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Recommendations for Mutation Testing as Part of a Continuous Integration Pipeline
With a focus on C++

JONATHAN ORGARD

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

Mutation testing aims to judge the quality of a test suite by evaluating the ability
of the tests to detect subtle changes in the code. Altered versions of the code called
mutants are generated by a mutation tool, often a subtle change based on common
syntactic mistakes. Each mutant is then run against the original test suite to see if
the test results change.

This thesis aims to identify recommendations to mitigate the fact that mutation
testing can be notoriously expensive, making it difficult to integrate as part of a
continuous integration (CI) pipeline.

An evaluation of existing mutation testing tools for C++ was done to better un-
derstand the functionality and limitations of the available tools. Simultaneously,
a case study was conducted at Zenseact to identify suggestions on how mutation
testing can best be used within CI. First, a literature review was conducted to ex-
amine observations made by other studies on the application of mutation testing in
practice, and to identify techniques and practices to perform mutation testing effec-
tively. Next, stakeholder interviews were conducted to assess the developer’s view
of effective mutation testing. The result of the tool evaluation showed that existing
mutation tools for C++ differ in their capabilities, and the case study result showed
that there exist plenty of techniques to effectively integrate mutation testing into
CI from the developers’ perspective.

Based on the result, only the mutation tools Dextool and Mull were recommended for
Clintegration. Furthermore, guidelines were developed such as prioritizing mutation
testing on essential areas of the code, performing mutation testing on old code only
when there is free machine time, and that inexperienced developers should be trained
to understand the mutation result better.

Keywords: computer science, engineering, project, thesis, mutation testing, contin-
uous integration, C+-+, case study, dextool, mull






Acknowledgements

I want to express my gratitude to my two supervisors, Gregory Gay and Francisco
Gomes, for providing guidance and feedback throughout this thesis. I would also
like to thank the partner company for this thesis, Zenseact. A special thanks to
Kim Viggedal, my advisor from Zenseact, who was always ready to offer support or
send me in the direction of someone who could. And a big thanks to everyone from
Zenseact who agreed to participate in interviews or help out in any other way.

Jonathan Orgard, Gothenburg, June 2022

vii






Contents

List of Figures xiii
List of Tables XV
1 Introduction 1
1.1 Problem Description . . . . . ... ... ... L. 2

1.2 Purpose of the Study . . . . . . ... .. ... 3

1.3 Significance of the Study . . . . . .. ... ... 3

1.4 Thesis Outline . . . . . . . . ... ... 4

2 Background 5
2.1 Mutation testing . . . .. ... 5
2.1.1 Unproductive mutants . . . . . .. ... .. ... ... .... 6

2.1.2 Mutant schema . . . . ... ..o 6

2.2  Continuous Integration . . . . . . . .. ... ... ... .. 7
2.3 Containers . . . . . . . ... 7
24 LIVMand AST . . . . . . . . . 7
2.5 Existing C++ Mutation Tools . . . . . . . ... ... ... ... ... 8
25.1 MuCPP . . . ... 8

252 Mull ..o 9

2.5.3 Dextool . . . .. 9

254 CCmutator . . . .. .. ... ... 9

2.5.5 Mutate++4 . . . . .o 10

3 Related Work 11
3.1 Reducing the Cost of Mutation Testing . . . . . . . . ... ... ... 11
3.2 Applying Mutation Testing in Practice . . . . . . . .. ... ... .. 11
3.3 Mutation Testing Tools . . . . . . . .. .. ... ... ... ... 13

4 Methods 15
4.1 Research Design . . . . . . . . . . . .. ... 16
4.2  Context from the Partner Company . . . . . .. ... ... ... ... 17
4.3  Evaluation of C++ Mutation Tools (RQ1) . . . . .. ... ... ... 18
4.4 Usage of Tools in CI (RQ2) . . . .. ... . ... ... .. .... 20

4.4.1 Developers’ views of effective mutation testing (RQ2.1) . . . . 20
4.4.2 Techniques to effectively meet the goals of the developers
(RQ2.2) . . . 22

ix



Contents

4.4.3  Guidelines for Mutation Testing Within CI (RQ2.3) . . . . . .

5 Results
5.1 Evaluation of C4++ Mutation Tools (RQ1)
5.1.1 Installing and using the tools . .

5.1.2 Comparing the feature set of the tools . . . . . . .. ... ..

5.1.3 Comparing the mutation operators
5.1.4 Mutation generation results . . .
5.1.5  Mutation execution results . . . .
5.1.6 Clang dependency . .. ... ..
5.1.7 CI workflow implementation . . .
5.2 Mutation Testing Within CI (RQ2) . . .
5.2.1 Developers’ Views of Effective Mut
5.2.1.1  Test Quality . ... ..
5.2.1.2  Developer Impact . . . .
5.2.1.3 Implementation . . . . .
5.2.1.4 Whentouse ... ...

5.2.1.5 Summary . ... .. ..

of thetools. . . . . .. ..

ation Testing (RQ2.1) . . .

5.2.2  Techniques for Effective Mutation Testing (RQ2.2) . . . . ..
5.2.2.1  Techniques for Effective Mutation from the Litera-

ture Review . . . . . ..
5.2.3  Guidelines for Mutation Testing in

6 Discussion
6.1 Mutation tool summary . ... ... ..
6.1.1 Dextool . ... ... ... ....
6.1.2 Mull ... ... ... ... ...
6.1.3 MuCPP .. ... .........
6.1.4 Mutate++ . . . . . ... ... ..
6.1.5 CCmutator . .. ... ......

CI(RQ23).........

6.2 Identifying tools suitable for CI integration . . . . . . . . . ... ...

6.3 Possible tool improvements . . . . . . . .
6.4 Compiler Compatibility . . . . . . . . ..
6.5 Threats to Validity . . . . ... ... ..
6.5.1 Construct Validity . . . ... ..
6.5.2 Internal Validity . ... ... ..
6.5.3 External Validity . . .. ... ..
6.5.4 Reliability . . . . ... ... ...
6.5.5 Conclusion Validity . . . . . . ..
6.6 Future Work . . . . . .. ... ... ...

7 Conclusion
Bibliography

A Mutation Operators
A.1 MuCPP Class-level Mutation Operators

25
25
25
26
27
28
29
30
30
31
31
32
35
37
39
40
40

41
45

49
49
49
49
50
50
50
50
o1
o1
52
52
52
53
53
53
23

55

57



Contents

A.2 CCmutator Multi-threaded Mutation Operators . . . . . . . ... .. II

A.3 Mutation Operator Examples . . . . .. .. ... ... ... ..... 111
B Mull Mutation Operator Mapping XI
C Interview Guide XIII
D Interview Data XVII

D.1 Sub-theme overview . . . . . . . . . . ... .. ... ... XVII

X1



Contents

xii



4.1

4.2

0.1
5.2
2.3

5.4

3.5

List of Figures

Overview of the case study process. The different shades represent
different parts of our case study, such as activities (light), deliverables
(darker), and answers to our RQ (medium). . . ... ... ... ... 16
Overview of the mutation testing CI pipeline using GitHub actions.
Rectangles represent actions performed by the GitHub back-end app,

and rounded rectangles represent actions performed by the worker. . . 20
Overview of the steps for the Dextool CI job. . . . . ... ... ... 31
Dextool mutation report example. . . . . . . . ... ... 32

Overview of generated themes from the interviews. A rectangle repre-

sents the topic, a rhombus represents themes, and an oval represents
sub-themes. . . . . . . .. 33
Technique/practice and sub-theme match map. Rectangles are sub-
themes, and rectangles with rounded edges are techniques/practices

from the literature or tools. Themes are color-coded; purple = quality,

blue = implementation, pink = when to use, and yellow = prioritization. 45
Sub-theme relational map, this map is separate from the theme overview

to reduce clutter. Themes are color-coded; purple = quality, blue =
implementation, pink = when to use, yellow = prioritization, and
orange =risks. . . . ..o 46

xiii



List of Figures

Xiv



2.1

4.1
4.2

4.3

4.4
4.5

5.1

5.2
2.3

5.4

2.5

5.6

2.7
5.8
2.9

Al
A2
A3

List of Tables

Examples of mutation operators. . . . . . ... ...

Case study plan according to Robson [41] as contained in [42].

C++ mutation tools with versions used for the thesis. MuCPP does
not have a listed version on its website. It does, however, have a
“last updated” post, but it is unclear if that is when the website was
updated or the tool. . . . . . . ... ...
C++ projects with size, GitHub stars, and commit used for the thesis,
only C and C++ files counted. . . . . . . . . ... ... ... .....
Interview study participants. . . . . . . . ... 0oL
Keywords used for literature review database searches. . . . . . . ..

Summary of the activities and the corresponding tools in which these
activities were successful. . . . . . . ... o000
Features relevant to CI integration by the different tools. . . . . . . .
Traditional mutation operators that are supported by the mutation

The number of mutants generated per project and per tool. Mull
might not report the correct total mutation amount if template func-
tions are present. Projects with templates that might affect the mu-
tation amount are marked with a *. Projects marked with — for
MuCPP did not have the prerequisite Makefile. . . . . .. .. .. ..
Time (in seconds) spent generating mutants for the projects using the
mutation testing tools. Projects marked with — for MuCPP did not
have the prerequisite Makefile. . . . . . . . .. ... ... ... ....
Mutation execution benchmark results for each project using Dextool
and Mull. Only one test binary could be executed at a time due to
limitations in Mull. The baseline column represents the time it took
the test suite to complete on its own, without any tool involved. . . .
Versions of Clang supported by each dependent mutation tool. . . . .
Description of generated themes from the interviews. . . . . . . . ..
Mutation techniques and practices from the literature and mutation

Class-level mutation operators supported by MuCPP. . . . . . . . ..
Multi-threaded mutation operators supported by CCmutator . . . . .
Mutation operators with examples . . . . . . . .. .. ... ... ...

XV



List of Tables

B.1 Mull operator mapping . . . . . . . .. ...

D.1 Overview of generated sub-themes from the interviews. . . . . . . ..

Xvi



1

Introduction

Historically, it has been common to use different structural coverage metrics to
estimate how well a given set of tests covers the tested code. Line coverage has
been used to measure which lines of code are executed by the tests, while branch
coverage has been used to take this one step further and measure which branches
in the code have been executed by tests. A branch is a point in the code where
control can diverge based on a conditional expression, such as an if-statement, switch
statement, or loop condition. For example, code coverage has been an important
source of documentation that production code is thoroughly tested in the automotive
industry. A challenge with traditional structural coverage metrics is that the simple
execution of code elements may not result in thorough testing, as the conditions
required to meet such metrics can often be met by many different test cases [14].
These criteria mandate that code be executed, but only lightly constrain how that
code is executed. The resulting tests may be insensitive to subtle problems in the
code, only demonstrated by a small number of inputs.

Another approach that has gained some interest is mutation testing. In mutation
testing, a tool generates “mutants” of the code. A mutant is an altered version of
the production code. For each mutant, the original tests for the production code are
executed on the mutated version of the code. If all tests pass, the mutant survives,
while if one of the tests fails, the mutant is killed. The goal is to kill the mutants.
If the test suite can kill a large portion of the mutants, then it is likely that the
tests are sensitive to small changes to the production code. This is good since that
indicates that tests are good at catching incorrect behavior in the code. If a large
percentage of the mutants survive, then the tests are likely to be insensitive to these
changes. This indicates that the current tests are insufficient, that additional tests
need to be created, or that the existing tests need improvement. The code alterations
made when generating mutants are based on mutation operators—modifications
based on common code structures that can be made automatically by a tool. These
operators are based on common syntactic mistakes made by programmers, such as
inserting < instead of <.

The mutation score calculates the percentage of mutants killed, the number of mu-
tants killed divided by the total number of mutants. Some practitioners argue that
using this score as an indication of the adequacy of the test is superior to using test
coverage metrics in specific contexts. Inozemtseva et al. [17] say that their results
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suggest that test coverage metrics are a poor indicator of the effectiveness of the test
suite and that the mutation score may be a good substitute. Mutation testing has
the benefit of actually evaluating the ability of the tests to detect subtle changes.

An open question is how best to integrate mutation testing into the development
and testing workflow. For example, developers may work with various programming
languages and often build and test code as part of a Continuous Integration (CI)
process. CI is a practice developers often use to automate tasks such as building
and testing code when new changes are pushed to a repository. The developer
then receives feedback from automated tasks, such as test results or code coverage
measurements. Mutation testing could be applied during the test execution stage
of CI to assess the adequacy of the tests executed on the code, for example, being
applied selectively to the code elements that have been changed in the latest update.

1.1 Problem Description

Mutation testing is a potentially effective way to judge the quality of test cases [17].
However, two main issues hinder the widespread adaptation of mutation testing.
The fact that mutation testing can be notoriously expensive and has received less
attention in certain programming languages makes it difficult to integrate existing
mutation testing tools with CI.

Notoriously expensive: Within CI, code is expected to be built, tested, and
packaged within reasonable time limits so that the developer can get rapid feedback.
Mutation testing is notoriously expensive because tests have to be run for each
mutant separately. Therefore, instead of running the tests once, they may run
many times. Another layer of complexity caused by mutation testing is that if a
mutant survives, a human often has to evaluate whether it is worth taking action
on the mutant or not. If no action is worth taking, developer and computational
time have been wasted. The potentially high cost of mutation testing makes the
use of mutations within CI a complicated task. Some work has been done with
a focus on the issue of mutation in an industrial CI setting [3, 37, 38], and they
have some recommendations on how mutation testing can be used. However, they
use proprietary software from their own companies, making it challenging to adopt
using existing open-source tools.

Limited attention for certain languages: In an industrial setting, developers
need practical tools to perform mutation testing in a variety of languages that are
used within specific domains, including C++4, which has received limited attention
in current research '. Although there exist tools to perform mutation testing on, for
example, C++ code, it is an open question whether the tools proposed in previous
research can fit into the development workflow. The tools may not be available in
the desired languages and may not be usable in a flexible manner. For example, a
tool may not have a command-line interface or anything else that allows it to be run

"'We mention C++ specifically because it is used at our partner company Zenseact. However,
the same point could be made about other programming languages.
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programmatically, which is required to automate the tool’s usage in a CI context.
Several examinations of mutation testing have been conducted from an industrial or
developer perspective; see, for example, Petrovic et al. at Google [37, 38] and Beller
et al. at Facebook [3]. However, these studies use proprietary tools only for internal
use, making them difficult to replicate. Nevertheless, these papers share the logic
behind the tool and how they apply it to their codebases.

1.2 Purpose of the Study

This study aimed to contribute to the knowledge of researchers and practitioners of
the applicability of mutation testing in industrial software development when used
as a part of CI, with a focus on tools that support mutation of C++ code. We
conducted this research in cooperation with a partner company, Zenseact, which
uses C++ as its primary development language in some components.

We first evaluated the capabilities of existing C++ mutation tools, including whether
or not the tools can be used in CI. In addition to this, we did a case study at Zenseact
to identify suggestions on how mutation testing can best be used within CI. It is an
open question as to how developers could benefit the most from mutation testing as
part of their testing process. Therefore, we discussed with stakeholders at Zenseact
what they see as the most effective use of mutation testing, along with a literature
review, to identify practices, such as using the mutation testing result as a coverage
metric. We then used the results of the interviews and the literature review to
suggest practices when applying mutation testing in a CI setting.

1.3 Significance of the Study

The scientific contribution of this thesis is the tool comparison for mutation testing
in CI. The comparison of the tools and the identified techniques from the literature
review can be used to identify areas to improve existing mutation tools or inspire the
development of new tools. Similarly, techniques represented in the tools but not the
literature could inspire future research. According to Papadakis et al. [36], a future
problem to solve is “how should we integrate mutation testing into our development
process”, which we contributed to in this case study.

