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Abstract

Frontal crashes account for around 50% of all fatalities in passenger cars and thorax
injuries are common in this type of crash. To evaluate car crash performance, mechanical
representations of human occupants are used, which are called Anthropomorphic Test
Devices. The most advanced for frontal crashes is the Test device for Human Occupant
Restraint (THOR), which has multiple deflection measurement locations in the chest. This
study used a generic Finite Element (FE) car interior model, that was based on several
different cars, and was meant to represent the cars present in a selection of NASS/CDS
accident cases. Several different injury criteria were used to evaluate the risk of sustaining
a three or more severe injury on the Abbreviated Injury Scale (AIS3+), four or more
Number of Fractured Ribs (NFR4+) or NFR3+ level of thorax injury. A population
based stochastic simulation study was set up and 1000 simulations with parameterized and
morphed car interior models were run in the explicit FE solver LS-DYNA, and parameters
were sampled using the optimization software LS-OPT. Using logistic regression and a
generalized linear model, risk curves were generated for several rib fracture risk criteria,
based on the simulations results. These risk curves were then compared to the AIS3+ rib
fracture risk from the NASS/CDS field data.

From the analysis of the results, it was apparent that the rib fracture risk criterion TIC
NSFR fit the NASS/CDS risk curve the best. The rib fracture risk criteria based on Rmax

and Dmax overpredicted the injury risk considerably, with a Winsmash ∆v of 56 km/h and
49 km/h for 50% risk of AIS3+ rib fracture for Rmax and Dmax, respectively, while the
NASS/CDS risk curve predicted a risk of 50% at 99 km/h. The rib fracture risk criterion
TICNSFR had the 50% risk at a Winsmash ∆v of 95 km/h, which was indeed closer to
the NASS/CDS risk curve.
However, since TIC NSFR seemed to be too insensitive, with few risk predictions above
20%, it is not recommended as the best available rib fracture risk function to be used
with the THOR ATD based on comparison to the risk of rib fracture in the selection of
NASS/CDS data. The injury criteria TIC NFR and PCscore showed better sensitivity,
while performing well compared to the selected NASS/CDS data. PCscore is slightly
preferred, for it is defined for the same injury classification as used in NASS/CDS, AIS3+.
PCscore is therefore recommended as the best risk function, among the ones considered,
for evaluating the risk of rib fracture with the THOR-50M ATD.

Keywords: FE, FEM, Risk curves, Generic, Stochastic, THOR, ATD, Dummy, 50th, 50M,
Biomechanics
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ÿ Acceleration percieved by the occupant
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1 Introduction

Every year lives are lost in the traffic and according to the World Health Organization
(WHO 2018), the number of fatalities each year is 1.35 million. This means that traffic
deaths is the 8th leading cause of death for people in all ages. Car occupants contribute
to 29% of the total fatalities on the road. Furthermore, as reported by the Insurance
Institute for Highway Safety (IIHS 2019) frontal crashes make up for most of the total car
related deaths in the United States (US) with over 50%.

The distribution of injuries in frontal crashes has been investigated previously. For
instance, Sherwood et al. (2019) used data from the National Automotive Sampling
System/Crashworthiness Data System (NASS/CDS) and analyzed the injury mechanisms
for occupants in small overlap crashes. Sherwood concluded that 75% of the drivers
studied had an AIS2+, according to the Abbreviated Injury Scale (AIS), injury on the
thorax, and 70% had an AIS3+ injury to the thorax. Another study, by Hallman et al.
(2011), made a similar conclusion as Sherwood. Hallman used data from two different
sources in the study. The data sources were Crash Injury Research (CIREN) and NASS/
CDS for cases with a Principal Direction of Force (PDOF) between -20◦ to 20◦ for large
overlap impacts. Injuries of type AIS3+ to the thorax were the second most common
injury type after injuries to the lower extremities. Thorax injuries are closely associated
with rib fractures, which was previously studied by Crandall et al. (2000) on Post Mortem
Human Subjects (PMHS). Thus, rib fractures are one of the main driving mechanisms
behind injuries to the thorax.

During the development of cars and their restraint systems, Anthropomorphic Test De-
vices (ATDs) are commonly used for development and verification testing. The ATDs
are mechanical representations of the human body, equipped with sensors to gather data.
Historically, there has been several different ATDs in use, but the most frequently used
ATD is the Hybrid III which was developed by General Motors (GM) in the US (Foster
et al. 1977) during the 1970s. Hybrid III was created with the objective of obtaining
better biomechanical response (Foster et al. 1977), compared to its predecessors Hybrid
I and II. In addition, Hybrid III displayed better reproducibility, documentation and
improved possibilities to measure additional parameters. A more recent design is the
Test device for Human Occupant Restraint 50th male (THOR-50M, hereby referred to as
THOR), which is a more advanced ATD than Hybrid III, in particular it was designed
with improved biofidelity and better chest deflection measurement capabilities (Parent et
al. 2017). Four chest mounted sensors, compared to one in Hybrid III, was mounted on
THOR, to better reflect the thorax loading in a crash event. Parent et al. (2017) made
a biofidelity evaluation of THOR and Hybrid III. The assessment was made using the
National Highway Traffic Safety Administration’s (NHTSA) Biofidelity Ranking System
in a total of 21 test conditions. THOR scored better than Hybrid III in 5 of 7 internal
body regions, while THOR was better in 6 of 7 external biofidelity conditions. The scores
were based on comparisons with PMHS. In addition to the physical ATDs, there are also
finite element (FE) models of the ATDs, that can be used in a simulation environment
before any real life crash testing might be made during car development programmes.
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This study used the THOR, for its improved evaluation of the chest deflection, by using four
three-dimensional displacement gauges. An FE-model of the THOR ATD was positioned
inside a generic FE vehicle compartment model, consisting of a driver’s seat and included
safety systems such as and airbag and seatbelt, and surrounding structure for the vehicle.
The FE vehicle compartment model was previously developed by Iraeus and Lindquist
(2016). A population based stochastic simulation study was setup up, using the generic
FE vehicle compartment model equipped with THOR, to enable a comparison with a
selection of NASS/CDS data based risk curve derived by Iraeus and Lindquist (2016).
The simulated population of crashes were derived from real life distributions (Iraeus and
Lindquist 2016).

1.1 Aim

The aim of this study was to compare rib fracture risk functions for the THOR ATD
with respect to the risk of injury in real life crashes sampled from NASS/CDS using the
method and generic FE vehicle compartment model developed by Iraeus and Lindquist
(2016), using multiple injury criteria.

1.2 Limitations

The current study was limited in that it only assesses oblique near side frontal collisions,
with a Principal Direction of Force (PDOF) of -45◦ to 10◦. Additionally, since the work is
carried out using the THOR ATD, which is an average sized male occupant model, it might
be difficult to generalize the findings to occupants of other sizes. The car environment
and THOR ATD will be part of a simulation environment, and no real-life testing was made.
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2 Background

An ATD is a mechanical representation of a human, for the purpose of using them in place
of humans when crash testing. When evaluating injuries sustained in crashes, an injury
scale classification is used, where the different severity levels correspond to a number,
depending on the level of injury endured. To bridge the gap between crash testing with
ATDs and real-life injury probability, risk functions computing the risk of sustaining an
injury are used, these risk functions use the sensor outputs retrieved from the ATD. An
introduction to impact biomechanics and the Finite Element method (FE-method) is also
given.

2.1 Finite Element Method

The FE-method is a way of numerically solving differential equations relating to e.g.
mechanical or thermal problems. In particular, nonlinear FE-analysis is an essential part
of computer aided design. The testing of prototypes are more often replaced by simulating
with nonlinear FE-method, since it is a faster and less expensive method to evaluate design
concepts (Belytschko et al. 2014). For instance, in the automotive industry, simulations of
crashes are replacing full scale crash tests, both for evaluating design concepts as well as
more detailed parts, such as crash structures and safety system interaction. This method
can be used to determine if a car meets the crashworthiness criteria. The FE-method can
also be used in fields of manufacturing, for simulating the effects of manufacturing pro-
cesses. In addition, electronics industries are replacing traditional methods with simulation
(Belytschko et al. 2014). It is important that analysts and developers understand funda-
mental concepts, to fully grasp the implications of the method and to make better decisions.

There are different types of problems, that require different solvers. Explicit or implicit
analyses are the most common. Implicit FE is known as solving for the unknowns through
matrix inversion. Explicit FE-problems are characterized by solving the equations in time,
i.e. explicit FE-method is used to compute the state of the system at a different time
from the current (Belytschko et al. 2014). Car crashes depend heavily on the different
time steps, and thus LS-DYNA (ANSYS/LST, Livermore, CA, USA) was used in this
study, since it is the preferred explicit FE-solver for crash simulation events.

2.2 Impact Biomechanics

Mechanical loads are something that the human body is exposed to throughout its life.
Apart from the forces generated by gravity or electromagnetic fields, there is great variety
of forces that might affect the human body. The science of biomechanics is dedicated to
the analysis, measurement and modeling of the effects during different mechanical loading
situations (Schmitt et al. 2019), first and foremost on humans, but also on animals and
plants. Internal forces can span a great range of cases, while the same applies for external
load cases. Magnitudes of forces that lay of interest range between pN to MN, and can
vary greatly in time (Schmitt et al. 2019).
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Injury to the human body may occur because of applied forces, and such cases are often
connected to actions which include excessive external forces being applied during an
accident for example. In fact, accidents of all kinds are a leading cause of death, especially
among young people (Schmitt et al. 2019). Self-inflicted injuries, i.e. injuries caused by the
body itself, can also happen, e.g. a broken rib due to intense coughing (Schmitt et al. 2019).

There are many different types of injuries, injury mechanisms and injury causing activities,
biomechanics must consider a large variety of human activities where injuries may take
place. Thus, it is apparent that biomechanics is an interdisciplinary science. Moreover,
clinical medicine is of importance, with respect to classifying injury severity, for example.
The knowledge within the field, gathered for hundreds of years in different disciplines,
have greatly contributed to impact biomechanics, for giving a detailed understanding of
injuries and their causes (Schmitt et al. 2019).

2.3 Crash Testing of Cars

Safety is an important aspect of a car’s properties, in fact a survey conducted by Mc-
Cartt, A.T. and Wells J.K., (2010), says that safety ranks second among the participants,
as the most important factor to consider when buying a car. Accordingly, this means
that car manufactures must produce safe cars. During the development, an automotive
company may set up a list of requirements that a car must meet. In many cases the
developments within the industry lead to higher safety standards across the whole markets.

In addition to the set of requirements a car producer sets on its own cars, independent
ratings are made, to objectively quantify how well a car can protects its occupants in a
set of standardized tests. This system is called New Car Assessment Programme (NCAP),
either in the US (USNCAP) or in Europe (Euro NCAP). Other actors may also test the
cars, such as the IIHS in the US. These tests then let the customer have access to and
compare the different test results. In addition, there are governing bodies that regulate
what standards must be met for a car to be legally sold, in the US this body is called the
National Highway Traffic Safety Administration (NHTSA). It is the role of NHTSA to set
legal requirements for car manufacturers, to improve overall safety levels.

2.4 Anthropomorphic Test Devices

An ATD simulates the human response in a car crash scenario, and are designed to imitate
the shape and form of the human body (Schmitt et al. 2019), and even more importantly
the kinematic and kinetic responses during a crash. There are many different types of
ATDs today, where Hybrid III (Foster et al. 1977) and THOR (Parent et al. 2017)
are commonly used in frontal crashes. Hybrid III has been used as the standard ATD
during the latter part of the 20th century and the beginning of the 21th century, and
is the most widely used ATD currently (Foster et al. 1977). Hybrid III was developed
as a successor for Hybrid I and Hybrid II, by General Motors during the 1970s, Foster
et al. (1977). The objective during development was to create an ATD with a more
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biomechanical response, in particular structures around the neck, thorax and knees. The
Hybrid III was a significant improvement to its predecessor, though it is by no means the
”ultimate” test device (Foster et al. 1977). The authors argued that further improvements
must however await with better understanding of car crash injury mechanisms. A limita-
tion of the Hybrid III ATD is that it only has one centrally mounted chest deflection sensor.

An improved ATD, and the proposed successor of Hybrid III, was developed starting in
1995, Humanetics (2022). The new device was called Test device for Human Occupant
Restraint, or THOR for short. The main purpose of the development was to create a device
with improved biofidelity, dynamic response, instrumentation, repeatability, durability
and user-friendliness. The development of THOR was supported actively by the NHTSA.
Among the improvements, lay particularly the increased number of chest measurement
locations, with four locations instead of one location. The sensors were not mounted
in the center, as for the Hybrid III, but rather off center, corresponding to the actual
location of the fourth and eight ribs, on each side, Figure 2.1. THOR is equipped with 6
Infra-Red Telescoping Rod for the Assessment of Chest Compression (IR-TRACC) sensors,
4 of which measures the ribcage deflection in mm. The 2 other, located at the bottom,
correspond to deflection for the abdomen.

Figure 2.1: The THOR ATD and the locations of the IR-TRACC sensors, the top four
sensors are the measuring chest deflection, while the two at the bottom correspond to the
abdomen. The coordinate system is marked in yellow and the angles in red.

According to Craig et al. (2020) NHTSA traditionally uses the 50th male ATDs in frontal
collision tests. 50th male refers to a male in the 50th percentile among a normal distribution
of the population, i.e. a 50th male would be the size and weight of an average North
American man. NHTSA reported that the THOR 50th male ATD will replace Hybrid III,
and will be used in the future for frontal crash test scenarios.

There are several requirements for an ATD. Firstly, it must be reproducible, meaning that
the manufacturing of the ATD can be done over and over, and get equally accurate test
devices. In addition, it must be repeatable, which means that an ATD must be able to
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produce similar results if a crash test setup is repeated. The THOR ATD is also modelled
for FE-simulations, which is a more controlled environment, where it is important that
the model correlates well with the real life model.

In this study an FE model of the Humanetics USNCAP THOR 1.7 50th male was used.
The ATD itself does not have any age, and one may therefore use the risk function to
correct for age depency. The THOR ATD has numerous sensors and accelerometers
mounted within, but for this project, the output from the sensors mounted in the chest
were the main focus.

