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Abstract 

 

The increasing prevalence of antibiotic-resistant bacteria has become a notorious threat to 

human health. Bacteria become resistant through resistance genes that can move between 

cells using horizontal gene transfer. Antibiotics are naturally produced by microorganisms 

in the environment and therefore bacterial communities maintain a large collection of 

resistance genes (the resistome). The diversity and mobility of the environmental 

resistome is however not well studied and further research into these issues is warranted. 

The aim of this project is to explore the environmental resistome and to characterize the 

abundance of known resistance genes in the environment, using metagenomic data. We 

collected 98 gigabytes of publicly available data from “The Community Database for 

Metagenomic Data” CAMERA, including more than 650 study sites around the world. Based 

on this data, we identified several common antibiotic resistance genes families spread in 

different environments, where the beta-lactamase TEM was the most abundant (having 

41.7 % occurrence between 347 sites). We also compared the sites with clustering, and 

found that the resistome is highly variable. However, similarities were found also in 

geographically close sites, and between sites from similar environments. For instance, 

environments contaminated with antibiotics showed similarities in their resistome 

abundance. Additionally, we also clustered the resistome, observing groups of antibiotic 

resistance genes with similar abundance patterns between the sites. Several of these 

groups could be associated with genetically linked co-resistance through known 

horizontally transferred elements. 

We conclude that metagenomics is a powerful tool for identifying antibiotic resistance 

genes in uncultured bacteria. 

 

Keywords: metagenomics, environmental bacterial communities, antibiotic resistance, 

resistome, next generation sequencing NGS. 

 

The report is written in English. 
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Chapter 1 - Introduction 

Why this study? 

With the increasing use of antibiotics, bacteria show a nonstop prevalence of antibiotic-
resistance mechanisms to survive. This remarkable and constantly evolving problem has 
negative implications to human health, ecology and economy. Briefly, bacteria become 
resistant through interchange of resistance genes by Horizontal Gene Transfer, HGT. Since 
antibiotics are naturally produced by microorganisms in the environment, bacterial 
communities maintain a large collection of resistance genes, called the resistome. The 
diversity and mobility of resistance genes in the environment is however not well studied 
and further research into these issues is then warranted. From this study is expected to 
determine the feasibility to use metagenomics in the identification of Antibiotic Resistance 
Genes, AR genes, in uncultured bacteria. 

Aim and Objectives 

This research project aims to explore the environmental resistome and to characterize it. A 
comprehensive effort to collect, filter and gather the data for statistical analysis will be 
described in this report. This is of significant importance for primary research in 
metagenomic analysis, for new hypothesis formulation and for future studies. Overall, the 
main objectives are set to answer three biological questions: 
 
(1) First, to quantify the abundance of AR genes relative to the number of DNA fragments 

studied per site. In order to appreciate how common are AR genes in different 
environments. 

(2) Then, to make a comparative analysis of the distribution of genes between those 
environments studied, including clean and polluted sites.  

(3) Finally, to explore correlations (co-resistance) between the known AR genes to 
speculate about how these genes may move together. 

How to do it? 

The analysis uses bioinformatics know-how as instrument to discern about the biological 
questions involved. The main focus resides on offering new methodologies to analyze 
complex metagenomics data. To begin with, we established a methodology for 
identification of known resistance genes in existing metagenomics data, using i.e. HMMER. 
After careful revision of the results of the homology comparison a series of reducing steps 
were performed with the goal of making data abstraction. Then, we provided with novel 
statistical methods for exploring and quantifying this resulting data, for further biological 
interpretation. At last, we expect that by using powerful bioinformatics tools, it is possible 
to use metagenomics data for identifying antibiotic resistance genes in uncultured 
bacteria. 
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Document Overview 

This document is organized into six chapters, as follows: 
 
First, Chapter 1 - Introduction, gives the motivation and clear aims of the project. Followed 
by, Chapter 2 - Background which contains essential biological concepts for this analysis. 
In Chapter 3 - Data Collection, a detailed description of the data used and its characteristics 
is given. In Chapter 4 - Methods and Analysis, a description of the preprocessing steps, 
with the purpose of abstraction are explained, and afterwards the statistical methodology 
used for obtaining the last results is described. In Chapter 5 - Results, a selected set of 
illustrations are presented to answer to the three main objectives. Finally, in Chapter 6 - 
Discussion and Conclusions, several points focusing on what has been part of the challenge 
are debated; and then thoughts after this research are presented. 
 
In Appendices, some of the extended results are shown. 
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Chapter 2 - Background 

This project studies biological information from a bioinformatics, statistical and 
computational biology approach. Some concepts and background information are required 
to create a good connection between the different aspects of the study. With this purpose 
a short review of the background of antibiotic resistance genes and metagenomics will be 
given in this chapter.  

About the antibiotic resistance problem 

Initially antibiotics were designed, developed and produced to be prescribed against 
bacterial infections. When used in other circumstances or inappropriate doses, antibiotics 
can be very harmful. Nowadays antibiotics misuse is a global problem, for example, the 
common misprescription of antibiotics for viral infections, is wide extended throughout 
the world, also the excessive use of antibiotics for animal husbandry and agriculture. 
Whereas, the “inconvenient truth” is that after the production of antibiotics their final 
destination is to be released into the environment. Here antibiotics are widely 
disseminated, contributing to the maintenance and new appearance of antibiotic 

resistance genes, AR genes (Davies & Davies, 2010).  
 
Bacterial antibiotic resistance is the capability of bacteria to defend themselves or 
withstand the harmful effects of antibiotics. This capacity is transmitted through AR genes 
which act like packages of information that bacteria can transfer to one another. The 
acquisition and spread of antibiotic resistance in bacteria can occur through different 
mechanisms, and those are continuously and quickly evolving. Bacteria may (1) inherit 
natural resistance, by chromosomal mutations and then inherent those through Vertical 
Gene Transfer (VGT). Today is recognized as most common mechanism of transfer (2) the 
acquisition of resistance. This consists of genome interchange from new genetic material 
coming from another source, mechanism so called Lateral or Horizontal Gene Transfer 
(HGT) (Martinez et. al. 2007) (Kenneth, 2008-2012).  
 
In turn, this second mechanism, HGT, can take place through at least three different 
processes to exchange genetic material in bacteria. These are transduction, transformation 
and conjugation. The main mechanism of HGT is thought to be conjugation, which occurs 
when two closely related bacteria have direct cell-to-cell contact, and they transfer small 
pieces of DNA called plasmids. Transformation is a process where parts of DNA, released 
from a dead microorganism, are taken up by the bacteria from the external environment. 
Transduction occurs when viruses living in bacteria (bacteriophages) transfer DNA 
between two closely related bacteria (Wright, 2007), (Park Talaro & Chess, 2011), (Kenneth, 
2008-2012). A particular focus of this research project is to study the processes involving 
mobile elements in HGT. 
 
HGT mechanisms of resistance can be spread through mobile elements which can also be 
divided in four categories (Schimieder & Edwards, 2012): (1) enzymatic antibiotic inactivation, 

is the most common category, for example beta-lactamases AR genes that inhibit beta-
lactams (Penicillin). (2) Various kinds of efflux pumps which allow bacteria to expel 
different kinds of antibiotics and thus become multi-resistant. (3) Alteration of target site, 
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for example Penicillin Binding Proteins, PBP’s which also inhibit beta-lactams, and (4) 
Modification of metabolic pathways, i.e. sulfonamide family of AR genes. These 
mechanisms will be studied along with other families of AR genes.   

The resistome 

Most antibiotics have been naturally produced by microorganisms from the environment. 
Thus one hypothesis is that resistance is a natural inherited trait which is gained from the 
environment and spread between bacterial communities through HGT. Although, the 
origin of antibiotic resistance is not deeply studied yet, some recent researches recognized 
that bacterial communities maintain a large collection of resistance genes, the resistome 

(D'Costa, et. al. 2006), (Wright, 2007), (Martínez, 2008), (Davies & Davies, 2010). One can 
understand the resistome as all genetic elements that can potentially confer resistance 
(Martinez et al. 2007). Not surprisingly, multiple mechanisms of resistance have been 
observed in different natural environments, (Alonso et al. 2001), (D'Costa et al. 2006), (D'Costa 
et al. 2007), (Martinez et al. 2007), (Allen et al. 2010). These research studies show that the 
resistome is remarkably large in environmental bacterial communities, but still the exact 
size and diversity have not yet been systematically studied (Hugenholtz & Tyson, 2008).  
 