The practical contributions of this thesis are the comparison of existing C++ mu-
tation tools, identified guidelines for mutation testing in CI, and proof-of-concept
GitHub workflows for mutation testing in CI. We compared the feature set of exist-
ing C++ mutation tools that practitioners could use along with the guidelines to see
what, if any, tools can be flexibly integrated into CI and other developer workflows.
The practical challenges and solutions reported here also help practitioners inter-
ested in adding mutation testing to their CI processes. Furthermore, the guidelines
could help practitioners determine how mutation testing can best be used within
their CI processes.
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1.4 Thesis Outline

o Chapter 2 presents the relevant terminology and concepts for this study.
o Chapter 3 presents findings from other studies relevant to this study.

o Chapter 4 describes the methodology used in the study.

o Chapter 5 presents the results of the study.

o Chapter 6 discusses the results of the study.

o Chapter 7 presents the conclusions of the study.



2

Background

To understand how to apply mutation testing in practice best, we first have to
understand the concept of mutation testing, how it can be used as part of a workflow,
and how the mutation testing tools work. In this section, we will first look at the
concept of mutation testing, then look at continuous integration and containers that
can be used to integrate mutation testing into the workflow. After that, we will look
at LLVM and AST that can be used to identify where to mutate the code, and finally,
we will look at how the mutation tools work.

2.1 Mutation testing

Mutation testing aims to judge the quality of a test suite by evaluating the ability of
the tests to detect subtle changes in the code. Mutation testing was first proposed
by Lipton [24] in 1971 and then published by Lipton et al. [9] in 1978. In mutation
testing, a tool generates altered versions of the code, called mutants. A mutant is
usually a subtle change in the code, often based on common syntactic mistakes made
by programmers. The first mutation testing tool was developed by Budd [5] in 1980.
For each generated mutant, the original test suite for the original code is executed
on the mutated versions of the code. We expect a test in the test suite to fail because
the code has changed. If a test fails, the mutant is considered killed because it has
detected it. If no tests fail and the test suite fails to detect the mutant, the mutant
is considered live. Several mutants can be combined to form high-order mutants.
The mutation score is the percentage of how many mutants the test suite has killed
[9]. The mutation score is calculated by dividing the number of dead mutants by
the total number of mutants. The mutation score is an indication that the tests are
insensitive to the changes introduced by the mutants. The mutation testing process
can generally be divided into three phases; code analysis, mutant generation, and
execution of mutant tests.

To define how mutants should be generated, we have mutation operators. They
are grammatical rules to introduce a syntactic change to the original code and, as
mentioned above, are usually based on common syntactic mistakes, such as inserting
a < instead of <. See Listing 2.1 and Listing 2.2 for examples of these. Any
code change could represent a mutation operator; see Table 2.1 for some examples
of mutation operators or Appendix A.3 for further examples of these and other
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mutation operators.

Listing 2.1: Original code. Listing 2.2: Mutated code using ROR.
if(a < b) { if(a <= b) {

return a; return a;
return b; return b;

Table 2.1: Examples of mutation operators.

Operator Name Description Example

ABS Absolute Value Insertion Inserts absolute value of a numeric value a — {abs(a)}
AOR Arithmetic Operator Replacement  Replaces arithmetic operator with another a+b— {a—10b}
LCR Logical Connector Replacement Replaces a logical connector with another a&&b — {al|||b}
ROR Relational Operator Replacement Replaces a relational operator with another a <b— {a < b}
UOI Unary Operator Insertion Inserts an unary operator on an operand a— {a++}
SBR Statement block removal Removes a statement block a=1—{}

2.1.1 Unproductive mutants

Some mutants trigger the same behavior as the original code; these mutants are
called equivalent mutants and are unproductive mutants. They might never get
killed by the test suite, or it might be pointless to kill them since they cause the
intended behavior. Another type of unproductive mutants is those that would not
improve the test suite [39]. For example, a mutant that modifies a debugging line
that prints a debug text without affecting the code’s functionality. A test could be
created to catch this mutant, but doing so would add no value to the test suite.
Although some techniques exist to mitigate the equivalent mutant problem, the
problem is theoretically undecidable [35]. Because of this, developers might have to
manually check for unproductive mutants among the live mutants to flag them as
irrelevant.

2.1.2 Mutant schema

Mutant schema is a way to speed up mutation testing by inserting multiple mutants
into the code under test in an inactive state and then activating one mutant at a
time to test the mutants without the need to recompile. This is done by inserting
the mutants into a form of a partially interpreted program schema [45]. A partially
interpreted program schema is a program that contains identifiers called abstract
entities in place of parts of the code [2]. The schema can then be instantiated to
form a complete program by providing code to use on the abstract entities. Mutant
schema expand on the abstract entity concept by introducing meta-operator abstract
entities, an abstract entity that represents the mutations generated by one mutation
operator. A mutant schema replaces parts of the code where a mutant could be
inserted with a meta-procedure. These functions correspond to each meta-operator
abstract entity that could be applied to that part of the code. This potentially
speeds up mutation execution; instead of recompiling the project between every

6
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mutation execution, the project can instead be compiled once and be instantiated
to function as any of the mutants by having the meta-procedures instantiate one
mutant at a time.

A potential problem with mutant schema is that the code to compile can increase
drastically since all the code variants must be inserted at once. This can potentially
cause compilation problems. The mutant schema can be split into multiple sub-
mutant schemas to mitigate the compilation problem. Another potential issue with
mutant schema is that code execution could be slowed down compared to the original
code due to the meta-procedure function call overhead.

2.2 Continuous Integration

Continuous Integration (CI) is a practice that developers often use to automate tasks
such as building and testing code when new changes are pushed to a repository. CI
could be used to automate mutation testing tasks that give feedback on the quality
of new code.

GitHub Actions is a tool that can automate software development workflows, for
example, creating CI workflows [15]. GitHub Actions was used in this thesis to
create proof-of-concept CI workflows.

Make is a build automation tool that can, for example, be used as a part of the CI
workflow to build software from source code using a Makefile. The Makefile contains
instructions for the tasks to be executed.

2.3 Containers

Containers provide a virtual layer on top of the host operating system, allowing
multiple operating systems to run alongside each other in isolation. This is unlike
traditional virtual machines (VMs), which also virtualize the hardware level, causing
more overhead. Docker is the leading container solution widely accepted in the
industry [43]. A study by Felter et al. [12] at IBM shows that Docker containers
have a negligible overhead on 1/0O operations and CPU performance but a noticeable
impact on network performance. Containers were used in this thesis to accommodate
incompatible dependencies between the different mutation testing tools that were
evaluated.

2.4 LLVM and AST

LLVM (low-level virtual machine) is a compiler framework designed for transparent,
lifelong program analysis and transformation for arbitrary programs by providing
high-level information to compiler transformations at compile-time, link-time, run-
time, and in idle time between runs as stated in [22]. LLVM was initially imple-
mented for C and C++ but now supports more languages. The LLVM front-end

7
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compiles a language, for example, Clang, that compiles C++ and other C lan-
guages [25], into LLVM IR (intermediate representation). The LLVM IR is, in turn,
compiled to machine code in the back-end. Having LLVM IR between the original
language and the machine language allows tools to analyze and use the compiled IR
code before it is compiled into the target machine language, enabling reusable tools
between different target architectures.

AST (abstract syntax tree) is a syntax tree representation of the source code. Each
node in the tree represents a construct, and a mutation tool can then use this tree
representation to identify nodes to modify.

2.5 Existing C++4 Mutation Tools

A few C++4 mutation testing tools exist, and this thesis evaluated five of them:;
MuCPP, Mull, Dextool, Mutate++, and CCMutator. The documentation of the
technical details for the tools varied greatly, so not all explanations in this section
are of equal detail. We assessed the features relevant to a CI context, the mutation
operators provided by the different tools, and benchmarked the mutation generation
and test execution with the various tools.

Most mutation tools work in three phases: code analysis, mutant generation, and
mutant test execution [7]. CCmutator is the only tool that does not support the
mutant execution phase.

e Analysis: The tool traverses the AST, LLVM IR or source to analyze the code
of the given files and determines where mutation operators can be applied.

e Mutant generation: The mutants are generated at the designated spots
using mutation operators and stored for the next phase.

o« Mutant test execution: One mutant is applied at the time and tested
against the test suite. Mutants are flagged as killed or live, depending on the
test suite result. A mutation score is then calculated once all mutants have
been tested.

2.5.1 MuCPP

MuCPP is a tool developed for mutation operator research by Delgado et al. [7]
and uses the Clang API to find mutation points. It requires a Makefile to function
that includes rules to clean up the project folder, compile the mutation program,
compile the test suite, and a rule to execute the test suite for it to function. It is
also not subject to a specific testing framework; instead, it requires that the testing
framework report the mutation testing result to MuCPP in a specific format. The
tool uses git to store its mutants in branches, which means that the project under
test cannot be in a directory containing a git repository if MuCPP is to be used since
the tool creates its own repository and branches to function. Mutation operators to
be used can be specified in a config file, and the tool mutates files supplied to it as

8
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flags; if no files are provided, then the root directory is processed.

2.5.2 Mull

Mull is a Clang compiler plugin developed by Denisov et al. [10] that has to be
enabled while compiling and works a bit differently than most mutation tools; it
does the analysis and mutation generation at build time. Mull is based on LLVM
and uses LLVM IR and Clang AST APIs extensively [29]. The tool works on the
LLVM bitcode level and finds and creates mutations of a program in memory. This
enables Mull to generate and insert mutants as the project is built; the generated
mutants are injected in an inactive state into the original programs while it is being
built. Each mutant is hidden under a conditional flag used to enable each mutation,
much like a mutant schema. The resulting program can be compiled into a single
program that can be used to test all the mutations without having to recompile.
This means that the first compilation time for the project is longer, but not having
to recompile potentially speeds up the mutation testing. The corresponding mutant
is activated for each mutation, and the tests are then executed to see if the mutant
survives.

Mull can run the mutation testing in separate sub-processes, allowing multiple mu-
tations to be tested simultaneously without affecting each other. A report is then
generated to display the result of the mutation testing. The tool is best used in con-
junction with a configuration file that specifies which files to mutate and mutation
operators to use. A drawback of Mull is that it requires that only one test binary
be given as input, which means that all tests being used must have been compiled
into a single executable. This potentially requires the project’s tests to be rewritten,
while other tools support multiple test binaries and can recursively find tests given
a glob pattern. A glob pattern is a way to match filenames against a pattern by, for
example, using wildcards.

2.5.3 Dextool

What makes Dextool stand out from other mutation tools is that it has a highly
customizable config file and that mutation results can be reused between runs. Gen-
erated mutants and the mutation are stored in a SQL database file, which can be
reused in future runs. However, if a file has changed since the last run affected
mutants are rerun. The tool has partial support for mutant schema, the mutants
can be combined into schemas but do no always compile [19]. If the schema compile
fails, then the mutants of the schema are instead compiled and tested individually.

2.5.4 CCmutator

CCmutator was developed to generate partial and high-order multi-threaded mu-
tants by Kusano et al. [21]. The tool only supports mutation analysis and mutant
generation; it cannot perform the mutant testing by itself. The tool can only apply
one type of mutant operator at a time on a given file and requires the user to specify
which occurrences to mutate after the mutant analysis.



2. Background

2.5.5 Mutate++

Mutate++4 is a web application that runs locally. At the time of writing, the tool is
in a very early stage of development, and mutants are created at a purely syntactical
level, often resulting in code that fails compilation [31]. The tool is also GUT only,
and files must be added manually.
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Related Work

3.1 Reducing the Cost of Mutation Testing

Reducing the cost of mutation testing is an important factor in integrating mutation
testing with a CI pipeline, as the reduced cost can lead to faster developer feedback.
There has been work done to improve the speed of mutation testing, both in com-
puting and in developer time. There are proposed solutions like mutant schema [45]
that encode multiple mutants for a program into one metaprogram. Usaola et al. [27]
expand on mutant schema by proposing a way to identify mutants generated from
statements to determine which test cases reach the mutated statement. This is done
to only execute these test cases, reducing the number of required executions. They
also propose another way to identify infinite loops at a reduced cost by implementing
a loop counter to stop execution after a specific number of iterations instead of the
traditional way to stop execution after a specific amount of time.

Another technique from the literature to drastically improve the speed of mutation
testing is selective mutation proposed by Offut et al. [32], which reduces the cost of
mutation testing by limiting the number of mutation operators and thus reducing
the generated mutants, reducing the cost. They showed that selective mutation
is almost as effective as non-selective mutation testing, using the five mutation

operators ABS, AOR, LCR, ROR, and UOI.

Ma et al. [26] propose another approach to mutation testing, MuDelta. Their ap-
proach uses machine learning to select the mutation operator most likely to produce
a relevant mutant to the commit. As the name of the approach implies, they focus
on testing the new code added in the commit rather than retesting the old code.

3.2 Applying Mutation Testing in Practice

According to Papadakis et al. [36], there is a growing interest in mutation testing,
and a future problem to solve is “how should we integrate mutation testing into our
development process”. Mutation testing has already been integrated at a small num-
ber of companies. Still, we need more varied expertise in companies from different
domains to get a more general idea of how to integrate mutation testing. Although
we may not be able to directly adopt how other companies have applied mutation
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testing in practice, we can at least learn from their applied techniques and practices.
We can then use what we have learned to apply mutation testing in our context.

A common problem encountered when looking at the literature around mutation
testing is the cost, both in terms of human and computational effort. Both Petrovié¢
et al. at Google [38] and Beller et al. at Facebook [3] argue that the sheer amount of
mutants that can be generated can cause an insurmountable problem. Both claim
that the traditional approach to mutation testing is infeasible in their respective
industrial system due to their scale and size. They do not think that one should
create mutants that the test suit would likely fail or give no actionable signal to
developers. However, both have shown that mutation testing can be applied in a
scaled production environment. Google, in particular, has used mutation testing
in production with great success. Both companies use proprietary tools only for
internal use. However, in these papers, they share how they developed these tools
and how they can apply them to their massive code bases.

Google, for example, only applies mutants to new lines of code if it is also covered
by a test and only generates one mutant per line of code. They also only present
a limited number of mutations to the developers (seven times the number of total
files in the changelist). Any more might cause cognitive overhead and cause the
affected developer to stop using mutation testing. Only the minimal set of tests
needed to run in an attempt to kill a mutant is run. They also apply rules for which
lines of code to generate mutants; for example, a function name starting with the
prefix log is filtered out. They use a limited number of mutation operators (AOR,
LCR, ROR, UOI, and SBR, see Table 2.1 for a description of these operators) and
select which mutation operator to use to create mutants based on historical data,
on which operators usually generate interesting mutants for given code structures.
This historical data is populated by mutation results from previous executions and
developer feedback. Each time a developer is presented with a mutation in their code
review process, they are also presented with the option to mark it as “please fix”
to indicate that it is interesting or “not useful” to indicate that it is uninteresting.
They have found that these mutation operators, combined with the heuristic rules,
can generate mutants for 70% of high-priority bugs. Google has generated more
than 1.1 million mutants using this method.

On the other hand, Facebook has opted for a less resource-intensive solution. Instead
of generating many mutants and then picking the seemingly best mutants of these
like Google, they have trained their tool to create mutants inspired by real-life bugs
that will have a high likelihood of surviving. They achieved this by training their
tool on a data set containing real code, before and after a bug fix, from the Defects4.J
fault data set [20] and their own codebase. Their tool compares the code before and
after the fix, to learn how to reintroduce the bugs into similar code, thus creating
a faulty mutant. Another study doing something similar to Facebook is Brown et
al. [4], but instead of confirming that the code applied is a bug fix, they assume that
any small change is a bug fix, which it may not be.

Ramler et al. [40] performed a case study in an engineering company developing
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safety-critical systems. They found that mutation testing can assess the quality of a
test suite that has already achieved 100% coverage branch coverage. That mutation
testing provides hints about deficiencies in test cases that are difficult to discover.
However, they also note that, for mutation testing to become practically useful, the
scalability problems of mutation testing must be resolved. Two new faults were
found in the code with an overall effort of about half a person-year. Another study
by Baker et al. [1] found that mutation testing can identify shortfalls in test cases
that are too obscure to be detected by manual review and that mutation testing
offers a consistent measure of test quality that peer review cannot demonstrate.
They argue that their study has produced evidence that existing coverage criteria
are insufficient to identify test issues, potentially because engineers are too focused
on satisfying coverage goals.