2.5 Chest Injuries

Traumatic injuries can be classified according to the AIS, which is classifying injuries
according to the threat to life for the injured person. In the AIS classification method, 1 is a
minor injury, 2 moderate, 3 serious, 4 severe, 5 critical and 6 maximal/currently untreatable
(Genrelli and Wodzin, 2005). The AIS levels of thorax injuries were summarized by Schmitt
et al. (2019), Table 2.1.

Table 2.1: AIS injury scales, adapted from Schmitt et al. (2019).

AIS Skeletal injury
1 One rib fracture

2
Two rib fractures; sternum fracture;
pneunothorax

3
Three or more rib fractures on one side;
hemothorax; fractures with flail

4
Four or more rib fractures on each of the two
sides; four or more rib fractures with hemo-
or pneumothorax

5 Bilateral flail chest

There are many other injuries that can be sustained to the thorax than a closed rib fracture
(Schmitt et al. 2019). Pneumothorax is a collapse of the lung due to the negative pressure
in the pleural cavity cannot be maintained and is therefore filled with air. The pleural
cavity can be seen in Figure 2.2, together with the lungs and ribcage. Similarly, for AIS3
which includes hemothorax, where the cavity is instead of air, filled with blood (Schmitt et
al. 2019). AIS3 also includes fractures with flail which happens when there is a fracture in 2
or more places in the same rib. Flail means that the stability of the thorax is lost, and that
parts of it may move when breathing. Bilateral flail means instablity on both sides, which
means breathing is no longer possible (Schmitt et al. 2019). Finally, AIS5 is the risk of a bi-
lateral flail chest, which is synonymous with rib fractures leading to flail chest on both sides.
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Figure 2.2: Ribcage surrounding the lungs and pleural cavity. Adapted from Gray’s
Anatomy of the Human Body Lewis(ed.) (1924).

In tests with PMHS, as well as for accidents in the field, rib fractures are sometimes
quantified using Number of Fractured Ribs (NFR) or Number of Separated Fractured
Ribs (NSFR) (Troseille et al. 2019). The first is simply the number of fractured ribs,
while the latter is the number of fractured ribs for which the ends are separated from
each other so that they can be seen on X-ray. Hence, NSFR is a correction for the cases
in which the rib fractures are visible on an X-ray. This means, that, on average NSFR
count fewer rib fractures than NFR does. There might, for example, be cases in which the
injured occupant has a rib fracture but might not be diagnosed as such if it is not seen on
an X-ray (Troseille et al. 2019). Similarly, to AIS, both NFR and NSFR have magnitudes
of the injury scales starting from 1, which means 1 fractured- or separated fractured rib.
Another way of denoting injury severity is to classify it as e.g., AIS3+ or NFR3+, which
means all injuries worse than and including AIS3 or NFR3, respectively. Furthermore,
one could also consider the Maximum Abbreviated Injury Scale (MAIS), for an injured
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occupant. MAIS states the highest AIS code sustained by one person on any part of the
body studied, e.g., if an occupant suffers AIS2 level of injuries to the thorax but no more
than AIS1 on any other body part, the MAIS would be MAIS2 for this example (Schmitt
et al. 2019).

2.6 Rib Fracture Injury Criteria

An injury criterion is a way to relate a certain loading of the thorax with a corresponding
risk of e.g., AIS3+ injury (Schmitt et al. 2019). According to Schmitt et al. (2019) the
driving mechanism for rib fracture is the deflection of the ribs. Hence, a rib fracture
criterion should consider the rib deformation of the test object. The introduction of THOR
and its multiple measurement points facilitates the possibility to improve the prediction of
injury risk, with new injury criteria. All injury criteria used in this study were developed
from tests with PMHS.

Previously developed injury risk functions, for Hybrid III (Eppinger 1999 and Laituri et al.
2005), required corrections or assumptions to account for the center mounted single-point
measurement capability of the Hybrid III (Craig et al. 2020). Previously, NHTSA has
identified that increasing the number of measurement points, can improve the thoracic
loading assessment in vehicles with more advanced restraint technology, such as airbags
and pretensioners (Yoganandan et al. 2009). Morgan et al. (1994) discovered that thoracic
trauma might not always occur at the same ribcage location for occupants in frontal
crashes. If using multiple measurement locations on the chest, the injury prediction could
be improved (Kuppa and Eppinger 1998). The authors studied a dataset of 71 PMHS test,
with different levels of crash severity and restraint systems, and found an improved injury
prediction when using multiple deflection measurement points (Kuppa and Eppinger 1998).

Real world data suggest that a multiple point deflection measurement is required to better
reflect actual injury patterns. Shimamura et al. (2003) found that rib fractures occur
more often in the lower than the upper ribs. In addition, the rib fracture pattern might
often be asymmetric (Craig et al. 2020). As such, the peak deflection does not normally
occur centrally, and are thus unlikely to correspond to the mid-mounted sensor location of
the Hybrid III.

2.6.1 Resultant Deflection, Rmax

Craig et al. (2020) developed a measure for peak chest deflection, Rmax, which considers
the peak resultant deflection in any of the four chest mounted sensors of the THOR ATD.
During the development of this thoracic injury criterion several datasets were considered.
A recent matrix of PMHS tests collected by the University of Virginia was considered,
with a total of 42 PMHS observations. Additionally, a total of 14 matched pair tests with
PMHS and THOR were also included. Tests from Eppinger et al. (1999) that were similar
to the already extracted ones, a total of five, were also considered.
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Several different predictor variables were considered, and Craig et al. (2020) briefly argues
that including measurements from all four sensors was likely to cause overfitting of the
injury risk curve. The final proposal, Rmax, was chosen for its relative simplicity, since
there is no need to recompute the sensor outputs, in addition to the fact that none of
the other considered criteria could predict injuries significantly better. This measure is
proposed by NHTSA as the injury criterion to be used for evaluating thorax injuries when
crash testing with THOR.

2.6.2 X-axis Deflection, Dmax

Dmax was developed by Davidsson et al. (2014) and considers the peak x-axis deflection
in any of the IR-TRACC four locations. Principal component analyses were carried out,
and in one instance it showed that a significant portion of the variance could be explained
by considering the peak x-axis deflections in the upper left, upper right, lower right and
the peak of the upper points. Further, it was found that, for some datasets, Dmax offered
a better prediction than Rmax. The x-axis deflection was computed using the resultant
deflection Rmax and the inward angles of the IR-TRACC sensors, Figure 2.1.

2.6.3 DcTHOR

Another criterion was developed in the same paper, DcTHOR (Davidsson et al. 2014),
which is a differential measure, taking all four sensors into account. This criterion uses the
general thoracic compression level and the ribcage twisting level at both the upper and
lower locations. The method of developing this injury criterion did not differ substantially
from the other already mentioned. A set of 153 PMHS test were analyzed, with different
loading conditions and restraint types. The PMHS tests were reproduced with the THO-
RAX demonstrator, and Cox regression was used to ensure there were differences between
the responses. NFR was chosen as the injury scale for both DcTHOR and Dmax since the
AIS coding has changed over time, thus the AIS classification might not be consistent for
PMHS test done in previous times (Davidsson et al. 2014).

2.6.4 Thoracic Injury Criterion

The Thoracic Injury Criterion (TIC) was developed by Trosseille et al. (2019) as a linear
combination of Rmax and upper differential deflection (UPdif), which is the difference in
deflection of the upper IR-TRACC sensors on the THOR ATD. TIC is hence a linear
combination of the maximum value of the four chest resultant deflections and the absolute
value of the difference of the upper right and left deflections. TIC was defined for the
NFR and NSFR injury classifications.
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2.6.5 Principal Component score

Principal Component score (PCscore) is an injury criterion developed by Poplin et al.
(2017), where the objective was to create a function to predict the probability of thoracic
rib injuries, using multiple chest deflection measurements. The approach was to match
the injury outcome of PMHS tests, to chest deflection measured on the THOR ATD. This
measure was only defined for the maximum value in time, i.e., there was only one value
when analyzing one crash as opposed to the other which can be plotted over the crash
time. However, for this study the maximum value was the only value of interest anyhow,
meaning the variation over time of the injury criterion in one crash does not come in to play.

To summarize, six different injury criteria were used in the study, two of which, Rmax and
Dmax, consider the maximum value across the four sensors, i.e. only one sensor. The other
four were differential measures, taking more than one sensor into account when computing
the final injury criterion value.

2.7 Injury Risk

The injury criteria each have a corresponding risk function, that calculates the risk of
sustaining an injury to a specified severity level, e.g., AIS3+, where the value computed for
the injury criteria were inserted in the formula for computing the risk. The injury criteria
follow different distributions, either a Weibull or log-normal distribution, in accordance
with the function it was developed for. The risk functions have separate parameter values
for the individual criteria.

For the injury criteria considered in this study, the injury risk functions for the criteria
Rmax, TIC and PCScore all follow a Weibull distribution, while Dmax and DcTHOR
follow log-normal distributions. In addition, Rmax and PCScore were computed with
respect to the AIS3+, while Dmax and DcTHOR were in relation to NFR5+ and TIC
was computed for both NFR3+ and NSFR3+. These definitions were not exactly the
same, however, in this study, a comparison between the different metrics were made since
they were of similar injury levels, Table 2.1.
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3 Method

The work conducted in this study was based on a generic FE model of generic vehicle
interior developed by Iraeus and Lindquist (2016). The basic workflow was to first replace
the existing Human Body Model (HBM) in the generic vehicle interior, with the THOR
FE-model. Then, sample the parameters for the generic vehicle interior and re-morph the
model in the pre-processor ANSA version 21.0.1 (Beta CAE Systems, Luzern, Switzerland).
After the model had been pre-processed, the simulations in LS-DYNA version 7 were run.
Results were then extracted and post-processed in META (Beta CAE Systems, Luzern,
Switzerland), where several different injury criteria were considered. Finally, the field crash
data from NASS/CDS was processed, and the injury risks could be compared. Figure 3.1
shows a flow chart of the work stages.

Sampling 
of 

Parameters

Preprocessing
In ANSA

Simulation
In LS-DYNA

Injury Criteria
Extraction in META

Processing of
NASS-Data in

Python

Injury Risk
Curves

Injury Risk
curve

comparison

Figure 3.1: Visualization of the workflow to carry out population-based accident recon-
structions using the method by Iraeus and Lindquist (2016).

3.1 FE model of generic vehicle interior

The FE model of a generic vehicle interior was developed by Iraeus and Lindquist (2016),
and the method of producing it is described here. The most important parts of the vehicle
interior for this study were the structures that the occupant comes into contact with
during a crash. Properties of importance include the geometry, stiffness of impact surfaces
as well as properties for the belt and airbag systems.

The chosen cars had to fulfill 3 criteria: be available in the A2MAC1 (A2MAC1, Boulogne
Billancourt, France) database, physically accessible (in Sweden) for measurements and
tested in the NCAP program. The cars in Table 3.1 met these criteria. A2MAC1 is a
database containing detailed information about cars, such as the geometry and other
specifications. The cars represented were of different sizes as well as different vehicle
classes. The range of model years, between 2003 and 2017, means different generations
of safety systems were equipped. The average car interior was then modeled, Figure 3.2,
and consists of the floor, b-pillar- door trim, roof liner, instrument panel, center console,
steering wheel, pedals and a seat. For visualization purposes, a roof, door with glass and
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a windscreen were included. The selected car models represent the car included in the
analyzed NASS/CDS data, Iraeus and Lindquist (2016).

Table 3.1: Car models used by Iraeus and Lindquist (2016) to generate the generic model
used in this study.
Model Model Year Curb weight [kg] Vehicle class NCAP test no
Audi A4 2006-2008 1673 Compact executive 7027
Audi Q5 2008-2017 1941 Compact SUV 6732
BMW 318 2005-2012 1525 Compact executive 5590
BMW 523 2003-2010 1793 Compact executive 7024
Honda CRV 2006-2011 1581 Compact crossover SUV 5875
Honda Insight 2009-2014 1239 Compact 6729
Hyundai Santa Fe 2007-2012 1812 Mid-size crossover SUV 5838
Lexus RX350 2009-2015 1986 Mid-size SUV 6643
Mazda 6 2008-2013 1501 Mid-size 6513
Mercedes E 2010-2016 1826 Executive 6822
Mini Cooper 2006-2014 1130 Subcompact 6291
Toyota Prius 2003-2009 1340 Mid-size 5587
Toyota Rav 4 2006-2012 1597 Crossover SUV 5611
Toyota Yaris 2005-2010 1078 Subcompact 5677

Figure 3.2: The FE model of a generic vehicle interior based on an average of 14 cars.

3.2 Simulation Post Processing

Simulation post-processing was carried out using Meta v 22.0.1 that were run via a Python
3 (Python Software Foundation, https://www.python.org/) script. Signals analyzed were
the thoracic and abdominal IR-TRACC displacements, neck forces and IR-TRACC ro-
tations. All signals were filtered using SAE J211-1 (2003) Channel Filter Class (CFC)
filters according to Craig et al. (2020), Table 3.2. After extracting the ATD signals, injury
criteria calculation was conducted.
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Table 3.2: CFC filter values.

Signal CFC
Head CG Accelerometer, X, Y and Z-axis (g) 1000
Upper and Lower Neck Force, X, Y and Z-axis (N) 1000
Left and Right abdomen Y and Z-axis rotational pot. (deg) 180
Upper Left and right Y and Z-axis rotational pot. (deg) 180
Lower Left and right Y and Z-axis rotational pot. (deg) 180

Following the post-process calculations in META, the data was plotted, and the peak injury
criteria and risks were stored in a text.csv-file. Furthermore, another csv-file containing
all data was also made, to allow for plotting in another software, e.g., Python, where the
user can have more control when plotting.

3.3 Injury Criteria Calculation

Several different chest injury criteria were considered and computed for each simulation.
This, in order to evaluate the risk of injury from different perspectives, e.g., using peak
deflection or using a linear combination of all sensors. The sensors used for the calculations
were the IR-TRACC sensors located in the THOR ATD, seen in Figure 2.1 together with
the coordinate system used.