This remains a gap of information demanding further studies to understand where 
resistance genes come from, how many there are, and how those evolve and spread. Some 
of these questions will be addressed in the results of this research. Nevertheless, for deeper 
understanding about the spread, acquisition and effects of antibiotic resistance genes from 
the environment, I recommend to use the reference list for more insights especially the 
journal paper “The origins and Evolution of Antibiotic Resistance” by Davies & Davies 2010 
and the newly edited book “Antimicrobial resistance in the environment” by Keen & 
Montforts 2012. These are both excellent research studies which assess the human and 
ecological impacts and risks associated with the presence of AR genes.  

Metagenomics  

With traditional molecular biology one of the impediments to study microorganisms is 
that only 1% of them could be cultured by standard techniques (Riesenfeld et al. 2004). 
Metagenomics is the culture independent method, that serves to explore the vast amount 
of microbial information not yet studied. With metagenomics, the samples are collected 
directly from the environment and then sequenced to form a collection of metagenomes, 
assorted genomic data generated from environmental (i.e. uncultured) samples (Hugenholtz 
& Tyson, 2008). With metagenomics, microorganisms can be studied by observing random 
fragments of their genomes with a gene-centric approach (Hugenholtz & Tyson, 2008), 
(Kristiansson et al. 2009) (CAMERA, 2011). Without cultivation of individual species, 
metagenomics can be used to examine the interaction of numerous microbial species and 
communities present in different ecosystems.  
 
This project was conducted by analyzing metagenomes, which is suitable to identify which 
genes are involved in cooperation and competition (Handelsman, 2004). Additional, 
importance of metagenomics is highlighted since it offers remarkable potential to 
understand better the ecology and evolution of microbial ecosystems, (Hugenholtz & 
Tyson, 2008), and the different roles of resistance genes in the environment (Allen et al. 
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2010). Since there is so vast information in the micro-ecosystems, metagenomics is 
considered especially dependent on massive amounts of sequenced data. Thus, the 
opportunities go hand in hand with the improvement of next generation sequencing (NGS) 
techniques (Desai, 2012). Metagenome-based techniques are now widely available and 
developing thanks to NGS techniques becoming more accessible. This arise a future for 
deeper understanding of the biosphere, from sole organisms to ecosystems, and ecological 
interactions and evolution (Quing Yun & YuHe, 2011). In this project we deal with such large 
complex metagenomic data, and we face the computational and statistical challenges 
associated with this kind of data analysis. 
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Chapter 3 - Data Collection 

Large amount of data, retrieved from various sources, was used for this analysis. The 
approximate size of all the initial data constitutes ~99 GB, divided in two parts. First, 
metagenomic data ~98 GB and second the AR genes profiles ~61MB. A short description of 
the data and how it was characterized will be given in this chapter with the corresponding 
acknowledgments to scientist and their institutions involved.  

Metagenomic data  

CAMERA 

About ninety-eight percent of the metagenomic data for this analysis has been retrieved 
from The Community Cyber infrastructure for Advanced Microbial Ecology Research and 
Analysis, CAMERA (CAMERA, 2011), (Seshadri, et al. 2007). This portal is a reference source of 
datasets, which possesses a rich and distinctive data repository of metagenomic data 
frequently updated. Nowadays, CAMERA is enabling scientists to consider each gene in the 
context of its ecology, and that is why this is the most suitable source of data for this 
study.  
 
Publicly available data from CAMERA have been assessed. The size of this dataset sums up 
a total of 98 GB, including 49 different projects which contain more than 650 study sites 
around the world. For each project (collection of sites) CAMERA includes metadata 
associated with: habitat, sample type, location, date, and time of collection; along with 
other more specific details according to the project, like sequencing techniques, number of 
DNA fragments, type of DNA etc. Consequently, we face with important differences in the 
experimental design of the projects. Most important and for future discussion: time of 
collection, sequencing techniques, number of samples, amount of genetic information 
available, and others. 
 
Some details about the metagenomic data collected from CAMERA are described in three 
parts, as follows. 
 
1) Type of data and sequencing technology: All raw data files are nucleotide sequences in 

FASTA format. Each project retrieved from CAMERA contain from one to many study 
sites. Each of these files itself contains information about the DNA fragments from 
bacterial communities collected from all sites in a project with their corresponding 
metadata. These research projects used shotgun sequencing methods to determine the 
DNA from thousands of microbes simultaneously. And the two sequencing techniques 
used were traditional Sanger sequencing and also NGS 454 pyrosequencing. 
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Table 0-1 Comparison between Sanger and 454 Sequencing: a few differences 
among the two sequencing techniques. 

 

Traditional Sanger NGS 454 pyrosequencing 

~700 read length ~300 read length 

Less data More data 

More expensive Less expensive 

< 1 % error rate > 1 % error rate 

Process in serie Process in parallel 

 

2) Locations: Project locations are far and wide, involving the five continents: The 
Americas, Antarctica, Asia, Australia with Oceania, and Europe. Projects can be situated 
geographically close, such as in the same country, or in the same region, or in the same 
park, or lake, etc. For example the project Antarctica Aquatic has the largest number of 
sites ~160 sites, all of these had been collected through the same region. However, if we 
consider the large geographic extent of this region we might find vast differences. As 
well, we might find some slight differences in a project, for example Project HOT which 
has collected samples from different depths and different temperatures in the same 
aquatic location at Pacific Subtropical Gyre. Additionally, we have samples of bacterial 
communities living in host-organisms (humans and animals), which can be from the 
same place (country). Furthermore, some samples study similar environments in 
different geographically distant locations, for example project EBPRSludge studies 
waste water treatment plants, with one site located in US and the other in Australia.  

 
3) Environmental classification: there are many possible ways of classifying all the data 

collected, which can be further discussed. For this analysis bacterial environmental 
communities of non-clinical environments were studied. The preliminary classification 
of bacteria includes: water, soil and air environments. Then these bacterial ecosystems 
can be divided by habitat in three environmental categories (National Academy of 
Sciences (US), 2009). 

 
Table 0-2 Classification of environments: A short description of the metagenomic data 
collection in three different environments. 

Natural environments  Host-associated 
environments 

Managed environments 

Aquatic environments (Marine 
microbial communities, open 
ocean, lakes, coastal, estuary, 
saline water, (hydro)thermal 
vents, hot springs, coral, 
mangrove, fresh water, 
Antarctic, bays) 
Soil (Sediments) 
 

Human microbiota (gut and 
gastrointestinal tract) 
Animal microbiota 
(Dog, chicken, worm, whale, 
biofilms, and bioplankton, 
fossil) 

Waste water treatment plants 
(WWTP) (among common 
urban waste water, and 
antibiotic-contaminated 
discharge) 
Untreated sewage, harbor, 
sludge,  acid mine drainage 
Animal – agriculture related  
Air of densely populated 
urban buildings. 
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+ One 

One extra project from Kristiansson, et. al., 2011 was included for the analysis. This study is 
part of the extreme environments studied, (waste water from the production of 
antibiotics). Kristiansson, et. al. 2011 reported that high levels of antibiotic pollution 
increases risks for mobilization of resistance genes from the environment. This is the only 
study in our dataset in which antibiotic concentrations confer a potential selection 
pressure for antibiotic resistance; moreover this dataset can contribute to the comparison 
between environments. The data is available at the NCBI Sequence Read Archive under 
accession number SRP002078 (Kristiansson, et. al., 2011).  
 