3.3 Mutation Testing Tools

As mentioned above, both Google and Facebook use proprietary tools for mutation
testing, but there are also other mutation testing tools that anyone can use. This
thesis looks at five of these tools available for C++ mutation testing. Some of these
tools have been scientifically studied, but there is a lack of work done in the field that
compares how these tools can be used in a professional development environment.
To the best of our knowledge, no studies have made an empirical comparison of the
capabilities and applicability of these tools. Denisov et al. [11] for example, have
written a paper on the Mull implementation details, explaining how they can use
direct manipulation of LLVM IR, a low-level intermediate representation of the code,
to only recompile modified fragments of IR code. However, this explanation seems
outdated since the paper mentions the use of LLVM JIT, which is no longer the case
according to the Mull docs [29]. Nevertheless, they mention that a comparison of
mutation tools is a subject for future work, which is part of the goal of this thesis.

Kusano et al. [21] wrote a paper on the multi-threaded focused CCmutator mutation
testing tool. This paper is focused on presenting the C++ multi-threaded mutations
created for the tool and how they overcome the challenges presented by multi-
threaded mutation testing. Several papers have also used the MuCPP mutation
testing tool; however, these have also not focused on the applicability of the tool.
Delgado-Pérez et al. [7] developed MuCPP to evaluate class-level mutants. They
showed that class mutation operators complement traditional mutation operators to
create a more robust test suite. Delgado-Pérez et al. [8] used MuCPP to show that
a selective mutation approach, using a subset of class mutation operators, reduces
the number of mutants with a minimal loss of effectiveness.

These papers can serve to better understand the inner workings of the tools to
help us better understand why the performance of the tool was what it was when
compared to others in our evaluation.
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Methods

This chapter will describe the methodology used in this thesis to find the answers
to the following research questions:

« RQ1: What are the capabilities of existing C++ mutation testing tools?
« RQ2: How can mutation testing be best used within continuous integration?

— RQ2.1: What do developers see as the most effective use of mutations
in their practice?

— RQ2.2: Can we identify techniques that meet the goals of developers?

— RQ2.3: Can general guidelines for the use of mutation testing within CI
be identified?

For RQ1 we compare the features of the tools and evaluate whether the tools could
easily be integrated into a development process in the form of a continuous integra-
tion pipeline. RQ2.1 looked into what effective use of mutation testing would entail
for a developer. We identified what goals they believed mutation testing could help
them achieve. For example, mutation testing may help identify undertested areas
of the source code, identify trends in testing over time, or meet other testing goals.
RQ2.2 investigated how we could increase the efficiency of mutation testing by
identifying techniques from the literature and features from the mutation tools that
can be applied to meet the goals of developers effectively. RQ2.3 used the data
collected in RQ2.1 and RQ2.2 to identify guidelines for how mutation testing can
generally be applied within an CI context. Figure 4.1 gives an overview of the case
study process.

To address these questions, we have:

(1) Evaluated C++ mutation tools: We have evaluated a set of existing mu-
tation tools for the C++ language (Section 4.3). Some tools may support different
mutation operators or handle mutation generation and test execution differently.
Therefore, we compared the functionality of the tools, and benchmarked both the
generation of mutants and the test execution. We also built a proof of concept
integration of C++ mutation tools into a CI pipeline.
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(2) Gathered data from stakeholders: We have conducted semi-structured in-
terviews with developers and product owners at the partner company (Section 4.4.1).
These interviews were conducted to understand how stakeholders thought mutation
testing could help them effectively in their practice.

(3) Gathered mutation techniques and practices: We performed a litera-
ture review to find techniques and practices presented in other academic works to
identify techniques and practices that could effectively meet the developers’ goals
(Section 4.4.2).

e N

Identify existing C++
mutation testing tools
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Identify open source

C++ GitHub
repositories
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Conduct interviews ——————  »{view on mutation use
in practice)
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RQ2.3 (Practices for
mutation testing in CI)

Figure 4.1: Overview of the case study process. The different shades represent
different parts of our case study, such as activities (light), deliverables (darker), and
answers to our RQ (medium).

4.1 Research Design

The research design for the thesis is a case study. What is being studied are best
practices when integrating mutation testing in an industrial setting at the partner
company of the thesis, Zenseact. A core aspect of a case study is that the conclu-
sions and analysis are limited to a specific context: the employees with mutation
testing experience at the partner company. Nevertheless, we will attempt to draw
conclusions that generalize, at least, to similarly sized companies in similar problem
domains. Since the data collection and analysis were limited to the partner company,
that allowed for an exploratory investigation of how mutation testing can be applied
in practice, allowing an in-depth analysis of the challenges involving the application
of mutation testing into CI. Table 4.1 gives an overview of the case study plan.
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Table 4.1: Case study plan according to Robson [41] as contained in [42].

Objective: Explore mutation testing within continuous integration
in an industrial setting

Case: Integration of C++ mutation testing tools into contin-
uous integration pipelines

Theory: Mutation Testing and Continuous Integration

Research questions: RQ1, RQ2 (RQ2.1, RQ2.2, RQ2.3)

Methods: Interviews, literature review and tool evaluation

Selection strategy:  Open-source C++ projects and interview study partic-
ipants

4.2 Context from the Partner Company

Zenseact is a company in the automotive industry with around 600 employees [46]
and is owned by Volvo Cars. They focus on the development of autonomous driving
and active safety software. The focus of this study is on the employees with mutation
testing experience.

Zenseact uses CI to build code and execute test cases. When new code is pushed
to the company repository, a process is started that involves both automatic and
manual actions. The automated actions are called jobs and are divided into sequen-
tial stages; the more expensive a job, the later it is run in the sequence. If any
job within a stage fails, the next stage is not started. There are automatic build-
and test-avoidance- jobs that are skipped if the affected code has not changed since
the last execution of the job. The results from the jobs are then reported back
to relevant parties. Failure in the early stages, called pre-merge jobs, will block a
merge of the new code, and a manual code review is always needed before the actual
merge can be done. Later stages are run after the merge has been done to report
any problems caused; these stages consist of the most expensive jobs and are called
post-merge jobs. Most of them are run during the day, but some are run at night
to avoid blocking other jobs.

Test quality is not assessed automatically; instead, a manual code review is applied
to determine the test quality. Test coverage is measured to ensure that test cases
execute the code. Mutation could be used at different points in this pipeline, with
varying results. Other jobs could help the identification of ineffective mutants in
the pipeline. For example, code that does not pass static analysis jobs would be
an unproductive mutant, as such a mutant would have been detected before the
conclusion of the first stage.
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4.3 Evaluation of C++ Mutation Tools (RQ1)

To understand the functionality and limitations of the existing mutation testing
tools for C++, the tools were installed on the same system and applied to the same
C++ projects. We performed benchmarks to collect quantitative data, for example,
the number of mutants generated, time spent generating the mutants, time spent
executing the mutation tests, and mutation score.

Five existing C++ mutation testing tools were identified by reviewing the literature
and searching the Web for tools not mentioned in the academic literature. Table 4.2
shows a list of tools and versions used. MuCPP does not have a version number or
changelog, so we cannot specify which version of the tool was used.

Table 4.2: C++ mutation tools with versions used for the thesis. MuCPP does
not have a listed version on its website. It does, however, have a “last updated”
post, but it is unclear if that is when the website was updated or the tool.

Name Version Updated Used with Docker Source
Dextool 4.1.0-4-g2b5bc097 25 Mar 2022 [19]
Mull 0.17.1 17 Mar 2022 [10]
MuCPP N/A 7 Jan 2021 X (7]
Mutate++  bb341d7 (commit) 25 Nov 2020 [31]
CCmutator  66ecabc (commit) 27 Sep 2013 X [21]

The computer used to perform the benchmarks had an Intel Core i9-10885H pro-
cessor, 32GB of DDR4 RAM, and a Ubuntu 20.04.3 operating system. MuCPP and
CCmutator were installed on a Docker v21.10.12 container using the Ubuntu 20.04
image. They were installed in a Docker container because they had incompatible
dependencies of the Clang version with the rest of the tools. As mentioned in Sec-
tion 2.3, Docker has a negligible overhead on I1/O operations and CPU performance
but a noticeable impact on network performance. Since we are not dealing with
network performance in our benchmarks, we choose not to rerun all tests for our
other tools in Docker containers. The settings used for each tool can be found on

GitHub [33].

Six suitable C++ projects of varying sizes were chosen on which to apply the muta-
tion tools. We limited ourselves to six projects due to time constraints, as mutation
testing can take quite some time to perform. The projects were found by looking at
projects used in other academic papers [47, 7] and a list of popular C++ repositories
on GitHub. For a project to be selected, it had to have been updated within the
last two years, able to compile on the computer used for benchmarking, and had to
have a unit test suite. Table 4.3 gives an overview of the projects used, including
the number of C/C++ lines of code (LOC), C/C++ files, commit version, and stars
given on GitHub to gauge popularity. The number of stars has been rounded to a
higher hundred value for consistency since GitHub rounds the number up and does
not display the exact number after 10000 stars.
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Table 4.3: C++ projects with size, GitHub stars, and commit used for the thesis,
only C and C++ files counted.

Name LOC (C++/C) Files Commit Updated Stars Source
TinyXML-2 5581 3 a977397 4 Sep 2021 4000 [23]
JSON 60366 104  eec79d4 30 Jan 2022 29300 [30]
Corrade 15359 141 3643585 30 Jan 2022 400 [28]
FMT 42229 65  afbcfle8 8 Feb 2022 13900 [13]
TimSort 1584 8 eT782512 30 Jan 2022 300 [44]
yaml-cpp 18210 54  edadfec 17 Feb 2022 3200 [18]

The documentation of the different mutation tools was compared to identify features
and supported mutation operators. The tools were also installed on the same system
and applied to the projects listed in Table 4.3, to compare how many mutants
they could generate for each project and benchmark how long the test execution
took. The documentation was sometimes lacking and not always up-to-date with
the current version of the tool, so additional functionality was identified by using the
tools. For example, Mull had just undergone a rework in its test execution phase,
deprecating the old module performing the test execution and replacing it with a
new module that used new conditional flags. However, the tutorials used the old
deprecated module and its no-longer-relevant conditional flags. Another example
of lacking documentation was in the config files for both Mull and Dextool. Mull
did not mention its includePaths option to specify what paths to include for the
mutation testing. Similarly, Dextool’s config documentation did not mention some
of its available options and instead opted to explain them directly in the config file
once initialized.

The collected data was then consolidated into tables:
o Table 5.1 that shows if we could install the tool and perform the mutations.
o Table 5.2 compares the functionality relevant to CI.
o Table 5.3 compares the supported traditional mutation operators.
o Table 5.4 compares the number of mutants generated for each project.
o Table 5.5 compares the time it took to generate the mutants for each project.

» Table 5.6 compares the time it took to execute the mutation test using Dextool
and Mull.

o Table 5.7 compares the versions of Clang supported by each dependent muta-
tion tool.

o Table A.1 lists class level mutation operators supported by MuCPP.
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o Table A.2 lists multi-threaded mutation operators supported by CCmutator.

Using the data collected from the tool testing, we could see that the features and
functionality of the tools differed, but also how fast the tools were at different tasks.
This gave us an overview of the capabilities of the tools, painting a picture of what
existing tools could be used to implement mutation testing and where there was
room to improve tools or create new tools to complement the existing tools to fulfill
the stakeholder’s needs.

As a proof-of-concept for the use of mutation testing for C++ in CI, two CI work-
flows for mutation testing were created for the TinyXML-2 project using GitHub
Actions. The workflows can be found on GitHub [34]. One workflow is triggered
by pushes to the repository and only mutates the git diff. The second workflow is
triggered periodically, mutating the entire project using the mutation tool(s).

The workflows operate largely the same way; an overview of them can be seen in
Figure 4.2. After the workflows have been triggered, GitHub Actions that manages
the workflow finds a suitable runner; a runner is an application that will run the jobs
in the workflow. The worker then pulls the relevant commit from the repository and
then downloads and installs the dependencies along with the mutation tool. After
the dependencies have been installed, the mutation tool(s) are used to mutation test
the entire project or the git diff caused by the triggering commit, depending on the
workflow. The result of the mutation testing is then stored so that relevant parties
can inspect the result.

GitHub Actions waorkflow
Developer
x ) ; Download and install
— —> S > )
1 e Trigger —» Find runner Pull changes B
T Save mutation testing » TS T T
result

Figure 4.2: Overview of the mutation testing CI pipeline using GitHub actions.
Rectangles represent actions performed by the GitHub back-end app, and rounded
rectangles represent actions performed by the worker.

4.4 Usage of Tools in CI (RQ2)

4.4.1 Developers’ views of effective mutation testing (RQ2.1)

To understand why practitioners have not widely adopted mutation testing and
how best to use mutation testing within continuous integration, interviews were
conducted with stakeholders in the company to collect qualitative data to analyze.

Stakeholder interviews: We conducted semi-structured interviews with seven
stakeholders within the partner company; the stakeholders were a mix of software
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developers, architects, and managers. The purpose of the interviews was to un-
derstand how stakeholders thought mutation testing could best help them in their
practice. The semi-structured format allowed stakeholders to present new ideas dur-
ing the interview. They had varying experiences with mutation testing, ranging from
non-existent to active use. An overview of the participants is found in Table 4.4.
Something to note in the table is that Zenseact as a company was established in 2020
due to the splitting of the company Zenuity. Any prior time at the company before
the creation of Zenseact listed in the table should be attributed to time working at
Zenuity.

Table 4.4: Interview study participants.

ID Role Time at the company Mutation experience
Participant 1 Software developer 4 years 9 months Using it actively at work
Participant 2 Software developer 1 year 6 months Read about it
Participant 3  Cloud architect 6 months Academic experience
Participant 4 SCRUM master and 1 year 11 months Read about it

software developer
Participant 5  Software developer 4 year 9 months Read about it
Participant 6 ~ System architect 2 years 4 months Read about it
Participant 7 Chief safety manager 4 years 10 months Seen others do it in practice

Before the interview started, the interviewee was asked to consent to the interview
being recorded. A short introduction to the basics of mutation testing was also
offered before each interview to ensure that all participants had a basic understand-
ing of the topic. We tried to identify how they thought mutation testing could be
effectively used in practice in the interview. They were asked, among other things,
if they thought mutation testing could improve the testing process, where in the
development process they thought mutation testing could be integrated, if they saw
value in making mutations a part of the code review process if mutation score could
be used as a threshold to deny commits under a certain percentage, the usefulness of
mutation score data over time, adverse effects of mutation testing, how much time
they think it would be worth spending integrating mutation testing, and how much
time they think it would be worth spending analyzing mutation results. If the par-
ticipant had any prior knowledge about applying mutation testing in their practice,
we also asked them where they used it and their opinion on the implementation.
See Appendix C for the interview guide.

After the interview sessions, thematic analysis was used to analyze the qualitative
data from the interviews. Thematic analysis interprets patterns of meaning within
the qualitative data. Meaningful or expressive pieces of data are first identified from
the data, called codes. The codes are then given labels representing a summary
topic for a set of codes. Once the codes have been identified, they are organized into
themes to find patterns of meaning.

The content of the interview was first transcribed and then coded and labeled.
To ensure the reliability of the analysis, the two supervisors each performed an
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independent coding of a small portion of the interview data (e.g., 10%). Each
supervisor used a different part of the interview data. We then compared our findings
and assessed the percentage of codes that overlapped, and then differences in coding
were discussed. Once consensus was achieved, the author of the thesis individually
coded the remaining transcriptions. The codes were then labeled and clustered into
themes on a thematic map.

To assign a theme to a code, we first identified the purpose of the code. For example,
in the case of the code “set a particular percentage as a threshold below which change
would not be acceptable”, the interviewee referred to the use of mutation score as an
acceptance criterion, so the code was assigned the sub-theme Mutation score as an
acceptance criterion, which in turn has the main theme Test quality. The resulting
themes and a theme map are presented along with the results of our analysis in
Chapter 5.

4.4.2 Techniques to effectively meet the goals of the devel-
opers (RQ2.2)

Literature Review: We conducted a literature review to examine observations
made by other studies on the application of mutation testing in practice—particularly
in a CI/CD context—and to identify the techniques that have been presented in the
academic literature to perform mutation testing effectively.

