify).

2.2 Information-Flow Control and Noninterference

As described above, the policy violation is specified by the partial order between
policy labels; IFC uses certain mathematical concepts to attach these labels to
data and computation, then tracks how the data propagates through execution to
ensure that no policy violation occurs. In practice, information flow control usually
comes in two flavours, dynamic and static. The dynamic approach can support
richer policies while introducing more runtime overhead. The static method has
less runtime overhead but is harder to implement. Hendin and Sabelfeld present an
excellent survey paper [4] to introduce the motivation of IFC and how it ensures
confidentiality in a theoretical aspect. Furthermore, they include an introduction to
the basic concept of noninterference.
One of the mathematical concepts people are using in the security field to attach
labels is the Dependency Core Calculus (DCC) [8]. In DCC, the security label is
considered a dependency on the datatype. Once the data is attached with a security
label 𝑙 means this piece of data is protected at security level 𝑙. Moreover, DCC checks
whether the data flow follows the allowed direction in the binding operator.
Subsequently, Stefan and Russo have presented the labeled IO monads (LIO) as a
dynamic IFC library in Haskell [2], the security labels are attached to the data via
a state monads. In the static aspect, MAC [9] produces a static IFC framework in
Haskell and includes more discussion about advanced programming features such as
exceptions and concurrency. Similarly, Hybrid LIO (HLIO) [3] and Lifty [10] have
also encoded the security labels in the Haskell type system for a static policy check,
the former uses the Haskell type family [11] while the latter uses the liquid type [12]
via Liquid Haskell [13].
Noninterference is a semantics notion in the security field that demands public out-
put does not depend on secret input [14]. While in privacy policies like purpose
limitation, the definition of noninterference shall vary, we will talk more about this
in Section 5.2.

4



2. Background

𝑟𝑒𝑡𝑢𝑟𝑛 ∶∶ 𝐴 → 𝑀 𝐼 𝐴
>>= ∶∶ 𝑀 𝑙1 𝐴 → (𝐴 → 𝑀 𝑙2 𝐵) → 𝑀 (𝑙1 • 𝑙2) 𝐵

Figure 2.2: Basic monadic functions in graded monads

2.3 Effect Systems and Graded Monads
The effect systems [5] indicates all computational effects in a software and monads
is a mathematical concept as well as a tool in functional programming language to
abstract effects. However, monads only provides a binary view: effectful or pure,
and the effect systems provides more fine-grained information about effects [15].
To combine these two concepts and provide functional programming with a more
powerful tool to abstract effects, the graded monads [15, 6] is presented.
Unlike DCC, which regards the policy labels as dependencies and adds additional
constraint to the binding operator, graded monads regard the policy labels as com-
putational effects and model them as a partially ordered monoid (𝐹 , 𝐼, •, ⊑), where
𝐼 represents pure computation, 𝐹 is the set of effects, • is the composition between
labels, and ⊑ is the partial order operator between labels.
When using the graded monad in an IFC framework, the • operator will produce
the least upper bound between two labels. In this way, the bind operator >>=
always computes data from the lower level in the Hasse diagram to upper or equal
level and makes the data flow always satisfies the policy.
In this project, we will use graded monads to encode our purpose label.

5
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3
Modeling Purpose Limitation

In this section, we will discuss how we model the purpose limitation similarly to con-
fidentiality in previous work. Section 3.1 first describes how we model the purpose
label as a lattice and the differences between purpose labels and security labels. In
Section 3.2, we model the purpose labels as a computational effect and encode them
in graded monads.

3.1 Purpose as Lattice
As described in Section 2.1, similarly to confidentiality, purpose limitation is also
a policy that restricts how the software uses the data. The “purpose“ can also be
modeled as a lattice based on this. Unlike security labels in confidentiality, purpose
labels in purpose limitation indicate the purpose for which the data can be used.
Use the previous login process as an example, and we can draw a Hasse diagram to
make this clear.
In confidentiality, each label represents a security level, the most strict label that
contains all labels has the most strict security level and lives at the top of the
Hasse diagram (Figure 2.1). However, the powerset of label turns up side and down
for purpose label. In Figure 3.1, each purpose label represents the purpose for
which the attached data can be used. In this case, the most strict label shall be
the empty set Nil, which means that the attached data cannot be used for any
purpose. Subsequently, we defined all the basic functionalities in the system, like
read database and send email as singleton labels indexed with a unique natural
number; we called them basic purpose labels. A more complex purpose label shall

Nil : {}

Login : Union 
(Verify, ReadDB,

SendMail)

Marketing : Union
(ReadDB, SendMail)

Verify :  
{1}

SendMail :
{4}

All : Union 
(Verify, ReadDB,

WriteDB, SendMail)

ReadDB :
{2}

WriteDB :
{3}

Register : Union 
(ReadDB, WriteDB, 

SendMail)

Figure 3.1: Purpose label in Purpose Limitation

7



3. Modeling Purpose Limitation

be the union of multiple basic purpose labels. At the bottom of the Hasse diagram
is the purpose All, which contains all basic purposes in the system, and represents
that the attached data can be used for all purposes.
Additionally, to ensure purpose limitation, the data can only flow from a more
general purpose to a more strict purpose. In other words, it flows from the bottom
of the Hasse diagram to the top. Therefore, our purpose lattice is a bounded join-
semilattice, a partially ordered set with a join operator to produce the least upper
bound of two elements, and was bounded by a minimal element (in our case, the
purpose All).