3.3.1 Rmax

The chest injury criteria Rmax (Craig et al. 2020) is the max resultant chest deflection
of any of the Upper Left UL, Upper Right UR, Lower Left LL, and Lower Right LR
IR-TRACC gauges of the THOR ATD, Equation (3.1).

Rmax = max
(
|UL,UR,LL, LR|

)
(3.1)

Based on the Rmax deflection calculated for each simulation, a probability for sustaining
an AIS3+ level of injury was computed using the function described in Craig et al. (2020),
which follows a Weibull distribution, Equation (3.2)

P (AIS3+) = 1− e−
(
Rmax/eβ0+β1age

)α
(3.2)

For which age is the age of the occupant, and in the case studied in this report, a 40-year-
old. β0, β1 and α are coefficients from the regression model. For this case they take the
values 4.7276, 0.0166 and 2.977, respectively. The Rmax risk function for a 40 year old
occupant has a risk of 50%, for sustaining an AIS3+ chest injury, for 51.5 mm Rmax chest
deflection, Figure 3.3.
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Figure 3.3: Rmax AIS3+ risk curve for a 40 year old occupant.

3.3.2 Dmax

This injury criterion is similar to Rmax, however instead of resultant deflection, Dmax only
considers the deflection along the x-axis, Davidsson et al. (2014). For the deflection to be
computed along the x-direction, the angles of each deflected rib must be extracted. Each
rib IR-TRACC sensor has two angular sensor measures, one for y-axis rotation and one
for z-axis rotation, as shown in Figure 2.1. Then, the recalculation of the deflection was
done according to Humanetics (2016), for every sensor, Equation (3.3).

Dx = δ sinϕy +R cosϕy cosϕz (3.3)

ϕ is the angle of a rib, y and z means which axis the angles are measured around. R is
the resultant deflection for an IR-TRACC sensor. δ is the offset distance for the sensors.
Dmax is then computed as the maximum x-deflection for any of the four ribs.

Dmax = max
(
|ULx, URx, LLx, LRx|

)
(3.4)

The injury risk function follows a log-normal distribution, Davidsson et al. (2014).

P (NFR5+) =
1

2
+

1

2
erf

ln(Dmax)− (int+ age · cage)√
2(elogscale)2

(3.5)

Where erf is the error function, int,cage and logscale are parameters from Davidsson et
al. (2014), and they take the values 3.99, -0.003 and -1.18, respectively. age is the age of
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the occupant. The Dmax risk function for a 40 year old occupant has a risk of 50%, for
sustaining an NFR5+ chest injury, for 47.54 mm Dmax chest deflection, Figure 3.4.
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Figure 3.4: Dmax NFR5+ risk curve for a 40 year old occupant.

3.3.3 DcTHOR

The DcTHOR criterion, developed by Davidsson et al. (2014), uses all four chest-
displacement sensors to compute overall and differential deflections. The criterion was
defined as shown in Equation (3.6).

DcTHOR = Dm + dDup + dDlw (3.6)

For which

Dm =

(
|ULx|+ |URx|+ |LLx|+ |LRx|

)
4

(3.7)

dDup = |ULx − URx| − 20 = 0; if |ULx − URx| ≤ 20 or min
(
|ULx|, |URx|

)
≤ 5 (3.8)

dDlw = |LLx − LRx| − 20 = 0; if |LLx − LRx| ≤ 20 or min
(
|LLx|, |LRx|

)
≤ 5 (3.9)
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ULx, URx, LLx, LRx are the x-components computed according to Equations 3.3. Dm is
the general thoracic compression level, dDup and dDlw are the ribcage twisting level at the
upper and lower positions, respectively. A log-normal risk function is used for DcTHOR,
Davidsson et al. (2014).

P (NFR5+) =
1

2
+

1

2
erf

ln(DcTHOR)− (int+ age · ca)√
2(elogscale)2

(3.10)

For DcTHOR the coefficients int, ca and logscale take different values from before, 4.11,
-0.008 and -0.89, respectively. The DcTHOR risk function for a 40 year old occupant
has a risk of 50%, for sustaining an NFR5+ chest injury, for 41.52 mm DcTHOR chest
deflection, Figure 3.5.
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Figure 3.5: DcTHOR NFR5+ risk curve for a 40 year old occupant.

3.3.4 Thoracic Injury Criterion (TIC)

TIC, Trosseille et al. (2019), is defined for two rib injury classifications, NFR and NSFR.
TICNFR(subject) is defined in Equation (3.11).

TICNFR(subject) = Rmax + 1.66UPdif (3.11)
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and TICNSFR(subject) is defined in Equation (3.12).

TICNSFR(subject) = Rmax + 3UPdif (3.12)

The criteria were developed for each subject, and then corrected for a given size (Height)
and age (Y ) for TICNFR

TICNFR = TICNFR(subject)–1.25(Height–175) + 1.18(age− Y ) (3.13)

and for TICNSFR as

TICNSFR = TICNSFR(subject) + 2.86(age− Y ) (3.14)

The correction factor for the occupant’s age is -5 in this case, since this study considers a
40-year-old occupant, and a 45 year old was used in the study by Troseille et al. (2019),
i.e., age− Y = 40− 45 = −5. The height correction is zero, for each case, since THOR is
175 cm tall. These values are then used to construct a risk curve according to the Weibull
distribution

P (NFR3 + or NSFR3+) = 1− e−(TIC/β)α (3.15)

Where TIC is the injury criterion, either for NFR or NSFR, β is the scaling factor for the
injury criterion, while α is the form factor. The NFR and NSFR risk functions for a 40
year old occupant has a risk of 50%, for sustaining and NFR3+ and NSFR3+ chest injury,
for 94.2 mm and 168.1 mm, TIC chest deflection, respectively, Figure 3.6.

The parameter values α and β were not published by Troseille et al. (2019). Instead, they
were obtained by digitization of the published risk curves, in Troseille et al. (2019), and a
Weibull distribution was fitted to match the 10, 50, and 90% digitized risks. This resulted
in values of β = 105.67 and 181.44 for TIC NFR and TIC NSFR, respectively, and α =
3.25 and 4.79 for TIC NFR and TIC NSFR, respectively. Finally, a check was made to
make sure that the computed parameters did indeed fit the original data, Figure 3.6.
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Figure 3.6: The fitting of the Weibull distribution to obtain coefficients for TIC NFR and
NSFR.

3.3.5 PCscore

PCscore was generated through a Principal Component Analysis (PCA) (Poplin et al.
2017) and is defined as in Equation (3.16).

PCscore = l1

(UPtot
s1

)
+ l2

(LOWtot

s2

)
+ l3

(UPdif
s3

)
+ l4

(LOWdif

s4

)
(3.16)

UPtot is the sum of the deflections on the upper chest sensors, while LOWtot is the
equivalent for the lower sensors. The same idea is applied UPdif and LOWdif , though
for the difference rather than the sum. l1 - l4 are weight factors, s1 - s4 are standard
deviations of the the input deflection metrics in mm, hence PCscore is dimensionless. The
risk function is computed as the equation provided in Poplin et al. (2017).

P (AIS3+) = 1− e(−PCscore/(β0−β1age))α (3.17)

For which age is the age of the occupant. The risk function follows a Weibull distribution,
and the coefficents β0, β1 and α take the values 2.868, 0.018 and 3.31, respectively. The risk
function is computed for AIS3+, thus being directly comparable to Rmax. The PCScore
risk function for a 40 year old occupant has a risk of 50%, for sustaining and AIS3+ chest
injury, for a PCScore of 7.01, Figure 3.7.
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Figure 3.7: Risk curve for a set of values for PCscore.

3.3.6 Additional Injury Criteria

In order to monitor that the loading of the thorax was not influenced by head impacts
or submarining, head, neck and abdomen sensors were monitored and the Head Injury
Criterion (HIC) (Craig et al. 2020), which is used for evaluating the risk of skull fractures,
was extracted from the simulation data. HIC was calculated with the resultant acceleration
in the center of gravity of the head. The resultant acceleration was calculated from the
CFC1000 filtered acceleration in x, y and z as:

ares =
√
a2
x + a2

y + a2
z (3.18)

The HIC value was then calculated with Equation (3.19). Though, this was calculated
with a 15 ms time span using the inbuilt routine in Meta,

HIC15 = max

(
1

t2 − t1

∫ t2

t1

(
ares(t)dt

) 5
2 · (t2 − t1)

)
(3.19)

For the monitoring of submarining, which is when the belt slides over the pelvis and
loads the soft tissues in the abdomen, the maximum deflection as well as the angle of the
IR-TRACC load sensors were extracted. The deflection was used as a flag to warn of any
indication for submarining, a limit was set to 60 mm. This since, according to Craig et al.
(2020) a deflection of 60 mm on THOR predicts less than 10% risk of sustaining an AIS3+
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injury to the abdomen.

THOR is equipped with neck data sensors as well, both for the upper and lower positions
of the neck, and these were monitored in both x- and y-directions to make sure the belt did
not load the neck in an excessive manner. The x-direction force corresponds to shear force,
which makes particularly interesting since a big difference between 2 similar simulations
could mean the belt got caught in the neck of the ATD.

3.4 Parameter Sampling in LS-OPT

The generic vehicle interior described in Section 3.1 was parametrized with respect to the
geometry, safety systems as well as crash severity. The optimization software LS-OPT
(ANSYS/LST, Livermore, CA, USA) was used for the sampling, since it was well suited
for integration of the pre-processing in ANSA and LS-DYNA. Parameter sampling was
part of the initial stages in the workflow, filled in grey in Figure 3.8. These two steps
were done entirely by LS-OPT, i.e. no extra steps were required between sampling and
pre-processing, changing the model geometry, in ANSA. There was also an option to start
the simulations directly from LS-OPT, though this step was done via a script instead, for
more user control.

Sampling 
of 

Parameters

Preprocessing
In ANSA

Simulation
In LS-DYNA

Injury Criteria
Extraction in META

Processing of
NASS-Data in

Python

Injury Risk
Curves

Injury Risk
curve

comparison

Figure 3.8: LS-OPT stages marked in grey in the workflow.
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The sampling of the parameters was based on a Monte Carlo randomization, with a Latin
Hypercube alogrithm, which was based on the method from Iraeus and Lindquist (2016).
Hence, all the individual parameters sampled in this study were the same as used by Iraeus
and Lindquist (2016), Table 3.3. The parameters were sampled independently of each
other and, in total, there were 27 different parameters that LS-OPT sampled. The Latin
Hypercube algorithm, in essence, meant that the sampled values would still follow the
specified distribution, Figure 3.9, but the total distribution curve gets sliced into smaller
bins to make sure all extremes are covered. The y-axis of the sample curve represents a
measure of the probability of the sampled value, while the x-axis represents the parameter
input to ANSA.
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Figure 3.9: Latin hypercube example distribution of the airbag size. One dot represents a
random sample within the range, where the higher distribution measure within the bins
means more samples.

The airbag size is simply the radius of the fully deployed airbag, while the steering slide is
the stroke length of the collapsible steering wheel column. Side structure distance and
instrument panel distance are the distances to the door on the side and to the instrument
panel, respectively. Delta velocity (∆v) is the speed change of a crash. PDOF is the angle
at which the sled crashed. Duration, measured in milliseconds, is the time for which the
crash endured. This relates to the length of the crash pulse, i.e., the time from which the
crash starts until it ends. Thus, the duration affects the acceleration. EV1-EV3 are eigen
vectors for the crash pulse, determined by Iraeus and Lindquist (2015). EV1-EV3 changes
the shape of the crash pulse.
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Table 3.3: All parameters and their respective distributions, that were used.
Parameter Unit Distribution Distribution parameters
Airbag size (radius) [mm] Normal µ = 332, σ = 18
Steering slide [mm] Uniform min = -30, max = +30
Steering rot [deg] Uniform min = -2.7, max = +2.7
Side structure distance [mm] Normal (trunk.) µ = 0, σ = 33 [min = -60, max = 20]
Instrument panel distance [mm] Normal (trunk.) µ = 0, σ = 33 [min = -60, max = 60]
Delta velocity [km/h] LOG-normal µ = 3.30, σ = 0.40
PDOF [deg] Normal (trunk.) µ = -2.2, σ = 21.2 [min = -45, max = 10]
Duration [ms] Normal µ = 109.6, σ = 16.2
EV1 [-] Normal µ = -0.48 + 0.015 ∆V, σ = 1.64
EV2 [-] Normal µ = 0.97 + 0.030 ∆V, σ = 1.05
EV3 [-] Normal µ = -0.33 + 0.010 ∆V, σ = 0.74
Yaw scale factor [-] Normal µ = -0.068, σ = 0.0019

Intrusion instrument panel [mm] Exponential
Step one: Bernoulli(p = invlogit(-5.47 + 0.074 dv))
Step two: Exponential rate = 0.079

Intrusion floor panel [mm] Exponential
Step one: Bernoulli(p = invlogit(-5.15 + 0.076 dv))
Step two: Exponential rate = 0.071

Airbag pressure s.f. [-] Normal µ = 1.31, σ = 0.10
Airbag trig time [ms] LOG-normal µ = 3.04, σ = 0.64 [min = 5, max = 40]
Steering column force [kN] Normal µ = 4.80, σ = 0.90
Steering rim force [kN] Normal µ = 2.80, σ = 0.80
Belt pretensioner force [kN] Normal µ = 1.93, σ = 0.47
Belt force limiter [kN] Normal µ = 3.94, σ = 0.69
Knee force stiffness [kN/100 mm] Normal (trunk.) µ = 9.45, σ = 3.86 [min = 3, max = 20]
Belt friction [-] Uniform min = 0.2, max = 0.4
Seat friction [-] Uniform min = 0.2, max = 0.4
IP friction [-] Uniform min = 0.2, max = 0.4
Airbag friction [-] Uniform min = 0.2, max = 0.4
Door friction [-] Uniform min = 0.2, max = 0.4
Buckle slipring friction [-] Normal (trunk.) µ = 0.18, σ = 0.08 [min = 0, max = 0.5]

Yaw scale factor is the yaw rotational velocity. Intrusion instrument panel and intrusion
floor panel is simply the intrusion, in the respective area. Airbag pressure is the deploy-
ment pressure of the airbag, while the trig time is the reaction time or the time it takes
before the safety systems are activated. Steering column force is the force the steering
column can withstand before collapsing, while steering rim force is the same, although for
the rim. The belt pretensioner force is the initial force generated by the pyrotechnical
pretensioner upon activation at the start of the crash, and belt force limiter is the constant
load generated by the belt during the later crash phase. The last six parameters relate
to frictions in different parts of the vehicle, and serve as important factors for the ATDs
interaction with the interior.

