
Programming a Self Driving Bike
Implementing a Balancing Algorithm in a Self Driving Bike

Bachelor’s Thesis in Department of Electrical Engineering

ELLIOT ANDERSSON, HANNES HULTERGÅRD

DEPARTMENT OF ELECTRICAL ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se

Bachelor’s thesis 2022

Programming a Self Driving Bike

Implementing a Balancing Algorithm in a Self Driving Bike

ELLIOT ANDERSSON
HANNES HULTERGÅRD

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2022

Programming a Self Driving Bike
Implementing a Balancing Algorithm in a Self Driving Bike
ELLIOT ANDERSSON, HANNES HULTERGÅRD

© ELLIOT ANDERSSON, HANNES HULTERGÅRD, 2022.

Supervisor: Jonas Sjöberg, Professor, Electrical Engineering
Examiner: Jonas Sjöberg, Professor, Electrical Engineering

Bachelor’s Thesis 2022
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: The red version of the Autobike.

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Gothenburg, Sweden 2022

iv

Programming a self driving bike
Implementing a balancing algorithm in a self driving bike
ELLIOT ANDERSSON, HANNES HULTERGÅRD
Department of Electrical Engineering
Chalmers University of Technology

Abstract
The Autobike project was started at Chalmers in 2017 with the goal of creating a self
driving bike, which could be used to test the safety systems in cars. The part of the
project whose aim is the basis for this report is the implementation of a balancing
algorithm in the existing program for one version of the bike, the so called red bike.
This algorithm has the purpose of making the bike be able to balance on its own,
whilst driving forward. The hardware required to reach this goal already exists, and
will therefore be left as is. This bike uses the graphical programming environment
LabVIEW for its main program, although in some situations or for some features,
a text based programming language is preferred. LabVIEW can for this reason call
shared libraries using the Call Library Function Node. In the case of this project,
the balancing algorithm has been translated from Python to C. The algorithm uses
the roll rate of the bike to calculate a duty cycle, this value is then sent to a motor
which steers the front wheel. Code to control the motor which drives the bike
forward has also been written. This code is called from LabVIEW using the same
method as for the balancing algorithm, and from an inputted RPM value returns a
command which is sent using UART from LabVIEW to the VESC motor controller.
A secondary goal of the project has been to improve the development experience of
the code by reorganizing code, removing unnecessary files, and uploading the code
to a public GitHub repository. The result of implementing the balancing algorithm
and the code to control the forward motor is the bike being able to balance on its
own whilst driving forward.

Keywords: Autobike, bike, bicycle, self driving, balancing, LabVIEW, MyRIO, C,
PID.

v

Acknowledgements
This bachelor’s thesis was written by to students at the Mechatronics Engineering
program at Chalmers University of Technology during the spring of 2022.

We would like to thank our examiner and supervisor Jonas Sjöberg for his guidance
and for giving us the opportunity to work on the Autobike. We would also like
to thank Henrik Falk at Mälardalen University for helping us getting started with
LabVIEW, and for answering any questions that we had about the program during
the course of the project. Lastly, we would like to thank Guanzheng Wen and
Antonin Le Noc who has worked with us on the Autobike and helped us with solving
problems and testing the bike.

Elliot Andersson and Hannes Hultergård
Gothenburg, June 2022

vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Aim . 2
1.3 Limitations . 2

2 Theory 3
2.1 LabVIEW . 3

2.1.1 Integration With Text Based Languages 4
2.2 MyRIO-1900 . 4
2.3 ESCON Motor Controller . 4

2.3.1 ESCON Studio . 5
2.4 Steering Motor Encoder . 5
2.5 Inertial Measurement Unit (IMU) . 5
2.6 UART Communication . 5
2.7 VESC . 6

2.7.1 VESC Tool . 6

3 Methods 7
3.1 Configuring the Toolchain . 7

3.1.1 LabVIEW . 7
3.1.2 Text Editor and Build Tools for C Code 8

3.1.2.1 Text editor / IDE: Visual Studio Code 8
3.1.2.2 Compiler and Build Tools: GCC, CMake and Ninja . 8
3.1.2.3 FTP Client: Filezilla 9

3.2 Examining Previous Work and the Current State of the Project . . . 9
3.3 Steering Motor . 9

3.3.1 Configuring the ESCON Motor Controller 10
3.3.2 Transferring Control Algorithm From the Black Bike 10

3.3.2.1 Identifying Relevant Code 10
3.3.2.2 Converting Python to C 11

3.3.3 Automating Steering Motor Control 12
3.3.3.1 Calibrating Gyroscope 13

3.4 Forward Motor . 13
3.4.1 Configuring the VESC . 14

ix

Contents

3.4.2 Encoding UART Command 14
3.4.3 Sending UART Command Using LabVIEW 15

3.5 Cleaning up and Organizing the Code 16
3.6 Logging of Control and Sensor Signals 17
3.7 Testing and Validating . 17

3.7.1 Testing the Basic Functionality of the Forward Motor 18
3.7.2 Testing the Basic Functionality of Steering Motor 18
3.7.3 Testing the Gyroscope . 18
3.7.4 Testing the Balancing Algorithm 18

3.7.4.1 Bike Roller Test . 19
3.7.4.2 Unaided Test . 19

3.7.5 Testing the Program’s Loop Times 19

4 Results 21
4.1 Steering Motor . 21
4.2 Forward Motor . 22
4.3 Balancing Algorithm . 22
4.4 Loop Times . 23
4.5 Discussion . 24

5 Conclusion 25
5.1 Future work . 25

A LabVIEW User Manual I

B Code V
B.1 Balancing Algorithm . V
B.2 VESC UART Encoder . VI
B.3 MATLAB Test Data Plotting . XII

C Testing protocol XV
C.1 Angular velocity of the Forward Motor Follows the Setpoint Value . . XV
C.2 Duty Cycle Compared With the Angular Velocity of the Front Wheel XVI
C.3 Gyroscope Measurements When Tilting the Bike XVII
C.4 Gyroscope and Position . XVIII

C.4.1 After Multiplying With the Calculated Factor XIX
C.5 Duty Cycle Compared With the Gyroscope’s Measurements XX

C.5.1 After Adjusting the Balancing Algorithm XXI
C.6 Unaided Outdoor Test . XXII

x

1
Introduction

This introductory chapter initially presents the background behind the Autobike
project, included in this background is when and why the project was created. The
background also gives an overview of the current state of the Autobike project. The
different aims of the given assignment are also described, this section clarifies what
the main goal is and the sub-goals thereof. Finally the limitations and boundaries
of the assignment, its aim and its goals, are formulated.

1.1 Background

As self driving cars are becoming more common, it is important that they can react
properly to all possible traffic situations. One of these situations include cyclists,
which have a unique behavior which the cars will need to be able to handle [1]. Due
to this unique behavior, bikes should be classed as a distinct object when training
the self driving algorithms. To achieve this, real bikes have to be used in the training.
However, since there is a possibility of the cars hitting the bikes during development,
it is not reasonable to have a person driving the bike. A need to develop a self driving
bike that replicates a bicycle and a real cyclist as closely as possible has therefore
appeared.

The Autobike project was started at Chalmers in 2017 with the goal of creating a
self driving bike, which could be used to test the safety systems in cars. The bike
needed to resemble a normal bike to the greatest extent possible, while also being
able to balance on its own and follow a predetermined path. Two versions of the
bike has been created at Chalmers, the black bike and red bike. The red bike was
later improved upon by students at Mälardalen University (MDU) during 2021; it
is this version of the bike which is in need of further development from this project.

The previous work on the red bike focused primarily on the hardware, as well as
parts of the software made using the graphical programming language LabVIEW [2].
The main purpose of the LabVIEW code is to communicate with the sensors and
I/O on the MyRIO-1900 [3] which controls the bike. The main software components
which are yet to be completed or created for this version of the bike are the control

1

1. Introduction

algorithm for the two motors of the bike, as well as the code for communication with
the so called forward motor, which drives the bike forward [4].

The other version of the bike that was created at Chalmers, the black bike, is
completely programmed in Python. This version has an algorithm for balancing the
bike while it is moving forward. It is this algorithm which is supposed to be used in
the red bike, but since LabVIEW and the MyRIO-1900 does not support Python,
the algorithm must be converted into C.

1.2 Aim
The main aim or goal of the assignment is to further develop the software for the
Autobike, so that the red bike can balance on its own, while driving forward. To
guide the project towards reaching the main goal, a number of sub-goals have been
created.

The first, and most important sub-goal is the adaption and implementation of the
balancing algorithms written for the black bike. This algorithm must be changed
and adapted to function together with the hardware and software used by the red
bike. The desired result of implementing the algorithm is that the input signals for
the steering motor can be calculated based on the signals from the bike’s sensors
as well as parameters set in the bike’s software. The completed code should also
guarantee that the bike is controlled within desired safety limits.

Another sub-goal is programming the software needed to communicate with the
bike’s forward motor. Achieving this aim will result in the ability to control the
speed of the motor from the bike’s software.

A secondary aim of the project is to improve the development experience of the
bike’s software. This includes organizing the project’s files, and commenting all of
the code so that it can be understood by future developers. Accomplishing this
should result in it being easier to continue the development when this iteration of
the project is completed.

1.3 Limitations
The main limitation of the given assignment is that the only part of the Autobike
which will be changed is the software; the hardware will be left in its current state.
Additionally, code that enables the bike to follow a predetermined path will not
be written. It should therefore not be a goal that the bike can drive in a straight
line either, since this would require knowledge about the current and past positions.
Thirdly, the speed of the forward motor should not be able to be changed by the
balancing algorithm.

2

2
Theory

This chapter describes the theory behind the method of the project. It does this by
describing the programs and hardware that has been used during the development
of the Autobike, or in the final result. Note that the hardware presented below does
not include all components of the Autobike, but instead only a selection which were
deemed relevant to this project and report.

2.1 LabVIEW

LabVIEW is a graphical programming environment used to "develop automated re-
search, validation, and production test systems" [2]. The language used in LabVIEW
is called G, and programming is performed by connecting blocks called VI’s (virtual
instruments) or nodes using wires [5]. These VI’s can either be a "sub-VI" written
in G, or primitives built into G.

National Instruments (NI), the developers behind LabVIEW, describes the benefits
of the G programming language as being easy for engineers and scientists to learn,
as well as being more intuitive to debug than text based languages [6]. They also
describe LabVIEW as allowing "automatic parallelization", since it is a dataflow
language, in contrast to sequential languages like C where this is not possible. Figure
2.1 below shows an example of a LabVIEW program.

Figure 2.1: Example of a LabVIEW program.

3

2. Theory

In addition to the LabVIEW code exemplified above, each program has a corre-
sponding front panel where the user can interact with indicators and input controls.
[5]

2.1.1 Integration With Text Based Languages
Certain parts of a LabVIEW program may not be not suited for development in G,
instead a text based language can be used and integrated into LabVIEW [6]. The
integration can be either done by using the Formula Node to write code with a syntax
similar to C, or using the Call Library Function Node to call a DLL (Dynamic-link
library) or a shared library function [7]. The node takes in function parameters
as specified in the node’s settings, and uses their values when calling the specified
function. When the called function completes, its value is returned and can be used
by other parts of the LabVIEW program.

To be able to call a function using the Call Library Function Node the code must be
compiled to either a DLL, or a shared library (a file with a .so filename extension)
if using a Linux based target [8]. This library or DLL must then be uploaded to the
target using for example SFTP (SSH file transfer protocol). If the target is Linux
based the library should be uploaded to the /usr/local/lib directory. The name
of the .so file should then be specified in LabVIEW inside the settings of the Call
Library Function Node.

