
Real-time path tracing of small scenes
using WebGL
Master’s thesis in Computer Science – algorithms, languages and logic

Martin Nilsson
Alma Ottedag

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Real-time path tracing of small scenes using
WebGL

Martin Nilsson, Alma Ottedag

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Real-time path tracing of small scenes using WebGL
Martin Nilsson, Alma Ottedag

© Martin Nilsson, Alma Ottedag, 2018.

Supervisor: Erik Sintorn, Department of Computer Science and Engineering
Advisor: Magnus Pettersson, RapidImages AB
Examiner: Ulf Assarsson, Department of Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Image rendered by the path tracer developed in this report.

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Real-time path tracing of small scenes using WebGL
Martin Nilsson, Alma Ottedag
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Monte Carlo path tracing is becoming increasingly viable as a method for rendering
global illumination in real-time. We explored the potential of using path-tracing and
WebGL to rendering real-time 3D graphics in a web browser. The project focused
on rendering small scenes where objects are dynamically translated, rotated, and
scaled. We examined the performance of various acceleration data structures (ADS)
including 3D grids, irregular grids, and bounding volume hierarchies. To reduce the
noise inherent in path-traced images, we separated the lighting into several lighting
terms and applied an À-Trous wavelet filter on each term. We explored both the
results of splitting the direct and indirect lighting terms and splitting the glossy and
diffuse terms. We also applied the surface albedo in a post-processing step to better
retain texture details.

On small scenes, we were able to trace 720x540 pixel images at interactive
framerates, i.e. above 10hz, at one sample per pixel with a maximum path depth
of five. Using per-object bounding volume hierarchies, we can render dynamically
changing scenes, e.g. moving objects, at interactive framerates. The noise reduction
filter executes in less than 10 milliseconds and is successful at removing noise but
over-blurs some image details and introduces some artefacts. We conclude that
while real-time path tracing is possible WebGL, there are several caveats of the
current version of the WebGL library that makes some state-of-the-art optimisation
techniques impractical. For future work, we suggest several approaches for improving
the path tracer. For instance, extending the noise reduction filter with temporal
accumulation and anti-aliasing, and optimising the encoding of triangles and ADS
nodes.

Keywords: Computer Science, Graphics, Ray Tracing, Path Tracing, WebGL

v

Acknowledgements
We would like to extend thanks to our supervisor Erik Sintorn for the great feedback
and guidance. We are also very grateful for all the feedback and support from
everyone at RapidImages AB, especially our company advisor Magnus Pettersson.

Martin Nilsson & Alma Ottedag, Gothenburg, June 2018

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 2
1.3 Limitations . 2

2 Previous Work 3
2.1 Ray tracing . 3

2.1.1 GPU Ray Tracing . 3
2.2 Acceleration Data Structures . 4
2.3 Noise reduction . 5

3 Theory 7
3.1 Path Tracing . 7
3.2 Acceleration Data Structures . 10

3.2.1 Bounding Volume Hierarchies 10
3.2.2 Bounding Volume Hierarchy Traversal 11
3.2.3 Grids . 11
3.2.4 Grid traversal . 12
3.2.5 Irregular Grids . 12

3.3 Noise reduction . 15
3.3.1 Real-time De-noising . 15

3.4 GPU Architecture & Programming 17
3.4.1 GPU Programming in WebGL 18

4 Method 21
4.1 System Overview . 21
4.2 Path Tracer Implementation . 22

4.2.1 Materials & Shading . 23
4.3 Ray Tracing & Acceleration Structures 24

4.3.1 Ray Tracing Interface . 24
4.3.2 Bounding Volume Hierarchy 24
4.3.3 Stackless Bounding Volume Hierarchy 25
4.3.4 Per-Object Bounding Volume Hierarchy 26

ix

Contents

4.3.5 Uniform 3D Grid . 27
4.3.6 Irregular Grids . 27

4.4 Noise reduction . 28

5 Results 31
5.1 Acceleration Structures . 31

5.1.1 Ray Tracing Performance . 32
5.1.2 Ray Coherence & GPU Utilisation 33
5.1.3 ADS Construction . 34

5.2 Noise Reduction . 35

6 Discussion 39
6.1 Ray Tracing & Acceleration Structures 39

6.1.1 Ray Coherence & GPU Utilisation 40
6.1.2 ADS Construction . 41

6.2 Noise Filtering . 41
6.3 Ethical considerations . 42

7 Conclusions 45
7.1 Future Work . 45

Bibliography I

x

List of Figures

3.1 Figure showing the terms in the rendering equation. The light re-
flected toward wo at a point p is found by integration over all direc-
tions wi in the hemisphere Ω. 7

3.2 2D visualisation of how a path is traced against a scene. The path
starts at the camera and is reflected at points p1 and p2. At each
surface interaction, a shadow ray is traced towards the light source.
The first point lies in shadow, since its shadow ray intersects the
sphere before reaching the light source. 9

3.3 2D example of a BVH. One the left is a visualisation of how a scene
can be subdivided into a hierarchy of axis-aligned bounding boxes.
The tree structure of the same hierarchy is visualised on the right. . . 10

3.4 2D visualisations showing the difference between a uniform, two-level,
and irregular grid. Note how the cells in the irregular grid align to
an underlying uniform grid, shown as dashed lines. 13

3.5 A 5x5 B3 spline kernel showing the contributions around a central
point (with contribution 9

64). It is the 2D equivalent of this 1D kernel:
(1

16 ,
1
4 ,

3
8 ,

1
4 ,

1
16) . 16

3.6 À-Trous filtering: increasing the pixel sampling distance between fil-
ter iterations. The three images show a 9x9 pixel grid. The black
squares indicate filter samples. In the leftmost image, the sampling
distance is one, yielding a 3x3 pixel sampling block. In the middle,
the sampling distance is two, and in the rightmost it is four. 16

4.1 Overview of the rendering process. CPU processes are shown in blue,
GPU processes in green, and data in gray. 22

4.2 Example of our version of the Skip Pointer Tree with child pointers
shown as dashed arrows and skip pointers shown as bold arrows. A
stackless depth-first traversal of the tree is shown in blue. 26

4.3 Geometry buffer contents. To the left: surface positions, middle:
surface normals, and to the right: the surface albedo. 28

5.1 Figure showing the difference in ray coherence between seeding the
pseudo-random generator with iteration and pixel position (left) ver-
sus seeding with only the iteration number (right). 34

xi

List of Figures

5.2 Shows the effects of demodulating the albedo and adding it during
the post-processing. The 1 spp filter input is shown in (a). The result
of filtering without separating the albedo is shown in (b), while the
result with the albedo split lies in (c). The ground truth is shown in
(d). 36

5.3 Shows the impact of filtering the direct and indirect illumination sep-
arately. (a) shows an unfiltered image at 1spp. (b) shows a filtered
image with deferred albedo. (c) shows the combination of deferring
the albedo and splitting the indirect and direct lighting. (d) shows
the ground truth. 36

5.4 Reflections: comparison between separating the filtering of the glossy/diffuse
light and separating the filtering of the direct/indirect lighting. (a)
shows an unfiltered 1spp image. (b) shows a 1spp image filtered sep-
arately for indirect and direct lighting. (c) shows glossy and diffuse
filter separation also for a 1spp image. (d) is the ground truth. . . . 37

5.5 Shows the difference between splitting the illumination into indi-
rect/direct versus glossy/diffuse when filtering. (a) shows the re-
sult of filtering the direct/indirect illumination, while (b) shows the
glossy/diffuse filtering. (c) shows the ground truth. 37

xii

List of Tables

5.1 Table listing the scenes used to evaluate the renderer. The images
are rendered using our path tracer. 32

5.2 Table listing the performance metrics of the acceleration structures
on the test scenes. The metrics shown are, firstly, the running time in
milliseconds for sampling one path per pixel. Secondly, the measured
ray tracing performance in terms of million rays per second. Finally,
the ray tracing performance when only tracing primary rays. The
best results for each scene are marked in bold. Note the discrepancy
in ray tracing performance between tracing normal (scattered) paths,
versus only tracing primary rays. 33

5.3 Table listing the ray tracing performance of a stackless BVH when
tracing as usual compared to the tracing performance when ray co-
herence is forced. 34

5.4 Lists the mean ADS build time in milliseconds for the different scenes.
The fastest build times for each scene are shown in bold. Each listed
time is the average of 25 runs. Note that the variance is high for the
Cornell Box and the Crytek Sponza due to the very short and very
long build times. Also, keep in mind that the acceleration structures
are built in JavaScript without any parallelism. 35

xiii

List of Tables

xiv

1
Introduction

Real-time ray tracing has been a milestone in the computer graphics field for a
long time. However, ray tracing has struggled with reaching real-time applications
due to its computational cost. With the rapid increase in computing capacity of
Graphics Processing Units (GPU), real-time ray tracing has become increasingly
viable. Additionally, the introduction of WebGL 2 (Web Graphics Library 2)1 in
2017 made it possible to run more general-purpose GPU programs on the web.
Our thesis explores the use of real-time ray tracing for rendering 3D graphics using
WebGL.

The following chapter introduces the topic of the thesis as well as the re-
search question. Firstly, it gives a background to the project and the research field.
Secondly, it explains the research question followed by an account of the project
limitations.

1.1 Background
Consider an interior-design company desiring collections of hundreds or even thou-
sands of images of furniture on their website. They want each image to show the
furniture in a representative environment and from a selection of angles. Using pho-
tography for this task could take months to do. Also, it would be challenging to
ensure coherence of lighting and angles between different photo shoots. Instead, the
company wants to generate these pictures through computer rendering 3D models
of their designs.

RapidImages AB attempts to fulfil the need for large amounts of computer-
rendered product images. Therefore, the company has created a development tool
in a web environment for the design of product items in 3D scenes. The purpose of
the tool is for designers to be able to fine-tune scenes, adjust materials and other
properties of the product items. The scenes can then be processed into industrial-
quality images to be used on, for example, an interior-design company’s website.

The development tool uses WebGL to visualise these small scenes in real time.
WebGL is commonly used to render graphics on the web. WebGL is also the only tool
which can access the Graphics Processing Unit (GPU) from within a web browser.

The issue with the current development tool is that the rendering is not re-
alistic. Presently, the renderer does not adequately visualise several materials and
effects. Especially problematic are global illumination effects such as reflections,
refraction, colour bleeding, and soft shadows.

1https://www.khronos.org/registry/webgl/specs/latest/2.0/

1

1. Introduction

The physically incorrect image output of the current renderer is problematic
during the design process. For example, a designer aims to find the perfect material
for every part of a chosen product. They both design and apply materials for the
product. However, if the lighting in the rasterised image is misleading the designer
may end up using trial and error to achieve their desired result.

The current solution to help the designer is the functionality to request a
realistic image preview from the development tool. The tool sends the request to
a render farm: a high-performance system whose purpose is to generate these
images. The render farm produces images using an offline renderer, such as V-Ray2.
However, generating these higher quality previews usually takes several minutes; a
long delay in feedback for the designer. Therein lies the problem to solve in this
thesis.

The company and its customers desire a solution that reduces the visual gap
between the workspace for the designer and the requested more realistic previews.
More specifically, they wish to find a way to achieve a more physically accurate
visualisation for the designer workspace in real time. The suggested approach is to
replace the current renderer with a real-time path tracing solution, also built in a
WebGL-context. Ideally, the renderer removes the need for previews. If not, the
renderer could be used to provide faster previews, rendered locally on the client side.

1.2 Problem Statement
The problem considered in this report is how to utilise path tracing in an interactive
WebGL renderer. For this report, we define real time as frame rates above 10hz,
i.e. a per-frame execution time of less than 100 milliseconds. This problem contains
several subproblems. Firstly, what acceleration data structures are best suited for
small scenes? Ray tracing using the data structures shall be fast enough to allow
for real-time rendering. The construction of the data structures shall also be fast
enough for updating the scenes in real time. Secondly, how can we mitigate the noise
inherent in path-traced images? The de-noising algorithm must also be fast enough
for real-time use. Additionally, the de-noising shall introduce as few artefacts to the
image as possible.

1.3 Limitations
The renderer is not intended for high-end image productions, but rather to provide
real-time previews of production-quality images. Since the primary use case of the
renderer is to visualise small sets of products we only consider small scenes. For
example, a few pieces of furniture on a floor. Furthermore, we do not consider any
form of animated geometry. However, we do consider the functionality to move and
rotate geometry, e.g. rearranging the furniture on the floor.

Additionally, we do not consider non-ray-tracing algorithms for rendering global
illumination. For example, techniques used in modern game engines such as light
probes, light maps, and light propagation volumes.

2https://www.chaosgroup.com/

2

2
Previous Work

In this chapter, we introduce previous work in the field of ray tracing. We give a
background to data structures and algorithms used to speed up the performance and
improve the visual quality of ray tracing programs. First, we give an account of the
origins of ray tracing and path tracing. We then explain various data structures used
to accelerate ray tracing, namely acceleration data structures. Finally, we introduce
previous work on algorithms used to remove noise from path-traced images.

