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Improving Structured Light Based Depth and Pose Estimation
REBECCA JONASSON
ANNA KOLLBERG
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Estimation of head pose and distance to the driver is crucial in the area of active
safety. Systems can detect inattention of a driver by studying the head pose, in
order to alarm the driver before an accident occurs. Structured light for depth
estimation can be implemented in an one camera system with low cost and high
accuracy. Furthermore, using convolutional networks for pose and depth estimation
is a broad area of research.

The aim of the project was to investigate and implement algorithms for con-
structing depth maps using structured light. The depth estimates were compared
with a current single point depth estimate, regarding both accuracy and invariance
to characteristics of the head. The project also aimed to investigate how depth and
pose estimation performed by CNNs were impacted by adding depth maps as input.

The resulting algorithm constructed depth maps of faces using structured light.
The accuracy of the algorithm for estimating depth using structured light was evalu-
ated to be less than one centimeter and the obtained precision was considered high.
Furthermore, the performance of the algorithm was invariant to head characteristics.

The impact of adding depth maps as input to convolutional networks was studied,
both using multitask networks and singletask networks. The singletask networks
predicted either depth or rotation whilst the multitask networks predicted depth,
xy-position, rotation and landmarks. Before training any networks, a data collection
was carried out to obtain all required inputs.

Adding depth maps as additional input to a singletask network for prediction
of depth or rotation, compared to using only IR images as input, increased the
performance. Furthermore, including depth maps as input to a multitask network
was found to increase the performance of prediction of landmarks, xy-position and
rotation while no significant difference could be concluded for prediction of depth.

Keywords: Depth map, structured light, computer vision, convolutional networks
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1
Introduction

Active safety is a broad area of research, with rapidly increasing importance as the
technology of autonomous driving evolves. Simultaneously, the need for a deeper
understanding of the driver’s behaviour in traffic arises when aiming to implement
advanced driver assistance systems to make traffic more safe and less unpredictable.
Such driver assistance systems can alert the driver when needed, which serves to
reduce the risk of traffic accidents caused by driver inattention. According to the
Swedish National Road and Transport Research Institute VTI [1] studies imply that
tiredness may be a contributing factor to 10-40% of all traffic accidents, making fur-
ther research within this area of active safety highly motivated. In order to estimate
driver awareness, properties like head pose, eye movements and body motion are of
use. Such properties can be used to detect driver fatigue in real time, for instance
by identifying pixels corresponding to the eyeball in a consecutive set of frames cap-
tured by a camera in the compartment [2]. Furthermore, by evaluating the head
pose driver inattention can be detected and the driver can be alarmed if necessary.
Yet another aspect where head pose could be of interest is regarding the execution
of air bags. A detailed map of the position of the driver could prevent the release
of air bags if the driver is in a position where such a release could be harmful.

Since systems for eye tracking and pose estimation for advanced driver assistance
systems presented in research have been found to performed well, the industry has
started to incorporate such techniques in the development of new products. Smart
Eye [3] is a company that produces advanced systems for eye tracking. In addition
to track eye gaze and eye movements, the devices developed by Smart Eye can also
estimate the pose of the head as well as the distance to the head. Smart Eye has
systems consisting of one single camera or a set of multiple cameras. For automotive
applications the single camera system is considered well suited as it is smaller in size
and easier to incorporate into the compartment.

1.1 Project description
Today, camera devices developed by Smart Eye have technology to track depth,
xy-position, rotation and facial landmarks of a driver in a compartment using a
single camera. Though, the tracked data is estimated based on the characteristics
of the head of the driver, making it sensitive to deviations in size and shape. As a
result, the single point depth estimate has an accuracy of 10% of the distance, which
is not considered accurate enough. Moreover, in order to achieve this accuracy it
is necessary to include small head movements as an initial step of the recording,
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1. Introduction

such that the head model which is used to create data from tracking can be built
properly. The goal is to increase the accuracy of the single point depth estimate to
less than one centimeter. Another goal is to create depth maps of the face, since the
current depth estimate only consists of one single point. The single point estimate
is positioned between the eyes, behind the nose bridge, whilst structured light will
be implemented to model the distance to the surface of the face. Thereby, an offset
between these two measures corresponding to the distance between them needs to
be considered in order to enable a comparison.

Currently, infrared images, IR image, are used as input to convolutional neural
networks, CNNs, for various task, including estimation of depth and the head pose of
the driver. The networks are trained supervised using the output from the tracking
algorithms as ground truth. As structured light will be implemented to create depth
maps of the face, the possibility to increase the performance by adding depth maps
as additional input will be explored. The ground truth parameter for depth will be
replaced by the depth value computed using structured light, whilst ground truth
for xy-position, rotation and facial landmarks is computed from the current tracking
system.

Furthermore, the tracking algorithms are based on IR images. Hence, the output
of the tracking algorithms can not be generated from images contaminated by IR
structured light. Therefore, it must be possible to obtain regular IR images in every
other frame of the camera in order to obtain the required output used as ground
truth to the network. As a result, a prototype camera called Smart AI-X 3D has
been designed.

1.2 Aim
The aim of the project was to investigate and implement algorithms for construct-
ing depth maps using structured light. The depth estimates were compared with
a current single point depth estimate, regarding both accuracy and invariance to
characteristics of the head. The project also aimed to investigate how depth and
pose estimation performed by CNNs were impacted by adding depth maps as input.

1.3 Specification of issue under investigation
The project is divided into two parts: to compute depth maps using structured light
and to improve estimation of depth and pose by adding depth maps as input to
neural networks. The following questions will be answered as the project proceeds:

1.3.1 Part 1: Generation of depth maps using structured
light

• Is it possible to obtain an accuracy for the depth estimate of less than one
centimeter when using structured light?

• Is it possible to obtain an accuracy and precision in computed depth which is
independent of the characteristics of the head using structured light?

2



1. Introduction

1.3.2 Part 2: Depth and pose prediction using depth maps
• Can the performance of the CNNs performing pose and depth estimation im-

prove by using depth maps computed from structured light as additional input?

1.4 Limitations
The algorithms developed during the project are limited to be based on a specific
camera developed by Smart Eye during the project, namely the Smart AI-X 3D.
Until the camera is available, initial testing will be performed on another camera,
with different pattern and software. This report is limited to discuss results obtained
from the Smart AI-X 3D, wherefore initial testing on any other camera will be
exluded from the report.

The project is limited to use only one near IR camera and one projector. The
projector used for depth estimation is limited to use a uniform grid of dots as
pattern. The accuracy of the generated depth estimations is limited to be compared
to present technologies used for depth estimation at Smart Eye. Furthermore, the
evaluation of the accuracy is limited to use available measurement tools, which are
safe for humans. No depth maps are available for comparison with the ones obtained
from the implemented depth estimation algorithm.

There is a limitation related to the difference in origin of the two depth estima-
tions. The offset between these two depth values is limited to be 1 cm for all depth
estimations, in both the comparison of the accuracy and when updating the ground
truth in the CNNs.

The second part of the project is limited to improve depth and head pose predic-
tion using the obtained depth information from the first part of the project. Data
for the CNNs will be limited to recordings of employees at Smart Eye. All work
concerning the networks is limited to be based on the current code framework at
Smart Eye.

The evaluation of Part 1 as well as the data collection for Part 2 is limited to
office environment, and no other lighting conditions are tested. The test persons
in the data collection are not wearing glasses or similar accessories. The evaluation
of the depth estimate of Part 1 is limited to be tested on two different persons, at
distances between 50 and 75 cm. The images used for evaluation are taken in front
view.

Another limitation is that both the frame used for obtaining output from current
tracking algorithms and the consecutive frame with projected structured light are
captured using an IR camera. Hence, the frames need to be taken separately, which
results in a time difference on 1/fps = 1/60s between the frame used for generating
the depth information and the frame used for obtaining ground truth.

The area of active safety will be considered and a brief discussion of social and
ethical aspects of possible implementations will be carried out.

3



1. Introduction

1.5 Contributions
There are two main contributions of this project. First, the project aims to create
depth maps based on the projection of a uniform IR pattern, instead of a pseudo
random pattern which is frequently implemented for this task. The second main
contribution is to study the impact of adding depth maps of the face as input to a
convolutional network for prediction of depth and head pose, as compared to only
using IR images as input.

4



2
Theory

In the following sections a literature review of theories and studies relevant to this
project are presented.

2.1 Depth estimation
In order to obtain a correct 3D representation of a scene, regular 2D images are
not enough due to lack of depth. Instead, 3D surface imaging must be deployed
to gather all data necessary for such a representation. This has been subject to
numerous research papers during the years, especially as products implementing the
techniques have become available at low cost. The process consists of approximating
a depth map of a scene, which subsequently can be used for 3D reconstruction of
objects of interest. Several computer vision techniques can be applied to reach a
depth estimate and the corresponding camera system must be designed accordingly.
The three most common techniques for obtaining depth maps are time of flight,
stereo vision and structured light. A brief description of time of flight and stereo
vision is given in the following section. Then, the concept of structured light is
described followed by a comparison of advantages and disadvantages of structured
light as compared to the two other techniques described. Lastly, learning techniques
for estimation of depth maps are presented.

2.1.1 Time of flight
Time of flight cameras, ToF cameras, utilize the speed of electromagnetic radiation
in air [4]. It is trivial that the distance D[m] can be found from the formula D = cτ
where c ≈ 3 ·108[m/s] is the speed of radiation and τ [s] the time. Now, let radiation
be emitted at time 0 by a ToF transmittor and reflected back on the surface. The
radiation will then reach the ToF receiver at time τ and the distance it has traveled
is 2D. The distance can be found from:

D = cτ

2
An advantage of ToF systems, compared to structured light and stereo vision

systems, is that ToF suffers less from occlusion [4]. The reason for this is that the
transmitter and receiver are designed such that they are collinear, i.e. placed on a
line. This is achieved by placing the transmitter close to the receiver.

A problem of the ToF system is how to measure the time. As an example, in
order to cover a distance of one meter a precision of nanoseconds is needed, whilst for
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centimeter precision picoseconds is needed. One method for handling this problem
is continuous wave modulation, described below.

Microsoft has developed range sensing devices called KinectTM. In 2010 Microsoft
released KinectTM based on structured light for range sensing. A few years later,
Microsoft created Kinect One based on ToF. In order to use time of flight, continuous
wave intensity modulation is used in the device. This is also what is most often used
in ToF systems. The scene is illuminated using a near infrared intensity modulated
periodic light which causes a time shift in the optical signal. The time shift in the
optical signal corresponds to a phase shift in the periodic signal, which is detected
in each sensor pixel. Finally, the time shift is transformed into a distance.

2.1.2 Stereo vision
The basic stereo vision system consists of two cameras, a camera to the left called
reference camera and one to the right called target camera [4]. The two cameras
need to be calibrated and put into a 3D and 2D reference system. The 2D reference
system has coordinates (uL, vL) for the left camera and (uR, vR) for the right. The
disparity, d, can be found from:

d = uL − uR

i.e. the disparity is the difference in horizontal coordinates in the 2D reference
system.

