

Evaluation of Error Handling Mechanisms
for Automotive Embedded Systems
Master’s Thesis in Computer Systems and Networks

ANTON HEMLIN
ANDREAS ÅKESSON

Department of Computer Science and Engineering
Chalmers University of Technology
Gothenburg, Sweden 2014

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial pur-
pose make it accessible on the Internet. The Author warrants that he/she is the author
to the Work, and warrants that the Work does not contain text, pictures or other mate-
rial that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Evaluation of Error Handling Mechanisms for Automotive Embedded Systems

Anton Hemlin
Andreas Åkesson

c© Anton Hemlin, June 2014.
c© Andreas Åkesson, June 2014.

Examiner: Johan Karlsson

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Cover: The truck is from http://images.volvotrucks.com/ and the lightning is from
www.clipartpal.com. The pictures are used in accordance to the respective page’s image
license agreement.

Department of Computer Science and Engineering
Gothenburg, Sweden June 2014

i

Abstract

This thesis presents an evaluation of the effectiveness and time overhead for plausibility
checks in automotive electrical and electronic systems. Plausibility checks aim to detect
errors caused by software bugs and random hardware failures. They are commonly
used to ensure safety and robustness. There are two ways to implement plausibility
checks, the traditional with checks directly in the source code and the use of a library.
We have created a proof-of-concept implementation of an AUTOSAR compliant library
that provides a standardised interface for common plausibility checks. We demonstrate
the usefulness of the library for several AUTOSAR applications. We investigate the
effectiveness of plausibility checks on three applications and found that plausibility checks
are effective in detecting errors in input parameters to software modules. We compare the
time overhead for implementing plausibility checks with the library versus implementing
them directly in the source code. Using the library increases the execution time with 2.0
µs per library call on our hardware compared to having no checks at all. In comparison,
having the plausibility checks directly in the source code increase the execution time
with 0.25 µs per check.

Keywords: AUTOSAR, functional safety, robustness, error handling, plausibility checks

ii

Acknowledgements

We would like to thank our examiner Prof. Johan Karlsson at Chalmers University of
Technology for his help. We also wish to express gratitude to our supervisors at Volvo
Group Trucks Technology, Dr. Mafijul Islam and Johan Haraldsson, for using their
valuable time to give us tremendous support and expert guidance throughout the work.
Finally, we also wish to offer special thanks to Fredrik Bernin for helping out with tech-
nical difficulties.

Andreas Åkesson & Anton Hemlin, Gothenburg June 2014

iii

Contents

1 Introduction 1
1.1 Research Methodology . 2
1.2 Stakeholders . 3
1.3 Thesis Outline . 3

2 Introduction to Dependable Computing 4
2.1 Attributes . 4
2.2 Threats . 5
2.3 Means . 5

3 Basic Concepts 7
3.1 AUTOSAR . 7

3.1.1 Application Layer . 7
3.1.2 Run-Time Environment . 8
3.1.3 Basic Software . 8
3.1.4 Libraries . 8
3.1.5 Error Handling . 9

3.2 Functional Safety . 9
3.3 Robustness . 10
3.4 Fault Injection . 10
3.5 Error Models . 11

3.5.1 Bit-Flip . 11
3.5.2 Data-Type Based Errors . 11
3.5.3 Fuzzing . 11

4 Error Handling Mechanisms 12
4.1 Overview of Mechanisms . 15

4.1.1 Plausibility Checks . 15
4.1.2 Substitute Values . 15
4.1.3 Voting . 15

iv

CONTENTS

4.1.4 Agreement . 15
4.1.5 Checksums/Codes . 15
4.1.6 Execution Sequence Monitoring . 16
4.1.7 Aliveness Monitoring . 16
4.1.8 Status and Mode Management . 16
4.1.9 Reconfiguration . 16
4.1.10 Reset . 16
4.1.11 Error Filtering . 16
4.1.12 Memory Protection . 16
4.1.13 Timing Protection . 16

4.2 Previous Work with Plausibility Checks 17

5 Library Design and Evaluation 18
5.1 Library Design . 18

5.1.1 Investigation of the Standard . 18
5.1.2 Library Implementation . 19

5.2 Plausibility Check Evaluation . 20
5.2.1 Bitcount . 20
5.2.2 Integer Converter . 21
5.2.3 Brake-By-Wire . 22

5.3 Library Time Evaluation . 33
5.3.1 LED Blinking . 33
5.3.2 AUTOSAR Brake-By-Wire . 34

6 Discussion 37
6.1 Plausibility Checks . 37
6.2 Library . 38

7 Conclusion and Future Work 41

Bibliography 45

v

List of Abbreviations

Abbreviation Description

ABS Anti-lock Braking System

ALEM Application Level Error Manager

ASIL Automotive Safety Integrity Level

AUTOSAR AUTomotive Open System ARchitecture

BBW Brake-By-Wire

BLFI Binary Level Fault Injection

BSW Basic SoftWare

CAN Controller Area Network

CRASH Catastrophic, Restart, Abort, Silent and Hindering

E2E End-to-End

ECU Electronic Control Unit

E/E Electrical and/or Electronic

FDIR Fault Detection, Isolation and Recovery

FMECA Failure Mode Effect and Criticality Analysis

GSPN Generalised Stochastic Petri Nets

HWIFI Hardware Implemented Fault Injection

LIN Local Interconnect Network

RTE Run-Time Environment

SW-C SoftWare Component

SWIFI Software Implemented Fault Injection

VFB Virtual Functional Bus

vi

1
Introduction

S
ince the 1970s the use of Electrical and/or Electronic (E/E) systems within the
automotive industry has increased and all indications are that it will continue to
increase [1]. The E/E systems replace mechanical equivalences or implement new
functions to assist the driver. An E/E system with its hardware and software

components is complex and prone to errors but is nevertheless trusted to control safety
critical functions. This puts tremendous pressure on developers to design E/E systems
which perform as expected during operation even in the presence of faults.

Building highly reliable E/E systems is however a demanding task. It was reported
in March 2014 that nearly 60-70% of all vehicle recalls in North America and Europe are
due to software errors [2]. In 2009 Toyota had problems with unintended acceleration of
cars which are presumed to have been caused by software defects [3]. Recently General
Motors was forced to large recalls due to a malfunctioning ignition switch in several car
models that could be linked to multiple deaths [4].

Safety has always been an important property in the automotive industry and with
the increased amount of functionality relying on E/E systems the need for standardising
the requirements for functional safety has increased. To this end, a new standard for
ensuring functional safety in automotive E/E systems called ISO 26262 was introduced
in November 2011. This standard defines functional safety as ”absence of unreasonable
risk due to hazards caused by malfunctioning behaviour of E/E systems” [5].

Another important standard in the automotive industry is Automotive Open System
Architecture (AUTOSAR) which is an open standard that is developed in cooperation
between automobile manufacturers, suppliers and tool developers. AUTOSAR is an
architecture for automotive software and its main goals are to standardise basic software
functionality, improve the scalability of solutions, simplify the collaboration between
various players and to facilitate functional safety [6].

To ensure functional safety it is essential that an E/E system is equipped with effec-
tive error handling mechanisms which are implemented in either hardware or software.

1

CHAPTER 1. INTRODUCTION

These mechanisms handles errors by using detection, isolation and recovery. AUTOSAR
and ISO 26262 specify several different software mechanisms for error handling [5, 6].
This thesis addresses implementation of plausibility checks in AUTOSAR. Plausibility
checks is a mechanism that is commonly used to detect data errors caused by software
bugs or transient hardware faults. Usually plausibility checks are implemented directly
in the source code. Using a library with plausibility checks is another possibility. We will
investigate the possibilities for creating an AUTOSAR compliant library with plausibility
checks.

Robustness is defined as ”the degree to which a system or component can function
correctly in the presence of invalid inputs or stressful environmental conditions” [7]. To
achieve a high degree of robustness for an application it is important to validate its input
data. Plausibility checks can be used to check input values, which leads us to the first
research question:

• How effective are plausibility checks in improving the robustness of ap-
plication software?

We address this question by performing fault injection experiments on three applications.
Fault injection is when faults are intentionally introduced in a system to study the
behaviour. Plausibility checks are then implemented to detect errors in the input data.