2.2 MyRIO-1900
The MyRIO-1900 is a device that combines multiple components such as an ARM
processor, an FPGA (field programmable gate array)1, as well as both analog and
digital I/O (input / output) lines to help "students and educators complete real
engineering projects in one semester" [3]. The RIO architecture that the myRIO uses
combines a processor with the I/O of the device via an FPGA [10], [11]. In the RIO
architecture, the FPGA is connected directly to the I/O and is used to offload critical
and intensive tasks from the processor [11]. It also makes high throughput tasks
that run on the FPGA more deterministic than if they had run on the processor.

2.3 ESCON Motor Controller
The ability to steer the front wheel of the bike is made possible by a the so called
steering motor. The motor controller for the steering motor is an ESCON 50/5
designed by Maxon. This motor controller is a "PWM servo controller", which
means it controls motors using Pulse Width Modulation (PWM). The PWM duty
cycle range of the controller, meaning the range between which values the duty cycle
can be varied, is 10% to 90% [12].

1An FPGA is an integrated circuit that consists of an array of logic gates, which can be con-
figured by the user to create a specific hardware architecture [9].

4

2. Theory

2.3.1 ESCON Studio
The ESCON motor controller has an accompanying graphical user interface called
ESCON Studio which features the ability to configure the controller’s parameters
[13]. These parameters can for example change the motor’s maximum angular veloc-
ity or its acceleration. ESCON Studio also allows for the parameter configurations
to be downloaded and transferred between different controllers. The software has
other features, for example a diagnostic tool which can measure how the motor’s
speed follows a certain setpoint value.

2.4 Steering Motor Encoder
To measure the position of the steering motor, or how far the front wheel has been
rotated, an encoder of the model HEDS-5540#A11 is used. The encoder translates
rotational motion into a digital signal by using a codewheel that interrupts a light
beam when it spins [14]. The encoder outputs a waveform signal with a resolution
of 500 counts per revolution.

2.5 Inertial Measurement Unit (IMU)
The bike features an Inertial Measurement Unit, or IMU, the specific model of IMU
used is a Pmod NAV designed by Digilent. This device features an accelerometer
and a gyroscope, as well as a magnetometer and a barometer, the latter pair of
which are not used in this project. Both the accelerometer and gyroscope makes
measurements in relation to the 3 Cartesian coordinate axes [15]. The units of the
given measurements are g (circa 9.81m/s2), and dps (degrees per second) for the
accelerometer and gyroscope respectively; these measurements are given separately
for each of the three axes [16].

2.6 UART Communication
Universal asynchronous receiver-transmitter, abbreviated to UART, is a device-to-
device hardware communication protocol [17]. UART is used to transmit and receive
serial data between two devices, this is achieved with only two wires for the trans-
mitting and receiving ends. Each of the UART devices has two signals named trans-
mitter (Tx), and receiver (Rx); the transmitter of one device should be connected
to the receiver of the other, and vice versa.

The UART interface is, as its name implies, asynchronous, meaning it does not use a
clock signal for synchronization. Instead a bitstream is generated by the transmitter,
which is sampled by the receiver; synchronization is accomplished by using the same
baud rate on both of the devices. The baud rate is the rate at which the information
from the transmitter is sent.

5

2. Theory

Information is transferred in the form of a packet. The packet includes a start bit,
the data frame, an eventual parity bit, and finally one or two stop bits. The start
and stop bits indicate the borders of a packet, meaning its start and end. The data
frame contains the actual data which is transferred, it has a maximum length of 9
bits if no parity bit is used, otherwise the maximum length is 8 bits. The parity
bits can optionally be used to tell if the data frame has been changed during the
transmission.

2.7 VESC
The VESC is a controller for brushless DC motors, also known as an ESC (electronic
speed controller), created by Benjamin Vedder [18]. Both the hardware and firmware
are open source, and available on GitHub2. Communication with the ESC can be
done using either a PPM signal, analog, UART, I2C, USB or CAN [19].

Vedder describes in [20] that when communicating with the controller using UART,
each packet must be wrapped in bytes containing information about itself. The
packet should begin with a start byte with a value of either 2 or 3, depending on
the length of the packet. This should be followed by one or two bytes that specifies
the length of the packet, followed by the payload. At the end, two CRC3 checksum
bytes, and a stop byte with a value of 3 should be added. Vedder continues to write
that a UART packet has to be sent "at regular intervals" to prevent the ESC from
timing out; this can be either a specific send alive packet, or any other command
that sets a value. The content of [20] is based on an example for an STM32F4
discovery board which implements UART communication with the VESC in C [22].

2.7.1 VESC Tool
The developer of the VESC has developed a graphical user interface for interacting
with the motor controller [19]. This tool should be used to configure the ESC to
work with the specific motor that is being used. It can also be used to test the
motor and display real time data like the current drawn, or the temperature of the
VESC.

2The hardware and firmware can be found on GitHub at https://github.com/vedderb/
bldc-hardware and https://github.com/vedderb/bldcrespectivly.

3CRC, or cyclic redundancy check, is used to detect if the payload contains errors [21].

6

https://github.com/vedderb/bldc-hardware
https://github.com/vedderb/bldc-hardware
https://github.com/vedderb/bldc respectivly.

3
Methods

The methods chapter describes the methods which have been used in an attempt
to reach the end goal of the project. In addition to this, it is explained why these
specific methods were chosen. Any additional information which might be needed
to understand the used methods and reasoning behind them, is located within the
previously presented theory section.

3.1 Configuring the Toolchain

The tools and software used to program and control the Autobike had already been
decided to a large extent by the previous groups which worked on the project, as
well as other stakeholders. It was therefore necessary to install these tools before
the previous work could be examined to the fullest extent, and before further work
could commence.

The installation process of these tools, will be presented in the upcoming subsections.
Installation steps of other pieces of software will also be presented, together with
their purpose and the reasons behind why they were decided to be used.

3.1.1 LabVIEW

The parts of the Autobike software that were already written had been done in
LabVIEW. The LabVIEW program itself was therefore installed with the purpose
of being able to view this code. Since a MyRIO-1900 had been selected to run the
code, a special toolchain of plugins and programs which supports the configuration
the device, as well as uploading and running code on it, also had to be installed.
These programs were all first party tools available on the National Instruments
website1, or in the package manager which was installed alongside LabVIEW.

1All the required software for developing for the MyRIO is available in the LabVIEW myRIO
Software Bundle available for download on the National Instruments website:
https://www.ni.com/sv-se/support/downloads/software-products/download.
labview-myrio-software-bundle.html

7

https://www.ni.com/sv-se/support/downloads/software-products/download.labview-myrio-software-bundle.html
https://www.ni.com/sv-se/support/downloads/software-products/download.labview-myrio-software-bundle.html

3. Methods

It should be noted that the installation of LabVIEW and the necessary packages
is more time consuming and problem-ridden than what might first be expected.
The installation itself is not uncommon to take multiple hours, especially if the
computer’s storage space runs out in the middle of an installation. This step was
further delayed due to downloads from the National Instruments website not working
for several days.

3.1.2 Text Editor and Build Tools for C Code
Some of the more advanced algorithms used in the Autobike were better suited to be
written using C code, and called by the main LabVIEW program. These algorithms
include code written for another version of the bike with the purpose of controlling
the steering motor, as well as code needed in the communication with the forward
motor.

To be able to use C code with LabVIEW, a toolchain capable of both writing C code,
but also (cross) compiling it, was required. The toolchain would also need to create
shared libraries as well as uploading these to the target. The selected software, and
the rationale behind the choices are further discussed below.

3.1.2.1 Text editor / IDE: Visual Studio Code

National Instruments has published a guide for setting up a C development toolchain
using the IDE (integrated development environment) Eclipse [23]. However due to
preferential reasons and the project members’ familiarity with Visual Studio Code
(VS Code), it was chosen as the editor instead of Eclipse.

The basics of the previously mentioned guide can still be followed even though the
details differ. There is a guide published on the National Instruments forum that
describes how VS Code can be set up to work with the MyRIO as well [24]. Although
this is not an official guide, it is authored by a NI employee. After installing VS
Code, the C/C++ for Visual Studio Code extension is recommended as it allows for
code-completion aids and debugging capabilities for code written in C [25].

3.1.2.2 Compiler and Build Tools: GCC, CMake and Ninja

Before the C code can be called from within LabVIEW when it is running on a
MyRIO, it must first be compiled and built into a shared library as mentioned in
section 2.1.1. The previously mentioned guide for setting up VS Code to develop
for a MyRIO also goes through how to set up the needed build tools [24].

The compiler used in the guide is a version of GCC made to run on Windows, and
compile the code for Linux running on ARMv7; this compiler is used since VS Code
is running on a computer using windows and the myRIO has an ARM processor.
To aid the build process CMake, which is "a family of tools designed to build, test
and package software", is used to generate makefiles [26]. These files can then be

8

3. Methods

used by Ninja, a build system, to run the compiler and create a shared library or
.so file [27].

3.1.2.3 FTP Client: Filezilla

When the shared library or .so file has been created, this file needs to be transferred
to the myRIO. To accomplish this, the guide recommends Filezilla, which is a "cross-
platform FTP, FTPS and SFTP client" [28]. Filezilla was used to connect to the
myRIO and upload the files as described in 2.1.1.

3.2 Examining Previous Work and the Current
State of the Project

When the tools necessary for viewing and running LabVIEW code had been set up,
the existing code was examined and tested. This was done in order to learn what
parts of the Autobike’s software had not yet been completed. It was concluded that
all hardware except the forward motor could be interacted with in some way from
the main LabVIEW program.

All sensors, including the GPS, gyro, accelerometer, hall sensor (for measuring the
forward speed), and position sensor (to measure the steering wheel position) was
visually represented by graphs or similar on the LabVIEW front panel. The steering
motor duty cycle could be controlled using a slider, and the emergency stop could
stop the program except for in some edge cases (it should however be noted that
the emergency stop always physically broke the circuit).

In addition to the main LabVIEW program, several other VIs were present in the
folder handed over by the previous project group. Some of these were used as sub-
VIs in the main program, but the majority of them seemed to be test code that had
been used during the development process. One of these programs appeared to be
an attempt at communicating with the forward motor; attempts to make the code
to work were however unsuccessful, as further described in 3.4.

3.3 Steering Motor
At the start of this project progress related to being able to control the steering motor
had already been made by the previous project group. Excluding the hardware,
LabVIEW code which could communicate with the steering motor controller, using
a PWM signal, had already been completed. The duty cycle of the PWM signal
had a value ranging from 0% to 100%, where a values above 50% would rotate the
motor clockwise, and values below 50% rotate the motor anti-clockwise, a value of
50% would stop the motor.

The code consisted of three states: a start state, the control loop, and the end state.
The start state made sure the motor was still and thereafter disabled the pin where

9

3. Methods

the signal was sent, and waited until the user told the motor to start with a "Go"
button. After being told to start, the control loop would be entered and the pin was
enabled, which allowed the user to control the speed and direction of the motor using
a slider; the slider changed the PWM signal sent to the motor controller. Finally
the end state would be entered if a stop signal was given, for example by activating
the physical emergency stop button, this state also stops the motor and disables the
pin.

Testing the code by starting the program, pressing the "Go" button, and changing
the PWM signal, the code proved to be working as intended; the motor could rotate
in both directions and change speed accordingly. Therefore it was decided the code
was going to be used, with minor alterations in the form of exchanging the slider
for the previously mentioned control algorithm.