From the disparity the depth in the 3D reference system for each pixel can be
computed [4]. The formula for computing depth is:

D = f · b
d · p

(2.1)

where f is the focal length [m], b represents the baseline [m] i.e. the distance between
the cameras, d is the disparity value described above, p the pixel size [m] and D is
the depth [m]. In Figure 2.1 the idea of stereo vision is illustrated.

6



2. Theory

Figure 2.1: Overview of stereo vision where b is baseline, D is depth and c is
camera.

Stereo vision is not a new technique within computer vision, already in 1981 an
image registration technique was proposed which could be used in a stereo vision
system [5]. Moreover, in 1998, stereo vision was used by Bertozzi et al. [6] to
perform generic obstacle and lane detection system on moving vehicles. For obstacle
detection Bertozzi et al. used stereo images, in order to directly detect the presence
of obstacles.

Stereo vision for urban 3D semantic modelling was studied by Sengupta et al.
[7] in 2013. Their proposed algorithm generated a 3D reconstruction with semantic
labellings, where the input was street level stereo image pairs from a camera on a
vehicle in motion. Stereovision was used to generate depth maps, which in turn was
fused into global 3D volumes. The labelling was performed using a framework called
Conditional Random Field and the label estimates were aggregated to annotate a
3D volume.

2.1.3 Analytic depth resolution of stereo vision
In order to further investigate the resolution of the depth estimation using Equation
2.1 the spatial sampling of the image must be considered [4, 8]. This is because the
depth estimation is highly dependent on the estimation of distances in the image.
Following the derivation in [8], an error δd is introduced in the estimated position of
a certain point imaged by the camera and the measurement of ∆d can be expressed
as:

∆d = ∆d0 ± δd
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Using ∆d0 as the true disparity of the point, the distance to a certain point can be
described as:

D = bf

∆d0

Equivalently, ∆d0 can be expressed by:

∆d0 = bf

D
(2.2)

Though, as an error in position estimation in turn introduces an error δD in depth,
the depth measurement can be expressed as D = D0 ± δD. Again, D0 is assumed
to be the true depth. Now, Taylor expansion can be used to express δD in terms of
δd:

δD = bf

∆d2
0
δd

Finally, substituting ∆d0 by the expression in Equation 2.2 yields the following
depth resolution model:

δD = D2

bf
δd (2.3)

where ∆d is the resolution of disparity.
As the disparity resolution is most easily measured in pixels, the focal length needs

to be converted to pixels as well. Hence, focal length is defined to be f = fm/p where
fm is the focal length in unit meter and p is the pixel size in unit meter.

2.1.4 Structured light
Structured light is an optical method to measure objects, consisting of a camera
system in combination with a projector, as illustrated in Figure 2.2. The process
of a structured light system mimics stereo vision but here disparity is estimated
between two projected patterns instead of two distinct cameras [4]. The purpose of
the projector is to emit an encoded pattern onto a scene, which then is captured
by the camera. Since the emitted pattern gets altered while projected onto objects
the displacement of the pattern from its original counterpart can be used to obtain
a disparity map. The disparity is then used to estimate depth in the scene equally
to stereo vision. The camera system usually consist of one or two cameras. Two
cameras often increase the performance of the system as many problems of structured
light systems can be dealt with more efficiently. For instance, two cameras make the
system less sensitive to non-idealities in sensors and projectors but also less sensitive
to ambient light, as the two patterns compared will be affected by these factors to
the same extent.

8



2. Theory

Figure 2.2: Overview of structured light where p is projector, c is camera and d is
disparity.

As the light source projects a pattern onto the surface of the object, two crucial
steps in the process of using a structured light system consist of encoding and
decoding of the projected pattern [9]. Considering the characteristics of the pattern
it should be possible to find correspondences between a pattern and its projected
counterpart. A wide set of patterns can be used for structured light systems, mostly
different versions of stripe patterns or grid patterns. In order to make it easier to
distinguish between different parts of a pattern distinctions in intensities, phases
and sizes can be imposed. Depending on the characteristics of the encoded pattern
different decoding algorithms can be applied, such as pattern recognition for pseudo-
random grids.

To obtain a depth estimate from the disparity between patterns the formula in
Equation 2.1 should be modified according to the calibration of the structured light
system [4], which yields:

∆Di = 1
1

Dc
+ dreli

bf

−Dc (2.4)

In the formula above, a difference in depth ∆Di is estimated using the depth of
the calibration image Dc and the disparity between points at the distance Di and
the points at the calibration distance, called dreli . Then, the depth at a pixel i is
obtained by:

Di = Dc + ∆Di

The depth resolution for structured light is computed using the same formula as
for stereo vision, Equation 2.3. Trivially, this can be proved following the steps in
Section 2.1.3.
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Structured light techniques are frequently used to obtain depth maps. As men-
tioned in previous sections, structured light was implemented in the first version of
Microsoft Kinect [10] where depth maps are used for gesture recognition and human
pose estimation.

Moreover, since structured light can be used to obtain measurements of an ob-
ject without contact with its surface the system has been considered well suited
for a wide set of reconstruction applications, including forensic medicine [11] and
reconstruction of cultural relics [12].

2.1.5 Advantages and disadvantages of structured light
As there exist several techniques to estimate 3D surfaces it is of interest to compare
the advantages and disadvantages of structured light techniques compared to other
techniques, mainly time of flight and stereo vision as these are the most common.

The main advantage of structured light is that the system can be designed with
only one camera as compared to stereo vision, which can drastically reduce the
production cost. It also makes the system more portable and easier to incorporate.
An additional advantage of structured light is that it can be used to accomplish high
spatial resolution, since it does not require processing at sensor level like in the case
of ToF.

Since the projector and the IR camera are placed at distinct locations on the
device, some of the projected dots may not be seen by the camera due to occlusion.
The problem of occlusion arises both in structured light and stereo vision [10]. As for
structured light, this can result in problems in the decoding process of the pattern
since data is lost. In order to find corresponding patterns it is therefore useful
to identify which part of the pattern that have been occluded from the projector
and neglect the corresponding parts of the original pattern. Moreover, occlusion
results in holes which often require further post processing. Since ToF cameras only
have one single viewpoint this technique does not suffer from problems related to
occlusion.

Another parameter that affects the performance of structured light is the presence
of ambient illumination since this can result in a corrupted pattern. The problem
can occur even when using infrared light, since the wavelength of the projector can
coincide with the spectrum of wavelengths for sunlight. Therefore, it might not be
possible to filter from the signal [13], making structured light nonrobust to ambient
illumination. Contrary, this problem does not appear when using time of flight
cameras which makes it more suitable for outdoor measurements than structured
light. Though, both techniques suffer when the environment is too bright since this
can cause over-saturation, which also is the case for stereo light.

All systems using cameras can be affected by noise and sensor non-idealities. The
presence of such phenomena may be extra significant for single camera structured
light systems as these factors highly affect the difference between compared patterns.

Finally, due to absorption and reflectivity properties of objects in the scene the
projection of the pattern may suffer from severe color and intensity distortions,
leading to a major decrease in correctly matched parts of the pattern [4]. Clearly,
this is a more frequently appearing issue when encoded patterns that are not uniform
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in color or intensity.
By the advantages and disadvantaged stated above it is clear that when choosing

a depth imaging technique the production cost must be set in relation to possible
reductions in performance caused by technique specific challenges.

2.1.6 Learning techniques for estimation of depth maps
Another possible approach to obtain an estimation of depth is to incorporate learning
techniques in combination with monocular images. Depth estimation based on only
one image is a challenging task, since it is only possible to obtain local features in the
image without any information about its global scale. Features which are possible
to extract from monocular images are for instance changes in texture, shading and
occlusion but based on the characteristics of the image these may not be enough.
As a consequence, information from a single image often result in an insufficient
depth estimation. Though, estimating depth using monocular images is desirable
since it could reduce the cost of hardware for devices designed to estimate depth
and possibly simplify the processes of these. To circumvent these challenges, and
since standard techniques such as triangulation can not be applied, neural networks
has been presented as a possible solution.

A study within this area of research was performed by Saxena et al. [14] at
Stanford University. They presented a model based on supervised learning to predict
a depth map with only monocular images as input and used a hierarchical multiscale
Markov Random Field, MRF. Such a random field consist of random variables which
all have Markov properties, i.e. their future state depends only on the present state
and no other previous states. In the model presented by Saxena et al., the MRF
incorporated both local and global features of the image to estimate depths as well
as to estimate relations between depths at distinct points of the image. Hence, both
absolute depths features and relative depths features were included. The proposed
model was able to estimate depth for a varying set of scenes. Furthermore, an
algorithm which combined depth estimates using triangulation and monocular depth
estimates was proposed, which was found to perform better than when only using
either of the two depth estimates.

2.2 Pose estimation
The 3D modeling techniques presented in previous sections can be useful for a num-
ber of tasks, for instance pose estimation which is the subject of the second part
of this project. Head pose estimation in computer vision is the process of inferring
the orientation of the human head from an image [15]. Ideally, the estimation shall
be invariant to camera distortion, projective geometry, biological appearance and
accessories, e.g. glasses and hats. The definition of head pose estimation is wide, it
can be anything from a system that identifies the head in frontal versus left/right
profile to continuous angular measurements. One option to describe the rotation of
the head is by using quaternions, q=(w,x,y,z) [16]:

q̂ = (cos
(
θ

2

)
, sin

(
θ

2

)
n̂)

11



2. Theory

In the equation above, |q̂| = 1. The angle of rotation is represented by θ and the
axis of rotation is represented by n̂ = (nx, ny, nz), which has the property |n̂| = 1.

Furthermore, gaze estimation is closely linked with head pose estimation and
to accurately predict gaze direction head pose is needed. In order to perform the
head pose estimation many different methods has been studied and used throughout
the years, these methods varies from geometric methods which uses the location of
features to determine pose to convolutional networks that can map an image to
head pose estimation. The focus in this section will be on the advances of using
convolutional networks for pose estimation.

2.2.1 Convolutional networks for computer vision
The most commonly used networks for computer visions systems are Convolutional
Neural Networks, CNNs. CNNs generally consist of three main neural layers: con-
volutional layers, pooling layers and fully connected layers. A simple illustration of
a convolutional network is visualized in Figure 2.3.

Figure 2.3: Illustration of the typical structure of a convolutional network.

In the convolutional layer, the input image is convolved using filters [17]. The
output of this layer is a 2D feature map. The convolutional layer learns correlations
between neighbouring pixels and is also invariant to the location of the object. It
reduces the number of parameters, wherefore the convolution layer can replace the
last fully connected layer for faster learning. The next layer is usually a pooling
layer. This layer reduces the dimensions of feature maps and network parameters.
Max pooling and average pooling are the two most common pooling layers. The
convolutional layers and pooling layers are often repeated throughout the network,
ending with fully connected layers. The fully connected layers converts the 2D
feature maps into one 1D feature vector.

