
Machine Learning Based Charging De-
cision Policy for a Fleet of Electric Vehi-
cles
Master’s thesis in Engineering Mathematics and Computational Science

GUSTAV JOHANNESSON

ALEXANDER LINDHARDT

DEPARTMENT OF MATHEMATICAL SCIENCES

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se

Master’s thesis 2022

Machine Learning Based Charging Decision
Policy for a Fleet of Electric Vehicles

GUSTAV JOHANNESSON
ALEXANDER LINDHARDT

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics

Chalmers University of Technology
Gothenburg, Sweden 2022

Machine Learning Based Charging Decision Policy for a Fleet of Electric Vehicles

GUSTAV JOHANNESSON
ALEXANDER LINDHARDT

© GUSTAV JOHANNESSON, 2022.
© ALEXANDER LINDHARDT, 2022.

Supervisor: Jonas Hellgren, Volvo Autonomous Solutions
Supervisor: Axel Ringh, Department of Mathematical Sciences, Chalmers Univer-
sity of Technology and University of Gothenburg
Examiner: Rebecka Jörnsten, Department of Mathematical Sciences, Chalmers Uni-
versity of Technology and University of Gothenburg

Master’s Thesis 2022
Department of Mathematical Sciences
Division of Applied Mathematics and Statistics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A conceptual site with two vehicles. Displaying a scenario where the vehicle
at the front should choose to not charge.

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Reproservice
Gothenburg, Sweden 2022

iv

Machine Learning Based Charging Decision Policy for a Fleet of Electric Vehicles
GUSTAV JOHANNESSON
ALEXANDER LINDHARDT
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
In a fleet of autonomous electric vehicles, each vehicle must frequently charge its
battery. The charging of the vehicles should ideally be as efficient as possible without
causing roadblocks or battery depletion. The aim of this thesis, which is performed in
collaboration with Volvo Autonomous Solutions, is to develop such charging policies
using reinforcement learning methods. More precisely, the problem is formulated
as a Markov decision process (MDP), and tabular Q-learning and deep Q-learning
are used to learn (optimal) charging policies. The learned policies are evaluated
and compared against each other, as well as against a rule-based policy used as a
benchmark. The robustness and generalizability of the learned policies are tested by
adjusting a number of site-specific parameters, such as charging time and number
of vehicles at the site. The results indicate that machine learning-based charging
policies can increase the efficiency for a fleet of vehicles compared to a simple rule-
based charging policy. Moreover, the importance of such policies is also shown to
vary depending on the site configuration and its complexity.

Keywords: charging policy, machine learning, reinforcement learning, Q-learning,
DQN, deep Q-learning, Markov decision process

v

Acknowledgements
First of all we would like to thank our supervisor Jonas Hellgren at Volvo Au-
tonomous Solutions, for arranging the project and providing us with guidance through-
out the entire process. We would also like to extend our gratitude to VAS for giving
us the tools and logistics that made it possible to complete this thesis work.

We are also incredibly thankful for our supervisor Axel Ringh at Chalmers, for
interesting discussions and great advice. Without your continuous help this the-
sis would not be the same. Finally we would like to thank our examiner Rebecka
Jörnsten at Chalmers.

Gustav Johannesson & Alexander Lindhardt, Gothenburg, May 2022

vii

Contents

1 Introduction 1
1.1 Background and related work . 1
1.2 Objective and limitations . 2

2 Theory 3
2.1 Markov decision process . 3

2.1.1 Policy and value functions . 4
2.1.2 Optimal policy . 5

2.2 Reinforcement learning . 5
2.2.1 Q-learning . 5
2.2.2 Tabular memory . 6
2.2.3 Deep Q-Learning . 7

3 Problem formulation 11
3.1 Model . 11
3.2 MDP formulation . 13

4 Solution methods 15
4.1 Rule-based charging policy . 15
4.2 Q-learning-based charging policy . 15

4.2.1 Feature selection . 16
4.2.1.1 State sallt . 16
4.2.1.2 State spartialt . 16

4.2.2 Reward function . 16
4.2.3 Tabular Q-learning . 17
4.2.4 Deep Q-learning . 17

5 Implementation and results 19
5.1 Configuration of site . 19
5.2 Rule-based charging policy configuration 20

5.2.1 Resulting policy . 20
5.3 Q-learning-based charging policy configuration 20

5.3.1 Tabular Q-learning . 21
5.3.1.1 Resulting policy . 21

5.3.2 Deep Q-learning . 21
5.3.2.1 Resulting policy with state spartialt 22
5.3.2.2 Resulting policy with state sallt 25

ix

Contents

5.4 Performance evaluation . 25
5.4.1 Adjusting parameter pc . 26
5.4.2 Adjusting parameter TC . 27
5.4.3 Adjusting parameter NV . 28

6 Discussion 31
6.1 Interpretation of results . 31
6.2 Altering site-configuration . 32

6.2.1 Random stopping in the site 32
6.2.2 Charging time . 33
6.2.3 Number of vehicles . 33

6.3 Design choices . 34
6.4 Future work . 35

7 Conclusion 37

x

1
Introduction

Autonomous vehicles are not widely used in traffic yet, however they have already
been implemented in confined spaces such as mines and harbors where they per-
form specific tasks, for example transporting cargo [1]. The vehicles working in such
confined spaces are often part of a team and the decision each vehicle takes might
affect the total benefit of the team. It is therefore crucial that the decision making
by each individual vehicle is carefully determined and beneficial for the task at hand.

If a fleet of vehicles is powered by electricity, each vehicle occasionally needs to
charge its battery. In order for the fleet of vehicles to operate efficiently, it needs a
stable and effective charging strategy such that each vehicle can perform their task
in a profitable manner while never running out of battery. Such a charging strategy
is therefore highly important when a fleet of autonomous vehicles is deployed in
order to complete a given task.

One company that has already deployed fleets of autonomous electric vehicles at
a few sites is Volvo Autonomous Solutions (VAS) [2], [3]. Their aim is to increase
the efficiency for these fleets and they are therefore interested in finding optimized
charging strategies.

1.1 Background and related work
A charging strategy in its simplest form is based on some basic rules that are pre-
defined. One such policy could for example be to charge a vehicle if its battery level
is below a certain threshold. A more complex charging policy should instead be
able to make decisions based on a long-term benefit analysis. To make the fleet of
vehicles as efficient as possible the system has to weigh the benefit against the time
and energy it takes to charge, while also considering the risk of energy depletion. In
addition to this, a charging policy should consider the risk of queues arising at charg-
ing stations. When a vehicle is approaching a charging station these aspects need to
be accounted for and a decision which benefits the system as a whole has to be made.

With the current growth of electric vehicles and plug-in hybrid vehicles, the in-
terest in finding optimal charging policies has increased. A charging policy may
however be considered optimal for different reasons, i.e., in different contexts the
cost function which is optimized is different. For example, there have been a large
amount of research on finding charging policies that decrease the load of the power

1

1. Introduction

grid [4], [5], [6]. Another example is the development of charging policies that try
to optimize the lifetime of batteries [7]. The common theme in the research is that
learned charging strategies with different aims can be successfully employed.

Vehicle route planning is another active area of research. Today, with the advance-
ment of electric vehicles, the charging of vehicles is now typically included in the
planning [8], [9]. However, solving this by finding a charging policy using machine
learning independent of the route planning has (to the best of our knowledge) not
yet been investigated thoroughly.

There are multiple different approaches that can be adopted in order to find an
optimal charging policy. One of these approaches, the one studied in this thesis, is
reinforcement learning. Reinforcement learning has proven to be powerful in solv-
ing sequential decision problems before. Maybe the most famous example of this is
when the program AlphaGo Zero was developed by a team at DeepMind in 2017.
The program used reinforcement learning to learn how to play the game of Go and
surpassed the level of any human player [10].