As short description, river sediments samples were collected up and downstream from an 
Indian waste water treatment plant (WWTP). The location is Patancheru, Hyderabad, India, 
discharge zone which process releases from drug manufacturers. Also, as a control, 
additional samples were collected up and downstream from a Swedish sewage effluent 
treatment plant (located in Skövde), which is not connected to any production of 
pharmaceuticals, (Kristiansson, et. al. 2011). In total this project has 9 sites, where 7 are from 
India and 2 reference sites from Sweden. All DNA samples were analyzed with (parallel 
sequencing) 454 pyrosequencing techniques. 

AR Profiles 

In order to identify AR genes between the different sites a reference of AR genes is needed. 
For this purpose antibiotic resistance HMM profiles were used. These are a repository 
describing 404 multiple alignments of known resistance genes families, wrapping ~61 MB. 
This is an updated version of the profiles previously used in (Kristiansson, et. al. 2011). The 
HMM profiles provide information of AR genes that can be associated with resistance to 
several classes of antibiotics. Six major classes of antibiotics which can be inhibited by AR 
genes (Schimieder & Edwards, 2012), are contained within these profiles, such as beta-
lactams, aminoglycosides, tetracyclines, sulfonamides, amphenicols, and quinolones. 
Additionally, some mobile elements for Horizontal Gene Transfer genes, such as introns, 
and transposons are also included. 
 
The release 0.1-2 or AR profiles used for this project was updated on February, 2012 by Erik 
Kristiansson. To shortly describe how this release was generated a short explanation of the 
input data will be given here. The resistome profiles were created from (1) the Antibiotic 
Resistance Data Base (ARDB) (Liu & Pop, 2009), and (2) the nucleotide sequences, available in 
the database INTEGRALL (Moura et al.  2009). These sources are automatically generated 
based on sequence similarity using BLAST against NCBI RefSeq database and GenBank 
nucleotide database, thus the accuracy of the initial data can be further discussed. To 
expand this database, additional information from literature review has also been included 
to the database. Currently, this version contains approximately 120 manually curated 
profiles for resistance genes, which is a valuable step towards the cleaning of the 
previously mentioned databases.  
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Chapter 4 - Methods and Analysis 

Schimieder & Edwards, 2012 unmistakably stated that “the data analysis requires both 
expertise in bioinformatics, and advanced computational infrastructure” for this analysis 
this statement was put into practice, successfully overcoming the difficulties of the data 
analysis. In this section all the steps performed will be shortly described, starting with the 
software used, the data abstraction concept, respective data reduction paces with the final 
gathering of the data and to end with the statistical analysis and the description of a new 
similarity measure.  

SS: Software to Succeed 

The new methodology proposed used freely-available software, such as: 
� HMMER 3, High quality bioinformatics software, with significant accuracy and 

improved speed to do sequence search and alignment, using Hidden Markov Models 
(Eddy, 2011). 

� Python, useful scripting programming language, having advantages such as 
readability, quick response and scalability (Python Software Foundation, 1990-2012). 

� R, Programming language and software environment for statistical computing and 
graphics (R Development Core Team, 2012). 

� SQL powerful statements embedded for convenience into R (sqldf package) creating 
automatically database layouts/schema. Remarkably fast and flexible 
(Grothendieck, 2011).  
 

To create and apply an effective bioinformatics pipeline for data analysis these tools are 
effective in achieving the formulated goal. 

Data Abstraction  

Abstraction is a particular concept used to refine data and reduce it. For the purpose of 
this analysis, the concept is defined from the computer science perspective as follows: If an 
object is defined as anything that possesses certain attributes or characteristics, then 
abstraction can be conceptualized as the recognition of important characteristics of the 
object filtering out the un-wanted characteristics. In order to make this concept useful, 
systematization is needed with the purpose of reducing the complexity of the data. Notice 
that there are numerous possible abstractions depending on the data structure and the 
ultimate goal. For the purpose of this characterization, the three objectives of this research 
become the pre-defined criteria for the abstraction.  

Bioinformatics Pipeline with Python 

The bioinformatics pipeline was prepared using GNU/Linux environment version 2.6.32. 
Distributor ID: Red Hat Enterprise Server, release 6.1 (Santiago). And all tasks were 
accomplished using scripting capabilities of Python version 2.6.6 (sept 12, 2011).  
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Data preparation 

To be able to use HMMER 3 potential as a sequence similarity comparison tool; the first 
step was to translate all DNA fragments collected from CAMERA and Kristiansson et al. 

2011, into proteins. Since the correct reading frame for this translation is unknown, the 
translation was made for all 6 reading frames. In this step, for each project a new FASTA 
file with protein information was generated, making the original data size approximately 
three and a half times larger (from ~98 GB to ~348GB). 

Sequence Similarity Comparisons 

HMMER (hmmsearch) was the tool used to identify the resistome of the metagenomes 
studied, through an intensive search to find signatures of known AR genes. HMMER 
software implements probabilistic models, called profile hidden Markov models to perform 
sequence homology comparisons with high accuracy (Eddy, 2011). HMMER detected all 
sequences from the metagenomic data collection (translated into proteins) that had 
similarities with the AR profiles sorted according to the E-value (expectation values) (Eddy, 
2011). The results of these findings are also managed with scores which represent the 
probability of finding certain amino acid in a given position of the protein sequence.  
 
Systematic calls to generate HMMER outputs were built up with python scripts. To 
suppress the default voluminous alignment output, -–tblout option was used in the 
hmmsearch function. Using this formatting, the results are retrieved with space-delimited 
tabular form, summarizing in each line the output of the detected sequence (Eddy, 2011). 
This organizing not only reduces the default size of the output but also facilitates the 
upcoming parsing. Each sequence was assed according to its E-value which is the number 
of hits one can expected to score by chance in a sequence database; the use of thresholds 
will be explained in the following. 
 
In addition, the sequence comparison was the most time consuming task, due to the 
massive amount of data to handle. As input HMMER received ~348GB of protein 
information to be compared to ~61MB of AR profiles. After the comparison the results 
made up ~404 GB. The resulting data was organized in a single folder for each project, 
containing 404 files, one for each resistance gene profile. These were then saved as 
starting point of further analysis, in order to parse and filter later as convenient. These 
processes were run using multiple shell sessions, with screen command, as a first attempt 
to improve the speed of the comparison with a parallel call. More discussion about the 
time and difficulties of this task will be given in chapter 6. 

Thresholds  

The initial controlling reporting threshold used for the hmmsearch was set to	10���	. This 
measures the statistical significance of the output, meaning that on average less than one 
false positive sequence will be reported per query; restating the thresholds are used to 
filter all those sequences that can be found just by chance. In this case the hmmsearch 
option –E was used to retrieving all the sequences with E-value <=10���. After this initial 
threshold one can decide if more filtering is needed (Eddy, 2011).  
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Deciding which threshold to use to test significance is always a difficult task. For this 
analysis three thresholds (10���, 10�	��, 10�	��)	were carefully considered. This selection 
was also implemented with python scripts with the results of the hmmsearch -tblout and 
this was the first stage towards a substantial reduction of the data size. All three threshold 
(cut offs) results were saved and used for the upcoming analysis. However, in Chapter 5 
Results only the results obtained after the analysis using the data reduced with 
threshold	10���	will be shown. This threshold was decided upon sensitivity (to find all true 
positive resistance genes) over sensibility (with less concern over the false positives). Given 
the amount of data, we considered that to keep at least half of the studied projects will give 
better results. With this threshold 30 projects were kept for further assessment, with the 
next threshold	10�	�� only 15 projects were kept and then with the stricter threshold 	10�	�� only 8 projects resulted to have AR genes. Thus, we considered that 10��� 
threshold was a good overview of all the output files, considering that the maximum E-
value was ~10���� and anything below 10��� was considered irrelevant.  

Gathering 

Having the results from the cut off thresholds, the data was extremely reduced. The next 
step was to gather all the files that correspond to a project folder. For the gathering an 
individual file per project containing all the resistance genes profiles with matching similar 
sequences was created. Each file has a header with the most representative information, 
such as E-values, their corresponding sequence id, the site from where those sequences 
were collected and the resistance gene profile. Using the results of the dataset selected 
with threshold	10���, the optimal data reduction generated ~8.75MB. This size is ~0,001% of 
the data size used for the sequence similarity comparison, and ~0,008% of the initial data. 