The training of a neural network consists of two stages [17]. The first stage is
called the forward stage where weights and bias for each layer are computed. Using
the prediction output and the ground truth a loss is computed. One of the most
common loss functions is Mean Average Error, MAE [18]:
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MAE = 1
n

n∑
i=1
|error|i.

In the formula above, the error is computed as a difference between predicted pa-
rameters and the ground truth.

In the backward stage, gradients for each parameter are computed and the pa-
rameters are updated based on these gradients. The updating of weights depends
on the learning rate. A common way of setting the learning rates is using Adam
[19], which is an adaptive learning rate method computing individual learning rates.
The forward and backward stages are iterated until a stopping criteria is fulfilled.
A stopping criteria could be that the loss cost is lower than a certain value or that
the number of maximum iterations/epochs, are reached.

A problem of deep learning and large CNNs is overfitting [17]. There are multiple
ways to handle this problem, one approach is to use data augmentation, where data
is augmented to generate more data.

To evaluate different techniques an annual challenge is held within visual recog-
nition, called ImageNet Large Scale Visual Recognition Challenge, or ILSVRC [17].
In 2012 the CNN AlexNet [20] won this competition. After this breakthrough an
increasing number of contestants used deep learning techniques and in 2014 most
participants used CNNs as a basis for their models. Between 2014 and 2013 the error
in image classification was halved because of this. AlexNet consists of five convo-
lutional layers and three fully connected layers. It utilizes different forms of data
augmentation: image translations, horizontal reflections and altering intensities of
RGB channels in images.

Other popular CNNs are residual networks, called ResNets [21]. ResNets consist
of stacked residual units, with the form:

yl = h(xl) + F (xl,Wl)

xl+1 = f(yl)

Here xl is the input of the lth unit, xl+1 is the output of the lth unit, F is a residual
function, f is a ReLU function, and h(xl) is an identity mapping. The residual func-
tion F should be learned with respect to h(xl) by using an identity skip connection.
ReLU, Rectified Linear Unit, is an activation function which is both effective and
simple and used in many CNNs [22]. A simple illustration of a residual network is
visualized in Figure 2.4.
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Figure 2.4: Illustration of the typical structure of a residual network.

Generative Adversarial Networks, GANs, is another commonly used network [23].
GANs learn two networks with competing losses. The two networks are called
generator and discriminator respectively. The generator network’s task is to map
a random vector to fake images, and the discriminator’s is to distinguish the fake
images from the real images. Hence, GANs are frequently used to generate simulated
images. The typical structure of GANs is illustrated in Figure 2.5.

Figure 2.5: Illustration of the typical structure of a generative adversarial network.

Recently yet another network architecture called Facial Attributes-Net [24], or
FAb-Net, was presented by the Visual Geometry Group at University of Oxford. The
network has an encoder-decoder structure and is a smaller network than ResNet. In
the encoder all convolutional layers have size 4× 4 while convolutional layers in the
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decoder have size 3× 3. The network was implemented to learn facial attributes in
a self-supervised approach and performed superior or comparable to state-of-the-art
frameworks for similar tasks implementing self-supervised learning.

2.2.2 Depth maps for learning tasks within computer vision
As the techniques to estimate depth have been improved, the number of tasks within
the area of computer vision for which depth maps have been found useful has in-
creased as well. For instance, using depth information to perform pose estimation
has been found successful. Shotton et al. [25] released a paper in 2013 where they
used single depth images for pose recognition in real-time. The idea was to trans-
form the pose estimation problem to a per-pixel classification problem. The input
to their system was a 2D representation of a depth image and the output was a
3D skeleton of the person in the image, where 31 body parts were considered. The
general objective was to find a function F depending on image I and frame t, where
F (It, It−1, ..) = θt and θt is the 3D skeleton at frame t. First, for each pixel in the
image probabilities for each body part were estimated using randomized decision
forests. This was then used to form a body parts image noted as Ct, where each
pixel contained a vector with 31 probabilities for each body part considered. Then,
a set of joint hypotheses consisting of body part, 3D position and confidence were
formed using the probabilities in Ct. Finally, a final 3D skeleton θt was estimated by
finding combinations of the joint hypotheses which made the skeleton kinematically
consistent with the skeleton of the previous frame. With this structure, it was only
the very last step that used information from previous frames.

The evaluation was performed on both synthetically generated images and real
data. It could be noted that more training data improved the result, up until around
100 000 images. On both synthetic and real data the accuracy was consider high
compared to other systems at that time.

Depth information has also been used for human action recognition by Wang
et al. [26] in 2016. A deep convolutional neural network with three channels was
used together with weighted hierarchical depth motion maps. The method trans-
formed the action recognition problem to an image classification problem, which
used information from consecutive depth maps. To make the CNN view-tolerant,
the captured depth maps were rotated. Furthermore, different temporal scales were
constructed to create a set of distinct spatiotemporal motion patterns. Both of these
implementations increased the number of training data. The motion maps were also
converted into pseudo color images to enhance the 2D spatial structures. After rota-
tion, the depth maps were projected onto three orthogonal Cartesian planes. Then,
for each of the three projected views the absolute differences between subsequent
frames were accumulated. Each of the three channels was trained on the projected
depth maps independently and the final classification was obtained after fusing all
three networks, as a late fusion network. The CNNs were all initialized with models
from ImageNet. The method was successful compared to the other methods.

Furthermore, depth maps have been incorporated as input for object recognition
tasks. A model for object recognition using both RGB images and depth images
has been studied by Eitel et al. [27]. Two separate CNN processing streams were
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used for the two inputs, which then were combined using a late fusion network. For
the depth data two parts were introduced for more effective results. First, to be
able to learn without large depth datasets an encoding of the depth information
was used in order to enable usage of pre-trained networks. Here, the depth image
was encoded as an RGB image which resulted in information spread to all three
RGB channels. A standard pre-trained CNN was then used for recognition. Second,
data augmentation was performed for robust learning. In addition, since occlusion
often is a problem when working with depth maps, the images were augmented
by adding occlusions known from sampling real-world environments. The networks
were trained separately for depth and color information as a first stage, both using
weights initialized from the ImageNet dataset. In the next training stage the two
streams were jointly fine tuned. Finally, classification was performed by a fusion
network.

2.2.3 Multitask network for face recognition tasks
There are multiple tasks regarding face recognition, and these tasks can often be
performed with higher accuracy if performed simultaneously. Ranjan et al. [28]
has implemented and evaluated a multitask learning network for performing face
detection, landmark localization, pose estimation and gender recognition simultane-
ously. Their proposed method was called HyperFace and it fused the intermediate
layers of a deep CNN for better performance. HyperFace used three modules. Mod-
ule one generated class-independent region proposals from the image, module two
was a CNN which classified the regions as face or no face and also provided facial
landmarks location, gender information and estimated head pose. Module three
performed post processing.

Ranjan et al. [28] proposed two different architectures for their network. Hyper-
Face based on AlexNet was their first approach. The network was initialized with
the weights of a network called R-CNN-face network, described below. The fully
convolutional layers were not needed for pose estimation and landmarks extraction,
and was therefore removed. The lower layer features were suitable for pose esti-
mation and landmark detection, whilst the higher layer features were more suitable
for the more complex tasks detection and classification. Since their objective was to
learn face detection, landmarks, pose and gender simultaneously, they fused features
from intermediate layers of the network and learned multiple tasks on top of it. To
learn the weights of the network, specific loss functions were used for each task.

To evaluate HyperFace, Ranjan et al. [28] also studied simple CNNs where each
CNN performed one task each, e.g. a R-CNN-face network which only performed
face detection. Another comparison was made with a model similar to HyperFace,
Multitask_Face, which simultaneously detected face, localized landmarks, estimated
pose and predicted gender but without fusion of intermediate layers. Instead, Mul-
titask_Face used a fully connected layer at the end of the network to combine the
tasks.

After evaluating HyperFace based on AlexNet, Ranjan et al. [28] created a model
based on ResNet called HyperFace_ResNet. Geometrical features were again fused
from the lower layers and semantically strong features from the deeper layers. Aver-
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age pooling was used to generate a shared feature vector. Their evaluation showed
that HyperFace and Multi-task_Face were comparable in performance for face de-
tection datasets, which indicated that fusion was not important for the face de-
tection task. For landmark localization, the fusing of layers was more important
as HyperFace outperformed Multitask_Face. HyperFace-ResNet also outperformed
HyperFace. In pose estimation, HyperFace and HyperFace_ResNet performed bet-
ter than Multitask_Face. The performance for roll, pitch and yaw differed and yaw
was the hardest to estimate. For gender detection there were no distinct differences
in performance between MultiTask_Face and HyperFace.

Their conclusion was that all face related tasks are benefited from using a mul-
titask learning framework, and using fusing of intermediate layers improves the
performance for pose estimation and landmark localization. HyperFace_ResNet
was slower than HyperFace, since it performed more convolutions, but had better
performance.

2.2.4 Generating simulated data for pose estimation
When training neural networks data collection is often a problem, as neural networks
acquire much data. Shrivastava et al. [23] used synthetic images for training, with
both simulated and unsupervised learning to improve the realism of synthetic images.
The learning was meant to improve the realism of the simulator’s output, whilst
preserving the annotation information from the simulator.

The proposed method, called SimGAN [23], used an adversarial network to gen-
erate these synthetic images. The network was similar to GAN but instead of using
random vectors as inputs synthetic images were used. The first step of SimGAN was
to generate synthetic images with a simulator. A network, using ResNet blocks, was
used to refine the images from the simulator using a self regularization term which
penalized changes between the synthetic and refined image. After training, the re-
fined images should be indistinguishable from real images using a discriminative
network.

Pose estimation using SimGAN was evaluated [23]. The training was done on real,
synthetic and refined synthetic images and then evaluated on real images. Training
on refined synthetic data from SimGAN outperformed both the model trained on
real images and the model training on original synthetic data.
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3
Methodology

As the project is divided in two parts, the methodology of the project will follow
the same structure. First, the specification of equipment is presented in Section
3.1. Secondly, Section 3.2 describes the Part 1 of the project, how to use structured
light to form depth maps. Finally, the usage of depth maps as input to CNNs for
improved pose estimation is described in Section 3.3.

3.1 Camera and projector specifications
The camera device used for the study was a Smart AI-X 3D camera developed by
Smart Eye. The design of the device is shown in Figure 3.1.

Figure 3.1: Smart AI-X 3D used for this project.

The camera is located in the middle of the device, at location 1. Two BELICE-940
illuminators are incorporated, one on each side of the IR-camera. The projector
emits a high contrast uniform and rotated dot pattern of wavelength 940 nm using
VCSEL power. There are two types of the BELICE-940, namely type A and type
B. Type A emits a 5° rotated pattern while type B emits a 15° rotated pattern, each
pattern on average consisting of 4600 dots. The projector used for all images in this
project is type A, which is located at position 2 in Figure 3.1 while projector B is
located at position 3. As the project is limited to use one projector only, a plastic
cover is put on projector B when taking images to exclude its projected pattern at
all times. Furthermore, the pattern is projected every other frame, resulting in a
generation of both regular IR images and a generation of images of the projected
pattern, further described in Section 1.1. The frame rate of the camera is 60 Hz.
Camera specifications of the Smart AI-X 3D are listed in Table 3.1.

