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Abstract

Stroke is the most common cause of disability in adults and one of ten leading causes of
death in the world. It is estimated that in year 2030, stroke will be one of the four leading
causes of death. However, the chances to avoid permanent disability greatly increases
when treatment is given quickly after stroke onset.

A stroke occurs when parts of the brain suffer from insufficient oxygen supply due
to either a blood clot (ischaemic stroke, IS), or a ruptured vessel causing an intracra-
nial haemorrhage (ICH). Medfield Diagnostics is developing a microwave based technique
which can identify the difference in dielectric properties of tissues. There exist dielectric
differences between blood and ischaemic tissues and the hypothesis is that healthy brain
tissue can be distinguished from blood and ischaemic brain tissue. This technique shows
promise for distinguishing ICH from IS patients. The equipment’s relatively small size
compared to computed tomography (CT) equipment, which is commonly used for diag-
nosis today, makes it suitable to be used in the ambulance. Thereby it has potential to
shorten the time from stroke onset to diagnosis and accordingly decrease the time from
onset to treatment.

Presently a subspace based classifier is used for ICH detection, the inner-product sub-
space classifier (ISC). The goal of this master’s thesis was to investigate if different clas-
sification algorithms could be utilised instead of or together with the ISC to increase
the classifier performance. The classification algorithms evaluated were support vector
machines (SVM) and a metric learning algorithm called large margin nearest neighbour
(LMNN).

The data used in this study were provided by Medfield Diagnostics. Three measure-
ments are present for each patient and evaluation of the classifier algorithms could there-
fore be carried out using a pseudo Monte Carlo procedure to extend the diversity of the
dataset and to get a good statistical foundation. The performance measure for comparison
was the area under the receiver operating characteristic (ROC) curve (AUC). For LMNN
no ROC-curve could be produced due to its nonparametric nature and therefore it was
evaluated by its accuracy, sensitivity and specificity. A bootstrap method was used to
derive standard deviation for the performance measures. An amount of 100 Monte Carlo
simulations were performed. Standard deviations were derived by randomly selecting 99
Monte Carlo simulations and repeating the procedure 50 times.

For the ISC, SVM with a linear kernel and SVM with a (non-linear) RBF-kernel, the
AUC was found to be 0.86, 0.67 and 0.87 respectively. The accuracy, sensitivity and
specificity for the LMNN algorithm was found to be 0.68, 0.36 and 0.89. The standard
deviation for all measures was lower than 0.05. It shall be taken into consideration that
the frequency intervals differ for the methods and the results are valid only within distinct
frequency intervals. The outcome from the SVM needs to be further investigated to verify
that there is no overtraining in the SVM algorithms.

In order to further increase the classification performance we propose to investigate
impact of different preprocessing procedures and existing reference measurements. Com-
bining the methods of SVM and metric learning has in recent studies shown to be effective.
We therefore propose to investigate the support vector metric learning (SVML) algorithm.

Keywords: stroke, binary classification, microwave technology, biomedical engineering,
support vector machines, SVM, large margin nearest neighbour, LMNN



Nomenclature

AUC Area under the receiver operating characteristic curve. Measurement on per-
formance of a binary classifier.

CT Computed tomography. A type of X-ray imaging technique.

DALY Disability-adjusted life years. A measure of the personal suffering due to dis-
ability.

EM Electromagnetic. Mostly in the context of EM waves.

FN False negative.

FP False positive.

ICH Intracerebral haemorrhagic stroke, caused by a bleeding inside the brain.

IS Ischaemic stroke, caused by a blood clot in the brain.

ISC Inner-product subspace classifier. A classifier based on a LSM.

KFCV k-fold cross-validation.

LMNN Large margin nearest neighbour, a type of kNN classification algorithm.

LOOCV Leave one out cross-validation.

LPOCV Leave pair out cross-validation.

LSM Linear subspace model. A mathematical model upon which the ISC is based.

LSVM Linear SVM.

MC Denotes Monte Carlo, a concept in statistical analysis.

MHMS Microwave head measurement system.

MRI Magnetic resonance imaging. Imaging technique.

MWT Microwave technology.

RBFSVM SVM using the Radial Basis Function kernel.

ROC Receiver operating characteristic. Performance curve of a binary classifier.

rtPA Recombinant tissue plasminogen activator. Clot dissolver given intravenously.

SVM Support vector machines, a classification concept.
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TN True negative.

TP True positive.

TT Thrombolytic treatment. Usage of ”clot busters” such as rtPA.

VNA Vector network analyser. Hardware that measures S-parameters.

WHO World Health Organization.
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Chapter 1

Introduction

Cerebrovascular disease (stroke) was in 2004 ranked as one of the ten leading causes of
death according to the World Health Organization (WHO) and is projected to be one of
the four leading causes of death in 2030 [1], [2]. Stroke is also the most common cause of
permanent disability in human adults. In the United States, every 45 seconds someone
suffer a stroke and every three minutes someone dies due to a stroke [3].

1.1 What is stroke?

The brain relies upon the unobstructed flow of blood to provide glucose and oxygen as well
as to remove waste products. During a stroke, the blood flow to the brain is disturbed
which leads to inadequate blood supply [4]. A stroke can be either haemorrhagic or
ischaemic, the former meaning a rupture of a blood vessel causing blood to enter the
intracranial cavity (intracranial haemorrhage, ICH) and the latter meaning obstruction
by a blood clot (ichaemic stroke, IS) in the intracranial arteries [5], see Figure 1.1.

(a) Intracranial haemorrhage due to a burst
vessel.

(b) Blood clot hindering blood flow.

Figure 1.1: Intracranial haemorrhage compared to ischaemic stroke. Image used with kind
permission from Medfield Diagnostics.

Ichaemic stroke accounts for a majority of all strokes [4], approximately 85 %. Despite
ICH not being the most common form of stroke, it accounts for 51.7 % of the stroke-related
deaths [6].

In recent years the knowledge of stroke has increased and revealed that neuronal death
in stroke is time-dependent [5]. For strokes caused by a blood clot one effective treatment
is to use medication that dissolves the clot [7]. With the introduction of the ”clot dissolver”

1



2 CHAPTER 1. INTRODUCTION

recombinant tissue plasminogen activator, rtPA, a concept called time is brain emerged and
stroke care is therefore to be more focused on prehospital care. Common today is a chain
of events as illustrated in Figure 1.2 in which stroke onset is followed by an emergency
call, transport to the hospital and investigation using CT. The diagnosis is made by a
doctor by looking at the acquired images.

Figure 1.2: Sequence of events during a stroke. Stroke onset is generally followed by an emergency
call. The ill person is taken with the ambulance to the hospital in which CT examination is
performed. The CT images are investigated by a doctor who issues the treatment.

It is known that thrombolytic treatment (TT) administered within a specific thera-
peutic window is an effective therapy for ischaemic stroke. However, due to prehospital
delay no more than 1–8 % of all patients in need of thrombolytic treatment obtain it in
time [7].

It comes naturally that in order to begin treatment faster, the diagnosis must be made
earlier.

1.2 Impact on personal life and society

The impact of a stroke (or any other injury) in a person’s life is measured by the WHO
using disability-adjusted life years, DALYs, and this measure accounts for healthy life
years lost due to living with disability as well as premature mortality [8] Stroke is the
third leading cause of DALYs worldwide and the global burden due to it is increasing [6].

Apart from the individual suffering, the costs for society are huge [7]. A study concern-
ing the region of Västra Götaland with 1.5 million inhabitants in 2008 found that there
were 3074 people having a first-ever stroke [9]. The excess costs due to this was estimated
to 629 million SEK.

1.3 Stroke diagnosis and treatment today

IS and ICH cannot be distinguished based on its symptoms, as they are very similar [10]
and as of today some type of brain imaging is required to do this. Computed tomography
(CT) or magnetic resonance imaging (MRI) is used to discriminate between ischaemic and
haemorrhagic stroke [11] and of those, CT is the most common [12]. Both CT and MRI
provide useful information on tissue properties that might be related to malignancies [3].
However, they have drawbacks such as exposure to ionizing radiation for CT and for
MRI where the examination time is long. In MRI it is sometimes also an issue with
claustrophobia, even if it is not frequent [13].

A common drawback related to stroke detection is the cost-efficiency and their absence
in portability due to their apparatus sizes. However, there have been trials with custom
made ambulances equipped with CT-scanners for the purpose of stroke detection [4], but
this does not solve the issues of cost-efficiency or the ionising radiation. The ionising
radiation furthermore makes the technique unsuitable for continuous monitoring.
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For patients suffering from ICH there is no universal treatment today [10]. For IS, on
the other hand, thrombolytic treatment is used. However, TT have a negative effect on
ICH patient due to risk of increased bleeding and ICH must therefore be ruled out before
TT is administered.

1.4 Medfield Diagnostics’ proposed solution

Medfield Diagnostics’ proposed solution is to use microwave technology, MWT, to perform
stroke diagnosis due to its possibility in prehospital diagnosis in e.g. ambulances unlike CT
or MRI. As the apparatus size of the proposed microwave system is significantly smaller
than CT and MRI machines, the portability is increased. The cost of a complete system
will also be much lower in comparison. A schematic view of the measurement concept is
shown in Figure 1.3.

Figure 1.3: The concept of Medfield Diagnostics’ solution. Microwaves are sent and received using
antennas placed around the head. Image used with kind permission from Chalmers University of
Technology.

Due to the portability and lower cost, the aim is that usage of this technique in
ambulances will be able to lower the prehospital delay.

MWT has been demonstrated to be applicable for brain imaging [3], [4], which might
indicate that the technology proposed by Medfield Diagnostics is on the right track. It
shall though be pointed out that the proposed solution is not to use microwave as a
tomographic technique1, but the theoretical concepts still apply.

The underlying postulate for using microwave technology to discriminate a haemor-
rhagic from an ichaemic stroke is the difference in conductivity and permittivity of differ-
ent tissues. It is known that different tissues have different dielectric properties [14], [15].
These properties determine how the electromagnetic wave propagate through them [16].
Generally, by sending a microwave through tissue, some information of the wave propaga-
tion can be gathered, giving information about the tissue it has propagated through.

Microwave measurements are performed over a defined range of frequencies. The whole
frequency span of interest is discretised into smaller frequency spans to be able to identify
frequency regions that yield better classification performance.

The clinical data used in this project were provided by Medfield Diagnostics.

1I.e. the technique is not used to produce an image.
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1.5 Classification

Classification or pattern recognition is the process of distinguishing objects or items from
one another. At first glance, this might not seem like an extensive task, however finding
complex patterns in data is easier said than done. The concept of classification used
throughout this thesis is shown in Figure 1.4.

Input data Classifier Predicted class

Figure 1.4: The concept of classification.