Final reduction 

The final part of the data reduction, and all statistical calculations were completed using R- 
project version 2.14.1, released on Feb 29th, 2012, for windows environment. (R Development 
Core Team, 2012). 

Filtering 

Once having the gathered files as a summary of all results from each project, two more 
filtering steps were required. First, in the case that one sequence matched more than one 
resistance gene profile, only the sequence with the best E-value was kept for each site (in 
order to account all the sequences per profile only once). The second filtering was to 
remove all null rows and columns. This means that we additionally filtered all rows (AR 
genes) which did not have any presence in the studied sites, and all the sites which did not 
have any presence of AR genes.  
 
The best way to accomplish these tasks was to use SQL commands. For convenience and 
improved speed the sqldf R package was used. Sqldf package uses SQLite embedded by 
default, making its use very suitable. Sqldf compiles SQL statements in R, using data 
frames instead of tables. The database layouts/schema is automatically created behind the 
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scenes, and this process is transparent and fast (Grothendieck, 2011). At this point the data 
size was only 3.84MB. See in the appendices the results of the filtering steps: counts per 
project, for all three reporting thresholds after filtering. 

Quantification 

At this point, having accumulated all unique sequences, the quantification started. Each 
project has an individual file containing information of all its sites which have matching 
AR genes profiles with the database. The headers of these files contain three columns, site 
id, profile id and the number of sequences matching the specific profile. This collection of 
files was named “counts per project” and in total has a size of 156 KB. This task was also 
completed using the Sqldf package. For example: 
 

Table 0-1 Example of counts per project 

Site id Profile Nr of Sequences 

Site 1 AR gene A 1 

Site 2 AR gene A 2 

Site 4 AR gene A 10 

Site 5 AR gene A 1 

Site 4 AR gene B 1 

Site 2 AR gene C 3 

Site 3 AR gene C 1 

… … … 

Reshape 

To organize the data after the counts, a very useful function from R, called reshape was 
used. This function reshapes a data frame transposing the rows into a total and organizing 
it by columns. In this case all profiles had been gathered in the first column and then for 
each site of a project separated columns showed the number of matching sequences. As it 
is understandable not all the profiles have matching sequences in all the sites and vice 
versa. In total this collection of files has a size of 212 KB. This task was also completed 
using the Sqldf package. For example using Table 3 as starting point the results of the 
reshape will be: 
 

Table 0-2 Example of reshaped counts 

 Site 1 Site 2 Site 3 Site 4 Site 5 

AR gene A 1 2 0 10 1 

AR gene B 0 0 0 1 0 

AR gene C 0 3 1 0 0 

… …. … … … … 
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Joined Table 

The final step of data gathering was to collect all reshaped files and merge them together, 
in order to make a new table. This table consists of all sites containing AR genes, grouped 
by project in column-wise arrangement, and all AR genes as row-wise arrangement. This 
new table is a sum up of all the previous steps completed with the cut off of	10���. The 
dimensions of this so called table50 were 404 AR genes profiles (rows), and 347 sites from 
30 projects out of 50. After removing those (rows) AR genes which had no matching 
sequences in any site, the dimensions were: 229 x 347. This table was saved in tab 
separated text file format, with size 171Kb, and 12 kb as RData format. (The heat map of this 
table can be seen in Figure 3 , results section). 
 
This task was also divided in shorter steps. Initially to make the frame of the table all the 
sites ids were collected and grouped by project from the original files. This was completed 
using dictionaries in python. Due to differences in the naming of all sites, some manual 
adjustments had to be done, and it was another time consuming task. At the same time, 
these python dictionaries were also used to count the total number of fragments per site. 
This last information was necessary for the normalization of relative abundance.  

Statistical Analysis 

When all the processing steps had been performed, a single table with all the abstracted 
data was ready for the statistical analysis. The statistical methods had been implemented 
in R-project.  

Normalization 

For the normalization of number of AR genes found in each site (counts), two approaches 
were first suggested, but then only the first was implemented with the new similarity 

measure. First, having matrix A, with dimensions m x n, denoted by �	 = 	 ���,��	�ℎ���	�	 =	1, . . . , �; 	� = 	1, . . . , �  (See Appendices for examples of these two normalizations) 

 

1) Normalization using the ratio of DNA fragments per site. 
Each count was divided by the total number of DNA fragments per site. Here a new 
matrix B with dimensions 1 x m was used; where m is the total number of sites (�� ) 
and vector 	�	 = 	 ��	,��	�ℎ���	�	 = 	1, . . . , �	and �	,�	refers to the total number of 

DNA fragments in site �  
� ���!�"�#	��$�#��%�	&��	' '�!	��. (�)	*��+���', = )- 

2) Normalization using the total abundance of AR genes per site. (This is included in 
the similarity measure, see �� 	��#	��. in Equation 6). We normalized the counts in 

each column by the column sum. With this normalization is possible to compare 
the sites and vice versa also to compare the relative abundance within AR genes 
(when using the transposed matrix). 

 

� ���!�"�#	��$�#��%�	&��	% !/$� = 	 )% !/$�()) 



 
 

14 
 

Similarity measure 

Since the proposed methodology includes the use of clustering techniques, a similarity 
measure that accounts for fundamental features of the dataset, must be chosen carefully. 
Instead of relying on well-known distance measures, a new measurement was motivated 
by the type of data to be analyzed. First of all, this data does not have continuous features, 
and also possess high amount of null counts, which will drive the mean to a lower 
outcome. For these known distance measures will not lead to the right conclusions, mainly 
due to the effect of the mean parameter. The aim of the new measurement is then to 
analyze and understand better this very sparse kind of data. 
 
We a clear aim we offer a new similarity measure to analyze the metagenomic data under 
the previously mention conditions. This similarity measure can be seen as a variation of 
the standard correlation with significant transformations (Equation 1). First of all, the 
similarity measure uses the abundance of AR genes for each site (called counts) as input. 
Additionally to this abundance counts a following normalization is included in the final 
equation (Equation 7). To start with, the matrix to be studied should be of discrete size, 
having dimensions n x m, where n and m do not need to be of the same size. Notice that 
larger dimensions will entail more computational effort. 

� = ∑ (12�1̅)2 (42�45)6∑ (12�1̅)72 ∑ (42�45)72            (1) 

A benefit of this measure is an effort to assess how well two variables show a comparable 
relationship, even when having different sequencing depths. For example, a 0 count in a 
site where more ~1000 DNA fragments had been checked does not reflect the same 
quantity as a 0 count in another site where ~100000 fragments had been checked. This 
new similarity measure is a column wise combination of all the variables in the matrix; 
and the relationship is measured emphasizing all non-zero counts. To do this a conditional 
statement, called non-zero pairs (Equation 2), has been used to denote the influence of 
having present values in final equation. This aims to add more sensitivity to present 
counts in the data matrix. In other traditional measures, the zeros strongly affect the 
mean of the data, which is essentially avoided here.   
 
Non-zero pairs (Equation 2): is a sum of the results of a pair column wise comparison. This 
identity function compares every row of two columns	(�, �.) giving a value of one when both 
compared counts are greater than zero; and a value of zero when one or both counts are 
zero. The result of this condition is a scalar for each two positions compared. Next, all of 
these scalars will be summed up in the column, resulting in the total number of non-zero 
pairs when comparing two columns in the matrix. 