2.1 Ray tracing
The first example of ray tracing in computer graphics came from Whitted & Turner
[1] in 1979 and can be described as an attempt to create physically accurate im-
ages. They traced rays originating from a virtual camera onto a scene, and from
it to light sources, to calculate the lighting. Whitted’s model for ray tracing was,
however, limited in several aspects. It produced perfect sharpness in both shadows,
reflected and refracted light. In reality, the blurriness of reflections, refraction and
shadows are determined by a number of parameters such as light source shape and
the material properties of the scene geometry. In 1984, Cook et al. [2] achieved
realistic reflections, refraction and shadows by spreading the direction of the traced
rays according to suitable distributions instead of shooting them in the same direc-
tion. For example, shadow rays would be cast across the surface of light sources to
achieve soft shadows with penumbra (half-shade).

An extended version of ray tracing called path tracing was introduced in 1986
by James Kajiya as a method of solving the simultaneously introduced rendering
equation [3]. A path is a series of connected rays. Thus, a path is traced by
tracing a ray from the camera and letting it reflect off every surface it hits. The
rendering equation models how light hitting a surface is scattered. Path tracing
solves the rendering equation, which rarely has an analytic solution, using Monte
Carlo integration. Monte Carlo integration is a method for solving complicated
integrals by stochastic sampling.

2.1.1 GPU Ray Tracing
Though computationally costly, path tracing is a very parallelisable task which
makes it well suited for the GPU (Graphics Processing Unit). GPU path tracing has,
therefore, been a widely researched topic since the advent of programmable GPU
pipelines around the turn of the millennium. Purcell et al. [4] conducted an early

3

2. Previous Work

study of how path tracing could be implemented on a programmable GPU. Also,
Aila and Laine studied the efficiency of some GPU acceleration structure traversal-
and ray-triangle intersection methods [5, 6]. Laine et al. [7] later expanded upon
their work and proposed a path tracer structure and scheduling approach suitable
for modern GPUs.

Because path tracing is generally too slow for real-time applications, it has
mostly been used for offline rendering. However, with the increasing computation
capabilities of GPUs, real-time path tracing has become increasingly viable. One no-
table result is the Brigade engine [8]. A more recent advancement is the introduction
of real-time ray tracing techniques in game engines1.

2.2 Acceleration Data Structures
Reaching interactive frame rates requires tracing a large number of rays against
the scene geometry every frame. A typical scene can contain many thousands of
triangles. It is infeasible to test each ray for intersection against all triangles in
the scene exhaustively. Instead, Acceleration Data Structures (ADS) are used to
reduce the number of ray-triangle intersection tests needed. The acceleration data
structures generally work by spatially sorting the triangles in some way, allowing
the tracing algorithm to discard triangles outside the vicinity of a ray. Acceleration
structures should allow for fast traversal and discard as many triangles as possible.
In ray tracing, common acceleration structures include bounding volume hierarchies,
space-partitioning trees, and grids.

One commonly used acceleration structure is the kd-tree [9]. It was long con-
sidered the most efficient ADS for fast ray tracing [10, 11]. However, more recently
the popularity has shifted in favour of Bounding Volume Hierarchies (BVH) [12, 13].
Some of the benefits of using a BVH compared to a kd-tree is that the BVH gener-
ally has a lower memory footprint and is simpler to construct [12, 13]. Vinkler et
al. [14] showed that BVHs consistently outperform kd-trees when tracing simple to
moderately complex scenes on modern GPUs.

Wald et al. [11] provide a BVH construction algorithm that uses the Surface
Area Heuristic (SAH) introduced by Macdonald and Booth [15]. However, Karras
et al. introduced an alternative construction algorithm more suitable for GPUs
[13]. Additionally, Stich et al. [12] introduced the Split Bounding Volume Hierarchy
(SBVH), which improves the tracing performance by reducing the spatial overlap
between sibling nodes in the hierarchy. For large scenes containing many objects, it
is common to use two-level BVHs, where a large number of BVHs, usually one per
object, are sorted into a top-level BVH. This approach is used in the ray-tracing
frameworks Embree [16] and Optix [17]. An algorithm for optimising two-level BVHs
was introduced by Benthin et al. [18].

A conventional and efficient approach for traversing a BVH is to use a stack,
as when doing a depth-first traversal of a tree. However, this approach introduces

1Unreal Engine: https://www.unrealengine.com/en-US/blog/epic-games-demonstrates-
real-time-ray-tracing-in-unreal-engine-4-with-ilmxlab-and-nvidia
EA Seed: https://www.ea.com/seed/news/seed-project-picapica

4

https://www.unrealengine.com/en-US/blog/epic-games-demonstrates-real-time-ray-tracing-in-unreal-engine-4-with-ilmxlab-and-nvidia
https://www.unrealengine.com/en-US/blog/epic-games-demonstrates-real-time-ray-tracing-in-unreal-engine-4-with-ilmxlab-and-nvidia
https://www.ea.com/seed/news/seed-project-picapica

2. Previous Work

an undesirable memory footprint. Several methods for stackless BVH traversal were
developed to remove the memory footprint of the stack. One such approach is to use
skip pointers as described by Smits [19]. Torres et al. developed a similar method
for GPU ray tracing [20]. Binder and Keller [21] introduced a traversal method
using a hash table to backtrack during hierarchy traversal efficiently.

Wide Bounding Volume hierarchies is a type of BVH in which the branching
factor is increased to provide better traversal performance on SIMD architectures
[22, 10]. A recent extension to this idea is the Compressed Wide BVH introduced
by Ylitie et al. [23]. They improved both the traversal performance and memory
footprint by compressing both the BVH and the traversal stack.

Another commonly used acceleration structure is the three-dimensional grid.
It was introduced by Fujimoto et al.[24] in 1986 by another name: Spatially Enumer-
ated Auxiliary Data Structure (SEADS). A common drawback of grids is that they
partition the scene into uniform cells regardless of how the geometry is distributed.
This issue is called the teapot in a stadium problem. Consider a scene containing a
stadium with a teapot placed in the middle of the field. If the scene is sorted into
a grid, the teapot is likely contained within a single grid cell, while the surrounding
cells are empty. The uneven distribution of geometry makes the cell containing the
teapot expensive to traverse since a ray would have to be exhaustively tested against
all triangles in the teapot.

Jevans and Wyvill [25] introduced an adaptive grid which performed better on
scenes with uneven geometry distributions. It works by recursively subdividing the
scene into a grid such that each cell can contain another grid. A similar approach
was used by Kalojanov et al. [26] who introduced a two-level grid optimised for
modern GPUs. The two-level grid was further extended by Pérard-Gayot et al [27]
into what they call an irregular grid. The irregular grid is constructed from a two-
level grid. From the two-level grid, adjacent cells are merged using the surface area
heuristic. The merging process results in a grid where the cells are irregular in size,
i.e. smaller in high-density regions and vice versa.

2.3 Noise reduction
Path tracing is most widely used for offline applications. Therefore, most noise re-
duction techniques are designed specifically for offline use. Offline de-noising usually
uses more than one sample per pixel with execution times well above the latency
limits of interactive graphics. Zwicker et al. [28] divide de-noising techniques into
two categories based on the method by which they adapt the sampling rates and
reconstruction filters. Firstly, techniques which analyse the light transport equa-
tions and, secondly, techniques using statistics based on local image samples. An
example from the first category is Durand et al.[29]. They locally approximate 2D
image bandwidths to guide a cross-bilateral filter. The second category includes, for
example, image-space filtering such as in Rouselle et al.’s paper [30]. There is also a
real-time approach using a multi-scale edge-avoiding wavelet filter by Dammertz et
al. which can reconstruct a 720p image in 10ms. [31].

Other ways to reduce noise involve machine learning. Chaitanya et al. [32] used
a recurrent auto-encoder to filter path-traced images with one sample per pixel (spp).

5

2. Previous Work

They achieve a reconstructed 720p image in 55ms. Moreover, Bako et al. [33] trained
convolutional neural networks to filter the noise in Pixar’s animated movies. Another
machine learning technique, by Dahm and Keller [34], uses reinforcement learning to
learn in what direction samples are more likely to have higher contributions. As the
reinforcement-learned model improves, it is more likely to choose high-importance
samples resulting in faster convergence.

The past year, two papers have arisen that focus on improving real-time path
tracing; Spatiotemporal variance-guided filtering by Schied et al.[35] and An efficient
denoising algorithm for global illumination by Mara et al. [36]. Both methods can
produce smooth results from input images with just one sample per pixel. Schied et
al. produce stable 1080p images in 10ms, while Mara et al. achieve similar results
in 10ms with 720p images. As a base, Schied et al. use Dammertz et al.’s [31]
À-Trous wavelet filter, while Mara et al. [36] use a cross-bilateral filter by Eisemann
and Durand [37]. Schied et al. and Mara et al. achieve a higher similarity to the
ground truth with their filters by splitting the lighting components when filtering.
For example, filtering a reflection as harshly as a diffuse light easily over-blurs the
reflection. Mara et al. filter the diffuse and glossy light separately to achieve better
reflections. Schied et al. separate the indirect and direct light and filter direct
light less harshly, preserving sharp shadows. Schied et al. and Mara et al. also
use similar techniques to stabilise the image during motion. Both re-use previous
frames that are re-projected to the current frame using movement vectors. Apart
from stabilising the image, re-using previous frames yields a couple of extra samples
per pixel as well as a potential boost in performance. Additionally, both algorithms
use temporal filtering based on the temporal anti-aliasing by Karis et al. [38].

6

3
Theory

This chapter delves into the details required to understand this report. First, we
explain the rendering equation and how path tracing is used to solve it. Next,
we introduce the acceleration data structures and noise reduction algorithms used
in this project. Finally, we explain the architecture of a modern GPU and the
programming considerations it induces.

3.1 Path Tracing
Path tracing, introduced by Kajiya [3], is a rendering method where ray tracing is
used to solve the rendering equation. The rendering equation, shown in equation
3.1 and visualised in Figure 3.1, is derived from that light interacting with a sur-
face is energy conserving. More specifically, it states that the radiance, i.e. light
intensity, from a point p on a surface towards a direction wo, Lo(p, wo), is equal
to the emitted radiance Le(p, wo) plus the reflected radiance. The reflected radi-
ance is an integral over the hemisphere above the point p, where the integrand,
f(p, wo, wi)Li(p, wi)(wi · n), consists of three terms. The first term, f(p, wo, wi), is
the Bidirectional Reflectance Distribution Function (BRDF), which describes what
proportion of the irradiance coming from wi is reflected towards wo. The second
term, Li(p, wi), is the irradiance from the direction wi. The final term is the clamped
cosine term (wi · n), which weighs the reflected radiance by the cosine of the angle
between the surface normal and the incoming light direction.

Lo(p, wo) = Le(p, wo) +
∫

Ω
f(p, wo, wi)Li(p, wi)(wi · n)dwi (3.1)

Figure 3.1: Figure showing the terms in the rendering equation. The light reflected
toward wo at a point p is found by integration over all directions wi in the hemisphere
Ω.

7

3. Theory

An image can be rendered by solving the rendering equation for all visible
points in a scene, i.e. finding the radiance of all visible points towards the camera.
However, the integral in the rendering equation rarely has a closed form. Therefore,
the integral cannot be solved analytically except in some trivial cases. What Kayiya
proposed was to solve the integral by Monte Carlo integration:

Lo(p, wo) ≈ Le(p, wo) + 1
N

N∑
i=1

f(p, wo, wi)Li(p, wi)(wi · n)
p(wi)

(3.2)

where p(wi) is the probability density function (PDF), i.e. the probability density
for sampling the direction wi. To sample the incoming light Li(p, wi), a ray with
origin p and direction wi is traced against the scene. If the ray hits a surface,
the rendering equation is sampled at that position to estimate the amount of light
reflected towards the first position. Path tracing is thus a recursive process in the
sense that the reflected radiance at a point depends on the irradiance at the point.
Which in turn is dependent on the reflected radiance at other surfaces in the scene.

In practice, the colour of each pixel is integrated by tracing paths towards the
scene. A path is sampled by tracing a ray from a virtual camera against the scene,
letting it reflect (or refract) off every surface it hits, and sampling the rendering
equation once at every surface interaction. This process is visualised in Figure 3.2.
A path is terminated when it hits a light source or does not hit any geometry.
However, the likelihood of a ray hitting a light source can be quite small. For
example, consider a light bulb inside a room; The light bulb only covers a small
fraction of the space. Luckily, the rendering equation can be split into two separate
integrals: one for direct lighting and one for indirect lighting. Direct lighting at a
point is the light coming directly from a light source, while indirect lighting is the
light reflected from other surfaces. The direct lighting at a point is also integrated
using Monte Carlo integration. Sampling the direct lighting at a surface involves
testing whether the light emitted from a light source reaches the surface. It is done
by tracing a shadow ray from the surface toward a randomly sampled point on the
surface of the light source. If the shadow ray is unobstructed, the light contributes to
the direct lighting at the surface. However, if the shadow ray intersects any geometry
between the surface and the light, the surface lies in shadow. The contribution of
each sample is weighted by the area of the projection of the light source on the
hemisphere above the surface, i.e. how large the light source appears from the
surface’s point of view. Weighing the samples this way ensures that larger and
closer light sources yield correspondingly higher contributions to the direct lighting.

8

3. Theory

Figure 3.2: 2D visualisation of how a path is traced against a scene. The path
starts at the camera and is reflected at points p1 and p2. At each surface interaction,
a shadow ray is traced towards the light source. The first point lies in shadow, since
its shadow ray intersects the sphere before reaching the light source.

