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Abstract

Water hammer is a problem that arises in district heating systems when there are
abrupt changes in the �ow operating conditions. As this often leads to damaged
equipment it is of importance to simulate these e�ects in advance using various
simulation tools. This thesis investigates how a general simulation software such as
Dymola performs in comparison to the more specialized software available on the
market for �uid transient calculations. The �nite volume method in Dymola has
been compared to the method of characteristics in the PFC simulation software.
The overall conclusion is that Dymola may be used in cases where the system to be
modelled is not too complex and accurate results are not required.
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Nomenclature

λ Darcy friction factor [-]

λ2 Modi�ed friction factor [-]

f Fanning friction factor [-]

a Wave speed [m/s]

α Angle between vertical and horizontal plane [deg]

P Static pressure [Bar]

ρ Density [kg/m3]

x Coordinate along horizontal axis [m]

z Coordinate along verical axis [m]

A Cross sectional area of pipe [m2]

L Length of pipe [m]

H Manometric pressure head [mLc]

v Velocity [m]

V̇ Volumetric �ow rate [m3/s]

τ Shear stress [Pa]

k Thermal conductance [W/m,C]

E Elastic modulus [GN/m2]

b Pipe wall thickness [m]

Cp Speci�c heat capacity [J/kg,C]

K Bulk modulus [Pa]

kv Valve coe�cient (European standard) [-]

S Circumfurance [m]

ṁ Mass �ow rate [kg/s]

m Mass [kg]

M Momentum [kg m/s]

F Force [kg m/s2]

d Diameter [m]

δ Absolute roughness of pipe [m]

µ Dynamic viscosity [kg/m s]

Tp Time period of pressure wave [s]

t Simulation time [s]

Φ Convective �ow property [-]

vii



h Valve opening [-]

Re Reynolds number [-]

g Gravitational acceleration [m/s2]

W ′ Ideal work input for a certain hydraulic head [J ]

DAE Di�erential Algebraic Equation

ODE Ordinary Di�erential Equation

MOC Method of Characteristics

FVM Finite Volume Method

1 bar = 10.4mLc Assuming a water temperature of 65 ◦C

viii



1 | Introduction

1.1 Background

ADistrict heating system is an e�ective way of transporting heat around a city. Since
many cities in Sweden are dependent on district heating it is of importance that
these systems maintain a safe and functional operation.The piping and pumping
networks in these systems involve large �ow rates and a problem that can occur
in the system is water hammer which is mostly caused by sudden valve closure
or pump failure. Severe water hammer is damaging for pipes, pumps and valves
and the issue needs to be closely examined. A dynamic simulation of the water
hammer e�ects arising from such cases gives valuable information which can be used
in system design and assesment of problems and improvement of already existing
networks.

The thesis work will be carried out at Solvina AB, a consulting company based in
Gothenburg with a lot of experience in dynamic modelling. The Dymola simulation
software based on the Modelica programming language will be used for dynamic
simulation.

1.2 Objective and Speci�cations

The primary objective is to determine the capability of the Dymola simulation tool
to simulate the water hammer phenomena. Since Dymola is an all round simulation
program it will be compared to the most commonly used software on the market.
This evaluation will be done in cooperation with Göteborg Energi. Göteborg Energi
has provided simulation data from their calculations along with schematics and �ow
operating conditions of the Gothenburg network.

1.3 Scope and Delimitations

The water hammer concept will be simulated by using simple models that will
be compared to the calculations made by Göteborg Energi and a larger model
that is more representative of a real district heating system. This larger model is
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Chapter 1. Introduction

based on the Gothenburg district heating system. No experimental data for external
veri�cation of the calculation methods has been gathered. No simulations will be
made related to minimizing water hammer e�ects.
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2 | Theory

This chapter provides the theoretical background required for the modelling of �uid
transients.

2.1 Water Hammer

Water hammer is a phenomena in the �eld of �uid transients. When a �owing
�uid in a pipe undergoes a sudden velocity deceleration the dynamic pressure is
converted into static pressure. This occurs when there is a sudden change in the
�ow operating conditions such as valve closure or pump failure. It becomes clear
that a pipe must be able to withstand not only the static steady state pressure, but
also the increase in static pressure due to transient e�ects. All �uids are to a certain
extent compressible and pipes have a speci�c elasticity depending on the material.
If the �ow is suddenly stopped at the end of a pipe connected to a valve a pressure
wave will propogate backwards through the pipe. Consider a pipe of length 1000 m
shown in Figure 2.1.

Figure 2.1: a) Before valve closure, b) Suddenly after valve closure, c) one second after
valve closure

3



Chapter 2. Theory

Since the �uid is slightly compressible, the �uid �ow at the valve will stop before
the rest of the �uid that will continue with the original velocity vo until the pressure
wave has reached that point along the pipe. The wave velocity a is a function of
both the pipe elasticity and the �uid compressibility. If the wave speed is 1000 m/s
the wave will reach the end of the pipe after one second and the �ow will then
have stopped completely. As the �uid has been compressed the pressure is highest
close to the valve causing the �ow to reverse. The pressure wave will now propagate
in the opposite direction. This process will be repeated until the wave has lost all
its energy through pipe friction and viscous forces. In some cases, as the pressure
wave oscillates the static pressure can drop below the saturation pressure causing
cavitation. As the pressure again increases the vapor bubbles implode which can
lead to damaging of the pipes.

The time it takes for the wave to travel forward and back through the pipe is the
periodic time de�ned as

Tp =
2L

a
(2.1)

If the pipe is completely inelastic and the �uid completely incompressible the wave
velocity would approach in�nity. The elasticity of the pipe reduces the wave speed
to less than the speed of sound in the �uid.[5] If the valve closing time is much
shorter than Tp it is referred to as instantaneous valve closure. The opposite case
is known as slow valve closure where the valve closing time is much larger than Tp.
[6]

2.1.1 One Dimensional Fluid Pipe Flow

Following the previous section on water hammer it becomes evident that equations
governing the transformation of �uid states during the transient process are re-
quired. During the water hammer process the �uid undergoes a signi�cant change
in momentum. At the same time the �uid mass is always conserved regardless of
pressure or velocity changes. The following system of equations containing the mo-
mentum equation for pipe �ow and the continuity equation describe the �uid �ow.
See appendix A for a derivation.