The following subsections describes the methodology and process of completing the
software for the steering motor. This includes identifying and translating relevant
code from another version of the Autobike, using the gyroscope built into the IMU
together with the algorithm to control the steering motor, and implementing safety
limits to the motor’s range of motion.

3.3.1 Configuring the ESCON Motor Controller
Since the black bike has the same forward motor and controller, as well as a func-
tioning configuration of these, the ESCON motor controller parameter configuration
was exported using ESCON Studio and uploaded to the controller of the red bike.
After copying the configuration, the diagnostics tool in ESCON Studio was run to
validate that the motor worked, and that its angular velocity followed the setpoint
value. The most important settings included in the transferred configuration in-
cludes the maximum angular velocity of 4000 RPM, and an increase of the motor’s
acceleration.

3.3.2 Transferring Control Algorithm From the Black Bike
To reach the end goal of creating a bike which can balance on its own, code that
was written for the other version of the bike, the so called black bike, were to be
converted as to work with the current version which this project relates to. The
software for the black bike had been written completely in Python, however it still
used a MyRIO.

Before the code could be used, the parts of the code which are relevant to the current
bike, had to be identified. This process, followed by the conversion of the code to
C, and its integration with LabVIEW is described below.

3.3.2.1 Identifying Relevant Code

Since the software used on the black bike was written entirely in Python, a large
amount of the code had the same or similar functionality as the LabVIEW code

10

3. Methods

for the red bike. For reference, the folder that was received contained in total 156
python files with a combined 20 253 lines of code2. Code which was used for loading
simulations from CSV files were also present in most of files. From this it could be
concluded that almost all of the received code was not relevant for the red bike and
would not have to be used.

Trajectory tracing is also not a part of this project’s goal, meaning the only part
of the code that would be needed was the code which relates to keeping the bike
stable. This code was located in the file controller.py and more specifically in
the function keep_the_bike_stable. The function also called another function,
update, which implemented a PID controller in parallel form according to:

u(t) = Kpe(t) + Ki

∫ t

0
e(t)dt + Kd

de

dt

The value returned from this function is then further sent to another function, named
controller_set_handlebar_angular_velocity. This final function calculates the
angular velocity of the motor based on some safety limits, and calls a function to
convert the angular velocity to a duty cycle. In Python, this conversion is done using
the interp function from the NumPy library with the velocity on the x-axis, and
PWM on the y-axis. In C this as been converted to 50 + rpm * 40.0 / 4000.0,
where 4000 is the maximum angular velocity (in RPM) of the motor. This gives a
value between 10 and 90 when rpm is in the range of the motor’s angular velocity.

3.3.2.2 Converting Python to C

The previous project group that worked on the bike considered using a language
called Cython to compile the Python code to C, and thus avoid having to manually
convert the code [4]. The group mentions that the translation created code which
was confusing and hard to understand, and is was concluded that "Cython is not
useful for this project". It became further apparent that Cython was not needed
after the relevant Python code had been identified. This conclusion was made based
on the relatively small amount of code that would actually have to be converted. It
was therefore decided that the code was going to be converted manually.

The conversion process started with a new C project being created and the identified
Python functions being copied there. The code was then adapted to fit the C syntax,
at the same time as irrelevant code was removed. This irrelevant code mainly
included lines that was only called when a simulation file were present, but some
code was also removed since it did not have any effect on the rest of the program
(for example variables that were written to, but then never used). The safety limits
were also removed and not implemented in the C code because it was decided they
would be created in LabVIEW instead. This decision was based upon two reasons:

2As reported by running the following commands in a Linux terminal:
find . -mindepth 1 -type f -name "*.py" -printf x | wc -c and
wc -l ‘find . -type f -name "*.py"‘

11

3. Methods

to facilitate a better understanding and easier debugging of the code by having as
much code written in LabVIEW as possible, as well as being able to use LabVIEW
to log when a safety limit had been exceeded.

Another change that was made to the control algorithm when converting it into
C code was the removal of code that depended on the time, i.e. the integral and
derivative action in the PID controller. The integral of the error was instead im-
plemented by adding the current error to the previous errors once every time the
function was called. The derivative of the error was calculated as the difference
between the current and previous error (the error the last time the function was
called). The resulting function is shown below.

1 double pid(double reference , double currentValue , double Kp , double
Ki , double Kd) {

2 double error = reference - currentValue ;
3

4 integral += error;
5 derivative = error - previousError ;
6

7 if (integral < -windupGuard) {
8 integral = -windupGuard ;
9 } else if (integral > windupGuard) {

10 integral = windupGuard ;
11 }
12

13 previousError = error;
14

15 return Kp * error + Ki * integral + Kd * derivative ;
16 }

3.3.3 Automating Steering Motor Control
To automate the control of the steering motor, meaning automatically calculating
the duty cycle deciding which direction and how quickly the motor should rotate, a
shared library file of the converted C code was created and uploaded to the MyRIO.
The bike’s roll rate3, read from the IMU’s gyroscope, as well as the three respective
PID gains were then connected to a Call Library Function Node in LabVIEW. The
node was set to call one of the functions from the C algorithm. The called function
uses these four parameters and returns the calculated duty cycle.

The received duty cycle can theoretically have a value outside the range of 10% to
90%. Because of this the duty cycle is coerced to fall within this range using the In
Range and Coerce function in LabVIEW.

For safety reasons the range which the wheel can turn within needs to be limited. By
using the steering motor encoder, the position of the steering motor can be calculated
in degrees from when the wheel is straight. As mentioned in 2.4 the encoder has a
resolution of 500 counts per revolution, but when turning the wheel a full rotation,

3Roll rate in this case means the speed of which the bike rotates along its lengthwise axis.

12

3. Methods

the resulting counts are approximately 220 000; the reason for this is unknown.
Thus the resulting factor for converting between counts and degrees is 360/220000.
In LabVIEW the rotational position is then compared with a limitation, configured
from the main program’s front panel. The current limit is set to 45 degrees in each
direction, as this is the limit used for the black bike. If the limit is exceeded the
duty cycle is set to 50%, meaning the motor should stop.

The duty cycle is then sent to a node in LabVIEW which creates a PWM signal.
This signal replaces the previously existing slider and is in turn sent to the hardware
pin (pin 19) which the steering motor controller is connected to.

3.3.3.1 Calibrating Gyroscope

The IMU’s placement at an angle resulted in none of its axes correctly corresponding
to the roll rate of the bike. Therefore the misalignment had to be changed or
compensated for to make the gyroscope’s readings as accurate as possible. Code
could be written which compensates for this by combining readings from multiple
axes, but this was considered to be too complicated in comparison with rearranging
the IMU. Even though the project’s limitations included that the hardware of the
Autobike would not be changed, the rubber block which the IMU is placed in, was
measured and cut so that the IMU’s Z-axis corresponded with the bike’s roll rate.

When the automated control of the steering motor was tested, it was discovered that
the motor rotated even though the bike was not moving. During an investigation
of the graphs that plotted the gyroscopes values, it appeared as though the average
value of the rotational rate around every axes of the gyroscope was non-zero, even
when the bike was stationary. This seems to be a case of a "constant bias error" [29].

To counteract the error, the bike was kept stationary over a time while the values
returned from the gyroscope was recorded. The average of these recordings was then
calculated and the negative of this average was added to the gyroscope’s output for
each axis to correct the error. It should be noted that the error or "constant bias
error" might drift over time, meaning the error might change. If this occurs the
average offset could be calculated again, or more sophisticated methods could be
utilized as mentioned in [29].

3.4 Forward Motor
When the project was received, the main LabVIEW program contained no code with
the purpose of controlling the forward motor. The reason for this code not being
created was that "the command used for controlling the forward motor controller
were not found" as described in the previous project’s report [4].

The MyRIO communicates using UART with the forward motor controller, which
will be refereed to as the VESC from this point on. The hardware necessary to
control the forward motor using UART was implemented; the RX and TX wires

13

3. Methods

had been connected between the MyRIO and the VESC, which in turn is connected
to the forward motor. In LabVIEW there existed a VI which sent a command to
the UART port connected to the VESC, however this program was undocumented
and did not appear to work when it was tested.

Based on the previously created code, or lack there of, the LabVIEW code to com-
municate with the VESC using UART and consequently control the forward motor
had to be created from scratch. This process with be described in the upcoming
subsections. This process consist of configuring the VESC, encoding the correct
UART command, successfully sending this command using LabVIEW, as well as
some general testing and tuning.

3.4.1 Configuring the VESC
The development of the code meant to control the forward motor started with trying
to use the already existing test program to send a UART command to the VESC.
Even though the command appeared to match the description from 2.7, the motor
did not react. Why this was the case was unknown, which created doubts concerning
which part of the setup caused the problem.

In an attempt to narrow down the cause of the problem, a computer running the
VESC Tool was connected directly to the VESC via USB. Using this tool, an ex-
periment was made where a fixed RPM was sent to the controller. This resulted in
a high pitched noise, as well as close to no movement of the motor.

It was hypothesized that the VESC was misconfigured in regard to the specifications
of the forward motor. To try to fix this issue, the setup wizard built into the tool
was used. In the wizard, the requested values and parameters was set to that of
the motor [30]. The values which could not be found in the forward motor’s data
sheet were set to the recommended values. When running the same experiment as
before and setting the motor’s RPM to a fixed value, the motor now turned at what
seemed to be the correct speed, without any screeching.

The VESC Tool is also used to make sure the VESC is set to use UART as its
communication interface. This is done by changing the APP to Use to UART under
App Settings > General. The baud rate can also now be accessed and changed, but
is kept at the default value of 115 200 bps.

3.4.2 Encoding UART Command
The UART communication with the VESC is based on sending various commands
which should make the motor react in a certain way. Apart from the blog post by
Vedder cited in section 2.7 as well as his example for the STM32F4 discovery board,
there exists no documentation for how the UART commands sent to the VESC
should look.

14

3. Methods

The first attempt at encoding a UART command was made almost entirely in Lab-
VIEW by setting a RPM value in the front panel, flipping its endianness, and
wrapping it in start and stop bytes as well as checksum bytes. The payload was also
split into separate bytes in the same way as in Vedder’s example. Due to lacking
documentation regarding the UART implementation, and there being no easy way
of knowing exactly what bytes a correctly encoded message should contain, this
method was later abandoned.

It was instead decided that a shared library would be created based on the exam-
ple made by Vedder; the shared library could then be called using a Call Library
Function Node in LabVIEW. This method circumvented the problem of having to
write the communication in a, for this purpose, undocumented language. Instead
the correct command could be returned from a C function based on an inputted
RPM value.

To create this library which could be called by LabVIEW, the code that created
the desired UART commands had to be identified. The functions to call and send
specific commands was located in the bldc_interface.c file. The three functions
that have been adapted to work with the myRIO are bldc_interface_set_rpm,
bldc_interface_set_current, as well as bldc_interface_send_alive. They
have also been renamed to setRpm, setCurrent, and sendAlive respectively, to
better represent their new purpose. These functions was chosen since they were
deemed to be the most useful commands related to controlling the forward motor.
Functions later called by these functions have also been adapted and, in some cases,
simplified. The functions buffer_append_int32 and buffer_append_float32 con-
verts an integer or float values to a big-endian array, and send_packet_no_fwd then
calls a function to build and send the actual packet. In the adapted code, there is
instead a function named buildPacket which builds and returns the packet. This
function also calls crc16 to calculate and add the checksum bytes. Finally the packet
is copied to an array which is passed as a pointer to setRPM and setCurrent.