Only terminating paths when they hit a light source or leave the scene is quite
impractical since the paths can be unbounded in length. One solution is to define
an upper bound for the path length. When a path reaches the upper bound, it is
terminated, discarding the contributions of subsequent bounces. However, defining
such a bound makes the result biased, i.e. darker than the correct result. The bias
can be removed by terminating the path using Russian Roulette [39, p. 788]. Russian
roulette works by randomly terminating the path with a probability depending on
the contribution of the path, such that long paths with low contribution are less
likely to be continued. This method avoids introducing bias when terminating a
path by increasing the contribution of unterminated paths by a factor of the inverse
termination probability.

Note that Russian Roulette will not completely remove the issue of unbounded
paths, since the termination is random, though it mitigates the issue. Also worth
noting is that the contribution of samples along a path decreases with the length of
the path, due to the conservation of energy. The bias introduced by terminating at
a fixed depth thus decreases as the depth increases. With a large enough maximum
depth, the bias is imperceptible. In many cases, five to ten bounces of light are quite
enough.

9

3. Theory

3.2 Acceleration Data Structures
As mentioned in Chapter 2, acceleration data structures (ADS) are used to speed up
ray tracing applications by reducing the number of ray-primitive intersection tests.
This section covers the ADS variants explored in this report, namely bounding
volume hierarchies and grids.

3.2.1 Bounding Volume Hierarchies
Bounding Volume Hierarchies (BVH) are, as explained in Section 2.2, one of the
most widely used and efficient acceleration structures in ray tracing applications.
As described by Rubin and Whitted [40], a BVH subdivides a scene into a hierarchy
of bounding volumes such that each node encloses its descendants. The type of
volume used is arbitrary, though in practice it is common to use simple geometric
shapes that are fast to test for intersection. For example, axis-aligned or oriented
bounding boxes (AABB, OBB), i.e. rectangular blocks, are commonly used. A
visual explanation of how a BVH can subdivide a scene is found in Figure 3.3.

Figure 3.3: 2D example of a BVH. One the left is a visualisation of how a scene can
be subdivided into a hierarchy of axis-aligned bounding boxes. The tree structure
of the same hierarchy is visualised on the right.

Constructing an optimal BVH is thought to be an NP-hard problem [41]. It
is therefore common to use greedy algorithms with heuristics to find good enough
BVHs. One such algorithm was introduced by Wald et al. [11], where a BVH of
AABBs is greedily constructed from the top down using the Surface Area Heuristic
(SAH). The SAH, introduced by Macdonald and Booth [15], models the cost of
traversing a BVH node. The SAH, shown in Equation 3.3, defines the traversal cost
of a node split into two subsets A and B as the cost of traversing the parent a node
plus cost of traversing A and B. The cost of traversing a subset X is defined as the
probability of hitting the subset P (X) times the number of primitives in the subset
|X|, times the cost of the intersection test with a primitive Ci.

C(A,B) = CT + P (A)|A|Ci + P (B)|B|Ci (3.3)

10

3. Theory

The probabilities of hitting the two subsets, shown in Equation 3.4, are found based
on the surface area of the two subsets, i.e. the summed area of the triangles in the
set.

P (A) = Area(A)
Area(A⋃

B) P (B) = Area(B)
Area(A⋃

B) (3.4)

Wald’s construction algorithm [11] works by splitting the scene into two subsets
using the SAH, and then recursively subdividing the children. A node is split by
partitioning the primitives in the node such that the traversal cost according to
the SAH is minimised. The optimal partition (according to the SAH) is found by
evaluating different partitions. However, it is quite unnecessary to test all possible
partitions, partly because it is costly, and partly because it is beneficial that the
two subsets overlap as little as possible. Instead, the possible partitions are found
by sorting the triangles along each major axis (i.e. x, y, z). For each such axis,
the triangles are sorted based on their position along the axis. A set of candidate
partitions are then generated by splitting the triangles at each triangle along the
axis. That is, for each triangle, the triangle set is split into two sets; one containing
all triangles before the current triangle and one containing the remaining triangles.
The partition yielding the lowest cost is then used to split the node. The recursive
process stops when it is not beneficial to split a node, which generally occurs when
the number of triangles in the node is small.

3.2.2 Bounding Volume Hierarchy Traversal
Testing if a ray intersects the geometry in a BVH is done by traversing the BVH.
The goal of the traversal is to visit the leaf nodes intersected by the ray as cheaply
as possible. A common approach is to do a depth-first traversal using a stack.
Traversing a BVH using a stack starts at the root node and works as follows: a node
is visited if the ray intersects the bounds of the node. Otherwise, the node and its
descendants are skipped. Visiting an internal node and a leaf node is different. If
the node is internal, the traversal continues to one of the children while the index
of the other child is pushed on the stack. If the node is a leaf, the ray is tested
against all the primitives, i.e. triangles, within the leaf. After traversing a leaf, the
traversal continues to the node on the top of the stack. The traversal ends whenever
the stack is empty.

3.2.3 Grids
A grid is constructed by creating a uniformly sized 3D grid spanning the entire
scene and inserting each primitive into the grid cells it overlaps. To know where any
cell starts a resolution needs to be defined for the grid. The resolution decides how
large each grid cell is. With small grid cells, more cells are discarded when tracing,
but the amount of duplicated triangles in every cell increases. That is, a ray may
intersect a triangle in one cell while the point of intersection on it is in a cell farther
away. This exemplifies how intersection tests are wasted which can quickly lead to
a bottleneck for high grid resolutions. If the resolution is too small, the outcome is
akin to using no acceleration structure at all. Namely, a large number of primitives

11

3. Theory

are inside just one cell and are traced exhaustively. A common heuristic for deciding
the grid resolution was introduced by Cleary et al.[42] in 1983:

Ni = di
3

√
λNi

V
(3.5)

The resolution N from Equation 3.5 is then calculated for every dimension i.
di is the grid bounds for dimension i, and V is the volume of the scene bounds. λ
is a user-adjusted parameter whose optimum can vary scene by scene. However, it
is usually pre-calculated for a satisfactory output and allowed to remain constant.

3.2.4 Grid traversal

When it comes to traversing a regular three-dimensional grid, a conventional method
is the 3D-Digital Differential Analyser (3D-DDA) algorithm proposed by Fujimoto
et al. [24]. The basic idea rests on that there is a constant distance between cell
walls for every dimension. So, by knowing which ray dimension’s direction is closest
to the next cell intersection, the next cell along the ray is easily found. Thus every
cell along the ray visited, regardless of whether the cells contain geometry or not.
However, visiting an empty cell is wasteful since there are no possible intersections
within the cell.

Early exiting of the grid is a feature which allows for more efficient grid traver-
sal. It means that the ray does not necessarily traverse all grid cells in the ray
direction. Instead, if the ray’s point of intersection lies within the bounds of the
current cell, the traversal can be terminated.

Another approach for reducing the number of traversal steps is to skip empty
cells [43]. By storing the distance to the closest non-empty cell inside the empty
ones the ray can traverse empty regions in fewer steps. Thus, when it finds an empty
cell, it instead traverses the distance stored in the cell along the ray. For example,
if the distance from the current cell to the closest surface is five grid cells, the ray
can skip the closest four cells.

3.2.5 Irregular Grids

A significant limitation of grids is, as mentioned in Section 3.2.3, that the acceler-
ation structure does not adapt to the geometry distribution of the scene. One way
to alleviate this problem is to use an adaptive grid, which adapts to the geometry
distribution by sorting the contents of each grid cell into its own grid [25]. A re-
cent extension to adaptive grids is the Irregular Grid proposed by Pérard-Gayot et
al. [27]. The main idea behind the irregular grid is that the grid can adapt better
to the scene geometry if irregularly sized grid cells are allowed. It works by merging
the cells of an adaptive grid where suitable, such that there are no redundant grid
cells in low-density regions of the scene. A visualisation of how the irregular grid
differs from a uniform and two-level grid is shown in Figure 3.4.

12

3. Theory

(a) Uniform Grid (b) Two-level Grid (c) Irregular Grid

Figure 3.4: 2D visualisations showing the difference between a uniform, two-level,
and irregular grid. Note how the cells in the irregular grid align to an underlying
uniform grid, shown as dashed lines.

In a uniform grid, the cell at a certain position can be found by calculating the
cell index from the position. It works by dividing the position relative to the grid
origin by the cell size and flooring the result to the closest integer. In an irregular
grid, finding a cell at a position is not as straightforward due to the irregularity
of the cells. However, although the cells are irregular, their dimensions are always
multiples of the smallest cells in the grid they were merged from. Therefore, all
irregular cell boundaries lie on boundaries of an underlying virtual grid (see Figure
3.4c). By creating a uniform grid with the resolution of the underlying virtual grid
which stores the index of the overlapping irregular cell, the irregular cells can be
indexed using a position.

In addition to merging the cells, one of the key features of the irregular grid is
that the cells can be expanded such that they encompass neighbouring cells, allowing
the neighbours to be skipped during traversal. The cell expansion builds on the
observation that traversing a cell is redundant if all triangles within the cell already
have been tested. For example, when traversing two neighbouring cells containing
the same set of triangles, only one cell has to be visited. Visiting both cells would
result in testing the ray against each triangle twice. Therefore, the bounds of a cell
can be expanded to encompass neighbouring cells which only contain a subset of the
cell triangles.

The construction of an irregular grid can be summarised as the following three-
step process:

Irregular Grid construction overview:
1. Construct a two-level grid.
2. Merge cells according to the surface area heuristic.
3. When possible, expand cell bounds such that neighbours with a subset of the

cell triangles are enclosed.

In the construction step, a top-level grid is constructed using the grid construction
algorithm described in Section 3.2.3. After constructing the top level, each cell is
itself sorted into an acceleration structure. Pérard-Gayot et al. [27] uses an octree

13

3. Theory

instead of a grid for the second level. The octree enforces the resolution to be equal
in all directions and a power of two. However, the same result can be achieved with
a grid as long as the resolution is restricted to be a power of two. The resolutions
of the two levels are determined using the grid heuristic, tuned by two parameters
λ1 and λ2 [27].

In the merge step, the cells are merged along the Cartesian axes in a round
robin fashion. That is, for each pass, the cells are first merged along the x-axis, then
the y-axis, and finally the z-axis. When merging along each axis, all cells are checked
to see if it is possible and beneficial to merge with any of the neighbours along the
axis. A merge is possible when the two cells form a box, i.e. the cell extents along
the two other axes are equal. Whether or not a merge is beneficial is determined
using the Surface Area Heuristic, described in Section 3.2.1. Cells that should be
merged form merge chains, i.e. lists of consecutive cells that should be merged. The
cells in each chain are then pairwise merged until only one cell remain, or no merges
are beneficial. Merging a chain of length n may therefore require log2(n) iterations.
When merging two cells a and b, the bounds of a are expanded to encompass the
bounds of b, and the triangles in b are added to a. When the merging is complete,
b is removed from the grid and replaced with a.

The final construction step is the cell expansion. As in the merge step, the
cells are visited in multiple passes. In each pass, the cells are expanded along each
axis, i.e. first all cells are expanded along the x-axis, then the y-axis, and finally the
z-axis. A cell can be expanded in a direction along an axis if all neighbours in that
direction contain a subset of the triangles in the cell. If that is the case, the cell is
expanded as much as possible in that direction. For example, if there are multiple
neighbours in a direction, the cell can only be expanded to the closest far side of
those neighbours. The expansion process may continue until no cell expansions are
possible. However, Pérard-Gayot et al. [27] found that there was little to be gained
by running more than three expansion passes. That is, most of the performance
gains come from cells expanded in the first few passes.

The irregular grid is not traversed with the standard 3D-DDA algorithm due
to the irregularity of the grid cells. Instead, the length of each step along the ray is
determined by the extents of the grid cell. The traversal thus works as follows:

Irregular Grid Traversal:
1. Start by setting the current ray position to the first point within the grid along

the ray. If no such point exists, exit.
2. Find the current cell by looking in the virtual grid using the current position

on the ray. If the current position is outside the grid, exit the traversal.
3. Trace the ray against the primitives in the cell. If an intersection is found

within the cell bounds, return the closest such intersection.
4. Update the current position to be the point where the ray exits the current

cell. Then go to step 2.

14

3. Theory

3.3 Noise reduction
Solving the rendering equation using path tracing does eventually result in the
image converging to the expected value of the equation. However, convergence often
requires several thousand paths per pixel. It can take several minutes if not hours of
rendering time depending on the efficiency of the path tracer, the hardware it runs
on, and the complexity of the scene. Because of this, path-traced images inherently
suffer from pixel variance, i.e. noise, at lower sample counts. Consider sampling the
radiance from two adjacent points on a surface with one randomly scattered path
each. It is likely that the radiance at the two points is different since the two paths
are likely to scatter in different directions. However, if many paths per surface point
are sampled the means of those samples will be more alike, resulting in less noise.

The image noise is especially troublesome in real-time applications due to
latency limits. For example, suppose that we are targeting a frame rate of 25 Hz
and can trace 100 million rays per second (MRay/s). This amount of rays per second
is roughly the order of magnitude which can be expected on a modern GPU [27, 6].
The performance constraints yield 4 million rays per frame. We are thus limited to
four rays per frame and pixel, barely enough to sample a single path when rendering
a one-megapixel image.