∂ (ρvA)

∂t︸ ︷︷ ︸
I

+
∂ (ρv2A)

∂x︸ ︷︷ ︸
II

= −A∂P
∂x︸ ︷︷ ︸

III

− 1

2
ρv|v|fS︸ ︷︷ ︸

IV

−Aρg ∂z
∂x︸ ︷︷ ︸

V

∂ (ρA)

∂t︸ ︷︷ ︸
VI

+
∂ (ρAv)

∂x︸ ︷︷ ︸
VII

= 0

(2.2)
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Chapter 2. Theory

In words the terms are



I=accumulation of momentum

II=transport of momentum by convection

III= momentum created by pressure gradient

IV=momentum loss due to friction forces

V=momentum due to potential energy relative to a ground reference level

VI=accumulation of mass

VII=transport of mass along �ow direction
(2.3)

This system of equations has no analytical solution why numerical methods are
required. Moreover, the �ow relations are only valid for laminar �ow. This is a rea-
sonable assumption for a district heating system were �uid velocities are relatively
low.

2.1.2 Calculation Method

In certain special cases simpli�ed relations such as Juokowskis equation for instan-
taneous valve closure or rigid body theory for slow valve closure can be enough
to estimate water hammer e�ects.[6] These simpli�ed equations would be hard to
implement in the Dymola simulation tool even in their range of appliance as they
cannot be applied to a dynamic system with initial steady state conditions as is the
real case in a district heating system. As the aim of the project is to make dynamic
simulations a more sophisticated method such as the method of characteristics or a
�nite volume method is required. Both techniques will be described in the following
sections. Dymola uses the �nite volume method in �uid components. The method
of characteristics solves the water hammer equations according to a pre-de�ned al-
gorithm where each time step is dependent on variables at an earlier time, why
it is not suitable for Modelica. However, it will be used for model evaluation and
comparison between methods.

2.1.3 Finite Volume Method

The �nite volume method is one of the most common numerical solution methods in
computational �uid dynamics. The �rst step is to de�ne the computational domain
by creating a grid. A grid consists of an arbitrary number of nodes where physical
properties such as temperature and pressure are stored. Surrounding the nodes are
the control volume faces. When integrating over the control volume boundaries,

5



Chapter 2. Theory

the values of physical properties at the faces need to be estimated by a suitable
approximation known as a discretization scheme. The type of scheme will vary
depending on application. If the distance between the cell faces is equal to the
distance between two adjacent nodes the grid is equidistant.

The idea of the discretization process (integrating and then using a di�erence
scheme) is to yeild a system of equations that can be solved using an iterative
procedure. The number of linear equations will equal the number of nodes in the
domain. In this way the system becomes coupled since the value of physical prop-
erties at a certain node is dependent on all the other nodes. Thus, in a converged
solution all equations must be satis�ed for the correct solution to be obtained.
[7]

2.1.3.1 The Upwind scheme

The upwind discretization scheme is commonly used for convective terms as it is a
relatively simple but useful approximation. Consider a grid formation as in �gure
2.2

Figure 2.2: Upwind discretization scheme for positive �ow direction. Point P is the centre
of a control volume with faces e and w. [7]

If the problem were of a di�usive type the transport of a property spreads equally in
all directions why central di�erencing is used in such cases. Convective transport of
a �ow property Φ is strongly dependent on the direction of �ow. The upwind scheme
accounts for this by making the following assumptions of values of a property at
control volume faces.

6



Chapter 2. Theory

{
Φw = ΦW

Φe = ΦE

(2.4)

In this way the transportiveness criteria is ful�lled. The drawback is loss of accuracy
as the scheme is only �rst order accurate. If the �ow direction was reversed the same
priciple will be true in the opposite direction.

2.1.3.2 The Staggered Grid

When solving general transport equations of �ow properties usually the standard
collocated grid formation in �gure 2.2 is su�cient. However, this causes a funda-
mental problem when solving the momentum equation. If the velocity and pressure
are stored at the same nodal points a non uniform pressure feild can act as a uniform
pressure �eld when calculating the pressure gradient. This leads to an unphysical
solution of the momentum equation. A common solution to this problem is the
staggered grid formation shown in �gure 2.3.

Figure 2.3: Staggered grid in one dimension. [7]

A new set of notations are introduced in order to correctly de�ne the location of
nodes and faces. Since only one-dimensional �ow is considered the J coordinate is
constant. The pressure and other scalar variables are stored in the scalar control
volume which centre is denoted by capital letters. See point (I, J) in �gure 2.3 where
the pressure node is located. The velocities are stored in the u-control volume that
is shifted half a control volume to the left of the P-control volume. The center of the

7



Chapter 2. Theory

u-control volume is located at point (i, J) in �gure 2.3. The pressure nodes coincide
with the control volume boundaries of the u-control volume.

All terms in the momentum equation are integrated over u-control volumes and the
continuity equation is integrated over scalar control volumes. [7]

2.1.3.3 Solution of Equations

The Dymola simulation program can only handle ODE's with respect to time.
However, the momentum and continuity equations are partial di�erential equations
in space and time. This requires pre treatment of the equations by discretizing over
a spatial control volume.