The literature review was conducted by searching the scientific database IEEE
Xplore [16] for mutation testing articles and filtering relevant ones. Backward snow-
balling was also used to find relevant papers not found in the database search. The
same filtering process was repeated for the citations in the papers. The filtering
process included first screening the article’s title to see if it seemed to be pertinent
to our research questions. For a title to be deemed relevant, it must be connected
to the mutation testing topic. The abstract was further screened if the title passed
the screening to see if the article seemed appropriate. For an abstract to be deemed
relevant, it had to connect to using mutation testing in practice, optimizing muta-
tion testing, mutation testing in CI or a mutation testing tool. After a paper was
screened and deemed relevant, the article’s content was coded and labeled.

The techniques from the literature were then matched with the features offered by
the tools evaluated from RQ1 to generate a combined list of techniques for effective
mutation testing.

4.4.3 Guidelines for Mutation Testing Within CI (RQ2.3)

We identified guidelines for mutation testing within CI from the combined results of
RQ1, RQ2.1 and RQ2.2. The guidelines are based on the developers’ goals at the
partner company but can still be informative for other companies and developers
with a similar context.

Match techniques and practices with themes: The techniques and practices
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Table 4.5: Keywords used for literature review database searches.

Search keywords

Mutation testing

Mutation testing C++

Mutation testing continuous integration

Mutation testing practice

Mutation testing industry

Mutation testing at scale

Mutation testing case study

Mutation testing cost reduction

Mutation testing LLVM

for mutation testing identified in RQ2.2 were matched with the sub-themes gener-
ated in RQ2.1 to see what techniques and practices could be used to help achieve
the developers’ goals for effective mutant testing. This happened naturally as a part
of an inductive process of the thematic map. Topics from RQ2.2 were connected
with similar sub-themes. For example, the topics timeout tests and selective muta-
tion selection were matched with the sub-theme time-aware feedback. The resulting
connections can be seen on a map in Chapter 5.
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Results

5.1 Evaluation of C++4 Mutation Tools (RQ1)

Different mutation testing tools exist, each with its advantages and disadvantages.
This study looked at five tools for mutating C++ code, Dextool, Mull, MuCPP,
Mutate++4, and CCmutator. See Chapter 2 for more info about the tools.

5.1.1 Installing and using the tools

We started by trying to install and run the different tools. We then tried to generate
mutants and run mutation testing using the tools if that was successful. MuCPP and
CCmutator had to be installed in Ubuntu Docker containers due to incompatible
Clang version dependencies with the rest of the tools.

The result of these activities can be found in Table 5.1. However, something that is
not reflected in the table is that three! of the forty-three mutation operators for Mull
caused an error when used?. But with them turned off, there was no issue generating
mutants and executing the mutation testing using Mull. There were some problems
installing Mutate++, as it had incorrect requirements file with incompatible Python
library versions. After changing to newer versions of the libraries than the ones
specified, we were able to find library versions that were compatible with each other.
We were then able to run the tool and generate mutants. However, we were not able
to execute the mutation tests due to the Mutate++ raising an error?.

We were also unable to install CCmutator using its installation instructions. How-
ever, after installing wget and python2 in our Docker environment, we were able to
install the tool using the provided installation script. Nevertheless, when we tried

to generate mutants using a CLI command?, we got an error’. We choose not to

IMull’s mutation operators cxx_logical, scalar_value mutator and negate mutator caused
issues.

2"[error] Uh oh! Mull corrupted LLVM module."

3" Command 'patch -pl --input=/tmp/tmpquécu8aq (...)/tinyxml2/tinyxml2.cpp'returned non-zero exit
status 1"

Are.. .)/11lvm-3.2.src/install/bin/opt -basicaa -debug -load ./mutate_Mutex.so -Mutex -analyze
[...]1/tinyxml2.cpp.o"

Sre.. .)/11vm-3.2.src/install/bin/opt: [...]/tinyxml2.cpp.o:1:1: error: expected top-level entity"
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spend more time trying to fix the errors caused by Mutate++ and CCmutator.

Table 5.1: Summary of the activities and the corresponding tools in which these
activities were successful.

Activity Dextool Mull MuCPP Mutate++ CCmutator
Could compile or start the tool. X X X X X
Could install or compile the tool by following the instal- X X X

lation guide.

Were able to generate mutants without modifying the X X X X
target projects, except for compile commands.

Executed mutation testing using the tool. X X X

RQ1 (Evaluation of C++ Mutation tools): Dextool and MuCPP installed
and performed mutation testing without issues. Mull had some mutation operators
that make the tool crash but works fine otherwise. Mutate++ and CCmutator
did not work due to throwing errors.

5.1.2 Comparing the feature set of the tools

Each of the tool’s features affect how the tool can be utilized, how well the tool
can be integrated into a CI environment, or what other tools might be needed to
complement the tool to be used within a CI environment. For example, a tool might
be able to generate mutants but not execute test cases and calculate the mutation
score, in which case, another tool would be needed to execute test cases and calculate
the mutation score. Furthermore, another essential feature is that the tool should
not rely on a GUI (Graphical User Interface) and instead offer a CLI (Command
Line Interface) or another way to use the tool programmatically since this is crucial
for CI integration. We looked at what tools had been updated in the last two years
to see if any of the tools seemed abandoned.

As we can see in Table 5.2, the features of the different tools differed. CCmutator
was the only tool seemingly abandoned; it had not been updated within the last two
years, making its future support questionable. All tools except CCmutator were able
to execute mutation testing; another tool is needed to test the mutants generated
by that tool. While Dextool and Mull can mutate based on a git diff according to
their respective documentation, only Dextool could do it. The functionality seems
to have been removed from Mull in a recent update.

RQ1 (Evaluation of C+4++ Mutation tools): Dextool has support for the
most features relevant to CI integration and is the only tool that could mutate a
git diff. Mull had support for fever features but may still be appropriate for use.
MuCPP cannot skip mutants that are not covered by tests, potentially making
it waste time on mutants that the test suite can not kill. Mutate++ relies on a
GUI, making it inadequate for CI integration. CCmutator needs another tool to
execute test cases on its mutants.
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Table 5.2: Features relevant to CI integration by the different tools.

Feature Dextool Mull MuCPP Mutate++ CCmutator
Command line interface (CLI). X X X X
Generate mutants X X X X X
Execute mutation testing X X X X

Limit the mutation operators to be used by to a subset X X X X
specified by the user.

Specify what lines of code to mutate. X X
Mutate the Git diff, changes made to the code compared X

to another state of the code.

Only perform mutation testing on lines of code that the X X

test suite has covered.

Stop executing mutation tests after a specific number of X

mutants have been detected as live.

Skip already killed mutants if no relevant code to the X

mutant has been changed.

The generated mutants can be used outside the tool. X X X X
Detect redundant unit test cases that do not uniquely X

kill any mutants or tests that kill the same mutants.

Resume mutation testing after an interruption. X X

Supports mutation schema, injecting multiple mutants X X

in toggle able states.

Supports parallelization of the mutation testing phases. X X

Flag mutants to be ignored for future runs X X

Timeout mutation tests if they have run for a specific X X X X

time.

Project has been updated within the last 2 years. X X X X

5.1.3 Comparing the mutation operators of the tools

Our tools under evaluation offered different mutation operators identified by looking
at the documentation for the tools. A table with examples for all the supported mu-
tation operators can be found in Appendix A.3. Mull did not follow the conventional
naming scheme for its mutation operators, so we mapped its operators against the
conventional operator names; see Appendix B for this mapping.

As shown in Table 5.3, Dextool, Mull, MuCPP, and Mutate++ all support some
of the traditional mutation operators. The only tool not supporting these mutation
operators is CCmutator. Instead, the CCmutator tool is focused on multi-threaded
C++ programs [21] and has support for 38 multi-threaded mutation operators;
see Appendix A.2 for a list of them. MuCPP, on the other hand, on top of sup-
porting traditional mutation operators, as mentioned before, also has support for
30 language-specific class-level mutation operators; see Appendix A.1 for a list of
these. This makes MuCPP the tool with the most variety of supported operators.
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Table 5.3: Traditional mutation operators that are supported by the mutation
tools.

Operator Name Dextool Mull MuCPP Mutate++ CCmutator
AOR Assignment operator replacement X X

AOR Arithmetic operator replacement X X X X

DCR Decision/ condition requirement X

ROR Relational operator replacement X X X X

SDL Statement deletion X X X X X
ABS Absolute value insertion

COR Conditional operator replacement X X X X

LCR Logical connector (operator) replacement X X X

UOI Unary operator insertion X X

CR Constant replacement X X X

SVR Scalar variable replacement X

SBR Statement block removal X

AOI Arithmetic operator insertion X

ADS Arithmetic operator deletion X

COD Conditional operator deletion X

COI Conditional operator insertion X

RQ1 (Evaluation of C4++ Mutation tools): MuCPP has support for the most
mutation operators, including 11 traditional and 30 language-specific operators.
CCmutator does not have support for traditional operators but is the only tool
to offer multi-threaded mutation operators. The other three tools only support a
small number of traditional operators.

5.1.4 Mutation generation results

The mutation testing tools vary in what mutation operators they support and how
they generate their mutants. See Table 5.4 for the resulting mutation amount and
Table 5.5 for the mutation generation speed on the different projects. MuCPP
requires a Makefile to function; if there was none in the project, we did not create
one, so the tool was not run on these projects. Mull has a bug where, if a template
function is present, Mull might not correctly report the total number of mutants.
Hence, the number of mutants for these projects cannot be trusted. We only ran the
mutation generating benchmarks for the tools that we could perform the mutation
generating with; see Section 5.1.1 for more details. Dextool requires the project to
be compiled before the tool is used to generate the mutants, so we added the compile
time for each project to the time spent generating mutants in the result.
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Table 5.4: The number of mutants generated per project and per tool. Mull might
not report the correct total mutation amount if template functions are present.
Projects with templates that might affect the mutation amount are marked with a
*. Projects marked with — for MuCPP did not have the prerequisite Makefile.

Project LOC (C++4/C) Dextool Mull MuCPP
TinyXML2 5581 1907 698 3158
JSON 60366 6407  528* 9266
Corrade 15359 9573 2314 —
FMT 42229 9815 1998* —
TimSort 1584 1073 279 —
yaml-cpp 18210 6235 2147 —

Table 5.5: Time (in seconds) spent generating mutants for the projects using
the mutation testing tools. Projects marked with — for MuCPP did not have the

prerequisite Makefile.

Project LOC (C++4/C) Compile time Dextool

Mull MuCPP

TinyXML2 5581 2.0s 3.7s 2.1s 59.0s
JSON 60366 34.9s 44.9s  576.7s 542.8s
Corrade 15359 13.1s 39.4s  72.0s —
FMT 42229 47.2s 65.9s 1033.0s —
TimSort 1584 22.5s 36.4s  94.8s —
yaml-cpp 18210 15.6s 29.9s  62.8s —

RQ1 (Evaluation of C+4++4 Mutation tools):
mutants but was slow to do so, and it could not generate mutants for all projects.
Dextool generated the second most mutants and was generally the fastest tool for
generating mutants. Mull generated the least mutants and took the longest to do
so, but this will likely be made up for in a later mutation test phase.

MuCPP generated the most

5.1.5 Mutation execution results

Dextool and Mull had built-in support to perform mutation testing. See Table 5.6 for
the time spent on mutation execution and the resulting mutation score. Due to the
limitation of Mull only accepting one test binary, a test binary is a compiled binary
file that executes a set of tests; only one test binary was provided to the other tools
as well for the testing phase. This means that many mutants are skipped because

the given test do not cover them.

As can be seen by comparing Table 5.6, Mull is significantly faster in some scenar-
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ios, as it does not have to recompile the entire project between test runs. In the
case of the TimSort project, Mull executed mutation testing for its 279 mutants in
2.25 seconds, while Dextool took more than 1 hour to execute its 1073 mutants.
That’s 123.78 mutants executed per second with Mull and 0.017 mutants for Dex-
tool. Something to keep in mind when looking at these tables is that most of the
test binaries were only part of the projects’ tests, making the test execution phase
complete more quickly than usual, while the compilation time stayed the same. This
potentially skews the result slightly. TinyXML2 and Yaml-cpp had a single test bi-
nary that included all the tests. Here, we can see that Mull also performs faster
than Dextool, but not to the same magnitude as in the other project benchmarks.

Table 5.6: Mutation execution benchmark results for each project using Dextool
and Mull. Only one test binary could be executed at a time due to limitations in
Mull. The baseline column represents the time it took the test suite to complete on
its own, without any tool involved.

Project Test Suite Operators Baseline Dextool Mull

Time Mutants Score Time Mutants Score

TinyXML2 xmltest All 0.1s  2146.1s 1907 77.00%  368.4s 698 82.00%
JSON unit-algorithms All 0.1s 12980.1s 6047 2.32% 10.1s 528 9.00%
Corrade ~ MainTest All 0.1s 47009.9s 9573  2.35% 1.5s 2314 5.23%
FMT core-test All 0.1s 66364.6s 9815 2.30% 1.0s 1998 1.80%
TimSort  cxx_98 tests All 0.4s  5398.9s 1073 59.30% 2.3s 279 1.43%
yaml-cpp  yaml-cpp-tests All 0.8s 29208.0s 6235 72.90% 7254.5s 2147 75.41%

RQ1 (Evaluation of C++ Mutation tools): Mull was the fastest tool in the
execution of the mutation tests but was limited to using only one test binary at
a time. Dextool was slower but supported multiple test binaries simultaneously,
making it easier to adapt to projects that might not compile all tests into one
binary.

5.1.6 Clang dependency

The different mutation tools have dependencies that should be considered when iden-
tifying a tool to work with, as some tools might be incompatible with the toolchain
in place. A notable dependency is Clang, a front-end compiler for C++ and other
programming languages. Four of the five mutation tools examined relied on different
versions of Clang; the only one not dependent on Clang is Mutate++. We could
not integrate any of the mutation tools examined in this project with the toolchain
at the partner company Zenseact since they use a newer Clang version incompatible
with the mutation tools. See Table 5.7 for the Clang versions supported by each
tool.

5.1.7 CI workflow implementation

We created two CI workflows for the TinyXML-2 project using GitHub Actions as
proofs-of-concept for the use of mutation testing for C++ in CI. The first workflow is
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Table 5.7: Versions of Clang supported by each dependent mutation tool.

Tool 3.2 3.6 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
MuCPP X X

Mull X X X X X
Dextool X X X X X X X X X

CCmutator X

triggered on a schedule and uses Dextool or Mull, depending on the configuration, to
perform the mutation testing on the entire project. The other workflow is triggered
by pushes to the repository and uses Dextool to mutate the git diff introduced by
the push. The result of the mutation testing is stored for later review. An overview
of the GitHub Actions workflow can be seen in Chapter 4 in Figure 4.2.

The workflows are run on runners using the GitHub Docker runner image based
on Ubuntu 20.04. The scheduled workflow consists of two jobs; a job for Dextool
and another job for Mull. The git diff workflow only has a Dextool job. The job
is divided into steps; see Figure 5.1 for the steps in a Dextool job. The resulting
artifact is then uploaded to Artifactory. In the case of Dextool, this is an SQL file
that can be used to generate a mutation test report. An example report can be seen
in Figure 5.2.

[ Setup job J—»E Checkout code ]—~[ Install Dextool J—»[ Install Clang J—~[ Install MSVC ]—~[ Install Ninja J—»[ Install CMake J]
[ Clean up job ]—[ Uplt;?ﬁf‘lz:tzt00| ]—[ Dextool report ]—[ Dextool test ]—[ Dextool analyze ]—[ Build TinyXML-2 ]—[ Install JFrog-CLI ]

Figure 5.1: Overview of the steps for the Dextool CI job.

RQ1 (Evaluation of C++ Mutation tools): These workflows demonstrate
that both Dextool and Mull can be applied in CI as part of workflows. Our proof
of concept is available as an open-source repository [34].