Reinforcement learning has grown quickly in the last decade as it has been able
to solve problems which many thought were impossible for a long time. With the
success of deep learning, this helped scale reinforcement learning to be able to solve
problems with high dimensional state and action space [11]. Some areas where it
has been proven useful are robotics, computer vision, finance, and games, just to
name a few [12].

These things together lay the foundation for what we want to explore in this thesis.

1.2 Objective and limitations
The aim of this master’s thesis is to find ways of optimizing the charging policy of
a fleet of autonomous electric vehicles that follow an independent route planning
algorithm. More specifically, reinforcement learning methods will be investigated,
implemented, and evaluated. One of the key components of reinforcement learning
is to mathematically model the problem at hand as a Markov Decision Process.

The vehicle route planning algorithm together with the modelling of sites and ve-
hicles were developed and distributed by VAS. It was upon this that the charging
policy would be implemented, trained, and evaluated. Due to time constraints, the
amount of training time of the different reinforcement learning methods had to be
limited. The number of possible configurations of sites, vehicles, and other param-
eters is infinite. However, most of the work of this thesis will be implemented on
one simple model of a site with one setup of vehicles and only one charging station.
Nevertheless, the methodology used in this thesis can still be applied on different
setups with small adjustments.

2

2
Theory

This chapter gives a short introduction to the main theoretical concepts of this
thesis. The sections about Markov decision processes and reinforcement learning is
based on the book by Sutton and Barto [13] which gives a more extensive description
about these subjects.

2.1 Markov decision process

The charging decision problem can be turned into a discrete decision making process
where there is a finite amount of configurations of inputs. A Markov decision pro-
cess (MDP) can be used to mathematically formulate such a problem, where agents
are making decisions in an uncertain and stochastic environment [13, Ch. 3.1]. An
MDP is defined as the tuple (S, A, T , R) where:

• The state space S is the set of all possible states in the environment.

• The action space A is the set of all possible actions the agent can make.

• The transition function T defines the dynamic of the MDP. The probability
of transitioning to state s′ ∈ S when taking action a ∈ A from state s ∈ S is
given by T (s′|s, a).

• The reward function R returns a numerical value for a state-action pair. The
reward r ∈ R of taking action a ∈ A from state s ∈ S is given by R(r|s, a).

If the set of states, actions and rewards are finite, it is called a finite MDP.

The interactions between the agent and its environment are conceptually illustrated
in Figure 2.1 and take place in the following way [13, Ch. 3.1]: For each time step
t, the agent starts in a state within the environment st ∈ S. It then takes an action
at ∈ A based on st and ends up in a new state st+1 ∈ S. The environment then
returns a reward signal rt ∈ R to the agent for this action taken. The agent is given
an immediate reward for each action, however every action has an impact on the
future evolution of states and therefore also the total future reward. The agent will
therefore need to consider and learn how an action at a given state will influence
the future.

3

2. Theory

Figure 2.1: Agent-environment interaction. An agent in state st ∈ S takes an
action at ∈ A based on st and ends up in a new state st+1 ∈ S. The environment
returns a reward signal rt ∈ R to the agent for this action taken. This process is
then repeated.

2.1.1 Policy and value functions

A policy π : S → A, is a function that maps a state to an action and is used to
describe the agent’s behavior. The policy π(s) specifies which action the agent will
choose when it observes the state s. This function could be either deterministic
or probabilistic. A common goal of the agent is to find the optimal policy which
maximizes the expected discounted return. The discounted return is defined as

Gt = rt + γrt+1 + γ2rt+2 + ... =
∞∑
k=0

γkrt+k. (2.1)

Here, 0 ≤ γ ≤ 1, is the discount factor that determines how important the immediate
rewards are compared to future rewards. To maximize the expectation of Gt, a value
function is used to define the expected discounted return for an agent when it is in
a given state. The value function is defined with respect to an agent’s policy π. The
value function V π(s) is the expected discounted return of an agent starting in state
s, following the policy π. For MDPs, the value function is formally defined as [13,
Ch. 3.5]

V π(s) = Eπ
[
Gt | st = s

]
= Eπ

[∞∑
k=0

γkrt+k | st = s
]
. (2.2)

The value function V π(s) is called the state-value function for policy π.

In a similar fashion, a value function Qπ(s, a), called the action-value function for
policy π, is defined. This function is defined as the expected discounted return of
an agent being at state s, taking the action a, and thereafter following policy π [13,
Ch. 3.5]. Mathematically, this means that

Qπ(s, a) = Eπ
[
Gt | st = s, at = a

]
= Eπ

[∞∑
k=0

γkrt+k | st = s, at = a
]
. (2.3)

4

2. Theory

2.1.2 Optimal policy
For any finite MDP, meaning that there is a finite number of states, actions and
rewards, there exists at least one optimal policy π∗ that satisfies [13, Ch. 3.6]

V ∗(s) := V π∗(s) = max
π

V π(s), ∀s ∈ S

and
Q∗(s, a) := Qπ∗(s, a) = max

π
Qπ(s, a), ∀s ∈ S, ∀a ∈ A.

The functions V ∗(s) and Q∗(s, a) are called the optimal state-value function and
the optimal action-value function respectively. Moreover, Q∗(s, a) can be written in
terms of V ∗(s) as

Q∗(s, a) = E
[
rt + γV ∗(st+1)|st = s, at = a

]
. (2.4)

Now since V ∗(s) = max
a

Q∗(s, a), the Bellman equation for the action-value function
Q∗(s, a) can be written as [13, Ch. 3.6]

Q∗(s, a) = E
[
rt + γmax

a′
Q∗(st+1, a

′))|st = s, at = a
]
. (2.5)

If Q∗(s, a) is known, an optimal policy can be directly retrieved from the function
as

π∗(s) = arg max
a

Q∗(s, a). (2.6)

Obtaining an exact value of Q∗(s, a) using recursion is difficult and often com-
putationally impossible. Instead, learning algorithms can be used to approximate
Q∗(s, a) [13, Ch. 3.7].

2.2 Reinforcement learning
Reinforcement learning is a field within machine learning that uses a decision maker
(agent) that makes sequential decisions in a system (environment). The agent is
given a reward after every such decision by the environment, and the goal in each
step is to maximize the expected cumulative future reward.

2.2.1 Q-learning
Q-learning is a model-free reinforcement learning method that aims to find an op-
timal policy by approximating the optimal action-value function, Q∗(s, a) [13, Ch.
6.5]. The learning is carried out by simulating discrete steps in an MDP. For a state
st, an action at is chosen and executed. The next state st+1 is then observed and a
reward rt is given depending on this transition. Using this information, a function
approximator Q(s, a) is updated for each observed state-action pair.

5

2. Theory

The action at at state st can be chosen completely random, to explore the dy-
namics, or it can be chosen partially random and partially by using the current best
action according to Q(s, a) at state st. The latter is called ε-greedy, and for a given
ε ∈ [0, 1] the best action is then chosen with probability 1− ε. This ensures that all
states get sampled continually [13, Ch. 2.2].

2.2.2 Tabular memory
The most simple, and also the original, implementation of Q-learning uses a ta-
ble as function approximator Q(s, a). This table has an estimate of Q∗ stored for
all possible state-action pairs. An example matrix representation of a tabular Q
for a system with three states and two actions can be seen in Table 2.1. Such a
tabulation is reasonable for a finite small set of possible state-action pairs, but is
computationally impractical for large systems where the combinatorial nature of all
possible combinations of states and actions makes the number of entries explode.