8(�, �.) = 	∑ 9:;�� > 0	, ;��. > 0=�          (2) 

Additionally, we used a flag condition that checks the pairs that are zero, called Flag Zero-
pairs (Equation 3). The result is a one-column-matrix with the same number of rows as the 
original matrix. This function compares two counts from the same row, giving a value of one 
when both compared counts are zero; and giving a value of zero when the counts are unlike. 
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>(�, �.) = 	9:;�� = 0	, ;��. = 0=         (3) 

Stressing the importance of non-zero pairs along with the flag, we used a scaling factor, 
called ñ (Equation 4). This results in a matrix of n rows and one column, which represents 
the sum over all the present counts in a row of (all those that have a count greater than 
zero, get a value of one). The judgment for this factor is as follows, once comparing two 
counts it is possible to have them both with zero presence; but we need to evaluate these 
zeros in relation to all other counts in the same row (the relative abundance of a specific AR 
gene among all sites). That pair of zeros will not mean that this AR gene counts are more or 
less similar before comparing the counts spread in other environments. Only, if that pair of 
zeros lack a gene that is present in many other sites, then those counts will be set apart 
from others and those two should be considered more similar. As a final step for scaling, we 
used the term ñ, which is equal to the amount of non-zero values for each row; divided by 
term M, equal to the total number of columns to be compared (Equation 5). 

ñ = 	∑ 9:;�� > 0=�             (4) 

At last the flag could be summarized into vector @� (Equation 5) 

@� =	 A�	BC	 	�*	9:;�� = 0	, ;��. = 0=
 �	�!,�	0 D	(5) 

Coming back to the original standard correlation coefficient (Equation 1), the normalization 
factor was omitted, removing the entire denominator squared function. Thus, this measure 
can have a resulting matrix which contains values in the range of all positive real numbers. 

In addition, the mean value part (	;F , G5 ) was also removed, as stated before, in order to take 

away the influence of non-zero counts to the mean value. In this step, considerable more 
significance has been given to present counts in relation to non-present counts. All of this 
resulted in Equation 6, the squared root of a ratio between the normalized counts 
(normalizing by the column sum). Here each row count is multiplied by its row neighbor in 
the compared column, then divided by the column sum of each compared column. (Note that 
if one of the counts is zero then all the result will be zero, which is why we need the 
outcome of the flag.) 

H12I	12IJKI	KIJ      (6) 

The resulting Equation for the similarity measure is expressed in Equation 7  

/���!���'G(�, �.) = ∑ L8	H12I	12IJKI	KIJ + @�N� 		  (7) 

The measure is such that the scheme is applicable to a wide variety of matrix sizes and that 
could be of aid to solve practical problems involving complex dimensional data.  
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Clustering 

Clustering is a common statistical technique for exploratory data analysis, used in 
Bioinformatics. After measuring the similarities with the new Equation 7, we applied 
agglomerative hierarchical clustering analysis. To perform this step, standard functions from 
the stats package in R-project were used. First, as.dist function was used to return the 
distance matrix computed between the rows distances of the data matrix. Here the negative 
similarity matrix was the input to produce the dissimilarity distance, needed for the 
clustering. Then, function hclust performed a hierarchical cluster analysis using the 
dissimilarity matrix.  

We used the complete linkage method to find similar objects that cluster together. With 
complete linkage we merge in each consecutive stage the two clusters with the maximum 
object-to-object distance, where the objects belong to two different clusters. In 
agglomerative clustering, we start with all objects as individual clusters, and then the 
individuals will sequentially group with the neighbors according to the linkage criterion, 
forming in every step a new larger cluster. At the end the distance between clusters is 
determined by the two most distant points in different clusters. In addition, complete 
linkage criterion is favorable because is less susceptible to noise. 

Relative abundance 

AR gene abundance in relation to the total number of fragments 

The abundance in relation to the number of fragments is the first result that helps to 
understand how common genes are in the environment over all the metagenomic 
information. To obtain this, we summed up all the counts for each gene (total sum of the 
rows) and then divide over the total sum of the number of fragments for all sites, the 
formula is using matrix A and B previously specified. For each gene we will obtain the 
relative abundance and afterwards, the percentage of highest abundances will be shown 
with a bar plot (See results). 

O�!�'�@�	)�$�#��%�	 *	)O	+���, = 	 ,$�O �,())P '�!	�$�	 *	*��+���', 

Sites with the highest AR genes relative abundance 

Similarly the abundance of AR genes per site can be calculated to understand the differences 
in the resistome of the study sites.  For this analysis the total amount of AR genes found in 
each site is summed up (sum of the columns) and then divided by the number of fragments 
in that specific site. In this way is possible to retrieve the percentage of AR genes normalized 
by the amount of information per site (See results). 

(�,'���$'� �	 *	)O	+���,	��	#�**����'	,�'�, = 	 ,$�Q !$��,())�$�	 *	*��+���',	&��	,�'� 
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Chapter 5 - Results 

Based on this metagenomic data we obtained many results which can lead to further 
biological interpretation. For the purpose of this report we selected three main results along 
with the aim and objectives of this project. 

1) How common are antibiotic resistant genes in the 

environment? 

We studied the abundance of AR genes in relation to the total number of fragments over all 
347 sites. This analysis helps to identify how common are AR genes in the environments 
studied. We identified several common resistance genes families spread in different 
environments, where the beta-lactamase TEM class A, was the most abundant resistant 
variant (having 41.72% presence over 347 sites). As shown in Figure 1 the top ten most 
abundant genes in the environment differ considerably, being TEM overall most abundant. 
Additionally two PBP (Penicillin binding proteins) and SHV where found between the top 
most abundant, these AR genes provide mechanisms to inhibit Beta-lactams. Also we notice 
that AR genes sul 2 which inhibits sulfonamides is also very abundant and that is caused by 
the impact of the WWTP in India. More details are described in Table 5 to complement to 
Figure 1 and also in the next results. 
 

Percentage of identified AR genes over all sites 

 
Figure 1 Top 10 relative abundance of Antibiotic Resistance Genes. The 
percentage in the y-axis is the ratio between the total abundance of the AR gene and 
the total number of fragments studied. Below the name of the AR gene the 
abbreviation of the family of antibiotics that are inhibited by these. 
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Table 0-1 Top ten most abundant resistance genes 
AR 
gene 

Description Counts 
(presence 
over all 
sites) 

Relative 
Abundance (Counts 
in ratio with total 
num of fragments) 

Percentage of 
relative 
abundance 

TEM Extended Spectrum Beta lactamase, 
TEM, Ambler class: A, Functional 
class: 2b. AR gene prevalent for 
several years 

14715 0,000121867 41,72% 

mexw Multidrug resistance efflux pump. 
Resistance-nodulation-cell division 
transporter system 

2167 1,79467E-05 6,14% 

macb Multidrug resistance efflux pump. 
Resistance-nodulation-cell division 
transporter system. Macrolide-
specific efflux system 

1914 1,58514E-05 5,43% 

pbp1a Penicillin-binding proteins (PBPs). 
Resistant to β-lactams 

1617 1,33917E-05 4,58% 

SHV Beta lactamase, SHV, Ambler class: 
A, Functional class: 2b. The 
predominant ESBL type in Europe 
and the United States, also found 
worldwide 

1536 1,27209E-05 4,36% 

pbp2 Penicillin-binding proteins (PBPs). 
Resistant to β-lactams 

1259 1,04268E-05 3,57% 

sul2 Sulfonamide-resistant 
dihydropteroate synthase, which 
cannot be inhibited by sulfonamide 
(sul) 

1014 8,39778E-06 2,88% 

mexf Multidrug resistance efflux pump. 
Resistance-nodulation-cell division 
transporter system.  
Resistance to chloramphenicol, 
fluoroquinolone 

904 7,48678E-06 2,56% 

acrb Multidrug resistance efflux pump. 
Resistance-nodulation-cell division 
transporter system.  
Resistance to acriflavin, 
aminoglycoside, beta lactam, 
glycylcycline and macrolide 

813 6,73313E-06 2,31% 

ceob Multidrug resistance efflux pump. 
Resistance-nodulation-cell division 
transporter system. Resistance to 
chloramphenicol 

691 5,72275E-06 1,96% 

 
Given the details in table 5 the relative abundance of AR genes is presented as a percentage 
in the last column and also the y-axis of the bar plot, shown in Figure 1. In the analysis is 
worth to mention that many efflux pumps mechanisms are very commonly spread in the 
environment and that is why we see five of these AR genes among the top ten. These results 
are also very significant since the efflux pumps can inhibit different families of antibiotics 
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(which is why are called multidrug resistance efflux pumps). The environments which had 
contributed more to these AR gene abundances will be shown in the next Figure 2. 