5.2 Mutation Testing Within CI (RQ2)

5.2.1 Developers’ Views of Effective Mutation Testing (RQ2.1)

This section will present and discuss the themes generated by analyzing the quali-
tative data from the interviews. A list of interviewees can be found in Section 4.4.1.
The purpose of the interviews was to obtain the developers’ view of effective muta-
tion testing. A list of the generated themes with descriptions can be found in Ta-
ble 5.8 and an overview of the generated sub-themes in Figure 5.3, see Appendix D.1
for a description of the generated sub-themes.
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Overview

Mutation Score 0.776

Time spent: 36 minutes, 36 secs, and 61 ms compile:(25 minutes, 1 sec, and 172 ms) test:(11 minutes, 34 secs, and 889 ms)

v I <iled I Untested Timeout

Type Value
Total 1907
Killed by compiler 91
Skipped 324
Equivalent 0

Worklist ]

Figure 5.2: Dextool mutation report example.

Table 5.8: Description of generated themes from the interviews.

Theme Description

Test quality How mutation testing can affect the project’s test quality by
indicating areas of the code that need more testing or identi-
fying missed edge cases.

Prioritization What areas of the code to prioritize for mutation testing or
times when another task might be too important to be slowed
down by mutation testing.

Risks Risks that might affect how effective the mutating testing is.
Such as diminishing returns from overapplying the technique
or inexperience with the technique leading to a bad interpre-
tation of results.

Implementation Aims and technical details to consider when integrating mu-
tation testing into a workflow.

When to use When, and where to apply mutation testing in practice as a
part of the development and test maintenance process.

5.2.1.1 Test Quality

Mutation tests aim to judge the quality of the test suite. This section will discuss
how developers think mutation testing can affect test quality.

Verify Test Quality: Most of the participants reported that they see mutation
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Verify test Test quality Mutation score as Mutation score as
quality maintenance coverage metric acceptance criteria
Test
Outside of quality
cT Ease of use

Initial
effort

Optional
step

o

Along side When to
test coverage use

Impleme- Mutation

Mutation Testing |—— - operators

Time-aware
feedback

Developer
Prioriti foelind
zation
Prioritize Task Developer Focus on the Diminishing
important code prioritization motivation wrong thing returns

Figure 5.3: Overview of generated themes from the interviews. A rectangle repre-
sents the topic, a rhombus represents themes, and an oval represents sub-themes.

Run
periodically

Code review and
pair programming

testing in CI as a way to verify test quality. When developing a test suite, mutation
score can be used to indicate the overall quality of the test, and live mutants can
be used to identify edge cases that could have been missed. The mutation score can
also be used to argue that not only has the code been tested, but that the quality
of the tests is this good.

“Good sanity check, are my tests actually covering everything.” - Participant 1

“Make our case stronger, like we don’t just have tests, we can prove that our tests are
this good.” - Participant 4

Test Quality Maintenance: When modifying code, tests that test the changed
code should sometimes also be updated to reflect the new behavior; for example,
if the interface has been changed. The concept of maintaining tests and keeping
them up-to-date is called test maintenance. Participants suggested using mutation
testing to verify that the test suite’s quality is trending in a positive direction when
performing test maintenance by looking at how the mutation score has changed over
time. This is especially important for delivered code, where faults not caught by
the test suite could impact the customer.
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“Trend over time could also be important to basically say that it would be an indication
that you are developing your test suite toward a better state.” - Participant 2

“If it’s code which is delivered, then it’s really important to continue keeping the score
trend going down.” - Participant 5

It is not just changed code that could benefit from mutation testing. The surviving
mutants for existing test suites could be seen as technical debt that needs to be fixed
to improve the quality of the test suites.

“[Live mutants can be] treated as technical debt, your tests are of bad quality and
therefore, it needs to be fixed.” - Participant 4

Mutation Score as a Coverage Metric: Similar to how line coverage can be
used to measure which lines of code are executed by tests, mutation score can be
calculated for the different parts of the code to indicate the quality of the tests
covering the code. A developer can then investigate the parts of the code indicated
to have lower test quality to assess if the mutants there are worth killing.

“I think the mutation score is some good metric, but of course the usefulness, you
know the accuracy, whether the number of mutants are actual problems is where the
real value of this is, not just the score by itself.” - Participant 4

“Good to have the score, but I think it’s even more important to find the cases you

are missing.” - Participant 1

Mutation Score as an Acceptance Criterion: Like structural coverage metrics,
the mutation score can be used as an acceptance criterion for new changes in the
repository. Code changes below a set threshold could be flat-out rejected or have
the developer motivate why the threshold was not met. The threshold could be
updated if the mutation score changes; this could be due to more mutants being
killed or a change in the mutation operators used to generate the mutants. Having
this threshold could encourage the developer to maintain the test suite’s quality.

“Set that threshold in the test, and then you have to motivate in a code review if you
raise that.” - Participant 5

“If you change some code, run the mutation tests on it, and if the score is now better,
either because you made some changes or you fine-tuned the operators. I think you
should definitely update the threshold.” - Participant 4

But a threshold is not always ideal; for example, enforcing a threshold for code
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under development could make the developer spend time writing extensive tests for
code that might not even be in the final product.

“[When| Introducing new code which is not enabled yet, and that might be okay to
during some part of the development, it’s okay that it rises because we want it to be a
full feature before we can start getting the quality, work on the quality.” - Participant
5

Prioritize Important Code: When applying mutation testing on a large code-
base, there could be many living mutants, making it difficult to know which parts
of the code to prioritize. Therefore, it might be beneficial to focus on important
parts of the code first and only run mutation testing on this code. The developer
could then use the result to identify the weakest parts of the important code and
prioritize these.

“I would like to start with the components which are most important, and maybe get
an overview first, and then see, okay, where do I have the least score and start working
there, and put effort into those.” - Participant 1

5.2.1.2 Developer Impact

An important aspect to keep in mind when introducing a new tool or changing an
old tool in a workflow is how it will affect people who will use it in their day-to-day
work. This section will look at how developers perceive the impact of mutation
testing in their tasks.

Developer Motivation: If the tool provides false positives or does not work, it
will cause an interruption in the developers’ workflow, potentially making them
frustrated. Furthermore, results that are not interesting would cause the developer
to be discouraged from looking into the other results. In contrast, if the results
were interesting, the developer would feel encouraged to look into the other results.
Therefore, for developers to be motivated to use mutation testing, it should work
seamlessly and produce productive results. Otherwise, the developer might lose faith
in the technique.

“If you get false positives, if the tooling is not working or if the code you write is not
compatible with it somehow, so you get noise in your workflow.” - Participant 5

“If T would get failures that are typically not interesting, I would feel very discouraged
to look more into the failures, but if they were actually very on spot, then it would be

super interesting.” - Participant 5

Another vital factor to consider to not interfere with the developers’ workflow is that
the tool itself should be easy to use once someone has set it up, as to not add ad-
ditional toll on the developer, which might lead to the developer being demotivated
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to use the tool.

“I would assume that for the users of this, after somebody has set it up, then I expect
it to be as easy as using the unit testing framework.” - Participant 4

Focus on the Wrong Thing: It is up to the developer to interpret the mutation
result. There is a risk that the developer focuses on killing the mutants without
considering the context, potentially missing a bigger problem in the code.

“If you over apply it and look directly at those [mutation testing] results, and not
in the context, it might hurt in that people just add blindly to cover the cases.” -
Participant 1

Another potential adverse effect of a developer blindly focusing on killing mutants
is that it can cause developers to develop a test suite that is too strict. This could
make it challenging to implement alternative ways to achieve the same solution; it
could be that another solution can solve the same problem in a better way, but very
strict unit tests for the internal workings of the code make it cumbersome to change
the code, resulting in the developer feeling demotivated to do it.

“There is not like always one single solution to it. But it could be that other ways
are allowed as well, and you don’t want to have a test suite to like narrow everything
down.” - Participant 6

Another risk of mutation testing is that the developer is encouraged to perform
white-box testing, which is not always the best option, according to Participant
4. White-box testing tests the internal structure of software, and black-box testing
does the opposite and tests the functionality. Mutation testing can be considered
white-box testing since mutation testing assesses the ability of test suites to detect
subtle changes in the code and not the functionality of the software. This could
lead to a focus on testing the internal workings of the code in isolation and not the
actual combined output, which might not always result in the correct functionality
as stated by the requirements for the software.

“Mutation testing, indirectly promotes white-box testing. ... White box testing isn’t
always the best choice, or it’s good to have a bit of a mix of an approach of black-box
testing and white-box testing.” - Participant 4

Task Prioritization: Mutation testing is a slow process, and using the technique
might not always be the best use of developers’ time. A developer is typically
limited to working around 8 hours per day. They might have more pressing matters
to attend to than improving the quality of the already existing test suite. Similarly,
it might not be worth using mutation testing to block important tasks, such as
deploying a critical bug fix.
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| “Slow process and we are limited to working like 8 hours each day.” - Participant 3

| “Would I want to stop the important bug fix, probably not.” - Participant 1

Diminishing Returns: Naturally, the more times mutation testing is used in the
same test suite, and code changes are made to kill the live mutants, the fewer mu-
tants might be alive on the next run. Therefore, if killing the most important mutant
has been prioritized each time, the value of killing mutants diminishes with each mu-
tant killed. Consequently, it might not be time-efficient to over-apply mutant testing
on one part of the code.

“It [mutation testing] has somewhat diminishing returns.” - Participant 1

5.2.1.3 Implementation

The implementation of the mutation tool will affect the effectiveness with which
developers can use the tool. This section will look at how the interviewees think a
mutation tool should function in their day-to-day work.

Ease of Use: It should be easy for a developer to use mutation testing in their day-
to-day work once it has been integrated. As much as possible should be automated;
for example, when additional tests are added, or existing ones are changed, they
should automatically be added to the mutation testing. If it is not easy, it might
affect their willingness to use the tool, as mentioned in the Developer Motivation
sub-theme.

“Should definitely be automated. Ideally, a developer, when writing tests, shouldn’t
have to bother with it at all.” - Participant 4

Initial Effort: There could be considerable work to get mutation testing to work
within the toolchain. The mutation tool(s) would have to be configured to work
with the project, with varying efforts depending on the tool. Participant 1, who
uses mutation testing with Java, mentioned that it is as simple as adding a code
block in Maven, a software project management tool, to enable mutation testing.
However, the tools for C++ can require more setup, as mentioned in Section 5.1.

“In Maven there is a specific block that you essentially just add and it runs your JUnit
tests.” - Participant 1

“Quite a bit of effort to actually make it work properly, or at least cover the realistic
cases.” - Participant 3

Furthermore, developers unfamiliar with mutation testing would have to be trained
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appropriately; to understand how mutation testing works to be able to analyze the
mutation result better.

“The teams would have to be trained appropriately, and make sure that one is willing
to take responsibility.” - Participant 3

Developer Feedback: Feedback from the mutation result should show which mu-
tants survived, why they survived, and what parts of the code they changed. It
should be easy for the developer to get an overview of where the mutants are lo-
cated in the code and what type of mutant they are so that the developer can easily
analyze the result and act on it accordingly.

“Group the live mutants. I assume there are some nice tools for that. So that even if
you have a bad score, and you only care about some mutants that you want to look
at, then it would be nice to see how they are related to each other” - Participant 6

Time-aware Feedback: Developers do not want to sit around waiting for feedback.
If used in CI, then the mutation testing should ideally take as much time as the
other jobs in that stage. Even adding a minute of additional waiting time can be
cumbersome. It is not just in a CI context that developers want rapid feedback; the
same applies when running mutation testing on their machine. The developer wants
rapid feedback so that they can work on the problem and then move on.

“If it [mutation testing] were half an hour, well yeah, I wouldn’t be running that.” -
Participant 1

“I can leave the thing running for like a few hours, and that’s fine, sometimes. Other
times I really want this to be done quickly so that I can move on.” - Participant 3

Mutation Operators: A way to speed up mutation testing is by omitting mutation
operators, thus reducing the number of mutants. Participant 1, who uses mutation
testing in their day-to-day work usually uses all available mutation operators. How-
ever, mutation operators have a time-to-value ratio. Generating the most effective
mutants utilizing a subset of mutation operators could be an excellent trade-off to
save time. Mutation operators could be prioritized based on the mutation operators
that usually generate productive mutants.

“Overall, the value for time or time for value ratio. It feels like getting 90% of the
effective mutants is a sweet spot. Once you reach that, then the rest is almost a waste.”
- Participant 4

“Selecting the ones you usually have mistakes on is, I guess, a prioritization.” - Par-
ticipant 1
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5.2.1.4 When to use

Mutation testing could be applied in multiple stages of development. This section
reports on when developers think it can be used effectively.

Code Review and Pair Programming: Mutation testing could be used as part
of the code review process to judge the quality of the tests. As mentioned in the
sub-theme Mutation Score as a Coverage Metric, mutation score could be used as
a coverage metric to get an indication of the quality of the different parts of the
code. There is not always a code review checkpoint; sometimes, pair programming
is used where the code is reviewed continuously. However, it still makes sense to
use mutation testing after a pair-programming session to check the quality of any
created tests and discuss whether any action should be taken.

“Code review checkpoint. There I think it makes sense, and there I think code coverage
also makes sense.” - Participant 1

“We are doing pair programming instead. And then the same thing goes there.” -

Participant 1

Run Periodically: Due to the relatively high machine cost of performing mutation
testing, it could potentially take up a lot of machine time when used in CI and delay
other jobs, especially if it is done on a large codebase. However, not all jobs have to
be run when new code is pushed to the repository, and the more expensive jobs could
be run after the code has been merged. Mutation testing could be run as a post-
merge job only when there are free computing resources, for example, at night or on
weekends when the day-to-day work will not be affected. After the mutation test
has been performed, someone could take the responsibility of checking the result.
This could be the author of the commit or someone who will send the result to the
affected parties.

“We don’t want it to take up too much machine time in CI.” - Participant 2

“Once every few days where we run these tests, and then there is someone who will
take responsibility for actually checking this [result] and sending the information to

the affected parties.” - Participant 3

Outside of CI: Running CI jobs can be slowed by overhead. There could be a
limited amount of machine time available, causing a queue of jobs that want to
run, and there might be high-priority jobs that get put at the front of the queue.
Therefore, it is beneficial to allow developers to run a mutation testing job on their
machine, not just in CI. This would also enable the developer to get feedback as
soon as they write the test case, without the need to push the code to a repository.
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“Run things on CI, there is some kind of overhead, and that can be a lot. So, definitely,
you should be able to run it locally.” - Participant 4

“As soon as you have a test case written, then you can start making use of [mutation
testing] that.” - Participant 5

Optional Step: Mutation testing does not necessarily have to be a forced step;
it could be an optional step for developers or teams who want and have time to
improve their test quality. It could be offered as an optional tool to use on your
machine, as mentioned earlier, or as an optional job to run in CI.

“Optional part of your checking or as git hooks.” - Participant 1

The developer would not necessarily have to use mutation testing regularly; it could
be used when new tests are added or to test old tests when there is spare time.

“In a new situation where I'm writing more or different types of tests.” - Participant
1

5.2.1.5 Summary

Below, we summarize the key findings from the participants’ answers and our theme
analysis.

RQ2.1 (Effective mutation testing according to developers): Mutation test-
ing should have minimal impact on the workflow; it should work correctly, be as easy
to use as existing tooling, be automated as much as possible, and give feedback as
fast as possible without affecting other jobs. The initial focus of mutation testing
should be on testing the important parts of the code to get faster feedback on this
code area. Furthermore, the mutation score can be used to indicate which parts are
in the greatest need of being looked at. Mutation testing can also be used for new
code after a programming session to see how the new code affected the test suite’s
quality.