3.2 Purpose as Effects
After modeling the purpose as a lattice, we need to go one step further to embed
them into computations so that the IFC framework can trace the labels during
execution.
For all pure computations, they are nothing more than a lookup table and have not
really used the data for any purpose, so we tag them with the most general purpose
All. For effectful computations, we need to ask the graded monads for help. In
the basic definition of graded monads, the effects have two related operators; one is
the composition operator •, and the other is the partial order relation ⊑. Since we
define our purpose label as a lattice, and more general label contains more elements.
The composition operator • will be our join operator and behave the same as the set
intersection. Meanwhile, the partial order relation ⊑ checks whether the right-hand
side is a subset of the left-hand side.

8



4
Haskell Library for Purpose

Limitation

In this chapter, we present a Haskell approach for our purpose limitation check as
well as a microbenchmark to evaluate our approach. Section 4.1 introduces the
Haskell approach of graded monads. In Section 4.2, we embed a type level purpose
limitation check into the Haskell type system. A registration program is presented as
a micro-benchmark in Section 4.3 to evaluate our approach. The code in this chapter
is open sourced on Github (https://github.com/ericwang385/DAT085/tree/poly).

4.1 Graded Monads in Haskell

The graded monads introduces a formal way to embed the effect systems into monad
[6]. Based on this, Orchard and Petricek have successfully implemented the graded
monads in Haskell [15]. Figure 4.1 shows their definition of the graded monads in
Haskell.
In this work, they build the effect composition • as a type level operator via Haskell
type family Plus. The Unit type is label for pure computation, and Inv is a Haskell
type level constraint to add additional restriction to the instance of Effect. By
default it is empty.
In our project, we will follow the step of Orchard and Petricek and build our own
graded monads for purpose limitation.

class Effect (m :: k -> Type -> Type) where

type Unit m :: k

type Plus m (f :: k) (g :: k) :: k

type Inv m (f :: k) (g :: k) :: Constraint

return :: a -> m (Unit m) a

(>>=) :: (Inv m f g) => m f a -> (a -> m g b) -> m (Plus m f g) b

(>>) :: (Inv m f g) => m f a -> m g b -> m (Plus m f g) b

Figure 4.1: The graded monads in Haskell

9



4. Haskell Library for Purpose Limitation

type All = Set '[Natural 0]

type SendMail = Set '[Natural 1]

type ReadDB = Set '[Natural 2]

type WriteDB = Set '[Natural 3]

type Verify = Set '[Natural 4]

type Login = Union ReadDB (Union SendMail Verify)

type Marketing = Union ReadDB SendMail

type Register = Union ReadDB (Union WriteDB (Union SendMail Verify))

Figure 4.2: Purpose label declaration

newtype Labeled p a = MkLabeled { val :: a }

instance Effect Labeled where

type Unit Labeled = All

type Inv Labeled a b = (IsSet a, IsSet b)

type Plus Labeled a b = Join a b

return = MkLabeled

(MkLabeled a) >>= f = MkLabeled (val (f a))

sub :: (CanFlowTo p1 p2) => Labeled p1 a -> Labeled p2 a

sub (MkLabeled a) = MkLabeled a

tag :: a -> Labeled p a

tag = MkLabeled

Figure 4.3: Labeled data type in our Haskell approach

4.2 Purpose Limitation in Haskell

As stated in Section 3.1, the purpose labels are actually a partially ordered set. To
embed this definition into Haskell type system, we use a type level set [15] to define
our purpose label. As shown in Figure 4.2, each basic purpose were indexed with a
unique natural number. More complex purpose label was formalized as the union
of multiple basic purposes via a type level operator Union.
Meanwhile, the All purpose is hard to define. Since our library allows the user to
define their own purpose label and we do not know what kind of purpose will be in
the label All. To solve this, we treat this label as a special case and use the natural
number 0 to index the label All. In the following definition of the partial order
relation shown in Figures 4.4 and 4.5, we also give the label All a special case.
For the next step, we can define our Labeled type as an instance of the graded
monads type class Effect. As shown in Figure 4.3, the effect for pure computation

10



4. Haskell Library for Purpose Limitation

type Intersection s t = Dup (Sort (s :++ t))

type family Dup t where

Dup '[] = '[]

Dup '[e] = '[]

Dup (e ': e ': s) = e ': Dup s

Dup (e ': f ': s) = Dup (f ': s)

type family Join a b where

Join All (Set b) = Set b

Join (Set a) All = Set a

Join (Set a) (Set b) = Set (Intersection a b)

Figure 4.4: Join operator and type level set intersection

type family CanFlowTo a b :: Constraint where

CanFlowTo All a = a ~ a

CanFlowTo (Set a) (Set b) = Union a b ~ a

Figure 4.5: Type level partial order in graded monads

is All, and the constraint Inv to ensure that two purpose labels in the bind operator
are all type level sets. The effect composition is defined as a Join operator, which
is a type level set intersection, it contains a type level quicksort function Sort and
a type family Dup to collect the duplicate elements in the set (Figure 4.4). The sub

function is the lifting operation for our labeled types. It lifts the purpose label from
a more general purpose to a more strict one. The type family CanFlowTo (Figure
4.5) ensures this flow is always in the correct direction, the operator means the
type equality in Haskell. The function tag is only defined for mocked test data in
the microbenchmark.