The noise can be reduced by increasing the number of samples per pixel (spp).
However, assuming that the frame rate is fixed the ray tracing performance would
have to increase by several orders of magnitude to render noise-free images. Another
approach is to apply noise-reduction filters to the image. Filtering the image is more
time-efficient than tracing additional paths, but introduces bias and artefacts to the
image. However, noise-reduction techniques are required both to reach interactive
frame rates and to produce noise-free images.

3.3.1 Real-time De-noising
Real-time noise filtering refers to approaches that optimise the filtering speed over
quality to reach interactive frame rates. Currently, that means the sample budget
is only one sample per pixel. However, Mara et al. [36] and Schied et al. [35] have
made advances to bring the quality of path tracing to real-time by combining 1spp
filtering methods, ie. methods that filter a 1spp path-traced image, with some fine-
tuning techniques. In particular, Schied et al. uses Dammertz et al.’s [31] À-Trous
edge-stopping wavelet filter. A wavelet is a scaling function on some signal, here on
the pixel colours in a noisy image, which attenuates frequencies outside its range
[44, p.102]. Dammertz’s filter kernel is based on a B3 spline interpolation as such:

15

3. Theory

Figure 3.5: A 5x5 B3 spline kernel showing the contributions around a central
point (with contribution 9

64). It is the 2D equivalent of this 1D kernel: (1
16 ,

1
4 ,

3
8 ,

1
4 ,

1
16)

Dammertz et al. combine discrete convolutions of wavelet transforms of the
image, meaning versions of the image filtered using increasing bandwidths. Á-Trous
refers to the filter containing ’holes’, meaning that for increasing filter sizes it con-
tinues to filter the same amount of pixels. In practice it is a way get around having
to use a large amount of sample points to increase the filter size. Instead, the filter
size grows in each convolution with the same amount of sample points. For exam-
ple, a 3x3 pixel kernel, i.e. a filter that operates on 9 pixels, would first filter out a
3x3 pixel area. However, as the bandwidth grows in each wavelet convolution, for
example into a 5x5 pixel area, only 9 of those pixels would contribute to the filter.
See an example of this in Figure 3.6.

Figure 3.6: À-Trous filtering: increasing the pixel sampling distance between filter
iterations. The three images show a 9x9 pixel grid. The black squares indicate filter
samples. In the leftmost image, the sampling distance is one, yielding a 3x3 pixel
sampling block. In the middle, the sampling distance is two, and in the rightmost
it is four.

Edge-stopping refers to the exclusion of colour samples that deviate too far
from the middle pixel value in a sampling block. In practice, one lowers the weight,
i.e. the contribution, of such samples. To achieve edge detection, Dammertz uses
a so-called geometry buffer, i.e. a buffer filled with information about the scene
geometry. For each pixel, it stores geometry positions, normals, and albedo. The
albedo is the colour information of the scene geometry visible from a pixel. For
example, Dammertz et al. find edges using the world-space position of sampled

16

3. Theory

pixels [31]. World-space refers to the relative position in the scene rather than,
for example, the position on the screen. A pixel sample in the filter has a small
contribution if its geometric position is far away from the central pixel. Similarly,
it contributes little if its albedo is not the same as, or its normal direction is not
similar to, the central pixel. Diminishing the contribution, or weight, of a sample,
works as edge-detection meaning it helps retaining image details.

Finally, it is possible to filter light components with different harshness by
splitting the light components and filtering them separately. Mara et al. and Schied
et al. both retain certain image details by splitting their lighting components. For
example, filtering glossy reflections less harshly than diffuse reflections results in
better retention of glossy reflections, which otherwise might be over-blurred.

3.4 GPU Architecture & Programming
Modern GPUs are single instruction multiple threads (SIMT) machines [7]. SIMT
means that a group of threads, often called a warp or a wavefront, is executed in
parallel on a GPU core using a single instruction stream. Each core on a GPU
is thus a single instruction multiple data (SIMD) processor. What this means in
practice is that a single GPU core has a large set of arithmetic logic units (ALU)
that execute the same instructions on different pieces of data.

The SIMT architecture is very suitable for highly parallel code but is worse
at handling control flow divergence. When the threads in a warp execute different
branches, for example in an if-then-else statement, the different branches cannot be
executed in parallel since the threads would need to execute different instructions.
This problem is solved by masking out threads that should not execute the current
branch. For example, if the threads within a warp take two different branches, then
one of the branches is executed first with some threads masked out. When the first
branch is finished, the second branch is executed with the other threads masked out.
Control flow divergence is therefore detrimental to performance since it decreases
the utilisation of the GPU [7, 5].

Another important factor for GPU performance is that the memory is high-
throughput high-latency [7]. This trade-off between throughput and latency results
in threads being stalled for relatively long periods of time when fetching memory.
To hide this latency, modern GPUs process multiple warps concurrently. While
one warp is stalled waiting for memory, another warp can be executed. The limiting
factor for this dynamic scheduling is the memory and register usage. When the state
of each warp increases in size, e.g. the number of used registers, fewer warps can fit
in memory which effectively limits the number of concurrently active warps [7].

The GPU architecture imposes some performance considerations specific to the
context of ray tracing. One crucial factor is the coherence of the rays within a warp.
If the rays are incoherent, i.e. have significant variations in origin and direction,
they will have different traversal patterns over the accelerations structures. Different
traversal patterns could lead to problems when, for example, some rays finish the
traversal early, i.e. using early exits, or when two rays within a warp visit ADS
leaves with a different number of primitives. Incoherent rays also lead to incoherent
memory accesses, for example when fetching ADS nodes or material properties.

17

3. Theory

Another issue occurs when the paths traced by a warp of threads terminate at
different depths, which is detrimental to the performance since the threads that
traced the terminated paths will be idle until all the paths within the warp are
terminated.

There are multiple approaches for adapting ray tracing applications to fit the
GPU architecture better. Aila and Laine [5] reduce the issue of varying execution
times between threads by using persistent threads. It works by only spawning
as many threads as the hardware can run concurrently, and scheduling the work
distribution manually. The scheduling works by letting each thread fetch jobs from
a global work pool, using atomic operations to avoid race conditions. Another
approach is wavefront path tracing, introduced by Laine et al.[7]. The idea is to
keep a large pool of paths (≈ 220) in the device memory of the GPU. All paths
are then traced one step at a time. The path tracer first traces the first ray of all
paths, then evaluate the ray scattering and illumination at the intersection point
for all paths. All paths are thus kept in sync, rather than tracing the paths to
completion in batches. Structuring the program this way allows the path tracer
to be divided into a small set of specialised programs, i.e. one program for the
path tracing logic, one program for tracing rays, and one program for evaluating
materials. This division ensures that all concurrently running threads will run the
same code and have somewhat more coherent memory accesses. For example, the
program responsible for tracing rays will only access the ADS and triangle data,
while the program evaluating materials will only access material data. Furthermore,
the smaller size of the specialised programs is helpful since GPUs generally have
smaller instruction caches than CPUs [7]. Lastly, tracing the pool of paths one step
at a time allows the system to regenerate terminated paths to keep the pool fully
occupied. That is, when a significant number of paths are terminated, they are
replaced with new paths.

3.4.1 GPU Programming in WebGL
WebGL is quite limited compared to other GPU programming APIs such as CUDA.
WebGL imposes stricter constraints both on how a program can be structured as
well as how the input and output data may be structured and encoded. This section
explains the most important of these constraints.

A WebGL shader program consists of two programmable stages; The vertex
shader and the fragment shader. The shader program runs when some geometry,
for example, a triangle mesh, is drawn. The vertex shader transforms the triangle
vertices to their screen positions. After the geometry is transformed, it is rasterised.
Rasterisation is the process of turning an input shape, such as a triangle, into the set
of pixels covered by the shape, called fragments. Each fragment is processed by the
fragment shader, which calculates the colour of the fragment. All of the fragments
are then merged into the output image of the program.

The shaders are quite limited in terms of reading and writing data. The vertex
shader can process the input geometry, the fragment shader can output pixel colours,
and both stages can read data from uniform variables and textures. Each shader
thread may read and write data to memory local to that thread, but it is not possible

18

3. Theory

to pass data between threads or retain data across multiple executions of the same
shader. The output of a shader may be written to a texture to use the result in
another shader. However, a shader may not read and write to the same texture.

Uniform variables are generic pieces of data, for example floating point num-
bers, vectors, and matrices. Each shader program has a limited number of uniform
variables. This limit varies but is at least 1024.1 Since the number of uniform vari-
ables is limited, the variables are often used for smaller sets of data, such as material
and lighting parameters.

Textures are images in one, two, or three dimensions. In addition to its data,
a texture has a resolution and a format. The resolution defines the number of pixels
and how they are arranged, while the format describes how data is stored in each
pixel. The format specifies both the number of components per pixel and how each
component is stored. A monochrome texture only needs one component per pixel,
while a colour texture usually has three (red, green, and blue). The data is stored as
integer or floating point numbers of various sizes. For example, the format RGB32F
means three 32-bit floating point numbers per pixel, while R8I means a single signed
8-bit integer per pixel.

A shader program can read data from a texture in two different ways. The
first way of reading from a texture is to sample the texture using normalised texture
coordinate, i.e. a position in the range [0, 1]. For example, the coordinate (0, 0)
refers to the lower left corner of a two-dimensional image, while (1, 1) refers to the
upper right corner. Sampling a texture in this way applies filtering, i.e. interpolation
between neighbouring pixels, according to the configuration of the texture. Possi-
ble configurations include for example not filtering at all, or linearly interpolating
between pixels. The second way of reading from a texture is to fetch a single pixel
using its index, i.e. as one would read a value from an array in many programming
languages. Fetching a single pixel does not apply any filtering.

1https://www.khronos.org/opengl/wiki/Uniform_(GLSL)

19

3. Theory

20

4
Method

We implemented an interactive path tracing system which runs in a web browser.
The path tracer was implemented using JavaScript and WebGL. For the path tracer,
we implemented several acceleration structures. Additionally, we implemented mul-
tiple variants of a denoising algorithm. This chapter covers the implementation of
the system, the acceleration structures, and finally the denoising algorithm.

4.1 System Overview

The path tracing system is a JavaScript application that utilises WebGL to run
rendering tasks on the GPU. The process of rendering an image works as follows.
Initially, the application loads a scene by fetching all the required assets, i.e. 3D-
models and textures. When all the scene data is loaded, the acceleration structure
is constructed. When the ADS is constructed, the shader program containing the
rendering logic is compiled. The reason the shader is compiled last is that we can
provide data as compile-time constants, i.e. using the #define macro. When
everything is set up, the path tracer can start to render images. The process of
rendering one frame (iteration) can be summarised as such:

Rendering process overview:
1. Handle user input.
2. Sample one path per pixel using the path tracer.
3. If denoising is enabled, apply the denoising filter on the rendered image.
4. Run a post-processing shader on the result and display it on the screen.

An image is rendered by sampling one path per pixel in the image. The pixel
samples are accumulated over time to increase the image quality. The system is
interactive in the sense that the user can move the camera in real time. Doing so
resets the accumulation. If denoising is enabled, the result of the path tracer is
filtered by the denoising system. The denoising filter uses a geometry buffer (G-
Buffer) containing the position, normal vector, and albedo of the surfaces in view.
Finally, post-processing effects are applied on the image, before displaying it on the
screen. The process of rendering one frame is visualised in Figure 4.1.

21

4. Method

Figure 4.1: Overview of the rendering process. CPU processes are shown in blue,
GPU processes in green, and data in gray.

We do not schedule the path tracing manually, for example by using persistent
threads or wavefront path tracing as described in Section 3.4. The reason for this is
the constraints imposed by WebGL. Shader programs in WebGL do not have write
access to any global memory, removing the possibility for a global pool of tasks
or paths. Each thread can read or write to its local memory, but that memory
is not persistent across multiple executions of the program. The only possibilities
for keeping state between two executions of a fragment shader is to read from and
write to textures. It could be possible to implement some wavefront path tracing
by keeping the path state in a texture. This approach would, however, introduce
significant overhead. The overhead comes partly from restarting the shader and
partly from reading and writing the path state. Laine et al. [7] kept 212 bytes of
state per path. In WebGL, a single pixel can at most contain 16 bytes of data, and
a fragment shader can write to at most one pixel per render target. Therefore, this
approach would require writing to at least 14 separate render targets.

4.2 Path Tracer Implementation
To sample one path per pixel, we want to spawn one GPU thread per pixel and
have each thread sample a path for its pixel. We achieve this by drawing a triangle
covering the entire screen, which spawns a fragment (pixel) shader thread per pixel
on the screen. The process of tracing a single path is summarised below:

Path tracing process summary (in the GPU shader program):
1. Generate a primary ray originating at the camera position. The direction is

determined based on the camera orientation, focal length, and the position of
the pixel. The camera is stored as a structure of uniforms.

2. Trace the ray against the scene using the acceleration structure, as described in
Section 4.3. If the ray does not hit the scene, sample the scene’s environment
(i.e. background). Our environment is either a flat colour or a spherical
environment map.