5.2.2 Techniques for Effective Mutation Testing (RQ2.2)

As with most things, mutation testing must be considered in a time-to-value context.
This section will look at the techniques and practices identified for effective mutation
testing from the literature review and tool comparison; see Section 5.1 for the tool
comparison.
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5.2.2.1 Techniques for Effective Mutation from the Literature Review

A focus of many techniques in the literature is optimizing mutation testing by re-
ducing the number of mutants generated while still producing valuable mutants.
While for the mutation tools, there seems to be more of a focus on increasing the
speed without impacting the number of mutants, with, for example, parallelization.
The techniques and practices identified in the literature review and tool comparison
presented in Table 5.9 will be discussed below:

Selective mutation selection: A subset of mutation operators can be selected
that generate the most effective mutants to reduce the time spent testing mutations
while still keeping the most productive mutants. As mentioned in Chapter 3, Offut
et al. [32] have shown that the subset of the mutation operators ABS, AOR, LCR,
ROR, and UOI is almost as effective at generating mutants as non-selective muta-
tion testing. However, Petrovi¢ et al. [38] have shown that in their use case, ABS
generates nonproductive mutants and should be replaced by SBR and note that this
may be because of a function of the style and features of their codebase. Therefore,
to reduce the time it takes to perform mutation testing while still generating pro-
ductive mutants, it may be worth experimenting with what operators most often
produce productive operators for a specific codebase.

Papers: [38, 45, §]

Tools: Dextool, Mull, MuCPP, CCmutator

Mutant schema: Instead of inserting one mutant at a time, multiple mutants
can be inserted at once in inactive states. The mutants can then be activated one
at a time without recompiling in between, making it significantly faster to switch
between them.

Papers: [27, 45]

Tools: Dextool, Mull

Stop mutation testing after X iterations: Normally mutation tools timeout
mutation tests after a specific number of seconds have passed. An alternative way
to handle this is to stop after a statement has been repeated a specific number of
times. This could potentially lead to a faster stop of an infinite loop.

Papers: [27]

Tools: —

One mutant per line of code: Killing one mutant often leads to the death of
other mutants generated from the same line of code. Therefore, generating more
mutants on the same code can have diminishing returns. To reduce the diminishing
return, one mutant can be generated per line of code.

Papers: [39]

Tools: —

Mutation selection based on historical data or machine learning: When

limiting mutation generation to one mutant per line of code or statement, an oper-
ator could be selected that most often generates a productive mutant for that code
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Table 5.9: Mutation techniques and practices from the literature and mutation
tools.

Technique Description Paper Tool
Selective mutation A sub-set of mutation operators are selected that generate [38, 45, Dextool, Mull,
selection the most effective mutants. 8] MuCPP,

CCmutator
Mutant schema Multiple mutants are inserted at ones in inactive states. [27, 45]  Dextool, Mull
Stop mutation testing Time out a test after a specific number of iterations. [27]

after X iterations

One mutant per line of Only generate one mutant per line of code. [39]
code
Mutation selection When limiting mutation generation to one per line of code or [26, 38]
based on data statement, select the operator most likely to generate a

productive mutant based on historical data or machine

learning.
Only run relevant tests Only run tests that can kill the mutant, tests with no [39]

coverage of the mutated line of code cannot kill it.

Mutate code changes  Only mutate changed code. [26, 39] Dextool

Filter code based on Filter code to mutate based on a pattern match. [38]

patterns

Introduce real world Create code mutations based on real bugs using machine (3, 4]

bugs learning.

Present a limited Only present a limited amount of live mutants to the [38]

amount of mutants developer.

Only mutate code The tool can identify what lines of code are covered by tests [38] Dextool, Mull

covered by tests and only mutate those.

Specify tests to use Specify what tests to use for the mutation testing. [38] Dextool, Mull,

Mutate++

Flag mutants Flag mutant as irrelevant, so that it will be ignored or [38] Dextool,

avoided in future runs. Similarly, useful mutants could be Mutate+-+

flagged as helpful to build historical data.

Specify code to mutate The user can specify what lines of code to mutate. Mutate++,
CCmutator
Stop after a number of After a specific number of live mutants have been detected, Dextool
live mutants the mutation testing stops.
Skip killed mutants The mutation result is stored between runs, so that killed Dextool
mutants can be skipped if there has been no change to the
test suite.
Detect redundant tests Redundant tests that do not uniquely kill mutants are Dextool
flagged.
Resume mutation Mutation testing can be resumed after an interruption. Dextool,
testing Mutate++
Timeout tests Timeout is a set value or can dynamically be set for every Dextool, Mull,
test suite based on the normal run time. Mutate++
Parallel mutation Parallelization of the mutation testing phases. [38] Dextool, Mull
testing

structure instead of selecting a random operator. The most effective mutation op-
erator for the code structure could be selected based on historical data or machine
learning.

Papers: [26, 38|
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Tools: —

Only run relevant tests: Run tests that can kill the mutant, tests with no coverage
of the mutated line of code cannot Kkill it and are thus a waste of time to run. This
could be limited to selecting test suites to run or individual tests.

Papers: [39]

Tools: —

Mutate code changes: When the quality of the test for new code is to be assessed,
for example, in a code review, mutation testing could be significantly sped up by
testing only the new code and not wasting time on irrelevant old code.

Papers: [26, 39]

Tools: Dextool

Filter code based on patterns: Not all code should be mutated. For example,
there could be print debug lines that are irrelevant to the code’s functionality; mu-
tating these would be a waste of time. The code could be blacklisted based on a
pattern match to ignore reoccurring known irrelevant code statements.

Papers: [38]

Tools: —

Introduce real-world bugs: A tool could be trained using machine learning to
introduce real bugs. The tool could be trained with a data set of bug fixes to
then reintroduce the fixed bugs in similar code structures. This could lead to more
realistic mutations.

Papers: [3, 4]

Tools: —

Present a limited amount of mutants: In a code review, for example, a devel-
oper might be overwhelmed if a large set of mutants is presented to them simulta-
neously. This could be mitigated by only presenting a subset of mutants, either a
random set or the most likely to be productive based on some metric.

Papers: [38]

Tools: —

Only mutate code covered by tests: Only the lines of code covered by tests can
be killed. Hence, mutating code not covered by tests is pointless.

Papers: [38]

Tools: Dextool, Mull

Specify tests to use: Limit mutation to lines of code covered by a specific test
suite. Sometimes, we might be interested in increasing the test quality of a particular
test suite. Mutating anything else in this scenario would be a waste of time.
Papers: [38]

Tools: Dextool, Mull

Flag mutant as irrelevant: Some mutants are unproductive and may not improve
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the test suite when killed. They could be manually flagged as irrelevant to avoid
having this mutant appear in the mutation testing result in future runs. Similarly,
useful mutants could be manually flagged as helpful. This could be used to build
historical data on the mutant operators that usually produce good mutants for
certain good structures. ignored or avoided in future runs

Papers: [38]

Tools: Dextool

Specify code to mutate: Limit mutation generation to certain code lines. For
example, a developer wants to improve the test quality of a certain area of the code.
Papers: —

Tools: Mutate+-+, CCmutator

Stop after a number of live mutants: The user might be interested or may not
have time to view more than a certain number of live mutants. We could then stop
after that specific number of live mutants have been detected.

Papers: —

Tools: Dextool

Skip killed mutants: If the lines of code were mutation tested in the last run and
the tests covering that code have not changed, then it is a waste of time to mutate
and test that code again. The mutation result could be stored between runs, so that
killed mutants can be skipped if there has been no change to the test suite.
Papers: —

Tools: Dextool

Detect redundant tests: Test that do not uniquely kill any mutant indicates that
it has a lot of overlap with other tests. These tests could be flagged so they can be
investigated if they are redundant or not.

Papers: —

Tools: Dextool

Resume mutation testing: Due to the nature of mutation testing, it can take a
long time to complete. The mutants generated and mutation result could be stored
continuously so that if, for whatever reason the mutation testing is stopped, it can
be resumed. For example, pause the mutation testing to yield the computational
power to another process.

Papers: —

Tools: Dextool, Mutate-++

Timeout tests: Mutations might lead to infinite loops. One way to detect these
loops is timeouts, and the timeout is usually set as a standard value or dynamically
set for every test suite based on their normal run time.

Papers: —

Tools: Dextool, Mull, Mutate+-+

Parallel mutation testing: An effective way to speed up mutation testing without
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impacting the testing quality is parallelization. For example, mutants can be tested
in parallel on different sub-process.

Papers: [38]

Tools: Dextool, Mull

RQ2.2 (Techniques for effective mutation testing): A common theme be-
tween the identified techniques is that they try to reduce the time spent on mu-
tation testing while still maintaining most of the quality. Examples of this are;
trying to reduce the number of mutants while still keeping the most effective ones,
reducing time spent testing unproductive mutants, and parallelization of mutation
tools.

5.2.3 Guidelines for Mutation Testing in CI (RQ2.3)

In this section, we will analyze the results of connecting RQ2.1 and RQ2.2 to devise
guidelines to apply mutation testing in a CI context. The resulting connections from
the matching of the techniques and practice of RQ2.1 to the sub-themes of RQ2.2
can be seen in Figure 5.4 and the relation between the sub-themes themselves in
Figure 5.5.

) T
Introduce real world Only mutate covered .
Stop after X iterations Specify tests to run
bugs code
- -

Sklp oId killed mutants Select code to mutate
X Prioritize important
Mutation operators il
Selective mutation TR RS
selection
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Mutation selection Time-aware feedback Resume after
interruption
Mutation schemas \ ),
/ \\ lization

Filter code based on
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— Parallel

Run peridoically
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Flag mutant as
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Diminishing returns . . f
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Figure 5.4: Technique/practice and sub-theme match map. Rectangles are sub-
themes, and rectangles with rounded edges are techniques/practices from the liter-
ature or tools. Themes are color-coded; purple = quality, blue = implementation,
pink = when to use, and yellow = prioritization.

Time-aware feedback: Developers want feedback as soon as possible. As shown in
Figure 5.4 most of the techniques in the literature are aimed at addressing this topic.
Techniques that speed up mutation testing without affecting mutants should be
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Figure 5.5: Sub-theme relational map, this map is separate from the theme
overview to reduce clutter. Themes are color-coded; purple = quality, blue = im-
plementation, pink = when to use, yellow = prioritization, and orange = risks.

applied, such as parallelization. Furthermore, mutation testing should be accelerated
by using techniques to reduce the number of mutants while still keeping the number
of productive mutants high. This could be done by applying techniques such as
only generating one mutant per line of code, since generating more generally has
diminishing returns.

Test quality maintenance: Mutation testing can be used to maintain the quality
of the tests, as the interviewees mentioned. This can be done by using mutation
scores as a coverage metric to identify areas of the code that might lack test quality.
Furthermore, when applying mutation testing to a large codebase, the essential areas
of the code could be prioritized for mutation testing. Additionally, mutation testing
could run run periodically when there is free machine time on CI/CD machines to
not block more critical jobs.

Mutation testing at code check-in: Mutation testing could be used as a optional
or mandatory quality check for new pull requests in a CI/CD pipeline. This could
be as part of a code review process or as a sanity check after a code check-in, for
example, after a pair programming session. Only the new code should be mutated, as
at code check-in, since we are looking for feedback on the new code. For instance, the
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resulting mutation score or the number of live mutants could be used as a coverage
metric to judge the quality of the tests for the new code.

Developer motivation: The mutation tool should be trivial to use as a part of the
CI/CD pipeline as any interruption in the workflow caused by a tool could lead the
developer to be less motivated to use the tool. Furthermore, the tool should work
correctly and provide minimal false positives, as a failing tooling or false positives
can lead to frustration. For example, code could be filtered based on patterns to
not mutate lines of code that lead to false positives most of the time.

Additionally, the mutation reduction techniques mentioned for time-aware feedback
can, if configured correctly, in addition to producing faster mutation results, also
have better mutants on average than when not filtering mutants since more of the
less effective ones have been filtered out. This means that the developer can get
faster feedback and a higher percentage of effective mutants.

Risks: There are some risks when using mutation testing. Inexperience can lead
to wrong developer focus, wasting precious development time. For example, the
developer may be led to focus on structural-based metrics and neglect to check
whether the actual functionality is being tested. To avoid problems like these,
developers who are inexperienced with mutation testing should be appropriately
trained to understand the mutation result better. Similarly, the initial setup of the
mutation testing tool might require a lot of effort due to inexperience and potentially
lacking tools.

RQ2.3 (Guidelines for mutation testing in CI): We have identified recom-
mendations by cross-referencing techniques from literature and factors mentioned
by practitioners. Our recommendations are, among others; The mutation testing
should interfere as little as possible with the developer, essential areas of the code
should be prioritized for mutation testing, developers inexperienced with mutation
testing should be trained, less time-critical mutation testing should wait until there
is free machine time to run, and there should be an option to run mutation testing
on a local machine.
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Discussion

6.1 Mutation tool summary

The tools compared in this thesis have different strengths and weaknesses. This
section will give a short summary of the main advantages and disadvantages of each
tool.

6.1.1 Dextool

Dextool was the most mature mutation tool that we examined. It had the fewest
bugs, and up-to-date documentation, and is being actively maintained. It was also
the only mutation tool that could perform mutation testing based on a git diff,
potentially greatly speeding up mutation testing for new code commits. Although
the tool documentation was up to date, it was sometimes hard to find information
since some of the documentation was in the generated configuration files and not
in the actual documentation files. The tool also has partial support for mutation
schema; however, as mentioned in the documentation for the tool, the probability of
the tools” mutation schema failing increases the more mutants are in them, leading
to the mutants often having to be tested individually, causing a long test execution
phase.

6.1.2 Mull

Mull was the fastest mutation testing tool due to its ability to inject all mutants
at once and then activate them one at a time without the need to recompile when
swapping the mutant under test, as traditional mutation testing tools do. But the
fact that the tool only accepts one test binary at a time can cause some initial effort
to get the overall project mutation score. Parts of the project test suit could have
to be rewritten so that the tests can be compiled into a single test binary. The tool
also had some bugs and out-of-date documentation that did not reflect the latest
tool version; for example, a function had been removed from the tool but was still
in the documentation, and a new configuration option was not yet added to the
documentation.

49



6. Discussion

6.1.3 MuCPP

MuCPP offered the most varied mutation operators, with support for both tradi-
tional mutation operators and language-specific operators. The tool does however
require a Makefile with specific rules to function and the creation of a test library
that reports the test results in a specific way to perform the mutation test execution,
making the tool require a lot of initial effort to set up the tool for a project. The
tool is also the only tool we looked at that is not open-source and has no changelog
on its website, making it hard to judge if the tool is still being actively maintained.
Furthermore, the licensing of the software is not clear.

6.1.4 Mutate++

Mutate++ was the only tool that offered the ability to select which lines of code to
mutate. The tool does not offer any CLI interface or other way to use it program-
matically, making it inadequate for CI use. We were unable to run mutation tests
using the tool due to an error being raised, as explained in 5.1.1. But Mutate+-+
is still in a very early stage of its development, as stated by its owner [31] and is
actively maintained, so it could be worth revisiting in the future.

6.1.5 CCmutator

CCMutator was the only tool that offered multi-threaded mutation operators, which
could potentially be of interest for multi-threaded applications. However, we could
not generate mutants with the tool due to an error explained in 5.1.1, and the tool
has been seemingly abandoned; it was last updated on 27 September 2013.

RQ1 (Evaluation of C++ Mutation tools): Dextool and Mull were considered
the readiest for use in practice and are actively maintained. MuCPP could be used
in practice if the language-specific operators it offers are desired, but the licensing
should be investigated. Mutate-++ is very early in its development, and CCmutator
is seemingly abandoned; both were deemed unsuitable for use in practice.

6.2 Identifying tools suitable for CI integration

The evaluated mutation testing tools varied in their ability to integrate into a con-
tinuous integration workflow. We decided to rule out two tools as not suitable for
CI integration early in the process. As mentioned in Chapter 5, we were unable to
generate mutants using CCmutator, and the tool was last updated on 27 September
2013. These two factors led us to not consider CCmutator suitable for integration
with CI. Furthermore, Mutate++ reliance on a GUI —lacking CLI support— led
us to not consider the tool for integration with CI.

This left us with three tools to consider, which are Dextool, Mull, and MuCPP.
We identified three reasons to not recommend MuCPP. First, MuCPP requires a
Makefile with specific rules and the creation of a test library that reports the test
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results in a specific way back to the tool when performing the mutant test execution.
Second, the tool has no changelog on the tool’s website or version number of the
tool, making it hard to grasp how often the tool has been updated. Finally, on the
website, it is unclear what copyright the project has. Therefore, it’s not clear if the
tool is allowed to be used in a commercial setting.