4.3 Case Study
In this section, we present a registration program as a case study to evaluate our
Haskell approach, noticing in our Haskell example program, we use the bind operator
>>= explicitly rather than the do notation. This mostly because the bind for graded
monad rise a conflict with the original definition in Haskell, this .
The basic functionality of this registration program is as follows:

• User Registration: add a new user and its password to the database.
• Existing User Detect: detect whether the provided username is already in the

database.
• Send Advertisements: After registration, send an advertisement to the user

email without using the IP address.
To fulfill these functions, we use the same hierarchy as shown in Figure 3.1 for our
purpose labels in this case study. Then we can reuse the purpose label definition in

11



4. Haskell Library for Purpose Limitation

sendAds :: Labeled Marketing Bool

sendAds = usermail >>= \mail -> userIP >>= \ip -> tag True

Figure 4.6: Ill-typed function in purpose limitation

Figure 4.2 and present the main registration process as an example.
In Figure 4.7, we define a function register for the registration process. Noticing
that the purpose of the return value is the empty set purpose Nil. Because in this
microbenchmark, there is no extra call for function register, which means its result
shall not be used for any purpose. In a real-world registration program, there should
be a more strict purpose like ShowResult, then the result of register will have a
nonempty purpose to flow to.
Returning to the microbenchmark, the register function first checks whether the
user already exists with a searchDB function; if it exists, then it returns false;
otherwise, it updates the database and sends an email without using the userIP.
Unfortunately, this example program does not support mutable reference and IO
action yet, so the function searchDB is a trivial function always return True. Here we
only show a fragment of the benchmark; the complete version is listed in Appendix
A.2.
Since the userIP has purpose Verify, which means it can not be used for sending
location based advertising emails. If we try to write code as in Figure 4.6, the
Haskell typechecker will throw an error because the label Join Verify SendMail is
not compatible with the label Marketing.

12



4. Haskell Library for Purpose Limitation

type DB = Labeled All

[(Labeled Register String, Labeled Login String)]

username :: Labeled Register String

username = tag "TestName1"

usermail :: Labeled Login String

usermail = tag "Testmail1"

userIP :: Labeled Verify String

userIP = tag "TestIP"

password :: Labeled Login String

password = tag "TestPassword"

database :: DB

database = tag [(username, password)]

register :: Labeled (Set '[]) Bool

register = do

ans <- userExist username

if ans then tag False :: Labeled (Set '[]) Bool

else do

_ <- updateDB database username password

ans3 <- sendmail usermail

if ans3 then tag True :: Labeled (Set '[]) Bool

else tag False :: Labeled (Set '[]) Bool

userExist :: Labeled Register String

-> Labeled Verify Bool

updateDB :: DB -> Labeled Register String

-> Labeled Login String -> DB

sendmail :: Labeled p String -> Labeled SendMail Bool

Figure 4.7: Well-typed function in purpose limitation

13
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5
Correctness

In Section 5.1, we first come up with the formal syntax for our type system in
Agda. Then we discuss multiple ways of interpreting the syntax and present a
formal semantics of our type system using denotational semantics. In Section 5.3,
we further extend this formal syntax to interact with output channels. In Section
5.2 various interpretations of noninterference in purpose limitation are presented,
we choose two of them and give a proof in Agda. The code in this chapter is open
sourced on Github (https://github.com/ericwang385/Purpose-Limitation).

5.1 Purpose Limitation in Agda

5.1.1 Syntax
Agda is a dependently typed functional programming language. Based on the
Curry–Howard correspondence, Agda can formalize a proof as a program written
in a functional programming style. Data types in Agda are usually introduced as
generalized algebraic datatype (GADT). Each function in Agda will be regarded as
a mathematical proof.
To formalize our type system in Agda, we first need to define the basic syntax.
Context is defined as a snoc list of types, and all variable inside the Context is
represented by the De Bruijn index ∋, which represents terms of lambda calculus
without naming the bound variables [16]. In the meanwhile, the syntax of types
contains natural numbers, booleans, functions, and a labeled data type (Figure 5.1
and 5.2). In Agda, we can separate a constructor with _, this is called the Mixfix
operator [17]. For example, in the function type ⇒, the following representations
are equal:
_⇒_ a b