Consider a pipe of length L with constant cross sectional area divided into n control
volumes along an equidistant grid spacing ∆x = (I, J)− (I − 1, J)

Using staggered grid notations to integrate the continuity equation over the scalar
control volume gives

i+1,J∫
i,J

∂ (ρA)

∂t
dx+

i+1,J∫
i,J

∂ (ρAv)

∂x
dx = 0 (2.5)

Assuming that the control volume boundaries are constant the integral and derivate
are interchanged as

d

dt

i+1,J∫
i,J

ρAdx+

i+1,J∫
i,J

∂ (ρAv)

∂x
dx = 0 (2.6)

Assuming an average density over the scalar control volume gives

d

dt
AρI,J∆x+ ρi+1,Jvi+1,JA− ρi,Jvi,JA = 0 (2.7)

The velocities at the scalar control volume faces don't require interpolation as they
coincide with the velocity nodes in the u-control volume. Note that v in the equa-
tions above is equivalent to u in �gure 2.3.

In a similiar way the momentum balance is integrated over the u-control vol-
ume.

8



Chapter 2. Theory

I,J∫
I−1,J

∂ (ρvA)

∂t
dx+

I,J∫
I−1,J

∂ (ρv2A)

∂x
dx = −

I,J∫
I−1,J

A
∂p

∂x
dx−

I,J∫
I−1,J

1

2
ρv|v|fSdx−

I,J∫
I−1,J

Aρg
∂z

∂x
dx

(2.8)

Interchanging the integral and derivative for the accumulation term as in equa-
tion 2.6 the resulting terms after integration are

d

dt
Aρi,Jvi,J∆x+

(
ρv2A

)
I,J
−
(
ρv2A

)
I−1,J

= −A (PI,J − PI−1,J)−1

2
ρi,Jvi,J |vi,J |fS−Aρi,Jg∆z

(2.9)

The velocities at cell faces (I, J) and (I − 1, J) are estimated by the upwind
scheme.

d

dt
Aρi,Jvi,J∆x+ρI,Jv

2
i,JA−ρI−1,Jv

2
i−1,JA = −A (PI,J − PI−1,J)−1

2
ρi,Jvi,J |vi,J |fS−Aρi,Jg∆z

(2.10)

Note that the pressures at faces (I, J) and (I − 1, J) are nodal point values in the
scalar control volume. Equations 2.7 and 2.10 are two coupled equations for deter-
mining the correct velocity and pressure �eld since both equations are a function of
the velocity. The system contains non-linear di�erential equations with respect to
time. Integration over a time step is required, followed by iteration until a converged
solution is obtained. The integration method dassl by Petzold(1982) was used for
solving the equations and is brei�y described in the next section. [8, 9]

2.1.3.4 Dassl

Dassl is one of the most universal algorithms for solving systems of DAE's of type
index zero and index one. The index of a DAE is the amount of di�erentiations
needed to turn the system into an ODE.

Consider a DAE on the general form with given initial conditions.


F (t, y, y′) = 0

y(t0) = y0

y′(t0) = y′0

(2.11)

F , y and y′ are assumed to be N-dimensional vectors. The derivative in 2.11 is
replaced by a di�erence approximation known as the implicit Euler equation. This

9



Chapter 2. Theory

gives

F

(
tn+1, yn+1,

yn+1 − yn
tn+1 − tn

)
= 0 (2.12)

The algorithm can be extended beyond �rst order backward di�erencing to order k,
which ranges from one to �ve. The order varies with the behaviour of the solution.
The resulting non-linear system is solved using Newton's method. In order to start
the solution dassl needs to solve an initialization problem of the form

F (t, y, y′) = 0, t = t0 (2.13)

The transient behavior of �uids in the Dymola simulatiuons are always initiated in
steady state which provides the required conditions for initialization. [10]

2.1.4 Method of Characteristics

The method of characteristics is a mathematical method for solving partial di�eren-
tial equations. It is widely used in a lot of commercial software specializing in �uid
�ow simulations. The idea is to transform the original equations into a set of ODE's
valid along certain characteristic lines in the x− t domain. Equation system 2.2 is
expressed on a slightly di�erent form.The convective transport term in the momen-
tum equation is assumed negligible as is true for liquids with low compressibility.
The static pressure is expressed as a manometric head. This gives

{
∂(ρv2A)

∂x
= 0

∂p
∂x

= ρg
(
∂H
∂x
− ∂z

∂x

)
= ρg

(
∂H
∂x
− sinα

) (2.14)

Dividing the momentum equation in 2.2 by ρA combined with the above assump-
tions the following equation is obtained.

g
∂H

∂x
+
∂v

∂t
+
fv|v|

2d
= 0 (2.15)

The treatment of the continuity equation in this case is more extensive. Instead
of integrating over a control volume the equation is expanded and expressed as a
function of the wave speed.

a2

g

∂v

∂x
+
∂H

∂t
= 0 (2.16)

Equations 2.15 and 2.16 form a system of partial di�erential equations. Applying
the The method yeilds close to exact solutions. A small error arises due to the

10



Chapter 2. Theory

required linearization of the friction term between two time steps.[5] See Appendix
A for a more detailed description.

2.1.5 Valves

The pressure drop over a valve is a function of the valve coe�cient and the volu-
metric �ow rate.

∆P =

(
V̇

kv

)2

(2.17)

Figure 2.4: Various de�nitions of the valve characteristic
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Chapter 2. Theory

The standard unit of kv is m3/h although it can be seen from the above equation
that this is not strictly dimensionally correct. If kv = 1 m3/h it implies that the
�ow through the valve is 1 m3/h for a pressure drop of 1 bar.

The relationship between the valve coe�cient and the opening h of the valve is
known as the valve characteristic. See Figure 2.4. The kvs value is the valve coe�-
cient for a completely open valve.

Assume that at some nominal opening h the pressure drop and �ow through the
valve are known. Based on this operating point equation 2.17 then determines the
kv value for the opening. The �ow in the system can then be determined for the real
operating case with another value of ∆P in the same equation since kv is unchanged
as long as the valve opening position remains the same. [11]

2.1.6 Pipes

Pipes are the central component in a district heating system. The governing �ow
equations have been derived in section 2.1.1. The pressure drop due to friction
is an important part of the momentum balance and is described in the following
section.

2.1.6.1 Pressure Drop

The pressure drop over a pipe is dependent on several variables. One of the most de-
termining factors is the state of �ow with regard to turbulent or laminar conditions.
For a �ow in a circular pipe the following relations hold.