One major concern is the additional overhead to the execution time that the use
of a library might add. We will evaluate the execution time overhead when using an
AUTOSAR compliant library for plausibility checks. We will compare with the execution
time overhead when plausibility checks are implemented directly in the source code. The
second research question is therefore:

• What is the time overhead for implementing plausibility checks in an
AUTOSAR library?

The library is tested on two AUTOSAR applications, a simple LED blinking application
and a complete Brake-By-Wire system. The impact on the execution time of the appli-
cations is evaluated with and without the library. We ask this research question because
execution time is an important factor when deciding if the library should be used in an
application.

1.1 Research Methodology

The research method for this Master’s thesis is derived from Peffers et al. [8]. They
describe the following five phases of a research process: Problem Analysis & Motivation,
Design & Development, Demonstration, Evaluation and Communication. These phases
are illustrated in Figure 1.1 where it also can be seen that iteration over Design &
Development, Demonstration and Evaluation should be performed until a satisfying
evaluation is achieved.

2

CHAPTER 1. INTRODUCTION

Figure 1.1: Research Methodology

In Problem Analysis & Motivation the specific research problem and a motivation
to justify the value of a solution are defined in collaboration with the stakeholders. In
Design & Development a solution is implemented for how to apply the error handling
mechanisms and it is tested on different applications. In the Demonstration phase a
demonstration/proof-of-concept is constructed in the AUTOSAR environment by using a
realistic AUTOSAR software application. In Evaluation it is observed how well the work
supports the objectives of a solution that were previously defined. In Communication
the result is communicated to relevant audiences in the form of a written report and oral
presentations.

1.2 Stakeholders

This thesis was performed at the Department of Electrical and Embedded Systems of
Advanced Technology and Research at Volvo Group Trucks Technology. It was con-
ducted within the scope of the VeTeSS (Verification and Testing to Support Functional
Safety Standards) research project which aim to standardise methods and tools to verify
safety properties [9].

1.3 Thesis Outline

The remainder of this thesis is organised in six chapters. Chapter 2 provides an introduc-
tion to dependable computing. Chapter 3 describes the AUTOSAR standard, functional
safety and other basic concepts. Different error handling mechanisms are presented in
Chapter 4. Chapter 5 contains the library design and an evaluation of plausibility checks
and the library. A discussion of the results are presented in Chapter 6. Chapter 7 finishes
the thesis by presenting our final conclusions.

3

2
Introduction to Dependable

Computing

T
his chapter gives an overview of the definition of basic dependability concepts
and taxonomy. Before the definition of dependability there are a few basic
concepts we want to define. A computer system is an entity that interacts with
other entities i.e. other computer systems, humans or the physical world. The

environment for a given system is the other systems and the border between the system
and the environment is called the system boundary. A service is the behaviour that a
user expects from a system. One of Avizienis et al.’s [10] definitions of dependability
is “the ability to avoid service failures that are more frequent and more severe than is
acceptable”. Dependability can be broken down into three elements: attributes, threats
and means.

2.1 Attributes

The five key attributes for describing the dependability of a system are:

• Availability: readiness for correct service.

• Reliability: continuity of correct service.

• Safety: absence of catastrophic consequences on the user(s) and the environment.

• Integrity: absence of improper system alterations.

• Maintainability: ability to undergo modifications and repairs.

Availability, reliability, safety and maintainability are quantifiable by direct measure-
ments. Availability is the amount of time a system delivers a correct service according
to its specification. It is calculated by dividing the time the system works correctly by
the total-time of operation including down-time. Reliability is the probability that the
system works as expected at a given time. In safety the failures are divided in two parts -

4

CHAPTER 2. INTRODUCTION TO DEPENDABLE COMPUTING

catastrophic failures and safe failures. Safety is the probability that the system does not
exhibit a catastrophic failure. Availability, reliability and safety can be calculated with
for example reliability block diagrams, Markov models or Generalised Stochastic Petri
Nets (GSPN) [11]. Maintainability is added as an extra parameter in the reliability cal-
culations, where parts of a system can be repaired with different repair rates. Integrity
cannot be directly measured and must be assessed with help of relevant information
about the system.

2.2 Threats

Threats are the events that can affect the dependability of the system and they are called
faults, errors and failures. A service failure (abbreviated failure) is the transition from a
state where the system provides correct service according to its specifications to a state
that provides incorrect service. The deviation is called an error. The real or guessed
cause of the error is called a fault. An error occurs when a fault causes the system to
enter another state than normal. Many errors never reach the system’s external state
causing a failure. One possibility for this to occur is if a data error is masked by a write
operation before the value is read.

The concept of the Fault-Error-Failure chain can be explained by a simple example.
We have two components - A and B, where A delivers a service to B. First a fault
activates an error in component A which propagates to a failure which will cause A to
deliver incorrect service to B. Then in component B the incorrect input will be seen as
a fault that activates an error which may propagate to a service failure in B too.

2.3 Means

The means are ways to increase the dependability of a system and they are divided in
four major groups by Avizienis et al. [10]:

• Fault prevention means to prevent the occurrence or introduction of faults.

• Fault tolerance means to avoid service failures in the presence of faults.

• Fault removal means to reduce the number and severity of faults.

• Fault forecasting means to estimate the present number, the future incidence,
and the likely consequences of faults.

Fault prevention focuses on reducing the number of faults introduced in the system
by improving the development process for both software (information hiding, modulari-
sation, strong typed languages) and hardware (e.g. design rules).

Fault tolerance aims to avoid failures in the presence of faults with the help of different
fault tolerance techniques. Figure 2.1 provides a classification of the techniques. Before
the system can recover, the error needs to be detected. Concurrent detection is performed
during normal operations while preemptive detection takes place while normal operations
are suspended. Error handling removes the errors from the system in three different ways.

5

CHAPTER 2. INTRODUCTION TO DEPENDABLE COMPUTING

Rollback brings the system back to a state before the error occurred and compensation
uses redundancy information in the erroneous state to mask the error. Rollforward brings
the program to a new state without the error where the state is loaded from another
component. Fault handling prevents the fault from being activated again by the use
of four main categories of techniques. Diagnosis identifies and records the cause of the
error. Reconfiguration reassigns the task to another component. Isolation excludes the
faulty component from further participation making the fault dormant. Reinitialisation
checks, updates and records the new configuration and update system tables and records.

Figure 2.1: Fault tolerance techniques

Fault removal can be divided in two parts: fault removal during development and
fault removal during use. Fault removal during development focuses on verification and
used techniques are static analysis, theorem proving, model checking, symbolic execution
and testing. The fault tolerance mechanisms are also tested, either by formal static
verification or by fault injection. Fault removal during use consists of isolating and then
removing reported faults.

Fault forecasting is performed by executing an evaluation of the system behaviour
focusing on two different aspects: qualitative evaluation and quantitative evaluation.
Qualitative evaluation aims to identify and classify failure modes that lead to system
failures and quantitative evaluation investigates the probabilities for which some at-
tributes are satisfied.

6

3
Basic Concepts

T
his chapter introduces and explains key concepts. First the AUTOSAR stan-
dard is explained. The functional safety standard ISO 26262 is introduced
next. Then the concept of robustness is introduced and the different parts are
explained, after that fault injection is described; a technique to test the ro-

bustness of systems or the effectiveness of fault handling mechanisms by injecting faults
into them. The chapter is concluded with a description of different error models for how
to choose test cases for a system.

3.1 AUTOSAR

AUTOSAR (AUTomotive Open System ARchitecture) [6] is an open and standardised
software architecture for the automotive industry. Several car manufacturers and subcon-
tractors participate in the development of the standard. The purpose with the standard
is to provide a software architecture which is scalable and able to fulfil the requirements
of future vehicles. A primary goal with AUTOSAR is that components developed inde-
pendently by different actors are able to be integrated through well-defined interfaces.
AUTOSAR provides a layered architecture divided into three main layers: application,
Run-Time Environment (RTE) and Basic SoftWare (BSW). This architecture is illus-
trated in Figure 3.1.

3.1.1 Application Layer

The application layer is the top layer and contains Software Components (SW-Cs) that
run on an Electronic Control Unit (ECU). Each SW-C can implement a complete func-
tion or be a part of a function of several SW-Cs. A SW-C is atomic and cannot be
distributed among different ECUs.

7

CHAPTER 3. BASIC CONCEPTS

Figure 3.1: The layered AUTOSAR architecture.