3.4.3 Sending UART Command Using LabVIEW
To create the UART command using LabVIEW, initially the desired speed of the
bike in km/h is converted to the RPM of the bike’s pedals. This conversion is based
on the dimension of the back wheel combined with the gear ratio from the pedals to
the wheel. The converted value is then sent to a Call Library Function Node which
is set to call the correct function from the C code, after it has been compiled and
uploaded to the myRIO. The called function has an additional input parameter in
the form of a pointer to an array. This array is initialized in LabVIEW, so that the
pointer of it can be sent to the C code. When the C code runs, the pointer is used
to populate the array with the values of the command which should be sent to the
VESC.

The actual transmission of the command is accomplished using the UART block
in LabVIEW. The block is configured to use the UART channel corresponding to

15

3. Methods

the connection with the VESC, the baud rate is also set to 115 200 bps which is
the same value as was previously configured in the VESC Tool. The transmission is
placed inside of a loop to prevent the VESC from going to sleep.

The loop which which was desired to be used was a Timed Loop, which executes
at a precise rate specified by the user. Though due to problems with the program
crashing, the type of loop was changed to a While Loop; the cause of these crashes
are unknown. A delay of one second was also introduced inside the loop to prevent
it from throttling the rest of the system. The change of loop type did resolve the
program crashing, though did also introduce another issue with recording loop times.
This is further discussed in 3.7.5.

3.5 Cleaning up and Organizing the Code

In an attempt to make it easier for both the current and future people working on the
Autobike project, all of the LabVIEW and C code that is used has been moved into
a single folder. Previously it was separated into two different folders which had to be
placed in specific locations on the development computer for LabVIEW to be able
to detect them. The folder has also been uploaded to a monolithic public GitHub
repository4. The purpose of this is to make it easier to collaborate on the code, as
well as making it possible to keep track of changes. It should also make it easier
for others to take over development of the bike, as this was previously unnecessarily
tedious. However, due to how LabVIEW functions, there is still one file which has
to be manually located when opening LabVIEW on a new computer, this file is
located inside labview/bin together with all other files that the LabVIEW project
uses.

The LabVIEW code that was received from the previous project group has been
cleaned up, meaning that the main program has been separated into several sub-
VIs, and unused code has been removed. The main advantage of creating sub-VIs
is to reduce the area which the LabVIEW code uses; a large area makes it hard
to locate code since you can not zoom inside LabVIEW. The code that has been
removed are mainly VIs that were either old versions of the main VI, or old code
used for testing individual components (presumably from before this was integrated
into the main VI). By removing unused VIs the potential confusion about what a
VI does, and which VI is the most recent one, is mitigated.

Care has also been taken to document the new code that has been written, as well as
the old code, so that anyone can continue the development process without having
to interpret all of the code without any guidance. In addition to writing comments
inline in the C and LabVIEW files, a README.md file has also been created in the
root of the repository. This file lists all the folders that are currently present and
explains their purpose. When relevant, this file also contains instructions for how

4https://github.com/Hannnes1/autobike

16

3. Methods

the content of the folder should be used. A user manual for the LabVIEW program
has also been written. This can be found in appendix A.

3.6 Logging of Control and Sensor Signals
With the purpose of being able to record and log the control and sensor signals of the
bike, a logging system had to be created. This system would allow for future logs of
a test being plotted and analyzed, helping the tuning process of the system. The logs
could also be used to troubleshoot potential problems with the bike’s performance.

In this specific case to be able to examine the data from performed tests, values
from sensors, actuators, and the balancing algorithm added to the logging system.
LabVIEW has built in functionality for this using the TDMS file format [31], which
includes blocks for opening and creating, streaming to, and closing TDMS files.
These files can then be opened using a number of different methods. Some of
these methods include a special LabVIEW VI, Excel, or MATLAB using the Data
Acquisition Toolbox.

In the main LabVIEW program used on the bike, a TDMS file is either created or
replaced in the specified location using a TDMS Open block. In each location where
data should be logged, a TDMS Write block is added and a group name and channel
name is specified. Data is inputted as an array where each element corresponds to
one channel (when the data layout has been specified as interleaved). Each time
that data is sent to the TDMS block, new data points are added to the channels.
Therefore by placing the block inside of a loop, data from each iteration of the loop
will be logged to the file. When a test is completed and all of the test data has been
recorded, the file is closed using a TDMS Close block before the program finishes.

MATLAB was chosen as the method for analyzing the data which the logging system
gathers. MATLAB was specifically chosen due to the flexibility it grants regarding
how the data can be presented. The code to do perform the plotting is presented in
appendix B.3,

3.7 Testing and Validating
During the development of the bike’s software, several tests have been done continu-
ously to ensure that the developed features worked as expected. These tests include
both simpler and informal tests designed to validate the bike’s most basic functions,
and more formal tests where values of different signals were logged.

To simplify the process of replicating the tests, a testing protocol was created. In
this protocol, all tests and results have been documented so that they can easily
be understood and reproduced, both for this and future versions of the bike. Steps
which had to be taken to reach a satisfactory result have also been documented.

17

3. Methods

In this section the tests which have been performed are presented together with each
test’s purpose. More detailed descriptions and procedures are described in the test
protocol found in appendix C. The most important results from the testing are also
presented in the upcoming chapter 4.

3.7.1 Testing the Basic Functionality of the Forward Motor
The first test of the forward motor was described in 3.4.1. Summarized, it was
performed by using the VESC Tool to run the motor at a fixed RPM. Later on,
when the code to send UART commands via LabVIEW had been created, a fixed
RPM was instead sent to the motor via one of these commands. Both of the tests
mentioned above were performed when the bike was stationary and elevated into
the air, this to insure the bike would not start moving. During these tests, the
load on the motor was varied by pressing a foot against the back wheel of the bike
with different pressures. The purpose of this was to ensure that the controller in
the VESC worked as intended and the speed of the motor stayed constant during
varying loads.

3.7.2 Testing the Basic Functionality of Steering Motor
To ensure that controller in the ESCON worked, meaning the speed of the forward
motor followed the setpoint value, a test was performed in ESCON Studio. This
test plotted the measured velocity of the motor, in comparison with the setpoint
velocity, which was periodically changed.

Another test of the forward motor was performed by running the existing LabVIEW
code and adjusting the duty cycle of the motor using the slider on the front panel.
During this test the bike’s front wheel was suspended midair so it could rotate
freely. After the balancing algorithm had been created and connected to control
the steering motor, it was tested by leaning the bike and examining if the steering
motor rotated in the same direction. This purpose of the latter test was to insure
the duty cycle of the steering motor followed the changing roll rate of the bike.

3.7.3 Testing the Gyroscope
To test that the gyroscope measured the correct roll rate, the bike was leaned to
a predetermined angle. The roll rate which was measured during the time of the
leaning was then integrated to calculate an approximate angle (not accounting for
drift in the gyro), which could be compared with the predetermined angle the bike
was tilted to.

3.7.4 Testing the Balancing Algorithm
After concluding that both motors worked separately, the balancing algorithm was
able to be tested with both motors running. Two types of tests were performed, the
first using a bike roller, and the second allowing the bike to move unaided. Both of
these tests are described in the subsections below.

18

3. Methods

3.7.4.1 Bike Roller Test

The bike roller test made it possible to replicate the effects of going forwards while
not requiring a large amount of space. The test consisted of placing the bike on
the roller and turning on both motors. For safety the bike was held, though this
was done whilst trying to not manually interfere in its movement. The aim of this
test was to examine if the motors worked in tandem, and if it seemed as the bike
could potentially balance on its own. It should be noted that a large restricting
factor of this test is the limited space the bike can move sideways before reaching
the boundary of the roller.

3.7.4.2 Unaided Test

To test the bike using an approach closer to a real world environment, a series of
tests were performed outdoors in a flat and open area. This test made it possible
to drive the bike forward, as well as allowing it to move sideways, mitigating the
limitation of the previous bike roller test. To prevent the bike from falling and
potentially being damaged, two people ran alongside the bike ready to catch in the
case it would fall.

For the purpose of being able to subsequently analyze the bike’s behavior, the tests
where both filmed and recorded using the logging system presented in 3.6. Multiple
tests were made with different values for the PID gains, to see how changing these
values would affect the bikes performance.

The data which was chosen to be recorded, logged and plotted with MATLAB
include the position and speed of the steering motor, the duty cycle sent to the
steering motor, as well as the roll rate of the bike. The results of some of these tests
are shown in section 4.3.

3.7.5 Testing the Program’s Loop Times
While not being apart of the project’s aim in itself, the performance of the program
is of interest. This is because the bike’s balancing could potentially be impacted if
parts of the program takes too long to run. To be able to measure the performance,
the time to run one iteration of each loop in the LabVIEW program was recorded.
These times are then added together to get a total loop time for the program. The
members of the previous project group have done a more in depth examination
of this performance, which means that the values which are retrieved during the
current testing can be compared with those values.

It should be noted that because a while-loop had to be used for the forward motor
control, the time it takes to run cannot be measured. However, since a delay of one
second exists in the loop, this is the loop time unless the other code in the loop takes
longer to compute (which it does not). Additionally, the loop time of the forward
motor control does not matter in this stage of the project, since the speed of the
motor will be kept constant.

19

4
Results

This chapter presents the results of the project. Primarily the result corresponding to
the main aim of the project, meaning the bike’s ability to balance, will be presented.
The results correlating to the sub-goals: how the bike performs with regards to the
steering motor, forward motor and balancing algorithm are also presented. Finally
the reasons behind the results, and the effects of them are discussed. Further more
detailed results from the individual tests are documented in appendix C.

4.1 Steering Motor

The steering motor, when viewed as a standalone component fully works as intended.
That is, it is disabled until the GO button is pressed in LabVIEW, and then it can
be controlled by changing the duty cycle between 10% and 90%. It also stops when
the duty cycle is set to 50%, as expected. When the emergency stop is pressed either
physically or in the software, the duty cycle is set to 50%, and the pin is disabled.

When connecting the control of the steering motor to the balancing algorithm and
safety limit, the motor turns towards the same direction which the bike is leaning,
and the duty cycle is set to 50% when the safety limits is reached. However, the
steering wheel has the possibility of overshooting the safety limit because of the
inertia of the steering wheel and handlebar. Whether this happens also depends on
how fast it was rotating before the limit was reached.

The controls for the motors, separated into two boxes are depicted in figure 4.1
below. Inside of the left box, the steering motor controls are located. In these
controls there exist inputs for changing each of the PID gains labeled P, I, and
D. The box also has a field for changing the angle limit (in degrees from when the
wheel is straight). Below the controls mentioned above are outputs from the steering
motor encoder which shows its current position, velocity and acceleration. For the
purpose of calibrating the encoder, there exists a button which resets the encoder
position whenever it is pressed. At the bottom of the box, the duty cycle sent to the
motor from the balancing algorithm is shown. At the bottom right of the image,
under the boxes, is the GO button which starts the two motors.

21

4. Results

Figure 4.1: The motor controls in LabVIEW, with the steering motor control on
the left side

4.2 Forward Motor

The speed of the forward motor can successfully be set using the LabVIEW front
panel as seen on the right side of figure 4.1 above, and also changed while the program
is running. The forward motor only starts when GO is pressed, and it stops when
the emergency stop is pressed; the same behavior that the steering motor has.

The motor can not only be controlled by setting its speed directly, but also by
changing its current. Controlling the motor using current can be accomplished if
the function called by the Call Library Function Node is changed to setCurrent.
Additional methods of controlling the motor can be added by creating and calling
additional C functions based on the example by Vedder.