(a ⇒_) b

a ⇒ b

The labeled data type represents data with a purpose label. In the Agda standard
library, there is a data structure called BoundedJoinSemiLattice, which is the exact
definition of our purpose label presented previously. With these definitions, we can
define terms as shown in Figure 5.3.
Other than basic terms such as lit for natural number and true for boolean, we
also have a unit term to represent the unit type. The 𝜂 and ↑ terms are related to
the purpose label. 𝜂 creates a labeled data term with the bottom label. ↑ takes an
allowed flow and lift the purpose label to a more strict one.
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infixl 5 _,_

data Ctx : Set c where

∅ : Ctx

_,_ : Ctx → Type → Ctx

infix 4 _∋_

data _∋_ : Ctx → Type → Set where

Z : ∀ {Γ A} → Γ , A ∋ A

S_ : ∀ {Γ A B} → Γ ∋ A → Γ , B ∋ A

Figure 5.1: Context in our type system

data Type : Set c where

Unit : Type

Nat : Type

Bool : Type

_⇒_ : (a b : Type) → Type -- Function Type

⟨_⟩_ : Label → Type → Type -- Labeled data with purpose

Figure 5.2: Basic types in our type system

infix 4 _⊢_

data _⊢_ (Γ : Ctx) : Type → Set (c l⊔ ℓ₂) where

unit : Γ ⊢ Unit

true : Γ ⊢ Bool

false : Γ ⊢ Bool

lit : ℕ → Γ ⊢ Nat

case_of[zero⇒_|suc⇒_] : Γ ⊢ Nat → Γ ⊢ a → Γ , Nat ⊢ a → Γ ⊢ a

var_ : Γ ∋ a → Γ ⊢ a

ƛ_ : Γ , a ⊢ b → Γ ⊢ (a ⇒ b)

_•_ : Γ ⊢ (a ⇒ b) → Γ ⊢ a → Γ ⊢ b

plus : Γ ⊢ Nat → Γ ⊢ Nat → Γ ⊢ Nat

If_Then_Else_ : Γ ⊢ Bool → Γ ⊢ a → Γ ⊢ a → Γ ⊢ a

η_ : Γ ⊢ a → Γ ⊢ ⟨ ⊥ ⟩ a

_↑_ : l₁ ⊑ l₂ → Γ ⊢ ⟨ l₁ ⟩ a → Γ ⊢ ⟨ l₂ ⟩ a

label : (l : Label) → Γ ⊢ a → Γ ⊢ ⟨ l ⟩ a

Let⇐_In_ : Γ ⊢ (⟨ l₁ ⟩ a) →

Γ , a ⊢ ⟨ l₂ ⟩ b → Γ ⊢ ⟨ l₁ ∘ l₂ ⟩ b

Figure 5.3: Terms in our type system
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Value : Type → Set v

Value Nat = ℕ

Value Bool = B

Value Unit = ⊤

Value (a ⇒ b) = Value a → Value b

Value (⟨ l ⟩ a) = M l (Value a)

Figure 5.4: Mapping from our Type System to Agda Type

5.1.2 Semantics
Usually, there are two choices for formal semantics; one is operational semantics and
the other is denotational semantics [18].
The operational semantics regard the evaluation as a sequence of operations map-
ping an input term to an output term. Usually, people first define the reduction
between two different terms as the small-step semantics, and often a big-step seman-
tics maps from a term directly to the value. The small-step semantics illustrates
each computation step in a program, while the big-step semantics assumes there is
an underlying small-step semantics and ensures the program terminates. For the
denotational semantics, it translates the syntax directly into mathematical objects.
In this project, we choose to prove the noninterference through a distinguishability
relation, where only the computation with the right purpose can “see“ the data.
In this case, there is not much difference between a denotational semantics and a
big-step operational semantics. Additionally, Agda provides a termination check so
that our denotational semantics ensures termination for free.
In our case, the mathematical object for the denotational semantics is the Agda type
system. While the labeled data type need to map into a graded monads structure
as shown in Figure 5.5. We define the mapping from our type system to the Agda
type system using a Value function. For Nat, Bool and Unit we simply map them
to the corresponding Agda type. The function type from a to b is formed as an
Agda function from Value a to Value b. The type of labeled data is defined by our
graded monads in Agda (Figure 5.5).

record GMonad : Set (c l⊔ ℓ₂) where

field

M : Label → Set → Set

return : A → M ⊥ A

_>>=_ : M l₁ A → (A → M l₂ B) → M (l₁ ∘ l₂) B

sub : l₁ ⊑ l₂ → M l₁ A → M l₂ A

Figure 5.5: Graded monads in Agda

To evaluate our formal semantics in Agda, we also need an environment to store
all the local variables (Figure 5.6). The lookupVar taken a environment and a De
Bruijn index as input, produces the value stored in the environment. Then we can
have our evaluation process taking a term and an environment to produce a value

17
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data Env : Ctx → Set v where

∅ : Env ∅

_,_ : Env Γ → Value a → Env (Γ , a)

lookupVar : Env Γ → Γ ∋ a → Value a

lookupVar (ρ , v) Z = v

lookupVar (ρ , v) (S x) = lookupVar ρ x

Figure 5.6: Environment in Agda

eval : Γ ⊢ a → Env Γ → Value a

Here, we only give the type signature of eval, the complete version is listed in
Appendix A.1