3.1.2 Run-Time Environment

The RTE provides a communication interface to the application layer enabling SW-Cs to
communicate with each other and the BSW. The interface is the same for communication
within an ECU and between different ECUs using for example Controller Area Network
(CAN). The RTE is automatically generated to be tailored for the specific SW-C and
ECU. Several RTEs distributed over different ECUs are connected in the design model
by the Virtual Function Bus (VFB). This abstract component interconnects the different
SW-Cs and handles the information exchange between them. The VFB is the concep-
tualization of all hardware and system services in the vehicle. This makes it possible for
the SW-Cs designers to focus more on the application instead of the infrastructure.

3.1.3 Basic Software

The BSW contains services which are required by SW-Cs to fulfil their tasks. There are
standardised services such as communication (CAN, LIN, etc.) and operating system
to support SW-Cs. There are also ECU specific services, for example Complex Device
Drivers which have direct access to the hardware for critical applications.

3.1.4 Libraries

Libraries in AUTOSAR serve modules in BSW and SW-Cs with different appropriate
functions. There exist eight different standard libraries with functions such as a CRC
library that provides support for CRC calculations and End-to-End Communication
Protection Library which protects data communication between SW-Cs. There is also
a possibility for developers to specify their own libraries. When implementing libraries
some rules must be followed to assure AUTOSAR compatibility [12].

8

CHAPTER 3. BASIC CONCEPTS

3.1.5 Error Handling

AUTOSAR supplies a document [13] which addresses error handling at the application
level. A chain of events consisting of Fault Detection, Isolation and Recovery (FDIR)
is described. Detection: how to discover that a fault has occurred - for example that
a value is out of range. Isolation: how to prevent the erroneous system from affecting
other systems dependent on the erroneous system. Recovery: how to recover from an
failure and make the system function as usual or with a degraded functionality.

The following error types are listed:

• Data: when the error is manifested in the value of a variable, parameter or mes-
sage.

• Program flow: when the program executes different paths than expected.

• Access: occurs when the program accesses a partition without permission.

• Timing: when a message arrives early, late or does not arrive at all.

• Asymmetric: an error where a component produces different output with the
same input.

AUTOSAR lists thirteen different error handling mechanisms that can be used at
the different levels of FDIR. It is only suggested which mechanisms to consider and the
developers have to decide which mechanisms to use. The thirteen different mechanisms
are explained in Chapter 4.

3.2 Functional Safety

Functional safety is defined as ”absence of unreasonable risk due to hazards caused by
malfunctioning behaviour of E/E systems” [5]. ISO 26262, published in November 2011,
is a functional safety standard for the automotive industry [5] which was adapted from
the generic functional safety standard IEC 61508 [14]. Functional safety features form an
important part of each product development phase: specification, design, implementa-
tion, integration, verification, validation, and production release. Product development
for the software level is described in part 6 of the standard. The first version of the stan-
dard from 2011 only applies to serial produced passenger cars with a maximum gross
weight of 3500 kg. It is expected that motorcycles, trucks and buses will be included in
next version of the standard that is expected to be released around 2020.

ISO 26262 specifies risk-based integrity levels called Automotive Safety Integrity
Level (ASIL) where each safety critical function needs to be associated with an ASIL
depending on the risk for that particular function. There exist four ASIL levels A, B,
C and D with the risk increasing from A up to D. Level A has the lowest requirements
whereas level D has the highest requirements [5].

In Germany and several other countries the law of product liability states that car
manufacturers are generally liable for deaths and any damage to the health of a person
caused by a malfunction of the product [15]. The liability may be excluded only if the
potential malfunction could not have been detected according to the so-called technical

9

CHAPTER 3. BASIC CONCEPTS

state-of-the-art at the time of placing the product on the market [15]. Since ISO 26262
has been published it must be viewed as state-of-the-art and therefore car companies are
obliged to follow it.

3.3 Robustness

Robustness is defined as ”the degree to which a system or component can function
correctly in the presence of invalid inputs or stressful environmental conditions” [7]. A
project that investigated robustness faults is the Ballista project which was a 3-year
research project between 1996 and 1999. The purpose of Ballista was to evaluate the
robustness of OS API using black box testing [16]. Ballista decided a set of properties
that should hold for robustness testing. The result was a scale called CRASH consisting
of five different properties: catastrophic, restart, abort, silent and hindering. A test that
causes a crash of the system would be categorised as catastrophic. If a hang occurs then
the test is classified as restart. When a crash of the tested module happens it is an
abort. Sometimes no errors is reported although the input was invalid then the failure is
silent. The last one is hindering which means that the error code reported is misleading.
Robustness of multi-layered software in the automotive domain is investigated in [17].

3.4 Fault Injection

The ISO26262 standard recommends that fault injection is used during the whole devel-
opment process. The earliest work about fault injection was released as early as 1972
by Harlan Mill [18]. Since then several different fault injection techniques have been
developed. In fault injection faults are intentionally inserted into the system under test
and the resulting behaviour is observed. The difference between fault injection and other
testing techniques are that testing focuses on using expected inputs while fault injection
instead use expected faults.

There exist several different ways to classify fault injection techniques; one way is to
divide it in two catagories depending on the target system. In hardware implemented
fault injection (HWIFI), the hardware of the system is targeted and in software im-
plemented fault injection (SWIFI) the software is targeted. In HWIFI the faults are
injected through the hardware for example by using heavy ion rays or specially crafted
test hardware [18]. SWIFI techniques use software to inject faults into the system under
test. Fault injection can also be categorised as invasive or non-invasive. A non-invasive
technique does not change the implementation in any way where invasive tecniques alter
the implementation [18].

One way to classify faults is into representative and non-representative faults. [19]
discusses which type of faults to inject and where to inject them. The authors describe
an algorithm that could be used to determine where to inject faults to achieve good fault
representativeness.

In binary level fault injection (BLFI) the faults are injected in the binary code. The
differences with BLFI when the source code is unknown and when the source code is

10

CHAPTER 3. BASIC CONCEPTS

known is described in [20]. Sometimes it can be difficult to find some programming
constructs in the binary, which means that the BLFI can become inaccurate and the
paper concludes that it is difficult to achieve accurate injections in binaries when it is
a complex program. Some accuracy is lost due to macros, inline functions and other
language constructs which information is not shown in the binary. BLFI for AUTOSAR
based system is investigated in [21].

Because ISO26262 recommends fault injection during the whole development process,
fault injection at different steps in the classical V-model is investigated in [22].

3.5 Error Models

There exist several different error models. In the subsections three models used for
robustness testing are described.

3.5.1 Bit-Flip

A common error model is bit-flips where the idea is to simulate transient errors. The
injection is done by flipping one bit at a time and thus the number of test cases is
limited to the number of bits in the test vector. It is a very simple model which is both
an advantage and a disadvantage. Simple to implement but may not be representative
for all types of faults [23].

3.5.2 Data-Type Based Errors

Data-type based errors target a parameter and are therefore chosen depending on the
type of the specific parameter. Boundary values are typically good values to use for
data-type based errors. Suitable error cases for an integer are for example 1, 0, -1,
MAX INT and MIN INT. The number of error cases needed depends on the complexity
of the data type. For example a structure need a lot of error cases since each member
of the structure would need to be injected [23].

3.5.3 Fuzzing

To fuzz a parameter is to inject pseudo-random data within the scope of the data type of
the parameter. Due to the randomness different injections may achieve different results
and therefore several experiments must be performed to draw valid conclusions [23]. The
error model was first presented in [24] which also provides a tool to generate random
data that can be used to fuzz input parameters [25].

11

4
Error Handling Mechanisms

I
n this chapter the 13 different AUTOSAR error handling mechanisms are described
and their relations to the mechanisms in ISO26262. Table 4.1 describes what the
error handling mechanisms can be used for in terms of fault detection, isolation
and/or recovery. In Table 4.2 the ISO 26262 error handling mechanisms are showed

together with the corresponding AUTOSAR mechanisms. It also contains information
about at which ASIL levels the mechanisms are highly recommended (++ column) and
recommended (+ column). The italicised mechanism may be considered as only partially
related.