The two remaining tools, Dextool and Mull, can still be considered for CI integration,
as both have their own benefits and drawbacks. The mutation operators of each tool
might have to be taken into consideration when deciding on a tool to use since it
might be that specific operators are favorable in certain circumstances. However,
if mutation operators are disregarded, then under certain circumstances there are
clear advantages for specific tools. On the one hand, if we want a tool to generate
mutants and have another tool performing the mutation testing, mutate the git diff
for incremental changes, or if we want to stop testing after a specific number of live
mutants, then Dextool is our recommended tool. On the other hand, if it is possible
to compile all tests into the same binary, or alternatively if we want the fastest
feedback for a specific test suite and we are not interested in the overall mutation
score, then Mull is the recommended tool.

RQ1 (Evaluation of C++ Mutation tools): Only Dextool and Mull were
considered suitable for CI integration. The other tools are not suitable for multiple
reasons, including lack of CLI support, various bugs, lack of ongoing support, or
lack of clarity in licensing.

6.3 Possible tool improvements

The mutation tools evaluated varied greatly in the features and operators they
supported, as seen in Chapter 5. Figure 5.9 could be used to identify valuable
features to develop for future iterations of the mutation tools. For example, adding
the feature to limit mutations to one mutant per line of code to Dextool and Mull, or
the ability for Mull to pause mutation testing and/or pick up from where it stopped
after an interruption.

6.4 Compiler Compatibility

Four out of the five mutation tools depended on Clang and, therefore, were closely
related to the compiler version. We were unable to integrate any of the mutation
tools examined with the toolchain at the partner company due to incompatible
compiler versions, as mentioned in Section 6.2. This was an important revelation
since one could easily forget to consider the maintenance burden of introducing a
new tool in CI. The compiler version would have to be in lockstep with the tool
version to support any of these four mutation tools in CI. Hence, an uplift in the
compiler version would require an uplift of the mutation tool version if such a version
even exists. For example, none of the four tools supported Clang 14, which is the
latest version of Clang as of writing.
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While a separate toolchain could be maintained to support the older compiler ver-
sion required to run the tool, this would add technical dept as the code now would
have to be compatible with multiple compiler versions. For example, the partner
company’s toolchain relied on Clang 14 specific features to compile the code, po-
tentially meaning that the code would have to be re-worked to work an older Clang
version.

6.5 Threats to Validity

The threats to validity can be distinguished between four aspects of validity [41]—
construct validity, internal validity, external validity, and reliability. In this section,
the four aspects will be briefly described, along with threats to this thesis and
mitigations that fall into these aspects. Furthermore, conclusion validity will also
be discussed.

6.5.1 Construct Validity

Construct validity is to what extent the means of interpreting a phenomenon rep-
resent what the researcher has in mind [42]. For example, there could be different
understandings of what a term implies between the researcher and the interviewee.
In this study, that could be different understandings of what the term mutation
testing suggests, if one is not already familiar with the concept. To mitigate this
problem, interviewees were offered an introduction to the topic before starting the
interview.

6.5.2 Internal Validity

Internal validity is the threat to data collection caused by alternative explanations.
An example of this is that the reliability of the benchmark data for the mutation
tools is impacted by the fact that only one test binary could be provided at a time
when performing mutation testing. This was due to a limitation of the Mull tool.
This led to the use of only a subset of the test suite for projects that did not compile
all of their tests into one test binary. This shortened the test execution time but
kept the compile-time essentially the same. However, the result is still valid since
the same tests were supplied to all the tools; the only difference is that the project
is treated like it has lower test coverage.

Another threat to internal validity was that the available literature and documen-
tation on the inner workings of the evaluated mutation testing tools differed signifi-
cantly; only Mull and MuCPP have papers that describe how they work. While the
engineering details of individual tools are not the focus of this thesis, the problem
with a lack of documentation is that it hinders understanding. It makes it hard
to explain why its performance was what it was, or to understand the factors that
affect its performance. Due to this, it makes it harder to compare tools, if each tool
is not well documented. However, the results are still valid since the tool’s overall
performance is what is being measured.
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6.5.3 External Validity

External validity is to what extent the result can be generalized to be of interest to
people not in the study. An external validity of the thesis is that it was limited to
the context of the partner company Zenseact, which limits the generalizability of the
result. However, we believe that our findings will be applicable to other companies
operating in similar domains.

Moreover, we could not integrate any of the mutation tools with the toolchain in
the partner company due to incompatible Clang versions. This meant that we
could not test the applicability of the evaluated mutation testing tools in practice at
the partner company. However, two CI workflows were created for the TinyXML-2
project as proof-of-concept for using mutation tools in CI. The workflows are specific
to TinyXML-2 but can easily be adapted to other projects.

6.5.4 Reliability

Reliability is the degree to which the result and the researchers depend on each
other. A threat to reliability in this thesis is the thematic analysis of the interviews.
To mitigate this risk, two supervisors were involved in triangulating the result of
the interview coding process.

Similarly, the interview instrument in the form of a interview guide created by the
researcher represents a threat to reliability. This risk was mitigated in three ways.
Firstly, the interviews were semi-structured to allow interviewees to present new
ideas. Secondly, a supervisor reviewed the instrument before use. Thirdly, the
interview guide was iterated upon as needed between the interviews.

6.5.5 Conclusion Validity

Conclusion validity is to the extent that the conclusion is correct based on the
data. The limited number of interviews presents a threat to the correctness of the
conclusion of this thesis. The number of candidates for the interviews was sparse due
to limited experience with mutation testing at the partner company, since its not a
widely adopted practice within the industry. This led to no theoretical saturation,
the last interview still added more findings. However, as the available interview
candidates found by company wide communications was saturated, the resulting
data represents the context of the partner company of which the study is limited to.

6.6 Future Work

Some of the mutation tools examined in this thesis are actively maintained and im-
proved. These tools could be revisited in the future to see how they have improved
and how they could still be improved. Alternatively, new functionality could be de-
veloped for a tool to allow it to utilize more of the identified techniques for mutation
testing from the literature. The improvement could then be measured to see the
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impact of the techniques. Similarly, techniques from the existing mutation tools not
represented in the literature could be further explored and tested.

It could be interesting to compare the features offered by C++ mutation tools with
those of other languages. To see how they differ and, in doing so, identify what they
can learn from each other.

Future research could investigate developers’ goals for effective mutation testing
from other contexts to see if their views differ.

To solve the problem of mutation tools falling out of sync with the latest compiler
version, the possibility of integrating mutation testing as part of the LLVM project
could be explored. Thus, always keeping the mutation test tool in sync with the
latest compiler version. Similarly to how the clang-based C++ linter tool clang-tidy
is a part of the LLVM project [6].

The proof-of-concept GitHub Actions workflow could be extended to work with a

wider variety of projects, or even make it so other mutation tools could be slotted
in as alternatives to the two supported tools.
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Conclusion

This thesis consisted of research to identify guidelines for using mutation testing as
part of a continuous integration pipeline.

The thesis was carried out by performing an empirical evaluation of mutation testing
tools for C++4, conducting semi-structured interviews with stakeholders at a partner
company, and conducting a literature review. The results were then combined to
identify the guideline for mutation testing within CI.

The capabilities of the evaluated C++ mutation testing tools are listed below:

o Dextool offers the most features and is the only tool capable of mutating a git
diff. Nevertheless, the tool was not the fastest to perform mutation testing.

o Mull was by far the fastest at performing the mutation testing. But the tool
can only use one test binary at a time.

o MuCPP offers the most varied mutation operators and is the only tool that
offers class-level mutation operators. However, it is the only tool evaluated
that is not open-source.

o Mutate++ is very early in its development and cannot be used programmati-
cally.

o CCmutator is the only tool to offer multi-threaded mutation operators. How-
ever, the tool seems to have been abandoned.

We can only recommend using Dextool or Mull for CI integration. A proof-of-
concept mutation testing workflow was created to demonstrate the use of the two
tools in a CI environment.

How mutation testing can be best used within continuous integration:

o The mutation testing tool should interfere as little as possible with the devel-
oper.

o There should be an option to run the mutation testing on a local machine
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outside the CI/CD pipeline.

o The subset of mutants to use should be optimized to provide timely feedback
while maintaining effectiveness.

o Less time-critical feedback such as mutation results for old code can wait until
there is free machine time.

o When applying mutation testing on a large existing codebase, essential areas
of the code should be prioritized.

o Developers inexperienced with mutation testing should be trained to under-
stand the mutation result better.

The results of this study will provide guidance to practitioners who want to make
mutation testing a part of their CI workflow. Furthermore, this study will show
where future work can improve existing C+4 mutation testing tools to perform
mutation testing effectively. Future research on this topic could include evaluating
the capabilities of mutation tools for other programming languages to see what they
offer. Furthermore, future studies could investigate whether the developer’s goals for
effective mutation testing are similar in different contexts, or the proof-of-concept
GitHub Actions workflow could be extended to work with a wider variety of projects
and mutation tools.
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Mutation Operators

A.1 MuCPP Class-level Mutation Operators

Table A.1: Class-level mutation operators supported by MuCPP.

Operator Name

THI

Hiding variable insertion

IHD

Hiding variable deletion

ISD

Base keyword deletion

ISI

Base keyword insertion

10D

Overriding method deletion

10P

Overriding method calling position change

IOR

Overridden method rename

IPC

Explicit call of a parents constructor deletion

IMR

Multiple inheritance replacement

PVI

"virtual" modifier insertion

PCD

Type cast operator deletion

PCI

Type cast operator insertion

PCC

Cast type change

PPD

Parameter variable declaration with child class type

PMD

Member variable declaration with parent class type

PNC

"new" method call with child class type

OMD

Overloading method deletion

OMR

Overloading method contents replace

OAN

Argument number change

OAO

Argument order change

MCO

Member call from another object

MCI

Member call from another inherited class

EHC

Exception handling change

EHR

Exception handler removal

CTD

"this" keyword deletion

CTI

"this" keyword insertion

CID

Member variable initialisation deletion
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Operator Name

CDC Default constructor creation
CDD Destructor method deletion
CCA Copy constructor and assignment operator overloading deletion

A.2 CCmutator Multi-threaded Mutation Oper-
ators

Table A.2: Multi-threaded mutation operators supported by CCmutator

Operator Name

MSEM Modify Permit Count in Semaphore

MWAIT Modify parameter in cond_ timedwait()

MCNT Modify cond_timedwait() time value

RMWAIT Remove Call to cond_ wait()

RMWAIT Remove Call cond timedwait()

SWPTW  Swap cond_ timedwait() with cond_ wait()

RMSIG Remove Call cond_ signal()

RMSIG Remove Call to cond_ broadcast()

SWPB Swap cond_ signal() with cond broadcast()

SWPS Swap cond_ broadcast() with cond_ signal()

RMJOIN  Remove Call to join()

RMYIELD Remove call to yield()

REPJN Replace join() with sleep()

RMVOL Remove Volatile Keyword

SWPLCK Swap lock-unlock pairs

RMECS Remove explicit critical section

SHFECS Shift explicit Critical Region

SHKECS  Shrink explicit Critical Region

EPDECS  Expand explicit Critical Region

SPLTECS Split Critical Region

RMF Remove memory fence

MFE Modify memory fence ordering constraint

REPSF Replace single-thread sync fence with cross-thread

REPCF Replace cross-thread sync fence with single-thread

REPAL Replace atomic load with non-atomic load

MAL Modify atomic load ordering constraint

REPSL Replace single-thread sync atomic load with cross-thread

REPCL Replace cross-thread sync atomic load with single-thread

RELAS Replace atomic store with non-atomic store
MAS Modify atomic store ordering constraint
REPSS Replace single-thread sync atomic store with cross-thread

IT
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Operator Name

REPCS Replace cross-thread sync atomic store with single-thread

MRMW Modify atomic read-modify-write ordering constraint

RSRM Replace single-thread sync atomic read-modify-write with cross-thread
RCRM Replace cross-thread sync atomic read-modify-write with single-thread
MCX Modify compare exchange ordering constraint

RSCX Replace single-thread sync compare exchange with cross-thread
RCCX Replace cross-thread sync compare exchange with single-thread

A.3 Mutation Operator Examples

Table A.3: Mutation operators with examples

Operator Name Example
AOR (ARS, Assignment operator replacement a+=b—a—=">
ASR)
AOR (ARB, Arithmetic operator replacement a+b—>a—0>
ARU)
DCR Decision/ condition requirement if (x) — "if(true)" "if(false)"
ROR Relational operator replacement a<b—a>b
SDL Statement deletion c=a+b—
ABS Absolute value insertion c=a+b— c=abs(a+b)
COR Conditional operator replacement all b— a&&b
LCR (LOR) Logical connector (operator) alb— a&b
replacement
UOI Unary operator insertion r —lx
CR Constant replacement const int @ = 42 — const int a =0
SVR Scalar variable replacement a=0—>a=42
SBR Statement block removal if (a)
b = a;
N
AOI (AIU, Arithmetic operator insertion a=b—a=-b
AIS)
ADS Arithmetic operator deletion b=at+—>b=a
COD Conditional operator deletion a=b—>a=0»b
COI Conditional operator insertion a=b—a=b

ITT
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Operator

Name

Example

THI

Hiding variable insertion

class A {
int a;
}
class B : public A {

}

—
class A {
int a;

}
class B: public A {

int a;

}

IHD

Hiding variable deletion

class A {

int a;

}

class B: public A {
int a;

}

—

class A {
int a;
}
class B: public A {

}

ISD

Base keyword deletion

return A::a; — return a;

ISI

Base keyword insertion

return a; — return A::a;

10D

Overriding method deletion

class A {

\./(').idm (int a) { ... };

}
class B: public A {

\.u.).idm (int a) { ... };
}
N
class A {

\.u.).idm (int a) { ... };

}

class B: public A {

}

IV
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Operator Name Example

10P Overriding method calling position class A {
change

void m() {
a = 5;

}

}

class B: public A {
void m() {

super .m() ;
a = 10;

class A: public B {

void m() {
a = 10;
super .m() ;

i
}

IOR Overridden method rename class A {

\.I.i;'tual void ml() { //body of mi }
void m2() { ... m2();}

}

—

class A {

\.z'i;'tual void ml1() { //body of mi }
virtual void m3() { //body of mi }
m

void m2() { 305}
}

}

IPC Explicit call of a parents constructor  class B : public A {
deletion .