5.2 Noninterference proof
Non-interference is a concept originating from the security field. Its original version
says “The public output of the program must not depend on sensitive inputs”, which
ensures that the sensitive input will not leak [14].
In a privacy policy like purpose limitation, this definition can be translated as “In-
put with specific purpose must produce outputs with a more specific purpose“ this
sentence can also be interpreted differently. On the one hand, we can say ”For
all computations, erasing the inputs that are invisible to the current observer be-
fore/after execution should produce the same output”. On the other hand, we can
also say, ”For all computations, during execution only data with purpose label that
is visible to the current observer can be distinguished”. These two different inter-
pretations give us two possible ways to prove noninterference.
The first interpretation was based on the term erasure method [19] and was used in
a series of articles on information flow libraries [20, 2, 3, 21]. The technique uses a
separate erasure function on terms, which essentially rewrites the data according to
the user’s security level 𝑢. If the user level is lower than the data security level 𝑝,
the function will erase the sensitive data to a trivial value (in the equation, use ⊤
to represent).

𝑀𝑝𝐴 = {
𝐴, 𝑝 ⊑ 𝑢
⊤, 𝑝 ⋢ 𝑢

(5.1)

Usually, operational semantics often use this approach by combining the separate
erasure function with the small-step semantics. In our denotational semantics ap-
proach, the rewrite step is incorporated into the graded monads rather than written
as a separate function. Gaboardi et al. show a way to combine the graded monads
with the erasure step [22]. A discussion of the relation between using a separate
erasure function and embed the erasure step in the evaluation step will be regard as
a future work for our project.
The condition in Equation 5.1 can be regarded as either a logic implication (Figure
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M : Label → Set ℓ₂ → Set ℓ₂

M l a = l ⊑ u → a

Figure 5.7: Erasure method as a logic implication

M : Label → Set ℓ₂ → Set ℓ₂

M l a with (l ⊑? u)

... | yes p = a

... | no ¬p = ⊤

Figure 5.8: Erasure method as a decidable relation

5.7) or pattern matching with a decidable relation. (Figure 5.8). Here we only show
the monad constructor, the complete version can be found in Appendix A.1.
For the second interpretation, the idea comes from Reynolds’ concept of parametric-
ity [23]. The method can be easily expressed as the distinguishability relation 𝑅.
If the user level 𝑢 is lower than the data security level 𝑝, it will return a trivial
relation; otherwise, it returns a relation on the underlying type 𝐴 without the label.
A concrete approach that uses this relation is the Dependency Core Calculus (DCC)
[8]. In this work, Abadi et al. present a way to combine this distinguishability rela-
tion with monads. This led to a series of papers that embed this distinguishability
relation in Haskell using DCC [24, 25, 3].

𝑅⟨𝑝⟩𝐴 = {
𝑅𝐴, 𝑝 ⊑ 𝑢
|𝐴| × |𝐴|, 𝑝 ⋢ 𝑢

(5.2)

In this case, the graded monad is simply an identity monads, and the basic type
without labels (natural number/boolean) will produce an equivalence relation. For
function type, if the input is visible, then the output should also be visible. For the
labeled type, it can be formalized as a logic implication as shown in Figure 5.9.
To formalize the noninterference proof for both erasure based and relational-based
interpretation, we can say – for the current viewer, given a term and two related
environments, our type system shall produce two values in the same relation. Since
we already have a distinguishability relation on Value, with a environment distin-
guishability relation shown in 5.10, we can formalize the noninterference proof as
follows (complete version in Appendix A.1):

[_]_~_ : (a : Type) → Rel (Value a) (c l⊔ ℓ₂)

[ ⟨ l₁ ⟩ t ] x ~ y = l₁ ⊑ u → ([ t ] x ~ y)

[ a ⇒ b ] f ~ g = ∀ {x y : Value a} → [ a ] x ~ y → [ b ] f x ~ g y

[ t ] x ~ y = x ≡ y

Figure 5.9: Distinguishability relation
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⟨_⟩_~_ : (Γ : Ctx) → Rel (Env Γ) ℓ₂

⟨ ∅ ⟩ ea ~ eb = ⊤

⟨ ctx , a ⟩ (ea , va) ~ (eb , vb)

= (⟨ ctx ⟩ ea ~ eb) × ([ a ] va ~ vb)

Figure 5.10: Environment equivalence

noninterference : {t : Type} → (term : Γ ⊢ t)

→ (env₁ env₂ : Env Γ) → ⟨ Γ ⟩ env₁ ~ env₂

→ [ t ] (eval term env₁) ~ (eval term env₂)

Figure 5.11: Noninterference statement

5.3 IO extension
To enrich the syntax of our type system, we also add a write extension. First, we
add the syntax level definition of our IO extension as shown in Figure 5.12. The
labeled IO type 𝐼𝑂⟨_⟩ models the output channel with a purpose label. In this way,
we get a series of IO channels, each with a different purpose label. The write term
represents the writing process in our type system. Due to the lack of time, the read

term is not implemented. It takes a labeled data and an output channel with the
same purpose label, producing the updated output channel.