Classification is hence the concept of mapping input data to a specific class. The
classifier does this mapping by a set of rules and in this thesis the rules are described
using training data. Training data is data associated with a specific class and the classifier
algorithm uses information acquired from this data to predict the class of future data.

Evaluation of a classifier can be done in various ways. In this thesis, the classifier is
trained with one set of data and is then to predict outcome of validation data. Validation
data in this case means data that belongs to a known class, but is unknown to the classi-
fication algorithm. The predicted class of the classifier can then be compared to the true
class of the data.

1.5.1 The curse of dimensionality

The dimensionality can be thought of as the number of variables that describe an object.
For example, in the digital world, colors are represented by fractions of the colours red,
green and blue and thus can be thought of as three dimensional. In our case, the di-
mensionality is determined by how many variables that defines our measurement and is
the number of discrete frequency intervals we consider. The overall dimensionality of one
measurement is acquired by the number of frequency intervals considered and the number
of antenna combinations considered.

There are problems associated with data of high dimensions given a small sample size,
the problem referred to as HDLSS. High dimensions and small sample sizes are relative
notions and commonly HDLSS is the case when the number of dimensions in the input
data is greater than the sample size [17], [18]. In this case, the dimensionality is in the
order of thousands, while the size of the datasets includes around 100 patients at most
and therefore is considered a HDLSS problem.

The goal with the ISC is to extract features, characteristic patterns in the data, that
can be used to discriminate between intracranial haemorrhage and ischaemic stroke. This
is done according to a linear subspace model2 and in general it can be thought of as first
deriving subspaces corresponding to ICH and IS respectively. Then, a measurement is
compared to each of the subspaces yielding a size within the subspace that can be thought
of as a similarity measure where the similarity is better the larger the size. The numerous
dimensions has then been reduced to use only two dimensions, the size within each of the

2Linear subspaces are mathematical constructions defined by vectors. In this case, the two subspaces are
created based on the microwave measurements. Similar measurements are generally larger in the subspace
to which they belong.
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subspaces. In the ISC, classification is done by comparing the sizes within the subspaces
and assign the measurement the label of which subspace it is most similar to. This is
illustrated in Figure 1.5.
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Figure 1.5: Classification using most similar subspace. Above the solid line, the decision bound-
ary, data belongs to the blue class and below, data belongs to the red class.

1.5.2 Support vector machines

Support vector machines, SVM, is a technique in which a decision boundary (or more
strictly, a hyperplane) that optimally separates data of two classes is acquired. In this
sense, the optimal separating hyperplane is the hyperplane that acquires maximum sep-
aration between the two classes. It might be the case that the two classes differ in the
similarity measurements, but that the most similar subspace is not necessarily a good
discriminator. An example is shown in Figure 1.6.

The idea is to investigate if using the SVM algorithm can improve the classification
outcome. For example, in Figure 1.6, linear SVM perfectly separates the red class from
the blue class with the decision boundary. Everything that falls on the right side of this
hypothetical line would be classified as red, while everything that falls on the left side will
be classified as blue.

1.5.3 Large margin nearest neighbour

Large margin nearest neighbour, or LMNN, is a classification algorithm based on the k-
nearest neighbour, kNN, classification algorithm [19]. The kNN classification algorithm
simply assigns a label to an unclassified data point based on the k closest neighbouring
data points’ class labels [20], as seen in Figure 1.7.

Of course, the closest neighbours depends on how the metric is defined when computing
the distance [19]. ”Standard” kNN classification uses the Euclidean metric while the
idea with LMNN is to use a different metric but keeps the underlying principle of the
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Figure 1.6: Classification with a diagnonal decision boundary (as in Figure 1.5) is not efficient, so
there exists a better decision boundary. Linear SVM suggests the solid line as decision boundary.
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Figure 1.7: Classification using kNN with k = 3. The unclassified measurement (black square)
is connecting to its three nearest neighbours, of which two belongs to the blue class and one to the
red class. The algorithm will therefore predict the class label to be blue.

kNN algorithm. The metric being used is a so-called Mahalanobis metric and the goal
in LMNN is to identify a metric in which similarly labelled points appear closer than
differently labelled points.
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1.6 Aims and goals

The aims of this project are to see if the classification performance can be increased by
using other classifiers instead of or together with the method currently in use by Med-
field Diagnostics. Clinical data provided by Medfield Diagnostics will be used throughout
this study. The aims and goals can be summarised as:

• Study different machine learning algorithms for use in stroke diagnostics using mi-
crowave measurements:

– Study performance using ISC
– Study performance using linear SVM
– Study performance using SVM with an RBF-kernel
– Study performance using the metric learning algorithm LMNN.

• Restructure and improve the classification program
The code should be rewritten to become more modular and to make data analysis
easier. Different classifiers should be easy to test without changing the fundamen-
tals of the code. It is also of interest to produce a program that has capability of
parallel processing to utilise multi-core processors and also make it suitable for high
performance computing clusters.

1.6.1 Scope

The implementations will be made in Matlab, as previous work has been made in this
language, but also due to the versatility and speed in these kind of problems.

The underlying feature extraction concept built upon the LSM and singular value
decomposition will be kept, while the classification algorithms following this step is what
is going to be investigated, see Figure 1.4.

Analysis and evaluation of the different machine learning algorithms will be performed
using a PC and not using a computer cluster.
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Chapter 2

Theory

In this chapter the underlying concepts and theories that are of importance for this project
are presented. It starts with a section on microwave technology that gives the background
to how the measurements are performed and how they work. This section is then followed
by a section dealing with classification.

2.1 Microwaves

Like visible light and radio waves, microwaves are electromagnetic (EM) waves [16]. What
differs microwaves from other electromagnetic waves are its frequency and wavelength. The
frequency f and wavelength λ is related by the speed of light in the considered media, c,
as seen in Equation (2.1).

f = cλ (2.1)

As can be derived from the name, electromagnetic waves consists of an electric and a
magnetic component. These components are perpendicular to each other as well as the
direction of the wave propagation [16], as can be seen in Figure 2.1.

Figure 2.1: Electromagnetic waves propagating along the black arrow. The electric and magnetic
components are perpendicular to one another as well to the direction of propagation.

As previously mentioned it is of interest how microwaves propagate through different
materials (in this context different tissue types), something that is related to a material’s

9



10 CHAPTER 2. THEORY

dielectric properties. The dielectric properties and how they relate to EM wave propa-
gation is described by Maxwell’s equations published by James Clerk Maxwell in 1873.
These equations describe the magnetic and electric phenomena at a macroscopic level and
are listed in Equations (2.2a-d) [16].

∇× Ē = −∂B̄
∂t
− M̄ (2.2a)

∇× H̄ = −∂D̄
∂t

+ J̄ (2.2b)

∇ · D̄ = ρ (2.2c)
∇ · B̄ = 0 (2.2d)

The notation used in these equations are explained in Table 2.1 for clarity. The relation

Table 2.1: Key chart for Maxwell’s equations

Symbol Description SI-unit
Ē electric field V/m
H̄ magnetic field A/m
D̄ electric flux density C/m2

B̄ magnetic flux density Wb/m2

M̄ fictitious magnetic current density V/m2

J̄ electric current density A/m2

ρ electric charge density C/m2

t time s

between the flux and field densities in free-space is given according to the constitutive
relations described in Equations (2.3a) and (2.3b) [16], where µ0 = 4π×10−7 Henry/m and
ε0 = 8.854×10−12 farad/m is the permeability and permittivity of free-space respectively.

B̄ = µ0H̄ (2.3a)
D̄ = ε0Ē (2.3b)

Maxwell’s equations presented in Equations (2.2a-d) together with the relations given
in Equations (2.3a-b), describes EM waves for arbitrary time dependence travelling
through free-space. By assuming sinusoidal time dependence and steady-state, these equa-
tions can be written in a more convenient form called phasor notation [16]. In this nota-
tion, all field quantities is written as complex vectors implied with a ejωt time-dependency,
where j is the imaginary number, ω = 2πf is the angular frequency and t the time . Ap-
plying this phasor notation on the equations in (2.2a-d) yield the equations in (2.4a-d).

∇× Ē = −jωB̄ − M̄ (2.4a)
∇× H̄ = −jωD̄ + J̄ (2.4b)
∇ · D̄ = ρ (2.4c)
∇ · B̄ = 0 (2.4d)

In order to account for fields travelling through media, the relations given in Equa-
tions (2.3a-b), has to be slightly modified, yielding Equations (2.5a-c) [16].
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B̄ = µH̄ (2.5a)
D̄ = εĒ (2.5b)
J̄ = σĒ (2.5c)

The permeability µ and the permittivity ε relates to how well a magnetic field and an
electric field can propagate in a material respectively. The conductivity σ of the material
relates to how well current flows within the material and is no longer zero as for free space.

For biological materials, it has been noted that the permeability µ is close to the
permeability of free space [21]. However, for the proposed application it is of interest to
study the impact on the electric field Ē which relates to the permittivity ε and conductivity
σ.

These dielectric properties are known to be frequency dependent, and this fact is
illustrated in Figure 2.2 for some interesting tissue types: blood, white matter and gray
matter. Gray matter consist of neuronal cell bodies among other brain cell types, while
the white matter is primarily composed of myelinated axons that connects the neurons to
each other [22].
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Figure 2.2: Permittivity and conductivity for white matter, grey matter and blood relative to
frequency. Figure adapted from Pethig (1984) [15].

As can be seen in Figure 2.2a, permittivity decreases with increasing frequency for the
three tissue types shown. The conductivity shown in Figure 2.2b however, increases with
increasing frequency.

It has been shown that ischemia (lack of blood) alters the dielectric properties of tis-
sue [23], [24]. As the blood flow during a stroke is altered compared to healthy oxygenated
tissue, this will affect the composition of tissues within the head. The underlying principle
for using microwave technique to distinguish between ICH and IS is therefore to identify
this difference in tissue composition. During an ICH there will be more blood compared
to normal tissue, wheras during an IS there will be ischaemic tissue.

2.1.1 S-parameters

When measurements are performed, it is of interest to study how much of the incident
voltage is received at another antenna, which will give a measurement of the attenuation
and scattering of the wave during its propagation.
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A convenient way of relating incident voltage of antenna i to reflected voltage of an-
tenna j for a wave of defined frequency is the scattering parameter, or S-parameter, as
defined in Equation (2.6), where V +

j and V −i denotes incident voltage of antenna j and
reflecting voltage of antenna i respectively [16].

Sij = V −i
V +
j

∣∣∣∣∣
V +

k
=0 , k 6=j

(2.6)

Considering a network of N antennas, these relationships can be described using vector
notation as seen in Equation (2.7) [16].

V −1
V −2
...
V −N

 =


S11 S12 . . . S1N
S21
... . . .