2) What differences can we find between sites? 

We studied differences between sites corresponding to the abundance of AR genes in 
relation to the number of fragments per site. We identified the top ten sites having the 
major abundance of AR genes, encountering these as very extreme environments (See 
Figure 2 and details in Table 6). Figure 2 shows top ten sites according to the percentage of 
AR genes in a site in ratio to its total number of DNA fragments. Subsequently, in table 6 a 
short description of the sites and the projects they belong to is also given. This shows the 
high variation of AR genes between different environments and the diversity of the 
resistome. 
 
 

Percentage of counts relative to the num of fragments per site 
 

 
Figure 2 Top 10 sites according to the relative abundance of AR Genes in that site. The 
percentage shown is the amount of AR genes found in the total number of fragments 
studied for this specific site.  Clearly Acid Mine has the highest abundance of AR genes 
(position 1 and 9). In the horizontal axis the descriptive name of the site and below the 
abbreviation of project this site belongs to, More details of the sites and project are given the 
next table 6. 
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Table 0-2 Top ten sites according to the most abundant AR genes 

Project Site Type of 
Environment 

Country Sequencing 
method 

Acid Mine Drainage 
Metagenome 

Acid mine 02 Acid Mine Waste 
Water 

United 
States 

Sanger 

Metagenome from 
Yellowstone Bison Hot 
Spring 

Pool 3 Hot spring United 
States 

Sanger 

Western English Channel  
 

152.Jan Night 
Prefilter 

Saline water United 
Kingdom 

454 

Metagenome from 
Yellowstone Bison Hot 
Spring 

Pool 4 Hot spring  United 
States 

Sanger 

HOT aloha 216 20M Sargasso Station Bermuda Sanger 

Kristiansson et al. 2011 KN.1766_R2 WWTP 
Downstream 

India 454 

Kristiansson et al. 2011 KN.1766_R1 WWTP 
Downstream 

India 454 

Kristiansson et al. 2011 KN.1766_R3 WWTP 
Downstream 

India 454 

Acid Mine Drainage 
Metagenome 

Acid mine 05 Acid Mine Waste 
Water 

United 
States 

Sanger 

Global Ocean Sampling GS000a Sargasso Station Bermuda Sanger 

 

Figure 2 points up the top ten environments with highest abundance of AR genes. For 

example the Acid Mine Drainage Metagenome (Richmond Mine), located at Iron Mountain, CA 

in Unite States, has the most abundant counts of AR genes, especially TEM contributing to at 

least 1% of the AR genes encounter in relation to the number of fragments studied. Also 

there are three samples from downstream of the discharge site of antibiotics polluted 

environment in India, which have very high abundance of AR genes. In the next result, three 

highly correlated elements will be described, due to high appearance in these Indian sites. 

Although the number of fragments studied in this project were scarce in comparison to 

other major projects; due to the polluted condition of these sites it was clearly identifiable 

the high presence of AR genes.  

In addition to corroborate both latest results a heat map of the table will show the patters of 

AR genes distributed in different environments. Figure 3 shows the table 50, with 229 AR 

genes in the y-axis order by type of antibiotic that can be affected by the AR genes, and in 

the x-axis all 347 sites grouped by project.  
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Figure 3 Heat map of Table 50 showing the distribution of AR genes in the 
environment: The input data for the statistical analysis is this matrix, obtained after the 
bioinformatics pipeline. The dimension of this matrix is 229 genes in the y-axis with genes 
ordered by type of antibiotic that they can inhibit. In the x-axis 347 sites are shown ordered 
by project name. This table shows very sparse data, all counts that are zero are shown with 
white and as the amount of counts increases the color also increases in the intensity, having 
darker red those that are more abundant. Additionally in color black the most abundant 
gene TEM (Beta lactamase) is highlighted as the most abundant AR gene in different 
environments.  

From this table we can also observe, in the group of Beta lactamase, four darker lines which 
correspond to TEM, pbp1a, pbp2 and SHV, found in the top ten AR genes Figure 1. 
Additionally if we look at the columns, we can particularly observe in the beginning of the 
table (left side) the two acid mine sites having the highest presence of TEM. We can also note 
a broad range of white in the left side of the table; this is due to the presence of Antarctica 
sites in this region of the table, which have significantly low amount of AR genes. Other 
example is the clear middle red column which belongs to the western channel sites from UK. 
Finally, the further right sites are the India samples which also possess high abundance of 
AR genes. Many more details can be described from the table but we will now focus on the 
results of the clustering for similarities between environments. 
 
Moreover, we also compared the similarities between sites by clustering, using the new 
similarity measure proposed. To show that even though the resistome has a high diversity 
we can find interesting similarities between the studied sites. Similarities were found in 
geographically close sites and sites with similar environments even if they are located far 
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away from each other. These sites will then cluster together when having similarities in 
their abundance of AR genes. Five examples are described in the following Figure 4 showing 
particular similarities in clusters between sites.  
 
First, see in purple, two sites from project EBPR sludge (enhanced biological phosphorus 
removal), This is an example of managed environment, WWTP, urban polluted environment 
of two geographically apart sites clustering together, one site located in US and the other in 
Australia. The project had used traditional Sanger sequencing, and the data is from 2004. 
Then in yellow, eighteen sites from the project Twin Study are clustered together, all those 
samples were sequenced using 454 pyrosequencing. This is an example of a host-associated 
environment, from human microbiota of monozygotic twins and their mothers, which 
characteristics in health condition were to be lean or obese. See in orange, all sites from 
India discharge site are very well clustered together, even differentiating upstream and 
downstream sites. Example of managed environment, WWTP, antibiotic polluted 
environment, all sequenced with 454 NGS. Additionally, we found similarities between other 
sites from similar environments (even though they are physically apart). As a last example, 
see in light green, many saline water environments had been clustered together from the 
project Global Ocean Sampling Expedition GOS, the most right cluster has two sites, from 
two different environments, on in Panama City and the other between Madagascar and 
South Africa. (Example of semi natural environments) sequenced samples with traditional 
Sanger sequencing. 

3) Which AR genes have co-resistance? 

Also with clustering, we observed groups of antibiotic resistance genes with similar 
abundance patterns between sites, meaning these AR genes co-occur in many sites (This co-
occurrence could be in the same bacteria or in different species of bacteria which cohabit in 
the same community). Several of these groups could be linked to known mobile elements 
and genetically linked co-resistance. To characterize this co-resistance we used the 
transposed matrix of counts (Figure 3, transposed) to first calculate the similarity between 
the AR genes and then with clustering significant groups were found for several AR genes. 
These genes are associated with resistance to several classes of antibiotics, including beta 
lactamases, sulfonamides, aminoglycosides, between others. Additionally, with some 
elements such as transposases and integrases which facilitate the mobility of these AR 
genes. 
 
In Figure 4 two groups are highlighted to show examples of co-resistance. First in blue a 
well know group of AR genes sitting in the same plasmid. The sul2 gene which encodes 
sulphonamide resistance, commonly found in Escherichia coli from different hosts (Trobos et 

al. 2009), is found in the same group cluster with APH(3″)-Ib and APH(6)-Id, two resistance 
genes encoding for the aminoglycoside phosphotransferases which inactivates streptomycin 
by phosphorylation (Shakil et al. 2008). These two AR genes are also known as strA and strB. 
These three elements are found in the RSF1010 plasmid (Carattoli, 2009), (Yau et al. 2010), 
(Kristiansson et al. 2011). Furthermore, but not shown very close to this example, it is know 
that this group is particularly mobilized by the transposase ISCR2. From figure 4, ISCR1 and 
ISCR2 are both hanging from the cluster that mobilizes a broad range of other genes (to the 
left of this example).  
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The second highlight in Figure 4 is shown in green. A similar group, sul1 also grouped with 
two other three genes providing resistance to aminoglycosides, and some mobile elements. 
There are many examples of sul1 encountered in close relation with ISCR3 and ISCR5. As 
before this also a known group, but characterized more recently by Coyne et al. 2010 
indicating that sul1 is found in the same plasmid with ISCR3 suggesting horizontal 
acquisition. Also from GenBank: AB207867.1 where ISCR3 is called putative transposase in the 
E. coli transposon Tn2610, found together with sul1. For ISCR5 the GeneBank: 
DQ517526.1plasmid from E. coli APEC O1 named pAPEC-O1-R shows sulfonamide resistance 
Sul1, together with ISCR5. Moreover aac(6')-lb (aminoglycoside) is known to be in the group of 
multiple AR genes together with sul1 (Dubois et al. 2002) and others to provide resistance to 
quinolones (Robicsek et al. 2006). For further inference of the clusters in Figure 4 one should 
carefully have some experimental verification with other collaborations with additional 
extensive search in the literature. 
 