IO⟨_⟩_ : Label → Type → Type

write : Γ ⊢ ⟨ l ⟩ a → Γ ⊢ IO⟨ l ⟩ a → Γ ⊢ IO⟨ l ⟩ a

Figure 5.12: Syntax of IO extension

Secondly, to evaluate our IO extension, on the semantics level, we define the seman-
tics of the IO extension in Figure 5.13. The IO channel is interpreted as an Agda
list of graded monads in the Value function. In this way, the evaluation step of
write term would append the input value to the end of the output channel.

Value (IO⟨ l ⟩ a) = List (M l (Value a))

eval (write x io flow) ρ = (eval x ρ) ∷ eval io ρ

Figure 5.13: Semantics of IO extension

Lastly, for the noninterference proof, we need to define the distinguishability re-
lation for the IO channels, which checks whether all values inside a channel are
with the same relation. In the noninterference function, the proof is given by the
noninterference propriety of the term to write and the io channel.
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[ IO⟨ l₁ ⟩ t ] (x ∷ xs) ~ (y ∷ ys)

= l₁ ⊑ u → ([ t ] x ~ y) × [ IO⟨ l₁ ⟩ t ] xs ~ ys

noninterference {Γ} (write term io) e1 e2 enveq

= λ flow → noninterference {Γ} term e1 e2 enveq flow

,' noninterference {Γ} io e1 e2 enveq

Figure 5.14: Noninterference proof of IO extension
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6
Related Works

6.1 IFC for Confidentiality
The IFC technique is widely used for confidentiality check to protect data from
leaking. In the dynamic approach LIO [2] and the static approach MAC [9] Stefan
et al. and Russo et al. have modeled the security level as a label attached to data
and computations. Both works have been presented as a Haskell library. HLIO
[3], as a follow up work of LIO has changed the policy check from dynamic to
hybrid, which has gain some performance increase. Comparing with our Haskell
example program, these approaches has more advanced features such as IO and
concurrency. However, these approaches only work for confidentiality and can not
extend to purpose limitation. While our project makes some trade-offs, we drop
some advanced feature and reform the IFC methods in previous works to fit the
purpose limitation check perfectly.
Furthermore, from a static policy check perspective, Algehed model the security
level as type level labels and presents a Haskell implementation of DCC [24] and a
simpler calculus, which shares the same denotation domain as DCC [25].
In our project, we also model the purpose as a label attached to data, our labeled
data structure in the Haskell example program is heavily inspired by the Haskell
embedding of DCC[24]. However, their policy check is done in a DCC style –
regarding the security label as a status of the data and adding constraints to the
bound operator to ensure the data flows in the correct order, while in our approach
we regard the purpose label as a computational effect and use an effect composition
operator to ensure the data always flow from a general purpose to a more strict
purpose. From our perspective, the effect systems approach is more neat than the
DCC approach.

6.2 Graded Monads
Wadler and Thiemann have presented a formal way to combine the computational
effect with monads [5], which receives a new name as the graded monads in the
following works [26]. Katsumata formalized the parametric effect monads [6] and
includes a discussion of denotational semantics of graded monads and the soundness
of it. To go one step further, Orchard and Petricek have embedded this formal
representation into Haskell by using a type-level set to represent the effects [15]. The
graded monads definition in our Haskell program is mainly based on this approach
and modifies it to fit the purpose label.
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6.3 Noninterference proof
For a more theoretical aspect, rather than implementing the information flow con-
trol into certain languages, people more care about high-level abstraction of this
method and its correctness. Heintze and Riecke use the logical relations to proof
noninterference in their work SLam [27], and we also use this proving idea in our
implementation. In Hunt and Sands’ work [21], they has discussed information
flow control and its soundness in an untyped language, while we are presenting the
soundness of a type system based on simple typed lambda calculus. Moreover, as
an extension of the simple typed lambda calculus, A Core Calculus of Dependence
(DCC) [8] interpreters policy check as a distinguishability relation to enforce the
visibility between computation and data at different security levels. This approach
directly inspires our distinguishability relation, however, as stated in Section 5.2,
the interpretation of noninterference in confidentiality and purpose limitation are
different. In our approach, we come up with our own distinguishability relation
based noninterference proof for purpose limitation.
In follow-up paper of MAC by Vassena et al. [20] they formalize MAC into Agda and
use computational semantics to interpret their typed language. In this work, due
to the sequential steps in operational semantics, they use a separate erasure func-
tion and prove the noninterference for each evaluation step, this erasure based proof
inspires our erasure-based proof for purpose limitation. However, in purpose limita-
tion, since the interaction between labeled data and computation is the only thing
that matters. We choose to use denotational semantics to interpret our language
based on simple-typed lambda calculus. Moreover, rather than using a separate era-
sure function to map from simply typed terms to the corresponding untyped terms,
we embed the erasure step into our denotational semantics. The noninterference
propriety can be proved by comparing the evaluation result between two terms with
the same purpose label.
In Algehed and Bernardy’s work, the same as our approach, they use a denotational
semantics to formalize their language, but the mathematics concept they are work-
ing with is DCC and they use parametricity to show that the noninterference is a
consequence of ”free theorem” [28]. Again, because of the semantics of DCC and
graded monads are different, we can not use this work to prove the correctness of our
type system. Gaboardi et al. use an example of their calculus as an erasure method
with graded monads in the denotational semantics [22], this work is more theoretical
than practical, our approach shares the same underlying spirit of noninterference in
information flow, but focusing more on specific policies such as purpose limitation.
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7
Discussion & Conclusion