SN1 SNN



V +

1
V +

2
...
V +
N

 (2.7)

where the matrix containing S-parameters is denoted the scattering matrix.
The S-parameters can be subdivided into two disjoint groups, reflection coefficients

and transmission coefficients. Reflection coefficients are the S-parameters in which the
reflecting and transmitting antenna is the same and is equivalent to the diagonal elements
Sii in the scattering matrix [16].

The measurements performed by Medfield Diagnostics measures the S-parameters di-
rectly using a vector network analyzer, or VNA, and is the raw data used for distinguishing
between ICH and IS. For each frequency, one set of S-parameters is measured. The mea-
surement setup is illustrated in Figure 2.3.

VNA
Computer

Figure 2.3: Schematic figure of the measurement setup. The eight antennas are connected to a
switchboard which in turn is connected to the VNA. The VNA is connected to the computer that
operates the VNA as well as stores the measurements for future analysis.

2.2 Classification

In this project, classification is the process of distinguishing a patient’s disorder as being
an ICH or IS by using S-parameter measurements performed on that very patient.

The goal is to assign a class label to a measurement using a supervised learning al-
gorithm. Supervised learning means that the algorithm uses training data to acquire a
discrimination function to predict (or classify) other data [25]. The data that the machine
learning algorithm uses to discriminate objects are commonly called features.

An object is associated with any number of features and can be thought of as a charac-
teristic property that can be used to distinguish one type of object from another. It shall
be noted that a feature is not uniquely defined which means that features can be extracted



2.2. CLASSIFICATION 13

in numerous ways and may differ from application to application. – A feature can simply
be any property of an object. In classification it is preferably selected so that it discrimi-
nate the classes we want to separate. One can also make use of several features for every
object. The procedure of extracting features is commonly called feature extraction [26].

The goal of any supervised learning algorithm can therefore be thought of as predicting
a class label of an unknown object based on its features.

2.2.1 Binary classification

In binary classification there are two discrete groups or classes C := {+1,−1}. Suppose
there is a function f(x) that discriminates the two classes with labels c ∈ C, this is
mathematically described in Equation (2.8).

c = f(x) (2.8)

where c is the class label for the measurement x. As the function f(x) is related to some
underlying model describing the data [25] and is not perfectly known (in which case a
classification algorithm would be unneccesary), the aim of a classifier is to approximate f
with a function f̂ to acquire a predicted class label ĉ, as in Equation (2.9).

ĉ = f̂(x) (2.9)

In supervised learning, this approximation is done by training the algorithm with data
that has a known class label. How the algorithm deduces the function f̂(x) depends on
the implementation of the algorithm and can be done in various ways.

Performance

The performance of a classifier is a measure of how well it performs its task and is com-
monly described in terms of probabilities, e.g. probability of detection (true positive rate)
or probability of false alarm (false positive rate).

The outcome from a classification can be categorised as correct or incorrect, normally
denoted true or false respectively. Consider c being the true label of the measurement
x and, as before, f̂(x) being the predicted class label, a true outcome is defined as in
Equation (2.10a) and a false outcome as in Equation (2.10b).

f̂(x) = ĉ = c (2.10a)

f̂(x) = ĉ 6= c (2.10b)

For a binary classifier the predicted class can be either positive (+1) or negative (−1).
Considering that there are two different outcomes and that the classification can be true
(correct) or false (incorrect), this will yield four outcomes in total, which is shown in
Table 2.2 [27]. The matrix made up in the same manner as in Table 2.2 where on one axis

Table 2.2: Table over different outcomes of a binary classifier. TP = true positive, FP = false
positive, FN = false negative, TN = true negative.

True class
+1 −1

Predicted class +1 TP FP
−1 FN TN
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is the predicted outcome and the ground truth on the other, is sometimes referred to as
a confusion matrix. The efficiency of a classification algorithm can be reported in various
ways using different measures, such as accuracy, sensitivity and specificity. All of these
measures relate to the confusion matrix.

Accuracy

The accuracy measure of a classification outcome is the amount of correctly classified over
the total amount of objects classified [28], or mathematically as in Equation (2.11).

Accuracy = TP + TN

TP + FN + FP + TN
(2.11)

This measure works well for classifiers outputting a score from which the predicted class
label is determined or simply just a predicted class label. The accuracy measure can be
thought of as the empirical probability of getting a correct classification outcome. It shall
though be noted that the accuracy measure must be interpreted with the class distribution
in mind. Classifying everything as one class, will essentially give an accuracy equal to the
distribution of this class. For example, out of 100 measurements there are 68 of class A
and 32 of class B. Classifying everything as class A will yield an accuracy of 68 %.

Sensitivity and specificity

Classifier performance in often reported as sensitivity and specificity, which relates to the
classifier’s ability to identify positive and negative results respectively [25]. Sensitivity is
sometimes referred to as true positive rate or probability of detection (TPR) and specificity
as true negative rate (TNR) [27]. Mathematically, these properties are defined as in
Equations (2.12a) and (2.12b).

Sensitivity = TPR = TP
TP + FN (2.12a)

Specificity = TNR = TN
TN + FP (2.12b)

Some classifiers have a tuning parameter that alters the outcome of the classification
which can be used to trade sensitivity for specificity. This concept is illustrated in Figure
2.4 in which the two classes are distributed as two bell curves. By selecting the tuning
parameter to the leftmost position, everything will be classified positive yielding 100 %
sensitivity and 0 % specificity, while at the rightmost position it will be the complete
opposite, 0 % sensitivity and 100 % specificity. Thus, sensitivity and specificity must
be interpreted as a pair in order to say anything about the overall performance of the
classifier.

Receiver operating characteristic and area under the curve

A common way of investigating the performance of a binary classifier outputting a score
rather than just the predicted class label is to generate an receiver operating characteristic
(ROC) curve. In a binary classifier, the predicted class is acquired from the classifier
score by its sign and the ROC curve is acquired by ranking the classifier output and the
true class labels in ascending order with respect to the classifier score. Then a tuning
parameter is introduced that bias the classifier outcome (changing the decision boundary
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TN

FN

TP

FP

Figure 2.4: Two classes distributed as bell curves with the decision boundary being the dashed
line. Everything left of this line is classified negative, while everything to the right of this line is
classified positive.

in Figure 2.4) to predict everything into one class, yielding 100 % specificity and 0 %
sensitivity. The tuning parameter is then incremented while at every step calculating
sensitivity and specificity. This process is iterated until the classifier output is biased
to yield 0 % specificity and 100 % sensitivity. Each threshold generates a measure of
sensitivity and specificity which defines a single point on the ROC curve. The ROC
curve is visualised by plotting 1-specificiy versus sensitivity1 for all values of the tuning
parameter and is a common evaluation tool in clinical medicine [29].

While the ROC curve itself is a two-dimensional representation of the classifier perfor-
mance, it is sometimes convenient to use a scalar measure. The area under the ROC curve,
AUC, is common [25] for this. A sample ROC curve and corresponding AUC is visualised
in Figure 2.5. The statistical measure AUC is shown to be equivalent to the Wilcoxon
rank-sum test [25], [30], [31], and it is therefore not necessary to deduce the whole ROC
curve in order to obtain this measure. Instead, to calculate the AUC according to the
Wilcoxon rank-sum test, the samples S are divided into positive (S+) and negative (S−)
groups based on their actual class beloning. The AUC is then aquired by Equation (2.13).

Â(S, fZ) = 1
|S+| · |S−|

∑
xi∈S+

∑
xj∈S−

H(fZ(xi)− fZ(xj)) (2.13)

Equation (2.13) is a definition of the Wilcoxon Rank-Sum test where fZ represents the
output score from the classifier for a certain measurement x, and H is the Heaviside
function defined by Equation (2.14).

H (x) =


1 , x > 0

1/2 , x = 0
0 , x < 0

(2.14)

1It is sometimes plotted as specificity versus sensitivity.
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Figure 2.5: A sample ROC-curve (red) with the area under it shaded in gray.

Example

Lets take a simple example to get some hands on experience. Consider a case in which
atlantic salmon is to be discriminated from atlantic cod. Hypothetically we assume that
in the waters where we catch our fish there only exist cod and salmon, this will be a binary
problem as we only have two different classes.

A skilled fisherman can distinguish between the two types of fish probably by the smell,
while the less experienced amateur do this based on the look of the fish, see Figure 2.6
and Figure 2.7.

Figure 2.6: Cod. http://upload.wikimedia.org/wikipedia/commons/a/a3/Atlantic_cod.
jpg (Visited on 2014-05-05)

However, as humans are somewhat lazy we want to automatise this process by the use
of a camera and a computer. As we now we can discriminate the fish based on their looks,
using a simple camera and a computer is not a bad choice. Now the task is to make the
learning algorithm understand how to interpret the information in the image.

A machine is not aware of different types of fish and must therefore be told what is
what. As humans we therefore have to identify certain characteristics, the features, for
each fish species and tell the machine about them.

Consider the fish on a conveyor belt, the image of the camera must be preprocessed

http://upload.wikimedia.org/wikipedia/commons/a/a3/Atlantic_cod.jpg
http://upload.wikimedia.org/wikipedia/commons/a/a3/Atlantic_cod.jpg


2.2. CLASSIFICATION 17

Figure 2.7: Salmon. http://upload.wikimedia.org/wikipedia/commons/archive/0/06/
20091123150247!Salmo_salar_%28crop%29.jpg (Visited on 2014-05-05)

in order to account for irregularities that might disturb the classification such as the
orientation of the fish and unequal lighting conditions. After this preprocessing step, we
have to extract features to be used by the following classification step in order to determine
which type of fish it is.

We make an assumption that salmon in general are shorter than cod. This information
suggests that the length can potentially be used as a feature. Using one feature as in this
case will yield what is called a one-dimensional feature space. Suppose that the length of
30 fish of each species are determined, this results in something like what is shown in the
bar plot in Figure 2.8.
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Figure 2.8: Distribution of length of cod and salmon from a sample of 30 salmon and 30 cod.
The lengths are discretised with an error of ± 5 centimetres.