12

CHAPTER 4. ERROR HANDLING MECHANISMS

Mechanism Purpose (FDIR)

Plausibility checks Detection, Isolation

Substitute values Recovery

Voting Detection, Isolation, Recovery

Agreement Detection, Isolation, Recovery

Checksums/Codes Detection, Recovery

Execution sequence monitoring Detection

Aliveness monitoring Detection

Status and mode management Isolation

Reconfiguration Recovery

Reset Recovery

Error filtering Isolation

Memory protection Detection, Recovery

Timing protection Detection, Recovery

Table 4.1: AUTOSAR mechanisms. [26]

13

CHAPTER 4. ERROR HANDLING MECHANISMS

ISO 26262-6 AUTOSAR (auxiliary docu-
ments)

ASIL(++) ASIL(+)

Range checks of input
and output data

Plausibility checks [13] A - D

Plausibility check Plausibility checks [13] D A - C

Control flow monitoring Execution sequence monitor-
ing [13], Logical program flow
monitoring [27]

C - D B

External monitoring fa-
cility

Execution sequence monitoring [13],
Aliveness monitoring [13], Status
and mode management [13], Error
filtering [13], Memory protec-
tion [13], Timing protection [13],
Runtime timing protection and
monitoring [27], Monitoring of local
time [27]

D B - C

Detection of data errors Checksums/Codes [13] None A - D

Diverse software design Voting [27], Agreement [13] D C

Static recovery mecha-
nism

Substitute values [13], Reconfigura-
tion [13], Reset [13]

None A - D

Graceful degradation Substitute values [13], Reconfigura-
tion [13]

C - D A - B

Independent parallel re-
dundancy

Voting [13], Agreement [13] D C

Correcting codes for
data

Checksums/Codes [13] None A - D

Table 4.2: Error handling mechanisms of ISO 26262 and AUTOSAR. [26]

14

CHAPTER 4. ERROR HANDLING MECHANISMS

4.1 Overview of Mechanisms

An overview of the 13 different error handling mechanisms in the AUTOSAR standard
is presented in the following subsections.

4.1.1 Plausibility Checks

A plausibility check verifies that a group of variables hold for a specific condition. There
are in principle two different types of plausibility checks: validity check and comparison
of values. Validity checks detect errors by controlling if a variable for example is within
a specific range or equals a value. Comparison can detect errors by comparing multiple
values and identify differences. To isolate the error, a validity check can be used to
indicate which variable that is erroneous. Because plausibility checks verify if data
values are plausible it is only possible to detect data errors.

4.1.2 Substitute Values

When a data error in a variable has been detected, the substitute value mechanism can
be used. The value of the variable is then substituted with another value that would
make the upcoming execution render a valid result, for example a default value or the
last accepted value, however the result might be of degraded quality. Substitute value
only masks an error as it does not provide recovery of the fault leading to the erroneous
value. As the variable that is to be substituted is highly depending on the context this
mechanism is application specific.

4.1.3 Voting

When voting is used several copies of redundantly software are executed and then a
voting is performed with each result from the different executions. Examples of voting
algorithms are simple majority and 2 out of 3 which often are implemented in a special
voter component. Voting also supports recovery because a correct value can still be
extracted even in the presence of an error.

4.1.4 Agreement

Components can agree on what value to use by exchanging their local version of the
value. The difference from voting is that components reach a decision together instead
of having a separate component for that.

4.1.5 Checksums/Codes

Checksums/Codes mechanisms detect modifications of data by adding extra information.
Sometimes it is also possible to recover erroneous data values and return it to its original
state.

15

CHAPTER 4. ERROR HANDLING MECHANISMS

4.1.6 Execution Sequence Monitoring

Execution sequence monitoring detects if the execution may result in an erroneous exe-
cution path. It is possible to detect program flow errors which may have been caused by
data errors, timing errors or asymmetric errors. The monitor itself cannot decide which
one of them that caused the error.

4.1.7 Aliveness Monitoring

This mechanism detects units that are not alive, which means that they are not executed
as expected in terms of periodicity. This could be done by monitoring the heartbeats, a
signal that should be sent periodically, of a unit.

4.1.8 Status and Mode Management

Status and mode management uses meta-information to investigate the system to be able
to isolate faulty components. To support this mechanism, application level components
must be able to access the meta-information.

4.1.9 Reconfiguration

When an error has been detected, this mechanism can be used to configure the system
to not use the erroneous component. It is also possible to set the system in a degraded
mode and only provide a limited set of services.

4.1.10 Reset

Reset can be done at different levels, such as application reset and ECU reset. Reset can
only handle transient faults since permanent faults still will remain after the restart.

4.1.11 Error Filtering

Filtering of errors is used to prevent setting the system in a less safe state than before,
during a recovery action.

4.1.12 Memory Protection

Memory protection is used to protect the memory from errors that propagate between
different memory areas. For mutual protection of applications partitions are defined to
create error confinement regions.

4.1.13 Timing Protection

The purpose of timing protection is to protect the system from activities that requires
too much time to complete, and thereby hindering other tasks from executing. It can be
used to detect if an application has exceeded its time slot.

16

CHAPTER 4. ERROR HANDLING MECHANISMS

4.2 Previous Work with Plausibility Checks

Korte et al. [28] describe plausibility checks in vehicles and they conclude that the
plausibility checks improved the overall performance of their system.

Hiller [29] evaluates the detection effectiveness of executable assertions (e.g. plau-
sibility checks) that is able to test one variable. The evaluation shows that there is a
probability of 99% to detect an error in a monitored variable in his experiment. The
corresponding probability to detect errors in random memory area locations are 81%. It
is concluded that executable assertions is a feasible error detection technique when costs
have to be low but detection coverage high.

Skarin and Karlsson [30] describe an application where plausibility checks perform
well. Two different software error handling mechanisms are implemented in a brake-
by-wire controller. One mechanism protects the stack pointer from being corrupted by
storing an extra copy in a register. When returning from a function the restored stack
pointer is compared with its copy. If the comparison fails either the original or the copy
is corrupted, to solve this a soft reset of the controller is performed to reset the state.
The other mechanism checks the state of the integrator in the brake by wire controller.
There is a limit of how much the state could change between two iterations and if this
limit is exceeded there is a rollback to the previous state. The evaluation of these two
mechanisms implemented in a prototype showed that critical failures were reduced from
1.2% to 0.05%.

17

5
Library Design and Evaluation

T
his chapter describes three things. Firstly, the requirements for an AUTOSAR
compliant library and how we have implemented one. Secondly, the effec-
tiveness of plausibility checks is evaluated by adding it to three applications.
Finally, our library is tested on two AUTOSAR applications and the time

requirement is measured.

5.1 Library Design

In this section the AUTOSAR standard requirements for a library are investigated and
then our implementation of a library is described.

5.1.1 Investigation of the Standard

AUTOSAR libraries were introduced in Section 3.1.4 where it was stated that an AU-
TOSAR library must follow certain requirements to assure compatibility [12], these re-
quirements include but are not limited to:

• Not require an initialisation phase.

• Not require a shut-down phase.

• Re-entrant, shall not write to global or static variables.

• All function names must start with the library short name.

• Should use types defined in std types.h and platform types.h or define new types
in its header file.

• Library functions are only allowed to call other library functions.

• Libraries should check input at run time and return error codes to the caller.

• Use of macros should be avoided.

• Those using the library should include its header file and not call via the RTE.

18

CHAPTER 5. LIBRARY DESIGN AND EVALUATION

The reason for the first two requirements is that it should be possible for a BSW com-
ponent to call a library function the first thing it does after a system restart or as a last
call before a shut down. Then it is not possible to have an initialisation or a shut-down
phase for the library. The library should be re-entrant, therefore can we not store any
data in the library. Functions should start with the library short name to avoid name
collision with other libraries and because it should be possible to easily locate library
calls in the source code. As mentioned a library must be re-entrant and to guarantee
this the library cannot call other components than libraries. Input should be checked to
avoid that the library functions exhibit erroneous behaviour. Macros are easy to mis-
use because the types of the inputs and return values are not specified and they should
therefore be avoided. A library should not be called via the RTE because the call of a
library function should not affect the SW-C interface description. Also the function call
should be efficient and going through the RTE will add overhead which will reduce the
efficiency.

A standard library in AUTOSAR is the SW-C End-to-End (E2E) Communication
Protection Library [31]. E2E protects from errors in the data communication between
different SW-Cs. The errors could be caused by random faults in hardware or systematic
faults in the implementation of the VFB. The library considers communication faults
such as repetition, deletion, insertion, incorrect sequence, corruption, delay, addressing
faults, inconsistency and masquerading. E2E protects the data to be sent by adding a
control segment. The receiver can verify the received data using the control segment
and if a deviation is detected it is up to the receiver to handle the situation.