7.1 Benchmark in Haskell

We have presented a Haskell program to evaluate our type system. It illustrates the
overall behavior of static purpose limitation check via a type system. Comparing
with the dynamic policy check, our approach avoids some runtime overhead, how-
ever, due to the way Haskell handling type classes and constraints, there are still
remaining some runtime overhead. Additionally, there are still several shortages
that need to be improved in future work. Firstly, the graded monads is not fully
embedded into the Haskell monad system, so we need to write the bind operator
explicitly rather than using a do notation, and this decreased the usability of our li-
brary. Secondly, the labeled mutable data structure and IO actions is not supported,
which make some functions in our example trivial.

7.2 Formal Semantic in Agda

In the Agda approach, we discuss the relation between different semantics in purpose
limitation. And explore various interpretation of the noninterference propriety. We
believe there must be an underlying equivalence between noninterference propriety
in denotational semantics and operational semantics, this would mark as a possible
future work.

7.3 Ethical Issues

In this project, we provide a type system for privacy policy call noninterference.
The type system itself can only perform as a framework for policy check, the policy
details shall be customized by the user. During the customization, our type system
can only see the purpose that the software is meant to use the data and our type
system will not process or collect any other user data. Additionally, the source code
is open sourced on Github (https://github.com/ericwang385/Purpose-Limitation),
we believe this can benefit the whole community. With this approach, people can
use it as a library in Haskell and write program that follows the purpose limitation
policy, or build a static analysis tool to detect the potential policy violation.
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7. Discussion & Conclusion

7.4 Conclusion
In this project, we have explored a possible way to model the purpose limitation in
a type system, from purpose lattice to effect system, then using a graded monad to
embed the policy check into Haskell type system and build up a concrete example
program. Moreover, we have presented a formal semantic in Agda for our type sys-
tem. At last, we have come up with a noninterference proof to show the correctness
of our type system.
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record Functor (F : Set v → Set v) : Set (lsuc v) where

field

fmap : (A → B) → F A → F B

_<$>_ = fmap

infixl 4 _<$>_

record GMonad : Set (c l⊔ ℓ₂ l⊔ lsuc v) where

field

M : Label → Set v → Set v

return : A → M ⊥ A

_>>=_ : M l₁ A → (A → M l₂ B) → M (l₁ ∘ l₂) B

sub : l₁ ⊑ l₂ → M l₁ A → M l₂ A

join : (M l₁ (M l₂ A)) → M (l₁ ∘ l₂) A

join ma = ma >>= λ x → x

fmap : (A → B) → M l₁ A → M l₁ B

fmap f ma = sub (⊑-reflexive (identityʳ _)) (ma >>= λ x → return (f x))

functor : Functor (M l)

functor = record {fmap = fmap}

_>>_ : M l₁ A → M l₂ B → M (l₁ ∘ l₂) B

ma >> mb = ma >>= λ a → mb

Figure A.1: Graded monad definition
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eval : Γ ⊢ a → Env Γ → Value a

eval true ρ = B.true

eval false ρ = B.false

eval unit ρ = tt

eval (lit n) ρ = n

eval case x of[zero⇒ expr1 |suc⇒ expr2 ] ρ with (eval x ρ)

... | ℕ.zero = eval expr1 ρ

... | ℕ.suc n = eval expr2 (ρ , n)

eval (var x) ρ = lookupVar ρ x

eval (ƛ x) ρ = λ y → eval x (ρ , y)

eval (f • x) ρ = eval f ρ (eval x ρ)

eval (plus x y) ρ = (eval x ρ) + (eval y ρ)

eval (If cond Then e1 Else e2) ρ with (eval cond ρ)

... | B.true = eval e1 ρ

... | B.false = eval e2 ρ

eval (η x) ρ = return (eval x ρ)

eval (flow ↑ x) ρ = sub flow (eval x ρ)

eval (label l x) ρ = sub ⊥-⊑� (return (eval x ρ))

eval (Let⇐ ma In mb) ρ = eval ma ρ >>= λ v → eval mb (ρ , v)

eval (write x io flow) ρ = (sub flow (eval x ρ)) ∷ eval io ρ

Figure A.2: Evaluation Steps
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suc-injective : {ℓ : Level} {x y : ℕ} → _≡_ {ℓ} (ℕ.suc x) (ℕ.suc y) → _≡_ {ℓ} x y

suc-injective refl = refl

plus-≡ : {ℓ : Level} {a b c d : ℕ} → _≡_ {ℓ} a b → _≡_ {ℓ} c d → _≡_ {ℓ} (a + c) (b + d)

plus-≡ refl refl = refl

noninterference : {t : Type} → (term : Γ ⊢ t)