19



3. Methodology

Camera Smart AI-X 3D
Focal length [mm] 5.87
Pixel size [µm] 3

Table 3.1: Camera specifications for the Smart AI-X 3D.

3.2 Generation of depth maps from structured
light

In the following sections the procedure of obtaining a depth map using structured
light is explained in detail. The process was divided into three different parts;
preprocessing of images, detection of centroids of dots and estimation of depth. As
each part is necessary to achieve the final depth map, all parts must be completed
in the correct order and with high enough accuracy to ensure the presence of such a
depth map after the final matching of corresponding dots. The inputs to the system
was a pair of IR images taken with the Smart AI-X 3D camera. An example of
inputs are presented in Figure 3.2 and Figure 3.3. The image shown in Figure 3.2
is the IR image used in the original system to estimate depth, described in Section
1.1, and the projected image shown in Figure 3.3 is what is used to compute the
depth map.

Figure 3.2: IR image obtained
from the Smart AI-X 3D cam-
era, which is used as input to the
tracking algorithms.

Figure 3.3: IR image with the
projected pattern, corresponding
to the IR image in figure 3.2. The
brightness of the image has been
increased.

The calibration image, which can be seen in Figure 3.4, consists of an image of
the pattern projected on a flat surface from a distance of 76 cm. This procedure was
executed once only, and does not have to be redone as long as neither the projector
nor the camera of the device is changed. Since the calibration image has relatively
low intensity, an equivalent image with increased brightness is shown in Figure 3.5.
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Figure 3.4: Calibration image
used in the process of estimating
depth.

Figure 3.5: Calibration image in
Figure 3.4 with enhanced bright-
ness.

3.2.1 Preprocessing of images
All images obtained from the Smart AI-X 3D camera were preprocessed in order to
reduce the level of noise in the images. In order to do so, a Gaussian filter was applied
as it is a low pass filter. The reduction of noise served to increase the performance of
the edge detector implemented to detect dots in the image of the projected pattern,
which is further described in the following sections. If the Gaussian filter was not
applied the noise level of the obtained depth estimate became significantly higher as
compared to when the filter was applied, which is presented in Figure 4.26 to Figure
4.28 in Section 4.2.2.

All frames in the data set were cropped to visualize the head only and omit all
other details of the image. To crop the image accordingly, feature points of the
face such as chin and cheek had to be found to determine which pixels to omit.
When implementing the depth estimation in the framework for Part 2, code for face
cropping already implemented at Smart Eye was used. However, when evaluating the
depth estimation in Part 1, the face cropping algorithm was not available. Therefore,
the images used for the evaluation of depth were simply cropped manually to only
visualize the head. The procedure of cropping was not employed for the calibration
image, since all information of the calibration pattern must be kept.

3.2.2 Detection of centroids of dots
Finding the centre of each dot in the projected pattern is a crucial step in order to
acquire an accurate depth estimate from the provided set of images. A close up of
one projected dot of the pattern is shown in Figure 3.6.
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Figure 3.6: Close up on one dot in the projected pattern.

As the contrast of the projected dot is relatively low, finding the exact centre of
such dot is a challenging task. The process of detecting centroids can be designed
in various ways, depending on the characteristics of the projected pattern. As the
pattern of interest was uniform, algorithms such as pattern recognition could not be
applied. Instead, the centroids of dots were found using edge detection techniques.
First, thresholding was applied to each image after preprocessing. Since applied after
the noise reduction the thresholding was assured to not increase the level of noise
in the image. With the aim of producing an image of only the projected dots while
neglecting all other intensities, the threshold value had to be chosen with regard to
the intensity of relevant dots of the image. For the calibration image a fix threshold
could be found manually and the obtained calibration image after thresholding is
shown in Figure 3.7.

Figure 3.7: Calibration image after thresholding with a fix threshold has been
applied.

To determine which threshold value to use for a large set of images was difficult
since dot intensities could vary depending on imaged objects and light conditions of
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the scene. Hence, it was useful to implement adaptive thresholding which found a
suitable threshold value depending on the intensity levels of each frame. The Otsu
method[29] was implemented to perform automatic adaptive thresholding, which
found a suitable threshold by maximizing the variance between the set of values
below the threshold and the set of values above the threshold. Using automatic
thresholding was necessary when processing a large set of data, though in some cases
manually chosen values could result in a better thresholding than what was obtained
from the automatic algorithm. For instance, a too low threshold could result in
clustering of dots which in turn produced outliers. In Figure 3.8 the thresholded
image directly after Otsu thresholding is shown where the clustering of dots can be
noted.

Figure 3.8: Thresholded image after Otsu thresholding, corresponding to the image
in figure 3.2.

If the threshold was chosen manually, a higher threshold could be set to eliminate
the clustering of dots, but this also resulted in loss of detected dots as the intensity of
some projected dots was lower than the threshold value. An example of a case where
the thresholded image is highly effected by relatively small changes in threshold is
shown in Figure 3.9 and Figure 3.10.

Figure 3.9: Thresholded image
with threshold 19. The figure cor-
responds to the same original im-
age as figure 3.10.

Figure 3.10: Thresholded image
with threshold 20. The figure cor-
responds to the same original im-
age as figure 3.9.
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It is clear from these figures that it was not easy to set an optimal thresholding
even when doing so manually, since the thresholded image often was highly affected
by small changes in threshold. Usually, a higher threshold was preferable, as this
reduced the number of outliers. Thereby, even though the automatically chosen
thresholding was necessary for a large set of data, there were difficulties with using
only automatic thresholding since it was not set high enough to enable an effective
thresholding in all cases. Because of this, once an initial threshold was found using
the Otsu method, an iterative increase of the threshold was implemented if the
thresholded image was not considered to be processed well enough. The criteria
for increasing the threshold was set depending on the area in pixels of the largest
dot in the image. The dot area limit was set to be 1000 pixels and if exceeded the
iteration was started. In each step of the iteration the threshold was increased by
5 and the maximum number of iteration was set to 6, due to limitations in time
complexity. If the largest dot in the image still exceeded the maximum area of
1000 pixels the thresholding was considered not accurate, wherefore the image was
neglected. The resulting thresholded image after this iterative updating of threshold
can be seen in Figure 3.11. This image does not contain any clustering of dots, which
the thresholded image before the iterative increase of thresholding in Figure 3.8 did.
Instead, the dots in Figure 3.11 are all similar in size and can more easily be detected
as dots by a blob detection algorithm.

Furthermore, in the process of thresholding the reduction of noise achieved by
the Gaussian filtering can be seen more clearly, which can be seen in Figure 3.11
and Figure 3.12.

Figure 3.11: Final thresholded
image with Gaussian filtering,
corresponding to the image in
Figure 3.3

Figure 3.12: Final thresholded
image without Gaussian filtering,
corresponding to the image in
Figure 3.3

Once thresholded images were obtained, a blob detector algorithm provided by
OpenCV was used to find the centre of each thresholded dot. In the blob detector,
the contour of each thresholded dot is found using edge detection algorithms. Then,
weighted averages of pixel intensities, called image moments [30], corresponding to
each thresholded dot is used to find properties such as centroid and area of the dot
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corresponding to each contour. Image moments are calculated by:

Mi,j =
∑

x

∑
y

xiyjIx,y

where Ix,y is the intensity at pixel position (x,y). The coordinates Cx and Cy of a
centroid is defined using moments according to the following formula:

[Cx, Cy] =
[
M10

M00
,
M01

M00

]
As the detection of dots required preprocessed images, centroids of dots were found
on images which had been filtered with a Gaussian filter. The averaging of intensities
caused by the Gaussian filter can reduce the accuracy of the estimation of centroids.

3.2.3 Estimation of depth
When the centres of dots were found the subsequent step was to match the dots
between the image and the calibration image. For each dot in the image of the
projected pattern a corresponding dot was searched for in the calibration image. An
interval was set in the image, defined by the position of each dot in the image, and
if only one dot was detected within the interval it was considered a match. If more
than one dot were detected there was no matching, as no robust implementation
could be designed to choose which dot to consider as a correspondence and which to
dismiss. Each pair of corresponding dots detected was used to estimate disparity.

Once disparity had been found for each pair of corresponding dots in the image
and the calibration image, the final task was to use the obtained disparity to estimate
depth, using Equation 2.4 in Section 2.1.4. A depth map was constructed, where
the estimated depth value was inserted at the pixel position for each matched dot
in the image.

Once the depth estimation was completed interpolation was required to form a
less sparse point cloud, resulting in a continuous depth map. Before interpolating
the depth values, the values were masked to remove possible outliers as these have
large impact on the interpolation. All values which deviated more than 10% from the
median of the depth values were considered outliers, wherefore they were neglected.
Cubic interpolation was implemented to create a dense depth map without sharp
edges, in order to model the smoothness of the surface of the face. Once the final
depth map was obtained a point cloud representation in 3D of the face was created
for visualization.

In conclusion, the steps to achieve a continuous depth map were:
• Preprocessing of images and thresholding
• Detection of dots using a blob detector provided by OpenCV
• Matching of dots
• Computing disparity
• Converting disparity to depth and form depth map
• Interpolation of depth map
Lastly, the distance to the same position in space as estimated by the tracking

algorithms had to be found in order to improve the current single point depth
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estimate. The tracking algorithm estimates the distance to a position in between
the eyes, which is situated behind the surface of the face. The corresponding 2D
position is illustrated in red in Figure 3.13.

Figure 3.13: IR image where the 2D position of the single point depth estimate
used in the evaluation process is illustrated in red.

The computed depth at this pixel was extracted from the depth map. Since the
depth map models the distance to the surface of the face the measure is obtained by
simply adding 1 cm, according to the limitations set for the project as specified in
Section 1.4. This computed depth value was then compared to the estimated depth
value obtained from tracking. Furthermore, the computed depth value was used as
ground truth for networks in the second part of the project.

3.2.4 Evaluation of depth estimation
As the output of the depth estimation algorithm was to be compared with a single
point depth estimate of the face provided by present software at Smart Eye the
system had to be evaluated on human faces. However, when measuring distances
on humans, errors might be introduced not only due to movements but also due to
difficulties in measuring. In the evaluation process of the algorithm for estimating
depth two test persons were included. In total 30 frames were captured for each
person, at five different distances between 50 and 75 cm. The frame rate for each
pair of images was 30 fps, wherefore the test person had to be still for one second
at each test distance.