To see how a standardised AUTOSAR library is implemented, a commercial AU-
TOSAR implementation of the E2E library, was examined. During the examination of
the library it was noted that it followed all of the library requirements. We also observed
how it was constructed, and that different versions of the functions exist depending on
the size of the input (uint8, uint16 or uint32). The functions in the E2E library were
tested with different input values to determine the robustness of the implementation.
The library was found to withstand the majority of faulty inputs except for one func-
tion that did not check if its input pointer was null. That function crashed due to a
segmentation fault when a null pointer was injected.

5.1.2 Library Implementation

We have implemented an AUTOSAR compliant library for plausibility checks includ-
ing range checks. The purpose of the library is to provide a standardised interface for
plausibility checks, to make it easier to add safety mechanisms to a program and min-
imising the risk of errors in the code by having one implementation instead of one in
each program.

The library contains the following functions:

• FS CheckNull: Checks if a value is null.

• FS CheckEq: Checks if two values are equal.

• FS CheckNotEq: Checks if two values are not equal.

19

CHAPTER 5. LIBRARY DESIGN AND EVALUATION

• FS CheckRange: Checks if a value is within a given range.

• FS CheckDifference: Checks if the difference between two values is not larger
than a given value.

These functions provide the most basic plausibility checks that nearly all applica-
tions need. We have chosen these functions because they were needed in order to test
the applications in Section 5.2. All functions except CheckNull exist in three different
versions for unsigned integers of 8, 16 and 32 bits (uint8, uint16 and uint32) to support
functions with different parameter sizes.

The library follows all rules for AUTOSAR libraries described in Section 3.1.4. The
functions return Std ReturnType that is FS E OK or one of several error messages
enumerated below. The most appropriate error message is chosen for each error. The
caller must then decide how to handle about the error. The library does not store any
state information and all functions start with the library short name FS.

• FS E TOO LARGE

• FS E TOO SMALL

• FS E NULL

• FS E INVALID

• FS E INVALID ARGUMENTS

5.2 Plausibility Check Evaluation

To investigate how plausibility checks can increase the robustness of applications we have
added plausibility checks to three different applications: Bitcount, Brake-By-Wire and
Integer Converter.

5.2.1 Bitcount

Bitcount is a part of the embedded benchmark suite MiBench developed by scientists
at the University of Michigan and it has been used as a test application in many re-
search projects [32]. There are applications for six different categories: automotive and
industrial control, network, security, consumer devices, office automation, and telecom-
munication. Bitcount is one of the application in the automotive package and it tests
the processor’s ability to manipulate bits. It does this by executing several algorithms
that count the number of bits in an integer array.

In this section are plausibility checks evaluated with help of the bitcount applica-
tion. Bitcount was compiled using GCC and run in Cygwin environment on a PC with
Windows 7. As error model fuzzing, mentioned in Section 3.5.3, were chosen to see if
the application behaved strangely when receiving random input. To generate the ran-
dom data, that were injected into the application, a fuzz program provided from the
University of Wisconsin [25] was used.

Three different versions of bitcount were used: one version with the original source
code, another version with one plausibility check added and a third version with two

20

CHAPTER 5. LIBRARY DESIGN AND EVALUATION

plausibility checks added. When an error was detected by the plausibility checks, a
default value substituted the erroneous variable hence the execution of the application
could proceed. Figure 5.1 shows the number of errors categorised as hangs or crashes
that were exhibited for the different bitcount versions during 100 fault injections. As
can be observed all hangs are handled with one plausibility check implemented, but
the number of crashes increases when one plausibility check was introduced. When an
additional plausibility check was added these crashes could be handled.

No check One check Two checks
0

10

20

30

40

50
45

0 0
3

7

0

N
u
m

b
er

of
E

rr
or

s

Hangs
Crashes

Figure 5.1: Number of errors with different versions of bitcount during 100 fault injections.

Each of the three versions of the application were tested with 100, 500 and 1000
fault injections where the results are shown in Figure 5.2. In Figure 5.2a it can be seen
that the number of hangs increase with the number of tests using the original bitcount
version. Similarly, in Figure 5.2b the number of crashes increases with the number of
tests for both the original bitcount and also for the version with one plausibility check.

We noted that bitcount hanged when a negative value was injected. The implemen-
tation of bitcount was altered to interpret the input variable as an unsigned long instead
of a signed long. With the input interpreted as an unsigned long the variable cannot
turn negative and therefore this implementation executes correctly for all input values.
We can of course add the second plausibility check here as well and remove all remaining
errors.

5.2.2 Integer Converter

The integer converter application is used to convert integers to a byte stream. It handles
integers of three different sizes: 32, 16 and 8 bits long. The input arguments to the
application are a source pointer, a destination pointer and the number of integers to
convert. The integers must be stored after each other where the source pointer point.

We tested this application with help of the programs Cygwin, GCC and Fuzz. The
fuzz error model described in Section 3.5.3 was used because we wanted to test the

21

CHAPTER 5. LIBRARY DESIGN AND EVALUATION

200 400 600 800 1,000

0

100

200

300

400

Number of Injections

N
u
m

b
er

o
f

H
a
n
gs

No check
One check

(a) Hangs

200 400 600 800 1,000

0

100

200

300

400

Number of Injections
N

u
m

b
er

o
f

C
ra

sh
es

No check
One check

(b) Crashes.

Figure 5.2: Number of errors during 100, 500 and 1000 fault injections.

function for all possible input data since a faulty source pointer can point anywhere in
the memory space. The program was compiled with GCC using Cygwin and run on a
PC with 64-bit Windows 7. The Fuzz program [25] was used to generate the input.

When the pointers were fuzzed they did always point outside the allowed memory
space for the application causing a segmentation fault. This was because of the very
small probability of pointing at a valid address in a 64-bit memory space, see Figure 5.3.
Adding a range check caught all the faulty pointers. Fuzzing the size parameter could
also cause failures if the value were to large depending on where in the memory the
pointers pointed, for example was the return address overwritten on one of our tests
which caused the program to fail.

5.2.3 Brake-By-Wire

A Brake-By-Wire (BBW) system is an electronic brake control system [33]. A schematic
view of a BBW system is shown in Figure 5.4. The braking system is activated when
the driver press down the brake pedal or by other systems requesting braking. There is
a main ECU that reads the position of the brake pedal and calculates the brake torque
from various sensor inputs such as vehicle speed and steering angle. This information
is then distributed to an ECU at each wheel which is connected to an actuator. The
ECUs located at the individual wheels will then compute the required brake force that
the actuator will apply to the wheel.

A fully functional BBW system should brake the car with a force that is proportional
to the driver’s input on the brake pedal. Any unintended events of the system should
not occur. Such events includes braking without the driver’s request and release of the
brakes when the driver want to brake [34].

22

CHAPTER 5. LIBRARY DESIGN AND EVALUATION

Figure 5.3: Illustration of how small part of the memory area that must be hit and the
size of these areas compared to the entire 64-bit memory space.

Figure 5.4: A schematic view of the Brake-By-Wire system.

In this section a Brake-By-Wire (BBW) model created in MathWorks Simulink was
used. The model has been used in previous research projects by Volvo, for example in the
BeSafe project - a 3-year Swedish research project. A simplified overview of the Simulink

23

CHAPTER 5. LIBRARY DESIGN AND EVALUATION

model is shown in Figure 5.5. There is the global brake controller which reads requested
brake torque from the brake pedal. The global brake controller then distributes the
requested torque to the four different wheels. Each wheel has an Anti-lock Blocking
System (ABS) function and as input it takes the requested torque from the global brake
controller, the vehicle velocity and the rotation of its associated wheel. The local brake
torque for that particular wheel is then calculated as output. The vehicle’s behaviour is
simulated by the model, which calculates the speed and wheel rotations based on inputs
from the acceleration pedal and the ABS functions.

From the Simulink model standalone C source code was generated which was possible
to compile and run independently from Simulink. The application was compiled with
Visual Studio 2012 and run on a PC with Windows 7. There was a simulation of a
predefined use case which was used as a reference. The reference run lasted for 30
seconds with acceleration from 0 km/h to approximately 70 km/h in around 10 seconds,
steady speed from 10 to 20 seconds and braking from 20 seconds until the end of the
simulation.