Now consider that we only want to catch cod and all salmon should be released back
into the water. The threshold for the length could be set so that every fish longer than
150 centimetres are kept. Assuming that the the distribution in Figure 2.8 is correct, we
will not catch any salmon. In order to acquire the confusion matrix, we first need to define
what we will consider a positive and negative result. As we want to identify and catch cod,
it is a good choice to select cod as being a positive result and salmon as a negative result.
For the chosen threshold, eleven cod will be correctly identified, the other 19 cod will be
considered as salmon, as will all the 30 salmon. No salmon will be wrongly classified as
cod, and this yields the confusion matrix seen in Equation (2.15).[

TP FP
FN TN

]
=
[
11 0
19 30

]
(2.15)

http://upload.wikimedia.org/wikipedia/commons/archive/0/06/20091123150247!Salmo_salar_%28crop%29.jpg
http://upload.wikimedia.org/wikipedia/commons/archive/0/06/20091123150247!Salmo_salar_%28crop%29.jpg
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The accuracy of the classification algorithm using this threshold can be calculated
according to Equation (2.11) and is found to be

Accuracy = 11 + 30
11 + 0 + 19 + 30 ≈ 0.68 = 68 %

and is the empirical chance of a correct classification prediction. The sensitivity, by Equa-
tion (2.12a), is found to be

Sensitivity = 11
11 + 19 ≈ 0.36 . . . = 37 %

which is equal to our classifiers’ ability to identify cod. Equation (2.12b) gives the speci-
ficity, yielding

Specificity = 30
30 + 0 = 1 = 100 %

and is equivalent to the classifiers’ ability to identify salmon.
What this tells us is that the classifier using the selected threshold can achieve that we

catch no salmon. However some of the cod are also removed. As noted before, sensitivity
can be traded for specificity and vice versa. In this case this is equal to say that we can
tolerate that we catch some salmon after all, if we will identify and get even more cod.
Setting the threshold to consider every fish being 120 centimetres or shorter being a salmon
will identify all the cod, but will also classify some salmon as cod. For this threshold, the
sensitivity will be increased to 100 % while the specificity will decrease to approximately
40 %. The accuracy on the other hand, is approximately the same, 70 %.

Recall that the ROC curve involves both sensitivity and specificity at different thresh-
olds. By calculating the sensitivity and specificity while moving the threshold in the
discrete steps seen in the x-axis in Figure 2.8, we acquire the ROC curve seen in Fig-
ure 2.9 and an AUC of 0.83. In this figure is also noted the thresholds of 150 centimetres
and 120 centimetres.
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Figure 2.9: ROC curve for the separation of salmon and cod. Cod is considered the positive
outcome. Uppermost and lowermost circles indicate the two different thresholds 120 centimetres
and 150 centimetres respectively.

By inspection of the images in Figure 2.6 and Figure 2.7, one might suggest that the
brightness of the scales differ and that this brightness might be suitable for classification.
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Figure 2.10: Fish brightness.

Only considering the brightness will yield the bar plot seen in Figure 2.10. As can be seen,
using brightness is not suitable for discriminating the two fish species either. However,
using both of the features might give a better outcome. Adding another feature will add
one dimension to the feature space, in this example giving a two-dimensional problem. In
fact, for this specific example, the boxplots in Figure 2.8 and Figure 2.10 are acquired by
discretising the datapoints in the two-dimensional feature space seen in Figure 2.11 by the
dashed lines. The two dimensional feature space is illustrated in Figure 2.11.
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Figure 2.11: Fish brightness and length making up the two-dimensional feature space. The
dashed lines are used for discretising the length to acquire the two box plots seen in Figure 2.8
and Figure 2.10.

Notably, the fish species are fully separable using two features as seen by the black
line.



20 CHAPTER 2. THEORY

2.2.2 Linear subspace model

The microwave data acquired in the clinical dataset has high dimensions that is signif-
icantly larger than the sample size and is therefore regarded as a HDLSS problem [17],
[18]. There are various ideas and concept on how to treat such problems and using linear
subspace models (LSMs) is one [32].

In this thesis, all classifiers are based upon a linear subspace model. This model creates
subspaces for each class from training data and then compare the size of the measurement
within each of the subspaces. The feature extraction algorithm is based on a method
described in the original paper by Yu and McKelvey (2013) [33] and Persson, Fhager,
Trefná, et al. (2014) [34].

It is considered that a measurement x of S-parameters can be written as a linear
combination of basis vectors

x =
nc∑
i=1

αciu
c
i + e = U cα

c + e (2.16)

where the matrix U c defined as in Equation (2.17a) and the corresponding weights in αci .

U c = [uc,1 · · ·uc,nc ] (2.17a)
UH
c U c = I (2.17b)

where I denotes the identity matrix and H the Hermitian conjugate2. The weight vector
α for a class c can then be written as

αc = UH
c x−UH

c e (2.18)

where the error is considered small and thus can be neglected.

2.2.3 Inner product subspace classification

Classification using the linear subspace model is made by reducing the dimensions of
the weight vector αc for each class by using the inner product, hence its common name
Inner-product subspace classifier, or ISC. A large size within the class for a measurement
correspond to a small distance from the measurement to the class [33]. The size d within
the class is calculated according to Equation (2.19).

d = αHα (2.19)

The class prediction is then acquired by the difference in the inner product, calculated by
Equation (2.20).

δ(x) = xHU1︸ ︷︷ ︸
αH

1

UH
1 x︸ ︷︷ ︸
α1

−xHU2︸ ︷︷ ︸
αH

2

UH
2 x︸ ︷︷ ︸
α2

(2.20)

The prediction function f̂ for this case can then be written as in Equation (2.21).

f̂(x) =
{

+1 δ(x) > 0
−1 δ(x) ≤ 0 (2.21)

2The Hermetian conjugate is defined as the complex conjugate of all elements in the transposed matrix.
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2.2.4 Support vector machines

Support vector machines (SVM), also known as Support Vector Networks, are learning
algorithms proposed in the mid 1990’s and are derived from statistical learning theory
which has its origin in the 1960’s. The goal of using SVM for classification is to map input
features to a high dimensional feature space and in that space construct a separating
hyperplane between two classes [25], [35]. The idea of SVM is to use support vectors,
a small amount of training data, to determine an optimal hyperplane with the maximal
margin [36]. As we shall see, SVM predicts a measurement x into either positive or
negative and is therefore a binary decision algorithm3. More detailed discussions on the
topic of SVM can be found in Cortes and Vapnik (1995), Vapnik (1999), Steinwart and
Christmann (2008), Chamasemani and Singh (2013). [35]–[38].

Optimal separating hyperplanes

Consider ` training data x with the class label c defined as

(x1, c1), · · · , (x`, c`) , x ∈ Rn , c ∈ {+1,−1}

to be linearly separable, that is if the inequalities in Equations (2.22) are satisfied [36].

w · xi + b ≥ 1 , ci = 1 (2.22a)
w · xi + b ≤ −1 , ci = −1 (2.22b)

These equations can be condensed [38] into a more convenient form

ci(w · xi + b) ≥ 1 , i = 1, · · · , `. (2.23)

The optimal separating hyperplane is unique and defined as

w0 · x+ b0 = 0. (2.24)

If the vectors are separated perfectly and there is maximal distance between the closest
vector and the hyperplane as illustrated in Figure 2.12, it is said that the vectors are
separated by the optimal hyperplane [35].

The vectors that lies on the margin satisfies the condition ci(w · xi + b) = 1 and are
the support vectors that is used to deduce the maximum margin classifier. The vector w0
that defines the optimal hyperplane can be written as a linear combination of the training
vectors [35], [36]:

w0 =
∑̀
i=1

ciα
0
ixi =

∑
support vectors

ciα
0
ixi , α0

i ≥ 0 (2.25)

where α0
i is a Lagrange multiplier from solving an optimisation problem [36] and only

non-zero for the support vectors. Inserting the expression for w0 into the definition of the
optimal separating hyperplane in Equation (2.24) will yield Equation (2.26) [35].

∑̀
i=1

α0
i (x,xi) + b0 = 0 (2.26)

3There exist multi-class SVM based on combining several binary SVMs [37]. However, in this thesis
only binary classification is considered.
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where the (x,xi) denotes the inner product. The decision function f̂(x) for the input x
is then defined as in Equation (2.27).

f̂(x) = sign
(∑̀
i=1

α0
i (x,xi) + b0

)
(2.27)

Figure 2.12: Linear SVM applied to two-dimensional perfectly separable training data. The
decision boundary is the solid black line while the dotted lines are the margins. The vectors that
lie on these margins are the support vectors as they do satisfy the condition ci(w · xi + b) = 1.

The non-separable case

Data might not be linearly separable due to, for example, outliers or noise in which case
there is no separating hyperplane [38]. The standard approach to account for this case
is to allow the algorithm to make mistakes for a cost [37]. Formally, the non-negative
slack variables ξi are introduced which can be thought of as the closest distance from the
measurement xi to its corresponding margin, see Figure 2.13.

Together with the slack variable ξi the cost parameter C and the functional in Equa-
tion (2.28) is introduced.

Φ(ξ) = (w,w) + C
∑̀
i=1

ξi (2.28)

where the parameter C > 0 is an arbitrarily chosen constant. There might be an issue due
to the loosened constraints, namely if the slack variables becomes too large [38]. To deal
with this issue, they are incorporated in Equation (2.23) and Equation (2.28) shall thus
be minimised with subject to constraints Equation (2.29) with respect to w and b [25],
[35], [36], [38].

ci(w · xi + b) ≥ 1− ξi , ξi ≥ 0 , i = 1, · · · , `. (2.29)
The training data that violate the margins are excluded and support vectors are selected
without them to create an optimal separating hyperplane using the remaining training
data [36].
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Figure 2.13: Linear SVM applied to two-dimensional linearly non-separable data. Note the slack
variables for the two data points that is on the wrong side of their margin. The support vectors
used to construct this optimal separating hyperplanes are located on the dotted margins.

The value of the cost parameter C is crucial as it relates to the smoothness of the
decision boundary. A small value of C implies a large margin whereas a smaller margin is
acquired by a large value of C [25]. A too high value for the cost parameter will therefore
overfit the test data, which means that the generalisation of the classifier will be bad.

Non-linear data in input space and kernels

However, if the training data is poorly separable with a linear boundary, the generalisation
of the model might be low even for the optimal hyperplane [37]. In this case, it is possible
to map the input vectors to a feature space of very high dimensions with a nonlinear
mapping [35] and then find the optimal separating hyperplane as before, now in the high-
dimensional space. The idea is to construct a linear decision function in a feature space,
that in fact will be a nonlinear decision function in the input space. This mappingK simply
replaces the former inner product, making the decision function as in Equation (2.30) [35].

f̂(x) = sign

 ∑
support vectors

αiK(xi · x) + b0

 (2.30)

The function or kernel K has the constraint that it must satisfy the condition given in [35],
[36] ∫

K(x, y)z(x)z(y)dxdy ≥ 0. (2.31)

for any functions z(x) and z(y) satisfying Equation (2.32).∫
z2(x)dx ≤ ∞ (2.32)
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Learning machines that uses decision functions of the type seen in Equation (2.30) given
any specific functionK are called support vector machines. By selecting different functions
for the inner products K, different learning machines are created. The linear kernel is the
dot product, see Equation (2.33a) and the radial basis function kernel is defined as in
Equation (2.33b) [25].

K(u,v) = u • v = uTv (2.33a)
K(u,v) = exp

(
−γ‖u− v‖2

)
(2.33b)

The parameter γ is called the width. The RBF-kernel allows non-linear decision boundaries
as shown in Figure 2.14.