One of the parameter sampling ranges was changed from the original sampling by Iraeus
and Lindquist (2016). The restraint activation trig time was found to have a log-normal
distribution with a mean of 3.04 ms and standard deviation of 0.64 ms, which resulted
in restraint activation times of over 100 ms. In the present study, the distribution was
truncated at 40 ms to avoid restraint activation after the ATD would interact with the
steering wheel, to increase the robustness of the simulations, Figure 3.10.
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Figure 3.10: Trig time distribution curve, the dotted line represents the original distribution
while the grey curve is the modified distribution for the sampling range.

This change makes sure that the airbag triggers before the ATD hits the steering wheel,
and that the sled does provide adequate levels of safety system activation, in addition to
making sure that the simulations reached normal termination.

To make sure that the sampling of the parameters was done correctly an analysis of
the parameter distribution was made, to make sure LS-OPT had indeed produced a
distribution that was satisfactory, i.e. a manual check to verify whether LS-OPT sampled
in the expected manner. This was done by comparing the sampling from LS-OPT to the
theorethical sampling curves.

3.5 THOR positioning

Since the original generic vehicle interior was fitted with an HBM, THOR had to be placed
in the model before any further steps could be made, Figure 3.11. The THOR ATD was
positioned in the seat model 20 mm upward from the H-point location used for the HBM,
with the legs positioned symmetrically with 270 mm width from the outer surfaces of the
knee joint clevises. The feet were positioned on the floorboard, the arms close to the torso
with the hands close to the steering wheel at 2 and 10 o’clock. The pelvis angle of the
ATD was 33◦, the lumbar spine pitch adjustment 9◦ (slouched position), the neck pitch
change adjustment 0◦ (neutral position) and the resulting head angle around the X and Y
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axes were 0◦.
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Figure 3.11: THOR position in the generic vehicle interior. Pelvis angle shown in green,
lumbar spine pitch adjustment in red, neck pitch in yellow and leg position in orange.

3.6 Pilot Study

In order to make sure that the generic car model with the THOR ATD behaved as
expected, a pilot study was conducted, and was done as shown in the flow chart in Figure
3.12. This enabled a way to rectify any errors or other malfunctions before the larger study
was begun. The pilot study was done by generating a set of input files in LS-OPT, ten
files were chosen as it was a manageable amount to begin with. The pilot study was re-run
a number of times, since new errors popped up for each new batch of inputs, causing the
simulations to crash, yielding none or unreliable results. This prompted for changes in the
model, to sort out the identified problems.

To make sure the most possible potential error situations were encountered, extreme values
were set, such as high ∆v or short duration pulses, which caused high accelerations for
a given ∆v. These selections were made manually, instead of relying on the sampling,
to make sure these cases were included. Of course, all different scenarios could not be
replicated since there would be an infinite number of setups to try, though by catching
some of the extremes, the chances of sampling worse cases were lowered.
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Figure 3.12: Pilot study iteration loop.

When the pilot study was finalized, the model was more robust and accurate than before.
The amount of simulations that crashed cannot be guaranteed to be zero, but at least
minimized to get the best results possible.

3.7 Statistical Analysis

The statistical analysis consisted of two parts, firstly the generation of the field crash risk
curve from the NASS/CDS database and secondly the calculation of risk curves for the
simulations. The method for creating the two different risk curves were similar, however
with different input data. In addition, a regression was also made using Vehicle Pulse
Index (VPI) as the risk predictor. To further evaluate the regression models R2 values for
each criteria were computed.

3.7.1 Processing of NASS/CDS Data

Herein the creation of the field crash risk curve was done according to the methods used by
Iraeus and Lindquist (2016). The dataset from NASS/CDS consisted of several different
injury parameters among a lot of other information. This database consists of information
from real crashes collected in the USA. The data used in this study was sampled by Iraeus
and Lindquist (2016) with a number of inclusion criteria to get the same representation of
crashes as in the simulation data. The selection of NASS/CDS data was limited to driver
occupants in frontal crashes with a PDOF of -45◦ to 10 ◦, for vehicles produced between
2000 to 2012 to only include vehicles with restraint systems comparable to the generic car
model. The driver was the only occupant accounted for, so injuries to other passengers
were sorted out from the data.
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Furthermore, the steering wheel airbag should have been deployed and no rollover of the
vehicle should be present in the crash scenario. All data sourcing had previously been
done by Iraeus and Lindquist (2016) and the NASS/CDS risk curve was derived from the
authors published paper. Cases where age, sex and curb weight of the car were unknown,
were excluded. After this filtering, 4980 cases were left to be studied.

Of interest for this study, was the THORAX502 parameter, which determined the injury
severity level sustained to the skeletal parts of the thorax, according to the AIS injury
scale. All cases where the value was 3 or more were set to injured, i.e. all occupants that
were injured to AIS3+ levels. This yielded either a 0 for uninjured or a 1 for injured, for
all cases in the NASS/CDS data.

The generation of the risk curve was computed by Iraeus and Lindquist (2016) with the
usage of a Generalized Linear Model (GLM) in the statistical software R (R Foundation
for Statistical Computing, Vienna, Austria). Iraeus and Lindquist (2016) used ∆v, age
and instrument panel intrusion as the independent variables to predict the injury risk,
since it was found these parameters showed empirical support of influencing risk of rib
fracture, at the 5% significance level, Iraeus and Lindquist (2016). The GLM yielded
coefficients for the intercept, ∆v, age and instrument panel intrusion, LPINTR, bias. The
coefficients were used to compute the linear curve fit, equation (3.20).

yglm = int+ c∆v∆v + cageage+ cLPINTRLPINTR (3.20)

int is the intercept, i.e the value for which the curve intersects the y-axis, c∆v is the
coefficient for the bias towards ∆v and likewise for cage and cLPintr, though for the age and
the instrument panel intrusion, respectively. Instrument panel intrusion was the measure
for how much the instrument panel has been moved towards the occupant. This linear
curve was then transferred to a probability between 0 and 1 by applying a logistic function,
by using the function for converting to the log-odds space, equation (3.21).

P (injury) =
eyglm

1 + eyglm
(3.21)

yglm is the y-values from the linear curve fit. The equation thus yielded the risk curve
for the NASS/CDS data. From this conversion the risk curve for a 40 year old occupant,
as well as the 95% confidence interval, in light grey, was plotted, Figure 3.13. Note the
green markings along the x-axis, these were the cases in the NASS/CDS data where the
occupant was injured (1) or uninjured (0). Figure 3.13 is the risk curve generated by
Iraeus and Lindquist (2016), but plotted using Python instead.
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Figure 3.13: The NASS/CDS risk curve derived from Iraeus and Lindquist (2016) for a 40
year-old occupant.

3.7.2 Risk Curve Generation for Simulation Data

The method of computing risk curves for the simulation data was more or less entirely
the same as described previously for generating the NASS/CDS risk curve. However,
according to Iraeus and Lindquist (2016) the NASS/CDS database ∆v was biased since
it consists of estimations according to the Winsmash calculation of ∆v. The Winsmash
∆v calculation includes a scatter error, and therefore the simulation data generated must
be biased in the same way to be comparable the real crash outcome. The calculation of
Winsmash ∆v for the simulations can be seen in equation 3.22 (Funk et al. 2008). The ∆v
used as input can thus not be used when generating the risk curves, since the comparison
with the NASS/CDS curve cannot be made in such a case. Since the Winsmash estimation
consists of a randomized term, the results can change each time when re-running the
algorithm. To combat this, 100 iterations were run, and a mean value of the calculated
curve fit coefficients were used for the final curve fit.

∆vWinsmash = 0.81 ·∆v +N(0, σ) (3.22)

For which N(0, σ) is the normally distributed scatter according to Funk et al. (2008),
with standard deviation σ. The scatter error can lead to that small ∆v get randomized
to a negative value. Iraeus and Lindquist (2016) minimized this effect by decreasing the
scatter error linearly down to zero for ∆v below 22km/h, while keeping the original scatter
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error. Winsmash ∆v was hereby used as the speed predictor. The curve fitment of the
datapoints was done with using a GLM. This model was computed using age and ∆v as
predictors for the rib injury risk. The same covariates were used for this prediction. This
linear model would then provide coefficients for the intercept as well as the age and ∆v
bias, to be applied to the linear curve equation (3.20). The risk curve generation in this
study based on the simulation data was entirely done in Python, using the same method
Iraeus and Lindquist had implemented in R.

3.7.3 Logistic Regression using Vehicle Pulse Index as a Predic-
tor

Vehicle Pulse Index (VPI) ISO TR12353 (2016) is the crash pulse affecting the car occupant
as a result of slack in the system, caused by the time it takes for the seatbelt to restrain
the occupant. A simplified sketch in Figure 3.14 shows the principle of relative motion
between occupant and car.

𝑣0

𝑣0

Figure 3.14: A schematic figure of the interaction between car and driver, accoring to
Newton’s second law of motion. To the left, a simplified crash is modelled with springs,
and the resulting forces to the right.

VPI is different from the vehicle acceleration and represents the approximate acceleration
an occupant in the vehicle would experience in the crash. The equations used to compute
this index were derived from Newton’s second law of motion.

Mẍ = F (t)←→ ẍ(t) =
F (t)

M
(3.23)

Here, F (t) is the force generated by the front structure and M is the effective mass of the
vehicle. Typically, the vehicle acceleration ẍ(t) is recorded and is the input for the VPI
calculation. The movement of the occupant with mass m inside a vehicle would then be:

mÿ = P (t)←→ ÿ(t) =
P (t)

m
(3.24)

P (t) is the restraint system force, a combination of seatbelt and airbag loading to a front
row occupant. ÿ is the acceleration as felt by the occupant, and VPI is the maximum
acceleration (ÿ) value. VPI is based on the relative movement between occupant and
vehicle. Hence, the initial velocities of both vehicle and occupant, v0, can be neglected,
but if desired they can be used to compute stopping distance and ∆v of the vehicle motion.
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For the VPI, the restraint force P (t) was calculated with a spring stiffness k and a slack
distance s as:

P (t) =

{
0 , x− y < s

k((x− y)− s) , x− y ≥ s
(3.25)

The restraint model with slack s and spring stiffness k, is modelled in Figure 3.15

𝑣0

𝑣0

Figure 3.15: A schematic figure of the slack present in the restraint system in the car,
modelled with a spring and slack distance s.

The standardized values used for the calculation of VPI according to ISO TR12353 (2016)
were

m = 1 kg (3.26)

k = 1 N/m (3.27)

s = 0.03 m (3.28)

VPI was calculated for each simulation, and was used to compute the risk of injury in the
same way as done before, but replacing Winsmash ∆v with VPI.

3.7.4 Goodness of Fit

To be able to quantitatively measure how well the linear regression model used fits
the underlying data, one may use R2 as a metric to determine this correlation. R2 is
the proportion of the variation in the dependent variable that can be explained by the
independent variable (Glantz et al. 2017) Applied Regression & Analysis of Variance. R2

was computed as shown in Equation (3.29)

R2 = 1− SSR
SST

(3.29)

SSR is defined as the sum of the squared residuals as:

SSR =
n∑
i

(yi − yglm,i)2 (3.30)
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yi are the actual values from the simulations while yglm,i are the predicted value from the
regression model. SST is the total sum of the squares as

SST =
n∑
i

(yi − ȳ)2 (3.31)

ȳ is the mean value of the actual data. In the best case scenario one would obtain R2 = 1
which means that the model always predicts the actual values, while a baseline model
R2 = 0 would always predict ȳ (Glantz et al. 2017).

3.8 Comparison to Human Body Model

An HBM is a mathematical model which directly models the human anatomy and tissues,
rather than modelling the steel and rubber parts of an ATD which is a mechanical model
of a human. The aim with the study of Iraeus and Lindquist (2016) was to compare the
risk assessed with an FE HBM to the risk of rib fracture with field data. In this study, a
comparison with an updated version of the HBM analysis (Larsson et al. 2021) will be
conducted. An HBM has several features not present on an ATD, such as human bone
and human organs. All these are modelled to the best precision possible. An HBM can be
used to evaluate the human response in a crash, however since no crash testing can be
made with live humans there might difficulties in comparing the HBM simulations to real
crash testing using ATDs.

The results from the simulation study were compared to a similar study made by Larsson
et al. (2021) but using a SAFER HBM version 9 instead of THOR. No new simulations
were run in Larssons’s study. The basis of the stochastic simulation data comes from a
previous study by Pipkorn et al. (2019) and was run with the same generic car model,
as used in this study. The data was re-calculated by Larsson et al. (2021) as the “newly
developed risk function”. Moreover, the authors used the same method as previously
presented in the Iraeus and Lindquist (2016) to extract the NASS/CDS data. Since the
HBM is a model of a physical human, the rib strain can be extracted from all the ribs
and a risk of fracture can be calculated for each one and hence the tissue loading can be
predicted. This was done for Log-normal distributions according to equation 3.32

Fracture risk(strain, age) =
1

2
+

1

2
erf

[
ln(strain)− (β0 + β1age)√

2αstrain

]
(3.32)

erf() is the Gauss error function and ln() is the natural logarithm. The distribution pa-
rameters for the Log-normal function are β0 = −2.9866, β1 = −0.0130 and αstrain = 0.3026.