To determine how the model withstands erroneous input, fault injection was used on
the different input parameters of the BBW. All parameters were of type double and the
different test cases were derived according to data-type based error model described in
Section 3.5.2. This resulted in the test cases described in Table 5.1, where DBL MAX
are 1.7977 · 10308 and DBL MIN are 2.2251 · 10−308, the largest and smallest possible
double values in the run-time environment. The inputs have limits which also should
be tested; the global torque in the global brake controller for example expects a value
between 0 - 3000. Therefore two additional test cases of max value and max value + 1.0
were added, where max value is 3000, to test the upper limit. The lower limit is already
covered by the data type test cases.

Value

0.0

1.0

-1.0

±DBL MAX

±DBL MIN

max value

max value+1.0

Table 5.1: Test cases for BBW.

Faults were injected into the global torque input in the global brake controller, hence
overriding the actual requested torque from the brake pedal. Injections were performed
during acceleration between 5 - 10 seconds and during braking between 20 - 25 seconds.
The resulting graphs when ±DBL MAX and ±DBL MIN were injected are presented in

24

CHAPTER 5. LIBRARY DESIGN AND EVALUATION

Figure 5.5: Simplified overview of the Simulink Model.

Figure 5.6 with the reference run plotted with a dashed line. The x-axis shows the time
span of the simulation (0-30s) and the y-axis shows the speed in kilometres per hour.
Figure 5.6 shows that -DBL MAX and -DBL MIN caused the system to behave as the
reference run during the acceleration but during braking the injections prevented the
system from braking. When DBL MAX and DBL MIN were injected Figure 5.6 shows
that the system brakes both during acceleration and braking.

Figure 5.7 shows that injections with 0 and -1 exhibits the same behaviour as when
-DBL MAX and -DBL MIN were injected. It is also observed that injecting 1 achieves
the same result as DBL MIN.

In Figure 5.8 the max value of 3000 and max value + 1 are injected in the global

25

CHAPTER 5. LIBRARY DESIGN AND EVALUATION

torque. As can be seen the system brakes during both injections.
Figures 5.9, 5.10 and 5.11 show results from injections in requested torque of the right

rear wheel. The same values as when injecting the global torque are used except that
max value is 1500 instead of 3000. These figures show that the injection runs deviates
slightly from the reference run. In these experiments, faults are injected in a single wheel
only and the deviations from the reference run is less than when faults were injected in
the global brake controller.

A plausibility check was added to check that the brake torque was within the allowed
range. In that case the injections of -1.0, ±DBL MAX, -DBL MIN and max value + 1
are detected, because these values are not within the allowed range. During the fault
injection experiments with the BBW model we found two unexpected scenarios. For
the BBW model it was shown in Figure 5.8 what the speed graph should look like if
the maximum value of the brake torque is applied. However, that Figure 5.6 indicates
that the model brakes more when DBL MAX is applied due to the model does not have
any maximum boundary for the brake torque. Also in Figures 5.6 and 5.7, the graphs
of DBL MIN and 1 show that the acceleration stops during the period when faults
are injected which should not be the case when a minimal brake torque is applied. The
model was found to only allow either acceleration or braking where braking is prioritised.
Therefore, if the acceleration pedal is triggered at the same time as the braking pedal
the model only brakes. This explains the behaviour in Figures 5.6 and 5.7 in the cases
with DBL MIN and 1. A minimal brake torque is injected and therefore acceleration is
blocked and the speed is maintained.

26

CHAPTER 5. LIBRARY DESIGN AND EVALUATION

Figure 5.6: Speed graphs for the simulation with ±DBL MAX and ±DBL MIN injected
in global torque between time 5-10 and 20-25. The reference run is dashed.

27

CHAPTER 5. LIBRARY DESIGN AND EVALUATION

Figure 5.7: Speed graphs for the simulation with 0, 1 and -1 injected in global torque
between time 5-10 and 20-25. The reference run is dashed.

28

CHAPTER 5. LIBRARY DESIGN AND EVALUATION

Figure 5.8: Speed graphs for the simulation with max value (3000) and max value+1
injected in global torque between time 5-10 and 20-25. The reference run is dashed.

29

CHAPTER 5. LIBRARY DESIGN AND EVALUATION

Figure 5.9: Speed graphs for the simulation with ±DBL MAX and ±DBL MIN injected
in requested torque of the right rear wheel between time 5-10 and 20-25. The reference run
is dashed.

30

CHAPTER 5. LIBRARY DESIGN AND EVALUATION

Figure 5.10: Speed graphs for the simulation with 0, 1 and -1 injected in requested torque
of the right rear wheel between time 5-10 and 20-25. The reference run is dashed.

31

CHAPTER 5. LIBRARY DESIGN AND EVALUATION

Figure 5.11: Speed graphs for the simulation with max value (1500) and max value+1
injected in requested torque of the right rear wheel between time 5-10 and 20-25. The
reference run is dashed.

32

CHAPTER 5. LIBRARY DESIGN AND EVALUATION

5.3 Library Time Evaluation

To evaluate the library it has first been tested on the three applications from Section 5.2.
We then moved on with two AUTOSAR applications. First a LED blinking test applica-
tion and then a Brake-By-Wire system. We have also measured the resource requirements
of the library.

5.3.1 LED Blinking

LED blinking is a test application in ArcCore’s distribution of AUTOSAR. The program
blinks with a green LED on an ECU board. The purpose for using this relatively simple
system is to ensure that the plausibility check library works with an AUTOSAR system.
To test the application, a test setup with an ECU board with a Freescale MPC5567
microprocessor connected via a Lauterbach debugger to a PC was used. The source code
was written in Arctic Studio and compiled using a powerpc-eabi cross GCC compiler for
PowerPC target architecture.

A plausibility check from the library was added to the source code that controls
that an allowed value is sent to the BSW for turning on/off the LED. There exist two
different failure modes: the LED constantly off and the LED constantly on. The data-
type based error model was used in this test, see Section 3.5.2. This error model was
used because we think that the boundary values are the most interesting ones in this test.
The input parameter is an unsigned integer and the suitable test cases are therefore 1, 0,
-1, UINT8 MAX, UINT8 MAX+1 and UINT8 MAX-1. The results of the experiments
are shown in Table 5.2.

Value Failure mode

1 LED Off

0 LED On

-1 LED Off

UINT8 MAX LED Off

UINT8 MAX+1 LED On

UINT8 MAX-1 LED Off

Table 5.2: Results from the tests with LED blinking.

From Table 5.2 and other tests with random numbers we observe that the LED is on if
it receives 0 and off otherwise. When the application operates as intended it alternates
between sending 1 and 0 to the BSW. The addition of a plausibility check that only
allows 1 and 0 remove all problems with other values, but not if a 1 or 0 are mixed up.
The time for using the library is measured to 1.71µs per check and placing the check
directly in the source code takes 0.64µs. That is 1.07µs longer with the library.

33

CHAPTER 5. LIBRARY DESIGN AND EVALUATION

5.3.2 AUTOSAR Brake-By-Wire

This application is an AUTOSAR application unlike the one in Section 5.2.3. A setup
with five ECU boards with Freescale MPC5567 microprocessors has been used. Focus has
been on the global brake controller that was connected with CANoe and a Lauterbach
debugger to a PC. The code was written in Arctic Studio and compiled using powerpc-
eabi cross GCC compiler for PowerPC target architecture. Vector CANoe was used
to send CAN messages to and from the global brake controller ECU. The DEDICATE
framework case, which is a research framework developed in the DEDICATE project,
with the ECUs and indicator lights is displayed in Figure 5.12. The PC environment, in
CANoe, for sending messages to the system is pictured in Figure 5.13.

Figure 5.12: DEDICATE framework case.

Time measurements on the global brake controller have been performed. The con-
troller has two values that is checked by plausibility checks. Three different cases were
tested: no checks, checks directly in source code and using the library. The results
are shown in Table 5.3. It is noted that adding the checks directly in the source code
increases the execution time with 0.5µs and using the library instead increases the exe-

34

CHAPTER 5. LIBRARY DESIGN AND EVALUATION

Figure 5.13: The environment in CANoe.

cution time with 4.0µs. Changing the implementation of the checks from directly in the
source code to using the library increases the execution time with 3.0µs.