 

 

Figure 2.14: SVM with the RBF-kernel applied.

2.2.5 Large margin nearest neighbour

The large margin nearest neighbour, LMNN, classification algorithm builds upon the k-
nearest neighbours (kNN) algorithm [19] and is one of the oldest pattern classification
procedures [20]. The simple idea in kNN classification is to label a measurement depending
on it’s local neighbourhood which does not require any model to be fit [25].

Consider the ` measurements in the training data as

(x1, c1), · · · , (x`, c`) , c ∈ C

where each measurement xi take values in some metric space and ci is the class label from
the set C. Consider the set of points with known label (training data) as in Equation (2.34).

x′` = {x1, x2, · · · , x`} (2.34)

The closest neighbour to the unknown measurement x is the one that satisfies the condition
in Equation (2.35) for any defined metric d [20].

min d(xi, x) = d(x′`, x) , i = 1, 2, · · · , ` (2.35)
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By removing the nearest neighbour to the measurement x from the set of measurements
with the known label the condition in Equation (2.35) will yield the second nearest neigh-
bour and so forth. The predicted class label ĉ of the unknown measurement x is determined
by a majority vote of its k nearest neighbours. If the vote comes to a tie (in case an even
number of neighbours are considered), this will be broken at random [25]. Figure 2.15
illustrates the kNN concept for k = 3 in two dimensions.

Figure 2.15: The concept of kNN classification in 2D for k = 3. The unclassified data (black in
the center) is assigned a label due to a majority vote of it’s three closest neighbours within the
shaded area. In this example, there are two blue neighbours and one red neighbour, thus the test
data will be assigned as belonging to the blue class.

As the nearest neighbours are determined by the condition in Equation (2.35), the
defined metric d is of vital importance. According to Weinberger and Saul (2009) [19], the
accuracy of any kNN algorithm is significantly dependent on the metric being used.

In this project a kNN-algorithm is used with an alternative metric to the Euclidean
distance. The idea is to estimate statistical regularities in the data that can be estimated
from the training dataset. This implementation is called Large margin nearest neighbour,
abbreviated LMNN and uses the Mahalanobis metric. This procedure can be regarded as
applying a linear transform L to the input space before applying the kNN-algorithm that
uses Euclidean metric [19]. The conceptual idea is shown in Figure 2.16. A metric is any

xi
xi xi

Figure 2.16: The green discs share the same label, while the red squares have different labels,
and is therefore called impostors. By applying a linear transformation to the input space the
impostors can be pushed outside of the margin. After the applied linear transformation the green
discs appear closer.

mapping d : X ×X → R that satisfies the following four conditions [39]:

1. d(x, y) ≥ 0 , x, y ∈ X
The distance is always positive.

2. d(x, y) = 0 ⇐⇒ x = y
A distance of zero is only true for the distance from the point to itself.
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3. d(x, y) = d(y, x) , x, y ∈ X
The distance is symmetric.

4. d(x, y) ≤ d(x, z) + d(z, y) , x, y, z ∈ X
The triangular inequality.

However, if the metric does satisfy all but the second condition, it is commonly referred
to as a pseudometric.

The general form of the squared distance using Euclidean distances after performing
a linear transformation by L, is shown in Equation (2.36) [19].

dM(x,y) = ‖L(xi − xj)‖22 = (Lxi − Lxj)T(Lxi − Lxj) = (xi − xj)TM(xi − xj) (2.36)

where M = LTL � 0 is a square matrix. This equation is a generalised form, from
which the Euclidean metric can be derived by setting M to the identity matrix I.

The constraint on M is that it is positive semidefinite which implies that it has no
negative eigenvalues. This constraint will be satisfied if the matrix M is formed from any
real-valued matrix L. It shall also be noted that if M is a square matrix of full rank, the
metric satisfies all the four conditions of being a metric, otherwise it will not satisfy the
second condition and thus will be a pseudometric.

The goal will then be to estimate either the positive semidefinite matrix M or the linear
transform L which uniquely defines the former matrix [19]. In the specific application for
LMNN, the transformation being sought is the one achieves what is seen in Figure 2.16,
namely to draw similarly labelled datapoints closer while pushing away impostors.

2.3 Cross-validation

In order to estimate the performance of the classifier, the cross-validation procedure is
used, which is a frequently used method to estimate prediction errors [25].

There are different cross-validation methods such as k-fold cross-validation (KFCV)
and leave pair out cross-validation (LPOCV). Common for these algorithms are that they
use one dataset and divides it into two datasets, called training data and test data. The
training data is used to train the classification algorithm and the testing data is used
to evaluate the performance of the trained classifier. In general, what differs the cross-
validation methods is how the training and testing data is selected.

2.3.1 k-fold cross-validation

In k-fold cross-validation, the dataset is randomly divided into k equally sized groups or
folds where one is used as validation data and k − 1 folds as training data [25]. After
classification is performed, another of the k folds is used for testing while the other k − 1
data is used for training. This procedure is repeated until all folds has been selected as
the testing set once. This procedure illustrated in Figure 2.17.

In this project, a special case of the k-fold cross-validation is used, called leave one out
cross-validation, LOOCV. This means that the fold number k was set to be equal to the
number of datapoints in the analysis, thus every testing set consisting of one datapoint
that is ”left out”. For small-sample studies, it has been pointed out that the AUC received
using LOOCV suffer from substantial negative bias [40].
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(a) Division into k = 8 folds.

1 2 8

(b) Iterative procedure run k = 8 times.

Figure 2.17: k-fold cross-validation with k = 8. The red and blue samples in to the left in (a) are
randomly ordered into eight groups which can be seen to the right. In (b) is seen the seven groups
used to train the classifier (gray) and one group to be tested (black). The procedure is iterated
until all groups have been excluded once, as seen in (b).

2.3.2 Leave pair out cross-validation

The leave pair out cross-validation, LPOCV, method is a validation method for binary
classification problems in which two datapoints, one from each class, is left out. Further-
more, the training dataset is restricted to consist of equal amount of datapoints from each
participating class. This method has proven successful to remove negative bias in AUC
estimation for datasets similar in size to those used in this project [40], [41]. This concept
is illustrated in Figure 2.18.

A

B

A

B

C

C

A A A B CA

C B

B B B C

C C

B A

C A

Figure 2.18: Leave pair out cross-validation. As there exist three samples from each class, this
will generate nine pairs as every possible pair is tested. Like for the k-fold cross-validation, one of
these groups is left out while the other eight are used for training of the classifier. The procedure
continues until all groups has been left out once.
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2.3.3 Acquiring AUC

How the AUC is retrieved can also vary among these cross-validation methods [41]. The
AUC can be retrieved either using pooling or averaging. In pooling, the classifier scores
from each test set is stacked and the AUC is calculated from the combined outputs. In
averaging, a AUC is computed for each test set and is then averaged over all folds. For the
case of using LOOCV, pooling is the only alternative. Additionally, the pooling strategy
requires that the outputted scores are comparable and can be globally ordered.

2.3.4 Bootstrap and pseudo Monte Carlo procedure

There is an option to perform classification on the clinical data using a pseudo Monte
Carlo, procedure and will henceforth be denotedMC. This means that a larger dataset than
there actually is can be simulated as there are several observations for each measurement
of every patient. By doing the classification iteratively while at every iteration randomly
select which of the observations to be included, the number of combinations are increased.
The total number of combinations is the number of observations of each measurement
raised to the number of patients. This concept is illustrated in Figure 2.19 for a set of
four measurements, each repeated three times. The measurements that are not selected
for processing are discarded during that evaluation.

Figure 2.19: Pseudo Monte Carlo procedure. The number of unique combinations using the
pseudo Monte Carlo procedure can be thought of as how many unique ways there exist to connect
the two green boxes when the limitation is to take one vertical step. In the figure, three ways are
drawn and in total there exist 34 = 81 unique ways.

In order to achieve a statistical measure on the standard error of the estimate, a
bootstrap method is issued. This means that a sample of MC simulations are selected at
random, generating what is called a bootstrap sample to calculate average AUC over as
many MCs selected. This procedure is repeated several times, while at every time new
samples are drawn from the total numbers of MC simulations. Consider the set of all MC
simulations are denoted by Z = {z1, z2, . . . , zN} where zi denotes the i:th MC simulation.
A bootstrap sample Z∗i is acquired by randomly draw n < N datasets from Z and can be
used to predict an estimate of any parameter θ̂ [25], see Figure 2.20.

Using these B bootstrap samples, the standard error of the estimate θ̂ can then be
achieved using the sample standard deviation of the bootstrap samples θ̂∗i , as seen in
Equation (2.37) [42].

Sθ̂ =
√

1
B − 1

∑(
θ̂∗i − θ̄∗

)2
(2.37)

where the notation θ̄∗ =
∑
θ̂∗i /B is the sample mean.
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Z = {z1, z2, . . . , zN}

Z∗1

Z∗2

Z∗B

...

θ̂∗1

θ̂∗2

θ̂∗B

Figure 2.20: The bootstrap method. From the full dataset Z, B bootstrap samples are drawn.
From each of the bootstrap samples a statistical quantity θ̂∗

i can be deduced.
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Chapter 3

Materials and methods

In this chapter is presented what data has been used to perform the classification and the
implementation of the methods briefly described in the theory section.

3.1 Data acquisition

The data used in this project was provided by Medfield Diagnostics. The patients in the
study had suffered from either ICH or IS and microwave measurements were performed
after undergoing CT-investigation and the type of stroke was confirmed by a physician
from CT-images.

Three clinical datasets, denoted A, B-1 and B-2 were used for testing the algorithms.
These datasets were acquired using different measurement setups. The frequency span
considered in dataset A is 100-3000 MHz with a step size of 7.25 MHz. In datasets B-1
and B-2, the frequency step size is the same, but the frequency span considered is 100-
1898 MHz. The dimensionality of both the datasets are high and depends on the number
of frequency points considered and the number antenna combinations used. In total for
dataset A there are 26466 dimensions, whereas for the datasets B-1 and B-2 there are 8964
dimensions.

Due to the fact that the data in the datasets is acquired with different measurement
equipments, they are treated separately. The distribution of clots and bleedings is shown
in Table 3.1 for dataset A and in Table 3.2 for dataset B-1 and B-2. It shall be pointed out
that in the B-1 dataset, there were three patients having stroke mimics and one suffering
from a subdural haematoma. Stroke mimics are diseases that mimic the symptoms for a
stroke but is not [43]. A subdural haematoma is a bleeding but not in the same region as
when having a stroke and can also be regarded as a stroke mimic.

Table 3.1: Distribution of patients in dataset A.