State/Action a1 a2
s1 Q(s1, a1) Q(s1, a2)
s2 Q(s2, a1) Q(s2, a2)
s3 Q(s3, a1) Q(s3, a2)

Table 2.1: Tabular representation of Q(s, a) for a system with three states and two
actions.

Updating the table
Before training, the entries of table Q are initialized arbitrarily, often as random
numbers. Experiences are then gathered by simulating the system and observing
the state transitions and rewards as the tuple (st, at, rt, st+1). For each simulated
step the table is updated according to the rule

Q(st, at)← Q(st, at) + αt

[
rt + γmax

a
Q(st+1, a)−Q(st, at)

]
, (2.7)

where αt ∈ (0, 1] is the learning rate, rt the reward for performing action at in
state st, and γ ∈ [0, 1] the discount factor. From Equation 2.1 it is clear that
Gt = rt + γGt+1, which Q-learning utilizes to update its estimates.

Learning rate and episodes
A small learning rate, α, makes the updates of Q(s, a) small and thus making the
learning slow. However, with a larger α, the updates are larger and the learning
can become unstable. Therefore α is often updated during learning, starting with a
large value and then decreasing towards zero. If all state-action pairs are continually
updated, and αt fulfills the conditions

∞∑
t=0

αt =∞, (2.8a)

6

2. Theory

∞∑
t=0

α2
t <∞, (2.8b)

throughout the learning process, Q-learning finds an optimal policy for any finite
MDP, given enough time and space [14].

The learning is executed in episodes, where the initial state s0 of an episode is
usually observed from a random initialization of the environment. An episode is
ended when a terminal state is reached or after a fixed amount of steps, or a com-
bination of these criteria. The learning process can be summarized as in Algorithm
1 [13, Ch. 6.5].

Algorithm 1 Q-Learning algorithm
1: Initialize Q(s, a) = 0, ∀s ∈ S and ∀a ∈ A
2: for episode do
3: Initialize environment and observe s0
4: for each step t do
5: Choose and execute action at according to ε-greedy
6: Observe rt and st+1

7: Q(st, at)← Q(st, at) + αt

[
rt + γmax

a
Q(st+1, a)−Q(st, at)

]
8: end for
9: end for

2.2.3 Deep Q-Learning
Using a tabular memory can be troublesome for several reasons. If there is a large
state-action space the memory capacity might not be enough, or the computations
needed for convergence might be too demanding. Moreover, since a tabular function
approximator needs discrete input, continuous variables in the system have to be
discretized. To combat these problems deep Q-Learning (DQL) was introduced [15].
DQL is similar to Q-learning, but the main difference is that the table is replaced by a
neural network. Instead of tabulating the estimated value of Q∗ for every pair (s, a),
neural networks are used as a function approximator to reduce dimensions. Using
some sophisticated techniques and tricks to keep the learning of the neural network
stable, this method has shown good results on high-dimensional problems. One of
the first examples of a successful use of DQL is the computer program AlphaGo.
Using DQL, AlphaGo was able to produce a policy for playing the board game Go,
beating top ranked players easily. This feat was something previously thought to be
far in the future if conventional techniques were used [15].

Feedforward neural networks
Before introducing deep Q-learning in more detail, we first need the concept of
feedforward neural networks. A feedforward neural network is built of layers of nodes
which are connected by weights as shown in Figure 2.2 and is used to approximate
functions. The first layer, called the input layer, receives the input values. To

7

2. Theory

calculate the value xlj of node j in layer l, the values xl−1
i of the nodes in the

previous layer are used together with the weights wl according to

xl
j = f(bl

j +
∑
i

wl
ij · xl−1

i) (2.9)

where f is the activation function and b the bias term [16]. This process is then
repeated for each node and between each layer until the output layer is reached and
a final output is produced.

Figure 2.2: An example architecture of a neural network with three input neurons,
two hidden layers with four neurons each, and an output layer with two neurons.

Feedforward neural networks with at least one hidden layer can approximate any
continuous function [17]. They have shown great results in recent projects across
many fields, ranging from image classification to stock market prediction [18].

Updating weights
The function that a neural network approximates depend on the interactions be-
tween nodes, and these interactions are controlled by the weights. To configure the
weights such that the neural network does a good approximation the weights are
updated iteratively, using pairs of input x and target output y. Such pairs are called
labeled data. The input is fed through the network and the output ŷ is retrieved
and compared to the target output y, and the weights are thereafter updated to
better resemble the true function.

The goal of updating weights is to minimize a loss function, which is a measure
of how wrong the network predicted for a given input. One commonly used loss
function is Mean Squared Error (MSE),

MSE = 1
n

n∑
i=1

(yi − ŷi)2, (2.10)

8

2. Theory

where n is the number of data points in the labeled data set. To minimize the
loss, the weights are updated according to some optimizer. The optimizer uses
backpropagation, which is a technique to calculate the gradients of the loss, to
train the network and minimize the loss. One of the simplest optimizers, and also
often part of more refined optimizers, is stochastic gradient descent. It updates the
weights in the opposite direction of the gradient. The simple stochastic gradient
descent method is known to find and stay at local extreme points. In an attempt
to improve upon this, other optimizers have been developed, one such example is
Adam [19].

Deep Q-network
The learning process for deep Q-learning is similar to tabular Q-learning. However,
instead of storing the information directly in a table, it is implicitly stored in the
weights of a neural network F . The network F has an input node for each state
feature in st, and an output node for the value Q(st, a) for each action a. For a
system of three state features and two actions, the network F could look like in
Figure 2.2. Note that the function approximator Q(st, at) then essentially means
that we feed st to F , and then choose the output value representing the action at.

By simulating steps of the model, state transitions are observed and rewards re-
ceived. These experiences are used to create the labeled data when the network is
updated. In the most simple form of DQL the target y is set to

y ←

rt if st+1 is terminal
rt + γmax

a
Q(st+1, a) otherwise, (2.11)

where Q is the neural network, approximating Q∗. In previous work on DQL it has
been discovered that using one network to produce y, which is then used to update
that same network, can cause problems. Specifically, in certain cases this can lead
to overestimation [20]. Instead a setup using two neural networks can be used to
counteract this. The online network, Q, is the standard network estimating Q∗ and
updated every time new experience is gained. The weights for the target network,
Q̃, is copied from Q in intervals. Q̃ is used to produce the target y as

y ←

rt if st+1 is terminal
rt + γmax

a
Q̃(st+1, a) otherwise. (2.12)

The setup with double neural networks has been shown to not only reduce the
overestimation, but also produce better performance overall [20].

Experience replay
Another way to increase stability in the training phase of the neural networks is expe-
rience replay. By storing experiences, (st, at, rt, st+1), and drawing random samples
of these in batches when training, the training becomes more stable and an ex-
perience can be used more times. This mitigates the risk of only learning from a
subset of states if the agent happens to only perform these in a sequence [21]. The
algorithm for DQL can then be summarized as in Algorithm 2.

9

2. Theory

Algorithm 2 Deep Q-Learning algorithm
1: Initialize weights w and v for networks Q and Q̃, respectively
2: Initialize replay memory D
3: for episode do
4: Initialize environment and observe s0
5: for each step t do
6: Choose and execute action at according to ε-greedy
7: Observe rt and st+1
8: Store (st, at, rt, st+1) in D
9: Sample batch Dt from D

10: for each experience (sd, ad, rd, sd+1) in Dt do
11: Produce target y as
12: if sd+1 is terminal then
13: y ← rd
14: else
15: y ← rd + γmax

a
Q̃(sd+1, a)

16: end if
17: Retrieve estimate ŷ ← Q(sd, ad)
18: end for
19: Update w, using the produced targets and estimates from Dt

20: Every T steps, set v ← w
21: end for
22: end for

10

3
Problem formulation

The aim of this thesis is to generate charging policies for a fleet of vehicles driving in
a confined space. In the following sections, a model of such a confined space will be
formulated. Based on this model an MDP is defined to solve the problem of finding
an optimal charging policy.