B (int a) {
Ala);
}

}

—

class B : public A {
B (int a) {

}
}
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Operator Name Example
IMR Multiple inheritance replacement class C: public A, public B {
void m() {

b=A::a + 1;
}
}

—

class C: public A, public B {

void m() {
b=B::a + 1;
}
}
PVI "virtual" modifier insertion void m() {...} — virtual void m() {...}
PCD Type cast operator deletion a=(int)b—>a=1»b
PCI Type cast operator insertion a=0b— a=(int)b
PCC Cast type change a = (int)b — a = (double)db
PPD Parameter variable declaration with ~ boolean equals (Child 0) — boolean equals (Parent o)
child class type
PMD Member variable declaration with Child a — Parent a
parent class type
PNC "new" method call with child class a = new Parent() — a = new Child()
type
OMD Overloading method deletion void x (int i) { ... }
void x (float i) { ... }
—
void x (float i) { ... }
OMR Overloading method contents replace  void x (int i) { ... }
void x (int i, int j) { ... }
H
void x (int i) { ... }
void x (int i, int j) { x(i) }
OAN Argument number change void x(a, b) — void x(a)
OAO Argument order change void x(a, b) — void x(b, a)
MCO Member call from another object class B {
A a;
A b;

void m2() {... a.ml() }

}

—

class B {

A a;

A b;

void m2() {... b.ml() }

VI
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Operator Name Example
MCI Member call from another inherited class C: public A {
class .
}
class B: public A {
A a;
C b;
void m2() {... a.ml() }
}
H
class C: public A {
class B: public A {
A a;
C b;
void m2() {... b.ml() }
}
EHC Exception handling change catch(e) { ... } — catch(e) { throw }
EHR Exception handler removal catch(e) { ... } —
CTD "this" keyword deletion this— >z =x > x ==
CTI "this" keyword insertion r=x > this—>x ==z
CID Member variable initialisation Az A):a(0){b=1;} = A:: A() : a(0){}
deletion
CDC Default constructor creation class A {
A(int a) { ... }
}
—
class A{
AQ)
A(int a) { ... }
}
CDD Destructor method deletion AO{...} —
CCA Copy constructor and assignment A(const A\& copy) { ... }
operator overloading deletion A& operator = (const A& copy) { ... }
—
A& operator = (const A& copy) { ... }
MSEM Modify permit count in semaphore sem__init(sem, 1, 0) — sem_ init(sem, 1, 1)
MWAIT Modify parameter in
cond__timedwait()
MCNT Modify cond_ timedwait() time value pthread cond timedwait(&t.cond, &t.mn, 5) —
pthread_ cond_timedwait(&t.cond, &t.mn, 10)
RMWAIT Remove call to cond_ wait() pthread_ cond_ wait(&t.cond, &t.mn) —
RMWAIT Remove call cond_ timedwait() pthread cond timedwait(&t.cond, &t.mn, 5) —
SWPTW Swap cond__timedwait() with pthread_cond_timedwait(&t.cond, &t.mn, 5) —
cond__wait() pthread_cond_ wait(&t.cond, &t.mn)
RMSIG Remove call cond__signal() pthread_ cond_ wait(&cond) —
RMSIG Remove call to cond_ broadcast() pthread_ cond_ broadcast(&cond) —
SWPB Swap cond_ signal() with pthread cond wait(&cond) —
cond__broadcast() pthread_ cond__broadcast(&cond)
SWPS Swap cond_ broadcast() with pthread__cond__broadcast(&cond) —

cond_ signal()

pthread_ cond_ wait(&cond)

VII
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Operator Name Example

RMJOIN Remove call to join() pthread_ join(th, NULL) —
RMYIELD Remove call to yield() pthread__yield() —

REPJN Replace join() with sleep() pthread_ join(th, NULL) — sleep(1)
RMVOL Remove volatile keyword volatile int a — int a

SWPLCK Swap lock-unlock pairs pthread_mutex_ lock(&ml)

pthread mutex_lock(&m2)
pthread mutex_unlock(&m2)
pthread mutex unlock(&ml)

—

pthread mutex_lock(&m2)
pthread mutex_lock(&ml)
pthread mutex_unlock(&ml)
pthread mutex_ unlock(&m2)

RMECS Remove explicit critical section pthread_mutex_ lock(&m)
pthread__mutex_ unlock(&m)

—

SHFECS Shift explicit critical region pthread__mutex_ lock(&m)
foo ()

pthread mutex unlock(&m)
bar ()

N

foo ()

pthread mutex_lock(&m)
bar ()

pthread _mutex_ unlock(&m)

SHKECS Shrink explicit critical region pthread_mutex_ lock(&m)
foo ()

pthread__mutex__unlock(&m)
bar ()
H

foo ()
pthread mutex_lock(&m)

pthread mutex_unlock(&m)
bar ()

EPDECS Expand explicit critical region pthread_mutex_ lock(&m)
foo ()

pthread _mutex_unlock(&m)
bar ()
—>

pthread_mutex_ lock(&m)
foo ()

bar ()

pthread mutex_unlock(&m)

VIII
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Operator Name Example
SPLTECS Split critical region pthread__mutex_ lock(&m)
foo ()
bar ()
pthread__mutex__unlock(&m)
_>
pthread mutex_lock(&m)
foo ()
pthread__mutex_ unlock(&m)
pthread mutex_lock(&m)
bar ()
pthread mutex_unlock(&m)
RMF Remove memory fence std::atomic_ thread_ fence(std::memory_ order_ release) —
MFE Modify memory fence ordering std::atomic__thread_ fence(std::memory__order__acquire)
constraint — std::atomic_thread fence(std::memory_order_release)
REPSF Replace single-thread sync fence with llvm::Fencelnst::setSynchScope(SingleThread) —
cross-thread llvm::Fencelnst::setSynchScope(CrossThread)
REPCF Replace cross-thread sync fence with  llvm::Fencelnst::setSynchScope(CrossThread) —
single-thread llvm::Fencelnst::setSynchScope(SingleThread)
REPAL Replace atomic load with non-atomic llvm::LoadInst::setOrdering(Acquire) —
load llvm::LoadInst::setOrdering(NotAtomic)
MAL Modify atomic load ordering std::atomic_ load__explicit(&obj,
constraint std::memory_ order__consume) —
std::atomic_load_ explicit(&obj,
std::memory_ order__acquire)
REPSL Replace single-thread sync atomic llvm::LoadInst::setSynchScope(SingleThread) —
load with cross-thread llvm::LoadInst::setSynchScope(CrossThread)
REPCL Replace cross-thread sync atomic load llvm::LoadInst::setSynchScope(CrossThread) —
with single-thread llvm::LoadInst::setSynchScope(SingleThread)
RELAS Replace atomic store with non-atomic llvm::Storelnst::setOrdering(Release) —
store llvm::Storelnst::setOrdering(NotAtomic)
MAS Modify atomic store ordering std::atomic_ store(1, std::memory_order_relaxed) —
constraint std::atomic__store(1, std::memory_ order__release)
REPSS Replace single-thread sync atomic llvm::Storelnst::setSynchScope(SingleThread) —
store with cross-thread llvm::Storelnst::setSynchScope(CrossThread)
REPCS Replace cross-thread sync atomic llvm::Storelnst::setSynchScope(CrossThread) —
store with single-thread llvm::Storelnst::setSynchScope(SingleThread)
MRMW Modify atomic read-modify-write std::atomic<long long>:fetch__add(1,
ordering constraint std::memory_order_relaxed) — std::atomic<long
long>::fetch__add(1, std::memory__order_ release)
RSRM Replace single-thread sync atomic llvm::AtomicRMWInst::setSynchScope(SingleThread) —
read-modify-write with Cross-thread  llvm::AtomicRMWInst::setSynchScope(CrossThread)
RCRM Replace cross-thread sync atomic llvim:: AtomicRM W Inst::setSynchScope(CrossThread) —
read-modify-write with single-thread  llvm::AtomicRMWInst::setSynchScope(SingleThread)
MCX Modify compare exchange ordering std::compare__exchange__strong(&obj,
constraint std::memoryiorderiacquire) —
std::compare__exchange_strong(&obj,
std::memory_order_release)
RSCX Replace single-thread sync compare llvm::AtomicCmpXchglInst::setSynchScope(SingleThread)
exchange with crossthread —
llvm::AtomicCmpXchgInst::setSynchScope(CrossThread)
RCCX Replace cross-thread sync compare llvm::AtomicCmpXchglInst::setSynchScope(CrossThread)

exchange with singlethread

—>
llvm::AtomicCmpXchglInst::setSynchScope(SingleThread)
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Mull Mutation Operator Mapping

Table B.1: Mull operator mapping

Mull operator

Description

Mapping

cxx_add_ assign_ to_ sub_ assign

Replaces += with -=

Assignment operator replacement

cxx__and__assign__to__or_ assign

Replaces &= with |=

Assignment operator replacement

cxx_ div__assign_ to_mul_assign

Replaces /= with *=

Assignment operator replacement

cxx__mul_assign_to_ div__assign

Replaces *= with /=

Assignment operator replacement

cxx__or_assign_to_and_ assign

Replaces |= with &=

Assignment operator replacement

cxx_rem_ assign_ to_ div__assign

Replaces %= with /=

Assignment operator replacement

cxx__sub__assign_to__add_ assign

Replaces -= with +=

Assignment operator replacement

cxX__xor__assign_ to_or_ assign

Replaces™= with |=

Assignment operator replacement

cxx__assign__const

Replaces ‘a = b’ with ‘a = 42’

Assignment operator replacement

cxx_ init_ const

Replaces ‘T a = b’ with ‘T a = 42’

Assignment operator replacement

cxx_ post__dec_to_post_inc

Replaces x with x++

Assignment operator replacement

cxx_ post_inc_to_ post_ dec

Replaces x++ with x-—

Assignment operator replacement

cxx__bitwise_not_ to_ noop

Replaces ~x with x

Assignment operator replacement

cxx_ minus_ to_noop

Replaces -x with x

Assignment operator replacement

cxx__Ishift__assign_ to_ rshift_ assign

Replaces «= with »=

Assignment operator replacement

cxx__Ishift_ to_ rshift

Replaces «with »

Assignment operator replacement

cxx_ rshift__assign_ to_ Ishift_ assign

Replaces »= with «=

Assignment operator replacement

cxx_ rshift_ to_ Ishift

Replaces »with «

Assignment operator replacement

cxx_add_ to sub

Replaces + with -

Arithmetic operator replacement

cxx_div_to_mul

Replaces / with *

Arithmetic operator replacement

cxx_mul to div

Replaces * with /

Arithmetic operator replacement

cxx_rem_ to_ div

Replaces % with /

Arithmetic operator replacement

cxx_sub_ to add

Replaces - with +

Arithmetic operator replacement

cxx_and_ to or

Replaces & with |

Conditional operator replacement

cxx_or_to_and

Replaces | with &

Conditional operator replacement

CXX__remove__negation

Replaces la with a

Conditional operator replacement

cxx_ xor_to_or

Replaces “with |

Conditional operator replacement

negate__mutator

Negates conditionals !x to x and x to !x

Conditional operator replacement

cxx__logical _and_to_or

Replaces && with ||

Logical connector replacement
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Mull operator

Description

Mapping

cxx__logical _or_to_and

Replaces || with &&

Logical connector replacement

cxx_eq_to_ne Replaces == with = Relational operator replacement
cxx_ ge to_ gt Replaces >= with > Relational operator replacement
cxx_ge to_ 1t Replaces >= with < Relational operator replacement
cxx_ gt_to_ge Replaces > with >= Relational operator replacement
cxx_gt_to_le Replaces > with <= Relational operator replacement
cxx_le_to_gt Replaces <= with > Relational operator replacement
cxx_le_to_ It Replaces <= with < Relational operator replacement
cxx_lt_to_ge Replaces < with >= Relational operator replacement
cxx_lt_to_le Replaces < with <= Relational operator replacement
cxx_ne_to_eq Replaces = with == Relational operator replacement

scalar_value mutator

Replaces zeros with 42, and non-zeros
with 0

Scalar variable replacement

cxx_ replace_scalar_ call

Replaces call to a function with 42

Scalar variable replacement

cxx_remove_void_ call

Removes calls to a function returning
void

Statement deletion
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Interview Guide

Research Questions

« RQ2: How can mutation testing best be used within continuous integration?

— RQ2.1: What do developers see as the most effective use of mutations
in their practice?

— RQ2.2: Can we identify techniques meed the goals of the developers?

— RQ2.3: Can general practices for the use of mutation testing within CI
be identified?

Section 1 - Introduction

Interviewer introduces the goal of the study (integrate mutation testing into the
workflow of developers and testers), and asks the participant for consent. Particu-
larly, ask for consent to record the interview.

Section 2 - Questions about integrating mutation
testing into the workflow

Set of Question 1: Description of what mutation testing is (RQ2.1)
e Does the participant know about mutation testing?

o If the participant answers by asking: "What do you mean by mutation testing?"
Then: Explain briefly what mutation testing is by explaining the core concepts,
do not mention how it could be applied in a development workflow and risk
introducing bias into the participants later answers. Explain: Mutation testing
is a method of assessing the strength of the test of a project by assessing their
sensitivity to small changes in the code. In mutation testing, a tool is used
to generate altered versions of the code, called mutants. For each mutant,
the original tests for the code are then executed. If all tests pass, then the
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mutant survived. The mutant is killed if the tests fail. If a large portion of
the mutations die, then it is likely that the tests are sensitive to small changes
and if a large percentage of the mutants survive, then the tests are likely to be

insensitive. A mutation score is calculated based on the percentage of mutants
killed: Number of Killed Mutants
* Total Number of Mutants *

Set of Questions 2: Usage of mutation testing (RQ2.1, RQ2.3)

Does Zenseact integrate any mutation testing or similar practices? Can you
describe it?

Skip these questions if mutation testing is not being used.

Could you describe the process of mutation testing that you currently have in
your team, project or company?

In what way is it being used within the development and testing process?
What tools are being used to implement the mutation testing?
How long have you used mutation testing?

What impact has mutation had on the development process? Has it changed
how development or testing is conducted?

What challenges and problems where their in integrating mutation into the
existing development process?

Was there any positive or negative effects on the development process as a
result of applying mutation testing?

Set of Questions 3: Prior experience with mutation testing (RQ2.1, RQ2.3)

XIV

Does the participant have any prior experience with integrating any mutation
testing or similar practices? Can you describe it?

Skip the rest if no experience.
In what way was it being used within the development and testing process?

Can the participant say what tools was being used to implement the mutation
testing?

Can the participant explain where mutation testing was integrated?

What impact did mutation testing have on the development process? Did it
changed how development or testing was conducted?

What challenges and problems where their in integrating mutation into the
existing development process?
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Was there any positive or negative effects on the development process as a
result of applying mutation testing?

Set of Questions 4: Integrating mutation testing into the workflow (RQ2.1)

Do you think that mutation testing could be used to improve the process of de-
velopment and testing? If so, how should it be integrated into the development
and testing process?

In what stages of the development workflow do they think mutation testing
could provide value?

What tools could be used to validate that a mutated version of the code is
worth analyzing? For example could the mutation be run through jobs in the
development pipeline to see if another tool would have caught the changed
caused by the mutation.

Other than a mutation score, are there other aspects of mutation that could
be informative as part of the development and testing process?

Would it be useful to get a report on the mutation score as part of test exe-
cution during the continuous integration process?

How much time would you be willing to wait for calculating the mutation score
for test cases?

How often do your foresee wanting to attain a mutation score? On every
check-in, daily, weekly, monthly, rarely?

How much time would you be willing to spend analyzing mutation testing
results?

Could mutation testing help out in development or testing activities other
than calculating a mutation score for test cases, such as during the code review
process? If so, which activities and how?

Could historical statistical data on the mutation score for the test suite as it
(and the project) evolves over time be of interest?

(If the subject got experience with mutation testing) Do you limit what oper-
ators you use for mutation testing? Could it be worth it to limit the amount
of operators to speed up the mutation testing?

Could mutation testing have any negative effect on the development and test-
ing process?

How much extra work do you think developers would be willing to spend on
adapting projects to work with mutation testing tools? For example ensuring
that the unit tests under test can run in a single executable or that the test
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framework reports its result in a specific way.

Section 3 - Wrap-up and questions to the inter-
viewer

Asks if the participant has any questions for the interviewer. Interviewer thanks the
participant and finishes the interview.
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Interview Data

D.1 Sub-theme overview
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Table D.1: Overview of generated sub-themes from the interviews.

Theme

Sub-theme

Description

Test quality

Verify test quality

Verification of the test quality.

Test quality
maintenance

Improving quality of existing tests.

Mutation score as
coverage metric

Mutation score as a coverage metric to
see the score of the different parts of the
project.

Mutation score as
acceptance criteria

Mutation score as a threshold for
accepting new changes.

Prioritization  Prioritize Prioritize mutation testing on
important code important code.
Task prioritization Other tasks might be more important
than mutation testing.
Risks Developer Effects on developer motivation by
motivation using mutation testing.
Focus on the Risk of focusing on the wrong when
wrong thing using mutation testing.
Diminishing Applying mutation testing on the same
returns code could have diminishing returns.
Implementation Fase of use Should be easy to use the mutation tool.
Initial effort Initial effort of setting up the mutation
tool.
Developer feedback Mutation feedback to the developer.
Time-aware Time-ware feedback to the developer.
feedback
Mutation operators Mutation operators to use.
When to use Code review and ~ Use mutation testing result as a code

pair programming

review checkpoint.

Run periodically

Mutation testing does not have to run
all the time, it can delayed until it wont
block other tasks.

Outside of CI

Using mutation testing as a tool outside

of CI.

Optional step

Optional mutation test usage for
developers.
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