Re =
|v|dρ
µ

=
4ṁ

πdµ

ṁ = ρvA

A =
πd2

4

D =
d

δ

(2.18)

The solution to the 3-dimensional Navier-Stokes equation for laminar steady �ow
with constant pressure gradient, viscosity and density yeilds the Hagen-Poiseuille
relation for the wall friction factor.

λ =
64

Re
(2.19)
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Chapter 2. Theory

Generally λ is a function of both the Reynolds number and the relative roughness.
The exact relationship between these variables can be found in a standard moody
chart.

However in equation 2.19 the Reynolds number is zero when there is no mass �ow.
This leads to numerical di�culties in a simulation program. The solution to this is
to de�ne a modi�ed friction coe�cient as

λ2 = λRe2 (2.20)

Figure 2.5 shows the relationship between the �ow and pipe parameters in this
case.

Figure 2.5: Correlations based on a modi�ed friction factor λ2

2.1.6.2 Laminar Flow

The pressure drop over a circular pipe is

13



Chapter 2. Theory

∆P = λ(Re, d)
L

2d
ρv|v| (2.21)

By de�nition of the modi�ed wall friction factor and assuming laminar �ow where
Re ≤ 2000 the pressure drop is. [9]

∆P = 128ṁ
µL

πd4ρ
(2.22)

λ2 is estimated as a cubic polynomial between Re1(δ/d) and Re2 = 4000. [14]

2.1.7 Pumps

Figure 2.6: Centrifugal pump with impeller and di�user at the exit. [15]

The most common type of pumps in district heating networks are centrifugal pumps
which are in turbomachinery also referred to as radial-�ow machines since the �uid
enters axially and leaves in the radial direction. The main components of a cen-
trifugal pump are a rotating impeller followed by a di�user at the oulet. Fluid �ows
into the impeller eye on the suction side where the pressure is lower than the at-
mospheric pressure, as seen in �gure 2.6. The impeller does work on the �uid by
whirling it outward to increase the angular momentum. Both velocity and static
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pressure are increased during this process. As the �ow eneters the di�user with an
increased �ow radius the �uid velocity is converted into static pressure.

The pressure increase of the pump is often measured as the hydraulic head de�ned
as

H =
p

ρg
(2.23)
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3.1 Modelling Tools

3.1.1 Modelica

Modelica is a modeling language used for describing physical systems, created by
the Modelica Association.[1] The language is object-oriented and handles dynamical
systems. There are two di�erent approaches to modelling physical systems, causal
and acausal. In a causal system the model equations are evaluated according to
a pre-de�ned order by a certain algorithm. Modelica is an example of an acausal
or equation based system. In short, Modelica code has to be translated into an
executable C-code and then linked to a numerical integration algorithm known as a
solver. When the equations are manipulated by the compiler the resulting equation
system is solved simultaneously by the solver. It is therefore enough to specify
which equations are to be solved without specifying how or in what order. In order
to initiate a Modelica simulation initial conditions need to be speci�ed. This can be
done either by assigning start values to individual variables or as certain initiation
equations only valid at the initial time. [2]

Modelica aims to provide a language for model development over a wide range of
engineering domains, which are divided into libraries. Components are built using
a hierarchical structure and areas of application are for example �uids, mechanics
or electrics. [2] The Modelica standard library o�ers a wide range of components
programmed with the Modelica Modeling language. [3, 4]

3.1.2 Dymola

Dymola stands for Dynamic Modeling Laboratory and is a modeling and simulation
tool fromDassault Systèmes based on the Modelica language. The software utilizes
a graphical user interface to display components. Components can easily be found
in the Modelica standard library for various applications. There are two modes,
simulation and modeling. The simulation environment contains results of calculated
variables and plotted �gures, along with the solution algorithms.
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3.2 General Procedure

The starting point for the project was to gather information and understand the
theory behind the water hammer concept. At the same time, the basics of Dymola
and Modelica were studied. The Governing equations of �uid transients were ana-
lyzed in combination with practical examples. In order to put theory into practice
simulations were made in Dymola utilizing the �nite volume method.

Studying the Modelica language and component interactions has been a large part
of the project work. Chapter 4 gives a breif explanation of the components in the
Dymola models and gives the details of the three models that have been simu-
lated.

3.3 Model Veri�cation

In order to observe that the models are functioning and simulate the water hammer
concept several test models have been built. The transient �ow situations analyzed
are valve closure and pump failure. An example of each case is described in chapter
4 and the results of the simulations in chapter 5.

An e�ort to verify the Modelica model has been done in cooperation with Göteborg
Energi who use the method of characteristics for transient �ow calculations. The
method has proven to give accurate results for water hammer calculations and is
therefore considered to be the best reference point for comparison. The accuracy of
the Dymola models depending on the number of control volumes in the pipes will
be tested by a sensitivity analysis. The results of the sensitivity analysis will then
be compared to the method of characteristics. All the tests will be run for a simple
model of valve closure. Moreover, all results from the method of characteristics have
been simulated at Göteborg Energi.

3.4 District Heating System of Gothenburg

The District heating system in Gothenburg consists of over a 1000 miles of un-
derground pipes and supplies heat to the city as well as some neighbouring mu-
nicipalities. The energy is supplied mostly by waste heat from industries and heat
pumps at certain distribution points in the city. The area to be modelled is outside
of the main city where the network connects to the Ale/Älvängen community. The
case to be modelled is a pump failiure occuring along a main pipe of the network.
A comparison between the FVM (Finite Volume Method) and MOC (Method of
Characteristics) will not be made in this case as it becomes more di�cult to recreate
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the same initial operating conditions. However, a sensitivity analysis of a varying
number of nodes will be done. This model is considerably more complex than the
previous ones but is also much more representative of a real district heating sys-
tem. It will be used to test how the Modelica model performs in a more complex
scenario and compared to the more basic case of pump failiure. The model has been
simpli�ed to an extent compared to the real system of the Göteborg network. See
section 4.2.3.1
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4.1 Modelica Fluid Package

This section gives a description of the assumptions and settings behind the compo-
nents used for simulation in the models.