3.1 Model
The site of a real-world charging decision problem is modeled as a graph where
vehicles are moving between nodes in discrete steps. This model was developed by
VAS but some small modifications were made. The physical distance between nodes
can vary, but the transition time between nodes is constant; τ will be used as the
time index for the discrete time step in this graphical model. All vehicles in the site
are modeled as electric vehicles with the same properties. Each vehicle is equipped
with a battery with a set capacity, and its state of charge (SoC) fluctuates based on
the vehicle’s actions. The SoC decreases continuously with time τ , and at a higher
rate when a vehicle is moving. A site contains a charging node and when a vehicle
arrives at this node, it stays stationary for a fixed amount of time steps and charges
its battery during this time. The node before a charging node, called the decision
node, leads to two different nodes, where one of these is the charging node. When
a vehicle arrives at the decision node, it must decide to either charge or not. After
the charging node, the two paths merge again. Between two decisions, the vehicles
are moving around the site according to an underlying route planning algorithm. A
visualization of the model is shown in Figure 3.1, where three vehicles are moving
in a site.

The decision to charge is made according to some charging policy. A policy de-
termines the choice of action based on information available about the site. This
information could for example be the vehicles’ positional data and their SoCs. If a
vehicle is forced to charge while the charging node is occupied, a queue arises. If
the SoC of any vehicle in the site falls below the lower limit, SoClow, the system
fails. This limit is the lowest acceptable SoC for a vehicle. If a vehicle falls below
this limit, it can be thought of as battery depletion.

11

3. Problem formulation

(a) (b)

(c) (d)

(e) (f)

Figure 3.1: The dynamics of the graphical model of a site, illustrated with three
cars and for six sequential time steps. In (b), vehicle A arrives at the decision node
and chooses to charge. In (c), vehicle A arrives at the charging node, vehicle B
arrives at the decision node and chooses not to charge. In (d), vehicle C arrives at
the decision node and chooses not to charge.
12

3. Problem formulation

Figure 3.2: Illustration of the relationship between a time step τ and a state st.
Each rectangle symbolize an update in the environment. For each time step τ where
there is a vehicle at the decision node, a state st is observed. This is represented
with a filled green rectangle.

3.2 MDP formulation
The decision to charge or not is modeled as a finite MDP where an agent is making
decisions based on the current state of the site and a reward is given based on the
consequences following that decision. This is done in the following way: each time
a vehicle arrives at the decision node, a state st is observed. Based on this state,
an action at is chosen to either force the vehicle at the decision node to go to the
charging node, or force it to pass. The next state st+1 is observed the next time
a vehicle arrives at the decision node and a reward rt is calculated. Between two
states, a number of time steps occur. The difference between states st and time steps
τ is clarified in Figure 3.2. In particular, note that the number of discrete time steps
between state observations in general vary. This repeats until either a terminal state
is reached or a certain amount of time has elapsed. A terminal state happens when
any of the vehicles’ SoC falls below SoClow. The MDP is now completely described
by specifying the following components:

• A state st ∈ S describing the observed state of the environment as a charging
decision is made. The features of a state st can be either partially or completely
describing the information about all vehicles in the site.

• The action space A = {A0, A1} where
– A0 forces the vehicle at the decision node not to charge.
– A1 forces the vehicle at the decision node to go to the charging node or

wait in queue until the charging node is available.

• The transition function T defines the density function of the next state st+1
conditioned on the pair (st, at). Irrespectively of choice of state spaces, this
is given by the simulator that acts on a state space with full information of
where all the vehicles are and what their respective SoC is.

• The reward for each pair (st, at), st ∈ S and at ∈ A, is defined by a reward
function R.

13

3. Problem formulation

14

4
Solution methods

The task of finding a charging policy was solved using a reinforcement learning
approach. The two methods, tabular Q-learning and deep Q-learning, are presented
in the following chapter. In addition to these, a rule-based benchmark policy used
to evaluate their performance is introduced.

4.1 Rule-based charging policy

A charging policy based only on the level of SoC of the vehicle at the decision
node was developed as a benchmark policy. A state st was defined as the SoC of
the vehicle at the decision node, st = SoCdecision

t . The action A1 (to charge) is then
chosen if st is below a certain threshold, SoCthreshold. The policy πb can be expressed
as

πb(st) =

A0 if st > SoCthreshold

A1 otherwise.
(4.1)

This policy is simple, and in many cases not sophisticated enough to avoid queues.
This policy is called a rule-based policy and will be used as a benchmark measure-
ment throughout this report.

4.2 Q-learning-based charging policy

Charging policies were generated by applying Q-learning to approximate Q∗(s, a),
and then obtaining a policy from that function as in Equation 2.6. This was done by
simulating the model with a number of NV vehicles. Each episode was initialized by
randomly placing each vehicle in the site with a random SoC in the range [SoClow+ξ,
100]. Here, ξ is set to a constant value such that the initial SoC is enough to complete
a full lap without reaching a fail state. Each time a vehicle reached the decision node,
the agent observed a state st and chose the action at using an ε-greedy strategy. Next
time a vehicle arrived at the decision node, a reward rt was retrieved and the value
Q(st, at) was updated. This continued for NE episodes where each episode lasted
τE time steps or until a terminal state was reached. In order to apply Q-learning
successfully, a state and a reward function must first be defined. Additionally, a
method of storing and updating the action-value function Q(s, a) must be decided.
In this thesis, two methods were used: tabular Q-learning and deep Q-learning.

15

4. Solution methods

4.2.1 Feature selection
As mentioned earlier, a state st is a subset of the complete information about the
environment. The complete information in this case is the position and SoC of each
vehicle together with how much time left until the charging node will be available.

4.2.1.1 State sallt
The state definition with the complete information is defined as sallt and contains
the following features

• The position of vehicle i, xit

• The SoC of vehicle i, SoCi
t

• Time left until the charging node is available, TCt

where i = 1, ..., NV .

4.2.1.2 State spartialt

Another state configuration, spartialt , was defined using only three features. Using
less features simplifies the model and decreases the demand of memory space and
computational power. The three features defining spartialt were

• The SoC of the vehicle that is currently on the decision node, SoCdecision
t

• The lowest SoC of any vehicle in the site, not including the vehicles at the
decision node or the charging node, SoC lowest

t

• Time left until the charging node is available, TCt.

The feature SoC lowest
t is selected in order for the agent to know if there is a vehicle

in the site that more urgently needs charging. Having TCt as a feature gives the
agent the opportunity to avoid queues if possible.

4.2.2 Reward function
There are many possible reward functions that can be used to solve any MDP. A
reward function should be defined such that it reflects what the objective of the
agent is. Therefore, a reward function used for this problem can be defined such
that it rewards actions that advances the fleet of vehicles in the long-term. One way
of doing this could be to penalize actions that negatively affects the progression of
the fleet. A reward function that was found to be suitable and used for this problem
is described below in detail.

The number of time steps between two states st and st+1 depend on the under-
lying route planner and can vary. For each time step, a cost cτ is obtained from the

16

4. Solution methods

environment according to

cτ =


−pf if fail state
−pq if queue
0 otherwise.