To reduce movements of the head a rack was used to position the head, which
is shown in Figure 3.14. The forehead was put as far as possible into the upper
part of the rack while the chest was put against the soft lower part of the rack.
In Figure 3.15 an image of a test person positioned in the rack can be viewed and
the corresponding image of the projected pattern is presented in Figure 3.16. By
retaining the same pressure on the forehead and keeping all settings constant, the
person was assumed to be still while taking images used for evaluation. Both parts
of the rack can be adjusted horizontally and vertically to ensure a good fit for each
person involved in collecting images.
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Figure 3.14: Rack used to stabilize the head for collection of data used in the
evaluation of depth estimation.

Figure 3.15: Test person posi-
tioned in the rack for depth eval-
uation.

Figure 3.16: Corresponding im-
age of the projected pattern for
the person positioned in the rack
for depth evaluation. The bright-
ness of the image has been in-
creased.

The distance between the camera and a position in between the eye on the bridge
of the nose, as shown in Figure 3.13, was measured using a measuring tape. This
position was chosen because it is the same position in 2D as the single point depth
estimate obtained from the tracking as described in Section 3.2.3. As the reference
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position was near the eyes the method for measuring control values had to be non-
harmful to the eyes at all distances, which motivated the usage of a measuring tape.

Once all measures were obtained the mean value and standard deviation were
calculated for each set of data, which is presented in Section 4.2.1 in Results. The
objective of this evaluation was to evaluate precision, accuracy and invariance to
characteristics of the head.

Lastly, the depth maps were evaluated more in detail. Here, the rack was not
used as the objective was to evaluate the visual appearances of the depth maps, in
both 2D and 3D. Different cases were studied, all in the same environment but with
different distances and angles of the head, to find both successful and problematic
cases.

3.3 Depth and pose prediction using depth maps
Once the performance of the depth estimation algorithm had been evaluated the
second part of the project was initiated. The objective was to evaluate whether
using depth maps computed by structured light improved the performance of an
implemented depth and pose estimation network. Hence, a comparison was made
between using only IR images as input and using IR images fused with depth maps
as inputs. For both implementations, the same ground truth was used. The xy-
position, rotation and facial landmarks were obtained from the tracking system
whilst depth was extracted from the corresponding depth map. The comparison was
performed on both a multitask network and a singletask network. The multitask
network was implemented to predict rotation, xy-position, depth and landmarks
while the singletask network was implemented to predict either depth or rotation.
Depth maps were added using early fusion of inputs. In this section, the required
steps to achieve the described comparisons are described in detail.

3.3.1 Collection of data
The objective of the data collection was to collect different head positions at different
distances for a diversity of people. To achieve this a total of 11 test persons were
included in the data collection, with a difference in characteristics, age and gender.
No accessories such as glasses were included. All data were gathered at the same
place in an office environment during all recordings. This was also the same place
as where the calibration image for the pattern was taken.

The recording time for each test person was in total ten minutes, where eight
minutes were primarily used for training and two minutes primarily for evaluation.
For each person training data were recorded first and evaluation data were recorded
directly after. In order to achieve different poses and distances instructions were
set beforehand which the test person should follow. The different movements where
divided into two different parts. Part A consisted of movements at given distances.
The test persons did part A at a few different distances between approximately
40 and 75 cm distance from the camera. In the other part, part B, the movements
were performed whilst moving towards and away from the camera. In this way many
different distances were gathered per pose. The test persons were also asked to yawn
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and laugh while looking around as a separate task. Both part A and part B were
performed with both a neutral and a happy expression. Moreover, the test persons
were encouraged to talk during the entire recording, in order to obtain different
facial expressions in the different positions and distances. A few different poses and
expression for one test person can be seen in Figure 3.17.

3.3.2 Generation of training and evaluation data
The framework for estimating pose and depth had to be adapted to generate new
training and evaluation data with depth maps included as input. The tracking
algorithms required to obtain parts of the ground truth was applied on IR frames.
In order to generate training data the code was adapted such that output from the
tracking algorithms was computed on IR frames, whilst depth maps and improved
depth values were computed on the corresponding frames with projected structured
light. As a result, a set of IR frame, depth map and output from tracking algorithms
was generated for each frame and saved as training and evaluation data.

An IR frame was only saved as a new training example if it differed from previous
frames. The examples were augmented with the same rotation, scale and translation
for both the IR image and the depth map. For the IR image noise was added as
well. For each frame that was estimated to differ enough from previous frames ten
different augmentations were used. In total 277 954 examples for training were
obtained and 53 752 for evaluation. At first, training was performed using a smaller
data set, where each frame only was augmented once. As the resulting loss functions
were not monotonically decreasing more augmentation was added to generate more
data.

In order to evaluate the training data a subset of training examples was studied.
In the visualization used for data evaluation, a 2D representation of the depth map
as well as the corresponding IR image can be seen. A subset of such training data is
presented in Figure 3.17. The background of the depth map is set to 50 cm during
the visualization, in order to enhance the contrast in the images. For depth maps
which are less than 50 cm the background will be white and for images where the
depth is around 50 cm the background will be gray.
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Figure 3.17: Training data showing the inputs to the network, i.e. an IR image
and the corresponding depth map visualized in 2D.

3.3.3 Training and evaluating the networks
In order to study the impact of adding depth maps as input to CNNs a comparison
was made between the performance of a network implementing only IR images as
input and a corresponding network implementing both IR images and depth maps
as inputs. For all cases of training and evaluation, the networks used were FAb-Nets
with the optimizer Adam. The loss function was set to be the mean absolute error,
MAE, and the networks were trained from scratch with random initial weights.

The loss function for rotation was computed using the ground truth of quaternions
q̂gt and the predicted quaternion q̂pred:

q̂predq̂
−1
gt = q̂diff

From q̂diff the angular difference θdiff was found:

θdiff = 2arccos(w)

where θdiff was minimized using MAE. This implementation of loss for rotation was
already implemented in the available framework. For all other predicted parameters
the loss function was trivially defined as the MAE of the predicted value as compared
to the true value. As the training was not deterministic each case was trained twice
to enable a more robust comparison between networks. The multitask network and
single task network predicting depth were trained for 4000 epochs in total whilst
the network for rotation was trained for 2000 epochs. The number of epochs was
chosen depending on convergence and time limitations. For instance, training the
multitask network for 4000 epochs required approximately 120 hours.

When depth maps were included as input early fusion was applied. Thus, the
depth map was included as an additional channel in the input, which is clarified in
Figure 3.18.
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Figure 3.18: Illustration of early fusion used in this project. The symbol for
addition corresponds to concatenation.
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For testing, a late fusion network was trained separately on images and depth
maps and the features from each training were concatenated as a final step. Then,
outputs such as position and rotation were predicted. In Figure 3.19 a clarification
of the structure is presented.

Figure 3.19: Illustration of late fusion. The symbol for addition corresponds to
concatenation.

As the network was trained on an IR image and a depth map separately, late
fusion was excluded in the final testing due to its time complexity. The time duration
for training with late fusion was twice as long as training using early fusion.

Initially a ResNet was implemented and evaluated. However, this had a long
convergence time wherefore a smaller network, a FAb-Net, was tried instead. In the
final evaluation only FAb-Nets were evaluated as these were faster and resulted in
monotonically decreasing loss functions.

Furthermore, both singletask networks and multitask networks were tested, as
multitask networks have been found successful for face recognition tasks in previous
studies [28]. The singletask network was set to predict either depth or rotation while
the multitask network was set to predict depth, rotation, landmarks and xy-position
of the single point depth estimate. For the multitask network all parameters were
set to have the same priority.
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The following sections serve to present results obtained for both parts of the project.
First, a theoretical analysis of the possibility to achieve set goals regarding the accu-
racy of the depth estimate is presented. Secondly, results obtained by the evaluation
process of the depth estimation algorithm are presented as well as examples of gener-
ated depth maps. Finally, the performance of different implementations of networks
are evaluated in order to be able to draw conclusion of the impact of adding depth
maps as input to networks for prediction of depth and head pose, corresponding to
the goal for the second part of the project.

4.1 Analysis of theoretical resolution
Before developing any algorithms for the prototype camera a theoretical analysis
of the possibility to reach set goals with the specific pattern characteristics of the
incorporated projector was carried out. The theoretical depth resolution of the
Smart AI-X 3D was evaluated in the interval set for the project. The objective
was to achieve a resolution higher than 1 cm. The analysis assumed points to be
correctly matched between the pattern and the corresponding calibration pattern.
Furthermore, the required resolution in disparity to achieve 1 cm resolution in depth
at different distances was analyzed.

In order to analyze the resolution of a camera its specifics such as focal length,
pixel size and baseline must be available. For the camera used for this project the
focal length is 5.87 mm, the pixel size is 3 µm and the baseline of the device is 6
cm. In all further estimations the disparity resolution is assumed to be one pixel,
i.e δd = 1. In Section 2.1.3 Equation 4.1 is obtained:

δD = D2

bf
δd (4.1)

The objective is to investigate whether it is possible to obtain the requested depth
accuracy of 1 cm given single pixel resolution in disparity at different distances.
Hence, δD is set to be 0.01 m as this is what is asked for. To find which distances
such depth resolution can be obtained for the formula in Equation 4.1 is rewritten
as:

D =
√
bf

δd
δD (4.2)
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Now, inserting the camera specific values in Equation 4.2 yields:

1.08 =
√

0.06 · 5.87 · 10−3

3 · 10−6 · 0.01 (4.3)

According to the result above, given single pixel resolution in disparity it should be
possible to obtain a resolution of 1 cm for distances up to 1.08 m.

Next, Equation 4.1 is evaluated for a set of distances D within the set interval
and the results are presented in Table 4.1. By the result, it is clear that the theo-
retical accuracy in depth increases with distance but strictly stays below 1 cm for
all distances of interest.

D [cm] Resolution in D [cm]
30 0.08
50 0.21
70 0.42
100 0.85

Table 4.1: Theoretical depth resolution at different distances given single pixel
resolution in disparity for the Smart AI-X 3D.

In all previous calculations a single pixel resolution has been assumed. Though,
to find the pixel resolution necessary to detect a change of 1 cm in depth at different
distances relative the calibration yet another analysis must be carried out. Equation
2.3 is applied assuming δD to be 0.01 m:

δd = bf

D2 · 0.01

The difference in disparity caused by a change of ±1 cm at different distances is
estimated using the Equation above and the results are shown in Table 4.2. In order
to be able to detect a change of 1 cm using an algorithm with single pixel resolution
this difference must be larger than one pixel.

D [cm] ∆d for ∆D = 1 cm [pxl] Resolution of 1 cm in D [Y/N]
30 13 Y
50 5 Y
70 2 Y
100 1 Y

Table 4.2: Results required to evaluate whether it is possible to obtain 1 cm
accuracy in depth at different distances relative the position of the Smart AI-X 3D.