ICH 10 (40%)
IS 15 (60%)
Σ 25 (100%)

3.1.1 Measurement equipment

Schematic figure on how measurements are performed is seen in Figure 3.1. Antennas are
placed around the head and one antenna starts sending a microwave which is received at
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Table 3.2: Distribution of patients in dataset B-1 and B-2. In the B-1 dataset, there are three
patients considered ICH but are stroke mimics and one patient labelled ICH suffered a subdural
haematoma.

B-1 B-2 Σ
ICH 25 (51%) 12 (27%) 37 (40%)
IS 24 (49%) 32 (73%) 56 (60%)
Σ 49 (53%) 44 (47%) 93 (100%)

the other antennas. When this is done, another antenna is sending while all others are
receiving and this is repeated until all antennas has transmitted once.

DEXTER (RIGHT)

SINISTER (LEFT)

Figure 3.1: Transversal illustration of the head. Each antenna sends a signal that is received at
the other antennas. This procedure is repeated in turn until all antennas has acted transmitter
once. In this figure, a bleeding is located in the right hemisphere (red blob).

All of the antennas are connected to a vector network analyser that controls the mea-
surement and measures the S-parameters. The antennas used emits most energy in the
frequency span from around 1 GHz as this is where the magnitude drops below −3 dB,
as seen in the reflection curve in Figure 3.2. As the reflection curve reaches −3 dB, this
can be interpreted that 50 % of the power is emitted from the antenna. This frequency
interval is therefore of interest as the hypothesis is that diagnostic information is located
here.

The LOOCV method was used to verify the output of the classifier. Due to the sizes
of the datasets and the distribution of ICH and IS, see Table 3.1 and Table 3.2, general
k-fold was not used.

Leave-pair-out cross-validation was not used in this project due to the computational
resources needed to test every possible pair combination.

3.2 Preprocessing

Preprocessing is an important step and suits to make data input to the classifier to be
similar and consistent. As such, irregularities depending on for example the individual
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Figure 3.2: Reflection curve for an antenna in the frequency span 100–1898 MHz. At −3 dB
50 % of the energy is emitted from the antenna.

measurement setup should be handled in this step. During this project, preprocessing of
the measurements was done in the way that in previous cases has been empirically tested
by Medfield Diagnostics. This preprocessing was taking the logarithm for each antenna
combination and normalise it. Although preprocessing is an important step for the clas-
sification outcome and some general assumptions can indicate what kind of preprocessing
might be useful, there is no ideal way of selecting preprocessing procedure but to test
empirically.

3.3 Classification

The classification implementation in this project is visualized in Figure 3.3 and henceforth
the term classifier will be used for the process of discrimination, i.e. predicting the class
given the features. Some classifiers output a classifier score that can be used to acquire
the ROC-curve.

Figure 3.3: Classifier concept. Features are extracted from the data that is used by the classifier
to predict the class belonging of the validation data. Some classifiers also output a score that can
be used to calculate the ROC-curve.

Throughout this project, measurements from all antenna combinations except the re-
flection S-parameters were used. However, the frequency points used was varied.
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3.3.1 Inner-product subspace classification

The ISC algorithm has two parameters called r and n that can be changed to bias the
outcome. The r parameter is used to remove variations in the data that is not dependent
on what is to be classified, i.e. variations related to other phenomena than IS and ICH.
The n parameter is described as a noise reduction parameter. More detail on how these
parameters work is found in [33], [34].

3.3.2 Support vector machines

Classification using support vector machines was made using the free LIBSVM pack-
age1 [44]. SVM was applied with two different kernels, the linear kernel (henceforth
denoted LSVM) and the RBF kernel (henceforth denoted RBFSVM).

For the LSVM, the internal parameter optimisation to acquire the cost parameter C
was done by letting the SVM algorithm perform internal k-fold cross-validation for different
values of C. The value yielding the best cross-validation accuracy is then selected. This
internal cross-validation procedure utilised k = 5, that is, the data was divided into five
groups and was performed in the training step of the algorithm. The parameters values
checked are the ones listed in Equation (3.1).

C = {0.5, 1, 2, 4, 8} (3.1)

When the RBF kernel was used, there parameter γ is added. Parameter optimisation
are done in a similar way as for the linear SVM by using a grid search and compare cross-
validation accuracy for each combination of C and γ. This procedure is one proposed way
of finding the optimal parameters C and γ according to Hsu, Chang, and Lin (2010) [45].
The parameter values checked are the ones listed in Equation (3.2).

γ = {0.0625, 0.125, 0.25, 0.5, 1, 2} (3.2)
It shall be noted that good parameter values are highly dependent on the data and

no theoretical consensus exist on how to select these parameters for a given dataset. It is
noted by Steinwart and Christmann (2008) [38] that the cross-validation procedure might
be associated with some disadvantages, such as overfitting. The reason for this is that
there exist a relation between the training and testing data as they are drawn from the
same set.

3.3.3 Large margin nearest neighbour

The algorithm to perform large-margin nearest neighbour classification is described in the
paper by Weinberger and Saul. The implementation is also made by Weinberger [19] and
can be found online2. For this project the LMNN version 2.4 was used. The parameter k
was selected to be equal to one, meaning that the closest neighbour determines the class
label of the measurement.

3.4 Testing setup

Classification using LSVM, RBFSVM and LMNN was performed using different input to
the algorithms shown in Table 3.3. The ISC uses this weight vector and the parameters r
and n to acquire the sizes within the subspaces, d1 and d2.

1The LIBSVM package can be acquired from http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
2The LMNN implementation can be found on http://www.cse.wustl.edu/~kilian/code/code.html.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.cse.wustl.edu/~kilian/code/code.html
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Table 3.3: Input to the SVM and LMNN. The variable d stands for the sizes within the subspaces,
as of equation (2.19) and α is the weight vector as in Equation (2.18). Indices 1 and 2 denotes
class 1 and 2 respectively.

Variables
d1,d2
d1,d2,d1d2,d2

1,d2
2

α1,α2

While the sizes d1 and d2 are scalars, it shall be noted that the dimension of the
vectors α1 and α2 depend on the sizes of the subspaces U1 and U2 respectively, see
Equation (2.18).

For each measurement x, the variables were stacked to give one long vector char-
acteristic for that very measurement. For the first case where the two sizes within the
subspaces were used, the feature vector had a length of two and in the second case a length
of five, see Table 3.3. For the third case where the weight vector was used, the setup was
a bit different as the dimensions of α1 and α2 are dependent on the training data sizes
and are in general complex. As the used classification algorithms assumes real numbers,
each weight vector was divided into its real and imaginary part and stacked according to
equation (3.3).

Variables =
[
Re(α1)T, Im(α1)T,Re(α2)T, Im(α2)T

]
(3.3)

It shall be noted that when considering the sizes within the subspaces as output d from
the ISC, the internal tuning parameters from the ISC are adding to the overall complex-
ity, greatly increasing computation time. This methodology can be seen as performing
classification with the ISC for feature extraction. Table 3.4 together with the amount of
parameters needed for each setup.

Table 3.4: Table of setups to test. For the classification setups starting with ISC followed by
another classifier, the sizes within the subspaces were acquired from the ISC algorithm was given
as input to the classifier.

Procedure Input variables Parameters
ISC – r, n, fmin, fmax
LSVM α1,α2 C, fmin, fmax
RBFSVM α1,α2 C, γ, fmin, fmax
LMNN α1,α2 k, fmin, fmax
ISC - LSVM d1,d2 r, n, C, fmin, fmax
ISC - RBFSVM d1,d2 r, n, C, γ, fmin, fmax
ISC - LMNN d1,d2 r, n, k, fmin, fmax
ISC - LSVM d1,d2,d1d2,d2

1,d2
2 r, n, C, fmin, fmax

ISC - RBFSVM d1,d2,d1d2,d2
1,d2

2 r, n, C, γ, fmin, fmax
ISC - LMNN d1,d2,d1d2,d2

1,d2
2 r, n, k, fmin, fmax

As can be seen in Table 3.4, using the ISC to acquire the sizes within the subspaces
adds two parameters compared to use the weight vector α. Therefore, in order to get
comparable results, the initial ISC was used to select parameters r, n, fmin and fmax. This
will address one of the aims, to compare whether a different classification algorithm can
outperform the ISC.

A frequency resolution of 72.5 MHz was used for both clinical studies.
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3.4.1 Control evaluations

In order to verify the results, control evaluations were performed in which the class labels of
the data is randomly assigned. For the ISC and LMNN algorithms the control evaluations
used an equal class distribution, whereas for the SVM algorithms the class distribution
was not explicitly defined. This was due to that the SVM algorithms behaves as a majority
class classifier if the data cannot be separated.

The hypothesis is that a classifier trained with data that does not contain any useful
information will therefore not be able to classify the data correctly.

3.5 Code implementation

New functions and scripts were developed with Medfield Diagnostics’ current code as
reference. The reason for this was to add features and tidy up the former program to
make it more flexible as well as decrease the computation time. The programs can be
divided into the classification procedure itself, and analysis software.

3.5.1 Classification procedure

The classification procedure was built keeping the essentials such as the actual classification
and adding several features that might be of interest for the analysis. Continuously the
new version was checked with the old implementation for reference. The key concept while
redesigning the classification software was to build modules that can easily be swapped to
add new functionality and to be able to do reproductions of earlier classifications.

Computation time was decreased by using Matlab’s parallel computing toolbox which
unlocks the full potential of modern multi-core processors as well as suitable for data
clusters.

The implementation in this project first imported the data after which certain prepro-
cessing was issued. After this step, data there was an option to select patients to include
based on meta data such as measurement equipment or hair length. Classification was
performed using the selected patients and the output from the classification was saved and
could later be visualised by the analysis software. The code implementation in Matlab
follows the diagram shown in Figure 3.4.
Measurements

Data import Preprocessing Data selection

Classification OutputAnalyser

ROC

AUC

ACC

Figure 3.4: Overview of the program dataflow. Data is imported from a measurement database,
is preprocessed and after that a selection based on metadata such as measurement equipment and
hair length is performed. The selected data is sent to the classification algorithm that performs
all numerical operations and this data output is analysed in a separate program that gives an
interpretable result such as ROC, AUC or accuracy (ACC).

The generation of subspaces are done for every CV iteration as the training data is
changed. From these subspaces the weight vectors α are acquired.
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The weight vector is then used as input to the classifier in which it is beforehand
selected whether the weight vector is used as input directly to the classification algorithm
or if the ISC should be used. These data flow is illustrated in Figure 3.5.

Indata CV

Training

Testing Algorithm

Subspaces

αc

(a) Feature extraction method. The features α are derived for each cross-validation (CV) iteration.
The subspaces are built from the training data as described in Section 2.2.2. The features α are
then acquired as of Equation (2.18).