Here, pf > 0 is a penalty for when any vehicle’s SoC is below SoClow. A smaller
penalty 0 < pq � pf is given if there is a queue behind the charging node.

The reward rt for taking action at at state st is then computed when the next
state st+1 is observed according to

rt =

NT∑
τ
cτ

NT
, (4.2)

where NT is the number of time steps between states st and st+1. Thus the reward
rt is just the average cost between the two states st and st+1

4.2.3 Tabular Q-learning
In order to implement tabular Q-learning, all state features must take discrete values.
Additionally, since the number of states can not be too large in order for Q(s, a)
to converge (at least in practice), state configuration spartialt with discretized values
was used. Algorithm 1 was used to generate a policy based on such a discretized
state. Parameters used while training were chosen using trial and error.

4.2.4 Deep Q-learning
Using a neural network in order to approximate Q∗(s, a), the state features can
take continuous values. A network for each of the state configurations spartialt and
sallt , defined in Sections 4.2.1.2 and 4.2.1.1, was constructed and used for training an
agent to generate policies. In order to decide the architecture of the networks used in
training, hyperparameter optimization was done using a grid search approach. The
parameter configurations that gave the best result during the grid search was then
chosen and used during training. The training was performed following Algorithm
2.

17

4. Solution methods

18

5
Implementation and results

In this chapter, the constructed site and vehicles from VAS are presented. The
aforementioned solution methods are then implemented on the modeled MDP and
charging policies are generated. These generated policies are visualized and com-
pared to a benchmark policy. Finally, the policies are applied on the site with a few
small adjustments in order to test their generalizability and robustness.

5.1 Configuration of site
Design choices such as number of nodes in the site, number of vehicles, battery ca-
pacity, etc. were made such that the problem was interesting. For example, a vehicle
should not be able to drive too many laps before its battery is depleted. At the same
time, a vehicle’s battery should not deplete too fast since that would only generate
a non-complex policy that charges each time a vehicle arrives at the decision node.

The same site configuration was used for each solution method during training in
order to make fair comparisons and performance evaluations. The site consisted of
NN = 15 nodes with one charging node. The charging time was set to TC = 30 time
steps. This meant that charging took approximately the same amount of time as two
full laps around the site. One of the nodes in the site had a set probability pc = 0.8
of being closed in each time step. This was added to increase the stochasticity in
the model and to better reflect a real traffic situation with sudden stops, such as
stopping for pedestrians or traffic lights. The number of vehicles in the site was set
to NV = 3, and their properties were the same throughout. The limit SoClow was
set to 30, meaning that the vehicles’ SoC must be kept above this in order to avoid
a fail state. The site-specific parameters are summarized in Table 5.1.

Number of nodes, NN 15
Number of vehicles, NV 3
Probability of closed node, pc 0.8
Charging time, TC 30
Lowest SoC allowed, SoClow 30

Table 5.1: Site-specific parameters and their values used during training. A charg-
ing policy was generated from each solution method with these parameters.

19

5. Implementation and results

5.2 Rule-based charging policy configuration
A rule-based charging policy πb of the form given in Equation 4.1 was constructed
using a threshold set to SoCthreshold = 40. This was large enough for the site
configuration in Section 5.1 to make sure that no vehicle ever fell below the SoClow
limit.

5.2.1 Resulting policy

A visualization of the policy πb is shown in Figure 5.1 using the features of spartialt to
show its behavior. An agent following this policy simply takes the action to charge
only if the SoC of the vehicle at the decision node is below SoCthreshold. It does
not take into consideration whether the charging node is occupied or not, as well as
ignores other vehicles’ SoCs.

(a) (b)

Figure 5.1: A visualization of a rule-based charging policy with SoCthreshold = 40.
With SoCdecision

t on the y-axis and SoC lowest
t on the x-axis. The plot on the left

(a), shows the policy when the charging node is available, and the right plot (b),
shows the policy in the case where the charging node is occupied. The red color
represents action A0, i.e., to not charge, and the green color represents action A1,
i.e., to charge.

5.3 Q-learning-based charging policy configuration
Both tabular Q-learning and deep Q-learning were implemented and trained on the
site model explained in Section 5.1, with discount factor γ = 0.9. They both used the
reward function described in Equation 4.2 with pf = 50 and pq = 1. The number
of time steps per episode was set to τE = 3000. During the training phase, the

20

5. Implementation and results

performance of the current policy was recorded. If the performance did not improve
for a certain amount of episodes, the training stopped and the best performing policy
was obtained and saved. The maximum number of episodes for training was set to
NE = 10000.

5.3.1 Tabular Q-learning
Tabular Q-learning was implemented using a learning rate αt that gradually changed
using the formula αt = k

t+k , where k = 100 was used. This fulfills the criteria in
Equation 2.8. An ε-greedy policy was used during training with a starting value of
ε0 = 1 which exponentially decayed every episode until it reached the lower limit
εmin = 0.3 at which it stopped decaying. The state configuration spartialt was used
and all features were discretized according to

• SoCdecision
t ∈ {0, 10, 20, 30, 40, 50, 60, 70, 80, 90}

• SoC lowest
t ∈ {0, 10, 20, 30, 40, 50, 60, 70, 80, 90}

• TCt =

0 if charging node is available
1 if charging node is occupied.

The total number of states was therefore |S| = 10× 10× 2 = 200.

5.3.1.1 Resulting policy

The policy obtained after training is shown in Figure 5.2. Here we can see that the
agent learns to charge at more occasions compared to the rule-based policy shown
in Figure 5.1. It learns a behavior that takes the opportunity to charge while the
charging node is available and consequently avoids unnecessary queues later on. The
vehicle’s SoC will be kept high and therefore avoid situations where a vehicle arrives
at the decision node with low SoC when the charging node is occupied.

5.3.2 Deep Q-learning
Using deep Q-learning with a neural network as a function approximator for Q(s, a),
the state features are the input to the network. The features are taken as their true
value, meaning there is no need to discretize the features. During training, an ε-
greedy strategy was used with ε = 0.9 being constant throughout. Since DQL can
handle a much larger state space than tabular Q-learning, the state configuration sallt
was used in addition to spartialt . For each state configuration, a neural network was
constructed using hyperparameter optimization with grid search to determine their
respective architecture. The final architectures are summarized in Table 5.2. As
mentioned, two networks were constructed, one for each state configuration. Both
were trained according to Algorithm 2 and their resulting policies are presented in
Figure 5.3.

21

5. Implementation and results

(a) (b)

Figure 5.2: A visualization of the charging policy generated with tabular Q-
learning. With SoCdecision

t on the y-axis and SoC lowest
t on the x-axis. The plot

on the left (a), shows the policy when the charging node is available, and the right
plot (b), shows the policy in the case where the charging node is occupied. The red
color represents action A0, i.e., to not charge, and the green color represents action
A1, i.e., to charge.

State configuration spartialt sallt
Number of input neurons |spartialt | |sallt |
Number of hidden layers 3 3
Number of hidden neurons per layer 32 64
Number of output neurons 2 2
Optimizer Adam Adam
Initial learning rate for the optimizer 0.00001 0.00001
Activation function
hidden layers ReLU ReLU

L2-regularization 0.01 0.001
Activation function
output layer Identity Identity

Loss function MSE MSE
Experience replay buffer size 10000 10000
Batch size 64 128
Target network update frequency 500 500

Table 5.2: The deep Q-network architecture used for each state configuration
during training.