The risk curves were generated by digitizing the figures from the Larsson et al. (2021)
paper, and creating a curve fit in the same fashion as done previously for TIC NFR and
TIC NSFR. Larsson et al. (2021) used Winsmash ∆v as the predictor on the x-axis,
which makes for reasonable comparison to the results in this study. However, the study
by Larsson et al. (2021) was made for 30- and 70-year-old occupants, while this study
considers a 40-year-old. However, risk curves for different ages could conveniently be
extracted for this study as well. Larsson also used the probability of a fracture for NFR2+.
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In order to compare the curves, all risk curves in this study were re-calculated for the ages
30 and 70. The SAFER (SAFER, Göteborg, Sweden)HBM in the generic car model can
be seen in Figure 3.16

Figure 3.16: The generic car sled model with fitted with the SAFER Human Body model.

3.9 Underprediction of Rib Fractures in NASS/CDS

In order to examine the possible underprediction of rib fractures in the NASS/CDS data
some statistical simulations were run according to Iraeus and Lindquist (2016). The
method behind this was to change a fraction of the uninjured occupants to injured. This
was done by partially deriving the NASS/CDS risk curve and using this as a probability
density function. The approach will lead to the assumption that the underprediction is the
largest where the inclination of the curve is the highest. A 50% and 70% underestimation
rate was used, according to Equation 3.33.

Occupantschanged = round

(( 1

Urate
− 1
)
· 120 · 0.8

)
(3.33)

The number of injured occupants in the original data set was 120 for AIS3+. The new
total of injured in the data set will be the number of changed occupants added with the
number of injured occupants in the original data set, as demonstrated in Equation 3.34

Occupantsnew = Occupantschanged +Occupantsinjured (3.34)

The new number of injured occupants for a 50% and 70% underprediction can be seen in
the Table 3.4.
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Table 3.4: The underpredition rates and increase in injured occupants for each leve.l

Underprediction rate Urate Occupantschanged Occupantsnew
50% 0.5 96 216
70% 0.3 224 344

3.10 Sampling of Crashes of Higher Severity

Since the ∆v sampling is LOG-normal, most of the crashes will be at a low ∆v. In order
to study what happens when a larger number of crashes with high ∆v is added to the data,
50 new simulations was sampled. As previously the sampling method is the same, the only
difference will be that the newly sampled crashes will have a ∆v ranging between 60 and
120 km/h. This was done by changing the distribution of ∆v to a uniform distribution. A
comparison was then be made with a new fitment of the risk against the newly sampled
crashes added together with the batch of 1000 that were run.

3.11 Adjusted Rmax

In order to investigate Rmax further, an adjusted Rmax curve was developed, Rmax,Adjusted.
Firstly, the 70 and 50% underpredict curves were chosen to aid the new curve path. This
was done by checking the sum of distances from the Rmax curve to the 2 underpredict
curves according to equation 3.35.

error = math.dist(Rmax, NASS/CDS70) +math.dist(Rmax, NASS/CDS50) (3.35)

Where math.dist is a Euclidean distance function in Python. The error was minimized
by computing values in a nested loop for the collected term e(β0−β1age), in the Weibull
distribution function for Rmax Equation 3.2, and the exponent α as seen in the calculation
of P(AIS 3+) Equation 3.36.

P (Rmax,Adjusted) = 1–e−
(
Rmax/eβ0−β1age

)α
(3.36)

The parameter value for which the function had the smallest error were recorded for
the 40-year-old. The exponent α was then transferred to running the same setup for
the 30-year-old. From here according to equation 3.37 the parameters β0 and β1 were
calculated, since there were now two equations and two unknowns.{

eβ0−β1·40 = 65.545

eβ0−β1·30 = 70.216
(3.37)

One assumption was made when initially calculating the variables for the 40-year-old
occupant. The assumption was that when, the sensors in the ATD bottomed out, the
risk should be above 95%, but not as big as 1. This was made to make sure that the
risk firstly did not reach 1 well before the ATD bottoms out, and that the risk predicted
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when bottoming would not be too low. The complete Rmax,Adjusted function can be seen in
Equation 3.38, for which β0 = 4.45809, β1 = 0.0069 and α = 6.793.

P (Rmax,Adjusted) = 1–e−
(
Rmax/e4.45809−0.0069age

)6.793
(3.38)

3.12 EDR ∆v NASS/CDS

To get an additional comparison between real life data and the simulations, EDR equivalent
∆v curves were extracted from Brumbelow (2019). Brumbelow used crashes from the
NASS/CDS database with EDR data and some crashes with pure Winsmash data to
predict the EDR ∆v for cases when the EDR module was not present. Several inclusion
criteria such as that the driver should be restrained by a belt and the airbag should have
been deployed were used (Brumbelow 2019). Cases with rollover or multiple severe impacts
were not included in the data. Much like Iraeus and Lindquist (2016), which used an
equivalent approach in the data sourcing.

The risk curves were calculated by Brumbelow (2019) for MAIS3+ thoracic injury, and
were recreated by digitizing the plots. The NASS/CDS curve was also recalculated from
the data set used by Iraeus and Lindquist (2016) with respect to Thoracic MAIS3+.
The comparison between the recalculated curve from Iraeus and Lindquist (2016) and
Brumbelow (2019) can be seen in Figure 3.17.
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Figure 3.17: MAIS3+ Thoracic NASS/CDS EDR ∆v Comparison with the recalculated
MAIS3+ Thoracic curve
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3.13 THOR Accuracy

In order to investigate Rmax even further, the theory that the THOR ATD may overestimate
the deflection compared to a real human (Parent et al. 2017), new calculations for the
injury risk predicted for Rmax was made. Here the direct deflection of THOR was scaled
down with the assumption that THOR has a 30-50% higher deflection than when testing
PMHS. Parent et al. (2017) tested the biofidelity of the THOR ATD compared to PMHS
and Hybrid III. Although THOR got a good biofidelity score for the thorax in that study,
there was some evidence that there may be an excessive deflection in the oblique load case.
Parent et al. (2017) showed data where the peak-to-peak difference in deflection between
THOR and PMHS was as much as 30% more for THOR. For tests using the same time
span, a difference of 50% more deflection in THOR was observed, compared to PMHS.
The sternal force and deflection measurements had better correlation and was within the
confidence bands. Thus, a test was made in this study, by scaling down the resultant
deflection measure Rmax outputted by THOR. These ”new” values were then used as
input to the risk function, and the difference in response could be observed. Equations
3.39 and 3.40 show the downscaled values for Rmax.

Rmax,decreased30% =
Rmax

1.3
(3.39)

Rmax,decreased50% =
Rmax

1.5
(3.40)
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4 Results

This chapter presents all the results obtained from the simulations, as well as some errors
encountered during the pilot study. In addition, the measures taken to correct these errors
are described.

4.1 Pilot Study

While conducting the pilot study, several issues arose that needed to be addressed, Table
4.1. The airbag trig time was capped at 40ms, to make sure that the occupant did not hit
the steering wheel due to a late trig time for the airbag. This was indeed an altercation
from the original method from Iraeus and Lindquist (2016), though this change was
required to make sure the simulations finished.

This study uses an FE-model of THOR, which also comes as a physical ATD with details
such as bushings, screws etc, which can fail when sustaining large loads, thus causing the
simulation to terminate, which was of course unwanted. Iraeus and Lindquist (2016) used
an HBM, which is an FE-model of the human body, meaning it has no such features, but
are generally more complex.

Table 4.1: All the error that occured during the pilot study, and the corresponding fix
implemented to solve the problem
Error type Termination Cause Fix

Airbag trigg time Error Airbag not triggering before
driver hit the steering wheel

Limiting the trigg time
to maximum 40ms

Belt oscillating Error/Normal 1D belt oscillating and
disturbing the routing

Elongate the elements in the 1D belt

Belt penetration Normal Belt penetrating either
abdomen or the neck

Scaling of the thickness in the
contact between belt and dummy

Belt roll up Normal Lap- and shoulder belt
folding up to a thin line

Compressive stress elimination
decided automatically by LS-Dyna

Belt segment free end Error Discrete element or nodal rigid body
going through the sliprings or retractor

Moving the retractor and the discrete
element in the 1D belt downward

Bushings in chest Error Negative volume in the bushings 0.6mm thick null-shells without
stiffness around the bushings

Head rubber cover Error Negative volume in the head rubber cover No fix needed

Head clash to inner liner Normal Head hit the inner liner and
changed the ATD behaviour

Contact between THOR and liner removed

Shoulder belt sliding Normal Shoulder belt sliding over the
shoulder and loading the abdomen

Elongated the 2d belt

The errors did not all occur at the same time, they were merely discovered after one
problem had been fixed, i.e. one fix could lead to creating its own issues. However, after
the pilot study loop, Figure 3.12, was iterated a number of times, so all encountered issues
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could be addressed and remedied. The pilot study yielded approximately 80 simulation
runs, in batches of 10, where inputs were generated according to the latin hypercube
sampling in LS-OPT, but were in some cases manually changed to capture the extreme
cases of the simulations.

The 0.6mm thick null-shells with a self-contact added in the thorax of the THOR ATD can
be seen in Figure 4.1. The null-shells made sure that the bushings maintained a positive
volume and the simulation could achieve normal termination.

Figure 4.1: The chest bushing locations in THOR

To compare how much the shell bushings in the thorax of the THOR ATD influenced the
results, a comparison between both setups with and without the shells was made. The
same simulation was run for both cases for a randomly selected simulation. The results
from this can be seen in Figure 4.2. Rmax is the total deflection in mm of the IR-TRACC
sensors mounted in THOR and the shells led to that the deflection was slightly smaller
for the ATD mounted without shells.
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Figure 4.2: Rmax comparison of the same simulation with and without the 0.6mm thick
null shells for the bushings in the thorax

All changes to the model were intended not to change the behavior of the model, but
merely to make sure that the simulations finished with normal termination, and that
reliable results could be extracted.

4.2 Simulation Study

In this section, the results of the simulation study are presented, with the sampled
parameters and the output from the simulations.

4.2.1 Results From Sampling of Parameters

The distribution of airbag trig time was not affected when changing the curve, and spikes
around the endpoints were eliminated, Figure 3.10. Approximately 17% of the values
lay above 40 ms, thus meaning these values were ”lost”. The variable sampling from the
simulations generated and the theoretical sampling curve can be seen below in Figure 4.3.
The distribution for ∆v was log-normal. The theoretical distribution was computed by
sampling datapoints with the same means and standard deviations as used in LS-OPT.
These datapoints were then used to compute the associated Probability Density Function
(PDF). From Figure 4.3 it was apparent that the distribution does follow the expected
distribution quite well.
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Figure 4.3: The distribution of the sampled ∆v from LS-OPT, compared to the theoretical
log-normal distribution

A further example of the distribution can be seen in Figure 4.4, where the crash pulse
duration was plotted. In Figure 4.4, it is clear that the distribution does correlate well
with the expected outcome.
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Figure 4.4: The distribution of the sampled crash time duration from LS-OPT, compared
to the theoretical normal distribution
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From Figure 4.3 and 4.4 it can be seen that the outputted parameter generation followed
the distribution that was expected for each of the different parameters. The sampled
distribution would be expected to follow the theoretical distribution. If the input to
LS-OPT was desired to follow a normal distribution, then the output should be of a
normal distribution. Thus, after the sampling was done in LS-OPT, it could be deemed
as a satisfactory sampling, and the generated input files were ready to be simulated in
LS-DYNA. For the purpose of the report, only a smaller sample of distribution plot were
presented here, however all parameters were plotted and checked individually, to make
sure no unexpected outputs were generated.

4.2.2 Winsmash ∆v Distribution

The distribution for Winsmash ∆v was plotted in a histogram, Figure 4.5. It was compared
to the original ∆v, to see whether or not the distribution was changed or merely shifted
in one or the other direction. The theoretical distribution from Figure 4.3 was kept and in
the Winsmash distribution seen in Figure 4.5, the velocities were weighted more to the
left, meaning smaller ∆v overall. That Winsmash ∆v underestimated the speed change
was not unexpected, since the systematic error in this method does cause exactly that,
Iraeus and Lindquist (2016).

0 20 40 60 80 100

Winsmash ∆v [km/h]

0

5

10

15

20

25

30

35

40

D
is

tr
ib

u
ti

on

Theoretical Distribution

Winsmash ∆v

Figure 4.5: Distrubution of ∆v after winsmash correction
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4.2.3 LS-DYNA Simulations

When the sampling of the parameters had been done and checked the batch of inputs were
ready to be simulated in LS-DYNA. When all simulations had been completed, it was
found that 32 of the 1000 simulation had ended with error termination, i.e. 3.2% failed.

4.2.4 Troubleshooting and Rectifying Errors

Of the 32 failed simulations, one failed due to a bushing in the chest attaining negative
volume and one failed due to the same reason, though for the head rubber cover. The
cause of this, for the first case, was that the impact was very tough, meaning the forces
on the chest induced by the belt were too large for the bushings in the ATD to handle.
The reason behind the second case was similar, however only this time the head impacted
the dashboard, causing abnormally high deflections to the ATD’s face.

For the chest bushing, an extra insert was made to the model, namely an extra set of
0.6mm thick null elements around the affected bushing. Since this problem was encoun-
tered during the pilot study, this fix was already set-up and easy to implement on the
failed simulation. The simulation with the failed head bushing was not re-run, since the
simulation failed at such a late stage, the peak values for the chest sensors had already
been reached.

The other 30 simulations that failed, did so because a belt segment had a free end. This
issue was fixed by reverting back to the original length of the 2D part of the belt, which
previously fixed the problem with the shoulder belt sliding, Table 4.1. The model was
otherwise unchanged and the rerunned simulations did not have any problem with the
belt sliding. A quick analysis was done to see if there was a common cause for this
problem, by plotting all the input parameter values for the failed simulation versus the
total distribution. From this, it was concluded that there was no clear correlation between
the values of the input parameters and a failed simulation due to a free belt end.

In total, 31 of the 32 failed simulations were re-run with updated input files. All of the 31
simulations ended with normal termination, thus all simulations were now completed and
results from all 1000 simulations were extracted.