  



 
 

24 
 

 

 
Figure 4 Cluster of sites with 4 highlights 
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Figure 5 Cluster of Antibiotic resistance genes  



 
 

26 
 

Chapter 6 - Discussion and Conclusions 

Discussion 

Studying complex dimensional data has inherent challenges to overcome (Ruder, 2004). 
Having this extensive collection of data our study had multiple levels of complexity. 
However, as an exploratory approach to use metagenomics in search for a better 
understanding of the resistome, our aim was successfully fulfilled. The project had defined 
clear questions to be answered, driven by the initial hypothesis of having a large and diverse 
resistome in environmental micro communities.  In order to answer these questions a 
computational biology scheme was put into practice first to reduce the dimensionality of 
the data and then to focus on the specific biological questions from a statistics perspective. 
We had been able to assess the data with the formulation of a new similarity measure and 
find out interesting results about the resistome in these environments. 
 
At present, metagenomic analyses are in the spotlight for studying microbial communities 
with promising results, especially along with the improvements in NGS techniques. 
Essentially in data mining, of genomes of microorganisms collected from an entire microbial 
community, possess some obvious challenges. Also stated by Pop, 2009 metagenomics relies 
on large-scale sequencing efforts of entire microbial communities which undoubtedly leads 
to new computational challenges. Interesting, is that instead of looking to isolated genomes, 
metagenomics focus on the functions of the genes collected from communities. At this point 
the differences in the sequencing read length from the initial data will be discussed. 
 
As starting point, approximately half of the projects used traditional Sanger sequencing and 
the other half used 454 pyro-sequencing.  Some important differences that affect directly 
the analysis are, Sanger sequencing gives a read length, between 500-1000 base pairs long. 
With a very low error rate (which is lower than 1%). Sanger sequencing is still considered 
more accurate sequencing technique for analyzing complete genomes. However, 454 
sequencing offers less read length, up to 300-500 base pair, it sequences in parallel and thus 
provides considerable larger quantities of sequences with a relative low price in comparison 
to Sanger sequencing. In addition, this technique does not require DNA cloning before the 
sequencing, removing one of the main biases in metagenomics. Read length is 
unquestionably crucial when it comes to assembling accurate sequences. On the other hand, 
the gene-centric analysis of metagenomics flairs to obtain sufficient information from a 
microbial community that ensures the specificity needed to compare sequenced reads 
against DNA or protein databases.  
 
Also in relation to the amount of data studied the collection differs in data size. The major 
division is the collection of metagenomic data from 50 different projects. Then, some of 
projects had only one site, while others can have more than 100. When having less 
information (number of sites) thus little information could be retrieved from those (also 
depending on the sequencing technology and the amount of sequences and the read length). 
After the preprocessing of data, many results where encountered between larger projects or 
those that were more polluted (as expected). The results showed that the most abundant AR 
genes are very spread, but located in extreme environments (Figure 2).  
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Additionally to the amount of data one can discuss how the abstracted data was assessed. 
This was another challenging task, due to the un-limited possibilities to define the criteria 
of generalization. In the simplest aspect we defined the amount of sequences found for 
each AR gene per site. With a more complex view we could have divided this sequences 
first by the type of sequence methodology or even regroup the projects by similar 
locations, etc. Add information from metadata, which in this case is important to notice 
that the quality of this was not the best and it added some difficulties in the 
systematization.  
 
Another point that deserves to be justified is that while undertaking the analysis, one of 
the projects “Gutless worm” (host-associated environment) with only one site, had to be 
removed from the data. Regarding the literature review (Woyke, 2006) it was found that the 
plasmids were amplified with AR genes encoding chloramphenicol resistance. During the 
cloning step it can be inferred that some error had make these AR genes to be amplified 
and probably account for higher counts than normal. To prevent deviations in our results, 
it was consider best to exclude this project (and its unique site) from the analysis.  
 
Significantly, these sorts of metagenomic analyses are totally dependent on the quality and 
amount of AR genes to be used as a reference. In this case from our 404 AR-profiles 
(version 0.1-2 of the AR database) the quality is being improved with some literature review 
and the amount is also in process to add some other data from collaborators and new 
findings of the group. One can notice that with this approach no new AR genes will be 
found; and only those that are part of the data base will be found and characterized. Also 
to clearly identify the suggested co-resistance one need to perform the experimental 
validation which is why in bioinformatics the collaboration with experimentalist is so 
important. 
 
Also as relevant the different thresholds are determinants when analyzing the results 
from the homology comparison. For this preliminary analysis three different thresholds 
were selected in a pure exploratory approach, selected in judgment with the global output. 
These thresholds can be considered ad hoc for the purpose of this analysis, in which the 
data itself was the main driver. After the careful judgment to select the thresholds we 
analyzed the data with the clustering. From these three, we decided that threshold E-50 
was sensible enough to encounter all possible true positives AR genes, even though we 
could lose some significance while adding some false positives to the end results.  
 
The last point of the discussion corresponds to the statistical analysis. The need of a new 
measure was emphasized by the sparse matrix. The main goal of this measure was to 
affect the statistical power of detecting less abundant resistance genes as well as assessing 
other slightly less counts of resistance. One of the discussions was derived from the 
presentation in which it was observed the importance of null-pairs to add the scaling 
factor, but perhaps another beneficial improvement could be to add the importance to 
those pairs that possessed one null and a low value. Nevertheless the significance of this 
approach was proven effective when finding the expected outputs about those projects 
from which we had more information. The similarity measure has a pragmatic formulation 
and it is mathematically tractable. The main drawback of this method, as other similar 
implementations, is that the data size has a direct exponential relationship with the 
computational time required for the analysis.   
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Conclusions 

Our effort to analyze the resistome by using metagenomics data was proven very 
powerful. A new workflow to investigate this large metagenomic data was developed and it 
helped to reveal such interesting results and also validate our findings with previous 
research. We used HMMER as software for sequence comparison which uses statistical 
models to find the close related alignments giving to the outcome high statistical accuracy. 
Also we refined the results by filtering the output with python scripts. This, to ensure the 
quality of the first step, identification of AR genes with the reference data base of AR 
profiles.  
 
After making a notorious reduction of the data we developed a novel statistical measure 
aimed to fit the sparse matrix in the analysis considering the large variety of data 
involved. This step was verified to be useful when validating the results with the 
clustering analysis and finding expected patterns. Undoubtedly, significant differences in 
the resistome of the investigated sites were shown. Yet we conclude that the resistome is 
extensive, adaptable and it can be characterized. We also conclude that is feasible to use 
metagenomics to identify antibiotic resistance genes in uncultured bacteria, in various 
environments. 

Future work 

During the forthcoming years it is predicted that next generation sequencing and 
metagenomics are going to generate massive amounts of data. Our effort to be pioneers in 
developing new tools and methods to study this data put us in a standing position for 
others to benefit and improve from our research. Additionally, significant value is given to 
exploratory analyses for the future generation of new hypotheses. There are many depth 
levels to gain with the prospectus of metagenomics.  
 