5.3.2.1 Resulting policy with state spartialt

Using state spartialt , the resulting policy can be visualized in a similar fashion as in
the tabular case. However, since all features are continuous, it is difficult to show

22

5. Implementation and results

the policy without some simplifications. In Figure 5.3 the behavior of the policy can
be seen for a subset of the state space. Each plot shows the behavior for different
values of TCt and in discrete steps of SoCdecision

t and SoC lowest
t . The policy shows

a similar behavior as the tabular case when TCt = 0, meaning when the charging
node is available the policy prefers to charge more often. For the other values of
TCt it seems to behave similarly to a rule-based policy.

23

5. Implementation and results

Figure 5.3: A visualization of the charging policy generated with deep Q-learning
with state configuration spartialt . With SoCdecision

t on the y-axis and SoC lowest
t on the

x-axis, both discretized. Each plot shows the policy’s behavior for different values
of TCt. The red color represents action A0, i.e., to not charge, and the green color
represents action A1, i.e., to charge.

24

5. Implementation and results

5.3.2.2 Resulting policy with state sallt
The state configuration sallt was implemented as a vector φ where

φj =

SoCi
t if vehicle i is at node j

0 otherwise
∀j ∈ {1, 2, ..., NN}. (5.1)

and φNN +1 = TCt where NN is the total number of nodes in the site. Hence the
number of features of sallt and inputs to the network was equal to |sallt | = 16 for
the site described in Section 5.1. As the state-action space is high dimensional,
visualizing the policy is not practical in this case.

5.4 Performance evaluation
The performance of each generated policy was evaluated by simulating the site
model multiple times where the charging decision making was determined by that
policy. Each simulation was initialized randomly and each policy saw the exact
same initializations in order to make a fair comparison. A simulation was executed
for a specific number of time steps or until a fail state was reached. The metric
used to compare the different policies was the number of completed trips during a
simulation. A completed trip was defined as one lap around the site, see Figure 3.1.
The box plots in Figure 5.4 illustrate the performance of each generated policy after
1000 simulations with a maximum of 10000 time steps each (or until a fail state was
reached). The rule-based charging policy was used as a benchmark measurement and
the other policies were evaluated in terms of how many more trips they completed
than the rule-based case, measured in percentages. From Figure 5.4, it is clear
that each of the generated policies perform better than the benchmark. However,
there seem to be no definitive difference of the performance between the generated
policies. Furthermore, the Table 5.3 shows additional statistics about the policies’
performance. The average number of completed trips in actual numbers, together
with the standard deviation of the completed trips between simulations. The same
information is given about the amount of time spent in queue for the different
policies.

Policy Completed trips
average

Completed trips
standard deviation

Time steps in queue
average

Time steps in queue
standard deviation

Rule-based 1175.80 14.86 469.75 95.33
Tabular Q-learning 1203.61 13.09 1.53 6.28
DQL-spartialt 1203.05 12.75 3.03 7.12
DQL-sallt 1203.51 13.51 16.40 24.87

Table 5.3: Performance statistics for each policy after 1000 simulations of the site
model described in 5.1 with 10000 time steps each.

25

5. Implementation and results

Figure 5.4: Boxplots showing the number of completed trips by different policies
compared to the mean of the benchmark rule-based policy, in percentages. Each
policy was used for the same 1000 randomly initialized simulations with 10000 time
steps each.

5.4.1 Adjusting parameter pc

As earlier mentioned, a certain node in the site was set to have a probability of being
closed in each time step. This was implemented to represent sudden stops in real
traffic situations. The probability of how often the node was closed was controlled by
the parameter pc. If pc = 0, this meant that the node was always open and if pc = 1,
then the node was always closed. Therefore having 0 < pc < 1 meant that the node
was closed with probability pc in each time step. In order to see how well the different
policies handled different levels of stochasticity, simulations for different values of
pc were carried out. The plot in Figure 5.5 shows the average amount of completed
trips for each policy compared to the rule-based policy, shown in percentages for

26

5. Implementation and results

different values of pc. For each policy and value of pc, 500 simulations with 10000
time steps were made. Note that each policy was trained with pc = 0.8.

Figure 5.5: A performance comparison between different policies and the bench-
mark rule-based policy for different values of pc. A total of 500 simulations with
10000 time steps each were executed for each policy. The graph shows the difference
in average completed trips for each policy and value of pc. Note that each policy
was trained with pc = 0.8.

5.4.2 Adjusting parameter TC

As can be seen in Table 5.3, the time spent in queues with the generated policies is
close to zero. This means that the policies have learned to avoid almost any situation
where a queue happens. This likely depends on how long the charging time is. In
order to see how much this affects the performance of the different policies, we
adjusted the charging time and measured the performance of each policy compared
to the benchmark. To maintain the same dynamic in the model, the total amount
of power into a vehicle during charging remained constant. So, if the charging time
increased, the power per time unit decreased and vice versa. The result of this is
shown in Figure 5.6. Note that each policy was trained with TC = 30.

27

5. Implementation and results

Figure 5.6: A performance comparison between different policies and the bench-
mark rule-based policy for different charging times. A total of 500 simulations with
10000 time steps each were executed for each policy. The graph shows the difference
in average completed trips for each policy and charging time. Note that each policy
was trained with TC = 30.

5.4.3 Adjusting parameter NV

To see how well the generated policies performed with a different number of vehicles
than what they were trained with, a number of simulations were executed with each
policy for varying NV . This was done to further evaluate the generalizability of the
policies and to investigate if more vehicles could be added successfully to the site
without the need of re-training. The number of vehicles used during training was
set to NV = 3. The results for the simulations are shown in Figure 5.7.

28

5. Implementation and results

Figure 5.7: A performance comparison between different policies and the bench-
mark rule-based policy for different number of vehicles in the site. A total of 500
simulations with 10000 time steps each were executed for each policy. The graph
shows the difference in average completed trips for each policy and number of vehi-
cles. Note that each policy was trained with NV = 3.

29

5. Implementation and results

30

6
Discussion

This chapter begins with discussing the main results of the generated policies. There-
after design choices, limitations, and future work are discussed.

6.1 Interpretation of results
The results from Chapter 5 show that policies generated from reinforcement learn-
ing are capable of outperforming a benchmark rule-based policy. In Figure 5.4, the
policies all have a similar performance where they complete around 2.5% more trips
than the benchmark on average. Furthermore, the Table 5.3 shows that the queue
time for each generated policy is very low, and they all avoid queues almost com-
pletely.

By visually inspecting the policies generated from tabular Q-learning and deep Q-
learning with state spartialt shown in Figure 5.2 and Figure 5.3 respectively, a few
properties can be identified. One property that both policies possess, is the fact
that the action A0 (to charge) is taken at more states when the charging node is
available, TCt = 0. This happens as long as the lowest SoC in the site is not in
danger of reaching below the limit SoClow = 30. Then with larger TCt, the policies
essentially follow a rule-based policy where the action to charge is only taken when
the vehicle at the decision node otherwise would risk depleting its battery. This
attribute is expected from a learned policy as it otherwise would cause queues to
occur more often. Thus the policies have learned to charge more frequently when
they can do it without causing a queue, and then wait until the charging node is
available again before charging. Seeking an optimal policy for the charging decision
problem has two key parts. Primarily the policy should account for the whole fleet,
and thus try to be unselfish when considering to charge. Secondly, and perhaps even
more important, is to account for long-term risks. If the SoC of the vehicles never
comes close to the threshold the hard choices are never encountered.