Configuration Processor
cycles

Execution
time

No checks 466 11.65µs

Checks directly in source code 486 12.15µs

Checks in library 626 15.65µs

Table 5.3: Three different time measurements on the global brake controller.

To see how the time requirements change when more checks are added, more mea-
surements were performed. The library has been used for two different plausibility checks
in the source code of the global brake controller. The Lauterbach debugger was used
to estimate the time spent in the plausibility checks when executing the AUTOSAR
BBW application. The behaviour when many plausibility checks are implemented in
an application was emulated by executing the checks 2, 10, 100, 500 and 1000 times

35

CHAPTER 5. LIBRARY DESIGN AND EVALUATION

10 100 1,000

0.01

0.1

1

Number of library calls

%
o
f

to
ta

l
ex

ec
u

ti
o
n

ti
m

e

Figure 5.14: Scalability of the library

in each iteration of the global brake controller. Figure 5.14 shows the results from the
time measurements. The x-axis denotes the number of calls to a plausibility check in
the library and the y-axis denotes a percentage of the total execution time that is spent
on the plausibility checks. It can be seen in the figure that the usage of plausibility
checks scale linearly with the number of calls. With two checks the library is 4.5% of
the application’s execution time and at 500 checks it has increased to 55.6% of the time.

36

6
Discussion

W
e discuss the two different kinds of results that have been achieved. Firstly,
that plausibility checks are important and effective means to lower the
number of errors in various computer applications. Secondly, that an AU-
TOSAR compliant library for plausibility checks has been implemented and

evaluated.

6.1 Plausibility Checks

Our experiments with the bitcount application show how plausibility checks can be used
to detect errors and we also found that they improved the robustness of the application.
The error causing the hangs in the bitcount application was a variable that got stuck at
-1 causing an infinite loop. After inserting a plausibility check into the code that detected
if a variable became -1, it was possible to terminate the infinite loop. In Figure 5.1 we
observe that the number of crashes increases when the hangs are eliminated. This can be
explained by that some of the runs that hanged exhibited a crash when their execution
continued. Hence, recover from one error could cause another error to emerge. Another
plausibility check detected if an index variable was outside the range of an array, thus
detecting out of bound error which caused a crash. These two plausibility checks together
detected all errors. Figure 5.2 shows that the number of faults increases linearly with
the number of injections.

The importance of plausibility checks depends on how good the applications are
designed. For example when we changed a variable to unsigned in bitcount (see Sec-
tion 5.2.1) the need for a plausibility check was eliminated. On the other hand, without
the plausibility checks we would not have found the error.

All the three applications tested in Section 5.2, Bitcount, Integer Converter and
Brake-By-Wire, were improved by the use of plausibility checks and we therefore rec-
ommend the use of plausibility checks to ensure that values are plausible. Plausibility

37

CHAPTER 6. DISCUSSION

checks also have some limitations. If the values are wrong but still plausible they cannot
be detected by a plausibility check, for example only injections outside of the allowed
range in the BBW application could be detected by a plausibility check. How effective
plausibility checks are also depends on how stringent the plausible values are set. Usage
of a state machine in an application makes it easier to find more stringent plausible
values, because then it is possible to look at the previous state and detect if the state
has changed more dramatically than what is realistic.

6.2 Library

In our plausibility check library only error detection is handled and neither isolation nor
recovery. This is similar to the E2E library which signals a fault in the communication
by an error code and then the calling function has to choose an appropriate action
to handle the fault. An error handling method which is close at hands are substitute
values. Another possibility is to reconfigure the system to no longer use the component
that produced the erroneous result. This may be a good solution for a non-safety critical
ABS system, but if for example the brake control ECU in a BBW system fails the safety
critical brake system cannot be turned off. Another solution such as a backup system
must be used instead.

The plausibility check library has been successfully used in the LED blinking and
the AUTOSAR BBW applications. The library has also been used on all applications
in Section 5.2. There are many advantages with using a library instead of implementing
plausibility checks directly in the source code for each application. To have only one
implementation of the checks in a program lowers the probability for bugs in the plausi-
bility checks, and if there are bugs in the library they will probably be found relatively
soon if it is commonly used. It becomes easier for the application programmers to add
plausibility checks to their applications when using a library. It will also decrease devel-
opment time because the checks are already implemented and the standardised interface
hints of what kind of plausibility checks that can be used. The source code will also be
clearer when a library is used, because of the descriptive function names of what condi-
tions that are checked. Adding checks may increase the functional safety of applications
that otherwise would not have been protected and this will lead to programs that are
less vulnerable.

Using the library increases the size of the binary with 4.47 KB. The increase is not
very large and it will probably not be a problem, for example it is only an increase of
the program size with 0.3 % for the AUTOSAR BBW application.

From the time measurements of the Brake-By-Wire application in Table 5.3 we
learned that the increase in time was 0.5µs from no plausibility checks at all to using
two plausibility checks directly in the code. By using the library instead, the execution
time increased with 4.0µs in that case. This increase in execution time is negligible, if
the library is not called extremely often. Figure 5.14 shows that the time usage scale
linearly with the number of library calls. The execution time therefore also depends on
how many checks that are used.

38

CHAPTER 6. DISCUSSION

Plausibility checks can be used to inspect inputs to functions to ensure that plausible
values are used when the execution is started. That is useful to protect functions from
errors in the inputs that were produced outside of the function. When a result from a
function is completed it should be verified before it is passed on to another instance to
prevent an error from propagating. Also, it is more important to target a function that
a significant amount of other functions rely on to achieve a correct execution. Hiller [29]
proposes a process for equipping a system with error detection mechanisms. First identify
inputs, outputs and the pathway from the inputs to the outputs in the system. Then
determine which of the signals that are crucial to a correct execution of the system e.g.
by using FMECA (Failure Mode Effect and Criticality Analysis).

In Figure 6.1 the data flow graph for braking in the Brake-By-Wire application is
shown. The ellipses represent the five ECUs and surround the SW-Cs they contain.
Plausibility checks can be put at different places in the graph. At the moment we
have put three checks in the ”central ECU”: the input to the brake torque calculation
and the two inputs to the global brake controller (the sum of the four RPM inputs is
checked). More checks can be added to increase the safety, for example the four outputs
from the global brake controller can be checked. Using too few checks increase the risk
of erroneous values to be undetected, but placing checks everywhere can increase the
execution time too much.

In the specification of the RTE [35] it is specified that the RTE should be able to
perform range checks of data to and from SW-Cs. However, since the RTE is separate
from the SW-C it is not possible to use internal variables of the SW-C to specify the
valid range. It is only possible to use predefined ranges specified at compile time. This
is different from the plausibility check library that also is able to check dynamic ranges
decided during run-time.

39

CHAPTER 6. DISCUSSION

Figure 6.1: Data flow graph for a braking command. The ellipses represent the ECUs and
surround the SW-Cs they contain. The ABS units receive the vehicle speed and the local
wheel RPM as inputs but it has been omitted in the figure to increase clarity.

40

7
Conclusion and Future Work

I
n this thesis we have evaluated how plausibility checks can increase the robustness of
AUTOSAR software components. We have also investigated the requirements for
creating an AUTOSAR compliant library and a proof-of-concept implementation
of a library with common plausibility checks was developed. The library was tested

on two AUTOSAR applications and it was demonstrated that the library performed well.
There are two main types of plausibility checks: range checks and comparison of

redundant data sources. We have focused on range checks in this thesis. Plausibility
checks has been tested on several existing applications with good results. We used a
randomised error model, fuzzing, to inject faults in the bitcount application from the
MiBench benchmark suite. For thousand fault injections it was possible to detect all
input errors with two plausibility checks.

We used a data-type based error model to inject faults in a non-AUTOSAR Brake-By-
Wire system. As expected it was only possible to detect injections that were outside of
the valid range 0-3000. However, to detect more errors the valid range can be reduced by
comparing the current state with the previous state and check if the change is unrealistic.
Then it is possible to have stringent conditions to achieve more effective detections with
plausibility checks.