3. If the ray hit some scene geometry, trace a shadow ray originating at the cur-
rent point of intersection toward a random light source. We only use spherical

22

4. Method

light sources, defined by a position, radius, light colour, and intensity. A po-
sition on the light is sampled by sampling a random point on a disc, which
is positioned at the light source and oriented towards the intersection point.
If the shadow ray hits something before it reaches the sampled position, the
intersected geometry counts as in shadow. In that case, the sampled light
source does not illuminate the intersection point.

4. Generate a new ray by importance sampling the BRDF at the intersection
point. Scale the contributions of subsequent samples along the path by the
BRDF and PDF. If the max depth is reached, or Russian Roulette terminates
the path, the process stops. Otherwise, go to step 2.

Note that it could quickly become costly to trace a shadow ray toward every light
source as the number of lights increase. Instead, we randomly sample one of the
light sources, and weight the contribution by the inverse probability that the light
is sampled. Sampling the lights this way increases the colour variance and decreases
the ray coherence when there is more than one light source. However, the increased
colour variance can be counteracted to some extent by the denoising filter described
in Section 4.4.

4.2.1 Materials & Shading

If the path tracer is to produce realistic visualisations, it must be able to simulate
different types of materials. We chose to implement a simple physically based ma-
terial model inspired by the model used at Disney [45]. Physically based refers to
the materials following the laws of physics, such as conservation of energy, and map-
ping the material parameters to physical properties of the material instead of using
artistic parameters mapping to the appearance of the material. The parameters
used in our model are specular weight, roughness, base colour, metallic ratio, and
the index of refraction (IOR). Diffuse reflections are calculated using the Burley
diffuse BRDF [45]. For specular reflections, we use the Trowbridge-Reitz (GGX)
BRDF [46].

The materials are provided to the shader as uniform variables. However, many
of the material properties use a texture map instead of a constant value. For exam-
ple, when the colour or roughness varies across the material surface. A scene with
a large number of materials may, therefore, need a large number of textures. Abun-
dant use of textures could have caused problems because, in WebGL, rendering is
generally limited to 32 concurrently bound textures. We avoid this issue by baking
all texture data into a single texture array allowing us to access all maps through a
single texture unit. We store the layer index and texture-coordinate extents of each
map in its material. Doing so allows us to find any map within the texture array.
To access all colours and texture values the same way, we store constant values as
single pixels in one layer of the texture array.

23

4. Method

4.3 Ray Tracing & Acceleration Structures
Multiple acceleration structures were implemented to find the best suited for our
use case. We began by creating a regular axis-aligned bounding volume hierarchy.
Additionally, we implemented two other variants of a BVH. Firstly, a BVH with
skip pointers, which removes the need for a stack during traversal. Secondly, an
ADS where a stackless BVH is created for each object in the scene. Two grid-based
acceleration structures were also implemented. The first is a uniform one-level grid.
The second is an irregular grid as described by Pérard-Gayot et al. [27]. All ADS
variants we implemented were constructed on the CPU (i.e. in JavaScript). The
following sections explain how rays are traced using acceleration structures in our
path tracer. Firstly, the structure of the tracing procedures is explained, followed
by overviews of how the evaluated acceleration structures were implemented.

4.3.1 Ray Tracing Interface
The path tracer traces rays for two separate purposes. The first is to find the first
surface intersection along a ray, should there be one, which is useful when tracing a
path. The second is to test whether a ray intersects any geometry within a provided
distance, which is useful to test whether a surface lies in shadow or not. These op-
erations, let us call them trace and trace shadow, are implemented differently based
on the underlying ADS. To simplify the evaluation of many different acceleration
structures, each ADS is implemented to follow a common interface. Therefore, each
ADS implements the same two procedures, trace and trace_shadow .

Following the same interface allows us to switch ADS at runtime. The way this
works is that the source code for the path tracing shader contains all acceleration
structure implementations, but only the selected implementation is compiled, i.e. by
using preprocessor macros for conditional compilation. The acceleration structure
can thus be replaced by recompiling the shader and uploading the new ADS data
to the GPU.

All acceleration structures run intersection tests between a ray and a primitive,
i.e. triangle, in their tracing procedures. That is, given a ray and a triangle index,
does the ray intersect the triangle, and if so at what distance along the ray. We use
the Möller-Trumbore ray-triangle intersection test [47] for these intersection tests.
The triangle data is made available to the shader through a large texture, containing
the triangle vertices, normal vectors, texture coordinates, and the material id.

4.3.2 Bounding Volume Hierarchy
We implemented a BVH as described in Section 3.2.1. The BVH is constructed
using Wald’s algorithm [11] and traversed using a stack. The only difference is that
when building the BVH, we only evaluate split candidates along the longest axis.
Our construction algorithm can thus be summarised as follows:

BVH construction summary:
1. Find AABB of triangles.

24

4. Method

2. Sort triangles by their position along the longest axis of the AABB.
3. Evaluate the cost of splitting at each triangle index using the SAH.
4. If a split is beneficial, split at the index where the SAH is minimised and create

the two child nodes. Otherwise, terminate the process.
5. Recursively continue by splitting the two child nodes.

The stack used to traverse the BVH is implemented as a constant size buffer of
integer values together with an index keeping track of the top of the stack. Pushing
a value on the stack works by writing the value to the buffer at the current index,
and then increasing the index by one. Retrieving a value works by decreasing the
index by one, and then returning the value at the new index.

We encode the BVH data to a single texture. Each node is encoded to three
vectors. The first vector contains a flag stating whether or not the node is a leaf
and two indices, i.e. the index of the left and right child or the range of primitives.
The remaining two vectors are the minimum and maximum points of the bounding
box. These three vectors are encoded as three pixels and can be accessed from the
shader using the index of the node.

4.3.3 Stackless Bounding Volume Hierarchy
One potential improvement to the BVH is to remove the need for the stack when
traversing the tree, reducing the memory footprint of the traversal procedure. To
do this, we extend the BVH with a skip pointer tree, as described by Brian Smith
[19].

To construct our stackless BVH, we first construct a regular BVH as described
in the previous section. We then add a skip pointer to each node in the BVH. The
skip pointers are constructed in a single depth-first traversal of the BVH. Starting
at the root, we set the skip pointer to null. Then for each node, the skip pointers
of its children are set the following way: The skip pointer of the left child is set
to point at the right child, while the right child gets the same skip pointer as the
parent. The result is that each skip pointer points at the node which succeeds the
sub-tree of the current node in a depth-first traversal order, i.e. the node at which
we want to continue if we skip all descendants of the current node. An example of
a skip pointer tree and its traversal is shown in Figure 4.2.

The stackless BVH is encoded similarly to our normal BVH. The only difference
is how the indices are stored. In the stackless BVH, the right child pointer is not
used in internal nodes, and we can replace the right child pointer with the skip
pointer. For leaf nodes, we need to use both the left and right index to define the
range of primitives. Therefore, we combine the skip pointer with the flag stating
whether a node is internal or a leaf. When a node is internal, the value is −1, and
when it is a leaf, the value is the skip pointer. It works because the skip pointer is
always greater or equal to zero.

The traversal of the skip pointer tree works as follows; When a node is visited,
we test whether or not to continue down the tree by checking if the ray intersects
the bounds of the node. If there is an intersection, continue to the left child of the
node, otherwise, follow the skip pointer. If the node is a leaf, we test the ray against

25

4. Method

the primitives in the leaf and then follow the skip pointer. The traversal ends when
we reach an invalid (null) pointer.

Figure 4.2: Example of our version of the Skip Pointer Tree with child pointers
shown as dashed arrows and skip pointers shown as bold arrows. A stackless depth-
first traversal of the tree is shown in blue.

4.3.4 Per-Object Bounding Volume Hierarchy
The third and final variant of BVH we implemented is a per-object BVH. The core
idea is that instead of having a single BVH containing all the geometry in the
scene, we have a set of BVHs; One for each object in the scene. It is, therefore,
a type of two-level BVH. Two-level BVHs can simplify the construction of scenes
containing many objects, and are used in several high-end ray-tracing frameworks
such as Embree [16] and Optix [17]. However, we do not sort the objects into a
top-level hierarchy. Instead, we store the per-object BVHs in an array, which is
sufficient when the number of objects is small. Each BVH is built in object space,
i.e. a coordinate system relative to the model rather than to the scene.

Using a two-level BVHmay introduce significant overhead during traversal [18],
though the majority of this overhead occurs when the object bounds overlap.
However, there are also several benefits to having separate acceleration structures.
Firstly, when an object is modified, added, or deleted, we only need to update the
BVH for the affected object. Secondly, the BVHs can be pre-computed and loaded
together with the objects. Furthermore, building the BVHs in object space brings
two significant benefits. Firstly, it allows us to apply affine transformations, i.e.
translation, rotation, and scaling, to the model without updating the BVH. Since
we do not handle animated objects, all transformations in our system are affine.
Secondly, it allows for instancing, which is a method for reducing memory usage
when rendering several instances of the same object. It works by storing a separate
transformation for each instance, but share the geometry and ADS between the
instances. We do not, however, utilise instancing in our system.

Building the per-object BVH is quite straight-forward since we can reuse the
construction procedure from the stackless BVH. Thus, for each object, we construct
a stackless BVH. The nodes of these BVHs are then packed into a single texture,
exactly as for the other BVH variants. However, we also upload an array of struc-
tures containing additional data for each object. Each structure contains the index
of the object’s root node, its bounding box, and its inverse transformation matrix.

26

4. Method

Traversing the per-object BVH works by traversing each BVH individually.
Since the hierarchies are in object space, we must transform the ray to the object
space of the mesh. This transformation is done by multiplying the ray origin and
direction with the inverse transformation matrix of the object. When the ray has
been transformed to object space, the traversal works precisely as for the stackless
BVH.

4.3.5 Uniform 3D Grid
The grid we implemented is constructed as described in Section 3.2.3. The resolution
of the grid is calculated using Cleary’s heuristic with λ = 3. To encode the grid,
we flatten the triangle lists in all the cells to a single array. Then for each cell, the
minimum and maximum index to the triangle array are stored. We then encode
these indices in a three-dimensional texture with the same resolution as the grid.
Metadata such as the resolution and bounds of the grid is uploaded as uniform
variables or as pre-processor definitions to the shader.

The grid is traversed using the 3D-DDA algorithm described in Section 3.2.4,
using early exits. We do not, however, make use of any space skipping, such as
distance fields. The traversal process is summarised below:

Grid traversal summary:
1. If the ray intersects the grid, find the first grid cell along the ray.
2. Test the ray for intersection with all the triangles in the current cell.
3. Early exit if the closest intersection point along the ray lies within the bounds

of the current cell. Otherwise, move to the next cell along the ray and go to
step 2.

4. Terminate when all cells along the ray have been visited.

4.3.6 Irregular Grids
We also implemented an irregular grid, as described in Section 3.2.5. There are
two significant differences between our implementation and the implementation de-
scribed by Pérard-Gayot et al. [27]. Firstly, we construct the grid sequentially on
the CPU, instead of in parallel on the GPU. Secondly, we use grids for the second
level of the initial two-level ADS instead of octrees. However, there is no conceptual
difference since our grids are restricted to the same resolution as the octrees, i.e. the
resulting subdivision of space is identical.

The irregular grid is encoded as a single three-dimensional texture, with the
same resolution as the virtual grid. Each pixel in the texture encodes the contents
of the irregular grid cell covering the corresponding virtual cell. Since each cell may
cover many virtual cells, there is some redundancy in the texture. That is, all pixels
in the texture containing the same cell contains the same data. This redundancy
can be removed by adding a level of indirection, i.e. keeping the mapping from the
virtual cell and the cell contents in two separate textures. However, that would
increase the number of texture fetches from one to two per cell when tracing.

27

4. Method

Each cell is encoded to a four component vector of 32-bit integers, i.e. a
structure of 16 bytes, containing both the minimum and maximum triangle index
as well as the bounds of the cell. The first two integers contain the minimum and
maximum triangle index, while the cell bounds are packed into the remaining two
integers. The cell bounds can be packed as integers since they align to the virtual
grid. Therefore, we only store the minimum and maximum virtual grid index and
reconstruct the bounds in the shader by multiplying the indices by the virtual cell
size. The six indices, i.e. min and max for x,y, and z, are restricted to ten bits each,
allowing us to pack them into two 32-bit integers. Limiting the indices to ten bits
restricts the virtual grid size to 1024 in all directions. However, this is not a problem
since such large grids are well above our memory limits. For example, even if each
cell only contained one 32-bit integer, a 10243 grid would require four gigabytes of
memory which is above the memory limit for many graphics cards.

4.4 Noise reduction
We chose to base our de-noising work on the methodology of Dammertz et al. [31],
Mara et al. [36] and Schied et al. [35], because they are designed for interactive
path tracing. We implement Dammertz edge-avoiding À-Trous wavelet transform
as described in Section 3.3.1. We use a geometry buffer containing the surface
normals as well as surface positions to guide the filter. The geometry buffer also
contains the surface albedo (colour or texture) which is separated from the image
before it is filtered to avoid blurring it. An example of how the geometry buffer
might look is shown in Figure 4.3. Thus, we defer the albedo from the path tracer
in the first bounce and apply it after performing the filtering, similar to Mara et
al., Schied et al. and Bako et al. [36, 35, 33]. The albedo is applied to the filtered
image in a post-processing step.