4.1.1 Incompressible Valve

Valves are a central component for �ow regulation of a �uid in a pipe network. Dy-
mola o�ers a range of di�erent valve types. The component Valve Incompressible has
been used in the models as it applies to almost incompressible �uids such as liquid
water. The valve sizing is given according to the IEC534/ISAS.75 standards. [9]
The component has a wide range of speci�cations for di�erent �ow conditions.

The Valves in the model are connected to a ramp function generator that controls
the valve opening. An o�set value determines the initial state of the valve opening
ranging from 0 to 1. The time it takes to close or open the valve to a new position
is then speci�ed. Pressure drop and �ow are determined by the equations in section
2.1.5.

4.1.2 Dynamic Pipe

The transient pipe behavior has been modelled using the Dymola component Dy-
namic Pipe. The pipe is discretized over an equidistant grid of one dimensional
control volumes using the upwind scheme and staggered grid as described in section
2.2.2. A wide range of input speci�cations and assumptions are available. The ini-
tial boundary conditions are implemented by knowing the steady state conditions
before a time dependent process starts. Other parameters such as diameter, pipe
length and wall roughness are all speci�ed in the component menu. The �ow model
detailed pipe characteristic has been used to calculate the pressure drop from wall
friction according to the correlations in the theory section. The component is set to
allow �ow reversal as this naturally occurs for an oscillating pressure wave. Pipes are
assumed to be inelastic. The e�ects of water hammer due to cavitation in the pipes
will not be considered as this would complicate calculations signi�cantly.
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4.1.3 Connectors

All components in the Modelica �uid package are equipt with ports at the begin-
ing and end of the component in order to make it possible to connect to other
components, thereby creating a �ow network. The standard connectors use certian
approximations that can reduce model accuracy. The mass balances are always ex-
act but the momentum balances are only exact if connecting pipes are of equal
diameter. This causes an error in the magnitude of the dynamic pressure but will
be ignored in the simulations.

4.1.4 Controlled Pump

The Centrifugal pump described in the section 2.1.7 is represented in the model by
the component Controlled Pump. The pump operating point is de�ned by the head,
volumetric �owrate and rotational speed. Every pump has a certain point of max-
imum e�ciency. For a certain rotational speed, the pump hydraulic characteristic
de�nes the relationship between the head increase and the �ow. In the modelica
models the pressure head is set by controlling the rotational speed.[16]

4.1.5 Fluid Properties

The Fluid data has been taken from the International Association for the Properties
of Water and Steam (IAPWS). The IF97 standard has been used in this case which
is implmented in the Dymola �uid library. [9]

4.2 Modelica Models

The assumptions and settings in the Modelica models built and simulated in Dymola
are presented here.A total of the models have been simulated. These include a simple
case of valve closure and pump failure along with a pump failiure in a more complex
system.

4.2.1 Valve Closure

As mentioned earlier, valve closure is one of the most common causes of water
hammer. The test model used to simulate a valve closure event is shown in �g-
ure 4.1
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Figure 4.1: Experimental model for simulating sudden valve closure.

The various components are con�gured with values that determine the initial �ow
operating case. The di�erence in pressure between the source and sink drives the
�ow in the system. The pressure continously falls in the pipes until it reaches the
end of the pipe. The pressure at the sink is set to zero in the Göteborg Energi
model. In modelica it is only numerically possible to set the �ow rate very close to
zero resulting in a small error of the initial �ow operating conditions between the
two calculatuon methods. The model is initialized in steady state and the valve is
assumed to be fully open before being closed to 20 % of its original opening during
2 seconds. The model has been simulated for cases of 5, 9, 17 and 99 nodes in the
pipe. The pipe is assumed to be completely inelastic in the case of the FVM and
consist of steel for the MOC. Speci�c model details are given in table 4.1

Table 4.1: Valve closure model speci�cations

Pipe Ref nr d Nominal mass �ow/∆P Nominal h Pressure mLc L

source - - - 20 -

sink - - - 1 -

pipe 0.4 - - - 2000

valve - 115/1 1 - -
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4.2.2 Pump Failure

Apart from valve closure, pump failiure will produce similiar transient e�ects on
the �uid �ow. The phenomena has been simulated in the system shown in �g-
ure 4.2

Figure 4.2: Experimental model for simulating pump failiure.

The model consists of three long pipes in series so that the system shares similarities
with the larger model of the Gothenburg network where the e�ects of pump failiure
are to be investigated. The pump receives a �ow at low pressure and raises it to a
higher pressure level depending on the rotational speed. A nominal rotational speed
has been set as default. The pump characteristic is determined by a quadratic
extrapolation function from three speci�ed operating points of pressure increase
and �ow rate. The initial �ow situation is otherwise similiar to the case of valve
closure. The model is run for 5 seconds in steady state. The pump then suddenly
stops during 10 seconds as the rotational speed becomes zero. Table 4.2 shows the
speci�c model settings.

Table 4.2: model speci�cations for the case of simple pump failiure.

parameters d Nominal ṁ/∆P hnominal Pinitial L N/Nnom

pump inlet - - - 0.5 - -

sink - - - 1 - -

pipe 1 0.4 - - 18 5000 -

pipe 2 0.4 - - 18 5000 -

pipe 3 0.4 - - 18 5000 -

valve 1 - 115/1 1 - - -

pump - - - - - 2000/1500
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4.2.3 Model of Gothenburg Network

Figure 4.3 shows the �ow path through the di�erent locations along the network.
The loads in the system giving heat to surrounding areas are denoted SB. Along the
main line are also subsystems containing pumps and boilers to control temperature
and pressure which are represented by the red squares in �gure 4.3.

Figure 4.3: Flow schematic of the district heating network including loads and subsys-
tems.