4.3 Balancing Algorithm

During the initial testing of the balancing algorithm, it was concluded that the
steering motor behaved as expected in terms of rotation direction in relation to the
roll rate of the bike. Meaning when the bike was leaned, the front wheel rotated
towards the same direction.

When the bike was then placed on the roller, it seemed as if the bike could stay
upright for some time before it had to be caught to prevent it from falling. The
algorithm would make the front wheel rotate to the correct direction, but the am-
plitude of these rotations was gradually increasing until the border of the roller was
reached. A real, conclusive result could not be made from this test; the reasons

22

4. Results

for this are both because of human interference, as well as the narrow width of the
roller.

The final and most reliable test of the balancing algorithm was done outdoors as
described in 3.7.4.2, and the P gain was set to 5 (I and D were set to 0). The
data from these tests, recorded with the logging system, are presented in the images
below.

(a) The roll rate of the bike and duty cycle
sent from the balancing algorithm.

(b) The position of steering motor during
the test.

Figure 4.2: Plotted data from the final test.

In the test presented above the roll rate of the bike is relatively stable around
0. There only major deviance is around the 25:th second, which is caused by the
bike passing over a bump in the road. As seen in blue line in figure 4.2a which
represents the duty cycle, the rapid change in duty cycle also leads to a change
by the control algorithm as a correction. The steering motor has some oscillations
with and amplitude of about 2° and period of roughly one second. That is however
nothing which had any noticeable effect on the overall performance; the test lasted
for 8 seconds, and had to be aborted when the bike drove too close to obstacles in
the testing area.

4.4 Loop Times

For the loop time tests all of the bikes hardware was enabled so that all control signal
calculations would be made, and the resulting time would be as accurate possible.
The total loop time was recorded as being between 2155 µs and 2420 µs. Compared
to the previous project group’s measurements, the new loop times are at worst is
240 µs slower than the worst case before the logging system and C algorithms were
added [4].

23

4. Results

4.5 Discussion
The main part of the result which should be discussed is that the forward motor
control stopped working before the final test. Meaning that the UART commands
sent to the VESC did not result in the forward motor moving. The reasons for this
are unknown, but the problem has been isolated to the VESC, perhaps a broken
trace related to the UART connections are the cause. During the final test the
bike was instead accelerated by pushing it, before being let go. Pushing the bike
should though not affect the overall result, compared to if the forward motor was
still working.

The improvement of the development experience is one aim which was presented in
1.2, this aim is however not mentioned above. The reason being this decision it that
it is difficult to assess if the aim has been reached or not, since it can be considered
individual to a certain degree. What can be said is that all of the code which is
used has been moved to a single location, which should make it easier to find the
code. It should also now be much clearer what code is the most recent one. The
code itself has been organized and separated into sub-VIs which should also make
it easier to find the relevant code, this in combination with more comments should
also make it easier to understand it.

What the result of the final test, and the data in figure 4.2 shows is that the bike
can be kept stable by the balancing algorithm, even when the surface is uneven.
There are some low frequency osculations of about the same frequency in all of the
plotted data, which indicates that primarily the P gain of the PID controller could
be tuned for better results.

There are some high frequency oscillations in the roll rate which might be caused
by the IMU not being properly mounted, something which leads to vibrations; espe-
cially when the surface is uneven. Improper mounting of hardware can also be found
elsewhere in the bike, which could be contributing to a worse balancing performance.
These oscillations also creates high frequency changes in the duty cycle. Though
this is generally not a problem since the steering wheel cannot change direction with
such a high frequency; the dynamics of the bike could be described as acting as a
low pass filter.

24

5
Conclusion

The main goal of the project was to develop the software for the Autobike so that it
could balance on its own whilst driving forward. In practice this meant completing
two sub-goals: implementing an algorithm which, using the roll rate of the bike,
could calculate the correct duty cycle for the steering motor, as well as writing
software to encode a UART command which then could be used to control the
forward motor.

As described in the results, the two sub-goals as well as the primary aim of the project
were reached. The forward motor can be controlled from LabVIEW, and the steering
motor is controlled by the balancing algorithm. The balancing algorithm can also
successfully keep the bike stable, at least until the forward velocity becomes too low.
What this minimum velocity is has not been determined, and will vary depending
on what the gains of the PID controller are. Even if the some pieces of hardware
were not properly mounted, this did not affect the performance in any meaningful
way in this stage of the development. If the controller were to be tuned further, the
hardware should probably be securely mounted so that the best possible foundation
is achieved.

The secondary goal of the project, improving the future development experience,
is as previously discussed difficult to judge if it has been reached. The wording
"improving" does not contain the degree of which this should be done, meaning any
small improvement could be interpreted as reaching the goal. However, continuously
during the project’s development, files have been organized and cleaned up; both for
the benefit of the current developers, but more importantly for any future developers.
The question of whether this goal has been reached or not is therefore best judged
by these future developers.

5.1 Future work

The priority for any future work should be to fix forward motor. Even if this is not
something which affected the results of this report, the speed might become more
important in the future if the current algorithms are improved, and additional ones

25

5. Conclusion

are added. To accurately set the forward speed and to increase how far the bike can
be driven, the forward motor would have to work.

Future work should also be focused on improving the hardware, and primarily its
mounting. The IMU is the most important hardware component for the balancing
algorithm, and will therefore have to be mounted so that its axis aligns with the
axis of the bike. It also has to be mounted in such a way that it does not move
around or vibrate excessively.

26

Bibliography

[1] Argo AI, Autonomous Vehicle Guidelines for Safe Driving Around Cyclists,
Dec. 2021. [Online]. Available: https://www.argo.ai/wp-content/uploads/
2021/12/ArgoAI_BikeGuidelines-WithCopyright.pdf.

[2] National Instruments, What Is LabVIEW? Apr. 2022. [Online]. Available:
https://www.ni.com/sv-se/shop/labview.html.

[3] ——, myRIO-1900, Apr. 2022. [Online]. Available: https://www.ni.com/sv-
se/support/model.myrio-1900.html.

[4] V. Aronsson Karlsson, L. Bridén, M. Zawari, and G. Sherif, “PROJECT AU-
TOBIKE,” Ph.D. dissertation, Mälardalen University, Västerås, Aug. 2022.

[5] H. A. Andrade and S. Kovner, “Software synthesis from dataflow models for
G and LabVIEW TM,” in Conference Record of the Asilomar Conference on
Signals, Systems and Computers, vol. 2, 1998, pp. 1705–1709. doi: 10.1109/
acssc.1998.751616. [Online]. Available: https://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=751616.

[6] National Instruments, Benefits of Programming Graphically in LabVIEW,
2022. [Online]. Available: https://www.ni.com/sv-se/innovations/white-
papers/13/benefits- of- programming- graphically- in- ni- labview.
html.

[7] National instruments, Call Library Function Node, Mar. 2018. [Online]. Avail-
able: https://zone.ni.com/reference/en-XX/help/371361R-01/glang/
call_library_function/.

[8] National Instruments, Creating Shared Library For LabVIEW Real-Time or
VeriStand on NI Linux RT Target, Oct. 2021. [Online]. Available: https://
knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YGNdCAO&
l=sv-SE.

[9] M. Trochimiuk, FPGA programming—how it works and where it can be
used, Apr. 2021. [Online]. Available: https://codilime.com/blog/fpga-
programming-how-it-works-and-where-it-can-be-used/.

[10] National Instruments, The LabVIEW RIO Architecture: A Foundation for In-
novation, Oct. 2020. [Online]. Available: https : / / www . ni . com / sv - se /
innovations/white- papers/13/the- labview- rio- architecture-- a-
foundation-for-innovation.html.

[11] ——, From Student to Engineer: Preparing Future Innovators With the NI
LabVIEW RIO Architecture - NI, Feb. 2022. [Online]. Available: https://

27

https://www.argo.ai/wp-content/uploads/2021/12/ArgoAI_BikeGuidelines-WithCopyright.pdf
https://www.argo.ai/wp-content/uploads/2021/12/ArgoAI_BikeGuidelines-WithCopyright.pdf
https://www.ni.com/sv-se/shop/labview.html
https://www.ni.com/sv-se/support/model.myrio-1900.html
https://www.ni.com/sv-se/support/model.myrio-1900.html
https://doi.org/10.1109/acssc.1998.751616
https://doi.org/10.1109/acssc.1998.751616
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=751616
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=751616
https://www.ni.com/sv-se/innovations/white-papers/13/benefits-of-programming-graphically-in-ni-labview.html
https://www.ni.com/sv-se/innovations/white-papers/13/benefits-of-programming-graphically-in-ni-labview.html
https://www.ni.com/sv-se/innovations/white-papers/13/benefits-of-programming-graphically-in-ni-labview.html
https://zone.ni.com/reference/en-XX/help/371361R-01/glang/call_library_function/
https://zone.ni.com/reference/en-XX/help/371361R-01/glang/call_library_function/
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YGNdCAO&l=sv-SE
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YGNdCAO&l=sv-SE
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YGNdCAO&l=sv-SE
https://codilime.com/blog/fpga-programming-how-it-works-and-where-it-can-be-used/
https://codilime.com/blog/fpga-programming-how-it-works-and-where-it-can-be-used/
https://www.ni.com/sv-se/innovations/white-papers/13/the-labview-rio-architecture--a-foundation-for-innovation.html
https://www.ni.com/sv-se/innovations/white-papers/13/the-labview-rio-architecture--a-foundation-for-innovation.html
https://www.ni.com/sv-se/innovations/white-papers/13/the-labview-rio-architecture--a-foundation-for-innovation.html
https://www.ni.com/sv-se/innovations/white-papers/14/from-student-to-engineer--preparing-future-innovators-with-the-n.html
https://www.ni.com/sv-se/innovations/white-papers/14/from-student-to-engineer--preparing-future-innovators-with-the-n.html
https://www.ni.com/sv-se/innovations/white-papers/14/from-student-to-engineer--preparing-future-innovators-with-the-n.html

Bibliography

www.ni.com/sv-se/innovations/white-papers/14/from-student-to-
engineer--preparing-future-innovators-with-the-n.html.

[12] Maxon, ESCON 50/5 Hardware Reference, Aug. 2021. [Online]. Available:
https://www.maxongroup.com/medias/sys_master/root/8930313371678/
409510-ESCON-50-5-Hardware-Reference-En.pdf.

[13] ESCON, ESCON Overview, Apr. 2014. [Online]. Available: https://docs.rs-
online.com/ed0a/0900766b81376a21.pdf.

[14] Avago Technologies, HEDM-55xx/560x & HEDS-55xx/56xx, Nov. 2014.
[15] Digilent, “Pmod NAV Reference Manual,” Jan. 2017. [Online]. Available:

https://digilent.com/reference/_media/reference/pmod/pmodnav/
pmod_nav_rm.pdf.

[16] STMicroelectronics, iNEMO inertial module: 3D accelerometer, 3D gyroscope,
3D magnetometer, Mar. 2015. [Online]. Available: https://www.st.com/
resource/en/datasheet/lsm9ds1.pdf.

[17] M. Grace Legaspi and E. Peňa, “UART: A Hardware Communication Pro-
tocol Understanding Universal Asynchronous Receiver/Transmitter,” Analog
Dialogue, vol. 54, no. 4, 2020. [Online]. Available: https://www.analog.
com/en/analog-dialogue/articles/uart-a-hardware-communication-
protocol.html.

[18] B. Vedder, A custom BLDC motor controller (a custom ESC), 2014. [On-
line]. Available: http://vedder.se/2014/01/a- custom- bldc- motor-
controller/.

[19] ——, VESC – Open Source ESC, Jan. 2016. [Online]. Available: http://
vedder.se/2015/01/vesc-open-source-esc/.