αc User input
Use α

Use ISC
dc = αHc αc

Classifier Output

r, n

Specific parameters

(b) Classification procedure. The features α can be treated differently depending on the settings
of the specific evaluation. Either the α are used as input to the classifier directly, or the sizes
within the subspaces are acquired as of Equation (2.19) and then fed to the classifier.

Figure 3.5: Detail of the classification algorithm. A detailed view of the classification step in
Figure 3.4.

3.5.2 Analysis

In order to analyse the output generated by the classification procedure, an analysis soft-
ware was developed. Apart from the earlier software, this introduced the possibility to
acquire statistical measures such as ROC and accuracy in hindsight as well as during the
computation.
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Chapter 4

Results and discussion

4.1 Classification procedures

For the classifying setups that used ISC to achieve sizes within the subspaces as in Equa-
tion (2.19) prior to classification (see Figure 3.5b), the internal parameters of the ISC was
fixed. Values are rounded to two decimals and a value is reported as 0.00 if it is found to
be lower than 0.005. Standard deviations was acquired using a bootstrap procedure using
99 Monte Carlo simulations randomly drawn from the total of 100.

The control evaluations performed is done by randomly dividing the full dataset into
the two classes representing ICH and IS respectively, i.e. the labels of the data is ran-
domised.

Each of the following subsections are organised as follows. First presented will be
the evaluations performed with fixed internal parameters of ISC that yielded good clas-
sification outcome for the ISC. These results are acquired by using the sizes within the
subspaces as input. After this, the evaluations presented are when the weight vector α
was used as input to the classifiers.

4.1.1 Using sizes within the subspaces as features

By issuing a parameter sweep over the internal parameters r and n of the ISC algorithm,
a good value for these parameters could be picked out. Fixing these parameters and then
select a frequency interval that corresponded to high AUC for the ISC algorithm, the
initial hypothesis was that these settings would also be good for the other algorithms.
This procedure used the sizes within the subspaces, d1 and d2, of the measurement x
in the respective subspace as input to the SVM and LMNN algorithms. A test where
interactions were used (d1,d2,d1d2,d2

1 and d2
2) was also performed.

As the ISC algorithm was used to pick parameter values, it gives reason to believe that
there might be a bias in favour of this algorithm.

4.1.1.1 Dataset A

For these evaluations, the frequency interval was fixed to be 898–1460 MHz. An amount
of 100 MC iterations were used to acquire the results. The results from these evaluations
are shown in Table 4.1. The standard deviation σ was approximated using bootstrap.

As can be seen in Table 4.1, the AUC using the LSVM or the RBFSVM algorithms
generated an AUC of below 0.5. This normally suggests that the features given to the
learning algorithm cannot be used in a way to discriminate between the two classes. It
shall also be noted that the AUC of the control evaluations, in which class labels are
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Table 4.1: AUC±σ using the size within the subspaces as input. The control column is the result
when performing classification using data in which the labels are randomised. These results was
acquired in the frequency span 898–1460 MHz.

Method Features AUC Control evaluation
ISC – 0.86± 0.01 0.47± 0.02
ISC-LSVM d1, d2 0.41± 0.01 0.40± 0.01
ISC-RBFSVM d1, d2 0.42± 0.01 0.42± 0.01
ISC-LSVM d1, d2, d1d2, d2

1, d2
2 0.40± 0.01 0.39± 0.01

ISC-RBFSVM d1, d2, d1d2, d2
1, d2

2 0.42± 0.01 0.42± 0.01

randomly assigned to the data, yields a desired result.
The fact that the AUC falls below 0.5 when using correct class labels (i.e. not a

control evaluation) can be a consequence of that the classes are unequally distributed
as seen in Table 3.1, with 40 % ICH and 60 % IS. Balancing the dataset to contain an
equal distribution of both classes is one option to remove such bias. However, due to the
relatively low sample size this was not considered as data is basically thrown away which
might also affect the outcome.

The results from running the LMNN algorithm is shown in Table 4.2.

Table 4.2: Results from LMNN classification.

Features Sensitivity Specificity Accuracy
d1, d2 0.35± 0.02 0.57± 0.03 0.48± 0.01
Control evaluation 0.47± 0.03 0.45± 0.03 0.46± 0.01
d1, d2, d1d2, d2

1, d2
2 0.37± 0.03 0.56± 0.03 0.48± 0.01

Control evaluation 0.46± 0.02 0.46± 0.03 0.46± 0.01

As can be seen from Table 4.2, the results do not suggest that there is any valuable
information for the LMNN algorithm. In fact, the values of sensitivity and specificity
is almost the same as the distribution of ICH and IS in the dataset (40 % and 60 %
respectively). It can be seen that during the control evaluations, sensitivity and specificity
approaches a value closer to 0.5. The reason for this is that in the control evaluations for
the LMNN algorithm the distribution of the classes were close to equal.

4.1.1.2 Dataset B-1

For these evaluations, the fixed frequency interval was set to 825–1533 MHz. The outcome
when performing classification using the sizes within the subspaces as input feature for
the SVM algorithms is shown in Table 4.3.

Like for dataset A, the results in Table 4.3 show that using the sizes within the sub-
spaces as feature input to the LSVM and RBFSVM did not yield a good result. Again
the ISC algorithm outperforms the other algorithms although the result on dataset B-1
is worse than for dataset A. The control evaluations show the expected results as they
approaches an AUC of 0.5, which is the expected outcome of a classification algorithm
which select the outcome randomly.

For the LMNN algorithm, using the subspace sizes as input features acquired the
results seen in Table 4.4.

As was observed for dataset A, the results using LMNN did not show any promising
results when using the sizes within the subspaces as feature input. However, the sensitivity
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Table 4.3: AUC using the sizes within the subspaces as input. The control column is the result
when confusing the classifier by randomly assigning labels to the data. These results were acquired
in the frequency span 825–1533 MHz.

Method Features AUC Control evaluation
ISC – 0.77± 0.01 0.49± 0.01
ISC-LSVM d1, d2 0.51± 0.00 0.44± 0.01
ISC-RBFSVM d1, d2 0.54± 0.00 0.45± 0.01
ISC-LSVM d1, d2, d1d2, d2

1, d2
2 0.51± 0.00 0.43± 0.01

ISC-RBFSVM d1, d2, d1d2, d2
1, d2

2 0.53± 0.00 0.44± 0.01

Table 4.4: Results for performing classification with the LMNN algorithm.

Features Sensitivity Specificity Accuracy
d1, d2 0.47± 0.03 0.66± 0.03 0.57± 0.01
Control evaluation 0.53± 0.03 0.40± 0.03 0.47± 0.01
d1, d2, d1d2, d2

1, d2
2 0.48± 0.03 0.66± 0.03 0.57± 0.01

Control evaluation 0.53± 0.03 0.42± 0.03 0.47± 0.01

and specificity did not follow the trend of being close to the class distribution, which for
dataset B-1 was 51 % ICH and 49 % IS which is an improvement. Again, the control
evaluations yield expected results.

4.1.1.3 Dataset B-2

For the B-2 data, the frequency interval selected when using the sizes within the subspaces
as feature input is 100–1823 MHz. The results from these classifications are shown in
Table 4.5.

Table 4.5: AUC using the sizes within the subspaces as input. The control column is the result
when confusing the classifier by randomly assigning labels to the data. These results was acquired
in the frequency span 100–1823 MHz.

Method Features AUC Control evaluation
ISC – 0.78± 0.01 0.49± 0.02
ISC-LSVM d1, d2 0.49± 0.01 0.40± 0.01
ISC-RBFSVM d1, d2 0.51± 0.01 0.43± 0.01
ISC-LSVM d1, d2, d1d2, d2

1, d2
2 0.48± 0.01 0.42± 0.01

ISC-RBFSVM d1, d2, d1d2, d2
1, d2

2 0.51± 0.01 0.43± 0.01

The result follows the same trend that was observed in the previous datasets, A and
B-1, that the sizes within the subspaces as feature input to LSVM and RBFSVM does
not yield a good result. Again the ISC can be seen outperforming the other algorithms.
The same trend can be seen for the LMNN algorithm which generated the results seen in
Table 4.6.

As before for datasets A and B-1, the LMNN algorithm does not seem to be able to
find discriminative information using the sizes within the subspaces. It shall be noted that
the specificity seems to be very high while the sensitivity is very poor. This might be a fact
of the skewed data in the B-2 dataset that consists of twelve ICH and 32 IS. This means
that the subspaces for ICH and IS differ vastly in size where IS is almost three times as
large. Such difference might introduce a significant bias to the largest class, which would
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Table 4.6: Results for performing classification with the LMNN algorithm.

Features Sensitivity Specificity Accuracy
d1, d2 0.21± 0.01 0.94± 0.01 0.65± 0.00
Control evaluation 0.46± 0.03 0.53± 0.03 0.50± 0.01
d1, d2, d1d2, d2

1, d2
2 0.04± 0.01 0.96± 0.01 0.71± 0.00

Control evaluation 0.48± 0.03 0.45± 0.03 0.46± 0.01

partly explain the high specificity which means the certainty in identifying IS.

4.1.2 Using weight vectors as features

Using the weight vectors as features made the use of the ISC algorithm obsolete. The
weight vectors acquired from the LSM are passed to the different classification algorithms
instead of first reducing these vectors to the scalars d1 and d2. As ISC was not used,
the parameters r and n were not used. The possible bias introduced when selecting these
parameters in favour of the ISC algorithm is therefore not an issue.

Using the weight vectors as input features was evaluated for different frequency in-
tervals. One selected by the means of where the ISC performed best and one based on
a frequency sweep in which the frequency span that achieved good result for the specific
classification algorithm was selected.

4.1.2.1 Dataset A

The frequency span and the corresponding AUC are shown in Table 4.7.

Table 4.7: Frequency spans investigated when using the weight vector α as input feature.

Method Frequency span AUC Control
LSVM 897.5–1460 0.41± 0.01 0.51± 0.02
LSVM 1478–1750 0.67± 0.01 0.51± 0.02
RBFSVM 897.5–1460 0.07± 0.00 0.50± 0.01
RBFSVM 1333–1750 0.87± 0.01 0.53± 0.02

From these results can be concluded that the LSVM and RBFSVM performs signifi-
cantly better than when using the sizes within the subspaces as inputs, seen in Table 4.1.
In fact, the RBFSVM actually acquires an AUC that is slightly higher than that of ISC
(0.87 compared to 0.86). The ROC-curves for the cases when ISC, LSVM and ISC oper-
ated in their best frequency spans (the frequency span in Table 4.7 yielding best AUC)
are shown in Figure 4.1a and the corresponding control evaluation in Figure 4.1b.

From Figure 4.1a it can be seen that all algorithms perform better than a coin flip
classifier that would have a ROC-curve along the diagonal. The RBFSVM can also be
seen to have a point in which sensitivity is almost 0.8 while maintaining a specificity of 1.
This means that in this point all IS patients are correctly classified as well as around 80
per cent of all ICH patients.