The �ow in the system is a closed loop. As heat is exchanged at the loads the �ow
connects to a return system for reheat going back to pump T18. The somewhat
simpli�ed system that has been simulated in modelica only takes into account a
return system with one load going back to pump T18. See �gure 4.4

The boundary conditions for pressure in the system have been chosen to be as
representative as possible of the real system. The pump design pressure is 16 bar
as in the real district heating system of Göteborg Energi. The simulation procedure
is similar to the preceding case of pump failure. The machine is shut down during
7 seconds. The red lines indicate the forward system and these pipes are denoted
with an F. The return pipes are blue indicating that heat has been transferred to
a surrounding area and are denoted with an R. The results of pressure distribution
and sensitivity analysis are presented in chapter 5.
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4.2.3.1 Modelling Assumptions

As the amount of components in the system increases the model becomes more
unstable and the calculations more sensitive. It is therefore important to make
reasonable assumptions in order to reduce complexity and at the same time maintain
an acceptable level of accuracy. Heat losses in pipes are assumed to be negligible
as the main focus is on system pressure. The curvature of the pipes has also been
ignored as it is hard to get exact data and the pressure loss in the bends is negligible
compared to the pressure loss due to pipe friction. Further simpli�cations involve the
modelling of only one branch of the return �ow system. As the boundary conditions
are not the same as in the real network the �ow rates will also di�er. The tolerance
for the residual in the iteration process is 10−4 for the simple cases of pump failiure
and valve closure and 10−3 for the Gothenburg network.
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Figure 4.4: Flow schematic of Göteborg Energi in Dymola with a single return �ow.
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5 | Results

This chapter provides the results from the models described in chapter 4. All results
from the �nite volume method have been calculated in Dymola but some of the
data has been reconstructed in Matlab to provide better visualization of the water
hammer concept. In a real case district heating system pump failure is the most
common cause of water hammer since technical problems with these machines will
occur. However, water hammer due to valve closure can be avoided easier by not
closing the valve too quickly.

5.1 Simple Valve Closure

The results presented in this section are from simulation of the valve closure case
discussed in section 4.2.1. The results will be presented by showing pressure dis-
tribution over pipe length and pressure at pipe cross-sections as a function of time.
All time scales are in seconds.

5.1.1 Method of Characteristics

As the method of characteristics is considered to give the most accurate results it
will be used as a basis for comparing models. Figure 5.1 shows the propagation of
a pressure wave resulting from valve closure, based on simulations performed by
Göteborg Energi.

5.1.2 Finite Volume Method

Figures 5.3, 5.2 5.4 and 5.5 show the results from the Finite Volume Method with
a di�erent number of nodes along the pipe providing the sensitivity analysis.

The pressure distribution at a certain cross section of the pipe as a function of
time will be shown for simulations with a varying amount of nodal points. See
�gure 5.6

In order to clarify the di�erence between the di�erent Finte Volume Method cases
see �gure 5.7
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Figure 5.1: Pressure distribution along the pipe calculated by the method of character-
istics.

Figure 5.2: Pressure distribution along the pipe calculated by the Finite Volume Method
with 99 nodes.
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Figure 5.3: Pressure distribution along the pipe calculated by the Finite Volume Method
with 17 nodes.

Figure 5.4: Pressure distribution along the pipe calculated by the Finite Volume Method
with 9 nodes.
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Figure 5.5: Pressure distribution along the pipe calculated by the Finite Volume Method
with 5 nodes.

Figure 5.6: Variation of pressure with time at the end of the pipe.
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Figure 5.7: Variation of pressure with time at the end of the pipe.
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5.2 Simple Pump Failiure

Recall the model discussed in section 4.2.2. To make the results of the simulation
as representative as possible the pressure distribution will be shown as a function
of both time and pipe length. Figure 5.8 shows the distribution of pressure along
the whole pipe distance for di�erent points in time in pipe 1.

Figure 5.8: Pressure distribution in steel pipe 1 for di�erent time periods after a pump
failiure.

Figure 5.8 represents the whole process of pump failiure. The pump is suddenly
shut down after 5 seconds. Before the event the only reason for lower pressure at
the end of the pipe is frictional losses. As time progresses, it can be seen that the
pressure starts to fall in the pipe as there is no longer a driving force. This causes
the �uid to deccelerate. The change in velocity is then converted to pressure energy
causing the pressure to rise again and spred backwards through the pipe. See the
green and red lines in �gure 5.8

To illustrate that the process continues in an oscillating manner as in the case
of valve closure, see �gure 5.9. Figure 5.9 shows the oscillating behaviour of the
pressure after pump failiure at the end of pipe 1, pipe 2 and in the middle of pipe
3. Figure 5.8 and 5.9 provide two di�erent perspectives of the process for the �rst
70 seconds.
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Figure 5.9: Pressure as a function of time for speci�c pipe cross sections.

5.3 Gothenburg Network

The simulations of the model presented in section 4.2.3 are presented below. Figures
5.10 and 5.11 show the pressure distribution in pipe P300F1(see �g 4.4) at the end
and middle of the pipe for a varying number of nodes. Two points along the pipe
have been chosen for the evaluation to con�rm that the results at a certain point
are not a coincidence. Figure 5.12 shows the same analysis but for a lower total
pressure exerted by the pump for a setting of a lower rotational speed.

Figure 5.13 gives a representation of the e�ects of a pressure wave at di�erent areas
of the system.
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Figure 5.10: Pressure at the end of pipe P300F1 for 6 and 8 nodes.
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Figure 5.11: Pressure at the middle of pipe P300F1 for 6 and 8 nodes.
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Figure 5.12: Pressure at the end of pipe P300F1 for 6 and 8 nodes with lower total
pressure.
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Figure 5.13: Pressures at the end of pipes P300F6, P250F2 and p250F3.
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6.1 Valve Closure

Considering the results from the simulations of valve closure in chapter 5 several
important observations can be made. The results con�rm that both calculation
methods are applicable for solving the water hammer problem. When using the
�nite volume method with an equal number of nodes as the method of characteris-
tics the pressure distribution follows the same trend. However, there is also a clearly
observable di�erence. The accuracy of the �nite volume method is poorer and de-
clines even further as the number of nodes decreases. When using only 5 nodes as
in �gure 5.5 the �nite volume method is not a good estimate as the pattern di�ers
signi�cantly from the MOC and the FVM case of 17 nodes.