In a turned direction, a common belief about antibiotic resistance is simply associated to 
the defense response to the presence of a given antibiotic. However, recent work indicates 
that the situation is more complex. Other alternative functional roles for resistance 
elements are now being proposed, and need further studies. For example signal molecules 
to be aware of antibiotic molecules that could shape the structure of microbial 
communities. This important behavior could be used in bioremediation and similar 
applications. Also, other research could focus on the adaptation of microbial communities 
for nutrient poor environments and the consequences of these changes. 

Thoughts 

Over the years antibiotic resistance mechanisms have been increasing worldwide, and our 
generation faces this problem with potential damage to human health, and to the 
environment. Remarkably, this study revealed that multidrug resistant genes are among 
the most common AR genes found in the environment. This could give us insights about 
the (miss) use of antibiotics and the consequences of the increment of antibiotics and 
antibacterial in the last decades.  Significantly, we showed that multiple classes of 
resistance genes are promoted by the selective pressure of highly contaminated sites. 
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Finally, the study of the resistome requires not only gene-sequence analyses but also 
rigorous follow-up experimental validation. The practice obtained in this project has 
fundamental importance due to the future applications of the methodology applied, which 
can be used for metagenomic analyses with other sources of information and with other 
hypotheses.  
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Appendices 

Interesting Facts 

“Therapeutic use of antibiotics in humans, accounts for less than half of all applications of 
antibiotic produced commercially” (Davies & Davies, 2010).  
 
"Only 40% of Europeans know that antibiotics are ineffective against viruses". 
(Eurobarometer 2001), (European Commission Directorate General for Research, 1995-2012 ) 
 
“Lack of knowledge is a major factor responsible for inappropriate antimicrobial use 
globally.” (WHO , 2001) 
 
TEM was named extended spectrum β-lactamases (ESBLs) by (Philippon, Labia, & Jacoby, 
1989) 
 
“Multidrug-resistance efflux pumps can confer resistance to natural substances produced 
by the host. In addition, some efflux pumps have been shown to have a role in the 
colonization and the persistence of pathogenic bacteria in the host.” (Piddock, 2006) 
 
“Genome sequencing endeavors to reveal a plethora of resistance genes that are present in 
all bacteria.” (Wright, 2007) 
 
One example of antibiotic resistance determinants with a functional role other than 
affording resistance is provided by multidrug resistance (MDR) efflux pumps, other 
functions are to contribute to virulence, to maintaining homeostasis and to the 
detoxification of intracellular metabolites, among other functions (Martinez et al. 2009). 
 
J. Craig Venter, President of (J. Craig Venter Institute, 2012), has invaluable contributions in 
genomic research. For this project some of these research data had been used, such as:  

1) Global Ocean Sampling Expedition, circumnavigating the globe and collecting 
metagenomic samples throughout. 

2) The pilot project, conducted in the Sargasso Sea. 
3) The Human Microbiome Project (HMP) initiated by National Institutes of Health, NIH 

US now continued with the help of JCVI. 
 
In the AR data base, we had some transposons, integrons and plasmids which are mobile 
elements (Keen & Montforts, 2012). These elements help to spread resistance, transposition 
includes the well-known transposons flanked by inverted repeat insertion elements and 
other elements such as ISCR elements that only require one insertion element for gene 
mobilization (Toleman, Bennett, & Walsh, 2006). 
  
The remarkable ability of bacteria to mobilize genes and the selective pressure provided by 
antibiotics, conspire to facilitate the distribution of antibiotic resistance genes throughout 
microbial populations. As a result, the resistome expands even in the absence of 
continuous selection. (Wright, 2007) 
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The integrons (Stokes & Hall, 1989) are modular structures with a major role in the 
development of antibiotic resistance. These gene-recruitment determinants have a high 
impact in clustering antibiotic resistance genes, which may later be transferred to 
pathogens. (Martinez et al. 2009) Type 1 integrons contain a conserved gene coding for 
resistance to sulphonamides (Stokes & Hall, 1989).  
 
It is important to note that sulphonamide resistance is still widespread in the United 
Kingdom despite national prescribing restrictions (Enne et al., 2001), probably because of 
the success of these integrons in recruiting other antibiotic resistance genes. 
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Additional graphics 

 
Figure 6 some of the sites around the world 

 
In this plot, I joined together more than 150 sites out of the 650 study sites. Just with the 
sites which had clear named locations in the metadata. Many of the points that are not 
shown in this picture have either coordinates (which need another type of plotting, and 
thus cannot be combined in this plot) or have no location at all. Additionally, some of the 
points have very few information of the sites, for instance the project Antarctica has 160 
sites where most of those just have a location “Antarctica” this continent has a size of 
14,000,000 km2  which of course makes the plotting more difficult, because of lack of 
specific metadata. Very interesting, is to note all the sites that do not have any collection 
of metagenomes, and this could be an starting point to plan new projects. 
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Figure 7 Sites by number of projects 

As mentioned in the previous figure, Antarctica accounts for almost 25% of all the data 

collection, being used as a reference project. We believed that Antarctica is the cleanest 

environment that we had studied, considering this continent is permanently covered with 

a thick layer of ice and no significant (anthropogenic) pollution has affected these lands. 

The second largest project is the Global Ocean Sampling Expedition, voyage of the Sorcerer 

II visiting 23 different countries and island groups on four continents. Funding for this 

came from the J. Craig Venter Science Foundation (now JCVI).  As can be seen 10 of the 50 

projects provide almost 45% of all the metagenomic information studied. 

Similarly the next bar plot (Figure 9) shows the projects which provide more information 

to the study, this time by summing up all the sequence information. Again Project 

Antarctica has the highest amount of sequences (which we always keep in mind is totally 

dependent on the sequence technology). Figure 9 goes together with Figure 10 which 

reflects the amount of AR genes found in the project and one can see that even when 

having such a large sample like Antarctica not much AR genes are found, or on the other 

hand a small sample like India WWTP, being a polluted site has found a vast amount of AR 

genes.  
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Figure 8 Amount of data by Nr of Fragments per project 
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Figure 9 Thresholds in 30 projects filtering out those that do not show any AR genes in higher threshold that E-50 
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Data reduction 

Initial data 98 GB after data preparation, 355,840 MB 
Just as example, the normalization methodologies used in the data abstraction. As stated 
in the methods sections, these normalization methods were the first attempt, but later 
only normalization by abundance per site was used, included in the similarity measure. 
 
 

Table 0-1 Example of an abstracted table 

Profile Site 1 Site 2 Site 3 

 ARG1 1 2 4 

ARG2 0 2 3 

ARG3 25 0 0 

ARG4 2 11 2 

 

Table 0-2 Example of table with t0otal number of fragments per site 

Total number of fragments per site Site 1 
1500 

Site 2 
3000 

Site 3 
800 

 1+0+25+2=28 2+2+0+11=15 4+3+0+2=9 

 
Table 0-3 Example normalized by the 

number of fragments per site 

Profile Site 1 Site 2 Site 3 

 ARG1 1/1500 2/3000 4/800 

ARG2 0/1500 2/3000 3/800 

ARG3 25/1500 0/3000 0/800 

ARG4 2/1500 11/3000 2/800 
 

Table 0-4 Example Normalized by 
abundance per site 

Profile Site 1 Site 2 Site 3 

 ARG1 1/28 2/15 4/9 

ARG2 0/28 2/15 3/9 

ARG3 25/28 0/15 0/9 

ARG4 2/28 11/15 2/9 
 

 
Table 0-5 Results of normalization per 

total num. of fragments 

Profile Site 1 Site 2 Site 3 

 ARG1 6,666e-4 6,666e-4 0,005 

ARG2 0 6,666e-4 0,00375 

ARG3 0,01666 0 0 

ARG4 0,00133 0,00366 0,0025 
 

 
Table 0-6 Results of normalization per 

abundance per site 

Profile Site 1 Site 2 Site 3 

 ARG1 0,0357 0,1333 0,4444 

ARG2 0 0,1333 0,3333 

ARG3 0,8928 0 0 

ARG4 0,0714 0,7333 0,2222 
 

 
 
 
 
 