Looking closer at the policy generated from tabular Q-learning in Figure 5.2, a pat-
tern resembling a staircase function can be observed when TCt = 0. This produces a
behavior that approximately can be summarized as: the vehicle at the decision node
takes the action to charge if the charging node is available and it has the lowest SoC
in the site. The same staircase pattern is not quite revealed for the deep Q-learning
policy in Figure 5.3. However, it is worth noting that the figure only shows the
policy for a discretized subset of the entire continuous state-space. Exactly how the

31

6. Discussion

policies’ behavior differ in practice is difficult to say by only inspecting a visualiza-
tion of them. As they clearly perform equivalently when evalutated, see Table 5.3,
both policies are likely to operate in a similar way when deployed. One possible
advantage of using deep Q-learning is that continuous values are used for the state
features. This can produce a policy that more precisely can decide when charging
or not charging is more beneficial.

An additional remark about the deep Q-learning policy shown in Figure 5.3 is the
spikes appearing in the plots with TCt = 0 and TCt = 0.2 when SoC lowest

t is close to
SoClow = 30. The reason for this might be because when these states are reached,
a fail state will be reached regardless of the action taken. This complicates the
learning for these particular states.

6.2 Altering site-configuration
The site created and used for simulation and training is greatly simplified compared
to a real-life work site. It is used as a proof of concept and benchmark setting for
reinforcement learning techniques on the charging decision problem. It was con-
structed such that a rule-based policy would be able to operate the fleet without
failure, but still (most likely, at least) not do it optimally. Since it is a quite simple
site there could be many policies which perform near optimally without almost any
queue time when using three vehicles. This makes it hard to compare the good
policies against each other, which can be seen in Figure 5.4 where the generated
policies achieve almost identical results. The results still show the strength of rein-
forcement learning for this problem since there are several ways to find a good policy.

In order to examine how well the generated policies performed on other site-setups,
they were tested with a few site-specific adjustments. One parameter is adjusted at
a time, while everything else stays constant. This was done in order to investigate
the generalizability and robustness of the policies when applied in different but sim-
ilar environments. This could prove to be useful in real-world situations as it could
be time consuming to re-train a policy for each small adjustment of a site.

6.2.1 Random stopping in the site
In Figure 5.5 we can see a clear indication that the performance of the policies com-
pared to the benchmark policy improves as the value of pc increase. When having
pc = 0, we could see that the rule-based policy ended up in a rhythm where the
dynamic between states became fully deterministic. The vehicles in the site deplete
their battery exactly the same amount during a trip. The vehicles also gain the same
amount power during charging. This means that the vehicles would eventually end
up in a perfect flow where they alternate the charging node between each other and
consequently have little to no queues. As pc increase, the flow is disrupted more
often, leading to more queue times and therefore a decrease in performance. As the
other policies have more information than just the SoC of the vehicle at the decision
node to base their action on, the value of pc is not affecting their performance as

32

6. Discussion

much.

An interesting observation is that the policy generated from DQL using state sallt
has a worse performance than the benchmark when pc ≤ 0.4. The reason for this
might be that using all features to represent a state has a negative effect on the
generalizability of that policy. The other policies use a state with only three fea-
tures, but the amount of information contained in these features seem to be enough
to make beneficial decisions.

6.2.2 Charging time
The benefit of using the generated policies over the rule-based policy for different
charging times can be seen to vary in Figure 5.6. Note that even when the charging
time changes, the total amount of power into the vehicle for one charging action
remains constant. Shortening the charging time will clearly lead to less queues and
we see in Figure 5.6 that the difference between the policies’ performance decrease.
If we instead increase the charging time and therefore also the amount of queues,
we see that the generated policies can handle this better than the rule-based policy.
It is also noteworthy that DQL with sate configuration spartialt can deal with an
increase of charging time the best out of all policies. Since it uses a continuous
value for the feature TCt (time left until charging node is available), it can make
smarter decisions when the charging node is occupied. The decrease in performance
of DQL using state sallt compared to the other DQL policy indicates that it is worse
at generalizing.

6.2.3 Number of vehicles
Having more vehicles in the site leads to having more occasions where a queue can
arise as there are more vehicles that needs to use the charging station. Additionally,
when a queue happens, there are more vehicles that can potentially be affected by
the roadblock. What we could see earlier in Figure 5.4 is that the efficiency of the
fleet of vehicles can improve if it follows a smart policy compared to a rule-based
policy. Furthermore, in the earlier sections when adjusting parameters such that
queues are harder to avoid, the difference in performance between the generated
policies and the benchmark increased even more. This pattern is even more pro-
nounced when adjusting the amount of vehicles in the site, see Figure 5.7. Here we
can see that the best performing policy completes almost 14% more trips than the
benchmark when having five vehicles. The same number was around 2.5% in the
case with three vehicles.

In Figure 5.7, we can see that especially tabular Q-learning and DQL with state
spartialt clearly outperforms the rule-based policy and that the difference increases
when more vehicles are added. As for DQL with state sallt we can see that with
three vehicles, it performs similar to the other generated policies. However its per-
formance does not increase with the same rate as the other policies. With five
vehicles this policy even performs worse than the benchmark. The most number of

33

6. Discussion

vehicles tested in the site was limited to five as we saw that exceeding this number
caused a lot more simulations to fail.

6.3 Design choices

When modelling the charging decision problem as an MDP some simplifications
were made. It is not certain that a time discretized model would translate well
to a real-world scenario. In the model used in this thesis it was assumed that the
time between node transitions was fixed, independent of the distance between these
nodes. The reason for such an assumption was that the training and evaluation
were carried out on a simulation model provided by VAS. Additionally, the distance
and time between nodes was in no way incorporated in the evaluation of the results,
only the number of completed trips and queue times.

When defining the specific components of an MDP, some different approaches could
be taken when choosing the state-space and the reward function. Since an action
was binary there was no other setup for the action-space. A state could be defined
in several ways. One idea that was considered was to let a state be observed each
time an update in the system happened, and not only when a vehicle arrives at the
decision node. This would give the algorithm more detailed information about what
happens right after an action. Thus, the transition and reward functions would
not be very complex. But the long-term consequences of an action would be more
difficult to analyze since there could be many states before something interesting
happens, such as battery depletion or queuing. This would require a large γ and
might affect the learning. The state configuration used in this thesis instead have
more complex transition and reward functions. Their advantage comes from having
more linkage between state-action pairs and the actual consequences they cause.

The reward function should resemble the main goal but does not necessarily need
to depend on the same metrics which are used to evaluate the policy. In this the-
sis work, the reward function used depended on the queue times, while the main
evaluator was the number of completed trips. The two are of course correlated
and therefore good policies were able to be produced. Other reward functions were
investigated, especially a reward function rewarding forward movements was thor-
oughly tested. Using such a reward function, the generated policies were able to
score better than the benchmark, but still worse than the policies produced using
the queue time-based reward function. The main problem seemed to be that the
long-term benefits of charging was hard to learn, and thus the agent focused more on
the immediate loss of reward if they decided to charge. Another candidate reward
function considered was to only give a penalty for battery depletion. This produced
policies where the vehicles tried to charge all the time and there were instead queues
most of the time steps.

34

6. Discussion

6.4 Future work
To investigate the potential for Q-learning, more complex dynamics and interesting
sites could be used. One such change in the dynamics could be non-linear charging
output. In this thesis work the charging efficiency was always the same, regardless
of the SoC. In practice it is common that the charging efficiency increases as the
battery’s SoC gets lower, and vice versa. This would certainly have effects on the
optimal charging policy. While it would still be true that a good charging policy
would avoid low SoC in fear of depletion, it would also want to charge at as low SoC
as possible, to maximize charging output. This change could potentially make good
policies even more important.