4.3 Analysis of Simulations

When the simulations that ended due to error termination had been corrected, the complete
analysis of the results was started. To summarize, all of the 1000 generated simulation
yielded results, thus all of the simulation results were considered for the analysis and
presentation of results.
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4.3.1 Results from Simulations

The first part of the analysis was to compute a curve that fit the data from the simulations,
for all different injury criteria. Firstly, the results for the injury criterion Rmax are
presented, Figure 4.6, where it can be seen that the spread between risk and ∆v was quite
large, i.e., one specific value for ∆v does not inherently always correspond to the same risk.
From Figure 4.6, one can observe that the risk function for Rmax does not correspond to
the NASS/CDS curve. The fitted curve has an R2 of 0.580, thus indicating that the curve
fits the datapoints from the simulations quite well. A Winsmash ∆v of 55.5 km/h gives a
50% risk for the Rmax measure. Dmax does also show a risk that is quite high, Figure 4.7,
compared to the NASS/CDS data. Compared to Rmax, Dmax seems to display a greater
risk as well as a steeper increase in risk for higher Winsmash ∆v. A Winsmash ∆v of 48.8
km/h gives a 50% risk for the Dmax measure. The fitted Dmax curve has an R2 of 0.378,
which indicates a worse goodness of fit between the curve and datapoints compared to
Rmax. It should be considered when observing the results that Dmax was computed for
NFR5+, rather than AIS3+.
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Figure 4.6: Scatter plot and curve fitment for simulation results for Rmax, as well as the
NASS/CDS data risk curve. The silver coloured points are the simulation results, i.e., one
point corresponds to a risk and a value for the average Winsmash ∆v. The 95% confidence
interval is marked in grey, around the black NASS/CDS curve.
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Figure 4.7: Scatter plot and curve fitment for simulation results for Dmax, as well as the
NASS/CDS data. The silver coloured points are the simulation results, i.e., one point
corresponds to a risk and a value for the average Winsmash ∆v. The 95% confidence
interval is marked in grey, around the black NASS/CDS curve.

Leaving the single sensor measures, the criteria considering all of the chest mounted sensors
are now presented. DcTHOR shows a better fit to the NASS/CDS data, however still
some way off, Figure 4.8. This measure shows a larger cluster of datapoints were collected
close to the lower risk, likely due to the threshold in the DcTHOR calculation. Similarly
to Dmax, DcTHOR was computed for NFR5+, instead of AIS3+. As seen for the two
previous measures, the risk does not start at zero. The shape of the DcTHOR risk curves
corresponds quite decently to the NASS/CDS curve, which makes the comparison easier
to make. A Winsmash ∆v of 62.9 km/h gives a 50% risk for DcTHOR and an R2 of
0.271. PCscore shows a more linear increase in risk, compared to the previous, where the
simulations in points marked in silver, were collected more closely together, Figure 4.9.
The spread among the points was lower. As noted before, the risk curve does not start at
zero, and the shape of the PCscore risk curve was a little flatter than the NASS/CDS
curve, which makes for a more difficult comparison. Though, this risk curve predicts the
same risk of injury for speed around 115 km/h. PCscore was computed according to the
AIS3+ injury classification, which makes for a fair comparison between the calculated risk
curve and the NASS/CDS risk curve. A Winsmash ∆v of 77.6 km/h gives a 50% risk for
PCscore and an R2 of 0.520.

42



0 20 40 60 80 100 120

Winsmash ∆v [km/h]

0.0

0.2

0.4

0.6

0.8

1.0
In

ju
ry

P
ro

b
ab

il
it

y
[-

]
NASS/CDS Risk AIS3+

DcTHOR NFR5+

Figure 4.8: Scatter plot and curve fitment for simulation results for DcTHOR, as well as
the NASS/CDS data, The silver coloured points are the simulation results, i.e., one point
corresponds to a risk and a value for the average Winsmash ∆v. The 95% confidence
interval is marked in grey, around the black NASS/CDS curve.
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Figure 4.9: Scatter plot and curve fitment for simulation results for PCscore, as well as
the NASS/CDS data. The silver coloured points are the simulation results, i.e., one point
corresponds to a risk and a value for the average Winsmash ∆v. The 95% confidence
interval is marked in grey, around the black NASS/CDS curve.
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TICNFR, Figure 4.10, shows a similar risk evaluation as PCscore, with a Winsmash ∆v
of 76.9 km/h yielding a 50% risk. TICNFR was computed using NFR3+ as the injury
measure, the same as Troseille et al. (2019) had done, and this makes the direct comparison
somewhat difficult. The risk curve does not start at a zero risk. Further, TICNFR had an
R2 of 0.360. The last measure presented, TICNSFR, was also the criterion that seems to
fit the NASS/CDS data the best, Figure 4.11. TICNSFR seems to be quite different to
the other measures, from the figure it can be noted that the datapoints were generally
quite close to the lower risk prediction levels, and it was the only one that started at zero.
Generally, it predicts a higher risk than the field data, though a very similar risk towards
higher Winsmash ∆v. A Winsmash ∆v of 95.9 km/h gives a 50% risk for TICNSFR, and
the curve fit had an R2 of -0.194.
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Figure 4.10: Scatter plot and curve fitment for simulation results for TICNFR, as well as
the NASS/CDS data. The silver coloured points are the simulation results, i.e., one point
corresponds to a risk and a value for the average Winsmash ∆v. The 95% confidence
interval is marked in grey, around the black NASS/CDS curve.
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Figure 4.11: Scatter plot and curve fitment for simulation results for TICNSFR, as well as
the NASS/CDS data. The silver coloured points are the simulation results, i.e., one point
corresponds to a risk and a value for the average Winsmash ∆v. The 95% confidence
interval is marked in grey, around the black NASS/CDS curve.

Finally, all fitted risk curves were plotted together in the same figure, with the NASS/CDS
curve. The spread among the different criteria was quite large and it can be seen that
TIC NSFR fits the field crash data best, Figure 4.12.
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Figure 4.12: All fitted risk curves, as well as the NASS/CDS data
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4.3.2 Goodness of Fit

Measurement to find the error in the curve fit was also done. All computed errors are
listed in Table 4.2 together with the velocity change for a 50% injury probability and the
curve fit parameters.

Table 4.2: All injury criteria and their respective R2 scores, as well as the ∆v at the 50%
risk. The curve fit parameters are also included.

Rmax Dmax DcTHOR PCScore TICNFR TICNSFR NASS/CDS Unit
R2 GLM 0.580 0.378 0.271 0.520 0.360 -0.194 - -
Winsmash∆v 50% 55.5 48.6 62.9 77.6 76.9 95.9 98.8 km/h
∆v 50% 54.6 48.8 62.1 74.6 75.5 101.5 - km/h
cage -0.056 -0.071 -0.080 -0.090 -0.091 -0.017 0.089 -
Intercept -0.0014 -0.0018 -0.0020 -0.0018 -0.0023 -0.0041 -12.11 -
c∆v 0.041 0.059 0.051 0.038 0.048 0.069 0.089 -

One can also note that the Winsmash ∆v estimtion did not signigfantly differ from the risk
prediction using the real ∆v, at the 50%. R2, the curve fit with respect to the datapoints
was the highest for Rmax and PCscore, and the lowest for TICNSFR. In fact, R2 for
TICNSFR was negative, meaning a small or maybe even no correlation between the fitted
curve and the simulation datapoints.

4.4 Additional Results

In this section some additional results are presented. This includes VPI results with the
distribution from the simulations run, a comparison of the calculated risk curves to the
SAFER HBM and the change in ∆v from the Winsmash correction. A comparison was
also be made for a correction of a potentially underpredicted NASS/CDS curve against
the calculated risks.

4.4.1 Additional Injury Criteria Evaluation

The additional criteria that was looked at, was also analyzed and checked. After analyzing
the abdomen displacements, it was found that none of the simulations showed signs of
submarining, Figure 4.13, or other unwanted behavior, as the abdomen deflections were
well below the AIS3+ 10% injury probability for abdomen injuries with the THOR ATD
(Craig et al.2020).
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Figure 4.13: Distribution of the peak abdomen displcement for all simulations.

The head itself was considered. As previously mentioned, the head could hit the lining on
the roof inside the car, in cases where the crash was on the more severe end. The issue
was seen when the HIC values spiked quite heavily as a result of the contact with the roof.
The removal of the head-to-roof did fix this issue. When the contact had been removed
the HIC values received seemed to be within the expected range and only spiked when
hitting hard parts such as the dashboard or windscreen, Figure 4.14.

−1 0 1 2 3 4

log10(HIC)

0

10

20

30

40

50

60

D
is

tr
ib

u
ti

on

Figure 4.14: Distribution of the peak HIC values from all simulations.

4.4.2 Simulation Analysis with Vehicle Pulse Index

From the distribution figure it can be observed that most of the crashes were subject to
a VPI of less than 400 m/s2, which shows a similar pattern to the one seen before, that
there were mostly low severity crashes.
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Figure 4.15: Distribution of the Vehicle Pulse Index.

The same regression analysis method was applied for this case, and the resulting risk
curves were computed, Figure 4.16. The order among the criteria seem to be more or less
the same as then one observed before, with Dmax seemingly producing the highest risk
while TIC NSFR predicts a significantly lower risk than the other. For this analysis, there
was no possibility to compare the computed risk functions to the NASS/CDS field data
from Iraeus and Lindquist (2016), since one would need the peak acceleration data from a
crash. The risk curves all start closer to the zero risk for a VPI of zero.
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Figure 4.16: Injury risk curves using VPI as the predictor.
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4.4.3 HBM comparison

All risk curves were individually compared to the SAFER HBM from Larsson et al. (2021),
for ∆v. This had to be done for a 30-year-old occupant since the curve were extracted
directly from the paper. All the other curves were hence also changed to an occupant of
age 30, Figure 4.17.

Figure 4.17: Risk curve for the SAFER HBM compared to the calculated injury risks for
THOR.
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4.4.4 Effects of Underpredicting Rib Fractures in NASS/CDS

The statistical evaluation to regard some uninjured occupants as injured, to explore the
effect of underprediction of rib fractures in the field data, meant the NASS/CDS injury
probabilities moved to the left, just as found by Iraeus and Lindquist (2016). In figure
4.18 a 70 and 50 % underprediction can be seen. Rmax predicts more injury compared
to all the curves up to a Winsmash ∆v of 70 km/h, and Dmax predicts higher injury for
the whole range, Figure 4.18. The shift of the NASS/CDS curve means there was now
predicted probability for injuries for speeds above 40 km/h and 20km/h for 50 and 70%
underprediction levels, as opposed to the 60km/h limit observed in the unmodified data.

Figure 4.18: Influence of underprediction rib fractures in the NASS/CDS data.
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Further it can be noted that for e.g. Rmax, the calculated injury probability was still
higher than what the 70% underprediction level would suggest, for speeds below 70 km/h.

4.4.5 Effects of Adding More Severe Crashes

With the introduction of more crashes of higher severity, the distribution of ∆v changes,
Figure 4.19. The original distribution was the 1000 previously derived simulations, and
crashes were added according to a new uniform distribution of ∆v between 60 and 120
km/h. The other parameters were sampled in the same way as before.
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Figure 4.19: The new distribution of ∆v after the addition of more severe crashes.

Since the simulations were so violent, all the new simulations were run with the 0.6mm
null shell around the chest bushings, to avoid error terminations before the deflection peak.
Out of the 50 simulations run 7 of them crashed due to negative volume in an element in
the head of the ATD or due to that the belt segment had a free end. 5 of the 7 crashed
simulations were discarded since no peak value had been achieved, but 45 of the added
simulation was included in a new analysis. The regression was done once more, and the
risk curves were computed again for all the 1045 simulations.
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The added simulations and their corresponding risk were marked in light green, and
it is visible that the new simulation was of higher speeds and generally higher injury
probabilities, Figure 4.20. The change between the new and original risk curves were small
for all injury criteria and the added simulations generally lie close to the curves.

Figure 4.20: The risk curves for the newly added cases, a shift to the right can be seen for
all cases.

4.4.6 Rmax,Adjusted

Rmax,Adjusted had a better fitment against the NASS/CDS data for the 40 year old than
the original Rmax curve, Figure 4.21. The curve was bounded by the 70% and 50%
underpredict curves and meets up with the original Rmax at a Winsmash ∆v of 120.
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Figure 4.21: Rmax AIS3+ comparison for a 40-year-old between the adjusted and original
Rmax curve. The individual simulations plotted as grey dots for the Rmax,Adjusted.

For the injury probability plotted against Rmax in mm the difference can be seen between
the Rmax,Adjusted and the Rmax curves. Rmax,Adjusted starts the slope much later at around
40 mm but has a steeper incline, Figure 4.22.
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Figure 4.22: Rmax AIS3+ deflection comparison for a 40 year old between the adjusted
and original Rmax curve.

The risk curve can also be seen for the 30-year-old since it was needed to solve for
the parameters in the risk function, Figure 4.23. The comparison between the original
Rmax and Rmax,Adjusted was similar as for the 40-year-old. Rmax,Adjusted was closer to the
NASS/CDS data and was guided by the two underpredicted curves.
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Figure 4.23: Rmax AIS3+ comparison for a 30 year old between the adjusted and original
Rmax curve. The individual simulations plotted as grey dots for the Rmax,Adjusted.

4.4.7 THOR Accuracy

The deflection was recalculated as 30-50% lower than the output from the sensors, Figure
4.24, where the decreased Rmax curves was closer to the NASS/CDS curve compared to
the un-scaled version of Rmax. The 50% risk now appear for Winsmash ∆v of 72 and 87
km/h, recall that the original Rmax found the 50% for Winsmash ∆v of 55 km/h.
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Figure 4.24: Rmax plotted together with two special cases, the dotted line indicates the
cases where the Rmax value was decreased by 30 %, and the dashed line where the Rmax

value was decreased by 50 %.