Figure 4.3: Geometry buffer contents. To the left: surface positions, middle:
surface normals, and to the right: the surface albedo.

We also filter some lighting terms separately to retain some aspects of the image
better. Firstly, the direct and indirect lighting are separately filtered as done by
Schied et al. [35] to reduce over-blurring of sharp shadows. The lighting is disjointed
in the path tracer and stored in separate textures. The direct lighting is filtered less
aggressively with a lower filter size. We use three iterations of Dammertz’s filter on
the direct lighting, and five on the indirect. However, reflections are not retained
using Schied et al.’s separation method. Therefore, we also filter two other lighting

28

4. Method

terms separately, similarly to how Mara et al. did. We filter the diffuse and specular
reflections at the first surface interaction independently. The filtering system does
not use both strategies simultaneously. Instead, we use one strategy at a time and
can switch between them using pre-processor macros similarly to how we switch
between acceleration structures. A summary of the filtering and deferred shading
we use is described below.

Summary of the noise reduction process
1. Before path tracing, calculate the surface albedo, surface normals and world-

space surface positions for the scene and store them in a geometry buffer.
2. In the path tracer, separate the lighting into two textures. Either separate the

diffuse and specular terms or the direct and indirect terms.
3. After the path tracing is finished, send the two textures as well as the geometry

buffer as input to the filtering kernel. The filter parameters are fine-tuned for
each scene.

4. Perform five iterations of the filter on the diffuse or indirect terms. On the
glossy or direct terms perform three iterations.

5. Send the filtered images as well as the albedo map of the geometry buffer as
input to a post-processor shader. Add the two lighting textures together and
multiply them with the albedo to achieve the final image.

29

4. Method

30

5
Results

To evaluate the renderer, we measured the performance of the acceleration structures
and the noise reduction filters. The results for the acceleration structures are covered
in Section 5.1. The noise-reduction results are presented in Section 5.2. All metrics
were collected on a desktop computer running Ubuntu 17.10, with an Intel i7-4930K
CPU and an Nvidia GeForce GTX Titan GPU.

5.1 Acceleration Structures
The primary goal for the renderer is to maintain interactive frame rates, i.e. above
10hz. It is thus necessary that the path tracer is fast enough to sample every pixel of
an image within an interactive time span, i.e. within 100 milliseconds. We valuate
the ray tracing performance by measuring the time required to sample one path per
pixel along with the number of rays traced per second. The execution time of the
path tracer is measured using a GPU timer included in WebGL. The ray tracing
rate, i.e. number of rays per second, is measured by counting the average number of
rays traced per frame, and dividing it by the execution time of the path tracer. The
execution times are averages of 25 runs and the number of rays traced are averages
of ten independent frames.

We evaluate the acceleration structures on a small set of scenes of varying
complexity. Testing the acceleration structures on several scenarios serves two pur-
poses. Firstly, it lets us observe the performance as the scene complexity increases.
Secondly, it ensures that the renderer is not optimised for a single scenario. The
scenes we use are shown in Table 5.1.

31

5. Results

Scene Triangle Count View

Cornell Box 34

Living Room 10514

Record Player 79667

Crytek Sponza 279162

Table 5.1: Table listing the scenes used to evaluate the renderer. The images are
rendered using our path tracer.

5.1.1 Ray Tracing Performance
Table 5.2 lists the rendering time and the measured number of rays per second
for the different scenes and acceleration structures. The time listed is the average
number of milliseconds it takes to sample one path per pixel for a 720 by 540 pixel
image. We measure the number of rays per second for two different scenarios. In
the first scenario, the image is traced as usual with a maximum path length of 5 and
one light sample per scattering event. In the second scenario, only primary rays are
traced, resulting in higher ray coherence.

For all scenes except Crytek Sponza, the path tracer reaches interactive fram-
erates. On the smallest measured scene, the Cornell Box, it executes in 10ms while
on the largest scene, the Crytek Sponza, the fastest execution time is 161 ms, re-

32

5. Results

sulting in a frame rate of at most five to six frames per second. Overall, the best
performance is achieved with the Irregular grid, though all BVH variants outperform
the grids on the Cornell Box. Furthermore, the performance difference between the
Irregular Grid and the BVHs increase with the size of the scene. The ray tracing
rate decreases as the number of triangles increases, spanning from 288MRay/s to
24MRay/s from the Cornell Box to the Crytek Sponza. There is also a gap between
the ray tracing rate for standard paths and primary rays. Tracing only primary rays
increases the ray tracing rate by around 200% to 300% for most scenes. The only
exception is the BVHs on the Sponza, where the increase is around 30% to 40%.

Scene ADS Time (ms) MRay/s Primary MRay/s
BVH 12.00 259 529
Stackless BVH 10.96 283 637
Per-object BVH 10.80 288 845
Uniform Grid 16.58 183 806

Cornell Box

Irregular Grid 15.20 204 679
BVH 42.30 42 144
Stackless BVH 36.60 49 168
Per-object BVH 42.01 42 168
Uniform Grid 70.75 25 111

Living Room

Irregular Grid 34.95 51 236
BVH 33.09 15 62
Stackless BVH 26.53 19 69
Per-object BVH 29.66 17 63
Uniform Grid 53.76 9 24

Record Player

Irregular Grid 14.26 36 132
BVH 700 5.4 7.6
Stackless BVH 599 6.1 8.7
Per-object BVH 603 6.4 8.2
Uniform Grid 258 14.6 82

Crytek Sponza

Irregular Grid 161 24.1 91

Table 5.2: Table listing the performance metrics of the acceleration structures on
the test scenes. The metrics shown are, firstly, the running time in milliseconds for
sampling one path per pixel. Secondly, the measured ray tracing performance in
terms of million rays per second. Finally, the ray tracing performance when only
tracing primary rays. The best results for each scene are marked in bold. Note the
discrepancy in ray tracing performance between tracing normal (scattered) paths,
versus only tracing primary rays.

5.1.2 Ray Coherence & GPU Utilisation
We measure the relation between ray coherence and performance by comparing the
tracing performance of the renderer to an altered version where the rays are forced to
be mostly coherent. In the unaltered version of the path tracer, the pseudo-random
number generators are seeded by the pixel position and the iteration number. Thus,

33

5. Results

the behaviour of each path is practically independent. In the altered version, the
random generators are seeded only by the iteration number, which causes the paths
to be dependent on each other. The effect of this change on the behaviour of the
paths is shown in Figure 5.1. In the altered version, rays hitting similar surfaces,
i.e. the same material and orientation, are reflected in the same direction, resulting
in highly coherent rays.

Figure 5.1: Figure showing the difference in ray coherence between seeding the
pseudo-random generator with iteration and pixel position (left) versus seeding with
only the iteration number (right).

The difference in performance between the two ways to seed the random gen-
erator is listed in Table 5.3. The table lists the tracing rate with and without forced
coherence for a stackless BVH. Forcing the coherence increases the rate of traced
rays for all scenes but not as much for the record player. The increase on the record
player is smaller because the average path length is low. Due to the shape of the
scene, many of the paths miss the scene entirely, or exit the scene after a low number
of reflections. The ray coherence is higher when the average path length is low since
the paths diverge when they are reflected.

Scene MRay/s Coherent MRay/s Increase
Cornell Box 274 452 65 %
Living Room 47 122 160 %
Record Player 17 18 6 %
Crytek Sponza 7 12 71 %

Table 5.3: Table listing the ray tracing performance of a stackless BVH when
tracing as usual compared to the tracing performance when ray coherence is forced.

5.1.3 ADS Construction
The tracing performance is not the only important aspect of the acceleration struc-
tures. The build time is also relevant because it defines the delay between loading
or modifying a scene and starting the rendering process. We measure the average
build times of the acceleration structures on the test scenes. The results are listed
in Table 5.4. Keep in mind that for the per-object BVH, the listed results are not

34

5. Results

applicable when the scene is modified by transforming objects. Thus, when using
the per-object BVH, we can move, rotate, and scale objects dynamically.

The table shows that the fastest build time varies between 1ms on the Cornell
Box (34 triangles) and 19 seconds on Crytek Sponza (279162 triangles). Overall,
only the Cornell Box is constructed fast enough for real-time ADS reconstruction.
The Living Room (10514 triangles) and Record player (79667 triangles), which are
representative of our problem domain, both yield build times well above what is
plausible for interactive rates. The fastest build time for the living room results in
at most five rebuilds per second, while the record player takes several seconds to
construct.

Scene Cornell Box Living Room Record Player Crytek Sponza
Triangle Count 34 10514 79667 279162
BVH 0.98 ms 241 ms 2838 ms 28171 ms
Stackless BVH 0.86 ms 303 ms 3302 ms 30779 ms
Per Object BVH 2.82 ms 396 ms 4454 ms 27945 ms
Uniform Grid 4.38 ms 225 ms 5771 ms 19004 ms
Irregular Grid 2.93 ms 1096 ms 11161 ms 54383 ms

Table 5.4: Lists the mean ADS build time in milliseconds for the different scenes.
The fastest build times for each scene are shown in bold. Each listed time is the
average of 25 runs. Note that the variance is high for the Cornell Box and the
Crytek Sponza due to the very short and very long build times. Also, keep in mind
that the acceleration structures are built in JavaScript without any parallelism.

5.2 Noise Reduction

We evaluate the two key properties of our noise reduction: the visual quality, and
the execution time. The execution time is relevant since the filter must run at
interactive frame rates. We measure the execution time using the GPU timer, and
take the average of 100 measurements. To quantitatively measure the quality of a
filtered image, we use the structural similarity index (SSIM) [48]. SSIM measures
the similarity between two images, where a value of 1 means that the images are
identical, while a value of 0 implies that they are entirely dissimilar. To evaluate
the quality of two images, we compare both to an image we consider the ground
truth, i.e. an image we consider as the correct result. The ground truth images
are rendered by letting the path tracer converge with filtering disabled, stopping at
2048 samples per pixel. The filters are thus evaluated by applying the filters on a
one sample per pixel input image and comparing the results to the ground truth.

Figure 5.2 shows the effect of separating the albedo from the filter input. In
both cases, the image is filtered with 5 iterations of the wavelet filter. The total
execution time of the filter is 5.7 milliseconds. The result of not separating the
albedo is shown in Figure 5.2b. It is clear that the texture detail, such as on the
floor and wall, is over-blurred. Filtering with albedo separation is shown in Figure
5.2c, where the texture detail is better retained.

35

5. Results

(a) SSIM = 0.31 (b) SSIM = 0.87 (c) SSIM = 0.93 (d) SSIM = 1.00

Figure 5.2: Shows the effects of demodulating the albedo and adding it during
the post-processing. The 1 spp filter input is shown in (a). The result of filtering
without separating the albedo is shown in (b), while the result with the albedo split
lies in (c). The ground truth is shown in (d).

The effect of filtering the direct and indirect illumination separately, as by
Schied et al. [35], is shown in Figure 5.3. Filtering without any separation is shown
in Figure 5.3b. The result of separating the illumination is shown in Figure 5.3c.
The direct and indirect illumination is filtered with three and five iterations of the
wavelet filter respectively. The average total execution time is 8.3 milliseconds.
Splitting the illumination results in better preservation of sharp shadows, which can
be observed on the wall behind the sofa and behind the pillows in the sofa.

(a) SSIM = 0.31 (b) SSIM = 0.93 (c) SSIM = 0.93 (d) SSIM = 1.00

Figure 5.3: Shows the impact of filtering the direct and indirect illumination
separately. (a) shows an unfiltered image at 1spp. (b) shows a filtered image with
deferred albedo. (c) shows the combination of deferring the albedo and splitting
the indirect and direct lighting. (d) shows the ground truth.

The differences when separately filtering direct and indirect illumination versus
separately filtering glossy and diffuse reflections can be observed in a scene with a
highly reflective surface, such as in Figure 5.4. Filtering the direct and indirect
illumination separately (Figure 5.4b) results in an over-blurred reflection on the
sphere. The reflection is better preserved when glossy and diffuse reflections are
filtered separately (Figure 5.4c), as done by Mara et al. [36] and Bako et al. [33].
The glossy and diffuse reflections are filtered with two and five iterations of the
wavelet filter respectively, which takes 8.3 milliseconds to execute.

36

5. Results

(a) SSIM = 0.41 (b) SSIM = 0.84 (c) SSIM = 0.89 (d) SSIM = 1.0

Figure 5.4: Reflections: comparison between separating the filtering of the
glossy/diffuse light and separating the filtering of the direct/indirect lighting. (a)
shows an unfiltered 1spp image. (b) shows a 1spp image filtered separately for in-
direct and direct lighting. (c) shows glossy and diffuse filter separation also for a
1spp image. (d) is the ground truth.

In the living room scene, the direct/indirect and glossy/diffuse splitting results
in the same SSIM value. However, there are still some notable differences. For
example, the sharp shadow of the sofa is clearer in 5.5a than in 5.5b. Similarly, the
glossy floor reflections are somewhat distinguishable in Figure 5.5b and completely
blurred out in Figure 5.5a. Both preserves most parts of the ground truth in Figure
5.5c but neither are able to both retain glossy reflections and hard shadows.