→ (env₁ env₂ : Env Γ) → ⟨ Γ ⟩ env₁ ~ env₂ → [ t ] (eval term env₁) ~ (eval term env₂)

noninterference unit e1 e2 enveq = refl

noninterference true e1 e2 enveq = refl

noninterference false e1 e2 enveq = refl

noninterference (lit x) e1 e2 enveq = refl

noninterference {Γ ,� a} (var x) e1 e2 enveq with e1 | e2 | enveq | x

... | (e1 , x) | (e2 , y) | (p ,' v) | Z = v

... | (e1 , _) | (e2 , _) | (p ,' v) | (S x) = noninterference {Γ} (var x) e1 e2 p

noninterference {Γ} (case term of[zero⇒ term₁ |suc⇒ term₂ ])

e1 e2 enveq with (noninterference {Γ} term e1 e2 enveq)

... | p with (eval term e1) | (eval term e2)

... | ℕ.zero | ℕ.zero = noninterference {Γ} term₁ e1 e2 enveq

... | ℕ.suc x | ℕ.suc y = noninterference {Γ ,� Nat} term₂ (e1 , x) (e2 , y) (enveq ,' (suc-injective {lzero} p))

noninterference {Γ} {a ⇒ b} (ƛ term) e1 e2 enveq {x} {y} inputeq

= (noninterference {Γ ,� a} term (e1 , x) (e2 , y) (enveq ,' inputeq))

noninterference {Γ} (_•_ {a} term term₁) e1 e2 enveq

= (noninterference {Γ} term e1 e2 enveq) (noninterference {Γ} (term₁) e1 e2 enveq)

noninterference {Γ} (plus term term₁) e1 e2 enveq

= plus-≡ (noninterference {Γ} term e1 e2 enveq) (noninterference {Γ} (term₁) e1 e2 enveq)

noninterference {Γ} (If term Then term₁ Else term₂) e1 e2 enveq

with (noninterference {Γ} term e1 e2 enveq)

... | p with (eval term e1) | (eval term e2)

... | B.true | B.true = noninterference {Γ} term₁ e1 e2 enveq

... | B.false | B.false = noninterference {Γ} term₂ e1 e2 enveq

noninterference {Γ} (η term) e1 e2 enveq = λ _ → noninterference term e1 e2 enveq

noninterference {Γ} (flow ↑ term) e1 e2 enveq = λ x → noninterference term e1 e2 enveq (⊑-trans flow x)

noninterference {Γ} (label l term) e1 e2 enveq = λ x → noninterference {Γ} term e1 e2 enveq

noninterference {Γ} (Let⇐_In_ {l₁} {a} {l₂} term1 term2) e1 e2 enveq with noninterference {Γ} term1 e1 e2 enveq

... | p = λ x → noninterference {Γ ,� a} term2 (e1 , eval term1 e1) (e2 , eval term1 e2) (enveq ,' p (flow1 x)) (flow2 x)

where flow1 : {l₁ l₂ u : Label} → l₁ ∘ l₂ ⊑ u → l₁ ⊑ u

flow1 {l₁} {l₂} x = (⊑-trans (x≤x∨y l₁ l₂) x)

flow2 : {l₁ l₂ u : Label} → l₁ ∘ l₂ ⊑ u → l₂ ⊑ u

flow2 {l₁} {l₂} x = (⊑-trans (y≤x∨y l₁ l₂) x)

noninterference {Γ} (write term io flow) e1 e2 enveq

= λ x → noninterference {Γ} term e1 e2 enveq ((⊑-trans flow x)) ,' noninterference {Γ} io e1 e2 enveq

Figure A.3: Noninterference proof for relational based method
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A.2 Haskell Case Study

register :: Labeled (Set '[]) Bool

register = do

ans <- userExist username

if ans then tag False :: Labeled (Set '[]) Bool

else do

_ <- updateDB database username password

ans3 <- sendmail usermail

if ans3 then tag True :: Labeled (Set '[]) Bool

else tag False :: Labeled (Set '[]) Bool

login :: Labeled (Set '[]) Bool

login = do

ans1 <- verifyIP userIP

if not ans1 then tag False

else do

ans2 <- checkPass username password

if ans2 then tag True :: Labeled (Set '[]) Bool

else tag False :: Labeled (Set '[]) Bool

checkPass :: Labeled Register String -> Labeled Login String

-> Labeled Verify Bool

checkPass _ pass = do

p <- password

p' <- pass

if p == p' then tag True :: Labeled Verify Bool

else tag False :: Labeled Verify Bool

sendmail :: Labeled Login String -> Labeled SendMail Bool

sendmail ma = do

_ <- ma

tag True :: Labeled SendMail Bool

userExist :: Labeled Register String -> Labeled Verify Bool

userExist name = do

ans <- searchDB name

if ans then tag True :: Labeled Verify Bool

else tag False :: Labeled Verify Bool

verifyIP :: Labeled Verify String -> Labeled Verify Bool

verifyIP ma = ma >>= \a -> tag True :: Labeled Verify Bool

searchDB :: Labeled Register String -> Labeled Login Bool

searchDB _ = tag True :: Labeled Login Bool

updateDB :: DB -> Labeled Register String -> Labeled Login String -> DB

updateDB db name pass = do

rawdb <- db

tag (rawdb ++ [(name, pass)]) :: DB

Figure A.4: Example code in Haskell V
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