54



4.5 EDR ∆v NASS/CDS

The NASS/CDS data from Brumbelow (2019) was plotted for thoracic MAIS3+ injuries,
and were compared to the simulation results for true ∆v. The simulations results were
however computed for AIS3+ for thoracic injuries. In Figure 4.25 the comparison can
be seen for the Brumbelown (2019) MAIS3+ thoracic curve for 40-59 years old and the
studied injury criteria.
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Figure 4.25: All injury criteria for true ∆v plotted against Brumbelow (2019) thoracic
MAIS3+ curve for 40-59 years old.

PSscore and TICNFR fits the Brumbelow (2019) curve well but predicts a slightly higher
risk for lower ∆v while TICNSFR predicts a lower injury probability above 60 km/h than
the Brumbelow (2019) curve.
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5 Discussion

The aim of this study was to compare the rib fracture risk predicted by the THOR
ATD with the risk of injury in real life crashes from NASS/CDS using the method and
generic FE vehicle compartment model developed by Iraeus and Lindquist (2016). The
simulations were run with LS-DYNA, and the sampling of the parameters was done in
LS-OPT. Several Injury risk functions were evaluated in the post processing in order to
find the best prediction of the real-life injury.

5.1 Overpredicting vs Underpredicting Injury Risk

The effects of overpredicting injuries in crash testing could affectthe development of softer
safety systems. One could argue that a softer system, which would result from a more
sensitive ATD, would be better for the occupants in a crash scenario. This may be the
case in less severe crashes, but in the case of higher severity the softer safety system
could contribute to more harm than good, since a softer system might bottom out. One
argument that strengthens the view is that when the seatbelt pulls with a lower force,
the risk of using the full length of the belt increases at a high velocity crash, and hence
the restraint system can bottom out. Over predicting risk of injury might lead to other
implications as well, and it may make car manufacturers having to adopt softer safety
systems into their cars in crash tests. This in turn may led to that the safety systems
performs worse in the real world. Lie and Tingvall (2002) studied real life crashes by
correlating the injury sustained when crashing with Euro NCAP ranked cars to the star
rating of the vehicle. When considering severe and fatal injuries the star rating had a
good correlation with real life injury for the years 1996-2000, where higher rated cars were
safer. Lie and Tingvall (2002) argues that it is important to monitor the real-life crash
outcome to avoid suboptimization, which in turn can lead to worse performance in real-life.

Underpredicting injuries in a crash test may on the other hand contribute to more injuries
in the lower velocity cases but could help in high severity crashes. But the rating system
for crash test could be skewed, since lower risks would be predicted than the reality. Hence
the difference between a bad performing car and a good performing car in a crash test
could be harder to spot. This could in the end slow down development since there is small
gain in developing safer cars. The best would be to come as close to reality as possible, to
avoid safety systems that don’t work in the real world.

5.2 Injury Risk Probabilities

From the analysis conducted, it could be seen that TICNSFR performs best when compared
to the real-life outcome in the NASS/CDS data, Figure 4.12. According to the NASS/CDS
risk curve, there was close to a 0 % risk of AIS3+ thoacic injuries for Winsmash ∆v below
50 km/h. For the same speed, Rmax predicts a risk of around 45%, and TICNSFR predicts
a risk of approximately 20 %, and the other risk curve lie in between. Considering this,
none of the risk curves corresponds very well to the observed field data. The NASS/CDS
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curve seems to predict risk of injury for speeds above 50 km/h, though for the simulated
cases, there were very few datapoints in this region.

The reason for TICNSFR seemingly being the best risk function might lie in the nature of
the function itself. The measure was computed for NSFR, number of separated fractured
ribs, which was the number of fractured ribs that were likely to be diagnosed. On average,
one would need 3 NFR to get 1 NSFR (Troseille et al. 2019). In effect, that means that
cases where the occupant did indeed suffer an injury, but the injury could not clearly
be seen on x-ray, might not have been registered as such. Consequently, this means the
overall risk predicted by the function would be lower, as can be seen from Figure 4.11, in
which there were few datapoints above the 20% risk level. This might raise the question
whether or not the NASS/CDS data is completely accurate. The distribution of simulation
datapoints was also studied, Figure 5.1, and this reinforces the idea that the injury risk
prediction by TICNSFR was indeed too insensitive, as almost all risk predictions lie below
the 10% risk.
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Figure 5.1: Distribution of simulation risk prediction by TICNSFR.

These arguments means that TICNSFR could not be stated as the best risk function,
but instead PCscore or TICNFR. These risk functions show decent correlation to the
NASS/CDS risk curve, while still being able to capture the different severity levels of a
crash. Since PCscore was computed for AIS3+, the same as the NASS/CDS risk curve, it
was preferred over TICNFR. The risk distributions were plotted for PCscore and TICNFR
as well, Figure 5.2, where it can be seen that the spread of risks was greater for PCscore
than for TICNFR. The fact that there seems to be too high risk prediction at the zero
level for TICNFR than for PCscore, indicates the same insensitivity tendencies as for
TICNSFR. Therefore, as a results, PCscore would be considered as the best risk function,
among the ones that were studied.
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Figure 5.2: Distribution of simulation risk prediction by PCscore and TICNFR.

On the other hand of the spectrum, one can find Rmax, Dmax and DcTHOR seemingly
being too sensitive. For the case of Rmax there really were no possible explanation than to
say that it was too sensitive and predicts very high injury risks. However, bearing in mind,
that the different risk functions use different injury scales, and might thus not be directly
comparable. Though, since the coding for different injury scales were somewhat different
a choice was made to use the classifications stated. For instance, Dmax and DcTHOR are
also defined for NFR7+, and a small test was ran to see what influence this had on the
injury risk prediction, Figure 5.3.
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Figure 5.3: Distribution of simulation risk prediction by TICNSFR.

From Figure 5.3 it can be seen that for DcTHOR there were no major differences in the

58



injury risk prediction, and this aligns well with the observations from Davidsson et al.
(2014). Though, Dmax differs more when compared to NFR5+, the curve was flatter and
predicted a lower risk of injury, especially in the regions above 50 km/h. In fact, Dmax

for NFR7+ was found to be quite close to Rmax. Even for higher injury classification
thresholds for both Dmax and DcTHOR, the risk functions do not provide a better injury
risk prediction than neither PCscore nor TICNFR.

Generally though, for all the injury risk function, there was an apparent pattern, that the
risk functions did not predict a zero risk for zero ∆v. This was likely due to the logistic
regression used to fit the data. This behaviour was however unwanted, since it meant that
there would be a risk of injury from just sitting inside a car, which, of course, was not
reasonable. The underlying reason for this though, could be due to the measurement for
THOR in combination with the associated risk curve, did not have a linear correlation
with ∆v, Figure 5.4. As can be noted from Figure 5.4, the linear curve does not intersect
the points further down the y-axis, thus resulting in a risk curve which does not start at 0.
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Figure 5.4: Risk curve for Rmax in log-odds space.

Instead, what could have been done, was to either transform the data in order to get a
linear correlation between the risk and ∆v or use a non-linear regression model. This
might have improved the risk curve, especially at the 0% risk level, where there could
have been a closer match to the datapoints.
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5.3 Processing of NASS/CDS Data

During the calculation of the injury risk curve for the NASS/CDS data, there seemed to be
a lot of uninjured occupants compared to the number of injured ones. This was examined
further, Figure 5.5, to get a clearer picture of the distribution. In Figure 5.5, the green
markings have been scaled to represent the number of injured occupants encountered for
that specific speed. Since the NASS/CDS data contained information about ∆v without
decimals, many of the markings would be at the exact same location. As can be noted,
there were indeed many more uninjured occupants than injured, which is a snapshot of
the situation seen in reality.
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Figure 5.5: The NASS/CDS risk curve, along with the re-scaled markings for in-
jured/uninjured.

5.4 Effects of Under Prediction in NASS/CDS Data

In a study by Crandall et al. (2000), 29 human cadavers were subject to frontal impacts
ranging from 25 to 59km/h. One finding in the study was that only 40% of the total
fractures were seen on x-ray. A similar study by Schulze et al. (2013), where 51 subjects
were assessed with both CT-scan and autopsy, showed that 15% of the total fractures
were missed in the postmortem CT-scan compared to the autopsy. Another study by
Lederer et al. (2004), studied the aftermath of Cardiopulmonary Resuscitation (CPR) on
adults. The conclusion was that 6 out of the 19 studied were diagnosed with a rib fracture
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when run through a chest x-ray and 17 were diagnosed with rib fractures when subject
to an autopsy. This would lead to about a 70% underprediction rate. When studying
Figure 4.18, which shows the injury criteria calculated, plotted against the NASS/CDS
data for an underprediction rate of 0, 50 and 70%, Rmax in particular predicts a higher
risk for lower Winsmash ∆v for all curves up to 70km/h. Rmax was directly comparable
to the curves since it was, as for the NASS/CDS data, calculated for the AIS3+ injury
classification. The same direct comparison could be done for PCscore, which was closer to
the NASS/CDS data and hence was performing better. When moving an occupant from
uninjured to injured, the assumption was that for high and low ∆v, the underprediction
was the smallest. For higher ∆v, the autopsy as a source was more common, though for
lower ∆v the false rate could in practice be higher than 70%. Although there is generally
less injuries for lower impact velocities.

5.5 Comparison to Human Body Model

Larsson et al. (2021) conducted a study with the SAFER HBM and studied rib fracture
risk for a 30- and 70-year-old driver. The curves seen in Figure 4.17 is plotted for the
30-year-old case, and the risk estimate for the HBM was the risk of a NFR2+ rib fracture.
This was not directly comparable to any of the calculated risk functions in this study, but
the risk to sustain an NFR2+ injury should in practice be higher for the same ∆v than
the risk for both NFR3+ and AIS3+. When comparing the calculated injury criteria in
this study to the HBM curve, the HBM predicted a lower risk than eg. Dmax for the same
Winsmash ∆v. This should in practice not be possible but was most likely due to the
overprediction of injury in Dmax.

5.6 Vehicle Pulse Index

VPI was computed as a representation of the acceleration on the occupant inside the car,
instead of just purely the acceleration on the car itself. This means that the occupant
will have to endure a slightly higher acceleration than the car, as a result of slack in the
system. This slack comes from the occupant’s interaction with the seatbelt.

When using VPI as the predictor for injury risk it was found the injury criteria ranked
more or less the same as when using ∆v, Figures 4.16 and 4.12 respectively. However,
there was no acceleration data available in the NASS/CDS data, a comparison to real life
outcome could not be made. It could though, be argued that VPI would be an alternative
to ∆v, since it does not only consider the velocity during a crash event, but the duration
as well. E.g. a crash with a low ∆v can be very severe if the stop is very sudden, i.e. a
short crash duration, yielding a very high acceleration.
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A small study was made, to find out whether the two measurements correlate, with a
linear regression and computing the coefficient of determination, also known as R2. From
this analysis it was seen that the two correlate quite well, with R2 = 0.77, and showing a
clear trend towards an increasing ∆v also giving an increased VPI, Figure 5.6
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Figure 5.6: The Vehicle Pulse Index as a function of ∆v, with the linear regression line in
black.

To be able to use VPI as a predictor for injuries in car crashes, acceleration data must
be saved by the car in such an event. The Winsmash ∆v velocity is an estimation that
can be made after the crash. Estimating the crash acceleration would however be a more
difficult task. Consequently, it would require data to be recorded by each car. If such
equipment would be in place, storing the peak acceleration during a crash might be a good
way of doing it. Thus, the peak acceleration may then be used to calculate VPI. Possible
solutions for this can be an Event Data Recorder (EDR), with is a device installed in cars
to record technical vehicle information. In addition, smartphones of today may be able
to record such information. With this, however, comes the question of privacy and the
handling of personal information, which may hinder this development.

Tsoi and Gabler (2015) did a study very similar to this study, where they had access to
EDR data and could quite accurately compute VPI, among other measures to predict the
injury risk. Tsoi and Gabler (2015) found that VPI was a significantly better predictor of
injury risk than e.g., ∆v. The risk curve from Tsoi and Gabler (2015) was recreated and
added for comparison, Figure 5.7. Though, this risk curve was computed for the MAIS3+,
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for injury to the 3+ level for the spine, thorax or abdomen. Thus, if considering AIS3+
injury to the thorax instead, the Tsoi and Gabler (2015) curve should be shifted to the
right since less areas of the body to sustain an injury on would be included in the data.
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Figure 5.7: The risk curves for all injury criteria and compared to the VPI risk curve from
Tsoi and Gabler (2015). Note that this risk was computed using the MAIS3+ injury scale.

5.7 Validation of the Generic Sled

The generic car model used in this study was the same as used and developed by Iraeus and
Lindquist (2016). The parameters for the model were tuned by replicating frontal oblique
tests with complete vehicles, that had been run with a Hybrid III. For the validation of
the sled used in the study, a comparison to real-life crashes was made, on a population
level. From this validation test, the Objective Rating Method (ORM) peak and peak time
rating varied between 83% and 94%, Iraeus (2015). These results can be compared to the
guidelines by Eriksson et al. (2009), which states that good correlation show ORM values
of 90% or above and Iraeus (2015) states that all ORM values correspond well to these
guidelines.
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5.8 THOR Validation

The THOR ATD is a frontal impact test device, however there were no clear indications
as to what this really meant. Thus, several papers were surveyed, with the intension of
investigating the valid PDOF range for THOR. In addition, an examination of THORs
performance with respect to real world crashes was made, to find out if there was something
in the construction of the ATD that might explain the observed softness.

5.8.1 Crash Angles Valid for THOR

Biofidelity evaluations of the THOR ATD in oblique loading have previously been studied
by Parent et al. (2017). Parent tested the lower ribcage in an oblique impact by impacting
the eight rib with a pendulum of the mass 23.4 kg. Overall, the THOR ATD got a higher
biofidelity score than the Hybrid III, when compared to PMHS corridors (Parent et al.
2017). The test was run by rotating the ATDs 15◦ and hence impacting to the side of the
thorax.