By the result in Table 4.2 it is clear that all disparities are larger or equal to 1 pixel
for set distances, wherefore sub pixel resolution is not necessary in the algorithm.
It is also clear that for short distances, such as 0.3 m, the resolution in pixels can
be quite low. For 0.3 m in distance, the limit for having 1 cm in accuracy is 13
pixels. The pixel resolution can therefore be off with 12 pixels and still be within
the requested ±1 cm interval at 0.3 m.
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4.2 Results of depth estimation
The following sections serve to present results obtained regarding the estimation
of depth. Once algorithms for estimating depth using structured light were imple-
mented, a test was designed with the aim of evaluating the performance of these
estimations. The accuracy of the depth estimation was evaluated on human faces
and the result was compared with the requested accuracy of less than 1 cm in the
interval 0.3 m to 1 m. Further descriptions of these tests and results obtained are
presented in Section 3.2.4.

4.2.1 Evaluation of depth estimation
The depth estimation was evaluated according to the descriptions in Section 3.2.4
in the Methodology chapter. The test was executed on two test persons, at four
different distances each with a total of 30 frames per distance and person. All
results obtained from the testing are presented in Appendix.

Table 4.3 and Table 4.4 show the mean of the estimated distances obtained using
the algorithm for depth estimation (A) along with the corresponding values obtained
when using the present depth tracking system (T). Table 4.3 presents values obtained
when using images of the first test person while Table 4.4 presents values obtained
for images of the second test person. When comparing the mean values of the
two tables it is clear that the accuracy of the current depth tracking algorithm at
Smart Eye varies with person while the depth tracking algorithm does not. Table
4.5 presents standard deviation for both test persons. The system is precise, as the
standard deviation never exceeds 7.5 mm. It can also be noted that the mean value
of the depth tracking algorithm stays within one centimeter from the true value for
all test cases. Moreover, 236 out of 240 tests stayed within one centimeter from the
measured distance and the tests that did not are all taken at 50 cm for test person
2.

Distance [m] Mean [m]
A T

0.50 0.4926 0.5600
0.60 0.5978 0.6753
0.70 0.7044 0.7835
0.75 0.7492 0.8344

Table 4.3: Mean of estimated distances using the algorithm for depth estimation
(A) and the depth tracking system (T) for test person 1 at four different distances.
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Distance [m] Mean [m]
A T

0.50 0.4996 0.4618
0.60 0.5972 0.5778
0.70 0.7026 0.6685
0.75 0.7488 0.7200

Table 4.4: Mean of estimated distances using the algorithm for depth estimation
(A) and the depth tracking system (T) for test person 2 at four different distances.

Distance [m] SD [m]
Person 1 Person 2

0.50 7.9·10−4 7.5 ·10−3

0.60 1.2·10−3 1.4 ·10−3

0.70 1.9·10−3 1.1 ·10−3

0.75 1.4·10−3 1.2 ·10−3

Table 4.5: Standard deviation for measurements at four distances for two different
test persons.

4.2.2 Generated depth maps
This section is divided to focus on a few different cases. First, the result of the
example in Section 3.2 is visualized, along with another image taken from the same
recording. Next, results for images in profile, images close to the camera and images
captured far from the camera are presented. For each example the resulting depth
maps are visualized in both 3D and 2D. The 3D representations is meant to visualize
how well the depth map captures the shapes in the face, related to smoothness. In
order to see the difference in 3D more clearly, a colormap is used. The colorbar
shows the values in unit meter. The 2D representation shows how the depth map
is input to the CNNs in Part 2 of the project. The face is positioned at the true
position as described in Section 3.2.3 . The background of the depth map is set to
zero when used as an input to the convolutional networks. Though, in the figures
presented in this section the background is set to a value close to the rest of the
values in the image in order to increase the contrast of the visualization of the face.
In this section, the brightness has been enhanced for all images of projected patterns.
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The resulting depth maps from the example discussed in the method, Figure 4.1
and Figure 4.2, are shown in 3D and 2D view in Figure 4.3, Figure 4.4 and Figure
4.5. The resulting point cloud is relatively smooth and the nose and lips can be seen
in the the side view.

Figure 4.1: IR image of
a person.

Figure 4.2: IR image of the pro-
jected pattern on a person, corre-
sponding to the IR image in figure
4.1. The brightness of the image
has been increased for visualiza-
tion.

Figure 4.3: Resulting
point cloud in front view
when using Figure 4.1
and Figure 4.2 as in-
put to the algorithms for
depth estimation.

Figure 4.4: Resulting
point cloud in side view
view when using Figure
4.1 and Figure 4.2 as in-
put to the algorithms for
depth estimation.

Figure 4.5: Resulting
depth map view when us-
ing Figure 4.1 and Figure
4.2 as input to the algo-
rithms for depth estima-
tion.
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A few seconds after the previous discussed image was taken the images shown in
Figure 4.6 and Figure 4.7 was captured. It can be noted that the images differ from
the previous images, but the intensity and distance to the person in both images is
fairly similar. The resulting depth maps are different though, which can be seen in
Figure 4.8, Figure 4.9 and Figure 4.10. Comparing Figure 4.4 and Figure 4.9, the
two images in side view, the difference between the two depth maps is noted. The
shape of the face in profile is not as smooth and does not follow the actual shape as
well in this example, especially the nose has gotten very sharp and a shape which
differ much from reality.

Figure 4.6: IR image of a per-
son, obtained a few seconds after
Figure 4.1.

Figure 4.7: IR image of the pro-
jected pattern on a person, corre-
sponding to the IR image in Fig-
ure 4.6. The brightness of the im-
age has been increased for visual-
ization.

Figure 4.8: Resulting
point cloud in front view
when using Figure 4.6
and Figure 4.7 as in-
put to the algorithms for
depth estimation.

Figure 4.9: Resulting
point cloud in side view
when using Figure 4.6
and Figure 4.7 as in-
put to the algorithms for
depth estimation.

Figure 4.10: Result-
ing depth map when us-
ing Figure 4.6 and Figure
4.7 as input to the algo-
rithms for depth estima-
tion.
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The next test case consider images of a person positioned almost in profile and
is visualized in Figure 4.11 to Figure 4.14. It is clear that the lower part of the face
is easier to represent than the upper part in this case, due to the upper part having
a lower intensity.

Figure 4.11: IR image of a per-
son positioned almost in profile.

Figure 4.12: IR image of the
projected pattern on a person po-
sitioned almost in profile, corre-
sponding to the IR image in Fig-
ure 4.11. The brightness of the
image has been increased for vi-
sualization.

Figure 4.13: Resulting point
cloud from obtained when using
Figure 4.11 and figure 4.12 as in-
put to the algorithms for depth
estimation.

Figure 4.14: Resulting depth
map obtained when using Figure
4.11 and Figure 4.12 as input to
the algorithms for depth estima-
tion.
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A set of cases where outliers are present is illustrated in Figures 4.15 to 4.19.
This image is captured at a distance closer to the camera, at 40 cm, than what the
depth estimation is evaluated on. Hence, this case is included because of Part 2,
since this distance occur in the data collection.

Figure 4.15: IR image
of a person located close
to the camera.

Figure 4.16: IR image of the
projected pattern on a person lo-
cated close to the camera, corre-
sponding to the IR image in Fig-
ure 4.15. The brightness of the
image has been increased for vi-
sualization.

Figure 4.17: Resulting
point cloud in front view
when using Figure 4.15
and Figure 4.16 as in-
put to the algorithms for
depth estimation.

Figure 4.18: Resulting
point cloud in side view
when using Figure 4.15
and Figure 4.16 as in-
put to the algorithms for
depth estimation.

Figure 4.19: Resulting
depth map when using
Figure 4.15 and Figure
4.16 as input to the algo-
rithms for depth estima-
tion.
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In Figure 4.20 to Figure 4.24 instead, a person is located far away from the
camera. The distance is approximately 90 cm. It is clear from Figure 4.20 and
Figure 4.21 that the intensities in the images are low, resulting in dark dots with
low contrast. In turn, calculating depth from such dots is problematic and the point
cloud obtained is not as smooth as for closer distances.

Figure 4.20: IR image
of a person located far
from the camera.

Figure 4.21: IR image of the
projected pattern on a person lo-
cated far from the camera, corre-
sponding to the IR image in Fig-
ure 4.20. The brightness of the
image has been increased for vi-
sualization.

Figure 4.22: Resulting
point cloud in front view
when using Figure 4.20
and Figure 4.21 as in-
put to the algorithms for
depth estimation.

Figure 4.23: Resulting
point cloud in side view
when using Figure 4.20
and Figure 4.21 as in-
put to the algorithms for
depth estimation.

Figure 4.24: Resulting
depth map when using
Figure 4.20 and Figure
4.21 as input to the algo-
rithms for depth estima-
tion.
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Figure 4.25 and Figure 4.27 show point clouds obtained when using Gaussian
filtering in front view and in side view respectively, for the example discussed in the
methodology. Figure 4.26 and Figure 4.28 show the same depth map but without
using any Gaussian filter. When comparing the images it is clear that the filtering
improves the result since it greatly reduces the level of noise.

Figure 4.25: Obtained point
cloud when using Gaussian filter-
ing as preprocessing of images.

Figure 4.26: Obtained point
cloud without using Gaussian fil-
tering as preprocessing of images.

Figure 4.27: Side view of an
obtained point cloud when using
Gaussian filtering as preprocess-
ing of images.

Figure 4.28: Side view of an ob-
tained point cloud without using
Gaussian filtering as preprocess-
ing of images.
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4.3 Results of depth and pose prediction
In the following sections the results obtained for the second part of the project are
presented. The performance of a network when adding depth maps as additional
input was compared to the case when only using IR images as input. Two different
networks were implemented, both networks were based on the FAb-Net and early
fusion of data when depth maps were included as input. In all other aspects the
networks were identical. For all cases, mean absolute error was set as loss function.
First, a singletask network which estimated depth and rotation separately was im-
plemented. Later, a multitask network was implemented as well, predicting depth,
rotation, facial landmarks and xy-position of the single point depth estimate. Each
network was trained on the entire training set consisting of 277 954 frames and eval-
uated on the validation set consisting of 53 752 frames. Each network was trained
twice, with random initialization of weights. For the single task networks predicting
rotation and depth the training which resulted in the lowest loss value for the valida-
tion was chosen for the comparison. When using the multitask network, the training
which resulted in the lowest total loss for validation, including all parameters, where
chosen for the comparison. In all figures in this section, the evaluated loss functions
for validation are plotted against time, as it was considered most convenient when
combining multiple training sessions for visualization in TensorBoard. Hence, the
flat line which can be observed in for example Figure 4.29 corresponds to the time
passed between different training sessions.