In theory, when increasing the number of nodes the results from the FVM should
approach those of the MOC. Recall �gures 5.7 and 5.6. The general pattern of both
calculation methods are the same but o�set with respect to both time and absolute
value. The reason for the o�set in time is most likely due to the di�erence in wave
speed between the two models. Recall that the MOC assumes the pipe to be elastic
and the FVM considers the pipe to be inelastic. The wave speed will therefore be
lower for the MOC. As the number of nodes in the FVM increases to 99 nodes
the absolute value does not approach that of the MOC by much compared to the
case of 17 nodes. On the other hand there is a clear di�erence in absolute value
between the cases of 5 and 17 nodes. When using an increasing number of nodes
the curvature of the graph is signi�cantly di�erent from using fewer nodes and more
similiar to the MOC. This di�erence is seen most clearly for the highest resolution
case of 99 nodes. As no sensitivity analysis has been done on the MOC it is hard
to say how large the di�erence would be if the MOC case was simulated using 99
nodes compared to 17 nodes. Moreover, �gure 5.7 shows the expected oscillating
behavior of a pressure wave resulting from valve closure. The �gure shows how the
pressure varies at the end of the pipe as a function of time. It can be seen that an
increase to 199 nodes in the FVM still doesn't give an absolute value that is close to
that of the MOC. However, there is a large di�erence in curvature of the graphs. An
increase in number of nodes from 5 to 9 and from 99 to 199 is in relative terms an
increase by double for both cases. The di�erence in pressure is a lot larger between
5 and 9 nodes than between 99 and 199 nodes. This means that the relationship
between number of nodes and accuracy is not linear and increasing the number of
nodes when the amount of nodes is already relatively large will cost in terms of
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computational power compared to a small gain in accuracy.

It is di�cult to estimate how the small di�erence in the steady state operating
conditions in�uences the di�erence in presure distribution why it is not possible to
make any assumptions on how much it has a�ected the results. The di�erence in
the steady state case can clearly be seen from all the �gures in the case of valve
closure since the pressure at the end of the pipe is not zero before the start of each
simulation.

6.2 Pump Failure

Comparing the di�erent simulations of pump failiure the overall trend is the same
in both the simpler system and more complex one of Göteborg Energi. Figure 5.13
indicates that when moving further away from pump T18 which is the source of
water hammer in this case, the e�ect and magnitude of the pressure waves decrease.
This is to be expected as energy and momentum are lost due to friction.

The sensitivity analysis in �gures 5.10 and 5.11 imply that a small number of
nodes in a large system will yield results with poor accuracy and uncertainty. When
changing from 6 to 8 nodes the pressure can di�er by almost 1 bar which is a
considerable amount if a detailed analysis is to be done. Two points along the pipe
where chosen to con�rm that the sensitivity analysis was not just a coincidence
at a certain point. Increasing the relative di�erence in the amount of nodes in
a pipe has a larger e�ect on the the more complex model than the simple one
when it comes to di�erence in pressure distribution. This can be seen by comparing
�gures 5.10-5.12 with �gure 5.6. Note that the pressure units are di�erent. Consider
�gure 5.12. The pump has been shut down at exactly the same rate but the design
pressure in the system is lower. The di�erence between the 6 and 8 node simulation
is somewhat smaller for this case. It is hard from this result to conclude that a
lower total pressure decreases the di�erence in pressure distribution when simulating
with di�erent amounts of nodes. The reason for this is the e�ect of other boundary
conditions. As the total design pressure from the pump decreases so does the relative
gradient compared to the �xed pressure at for example Kungälv and Eka. This will
lead to a lower �ow velocity in the system which in turn implies a lower change in
momentum during pump failure.

As the number of nodes in a Dymola simulation increases so does the computational
time due to an increase in complexity and amount of equations to be solved. This
leads to a trade o� between accuracy and computational time. However, the biggest
problem with a large and complex system is the initialization of the model. This
means �nding the initial solution based on the given boundary conditions and is an
iterative procedure. If this crucial process fails no simulations of the model can be
made at all. When using more than 8 nodes in the gothenburg network the initial-
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ization failed. It is possible to guess new starting values to make the initialization
possible but this may become very tedious and di�cult. A secondary problem in
Dymola are the sharp gradients that occur when simulating instantaneous valve
closure or pump failure. Often the calculations fail in these cases, probably because
of divergence of the solution. In the Gothenburg network, if the pump was to shut
down in less than 7 seconds the simulation would fail. The gradient problem can be
improved somewhat by increasing the number of time steps in the integrator.
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7 | Conclusion

A big advantage of the MOC is that no iteration is required. This method is there-
fore more stable for larger systems. Recall that the exact momentum equation is
simpli�ed for the MOC. This simpli�ed equation is then solved with a good level
of accuracy and the simpli�cation in itself is a very good approximation for incom-
pressible �uids. The FVM on the other hand solves the exact momentum equation
but a lot of accuracy is lost after discretization and using a small amount of nodes.
When taking all these matters into consideration the overall conclusion is that Dy-
mola is suitable for making fairly rough estimations of the water hammer process
in systems that are not too complex.
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8 | Further Work

In this project reducing water hammer e�ects during simulation has not been con-
sidered. Therefore, a future project could investigate the capability of using Dymola
for this purpose. As Dymola is already sensitive to complex systems it may be the
case that such an investigation is not feasible. However, e�orts could be made to
improve initialization and thereby create more stability in the calculations which
is the major concern for the program to perform well when simulating water ham-
mer.
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A | Appendix A

A.1 Method of Characteristics

This sections provides a more in detail explenation of how the MOC solves the
combined momentum and continuity problem.