5.8.2 Correlation Between FE-THOR and Physical THOR

Umale et al. (2018) studied the differences between FE ATDs and the physical ATDs.
Among the tested FE ATDs were the THOR, Worldwide Harmonized Side Impact Dummy
(World SID) and the Hybrid III. The tests conducted were oblique 60◦ sled tests and
pure lateral sled test with PDOF 90◦. The tests were also run for PMHS for a biofidelic
comparison. All the tested FE-models showed good correlation to the physical ATDs
according to Umale et al.(2018). The author also states that the THOR and Worlds SID
ATDs showed more biofidelic responses than the Hybrid III when compared to the PMHS
tests.

This study was run with a PDOF ranging from -45 to 10◦. Although there is studies to
support that the THOR ATD can handle the load cases studied, there is one example of
where the deflection output was smaller than initially expected. The outlier is marked
in Figure 5.8 where a velocity of 112km/h, corrected to Winsmash ∆v to 92km/h and
PDOF approaching -45◦, THOR predicted a small injury probability. When studying
this simulation an almost pure lateral loading of the thorax could be seen since the ATD
completely misses the airbag and the longitudinal forces acted on the head and the arm.
This is the same plot for Rmax as seen in Figure 4.20.
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Figure 5.8: The risk curve for Rmax, with the special case marked with a green circle.

5.9 Winsmash ∆v Effects on Risk Prediction

The effect of the Winsmash estimation was investigated. As previously mentioned, the
Winsmash estimation contains a bias and an uncertainty. With respect to the risk curves,
these must natrually change when the speed estimator changes. What could be seen from
the analysis was that the Winsmash estimation made the risk curve flatter, Figure 5.9.
This was the result of the curve fitting property, which depends on the variance in x and
y, though with the Winsmash estimation the variance in x was changed, but not in y, thus
yielding a flatter curve.

When determining ∆v using the Winsmash estimation method, somewhat accurate approx-
imation of speed changes could be made by the use of simple linear relationships between
the impact speed change, and the residual crush of the vehicle. Such assumptions do of
course contain over-simplifications of complex crash structures, though the estimation
was found to be a reasonably sufficient estimation of the speed change in a crash. It was
although obvious that the usage of this speed estimation was not ideal and constitutes to
an unwanted uncertainty. In addition, Winsmash ∆v systematically underestimates ∆v,
Figure 4.5, and Niehof and Gabler (2006) found that Winsmash ∆v underestimates ∆v
by 23%, on average.
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Figure 5.9: The effect of changing ∆v according to the Winsmash estimation. The dashed
line represents the risk curve for the ∆v used in the simulations, while the solid line was
the Winsmash ∆v

The Winsmash estimation of ∆v does make the curves flatter, 5.9. The reason for that
lies in the regression model used. The regression model computes the linear function yglm
as in Equation 5.1.

yglm = kx+m (5.1)

The slope k depends on the variance in both x and y

k ≈ cor(x, y)
var(y)

var(x)
(5.2)
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x and y does in this case represent ∆v and injury risk, respectively. cor(x, y) is the
correlation between x and y. Thus, if the Winsmash estimation move the datapoints in
the x-axis only, the variance will increase only for x, thus yielding a higher value in the
denominator, which in turn gives a lower value, for the slope k, i.e. a flatter curve.

All risk curves were computed for true ∆v, Figure 5.10 this meant that a direct comparison
to the NASS/CDS data cannot be made. From Figure 5.10 it can be observed that there
were no major differences in the injury risk prediction, and the risk curves are, as discussed,
somewhat steeper. It can also be noted that the risk curves start closer to a 0% risk
for a ∆v of 0. However, the order among the curves remains approximately the same as
observed before, and the 50% risk lie not far from that of the Winsmash estimation, Table
4.2.
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Figure 5.10: The risk curves computed and plotted for true ∆v.

5.10 THOR Accuracy

Although the biofidelity of THOR is good (Parent et al. 2017), THOR may seem to be
too soft, when compared to a real human. It would hence be more time and cost effective
to adjust the injury criteria rather than adjusting the ATD itself. A higher deflection of
an ATD does not necessarily mean a skewed result. Rather one could argue that the ATD
should not be seen as a perfect human, the most important is that the results extracted
can represent a human after re-calculations of the outputs and data. As seen from Figure
4.24 a stiffer THOR response would indeed lower the risk prediction quite significantly,
however, as mentioned a reconstruction of the ATD might not be the best solution.
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5.11 Adjusted Rmax

An adjusted verion of Rmax was developed by changing the parameters in the original
risk function. This led to that the Rmax,Adjusted came closer to the NASS/CDS risk curve.
As seen in Figure 4.22 the incline of Rmax,Adjusted started after 40mm of deflection, which
is not optimal since all deflection less than 40mm mean a 0% risk of AIS3+ injury to
the thorax. The simulation data was also potted for a 70-year-old occupant, Figure
5.11. It can be spotted here that the original Rmax curve starts at 0.3 injury probability,
while the simulation points, here plotted in blue for the original, were showing a step
curve characteristic. The overall curve fitment against the points was poor but the
individual simulation data shows an overpredictment compared to all curves in the figure.
Rmax,Adjusted simulation points were plotted in grey.
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Figure 5.11: Rmax AIS3+ comparison for a 70-year-old between the adjusted and original
Rmax curve. The individual simulations plotted as grey dots for the Adjusted Rmax and
plotted in light blue for the original Rmax.

Even though there were signs that Rmax overpredicts injury, Rmax,Adjusted may not be
the best representation of reality. Since the approach of choosing the underpredicted
curves was taken, the discussion about the correctness of the underpredicted curves itself
arises. The assumption was that the underpredict was the smallest at high ∆v. At high
∆v the crash data from the NASS/CDS data was more commonly consisting of autopsy
than at lower speeds. This may contribute to that the data was in fact closer to reality
at higher speeds. The assumption was the same for low speeds, and here there may be
more uncertainty than assumed in the study for the development of the underpredict
curves. The Rmax,Adjusted should hence be seen as a test to investigate the possibility of
an adjusted risk function rather than the solution. It could be deemed that Rmax has the
possibility of predicting a risk closer to real-life with an adjustment of the risk function.
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5.12 EDR ∆v NASS/CDS

An additional dataset to compare with the risks calculated in the simulations was extracted
from Brumbelow (2019) and a recalculation of Iraeus and Lindquist (2016) NASS/CDS
curve was made for thoracic MAIS3+ injuries. When comparing the curves in Figure
3.17, the recalculated curve Iraeus and Lindquist (2016) fits between the curves from
Brumbelow (2019). The curve was flatter than the EDR ∆v curves, most likely due to the
Winsmash ∆v approximation. This was in line with the findings from Section 5.9 where
the Winsmash corrected curves were flatter. Winsmash ∆v may hence be sufficiently good
way of estimating the velocities, but EDR data is preferred due to the better accuracy of
the data.

Since MAIS3+ includes additional injuries than rib fracture risk, the MAIS3+ curve will
in theory predict higher risk of injury compared to AIS3+. The MAIS3+ curve, Figure
4.25 from Brumbelow (2019) includes older ages ranging from 40-59, which would mean it
is further overestimating injuries compared to a 40-year-old. As the MAIS3+ thoracic
injury risk from Iraeus and Lindquist (2016) matches the thoracic MAIS3+ injury risk
from another study, that of Brumbelow (2019) it supports that the rib fracture AIS3+
curve from Iraeus and Lindquist (2016) was a good representation of real-life injury risk.
Though, the underprediction in the NASS/CDS data may be biased in both the data
sources studied, as already discussed.

Another comparison could be made with regards to the usage of true ∆v. Tsoi and
Gabler (2015) had access to EDR-data from car crashes, and could thus extract a more
accurate value for ∆v. The risk curve for ∆v in Tsoi and Gabler (2015) was digitized
and plotted versus the computed risks for the simulations, Figure 5.12, where it could
be seen that the Tsoi and Gabler (2015) risk curve was shifted quite significantly to the
left, compared to the risk curve derived by Iraeus and Lindquist (2016), seen in Figure
3.13. The age for which the risk curve was computed was unknown, which might explain
why it shifted to the left by such extent. Mainly General Motors (GM) vehicles were
included in the study since these vehicles are more often equipped with an EDR recorder.
With 83% GM vehicles, the data may still represent the whole vehicle fleet, but there was
some uncertainty. This may be a contributing factor to the risk curve moving to the left
compared to the other data sources studied.

Another difference between real-life crashes and PMHS tests is muscle activity, which may
also affect the kinematics in a crash scenario. Ejima et al. (2009) conducted sled tests
with a deceleration of 0.8G on human volunteers and found that the motion of the upper
torso was affected by muscle tension in the pre-impact phase. Since PMHS does not have
any muscle activity, the injury criteria based on PMHS data may predict a higher risk
than real-life due to the difference in body kinematics.
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Figure 5.12: The risk curves computed and plotted for true ∆v, and compared to the risk
curve derived using EDR ∆v from Tsoi and Gabler (2015).

The Tsoi and Gabler (2015) risk curve was however computed for MAIS3+ for the
whole body, rather than AIS3+ thorax injuries. Tsoi and Gabler (2015) considered
thorax, spine and abdomen injuries as whole-body injuries. All THOR rib fracture
AIS3+/NFR5+/NFR3+ risk curves still predicted a higher risk of injury at 40 km/h,
except TICNSFR. For instance, the risk of AIS3+ rib fracture according to Rmax was 45%
at 40 km/h, while the MAIS3+ injury risk from Tsoi and Gabler (2015), which includes
more types of injuries and ought to be higher, was just 5%, indicating that the Rmax rib
fracture risk for THOR was overestimated. Hence with a risk curve consisting of real
data that underpredicts in the given scenario, Rmax still outputs a higher risk than the
comparison. Tsoi and Gabler (2015) may have developed a good risk curve for real crash
data, but it was hard to compare with the calculated risks from the simulations in this
study.

5.13 Post Mortem Human Subjects and Real Life

Crashes

All the rib fracture criteria for the THOR ATD included in this study (Craig et al. (2020),
Davidsson et al. (2014), Troseille et al. (2019) and Poplin et al. (2017)) were based
on comparison of THOR chest responses to those of PMHS test data. This means that
the humanlike response was ensured, however there may be a difference in e.g. bone
strength between a live human and a PMHS. This does of course influence the results and
parameters for each criterion. For the most part PMHS used in tests might often be older
and thus more vulnerable than the average person being involved in a crash. Eppinger et
al. (1999) describes how the thoracic injury risk curve may change when accounting for
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this over-reporting of rib fractures. This may then lead to a criterion that would be too
soft, i.e. the deflection measure indicates a higher value than what would actually be the
case for a live human. Thus, higher deflection values from THOR may be the expected
results, which, in turn, gives a higher risk prediction for THOR, Craig et al. (2020).

5.14 Limitations

This study, as with most studies, has, of course, limitations. Firstly, as discussed in Iraeus
and Lindquist (2016) the sampling of the parameters, were based on data samples and
might not represent the NASS/CDS data entirely. For instance, the vehicle parameters
were based on 14 vehicles (Table 3.1). Some of the distributions were based on data from
EDR, which mainly consists of GM vehicles. Other limitations was that the effects of sex,
seating posture and morphology were not studied.

The analysis of the simulation includes the statistical determination of Winsmash ∆v,
which affects the prediction of rib injuries. This method was most likely implemented
correctly, however the effect of the rib fracture predictions were based on the assumption
about how the risk of misclassifications depends on the regression variables.

Finally, the results depend heavily on the gather data in NASS/CDS, and the comparison
was done thereafter. As already discussed, there was evidence for a clear under prediction
of rib fractures when considering x-ray footage. Therefore, it may be said that the
comparative dataset was not the most accurate, and that improved accuracy could be
obtained using EDR data for ∆v, while an accurate representation of rib fracture risk
from the field data is harder to obtain.

5.15 Future Work

For similar studies in the future, some recommendations can be made as to what changes
to the method might improve the study, similar observations as Iraeus and Lindquist
(2016) have already made. Firstly, the Latin Hypercube sampling scheme is a superior
alternative to regular Monte Carlo sampling, it is still quite inefficient for this application.
This, since most sample points will represent low severity crashes, i.e. in situations where
the probability of injury is low. However, this is natural since the distributions were based
on distributions from real life crashes. Consequently, this will lead to very few crashes of
higher severity being sampled.

With a more efficient sampling strategy, the study could be re-done, including the missing
age effects. Furthermore, given the status of the generic model, it would in practice be
easy to incorporate validation for other body parts.

In addition, one could also re-do the study for the currently most used ATD, the Hybrid
III. This, to get a comparison between THOR and Hybrid III different characteristics and
different results may appear.
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6 Conclusion

The rib fracture risk predicted by the THOR ATD was compared with a selection of
data from NASS/CDS, using a generic vehicle compartment model. Six different injury
risk functions were considered. The rib fracture risk functions using Rmax, Dmax and
DcTHOR were too sensitive and overpredicted the risk of rib fracture. For example, the
risk functions for Rmax and Dmax displayed a 50% rib fracture risk at 56 and 49 km/h,
respectively, while the NASS/CDS risk curve predicted that the 50% risk would lay at 99
km/h.

The TICNSFR criteria was shown to be the best correlated injury risk function with respect
to the risk curve from the selection of NASS/CDS data. However, TICNSFR cannot be
said to be the best risk function, since it was too insensitive. Of all simulations, only five
cases predicted over 20% risk, and only one over 50% risk of rib fracture.

The criteria TICNFR and PCscore were the best for predicting rib fractures, since they
showed both a good correlation with the selected NASS/CDS data, as well as capturing
differences between crash severity levels. Both risk functions predicted a 50% for approxi-
mately 77 km/h. PCscore would be the preferred injury risk function, as it was defined
for AIS3+, which the NASS/CDS risk curve was as well. In addition, the curve fit for
PCscore had an R2 of 0.520 compared to 0.360 for TICNFR, which indicates a better
curve fit for PCscore.

By predicting the risk of injury in the most accurate way possible, the development of car
safety can be aided, thus leading to fewer car crash fatalities. From the population based
stochastic study done here to compare the rib fracture risk predictions of the THOR ATD
with that real-life data from NASS/CDS, PCscore is recommended as the criterion to be
used for evaluating thorax injuries in car crash testing with THOR.
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