(a) SSIM = 0.93 (b) SSIM = 0.93 (c) SSIM = 1.00

Figure 5.5: Shows the difference between splitting the illumination into indi-
rect/direct versus glossy/diffuse when filtering. (a) shows the result of filtering
the direct/indirect illumination, while (b) shows the glossy/diffuse filtering. (c)
shows the ground truth.

37

5. Results

38

6
Discussion

This chapter discusses the implications of the results presented in Chapter 5. We
first discuss the performance of the path tracer and the acceleration structures,
followed by a discussion on the noise filtering. Finally, we touch upon potential
ethical dilemmas related to this project.

6.1 Ray Tracing & Acceleration Structures
The performance metrics listed in Table 5.2 show that we can render images at inter-
active frame rates, albeit low-resolution images and relatively small scenes. However,
our ray tracing performance is somewhat low when compared to the literature. For
example, our implementation of the irregular grid achieves a rate of 91 million pri-
mary rays per second on the Crytek Sponza, while the original authors report a rate
of 653 million primary rays, or 274 million randomly oriented rays, per second for
the same scene [27]. However, they use a somewhat more powerful GPU (Geforce
Titan X (Maxwell)) and somewhat different construction parameters when evaluat-
ing the performance. Nevertheless, there is a significant gap in performance between
our implementation and the state-of-the-art. Since the gap is apparent for primary
rays, it is not caused by incoherent rays and low GPU utilisation. Therefore, the
gap is likely caused by either us having a less efficient ray tracing kernel, or less
efficient memory accesses. When tracing primary rays, our tracing kernel is quite
minimal and uses the same ray-triangle intersection test as Pérard-Gayot et al. [27].
It is therefore unlikely that optimising the tracing kernel and intersection test would
increase the performance by a significant factor. Therefore, it seems likely that we
can make the most substantial performance gains by optimising the encoding and
fetching of the triangle data. For instance by sharing vertices between triangles, e.g.
using triangle strips, or by optimising how the triangles are laid out in memory, i.e.
increasing the cache locality.

Regarding acceleration structures, the irregular grid outperforms the three
BVH variants while the uniform grid lags behind. The BVHs also seem to perform
proportionally worse compared to the irregular grid as the number of triangles in-
creases. It is especially evident on the Crytek Sponza, where the BVHs only reach a
ray tracing rate of around 25% of the irregular grid and around 40% of the uniform
grid. However, though our irregular grid outperforms our BVHs, one should not
conclude that the irregular grids outperform BVHs in general. For instance, Ylitie
et al. report that their compressed wide BVH outperforms the irregular grid when
tracing incoherent rays [23].

39

6. Discussion

There are several possible explanations for why the BVHs might scale worse
than the grids. One is that the Crytek Sponza is quite unevenly tesselated, causing a
large amount of nodes to overlap for the BVHs. The overlapping can be reduced by
using the Split BVH introduced by Stich et al. [12]. Another potential explanation is
that the BVHs are limited by memory accesses on the Sponza. The BVH nodes are
larger in terms of memory than the grid nodes since the node bounds are stored as
floating point vectors. That is, in the uniform grid the bounds are implicit, and for
the irregular grid they can be packed more efficiently since they align to the virtual
grid. The size of the BVH nodes can be reduced by discretising the BVH bounds, i.e.
align them to some grid spanning the scene, and packing them as integers, similarly
to how the irregular grid is encoded.

6.1.1 Ray Coherence & GPU Utilisation
The results in Table 5.2 and Table 5.3 shows, as expected, that increasing ray
coherence leads to a significant increase in ray tracing performance. The magnitude
of the increase raises the question of how the path tracer can be structured to improve
the GPU utilisation. Approaches such as wavefront path tracing and persistent
threads are impractical due to the limitations of the WebGL API. However, it might
be possible to use parts of those approaches to improve the utilisation.

We can technically use the seeding change described in Section 5.1.2 to speed
up the path tracer. As long as we choose the random generator and per iteration
seeds such that the random number sequences are independent across iterations, the
path tracer converges to the correct result. However, forcing coherence that way is
undesirable for real-time purposes because the colour variance manifests itself in a
way that looks worse than the usual grainy noise. When forcing ray coherence, all
rays originating at the same triangle are parallel. Therefore, in each iteration, the
indirect lighting on each triangle is an orthographic projection of the surrounding
scene onto the triangle from the sampled direction. At low sample counts, the result-
ing indirect illumination contains sharp and artificial looking patterns. However, it
might be possible to hide these patterns and keep the performance gains. By chang-
ing the seeding such that all threads within a warp share a seed, we get one path
behaviour for each block of pixels rendered by the same warp. The patterns would
thus no longer be the same across each surface, but different patterns would appear
in each block of pixels. We can avoid these blocky patterns by letting each warp
render a sparse pattern of pixels instead of a compact block of pixels. We could
achieve this by using some mapping or pairing function. For example, if we pair
up every pixel with another pixel in a nearby block, and let each fragment shader
trace a path corresponding to the pixel position of its pair, then each warp would
trace a sparse pattern of pixels. The mapping can be reversed in the post-processing
such that each pixel appears in the correct place. If the mapping function is chosen
such that neighbouring pixels are traced by different warps, the patterns caused by
sharing seeds between threads would be harder to notice.

Also, because the ray coherence decreases as the average path length increases,
the shape of a scene can impact the ray coherence, since the average path length
can depend on the scene. For example, in an open scene, such as a planar surface

40

6. Discussion

with some objects on top, many rays are reflected out of the scene and terminate.
Conversely, for an enclosed scene, e.g. like the interior of a room, the average path
length is likely higher since fewer paths are scattered out of the scene. Do keep
in mind that terminated paths are only beneficial if all paths within a warp are
terminated. However, using a scene where the average path length is short can
improve the tracing performance. One example of this is that the irregular grid
achieves similar framerates on the Cornell box and the record player, despite the
Cornell box having 34 triangles compared to the 79667 of the record player.

6.1.2 ADS Construction
The build times reported in Section 5.4 are not fast enough to rebuild the scene
at interactive framerates. The only exception is the build times for the Cornell
box, where building an ADS is trivial due to the low triangle count. Dynamically
changing a scene would, therefore, introduce long delays between changing an object
and displaying the result. The ability to rebuild the ADS once per frame is required
for the user to be able to dynamically rearrange the scene, i.e. moving, rotating or
scaling objects.

We are only able to achieve dynamic updates using the per-object BVH, where
we do not need to reconstruct the ADS when objects are transformed. Furthermore,
the per-object BVH performs at par with the stackless BVH across all scenes. How-
ever, we have not evaluated the per-object BVH on a scene with a large number
of objects, where the overhead would be more significant. On the other hand, our
per-object can be improved to better handle a large number of objects by replacing
the array of objects with an acceleration structure, e.g. a BVH.

Our build times are several orders of magnitude slower than the build times
reported in the literature [27, 13, 26]. The primary reason for this discrepancy is that
we do not utilise the GPU, or any parallelism for that matter, when constructing our
acceleration structures. Utilising the GPU for ADS construction is complicated by
the limitations of WebGL, i.e. the lack of shared memory and random access writes.
It might be less of an issue in the future, should compute shaders be introduced to
WebGL.

6.2 Noise Filtering
All filtering versions of the path tracer execute in real time, at an average execution
time below 10 ms. Separating the albedo term of the first surface interaction im-
proves the retention of texture details, as can be seen in Figure 5.2. However, when
compared to Mara et al. [36] and Schied et al. [35] the filter lacks in one area in par-
ticular. Namely, their filter steps use temporal filtering and temporal anti-aliasing.
Our lack of temporal accumulation when moving the camera causes some flickering
artefacts. Also, our lack of anti-aliasing results in highly aliased edges when filtering
is enabled. The addition of temporal filtering would result in a lower variance on
the filter input, i.e. by re-projecting previous the samples of previous frames; we
would have more than one sample per pixel. The lower variance could potentially

41

6. Discussion

reduce the problem with the blotchy artefacts, as seen in Figure 5.5b and the re-
flection in Figure 5.4c. The temporal accumulation would, of course, come with a
computational cost, although, the decrease in variance could potentially decrease
the number of filter iterations required for a noise-free result.

Splitting the light that goes into the filter did not produce all-round image-
detail improvements. Despite retaining sharp shadows, separately filtering the direct
and indirect lighting did not preserve sharp reflections. For example, note the lack of
reflection in Figure 5.5a and 5.4b compared to the ground truth. It left a major gap
in quality for scenes with any reflective materials. Furthermore, for scenes where
no sharp shadows are present, i.e. when the light sources are large, splitting the
illumination makes less of a difference. Also, it is not possible to preserve gloss by
filtering the direct/indirect lighting less harshly with this setup. It yielded artefacts
in the form of blotchy areas. Note that the gloss-retaining filter separation does not
remove all shadows, but over-blurs them. The result is that all shadows are soft,
regardless of the shape of the light source. Conversely, while the shadow-preserving
filter does retain shadows well, it does not retain any sharp reflections. The glossy
filtering also caused blotchy artefacts in reflections. Using more than two filter
iterations often smudged any sharp reflections, but filtering less harshly produced
artefacts. It is possible that introducing more samples per pixel through temporal
filtering would mitigate the blotch artefacts. Reducing the variance by temporal
accumulation could also allow for less harsh filtering, which in turn would reduce
the over-blurring.

On another note, there is a discrepancy in filter quality between scenes. Be-
cause we used an edge-stopping function based on the position buffer, the filter is
affected by the scale of the scene geometry. Namely, the relative distance to nearby
geometry varies depending on the scale of the scene. Therefore, the parameter
controlling that edge-stopping required fine-tuning for each scene. The fine-tuning
could be automated, either by determining the parameters based on the dimensions
of the scene or calculating the parameters from an estimated variance of the position
buffer.

6.3 Ethical considerations
The project itself does not have many ethical considerations when used in the context
of its purpose. However, while the purpose of the project is to visualise products
such as furniture, it does not hinder the user from using other 3D models. The path
tracer can thus be used to portray virtually anything. Thereby comes some potential
ethical implications. It could, for example, be used to render visually disturbing
imagery or propaganda. Although, the same is true for any 3D-rendering software.
There is also a wider dilemma in computer graphics regarding how photorealistic
computer graphics, especially in virtual or augmented reality, affects the human
psyche. Though this dilemma is somewhat out of scope for this project since we do
not focus on creating an immersive experience.

The expansion of our and similar research strives toward a future with real-
time path tracing. However, as with any research on the topic, we cannot control
how such path tracing is used in its entirety. That responsibility lies with those who

42

6. Discussion

use it.
The program itself used in its real context, visualising products in a web

browser, does not have any negative impact on the user. If anything, rendering
the visualisations locally in a web browser comes with several benefits. One such
benefit is that the user gets more immediate feedback from the system, reducing time
wasted waiting on images from the render farm. Another benefit is that the system
has the potential to reduce or even remove the need for the render farm and the
back-end systems that support it, reducing the economic and perhaps also environ-
mental cost of the system. Lastly, depending on how the technology is distributed,
it may have a lower barrier of entry than the alternatives used today. In conclusion,
the project, when used as intended, does not implicate any tangible ethical issues.

43

6. Discussion

44

7
Conclusions

We can conclude that our path tracer can render small scenes in real time while also
filtering away much of the inherent noise. We can also let the renderer accumulate
samples, resulting in locally rendered high-quality images of the scene. We evaluated
the path tracer using a resolution of 720×540 pixels. It is possible to render higher
resolution images, though the rendering time increases more or less linearly with the
number of pixels. The path tracer can, therefore, be used for both real-time visu-
alisations and high-quality previews in RapidImages’ development tool. However,
the development tool can render more complex scenes than, for example, the living
room with around 10000 triangles or the record player of roughly 80000 triangles.
It may therefore only be possible to use the path tracer on scenes where the number
of objects and triangles is relatively small.

The construction of the acceleration structures in JavaScript is not fast enough
for rebuilding the scene at an interactive framerate. For instance, the fastest con-
struction time of the living room scene would allow at most four rebuilds per second.
By using a per-object BVH, we can avoid rebuilding the acceleration structures when
applying affine transformations on objects. We can, therefore, render dynamic, e.g.
moving, objects in real time. The per-object BVH also allows us to pre-compute
the acceleration structures for each object, reducing the initial loading time of the
application.

Furthermore, the noise reduction filter mitigates the path tracer noise. How-
ever, it is not able to preserve both sharp reflections and sharp shadows, and it
introduces blotch artefacts and aliasing. With regard to future work, both issues
can be reduced by introducing temporal filtering and temporal anti-aliasing. The
next section expands upon the most promising future work regarding our project.

7.1 Future Work
We found several interesting areas in which our work can be extended and improved.
These areas include extending our noise filters to retain image details better, im-
proving the acceleration structures, and increasing the GPU utilisation.

Regarding the noise reduction, the obvious next step is to extend the filter
with temporal accumulation and anti-aliasing. We can also address the issue of
not retaining both shadows and glossy reflections by splitting the illumination even
further. For instance, by filtering the direct lighting, glossy reflections, and diffuse
reflections separately, we could retain both shadows and reflections at the price of a
slower filter. It might, however, be unnecessary if temporal accumulation is added.