35

6. Discussion

36

7
Conclusion

The aim of this thesis work, as declared in Section 1.2, was to find ways to opti-
mize a charging policy for a fleet of autonomous electric vehicles, using reinforce-
ment learning. The results show that the chosen methods are capable of learning a
good behavior, see Figure 5.4 for the main comparison against the benchmark. For
this specific site the generated policies could perform around 2.5% more completed
trips than the benchmark. By modelling the system as a Markov decision process,
and then use different variants of Q-learning, we tried to approximate the optimal
action-value function Q∗(s, a). This approximation was then used to generate a
policy, and a simple benchmark policy was used to evaluate the generated policies.
The methods used to approximate Q∗(s, a) was the classic tabular Q-learning and
deep Q-learning, which uses neural networks as function approximator. Two state
representations were used, one of them for tabular Q-learning and both for DQL.

By doing small adjustments in the site, such as adding more vehicles, varying the
charging duration, and altering the stochasticity, the generalizability of the gener-
ated policies was compared. The comparisons, presented in Figure 5.5, Figure 5.6,
and Figure 5.7, show that the policies generated by both Q-learning and DQL could
handle small changes well, in some cases up to 13% more completed trips than the
benchmark. These results also show that having a state configuration with less fea-
tures generally generated policies that are better at handling such changes, i.e., that
generalize better.

Although all the training and simulations were executed on one small site model,
the methods used are plug-and-play and should thus be able to handle other sites
and setups as well. However, we want to note that parameter tuning was a non-
negligible part of producing the policies. Therefore, we expect that a certain amount
of work needs to be put into tuning these when adopting the framework for learning
charging policies for other sites and underlying models.

37

7. Conclusion

38

Bibliography

[1] Volvo Autonomous Solutions, “Why autonomous transport will happen in
quarries and light mining first,” 2020, (Accessed: 24-May-2022). [Online].
Available: https://www.volvoautonomoussolutions.com/en-en/news/press-
releases/2020/sep/why-autonomous-transport-will-happen-in-quarries-and-
light-mining-first.html

[2] ——, “Full speed ahead on autonomous transport solutions
for ports,” 2021, (Accessed: 24-May-2022). [Online]. Avail-
able: https://www.volvogroup.com/en/news-and-media/news/2021/may/full-
speed-ahead-on-autonomous-transport-solutions-for-ports.html

[3] ——, “Optimizing productivity through complete autonomous solu-
tions,” 2022, (Accessed: 24-May-2022). [Online]. Available: https:
//www.volvoautonomoussolutions.com/en-en/our-solutions.html

[4] S. Bahrami and M. Parniani, “Game theoretic based charging strategy for plug-
in hybrid electric vehicles,” IEEE Transactions on Smart Grid, vol. 5, no. 5,
pp. 2368–2375, 2014.

[5] F. Parise, M. Colombino, S. Grammatico, and J. Lygeros, “Mean field con-
strained charging policy for large populations of plug-in electric vehicles,” in
53rd IEEE Conference on Decision and Control, 2014, pp. 5101–5106.

[6] S. Sachan, S. Deb, and S. N. Singh, “Different charging infrastructures along
with smart charging strategies for electric vehicles,” Sustainable Cities and So-
ciety, vol. 60, p. 102238, 2020.

[7] I. Fernández, C. Calvillo, A. Sánchez-Miralles, and J. Boal, “Capacity fade and
aging models for electric batteries and optimal charging strategy for electric
vehicles,” Energy, vol. 60, pp. 35–43, 2013.

[8] S. Mehar, S. M. Senouci, and G. Rémy, “Ev-planning: Electric vehicle itinerary
planning,” in 2013 International Conference on Smart Communications in Net-
work Technologies (SaCoNeT), vol. 01, 2013, pp. 1–5.

[9] M. Baum, J. Dibbelt, L. Hübschle-Schneider, T. Pajor, and D. Wagner,
“Speed-Consumption Tradeoff for Electric Vehicle Route Planning,” in
14th Workshop on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems, ser. OpenAccess Series in Informatics (OASIcs),
S. Funke and M. Mihalák, Eds., vol. 42. Dagstuhl, Germany: Schloss

39

https://www.volvoautonomoussolutions.com/en-en/news/press-releases/2020/sep/why-autonomous-transport-will-happen-in-quarries-and-light-mining-first.html
https://www.volvoautonomoussolutions.com/en-en/news/press-releases/2020/sep/why-autonomous-transport-will-happen-in-quarries-and-light-mining-first.html
https://www.volvoautonomoussolutions.com/en-en/news/press-releases/2020/sep/why-autonomous-transport-will-happen-in-quarries-and-light-mining-first.html
https://www.volvogroup.com/en/news-and-media/news/2021/may/full-speed-ahead-on-autonomous-transport-solutions-for-ports.html
https://www.volvogroup.com/en/news-and-media/news/2021/may/full-speed-ahead-on-autonomous-transport-solutions-for-ports.html
https://www.volvoautonomoussolutions.com/en-en/our-solutions.html
https://www.volvoautonomoussolutions.com/en-en/our-solutions.html

Bibliography

Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014, pp. 138–151. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2014/4758

[10] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. v. d. Driessche, T. Graepel, and D. Hassabis, “Mastering the game of Go
without human knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[11] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep
reinforcement learning: A brief survey,” IEEE Signal Processing Magazine,
vol. 34, no. 6, pp. 26–38, 2017.

[12] Y. Li, “Deep reinforcement learning: An overview,” CoRR, vol. abs/1701.07274,
2017. [Online]. Available: http://arxiv.org/abs/1701.07274

[13] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, 2nd ed.
MIT press, 2020.

[14] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3,
pp. 279–292, 1992. [Online]. Available: https://doi.org/10.1007/BF00992698

[15] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with
deep neural networks and tree search,” Nature, vol. 529, pp. 484–489, 01 2016.

[16] A. Krenker, J. Bester, and A. Kos, “Introduction to the artificial neural
networks,” in Artificial Neural Networks, K. Suzuki, Ed. Rijeka: IntechOpen,
2011, ch. 1. [Online]. Available: https://doi.org/10.5772/15751

[17] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

[18] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and
H. Arshad, “State-of-the-art in artificial neural network applications: A survey,”
Heliyon, vol. 4, no. 11, p. e00938, 2018.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014.

[20] H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with dou-
ble q-learning,” in Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, ser. AAAI’16. AAAI Press, 2016, p. 2094–2100.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg,
and D. Hassabis, “Human-level control through deep reinforcement learning,”
Nature, vol. 518, pp. 529–33, 02 2015.

40

http://drops.dagstuhl.de/opus/volltexte/2014/4758
http://arxiv.org/abs/1701.07274
https://doi.org/10.1007/BF00992698
https://doi.org/10.5772/15751

DEPARTMENT OF MATHEMATICAL SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	Introduction
	Background and related work
	Objective and limitations

	Theory
	Markov decision process
	Policy and value functions
	Optimal policy

	Reinforcement learning
	Q-learning
	Tabular memory
	Deep Q-Learning

	Problem formulation
	Model
	MDP formulation

	Solution methods
	Rule-based charging policy
	Q-learning-based charging policy
	Feature selection
	State stall
	State stpartial

	Reward function
	Tabular Q-learning
	Deep Q-learning

	Implementation and results
	Configuration of site
	Rule-based charging policy configuration
	Resulting policy

	Q-learning-based charging policy configuration
	Tabular Q-learning
	Resulting policy

	Deep Q-learning
	Resulting policy with state stpartial
	Resulting policy with state stall

	Performance evaluation
	Adjusting parameter pc
	Adjusting parameter TC
	Adjusting parameter NV

	Discussion
	Interpretation of results
	Altering site-configuration
	Random stopping in the site
	Charging time
	Number of vehicles

	Design choices
	Future work

	Conclusion