4.3.1 Singletask network
Initially, a singletask network was set to predict only depth or rotation. In Figure
4.29 and Figure 4.30 the loss function is evaluated for the validation set when using
IR images as input only and when adding depth maps to the input by early fusion
for each case. In Figure 4.29 the green graph represents the case when depth maps
are included as input while the pink graph only uses IR images as input. The
loss function is simply the mean absolute error of the predicted depth. It is clear
that adding depth maps as input to the network decreases the loss for prediction of
depth and thereby increases the performance of the network. Next, in Figure 4.30
the orange graph represents the case when depth maps are included as input while
the blue graph only uses IR images. The loss function for rotation is estimated using
quaternions. By the figure, it can be observed that adding depth maps as input to
the network decreases the loss for prediction of rotation and thereby increases the
performance of the network. A close up on the last epochs is included in Figure
4.31.
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Figure 4.29: Loss function for prediction of depth evaluated on the validation set
with and without adding depth maps as input to the singletask network.

Figure 4.30: Loss function for prediction of rotation evaluated on the validation
set with and without adding depth maps as input to the singletask network.
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Figure 4.31: Zoom in on the loss function for prediction of rotation evaluated on
the validation set with and without adding depth maps as input to the singletask
network.

Furthermore, the loss in the very last epoch for each implementation is presented
in Table 4.6, as well as the percentage decrease in loss when adding depth maps as
input.

Loss IR IR + DM Decrease [%]
Depth 0.0684 0.06294 8.0

Rotation 0.1225 0.1131 7.7

Table 4.6: Loss evaluated in the very last epoch for prediction of depth and rotation
respectively, when using either IR images or both IR images and depth maps as
inputs.

4.3.2 Multitask networks
As a second step, a multitask network was implemented to predict depth, rotation,
facial landmarks and xy-position of the depth estimate. For each parameter the
loss function is defined to be the mean absolute error of the predicted parameter.
as for the singletask network the loss function for rotation uses quaternions. The
results obtained are presented in Figure 4.32 to Figure 4.36, where the red graph
and the light blue graph represent networks with and without adding depth maps
as input. By Figure 4.34, Figure 4.35 and Figure 4.36 it is clear that adding depth
maps as input to the multitask network significantly increases the performance of
prediction of facial landmarks, xy-position and rotation. In all of these figures there
is a clear distinction between the graphs representing adding depth maps and not
adding depth maps, wherefore only the graph with the lowest loss for validation is
presented. Though, for prediction of depth the performance when including depth
maps differs between the two runs, wherefore all four runs are presented. The results
for prediction of depths are presented in Figure 4.32 and Figure 4.33 where the light

45



4. Results

blue graph and the green graph represent adding depth maps, while the red graph
and the purple graph represent not using depth maps.

Figure 4.32: Loss function for prediction of depth evaluated on the validation
set, both with and without adding depth maps as input to the multitask network.

Figure 4.33: Loss function for prediction of depth evaluated on the validation
set, both with and without adding depth maps as input to the multitask network.
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Figure 4.34: Loss function for prediction of facial landmarks evaluated on the
validation set, both with and without adding depth maps as input to the multitask
network.

Figure 4.35: Loss function for prediction of xy-position evaluated on the val-
idation set, both with and without adding depth maps as input to the multitask
network.
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Figure 4.36: Loss function for prediction of rotation evaluated on the validation
set, both with and without adding depth maps as input to the multitask network.

The losses in the very last epoch for prediction of rotation, xy-position and land-
marks are presented in Table 4.7, as well as the percentage decrease in loss when
adding depth maps as input. In Table 4.8 the losses in the very last epoch for
prediction of depth are presented.

Loss IR IR + DM Decrease [%]
Rotation 0.1295 0.1181 8.8

Xy-position 0.0707 0.06424 9.1
Landmarks 0.06827 0.06160 9.8

Table 4.7: Loss evaluated in the very last epoch for multitask prediction of rotation,
xy-position and landmarks, when using either IR images or both IR images and
depth maps as input. Depth maps are denoted by DM.

Loss for prediction of depth

IR 0.09704
0.09232

IR + DM 0.09552
0.08908

Table 4.8: Loss evaluated in the very last epoch for multitask prediction of depth,
when using either IR images or both IR images and depth maps as input. Depth
maps are denoted by DM.
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In this chapter, the results are discussed in further detail. Furthermore, improve-
ments as well as future steps for this project are presented.

5.1 Depth estimation
Using structured light for computation of depth maps resulted in well estimated
depth and depth maps which visually looked accurate. Nevertheless, some difficulties
related to the challenges mentioned in Section 2.1.5 can be further improved. In this
section possible improvements of the algorithm, restrictions in evaluation and future
steps of using structured light for depth estimation are discussed.

5.1.1 Summary of evaluation of depth estimation
In the process of evaluating the accuracy of the depth estimation algorithm a total
of 240 measurements were taken, out of which only 4 were outside the requested
interval of±1 cm. All of these four measurements were also obtained during the same
recording. Hence, it is possible that something occurred during this recording which
affected the accuracy, for instance small movements of the test person or unexpected
behaviour of the projector. Furthermore, the four values were inside an interval of ±
2 cm, and the mean value for that recording was still within the requested interval.
The exact accuracy of the system could not be set due to limitations in measuring
of the true distance, but the evaluation can still be considered successful as the
accuracy measured was within the requested interval.

The obtained accuracy is a great improvement compared to the current system
which had an accuracy of around 8 cm for test person A and 3 cm for test person
B for all four distances. As each person deviates more or less from the statistical
head model used in the current system, each person will have different accuracy in
the depth estimate obtained from tracking. Another goal with the depth estimation
using structured light was invariance to head characteristics which was fulfilled since
the accuracy of the computed depth value did not differ between the two test persons
in the new system. The accuracy of the current system might be misleading, as
described in section 1.1, the tracking algorithms demands a head model of the face
which is created from rotation of the head which was not possible when using the
rack for evaluation. The accuracy for the current system was hence included only
as a reference in order to note the impact of characteristics on the current system
compared to the new algorithm. In the new system no calibration of this sort is
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needed in order to obtain the depth estimate which is an advantage.
The precision of the system was calculated in order to ensure that the new system

did not suffer from problems related to precision. The precision was in the order
of millimeters, which was considered high enough. In conclusion, using structured
light for computing depth was successful with respect to both accuracy, precision
and invariance to head characteristics.

5.1.2 Further improvements of depth estimation
Even though the depth estimation was considered successful, improvements could
still be done. The two most distinct challenges in the proposed algorithm were the
differences in light intensity in the images and occlusion. Occlusion is also one of
the biggest issues related to structured light with only one camera, as mentioned
in Section 2.1.5. Regions behind the nose were often a difficulty, which resulted in
outliers. Most of these outliers were removed by masking before interpolation of
depth maps, described in section 3.2.3. In order to handle the problem of occlusion
the projector on the other side of the camera could be included in the system as well.
Due to its position it would not result in the same occluded areas as the projector
used in this project wherefore the detected dots from each projected pattern could be
combined to fill holes caused by occlusion. Though, this would require yet another
frame of projected pattern, resulting in a lower frame rate than what is currently
implemented.

Regarding the differences in light intensity, the main difficulty was finding the
optimal thresholding. A possible way to handle this would have been to apply
different thresholding at different regions of the image. This method was tested, but
did not yield improved results as the areas with very high intensity were most often
relatively small. Therefore, an efficient division of the cropped image still yielded
too large variations in intensity within some of the divided parts of the frame. As
a result, this implementation was excluded and all thresholding was applied to the
entire cropped image instead. Though, with the aim of increasing the accuracy a
future step could be to fine tune the thresholding for each dot, so that each centroid
could be detected more carefully. Clearly, this would increase the time complexity
of the algorithm, which also would have to be considered.

Thresholding was important since a blob detector dependent on thresholding
was used. In order to generate depth maps for the data set for Part 2, it was
necessary that the blob detection was fast. The chosen blob detector seemed to
have a reasonable accuracy along with high speed. Had low time complexity not
been important other blob detectors could have been chosen instead, which were
not as dependent on the thresholding.

Evaluating the performance of the blob detector was a difficult task as the con-
trast of each dot was low, which can be seen in Figure 3.6. Hence, whether the
thresholding actually affected the accuracy of detection of dots is not clear. Due to
low contrast, defining the true centroid of dots manually for comparison with the
ones detected by the blob detector was not considered possible, which is why the
blob detector was not evaluated further.

The noise level of the input image clearly affected the design of the system, which
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was solved by applying the Gaussian filter. If the noise could be reduced, for instance
by decreasing the gain of the camera, such filtering would not be necessary. Though,
this would probably result in a lower contrast of dots, which in turn caused challenges
as described above. Due to difficulties in defining the true centroid as described
above, any algorithm to counteract the possible decrease in accuracy caused by the
Gaussian filtering was not possible.

In research, pseudo random patterns are often used for structured light, as men-
tioned in Section 2.1.4 in Theory. If pseudorandom pattens were implemented the
matching of dots as well as the blob detection would be excluded from the algorithm,
since other pattern recognition algorithms could be applied instead. Since these pro-
cesses caused most outliers it would be interesting to investigate if the performance
would be improved by using pseudorandom patterns.

5.1.3 Restrictions and simplifications of the evaluation
The impact of ambient light was not studied during the project, since all data were
collected in the same environment. Though, to make the system useful in a com-
partment such a study must be carried out to investigate how the system performs
in common lightning conditions such as sunlight during the day and darkness dur-
ing the night. Moreover, testing in a real compartment could exploit challenges
caused by natural movements while driving. Hence, even though the system can
be assumed to perform well in a controlled environment its usability in a real case
scenario must be further investigated. Moreover, no glasses were worn during the
evaluation nor the data collection due to the reflectivity of the glass. Though, it is
obvious that such characteristics must be handled to make the system useful in a
real scenario. Since the evaluation of the depth estimate only included two persons
it would be of interest to include a larger set of persons in the evaluation, so that
more characteristics could be tested as well.

As described in Section 3.2.4, a rack was used in the process of evaluating the
accuracy of the depth estimate. This rack was constructed such that only images
on the face in frontal position could be captured, at certain distances. For short
distances the rack itself was in front of the person resulting in occlusion. Hence,
short distances could not be evaluated. Furthermore, it was not possible to evaluate
images in profile due to the construction of the rack. The depth maps for a limited
amount of cases were studied visually, but no further evaluation was performed.
However, cases which were not studied are present in Part 2 of the project. To
ensure that only accurate depths were sent to the networks in the second part of the
project an evaluation of more positions and distances would be required as well as
an evaluation of the accuracy of the entire depth map. Though, in order to evaluate
the entire depth map a true depth map must be available for comparison, which was
not the case for this project.

The evaluation process could be expanded if simulated data were included. Sim-
ulating the projection of the pattern on a mesh of the human head would enable
detailed evaluation of numerous aspects of the algorithm. For instance, the accuracy
of the depth map for different position and distances to the head as well as different
characteristics could be evaluated for a large amount of data with high accuracy if
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the depth at each pixel was defined by the simulation. Furthermore, the individual
steps in the algorithm could be evaluated which would be valuable as mentioned in
Section 5.1.2.

Another restriction was the conversion between the position of the tracked dis-
tance and the position of the calculated distance using structured light. As men-
tioned in Section 1.4, the difference between these positions was limited to be set to
1 cm for all cases. Due to this limitation, the distances will not correspond to the
exact same position if the real distance between those positions deviates from the
set value of 1 cm.