[20] ——, Communicating with the VESC using UART, Oct. 2015. [Online]. Avail-
able: http://vedder.se/2015/10/communicating-with-the-vesc-using-
uart/.

[21] Technopedia, What is Cyclic Redundancy Check (CRC)? Sep. 2020. [Online].
Available: https : / / www . techopedia . com / definition / 1793 / cyclic -
redundancy-check-crc.

[22] B. Vedder, vedderb/bldc_uart_comm_stm32f4_discovery: A project that
demonstrates how to communicate between the VESC and a STM32F4 discov-
ery board using UART, Dec. 2018. [Online]. Available: https://github.com/
vedderb/bldc_uart_comm_stm32f4_discovery.

[23] National Instruments, Getting Started with C/C++ Development Tools for NI
Linux Real-Time, Eclipse Edition, Jan. 2021. [Online]. Available: https://
knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YHR7CAO&
l=sv-SE.

[24] C. J, NI Linux Real-Time Cross Compiling: Using the NI Linux Real-Time
Cross Compile Toolchain with Visual Studio Code, Mar. 2020. [Online]. Avail-
able: https://forums.ni.com/t5/NI-Linux-Real-Time-Documents/NI-
Linux-Real-Time-Cross-Compiling-Using-the-NI-Linux-Real-Time/
ta-p/4026449.

[25] G. Van Liew, eli, J. Reid, A. Wang, Pine, M. Bierner, J. Sola, F. Bluemle, and
E. Rashedi, C++ programming with Visual Studio Code, May 2022. [Online].
Available: https://code.visualstudio.com/docs/languages/cpp.

28

https://www.ni.com/sv-se/innovations/white-papers/14/from-student-to-engineer--preparing-future-innovators-with-the-n.html
https://www.ni.com/sv-se/innovations/white-papers/14/from-student-to-engineer--preparing-future-innovators-with-the-n.html
https://www.ni.com/sv-se/innovations/white-papers/14/from-student-to-engineer--preparing-future-innovators-with-the-n.html
https://www.ni.com/sv-se/innovations/white-papers/14/from-student-to-engineer--preparing-future-innovators-with-the-n.html
https://www.maxongroup.com/medias/sys_master/root/8930313371678/409510-ESCON-50-5-Hardware-Reference-En.pdf
https://www.maxongroup.com/medias/sys_master/root/8930313371678/409510-ESCON-50-5-Hardware-Reference-En.pdf
https://docs.rs-online.com/ed0a/0900766b81376a21.pdf
https://docs.rs-online.com/ed0a/0900766b81376a21.pdf
https://digilent.com/reference/_media/reference/pmod/pmodnav/pmod_nav_rm.pdf
https://digilent.com/reference/_media/reference/pmod/pmodnav/pmod_nav_rm.pdf
https://www.st.com/resource/en/datasheet/lsm9ds1.pdf
https://www.st.com/resource/en/datasheet/lsm9ds1.pdf
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html
https://www.analog.com/en/analog-dialogue/articles/uart-a-hardware-communication-protocol.html
http://vedder.se/2014/01/a-custom-bldc-motor-controller/
http://vedder.se/2014/01/a-custom-bldc-motor-controller/
http://vedder.se/2015/01/vesc-open-source-esc/
http://vedder.se/2015/01/vesc-open-source-esc/
http://vedder.se/2015/10/communicating-with-the-vesc-using-uart/
http://vedder.se/2015/10/communicating-with-the-vesc-using-uart/
https://www.techopedia.com/definition/1793/cyclic-redundancy-check-crc
https://www.techopedia.com/definition/1793/cyclic-redundancy-check-crc
https://github.com/vedderb/bldc_uart_comm_stm32f4_discovery
https://github.com/vedderb/bldc_uart_comm_stm32f4_discovery
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YHR7CAO&l=sv-SE
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YHR7CAO&l=sv-SE
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YHR7CAO&l=sv-SE
https://forums.ni.com/t5/NI-Linux-Real-Time-Documents/NI-Linux-Real-Time-Cross-Compiling-Using-the-NI-Linux-Real-Time/ta-p/4026449
https://forums.ni.com/t5/NI-Linux-Real-Time-Documents/NI-Linux-Real-Time-Cross-Compiling-Using-the-NI-Linux-Real-Time/ta-p/4026449
https://forums.ni.com/t5/NI-Linux-Real-Time-Documents/NI-Linux-Real-Time-Cross-Compiling-Using-the-NI-Linux-Real-Time/ta-p/4026449
https://code.visualstudio.com/docs/languages/cpp

Bibliography

[26] Kitware, CMake, 2022. [Online]. Available: https://cmake.org/.
[27] J. N. Hasse, N. Weber, E. Martin, G. Costa, and T. Ikuta, Ninja, a small

build system with a focus on speed, 2022. [Online]. Available: https://ninja-
build.org/.

[28] FileZilla, Client Features, 2022. [Online]. Available: https : / / filezilla -
project.org/client_features.php.

[29] I. Beavers, “The Case of the Misguided Gyro,” Analog Dialogue, vol. 51, no. 3,
Mar. 2017. [Online]. Available: https : / / www . analog . com / en / analog -
dialogue/raqs/raq-issue-139.html.

[30] Shimano, DU-E6010, 2022. [Online]. Available: https://bike.shimano.com/
en-EU/product/component/citytrek-ebike-e6000/DU-E6010.html.

[31] National Instruments, The NI TDMS File Format, May 2022. [Online].
Available: https : / / www . ni . com / sv - se / support / documentation /
supplemental/06/the-ni-tdms-file-format.html.

29

https://cmake.org/
https://ninja-build.org/
https://ninja-build.org/
https://filezilla-project.org/client_features.php
https://filezilla-project.org/client_features.php
https://www.analog.com/en/analog-dialogue/raqs/raq-issue-139.html
https://www.analog.com/en/analog-dialogue/raqs/raq-issue-139.html
https://bike.shimano.com/en-EU/product/component/citytrek-ebike-e6000/DU-E6010.html
https://bike.shimano.com/en-EU/product/component/citytrek-ebike-e6000/DU-E6010.html
https://www.ni.com/sv-se/support/documentation/supplemental/06/the-ni-tdms-file-format.html
https://www.ni.com/sv-se/support/documentation/supplemental/06/the-ni-tdms-file-format.html

A
LabVIEW User Manual

This appendix goes through the main LabVIEW program, and explains how it
should be used from a user’s perspective. The program is launched by opening
project found under labview/red_bike.lvproj in LabVIEW 2019. Later versions
might work as well, but the 2019 version is recommended for the best compatibility.
Inside the project, open myRIO-1900/bin/TestMain.vi. The first time the program
is opened on a new computer, LabVIEW might give a warning that a .lvbitx file
could not be found. This file is located in labviw/bin, and can manually be pointed
to when requested.

With the program opened, the controls which can be interacted with to control be
bike are located in the top left of the front panel. These controls are shown in image
A.1 below.

Figure A.1: The controls which can be interacted with in the LabVIEW front
panel.

I

A. LabVIEW User Manual

In the leftmost box in the picture contains the controls for the steering motor. Here,
the PID gains and the angle limit (in degrees from the center), can be changed.
Below this are the readouts from the encoder, and a button to reset its position.
This button should be pressed when the front wheel is straight to calibrate the
encoder before starting any of the motors. At the bottom of the box is the duty
cycle which is sent from the balancing algorithm to the steering motor.

The middle box at the center of the image contains the controls for the forward
motor. The only thing which can be changed here is the RPM, note that the RPM
are measured in relation with the pedals (for the red bike). Below the forward
motor controls is a button which starts the two motors. It should be mentioned
that the program can still be running without affecting the motors, if this button is
not pressed.

At the right is a software implementation of the emergency stop. From the program’s
perspective, this acts exactly as if the hardware emergency stop was to be pressed.

The path to the log file (including its desired name) can be specified in the text
field which is located at the absolute bottom of the image. The path leads to a file
on the MyRIO where the LabVIEW program is running, and must be inside the
/home/lvuser/ directory. This is due to the program not having sudo privileges in
the Linux OS which is running on the device. If no file exists in the specified path,
a file will be created. If a file does exist, it will be replaced and overwritten when
the program starts. It is therefore recommended to change the file name before each
time the program is to be run. To open the log files, they have to be downloaded
from the MyRIO using for example FileZilla, and then opened using any of the
methods mentioned in 3.6.

The rest of the front panel consists of the values from the various sensors. On the
right of the controls depicted in the figure above are three graphs illustrating the
values from the IMU’s gyroscope. The topmost graph corresponds with the roll rate
which is used by the balancing algorithm. The front panel also shows GPS data and
accelerometer values, these are however not used by any part of the program at the
moment.

In summary, the following steps must be performed to start the bike and log its
sensor and control signal data:

1. Set the PID gains, and angle limit and RPM to something non-zero

2. Set the path to the logging file to somewhere inside the /home/lvuser/ direc-
tory. For example /home/lvuser/log1.tdms

3. Start the LabVIEW program

4. Reset the encoder position when steering wheel is straight

II

A. LabVIEW User Manual

5. Press GO

Note that, to be able to start the LabVIEW program, the hardware emergency stop
has to be up, and the hardware reset button has to be pressed. The program is
ready when the light next to the reset button shines green.

III

B
Code

This Appendix contains some of the code which have been used on the bike, or
during the project. Some of the code, for example the main LabVIEW program,
is difficult to include in the appendix, but can be found on the GitHub repository
together with all of the other pieces of code at the following URL: https://github.
com/Hannnes1/autobike

B.1 Balancing Algorithm
1 // balancing .h
2

3 # ifndef _BALANCING_H_
4 # define _BALANCING_H_
5

6 # define gearRatio 111.0
7 # define pi 3.141592
8

9 # define windupGuard 6
10

11 double integral = 0;
12 double derivative = 0;
13

14 double previousError = 0;
15

16 extern double stabilizeBike (double rollRate , double Kp , double Ki ,
double Kd);

17

18 double calculateSteeringPWM (double angularVelocity);
19

20 double pid(double reference , double currentValue , double Kp , double
Ki , double Kd);

21

22 #endif

V

https://github.com/Hannnes1/autobike
https://github.com/Hannnes1/autobike

B. Code

1 // balancing .c
2

3 # include " balancing .h"
4

5 extern double stabilizeBike (double rollRate , double Kp , double Ki ,
double Kd) {

6 double steeringRate = pid (0, rollRate , Kp , Ki , Kd);
7

8 // Send Steering Rate Reference value to steering motor
controller

9 double steeringPWM = calculateSteeringPWM (steeringRate);
10

11 return steeringPWM ;
12 }
13

14 // Take in the wanted angular velocity of the handlebar ,
15 // And return the required duty cycle for that velocity .
16 double calculateSteeringPWM (double angularVelocity) {
17 // Convert from angular velocity (rad/s) of the handlebar ,
18 // to rpm of the motor.
19 double rpm = -angularVelocity * 30 / pi * gearRatio ;
20

21 // Convert from rpm to duty cycle ,
22 // 4000 is the maximum speed of the motor (configured in Escon

Studio).
23 return 50 + rpm * 40.0 / 4000.0;
24 }
25

26 double pid(double reference , double currentValue , double Kp , double
Ki , double Kd) {

27 double error = reference - currentValue ;
28

29 integral += error;
30 derivative = error - previousError ;
31

32 if (integral < -windupGuard) {
33 integral = -windupGuard ;
34 } else if (integral > windupGuard) {
35 integral = windupGuard ;
36 }
37