45

7. Conclusions

There are many ways in which the acceleration structures can be improved.
One could, for example, reduce the number of texture fetches during ray traversal by
optimising the encoding of the triangles and acceleration structures. For instance,
the triangles within each ADS node could be encoded as a triangle strip, i.e. sharing
vertex data between triangles that share an edge. Also, discretising the BVH node
bounds would allow each node to packed in a single four-component vector, which
enables retrieving a node in a single texture fetch. Improving the BVH encoding can
be combined with implementing a more recent BVH variant, such as the compressed
wide BVH by Ylitie et al. [23].

Building acceleration structures in JavaScript and without parallelism leads to
very long construction times, especially compared to construction algorithms utilis-
ing the GPU. As mentioned in Section 6.1.2, the restrictions of WebGL complicates
the utilisation of the GPU for ADS construction. However, it would nevertheless be
interesting to explore how the construction can be sped up using WebGL.

Using per-object acceleration structures to avoid ADS constructions shows
much potential. The next steps for improving our per-object approach would be
to sort the objects into a top-level acceleration structure, as in Embree [16] and
Optix [17]. For small sets of objects, the top-level ADS would be small and fast
to reconstruct and would, therefore, still allow for dynamic updates of the scene.
However, building acceleration structures for each object can induce a traversal
overhead compared to a single ADS containing all geometry. That is, the per-object
acceleration structures are locally optimised rather than globally. This overhead can
potentially be reduced by the partial re-braiding algorithm described by Benthin et
al. [18].

Finally, there are a few possibilities for improving the GPU utilisation. One
such possibility is to introduce some of the concepts from wavefront path tracing.
For example, decomposing the path tracer into smaller specialised programs. How-
ever, this approach assumes that data can be effectively stored and retrieved across
executions of the smaller programs. In WebGL, the only way of keeping a state
across several executions of a shader is to read and write to a set of textures. It is
therefore uncertain whether the decomposition of the path tracer would be benefi-
cial. Another potential approach is the seeding change discussed in Section 6.1.1,
where forcing coherence within a warp and letting it render a sparse pattern of pixels
may simultaneously improve the GPU utilisation and avoid sharp patterns.

46

Bibliography

[1] T. Whitted, “An improved illumination model for shaded display,” in ACM
SIGGRAPH Computer Graphics, vol. 13, p. 14, ACM, 1979.

[2] R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,” in ACM
SIGGRAPH Computer Graphics, vol. 18, pp. 137–145, ACM, 1984.

[3] J. T. Kajiya, “The rendering equation,” in ACM Siggraph Computer Graphics,
vol. 20, pp. 143–150, ACM, 1986.

[4] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, “Ray tracing on pro-
grammable graphics hardware,” in ACM Transactions on Graphics (TOG),
vol. 21, pp. 703–712, ACM, 2002.

[5] T. Aila and S. Laine, “Understanding the efficiency of ray traversal on gpus,” in
Proceedings of the conference on high performance graphics 2009, pp. 145–149,
ACM, 2009.

[6] T. Aila, S. Laine, and T. Karras, “Understanding the efficiency of ray traversal
on gpus–kepler and fermi addendum,” NVIDIA Corporation, NVIDIA Techni-
cal Report NVR-2012-02, 2012.

[7] S. Laine, T. Karras, and T. Aila, “Megakernels considered harmful: wavefront
path tracing on gpus,” in Proceedings of the 5th High-Performance Graphics
Conference, pp. 137–143, ACM, 2013.

[8] J. Bikker and J. van Schijndel, “The brigade renderer: A path tracer for real-
time games,” International Journal of Computer Games Technology, vol. 2013,
2013.

[9] J. L. Bentley, “Multidimensional binary search trees used for associative search-
ing,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[10] H. Dammertz, J. Hanika, and A. Keller, “Shallow bounding volume hierarchies
for fast simd ray tracing of incoherent rays,” in Computer Graphics Forum,
vol. 27, pp. 1225–1233, Wiley Online Library, 2008.

[11] I. Wald, S. Boulos, and P. Shirley, “Ray tracing deformable scenes using dy-
namic bounding volume hierarchies,” ACM Transactions on Graphics (TOG),
vol. 26, no. 1, p. 6, 2007.

[12] M. Stich, H. Friedrich, and A. Dietrich, “Spatial splits in bounding volume
hierarchies,” in Proceedings of the Conference on High Performance Graphics
2009, pp. 7–13, ACM, 2009.

[13] T. Karras and T. Aila, “Fast parallel construction of high-quality bounding
volume hierarchies,” in Proceedings of the 5th High-Performance Graphics Con-
ference, pp. 89–99, ACM, 2013.

I

Bibliography

[14] M. Vinkler, V. Havran, and J. Bittner, “Performance comparison of bounding
volume hierarchies and kd-trees for gpu ray tracing,” in Computer Graphics
Forum, vol. 35, pp. 68–79, Wiley Online Library, 2016.

[15] J. D. MacDonald and K. S. Booth, “Heuristics for ray tracing using space
subdivision,” The Visual Computer, vol. 6, no. 3, pp. 153–166, 1990.

[16] I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst, “Embree: a
kernel framework for efficient cpu ray tracing,” ACM Transactions on Graphics
(TOG), vol. 33, no. 4, p. 143, 2014.

[17] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke,
D. McAllister, M. McGuire, K. Morley, A. Robison, et al., “Optix: a general
purpose ray tracing engine,” ACM Transactions on Graphics (TOG), vol. 29,
no. 4, p. 66, 2010.

[18] C. Benthin, S. Woop, I. Wald, and A. T. Áfra, “Improved two-level bvhs using
partial re-braiding,” in Proceedings of High Performance Graphics, p. 7, ACM,
2017.

[19] B. Smits, “Efficiency issues for ray tracing,” Journal of Graphics Tools, vol. 3,
no. 2, pp. 1–14, 1998.

[20] R. Torres, P. J. Martín, and A. Gavilanes, “Ray casting using a roped bvh with
cuda,” in Proceedings of the 25th Spring Conference on Computer Graphics,
pp. 95–102, ACM, 2009.

[21] N. Binder and A. Keller, “Efficient stackless hierarchy traversal on gpus with
backtracking in constant time,” in Proceedings of High Performance Graphics,
pp. 41–50, Eurographics Association, 2016.

[22] I. Wald, C. Benthin, and S. Boulos, “Getting rid of packets-efficient simd single-
ray traversal using multi-branching bvhs,” in Interactive Ray Tracing, 2008. RT
2008. IEEE Symposium on, pp. 49–57, IEEE, 2008.

[23] H. Ylitie, T. Karras, and S. Laine, “Efficient incoherent ray traversal on gpus
through compressed wide bvhs,” in Proceedings of High Performance Graphics,
p. 4, ACM, 2017.

[24] A. Fujimoto, T. Tanaka, and K. Iwata, “Arts: Accelerated ray-tracing system,”
IEEE Computer Graphics and Applications, vol. 6, no. 4, pp. 16–26, 1986.

[25] D. Jevans and B. Wyvill, “Adaptive voxel subdivision for ray tracing,” 1988.
[26] J. Kalojanov, M. Billeter, and P. Slusallek, “Two-level grids for ray tracing

on gpus,” in Computer Graphics Forum, vol. 30, pp. 307–314, Wiley Online
Library, 2011.

[27] A. Pérard-Gayot, J. Kalojanov, and P. Slusallek, “Gpu ray tracing using irreg-
ular grids,” in Computer Graphics Forum, vol. 36, pp. 477–486, Wiley Online
Library, 2017.

[28] M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoorthi, F. Rousselle,
P. Sen, C. Soler, and S.-E. Yoon, “Recent advances in adaptive sampling and re-
construction for monte carlo rendering,” in Computer Graphics Forum, vol. 34,
pp. 667–681, Wiley Online Library, 2015.

[29] F. Durand, N. Holzschuch, C. Soler, E. Chan, and F. X. Sillion, “A frequency
analysis of light transport,” in ACM Transactions on Graphics (TOG), vol. 24,
pp. 1115–1126, ACM, 2005.

II

Bibliography

[30] F. Rousselle, C. Knaus, and M. Zwicker, “Adaptive sampling and reconstruction
using greedy error minimization,” in ACM Transactions on Graphics (TOG),
vol. 30, p. 159, ACM, 2011.

[31] H. Dammertz, D. Sewtz, J. Hanika, and H. Lensch, “Edge-avoiding à-trous
wavelet transform for fast global illumination filtering,” in Proceedings of the
Conference on High Performance Graphics, pp. 67–75, Eurographics Associa-
tion, 2010.

[32] C. R. A. Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi, A. Lefohn,
D. Nowrouzezahrai, and T. Aila, “Interactive reconstruction of monte carlo
image sequences using a recurrent denoising autoencoder,” ACM Transactions
on Graphics (TOG), vol. 36, no. 4, p. 98, 2017.

[33] S. Bako, T. Vogels, B. Mcwilliams, M. Meyer, J. NováK, A. Harvill, P. Sen,
T. Derose, and F. Rousselle, “Kernel-predicting convolutional networks for
denoising monte carlo renderings,” ACM Transactions on Graphics (TOG),
vol. 36, no. 4, p. 97, 2017.

[34] K. Dahm and A. Keller, “Learning light transport the reinforced way,” arXiv
preprint arXiv:1701.07403, 2017.

[35] C. Schied, A. Kaplanyan, C. Wyman, A. Patney, C. R. A. Chaitanya, J. Burgess,
S. Liu, C. Dachsbacher, A. Lefohn, and M. Salvi, “Spatiotemporal variance-
guided filtering: Real-time reconstruction for path-traced global illumination,”
in Proceedings of High Performance Graphics, HPG ’17, (New York, NY, USA),
pp. 2:1–2:12, ACM, 2017.

[36] M. Mara, M. McGuire, B. Bitterli, and W. Jarosz, “An efficient denoising
algorithm for global illumination,” Proceedings of High Performace Graphics,
vol. 6, 2017.

[37] E. Eisemann and F. Durand, “Flash photography enhancement via intrinsic
relighting,” in ACM transactions on graphics (TOG), vol. 23, pp. 673–678,
ACM, 2004.

[38] B. Karis, “High-quality temporal supersampling,” Advances in Real-Time Ren-
dering in Games, SIGGRAPH Courses, vol. 1, 2014.

[39] M. Pharr, W. Jakob, and G. Humphreys, Physically based rendering: From
theory to implementation. Morgan Kaufmann, 2016.

[40] S. M. Rubin and T. Whitted, “A 3-dimensional representation for fast rendering
of complex scenes,” in ACM SIGGRAPH Computer Graphics, vol. 14, pp. 110–
116, ACM, 1980.

[41] T. Aila, T. Karras, and S. Laine, “On quality metrics of bounding volume
hierarchies,” in Proceedings of the 5th High-Performance Graphics Conference,
pp. 101–107, ACM, 2013.

[42] J. G. Cleary, B. M. Wyvill, G. Birtwistle, and R. Vatti, “Design and analysis
of a parallel ray tracing computer,” in Graphics Interface, vol. 83, pp. 33–38,
1983.

[43] A. Es and V. İşler, “Accelerated regular grid traversals using extended
anisotropic chessboard distance fields on a parallel stream processor,” Journal
of Parallel and Distributed Computing, vol. 67, no. 11, pp. 1201–1217, 2007.

[44] S. Mallat, A wavelet tour of signal processing: the sparse way. Academic press,
2008.

III

Bibliography

[45] B. Burley and W. D. A. Studios, “Physically-based shading at disney,” in ACM
SIGGRAPH, vol. 2012, pp. 1–7, 2012.

[46] T. Trowbridge and K. P. Reitz, “Average irregularity representation of a rough
surface for ray reflection,” JOSA, vol. 65, no. 5, pp. 531–536, 1975.

[47] T. Möller and B. Trumbore, “Fast, minimum storage ray/triangle intersection,”
in ACM SIGGRAPH 2005 Courses, p. 7, ACM, 2005.

[48] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE transactions
on image processing, vol. 13, no. 4, pp. 600–612, 2004.

IV

	List of Figures
	List of Tables
	Introduction
	Background
	Problem Statement
	Limitations

	Previous Work
	Ray tracing
	GPU Ray Tracing

	Acceleration Data Structures
	Noise reduction

	Theory
	Path Tracing
	Acceleration Data Structures
	Bounding Volume Hierarchies
	Bounding Volume Hierarchy Traversal
	Grids
	Grid traversal
	Irregular Grids

	Noise reduction
	Real-time De-noising

	GPU Architecture & Programming
	GPU Programming in WebGL

	Method
	System Overview
	Path Tracer Implementation
	Materials & Shading

	Ray Tracing & Acceleration Structures
	Ray Tracing Interface
	Bounding Volume Hierarchy
	Stackless Bounding Volume Hierarchy
	Per-Object Bounding Volume Hierarchy
	Uniform 3D Grid
	Irregular Grids

	Noise reduction

	Results
	Acceleration Structures
	Ray Tracing Performance
	Ray Coherence & GPU Utilisation
	ADS Construction

	Noise Reduction

	Discussion
	Ray Tracing & Acceleration Structures
	Ray Coherence & GPU Utilisation
	ADS Construction

	Noise Filtering
	Ethical considerations

	Conclusions
	Future Work

	Bibliography