The system of partial di�erential equations to be solved is


L1 = g

∂H

∂x
+
∂v

∂t
+
fv|v|

2d
= 0

L2 =
a2

g

∂v

∂x
+
∂H

∂t
= 0

(A.1)

The addition of the above equations is assumed to be a function of an unknown
multiplier q.

L = L1 + L2 = q

(
∂H

∂x

g

q
+
∂H

∂t

)
+

(
∂v

∂x
q
a2

g
+
∂v

∂t

)
+
fv|v|

2d
= 0 (A.2)

The di�erentials of H and v are written as


dH

dt
=
∂H

∂x

dx

dt
+
∂H

∂t
dv

dt
=
∂v

∂x

dx

dt
+
∂v

∂t

(A.3)

By combining equations A.2 and A.3 it can be shown that if

dx

dt
=
g

q
=
qa2

g
, (A.4)

Then equation A.2 will become an ODE of the form

q
dH

dt
+
dv

dt
+
fv|v|

2d
= 0 (A.5)

According to A.4 q has two solutions
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q = ±g
a

(A.6)

Inserting both values of q into equation A.4 gives dx
dt

= ±a.

After inserting q in A.5 the characteristic line functions are obtained.

C+ :


g

a

dH

dt
+
dv

dt
+
fv|v|

2d
= 0

dx

dt
= +a

(A.7)

C− :


−g
a

dH

dt
+
dv

dt
+
fv|v|

2d
= 0

dx

dt
= −a

(A.8)

Figure A.1 shows an arbitrary point P in the x − t plane located at the centre of
points A and B along a pipe divided into N sections. The properties of pressure
and �ow rate at point P are a function of these properties at points A and B.
The connecting functions are the characteristic lines C+ and C− which represent
the wave velocity. Thus, values at the current time step are calculated from values
assumed to be known at a previous time step.

Integrating equation A.7 between A and P and equation A.8 between B and P gives
the following relationship for the characteristic line functions.

{
C+ : HP = HA −B(V̇P − V̇A)−R|V̇A|
C− : HP = HB +B(V̇P − V̇A) +R|V̇B| ,

(A.9)

Where B = a
gA

and R = f∆x
2gdA2 .

On a more general form equation system A.9 can be expressed as

{
C+ : H(x, t) = CP −BP V̇ (x, t)

C− : H(x, t) = Cm +BmV̇ (x, t) ,
(A.10)

Where


CP = H(t−∆t, x−∆x) +BV̇ (t−∆t, x−∆x)

BP = B +R|V̇ (t−∆t, x−∆x)|
Cm = H(t−∆t, x+ ∆x)−BV̇ (t−∆t, x+ ∆x)

Bm = B +R|V̇ (t−∆t, x+ ∆x)|

(A.11)
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Figure A.1: Characteristic lines in the x− t plane relating points A,B and P. [6]

Combining the equations in A.10 gives an expression for the pressure head.

H(x, t) =
CPBm + CmBP

Bp +Bm

(A.12)

The �ow rate V̇ (x, t) is determined from any of the equations in A.10. The initial
Values V̇ (x, 0) and H(x, 0) are determined along the x-axis. The calculation then
proceeds by determining V̇ (x, t) and H(x, t) for each time step. Observe that at
the begining and end of the pipe C+ or C− do not exist. This means that extra
relationships are needed to de�ne the values of V̇ (0, t), H(0, t), V̇ (L, t) and H(L, t)
for a solution to be possible. [6]
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B.1 Speci�c Model Data of Gothenburg Network
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C    Pipe Performance Table(5)
C    -------------------------
C    Pipe    Diam   Rough  Kval   E-mod  Thick  Wall Heat  
Design P  Comment
C    Ref-Nr  Di mm  Ks mm  W/m,C  GN/m2   mm     MJ/m3,C    
bar       (text)
        50A     54.5  0.10   0.2115   210   2.9     3.60       
16                       
        65A     70.3  0.10   0.2395   210   2.9     3.60       
16                      
        80A     82.5  0.10   0.2505   210   3.2     3.60       
16                     
       100A    107.1  0.10   0.2605   210   3.6     3.60       
16                       
       125A    132.5  0.10   0.2560   210   3.6     3.60       
16                       
       175S    174.8  0.10   0.2560   210   3.6     3.60       
16            
       150A    160.3  0.10   0.2835   210   4.0     3.60       
16                     
       212S    211.5  0.10   0.2835   210   4.0     3.60       
16       
       175A    182.0  0.10   0.2835   210   4.0     3.60       
16                        
       200A    210.1  0.10   0.3645   210   4.5     3.60       
16                       
       225A    237.0  0.10   0.3645   210   4.5     3.60       
16                        
       250A    263.0  0.10   0.3565   210   5.0     3.60       
16                       
       277S    277.2  0.10   0.3565   210   5.0     3.60       
16            
       300A    312.7  0.10   0.4095   210   5.6     3.60       
16                       
       350A    344.4  0.10   0.5135   210   5.6     3.60       
16                       
       400A    393.8  0.10   0.5480   210   6.3     3.60       
16                       
       404S    403.9  0.10   0.5480   210   6.3     3.60       
16       
       450A    455.0  0.10   1.096    210   6.3     3.60       
16                   
       520S    519.6  0.10   1.09     210  13.0     3.60       
16            
       500A    495.4  0.10   0.5345   210   6.3     3.60       
16                       
       503S    502.6  0.10   0.5345   210   6.3     3.60       
16        
       518S    517.8  0.10   0.5345   210   6.3     3.60       
16        
       600A    595.8  0.10   0.6565   210   7.1     3.60       
16                       
       654S    654.0  0.10   0.6565   210   7.1     3.60       
16             
       786S    786.2  0.10   1.3      210  14.0     3.60       
16       
       613S    613.0  0.10   0.6565   210   7.1     3.60       

1