38 previousError = error;
39

40 return Kp * error + Ki * integral + Kd * derivative ;
41 }

B.2 VESC UART Encoder
1 // common .h
2

3 # ifndef _COMMON_H_
4 # define _COMMON_H_
5

6 typedef unsigned char uint8_t ;

VI

B. Code

7 typedef unsigned uint32_t ;
8 typedef short int16_t ;
9 typedef unsigned short uint16_t ;

10

11 unsigned short crc16(unsigned char *buf , unsigned int len);
12

13 #endif

1 // common .c
2

3 # include " common .h"
4

5 // CRC Table.
6 const unsigned short crc16_tab [] = {
7 0x0000 , 0x1021 , 0x2042 , 0x3063 , 0x4084 , 0x50a5 , 0x60c6 , 0x70e7 ,
8 0x8108 , 0x9129 , 0xa14a , 0xb16b , 0xc18c , 0xd1ad , 0xe1ce , 0xf1ef ,
9 0x1231 , 0x0210 , 0x3273 , 0x2252 , 0x52b5 , 0x4294 , 0x72f7 , 0x62d6 ,

10 0x9339 , 0x8318 , 0xb37b , 0xa35a , 0xd3bd , 0xc39c , 0xf3ff , 0xe3de ,
11 0x2462 , 0x3443 , 0x0420 , 0x1401 , 0x64e6 , 0x74c7 , 0x44a4 , 0x5485 ,
12 0xa56a , 0xb54b , 0x8528 , 0x9509 , 0xe5ee , 0xf5cf , 0xc5ac , 0xd58d ,
13 0x3653 , 0x2672 , 0x1611 , 0x0630 , 0x76d7 , 0x66f6 , 0x5695 , 0x46b4 ,
14 0xb75b , 0xa77a , 0x9719 , 0x8738 , 0xf7df , 0xe7fe , 0xd79d , 0xc7bc ,
15 0x48c4 , 0x58e5 , 0x6886 , 0x78a7 , 0x0840 , 0x1861 , 0x2802 , 0x3823 ,
16 0xc9cc , 0xd9ed , 0xe98e , 0xf9af , 0x8948 , 0x9969 , 0xa90a , 0xb92b ,
17 0x5af5 , 0x4ad4 , 0x7ab7 , 0x6a96 , 0x1a71 , 0x0a50 , 0x3a33 , 0x2a12 ,
18 0xdbfd , 0xcbdc , 0xfbbf , 0xeb9e , 0x9b79 , 0x8b58 , 0xbb3b , 0xab1a ,
19 0x6ca6 , 0x7c87 , 0x4ce4 , 0x5cc5 , 0x2c22 , 0x3c03 , 0x0c60 , 0x1c41 ,
20 0xedae , 0xfd8f , 0xcdec , 0xddcd , 0xad2a , 0xbd0b , 0x8d68 , 0x9d49 ,
21 0x7e97 , 0x6eb6 , 0x5ed5 , 0x4ef4 , 0x3e13 , 0x2e32 , 0x1e51 , 0x0e70 ,
22 0xff9f , 0xefbe , 0xdfdd , 0xcffc , 0xbf1b , 0xaf3a , 0x9f59 , 0x8f78 ,
23 0x9188 , 0x81a9 , 0xb1ca , 0xa1eb , 0xd10c , 0xc12d , 0xf14e , 0xe16f ,
24 0x1080 , 0x00a1 , 0x30c2 , 0x20e3 , 0x5004 , 0x4025 , 0x7046 , 0x6067 ,
25 0x83b9 , 0x9398 , 0xa3fb , 0xb3da , 0xc33d , 0xd31c , 0xe37f , 0xf35e ,
26 0x02b1 , 0x1290 , 0x22f3 , 0x32d2 , 0x4235 , 0x5214 , 0x6277 , 0x7256 ,
27 0xb5ea , 0xa5cb , 0x95a8 , 0x8589 , 0xf56e , 0xe54f , 0xd52c , 0xc50d ,
28 0x34e2 , 0x24c3 , 0x14a0 , 0x0481 , 0x7466 , 0x6447 , 0x5424 , 0x4405 ,
29 0xa7db , 0xb7fa , 0x8799 , 0x97b8 , 0xe75f , 0xf77e , 0xc71d , 0xd73c ,
30 0x26d3 , 0x36f2 , 0x0691 , 0x16b0 , 0x6657 , 0x7676 , 0x4615 , 0x5634 ,
31 0xd94c , 0xc96d , 0xf90e , 0xe92f , 0x99c8 , 0x89e9 , 0xb98a , 0xa9ab ,
32 0x5844 , 0x4865 , 0x7806 , 0x6827 , 0x18c0 , 0x08e1 , 0x3882 , 0x28a3 ,
33 0xcb7d , 0xdb5c , 0xeb3f , 0xfb1e , 0x8bf9 , 0x9bd8 , 0xabbb , 0xbb9a ,
34 0x4a75 , 0x5a54 , 0x6a37 , 0x7a16 , 0x0af1 , 0x1ad0 , 0x2ab3 , 0x3a92 ,
35 0xfd2e , 0xed0f , 0xdd6c , 0xcd4d , 0xbdaa , 0xad8b , 0x9de8 , 0x8dc9 ,
36 0x7c26 , 0x6c07 , 0x5c64 , 0x4c45 , 0x3ca2 , 0x2c83 , 0x1ce0 , 0x0cc1 ,
37 0xef1f , 0xff3e , 0xcf5d , 0xdf7c , 0xaf9b , 0xbfba , 0x8fd9 , 0x9ff8 ,
38 0x6e17 , 0x7e36 , 0x4e55 , 0x5e74 , 0x2e93 , 0x3eb2 , 0x0ed1 , 0x1ef0
39 };
40

41 // Calculates checksum bytes , based on payload and crc16_tab above.
42 unsigned short crc16(unsigned char *buf , unsigned int len) {
43 unsigned int i;
44 unsigned short cksum = 0;
45 for (i = 0; i < len; i++) {
46 cksum = crc16_tab [(((cksum >> 8) ^ *buf ++) & 0xFF)] ^ (

cksum << 8);

VII

B. Code

47 }
48 return cksum;
49 }

VIII

B. Code

1 // vescEncoder .h
2

3 # ifndef _VESC_H_
4 # define _VESC_H_
5

6 # include " common .h"
7

8 unsigned short crc16(unsigned char *buf , unsigned int len);
9

10 extern void sendAlive (uint8_t *array);
11

12 extern int setRpm (uint8_t * array , int rpm);
13

14 extern int setCurrent (uint8_t *array , int current);
15

16 void bufferAppendFloat32 (uint8_t * buffer , float number , float scale
, int *index);

17

18 void bufferAppendInt32 (uint8_t * buffer , int number , int *index);
19

20 uint8_t * buildPacket (uint8_t *data , unsigned int len);
21

22 uint8_t txBuffer [512 + 6];
23

24 #endif

1 // vescEncoder .c
2

3 # include " vescEncoder .h"
4 # include " common .h"
5

6 # include <string .h>
7

8 static unsigned char buffer [1024];
9

10 // Calculates command used to keep the motor alive.
11 extern void sendAlive (uint8_t *array) {
12 int index = 0;
13

14 buffer [index ++] = 30; // Number correspondning to the keepAlive
command .

15

16 // Build the packet for the command .
17 uint8_t * packet = buildPacket (buffer , index);
18

19 // Copy calculated packet to the referance array.
20 for (uint8_t i = 0; i < 10; i++) {
21 array[i] = packet [i];
22 }
23 }
24

25 // Calculates command used to set the current of the motor.
26 // Based on the given parameter " current ".
27 extern int setCurrent (uint8_t *array , int current) {
28 int index = 0;

IX

B. Code

29

30 buffer [index ++] = 6; // Number correspondning to the
setCurrent command .

31

32 // Rescale the current and swap its endianness .
33 bufferAppendFloat32 (buffer , (float) current , 1000.0 , &index

);
34

35 // Build the packet for the command .
36 uint8_t * packet = buildPacket (buffer , index);
37

38 // Copy the calculated packet unto the referance array.
39 for (uint8_t i = 0; i < 10; i++) {
40 array[i] = packet [i];
41 }
42 return current ;
43 }
44

45 // Calculates command used to set the rpm of the motor.
46 // Based on the given parameter "rpm ".
47 extern int setRpm (uint8_t *array , int rpm) {
48 int index = 0;
49

50 rpm *= 250; // Convert to the actual RPM of the bike ’s pedals .
51

52 buffer [index ++] = 8; // Number correspondning to the setRpm
command .

53

54 // Swpan the endianness of the rpm.
55 bufferAppendInt32 (buffer , rpm , &index);
56

57 // Build the packet for the command .
58 uint8_t * packet = buildPacket (buffer , index);
59

60 // Copy the calculated packet unto the referance array.
61 for (uint8_t i = 0; i < 10; i++) {
62 array[i] = packet [i];
63 }
64 return rpm;
65 }
66

67 // Builds the packet based on the given command and payload .
68 // See http :// vedder .se /2015/10/ communicating -with -the -vesc -using -

uart/ for more information .
69 uint8_t * buildPacket (uint8_t *data , unsigned int len) {
70 int bufferIndex = 0;
71

72 if (len <= 256) {
73 txBuffer [bufferIndex ++] = 2;
74 txBuffer [bufferIndex ++] = len;
75 } else {
76 txBuffer [bufferIndex ++] = 3;
77 txBuffer [bufferIndex ++] = len >> 8;
78 txBuffer [bufferIndex ++] = len & 0xFF;
79 }
80

X

B. Code

81 memcpy (txBuffer + bufferIndex , data , len);
82 bufferIndex += len;
83

84 unsigned short crc = crc16(data , len);
85 txBuffer [bufferIndex ++] = (uint8_t)(crc >> 8);
86 txBuffer [bufferIndex ++] = (uint8_t)(crc & 0xFF);
87 txBuffer [bufferIndex ++] = 3;
88

89 return txBuffer ;
90 }
91

92 // Rescales the given " number " with "scale", before swapping its
endianness with " bufferAppendInt32 ".