Two plausibility checks were inserted in the AUTOSAR Brake-By-Wire application.
When the implementation of the plausibility checks was directly in the source code
an overhead of 0.5µs was added. Using the library implementation instead added an
overhead of 4.0µs. This increase in overhead is small and most applications will not be
affected by it. Applications with a very short execution time or applications that use the
plausibility checks very frequently may however exceed their timing requirements. It is
therefore important to consider how many plausibility checks that are used and where
they are placed.

Using a library increases the execution time slightly more than plausibility checks
directly in the source code. However, using the library has several design advantages. For

41

CHAPTER 7. CONCLUSION AND FUTURE WORK

example, it makes it easier to add checks and it yields cleaner code. It is also important
to remember that plausibility checks are not enough to protect an application on its own
since for example control flow errors can be missed.

Use of plausibility checks in AUTOSAR applications needs further investigation. An
investigation about whether the isolation and recovery parts of FDIR can be standard-
ised/automated with a library is an important open issue. One concept mentioned in [13]
is Application-Level Error Manager (ALEM) and it can be further explored.

42

Bibliography

[1] I. G. Insight, Resistance is futile - Electronics are on the rise: Electronic control
units and communication protocols, IHS Global Insight, Inc 26 (2009) 24.

[2] B. Fleming, An overview of advances in automotive electronics, Vehicular Technol-
ogy Magazine, IEEE 9 (1) (2014) 4–9.

[3] EmbeddedGurus: An Update on Toyota and Unintended Acceleration,
http://embeddedgurus.com/barr-code/2013/10/an-update-on-toyota-

and-unintended-acceleration, Accessed: 2014-04-08.

[4] Reuters: GM expands ignition switch recall to 2.6 million cars,
http://www.reuters.com/article/2014/03/28/us-gm-recall-expanded-

idUSBREA2R1Y920140328, Accessed: 2014-04-08.

[5] International standard, “ISO 26262 – Road vehicles – Functional safety”, First Edi-
tion (Nov. 2011).

[6] AUTOSAR, www.autosar.org, accessed: 2014-01-30.

[7] IEEE standard glossary of software engineering terminology, IEEE Std 610.12-1990
(1990) 1–84.

[8] K. Peffers, T. Tuunanen, M. A. Rothenberger, S. Chatterjee, A design science re-
search methodology for information systems research, Journal of management in-
formation systems 24 (3) (2007) 45–77.

[9] VeTeSS, http://vetess.eu, Accessed: 2014-04-08.

[10] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy
of dependable and secure computing, IEEE Transactions on Dependable and Secure
Computing 1 (1) (2004) 11–33.

[11] N. R. Storey, Safety critical computer systems, Addison-Wesley Longman Publish-
ing Co., Inc., 1996.

43

http://embeddedgurus.com/barr-code/2013/10/an-update-on-toyota-and-unintended-acceleration
http://embeddedgurus.com/barr-code/2013/10/an-update-on-toyota-and-unintended-acceleration
http://www.reuters.com/article/2014/03/28/us-gm-recall-expanded-idUSBREA2R1Y920140328
http://www.reuters.com/article/2014/03/28/us-gm-recall-expanded-idUSBREA2R1Y920140328
http://vetess.eu

BIBLIOGRAPHY

[12] AUTOSAR, Requirements on Libraries V4.0 (2013).

[13] AUTOSAR, Explanation of Error Handling on Application Level V4.0 (2013).

[14] D. Smith, K. Simpson, Functional safety, Routledge, 2012.

[15] M. Born, J. Favaro, O. Kath, Application of iso dis 26262 in practice, in: Proceed-
ings of the 1st Workshop on Critical Automotive applications: Robustness & Safety,
ACM, 2010, pp. 3–6.

[16] P. Koopman, K. DeVale, J. DeVale, Interface robustness testing: Experience and
lessons learned from the ballista project, Dependability Benchmarking for Computer
Systems 72 (2008) 201.

[17] C. Lu, J.-C. Fabre, M.-O. Killijian, Robustness of modular multi-layered software
in the automotive domain: a wrapping-based approach, in: IEEE Conference on
Emerging Technologies & Factory Automation, IEEE, 2009, pp. 1–8.

[18] J. M. Voas, G. McGraw, Software Fault Injection - Inoculating Programs Against
Errors, Wiley Computer Publishing, 1998.

[19] R. Natella, D. Cotroneo, J. A. Duraes, H. S. Madeira, On fault representativeness of
software fault injection, IEEE Transactions on Software Engineering 39 (1) (2013)
80–96.

[20] D. Cotroneo, A. Lanzaro, R. Natella, R. Barbosa, Experimental analysis of binary-
level software fault injection in complex software, in: 9th European Dependable
Computing Conference, IEEE, 2012, pp. 162–172.

[21] M. Islam, N. M. Karunakaran, J. Haraldsson, F. Bernin, J. Karlsson, Binary-level
fault injection for autosar systems, in: 10th European Dependable Computing Con-
ference, IEEE, 2014, pp. 162–172.

[22] L. Pintard, J.-C. Fabre, K. Kanoun, M. Leeman, M. Roy, Fault injection in the
automotive standard iso 26262: An initial approach, in: Dependable Computing,
Springer, 2013, pp. 126–133.

[23] A. Johansson, N. Suri, B. Murphy, On the selection of error model(s) for os robust-
ness evaluation, in: 37th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, IEEE, 2007, pp. 502–511.

[24] B. P. Miller, L. Fredriksen, B. So, An empirical study of the reliability of unix
utilities, Communications of the ACM 33 (12) (1990) 32–44.

[25] Fuzz Testing of Application Reliability, http://pages.cs.wisc.edu/~bart/fuzz,
Accessed: 2014-04-08.

[26] F. Bernin, M. Islam, Fault-Tolerant AUTOSAR SW Solutions, Internal Volvo doc-
ument ER-653403 (Dec 2013).

44

http://pages.cs.wisc.edu/~bart/fuzz

BIBLIOGRAPHY

[27] AUTOSAR, Technical Safety Concept Status Report V4.0 (2013).

[28] M. Korte, F. Holzmann, G. Kaiser, V. Scheuch, H. Roth, Design of a robust plau-
sibility check for an adaptive vehicle observer in an electric vehicle, in: Advanced
Microsystems for Automotive Applications, Springer, 2012, pp. 109–119.

[29] M. Hiller, Executable assertions for detecting data errors in embedded control sys-
tems, in: Proceedings International Conference on Dependable Systems and Net-
works, 2000. DSN 2000., IEEE, 2000, pp. 24–33.

[30] D. Skarin, J. Karlsson, Software implemented detection and recovery of soft errors
in a brake-by-wire system, in: 7th European Dependable Computing Conference,
IEEE, 2008, pp. 145–154.

[31] AUTOSAR, Specification of SW-C End-to-End Communication Protection Library
V4.0 (2013).

[32] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, R. Brown, Mibench: A
free, commercially representative embedded benchmark suite, in: 4th International
Workshop on Workload Characterization, IEEE, 2001, pp. 3–14.

[33] E. A. Bretz, By-wire cars turn the corner, IEEE Spectrum 38 (4) (2001) 68–73.

[34] VeTeSS,“VeTeSS: Verification and Testing to Support Functional Safety Standards”,
Version -0.01 (Not published yet).

[35] AUTOSAR, Specification of RTE V4.0 (2013).

45

	Introduction
	Research Methodology
	Stakeholders
	Thesis Outline

	Introduction to Dependable Computing
	Attributes
	Threats
	Means

	Basic Concepts
	AUTOSAR
	Application Layer
	Run-Time Environment
	Basic Software
	Libraries
	Error Handling

	Functional Safety
	Robustness
	Fault Injection
	Error Models
	Bit-Flip
	Data-Type Based Errors
	Fuzzing

	Error Handling Mechanisms
	Overview of Mechanisms
	Plausibility Checks
	Substitute Values
	Voting
	Agreement
	Checksums/Codes
	Execution Sequence Monitoring
	Aliveness Monitoring
	Status and Mode Management
	Reconfiguration
	Reset
	Error Filtering
	Memory Protection
	Timing Protection

	Previous Work with Plausibility Checks

	Library Design and Evaluation
	Library Design
	Investigation of the Standard
	Library Implementation

	Plausibility Check Evaluation
	Bitcount
	Integer Converter
	Brake-By-Wire

	Library Time Evaluation
	LED Blinking
	AUTOSAR Brake-By-Wire

	Discussion
	Plausibility Checks
	Library

	Conclusion and Future Work
	 Bibliography