5.1.4 Future work for Part 1
There are several aspects which would be of interest to investigate further regarding
the first part of the project, as discussed in previous sections. In summary, the most
important steps for future work would include:

• Evaluation of the system on more test cases including simulated data
• Enabling usage of both projectors of the device to avoid occlusion
• Investigation of whether a projected pseudo random pattern could increase the

performance of the system

5.2 Prediction of depth and pose
In the following sections the results obtained when comparing the performance of a
FAb-Net implemented to use IR images as input to a FAb-Net implemented to use
both IR images and depth maps as inputs are discussed. Future steps regarding the
usage of depth maps as input to networks are also presented.

5.2.1 Summary of results for prediction of depth and pose
When adding depth maps as input to a single task network for predicting either
depth or rotation the performance was found to increase, as seen in Figure 4.29 and
Figure 4.30. For prediction of rotation the performance was increased instantly while
several epochs was needed before a clear difference could be observed for prediction
of depth. In conclusion, adding depth maps as input for the singletask network
resulted in improved performance for all evaluations of each task, wherefore it can
be concluded that depth maps are beneficial for such predictions.

Moreover, from Table 4.6 it can be noted that the increment in performance is
slightly larger for prediction of depth. Though, since the difference in increments is
small it is necessary to train each network more than twice to be able to draw more
robust conclusions. For this project, each network was set to only be trained twice
as each training was very time consuming. Therefore, no comparison between the
improvements for different parameters is carried out.

For the multitask network, adding depth maps as input was found to increase
the performance regarding prediction of facial landmarks, xy-position of the single
point depth estimate and rotation. Hence, the depth maps, which represent 3D
information, served to increase the performance of two dimensional tasks as well.
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For all three implementations, the increment in performance was observed from the
very start of the training and consisted for all epochs. Again, the differences in
increments presented in Table 4.7 are quite small, wherefore a larger number of
trainings per network would be interesting to evaluate. Including depth maps for
prediction of depth using the multitask network was ambiguous when compared
to the best loss obtained when not using depth maps, as one training resulted in
decreased loss while the other training resulted in increased loss. For this case, it
would be interesting to train for an even larger number of epochs to see if any clear
difference could be obtained. The comparison was performed using only one network
architecture and it is possible that the result would be different if another network
architecture was chosen.

When comparing the prediction of depth for the singletask network and the mul-
titask network it can be observed that the prediction of depth was increased for the
singletask network while no significant change in performance could be concluded
regarding prediction of depth for the multitask network. The losses presented in
Table 4.6 for prediction of depth are relatively small in comparison with the mul-
titask losses for the same task, presented in Table 4.8. Therefore, it seems as the
prediction of depth was not profited by including prediction of more features in the
network. Though, it is clear by Figure 4.32 that the graphs have not converged.
Therefore, it is still possible that a result closer to that obtained for the singletask
network would be obtained if the training was to be continued for a larger number
of epochs or if other training parameters had been implemented.

Furthermore, this project aimed to study the impact of adding depth maps as
additional input to a network and did not consider optimizing the result for each
network. Thus, it is left to investigate how changing network architecture or learning
rate can affect the losses obtained.

5.2.2 Evaluating the data set
From the figures presented in Section 4.2.2 it can be noted that even if outliers
appear obvious when representing the data as a 3D point cloud such outliers can be
difficult to recognize in the depth map. For instance, in Figure 4.19 the outlier is
not obvious whilst in Figure 4.18 the outlier is clear. Therefore, when examining the
generated training data the depth maps can be interpreted as smooth even though
the point cloud would reveal the existence of outliers. The visualization of the
training data was made in 2D, as presented in Section 3.3.2. Hence, there is a risk
that the depth maps included as inputs to networks contained outliers. It would be
beneficial to be able to evaluate the data further in order to estimate the quality of
the input.

Furthermore, in this project the pattern of the device is projected every other
frame. Hence, using depth maps resulting from the projected pattern as a corre-
spondence to IR images from a previous frame introduces an error if there are rapid
movements in the scene. If such errors could decrease the performance of networks,
due to introduction of noise, was not studied during the project.
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5.2.3 Train on simulated data
The data collection was limited to include 11 persons whereas augmentation was
used to increase the training and evaluation set. Obviously, it would be beneficial
to include a larger set of data where more poses, expressions and a wider range of
people were included.

A possible approach to efficiently generate more examples could be to use sim-
ulated data. However, there is a risk of using simulated data without making sure
the data is realistic enough, since a network trained on such data might not perform
well when evaluated on real data. The study by Shrivastava et al. [23] mentioned
in Section 2.2.4 discussed the importance of using realistic simulated data, and the
difficulties in obtaining this. In order to obtain realistic data from simulated data
the network GAN was used. The result of of this network was successful, but the
method to obtain the images was complex. Though, if generated with high realism
Shrivastava et al. showed that training using synthetic data was successful. Hence,
it ought to be possible to obtain more data by using simulated data if these are
realistic enough.

5.2.4 Future work for Part 2
In summary, the most prominent steps regarding future work for the second part of
the project would include:

• Repeated training of each network
• Optimization of training parameters
• Expand the data set

5.3 Ethical and societal considerations
If a future version of the system was to be implemented in a real compartment
the ethics regarding the handling of images and the information obtained by the
predictions must be considered, since both IR images of the face and entire 3D
models of the face would be present. Hence, it is not only a question about handling
the IR images correctly, but also the actual depth maps. Depth maps of faces can be
used for identification wherefore such information is sensitive. For instance, if the
depth maps were of high enough quality it could be possible to detect who the driver
is in each car with high accuracy, but how does one ensure that such information
is not used in a way that violates personal integrity? On the other hand, using 3D
models of the face for identification could be used to open the car or to instantly
change the settings of the compartment to suit each individual driver. Moreover,
knowledge of who is seated in a certain car can be crucial in case of emergency,
for instance ambulance personnel can be more prepared to treat each individual
before arriving to a site. Finally, the algorithms presented in this work are not at
all excluded to be used in compartments but the same system could be incorporated
to produce depth maps in any other area of technology as well. In summary, depth
maps can be useful for numerous implementations but for each implementation the
aspect of integrity should be considered and all data must be handled carefully.
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The aim of the project was to investigate and implement algorithms for construct-
ing depth maps using structured light. The depth estimates were compared with
a current single point depth estimate, regarding both accuracy and invariance to
characteristics of the head. The project also aimed to investigate how depth and
pose estimation performed by CNNs were impacted by adding depth maps as input.

From the evaluation of the algorithm in the first part of the project it can be
concluded that it was possible to obtain depth estimates with an accuracy of less
than one centimeter while keeping high precision, which was aimed for. Moreover,
the algorithm seemed to be invariant to characteristics of the head. Indeed, it would
be valuable to extend the evaluation process to include a larger number of persons
and scenarios.

A comparison was made between a FAb-Net implemented to use IR images as
input as compared to a FAb-Net implemented to include both IR images and depth
maps as input by early fusion. Both a singletask and a multitask network was
implemented. When adding depth maps as additional input to a singletask network
for prediction of either depth or rotation the performance was increased, as compared
to only using IR images as input. Moreover, adding depth maps as input to a
multitask network improved the prediction of facial landmarks, xy-position and
rotation. No significant difference in performance could be concluded for prediction
of depth.
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A
Appendix 1

A.1 Evaluation of depth estimation
Table A.1 shows the measurements used in the evaluation of the depth estimation
where 30 tests are carried out for each person and distance. Two test persons are
included, noted as A and B respectively in the table. Cells marked in color marks
measures where the calculated distance is not within 1 cm from the true distance.
Note that all such results occur for person B at distance 50 cm.

Test nr 50 cm A 50 cm B 60 cm A 60 cm B 70 cm A 70 cm B 75 cm A 75 cm B
1 0.4929 0.5016 0.5992 0.5997 0.7054 0.7032 0.7497 0.7481
2 0.493 0.502 0.5953 0.596 0.702 0.7034 0.7458 0.7506
3 0.491 0.502 0.5993 0.5963 0.7019 0.7024 0.7493 0.7483
4 0.493 0.5091 0.5981 0.5964 0.7075 0.7029 0.7492 0.7476
5 0.4929 0.501 0.5984 0.5964 0.7032 0.7036 0.7485 0.7495
6 0.4929 0.4971 0.5962 0.5997 0.7052 0.7027 0.7497 0.7479
7 0.493 0.513 0.5983 0.5964 0.7052 0.7033 0.7489 0.7501
8 0.4929 0.5092 0.5983 0.5966 0.7056 0.7034 0.7496 0.7497
9 0.4908 0.5083 0.598 0.5966 0.7058 0.7033 0.7466 0.7518
10 0.493 0.5005 0.5952 0.5999 0.7057 0.7035 0.7468 0.7496
11 0.4908 0.508 0.5977 0.5965 0.7019 0.7009 0.7493 0.7483
12 0.493 0.5011 0.5983 0.5971 0.7021 0.7017 0.7492 0.7516
13 0.4909 0.4884 0.5983 0.5999 0.702 0.7032 0.7496 0.7472
14 0.4929 0.4838 0.5956 0.5971 0.7018 0.7014 0.7494 0.7476
15 0.4929 0.5095 0.5985 0.5966 0.7058 0.7034 0.7492 0.7475
16 0.493 0.5113 0.5982 0.5971 0.7056 0.7034 0.7461 0.7474
17 0.493 0.5009 0.5979 0.5999 0.7017 0.6985 0.7521 0.7499
18 0.4929 0.4937 0.5954 0.5959 0.7053 0.7011 0.7495 0.7494
19 0.493 0.493 0.5964 0.5998 0.7057 0.703 0.7493 0.7474
20 0.4928 0.4848 0.5987 0.5962 0.7056 0.7033 0.7497 0.748
21 0.4907 0.5008 0.5988 0.5963 0.7055 0.7035 0.7499 0.7501
22 0.4929 0.4943 0.5985 0.596 0.7019 0.7035 0.7497 0.7481
23 0.493 0.4994 0.5986 0.5996 0.7061 0.7028 0.7526 0.7491
24 0.4929 0.4986 0.5983 0.5963 0.706 0.7017 0.7496 0.7477
25 0.4929 0.4933 0.5978 0.5962 0.7058 0.7031 0.7493 0.7497
26 0.4928 0.4922 0.5976 0.5964 0.7057 0.7031 0.7492 0.7496
27 0.4929 0.4924 0.5985 0.5962 0.7019 0.7019 0.75 0.7489
28 0.4928 0.4987 0.59819 0.5963 0.7058 0.7021 0.7495 0.748
29 0.4929 0.4995 0.59811 0.5966 0.7058 0.7015 0.7493 0.7482
30 0.4929 0.5012 0.5979 0.5963 0.7019 0.7036 0.7497 0.7483

Table A.1: Measurements used in the evaluation process of the algorithm for
estimating depth.
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