93 void bufferAppendFloat32 (uint8_t * buffer , float number , float scale
, int *index) {

94 bufferAppendInt32 (buffer , (int)(number * scale), index);
95 }
96

97 // Swaps the endianness of the given " number ".
98 void bufferAppendInt32 (uint8_t *buffer , int number , int *index) {
99 buffer [(* index)++] = number >> 24;

100 buffer [(* index)++] = number >> 16;
101 buffer [(* index)++] = number >> 8;
102 buffer [(* index)++] = number ;
103 }

XI

B. Code

B.3 MATLAB Test Data Plotting
1 % To plot the logged data , change the file path to the correct log
2 % file. It might also be necessary to uncomment / comment some
3 % parts of the code , depending on what you want to plot. The xlim
4 % and ylim of some plots will also have to be adjusted .
5

6 % Read all of the data in the TDMS file.
7 data = tdmsread (" Logs/ testLog .tdms ");
8

9 %% Encoder
10

11 % ‘data ‘ contains one cell per group. Each cell contains
12 % a table with one column per channel . In this case , the
13 % first channel in the first group contains the time ,
14 % and the second channel contains the position etc.
15 time1 = table2array (data {1 ,1}(: ,1));
16 position = table2array (data {1 ,1}(: ,2));
17 velocity = table2array (data {1 ,1}(: ,3));
18

19 figure ;
20 % yyaxis left;
21 % 611 is the conversion ratio from counts on the encoder
22 % to degrees .
23 plot(time1 -time1 (1) ,position /611);
24 ylim ([-10 ,10]);
25 ylabel (" Position (degrees)");
26 hold on;
27 % yyaxis right;
28 %plot(time1 -time1 (1) ,velocity /611*1000) ;
29 %ylim ([-50 ,50]);
30 % ylabel (" Velocity (degrees /s)");
31 xlabel (" Time (seconds)");
32 xlim ([22 ,30]);
33 title (" Steering motor readings ");
34 hold off;
35

36 %% Gyro
37 time2 = table2array (data {1 ,2}(: ,1));
38 X = table2array (data {1 ,2}(: ,2));
39 Y = table2array (data {1 ,2}(: ,3));
40 Z = table2array (data {1 ,2}(: ,4));
41

42 figure ;
43 hold on;
44 plot(time2 -time2 (1) ,X);
45 plot(time2 -time2 (1) ,Y);
46 plot(time2 -time2 (1) ,Z);
47 ylabel (" Angular velocity (rad/s)");
48 xlabel (" Time (seconds)");
49 title (" Gyro ");
50 % yyaxis right;
51

52 angle = zeros(length (Z) ,1);
53 for i = 1: length (Z) - 1
54 angle(i + 1) = angle(i) + (time2(i+1) - time2(i)) * Z(i);

XII

B. Code

55 end
56 %plot(time2 -time2 (1) ,angle);
57 % ylabel (" Lean angle (radians)");
58 legend ("X", "Y", "Z", "Lean angle ");
59

60 %% Steering motor
61

62 time3 = table2array (data {1 ,3}(: ,1));
63 pwm = table2array (data {1 ,3}(: ,2));
64

65 figure ;
66 plot(time3 -time3 (1) ,pwm);
67 ylim ([0 ,1]);
68 ylabel (" Duty cycle ");
69 xlabel (" Time (seconds)");
70 title (" Steering motor control ");
71

72 %% Combined
73

74 figure ;
75 yyaxis left;
76 plot(time3 -time2 (1) ,pwm);
77 ylim ([0 ,1]);
78 ylabel (" Duty cycle ");
79 hold on;
80 yyaxis right;
81 plot(time2 -time2 (1) ,Z);
82 ylabel (" Roll rate (rad/s)");
83 ylim ([-1.5 ,1.5]);
84 xlim ([22 ,30]);
85 xlabel (" Time (seconds)");
86 title (" Duty cycle and Roll rate ");
87

88 %% PWM vs angular velocity
89

90 pwm01 = tdmsread (" Logs/pwm01.tdms ");
91 pwm02 = tdmsread (" Logs/pwm02.tdms ");
92 pwm03 = tdmsread (" Logs/pwm03.tdms ");
93 pwm04 = tdmsread (" Logs/pwm04.tdms ");
94

95 time01 = table2array (pwm01 {1 ,1}(: ,1));
96 velocity01 = table2array (pwm01 {1 ,1}(: ,3));
97 position01 = table2array (pwm01 {1 ,1}(: ,2));
98

99 time02 = table2array (pwm02 {1 ,1}(: ,1));
100 velocity02 = table2array (pwm02 {1 ,1}(: ,3));
101

102 time03 = table2array (pwm03 {1 ,1}(: ,1));
103 velocity03 = table2array (pwm03 {1 ,1}(: ,3));
104

105 time04 = table2array (pwm04 {1 ,1}(: ,1));
106 velocity04 = table2array (pwm04 {1 ,1}(: ,3));
107

108 %%
109

110 figure ;

XIII

B. Code

111 hold on;
112 plot(time01 - time01 (1) - 1.56 , velocity01 /611*1000) ;
113 plot(time02 - time02 (1) - 0.9, velocity02 /611*1000) ;
114 plot(time03 - time03 (1) - 1.59 , velocity03 /611*1000) ;
115 plot(time04 - time04 (1) - 0.78 , velocity04 /611*1000) ;
116 xlabel (" Time (seconds)");
117 ylabel (" Velocity (degrees / second)");
118 xlim ([-1 ,9]);
119 legend (" duty cycle = 0.1" , "duty cycle = 0.2" , "duty cycle = 0.3" ,

"duty cycle = 0.4" , ’Location ’,’northwest ’);
120 title (" Relation between duty cycle and angular velocity ");

XIV

C
Testing protocol

The following appendix documents tests that have been performed during the
project. They are documented in such a way that they can be repeated to validate
the functionality of the balancing algorithm on either this or another version of the
Autobike in the future.

C.1 Angular velocity of the Forward Motor Fol-
lows the Setpoint Value

To test that the Angular velocity of the forward motor follows the setpoint value,
the Auto Tuning feature in ESCON Studio was used. The results presented in the
image below are that the actual speed (red line) follows the setpoint speed (blue
line), with the exception of the initial acceleration and deceleration.

Figure C.1: The results page after running the Auto Tuning in ESCON Studio.

XV

C. Testing protocol

C.2 Duty Cycle Compared With the Angular Ve-
locity of the Front Wheel

In this test, the bike was lifted into the air and the balancing algorithm was bypassed
so that the duty cycle sent to the steering motor could be controlled directly. The
angle limit was also bypassed, so that the motor could spin freely several revolutions.
The duty cycle was then set to 0.4, and the velocity of the steering motor was
recorded. This velocity is also the speed that the bikes handlebar turns with, since
the gear ratio between the handlebar and the motor is 1:1. The test was then
repeated, but with the duty cycle set to 0.3, 0.2, and 0.1.

The initial result from this test was that the motor took 8 seconds to accelerate from
stationary to the maximum velocity as seen in image C.2a. This was later fixed by
uploading the ESCON configuration from the black bike as described in 3.3.1. The
fixed result is plotted in C.2b.

(a) Duty cycle vs velocity with the wrong
motor configuration.

(b) The position and velocity of steering
motor.

Figure C.2: Test results of varying duty cycles compared with the angular velocity
of the steering motor.

XVI

C. Testing protocol

C.3 Gyroscope Measurements When Tilting the
Bike

This test was performed by tilting the bike back and forth. While logging the data
from the gyroscope for each axis. Before performing these tests, the mount for IMU
had been fixed so that the IMU was no longer placed at an angle. The data from
the test is illustrated in the figure below.

What can be seen is that the Z-axis is the axis which is affected the most. This is
also the axis which should be affected by tilting the bike side to side. It can also be
seen that the Y-axis has some very minor movements, which is because the current
mount is not very exact, and it is difficult to precisely adjust the placement angle.

XVII

C. Testing protocol

C.4 Gyroscope and Position
This test was performed by leaning the bike towards a wall and measuring the angle
the electronics box has when it touches the wall; in this case the angle was 20°. The
bike was then leaned from an upright position until it hit the wall, whilst the data
from the gyroscope for each axis was logged. The data from this test is illustrated
in the figure below, together with the integral of the gyroscope’s data for the Z-axis,
which corresponds with how much the bike has been tilted.

The maximum angle of the bike is recorded as -11 radians, when it should have been
20 ∗ π

180 ≈ 0.35 radians. The conclusion which can be made from this is that the
gyro recordings are wrong with a factor of 11

0.35 = 31.4. The reason for this could not
be found, so to compensate for the error, all readings were divided by 31.4 inside of
the LabVIEW program before being used in any calculations.

XVIII

C. Testing protocol

C.4.1 After Multiplying With the Calculated Factor
The next test was performed after the factor which compensates for the error was
added. The test was otherwise performed exactly as the previous test, the only
difference being the measured angle was 16°. The data from the test is shown in the
figure below.

This graph shows that the maximum angle is -0.288 radians, or 16.5°. The values of
the angular velocities is also more reasonable. All future tests presented below have
also been performed with the the correcting factor of 31.4.

XIX

C. Testing protocol

C.5 Duty Cycle Compared With the Gyroscope’s
Measurements

This test was performed by allowing the bike to naturally fall a few centimeters,
before catching it. The roll rate (data from the Z-axis of the gyroscope), together
with the duty cycle given by the balancing algorithm is displayed in the figure below.
During this test, the P gain of the balancing controller was set to 1.

The result from this test is that the duty cycle follows the roll rate almost perfectly.
It also never reaches the upper and lower limits of 0.9 and 0.1 respectively.

XX

C. Testing protocol

C.5.1 After Adjusting the Balancing Algorithm
This test was performed exactly as the previous one. The difference being the
balancing algorithm had been changed so that the maximum duty cycle of 0.9 is
only reached when the roll rate multiplied with the P gain is the same as the steering
motor’s maximum angular velocity, which is set to 4000 RPM in ESCON Studio.
This is how the algorithm is indented to work. The upcoming figure illustrates the
data from the test.

In the data below, it can be seen that the duty cycle is much lower for the same roll
rates. This can be affected by increasing the P gain of the balancing controller.

XXI

C. Testing protocol

C.6 Unaided Outdoor Test
When performing the final tests outdoors in an open area, the motor controller for
the forward motor (the VESC) was broken (this is further discussed in section 4.5),
so the bike had to be pushed by hand. The test was started by enabling the steering
motor, pushing the bike up to speed and then letting it go. The P gain of the
balancing algorithm was initially set to 1. This resulted in the bike having close to
no control response, which lead to it falling over and having to be caught within a
second after letting go.

The P gain was then increased to 5, and the test was repeated. The results of this
can be seen in figure C.3. Here it is shown that the roll rate as well as the duty
cycle is close to their center throughout the test, except for around the 25:th second
when the bike drove over a bump. It can also be seen that the duty cycle reacts to
the roll rate and that the steering motor follows the duty cycle.

(a) Duty cycle and the roll rate of the bike. (b) The position of the forward motor.

Figure C.3: The final test results of running the bike outside on an open area.

XXII

DEPARTMENT OF ELECTRICAL ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	Introduction
	Background
	Aim
	Limitations

	Theory
	LabVIEW
	Integration With Text Based Languages

	MyRIO-1900
	ESCON Motor Controller
	ESCON Studio

	Steering Motor Encoder
	Inertial Measurement Unit (IMU)
	UART Communication
	VESC
	VESC Tool

	Methods
	Configuring the Toolchain
	LabVIEW
	Text Editor and Build Tools for C Code
	Text editor / IDE: Visual Studio Code
	Compiler and Build Tools: GCC, CMake and Ninja
	FTP Client: Filezilla

	Examining Previous Work and the Current State of the Project
	Steering Motor
	Configuring the ESCON Motor Controller
	Transferring Control Algorithm From the Black Bike
	Identifying Relevant Code
	Converting Python to C

	Automating Steering Motor Control
	Calibrating Gyroscope

	Forward Motor
	Configuring the VESC
	Encoding UART Command
	Sending UART Command Using LabVIEW

	Cleaning up and Organizing the Code
	Logging of Control and Sensor Signals
	Testing and Validating
	Testing the Basic Functionality of the Forward Motor
	Testing the Basic Functionality of Steering Motor
	Testing the Gyroscope
	Testing the Balancing Algorithm
	Bike Roller Test
	Unaided Test

	Testing the Program's Loop Times

	Results
	Steering Motor
	Forward Motor
	Balancing Algorithm
	Loop Times
	Discussion

	Conclusion
	Future work

	LabVIEW User Manual
	Code
	Balancing Algorithm
	VESC UART Encoder
	MATLAB Test Data Plotting

	Testing protocol
	Angular velocity of the Forward Motor Follows the Setpoint Value
	Duty Cycle Compared With the Angular Velocity of the Front Wheel
	Gyroscope Measurements When Tilting the Bike
	Gyroscope and Position
	After Multiplying With the Calculated Factor

	Duty Cycle Compared With the Gyroscope's Measurements
	After Adjusting the Balancing Algorithm

	Unaided Outdoor Test