In Figure 4.1b, each label is randomly assigned, which yields expected results, as all
algorithms have an AUC around 0.5, suggesting that they cannot discriminate the data.

The result of using the LMNN algorithm with the weight vector as input feature is
shown in Table 4.8. Unfortunately, this method does not seem to yield satisfiable results.
The highest sensitivity was found to be 0.36, meaning that in the best case 36 per cent of
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(a) Classification outcome.
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(b) Control evaluation outcome.

Figure 4.1: ROC curves for dataset A. The frequency span for ISC was 898–1460 MHz, for the
LSVM algorithm 1478–1750 MHz and for the RBFSVM algorithm 1333-1750 MHz.

all ICH is identified. The control evaluations on the other hand yielded expected results
as the sensitivity and specificity can be observed to approach 0.5.

Statistical analysis of the standard deviation with respect to increasing number of
MC-simulations was performed issuing a bootstrap simulation at a given point using 50
iterations. For the ISC procedure, the obtained results are illustrated in Figure 4.2.
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Table 4.8: Frequency spans investigated when using the weight vector α as input feature to the
LMNN algorithm.

Frequency span Sensitivity Specificity Accuracy
897.5–1460 0.17± 0.01 0.97± 0.01 0.65± 0.00
897.5–1460 (Control evaluation) 0.49± 0.03 0.47± 0.03 0.48± 0.01
752–1895 0.36± 0.02 0.89± 0.01 0.68± 0.01
752–1895 (Control evaluation) 0.51± 0.04 0.45± 0.04 0.48± 0.01
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(b) Control evaluation with random labels.

Figure 4.2: Dataset A. AUC with estimated standard deviation from bootstrap samples acquired
from 50 iterations for 10 different points. Standard deviation was calculated for 10, 20, 30, 40, 50,
60, 70, 80, 90 and 99 MC iterations. Note the different y-scales.

What can be seen from Figures 4.2 are that the AUC seems to converge and does not
change much after 30-40 MC simulations. It can also be seen that the standard deviation
is slightly decreasing when more MC simulations are added.

For the SVM algorithms, the results from estimating the standard deviation using the
bootstrap method are shown in Figure 4.3. As for Figures 4.2a and 4.2b, it can be seen
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(a) LSVM.
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(b) RBFSVM.

Figure 4.3: Dataset A using LSVM and RBFSVM. AUC with estimated standard deviation from
bootstrap samples acquired from 50 iterations for 10 different points. Standard deviation was
calculated for 10, 20, 30, 40, 50, 60, 70, 80, 90 and 99 MC iterations. Note the different y-scales.

that the standard deviation decreases with the addition of more MC simulations. For the
LSVM in Figure 4.3a it can also be seen that the AUC seems to converge after around
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40 MC simulations. However, for the RBFSVM seen in Figure 4.3b the AUC cannot be
observed to quickly converge. It can though be seen that between 70-90 MC simluations
the drop in AUC seems to diminish.

4.1.2.2 Dataset B-1

Using the weight vector as input was performed for different frequency intervals as seen
in Table 4.9.

Table 4.9: Frequency spans investigated when using the weight vector α as input feature.

Method Frequency span AUC Control evaluation
LSVM 825–1533 0.12± 0.00 0.51± 0.01
LSVM 100–1895 0.37± 0.01 0.49± 0.01
RBFSVM 825–1533 0.31± 0.01 0.49± 0.01
RBFSVM 680–1315 0.45± 0.01 0.49± 0.01

Unlike for dataset A, using the weight vector as input did not yield good results for
data from dataset B-1. Recalling that the datasets was acquired using different measure-
ment equipments, this might affect the results. The control evaluations, yielding an AUC
of around 0.5, was expected as there is not thought to be any information suitable for
discrimination.

The ROC-curves acquired for the B-1 dataset using SVM is shown in Figure 4.5 com-
pared to ISC. As can be seen, the ISC clearly outperforms both LSVM and RBFSVM for
the B-1 dataset.
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Figure 4.4: Standard evaluation.

Figure 4.5: ROC curves for the B-1 dataset. The frequency span for ISC was 825–1533 MHz, for
the linear SVM algorithm 100–1895 MHZ and for the SVM algorithm with RBF-kernel 680–1315
MHz.
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The results by the LMNN algorithm, operated in the frequency span 825–1533 MHz,
is presented in Table 4.10.

Table 4.10: Frequency spans investigated when using the weight vector α as input feature to the
LMNN algorithm.

Frequency span Sensitivity Specificity Accuracy
825–1533 0.82± 0.02 0.17± 0.01 0.50± 0.01
825–1533 (Control evaluation) 0.51± 0.03 0.42± 0.03 0.47± 0.01

From Table 4.10 it can be seen that LMNN is significantly better in detecting ICH for
dataset B-1 compared to dataset A in which the scenario was almost reversed with a low
specificity and high sensitivity. The reason for this might be the different distribution of
classes which in the B-1 dataset is almost equal (51 % ICH and 49 % IS) as well as the
different measurement setup. However, the specificity is extremely low which results in a
50 % accuracy.

4.1.2.3 Dataset B-2

The resulting AUC acquired with the different algorithms using the weight vector α are
shown in Table 4.11.

Table 4.11: Frequency spans investigated when using the weight vector α as input feature.

Method Frequency span AUC Control evaluation
LSVM 100–1823 0.55± 0.00 0.48± 0.01
LSVM 608–1098 0.71± 0.00 0.48± 0.01
RBFSVM 100–1823 0.00± 0.00 0.46± 0.01
RBFSVM 825–1095 0.73± 0.02 0.48± 0.01

The result when applying LSVM and RBFSVM on the B-2 dataset yielded results
clearly better than for the B-1 dataset and both algorithms were observed to yield re-
sults significantly better than the coin flip classifier. However, in one frequency span
the RBFSVM was found to yield an AUC of zero, which is a strange result and might
be because of training issues in the SVM algorithm which will be further discussed in
Section 4.2.2.

The ROC curves using the SVM algorithms is shown in Figure 4.7 compared to the ISC
algorithm. It can be observed that despite ISC acquiring higher AUC, there exists some
points on the ROC-curve for RBFSVM that yield a better sensitivity-specificity tradeoff.

For the LMNN algorithm, the results generated is shown in Table 4.12.

Table 4.12: Frequency spans investigated when using the weight vector α as input feature to the
LMNN algorithm.

Frequency span Sensitivity Specificity Accuracy
100–1823 0.74± 0.02 0.49± 0.02 0.56± 0.01
100–1823 (Control evaluation) 0.44± 0.03 0.54± 0.03 0.49± 0.01

The sensitivity and specificity acquired by LMNN in this case could be identified as
having the same performance as the LSVM algorithm in Figure 4.7, for some given tradeoff.
Hence, the LMNN algorithm does not perform better than either the ISC or the RBFSVM
on the B-2 dataset.
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Figure 4.6: Standard evaluation.

Figure 4.7: ROC curves for dataset B-2. The frequency span for ISC was 100–1823 MHz, for the
LSVM algorithm 608–1098 and for the RBFSVM algorithm 825–1098 MHz.

4.2 General discussion

This thesis project aimed to reimplement a version of the current classifier and investi-
gate different classification algorithms, specifically SVM and LMNN, to see if these could
improve the classification performance.

A reimplementation of the classifier in Matlab has been made that has the ability
to use custom classifiers. Three different classifiers has been tested, LSVM, RBFSVM
and LMNN using three different setups of input features; sizes within the subspaces, sizes
within the subspaces with interactions and a weight vector acquired from the LSM.

4.2.1 Selection of input features

4.2.1.1 Using sizes within the subspaces

Using sizes within the subspaces as features, as acquired with the ISC, did not show any
promising results for any of the algorithms apart from the ISC algorithm itself. It shall
though be considered that the internal parameters and the frequency span was selected
based on parameter settings in which ISC performs well.

The AUC of the SVM algorithms is somewhat consistent throughout all three datasets
studied in the sense that using the sizes within the subspaces from the ISC algorithm or
using interactions of these does not perform any better than a ”coin flip” classifier. The
same can be said about the LMNN algorithm which never achieved a higher sensitivity
than 0.48 which means that slightly more than half of the ICH patients were missed in
the best case. It shall also be stressed that there might be other parameter settings for
the ISC that can improve the SVM and LMNN algorithms but that are not beneficial
for the ISC algorithm. To find these, a sweep over the ISC parameters can be made in
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which the custom classifiers are tested for every parameter setting. Such procedure is
computationally expensive and using a computer cluster would be beneficial.

The conclusions from these experiments are that the sizes within the subspaces, d1
and d2, outputted from the ISC using parameters for which it performs good, does not
necessarily improve the performance of other classifiers.

4.2.1.2 Using weight vector

Using the weight vector as input to the algorithms showed improvements compared to using
the sizes within the subspaces as features for all datasets. For dataset A, the RBFSVM
yielded a slightly higher AUC than the ISC, see Figure 4.1a, but for a majority, neither
SVM or LMNN did outperform the ISC algorithm in terms of AUC.

There are promising results in using the SVM with the RBF-kernel for classification
purposes for some input features for some datasets. The LMNN algorithm did not produce
results that outperform the ISC algorithm and the lack of tuning parameters to trade
sensitivity for specificity is a drawback in this scenario.

4.2.2 Training procedures

The subspaces are acquired using the training data. When training the classifiers, the
data used for training must of course be treated in the same way as the testing data.
Therefore, Equation (2.18) is applied for every training data as well as testing data and
in case of using the ISC this is follwed by acquiring the sizes within the subspaces as by
Equation (2.19).

Given that the subspaces U c are acquired using the training data, this operation might
introduce a bias as the training data is in the subspaces and can be thought of as treated
differently compared to testing data.

One might argue that the comparison now being made is unfair due to the bias in-
troduced when comparing sizes within the subspaces of data actually in the subspace to
sizes within the subspaces of data not used to create the subspaces. A possible way of
addressing this problem might be to divide the training data into two parts, one from
which subspaces are derived and one from which the features are extracted. An operation
performed in this way will not introduce any bias in the extracted features. However, it
must be taken into consideration that the loss of training data to estimate the subspaces
might not be accounted for by the absence of potential bias in the training of the classi-
fiers. It shall also be stressed that this potential bias might be resolved by having more
training data.

The idea of dividing the training dataset in two, from which the subspaces are acquired
from one part and the classifier trained with the other, would be interesting to apply to
all of the tested classification algorithms.

It was found that in some cases all given training data was used as support vectors.
With that in mind and recalling the definition of a support vector as a vector that lies on
the margin, this means that all available training data is on the margin. However, it shall
be noted that the training data was not always perfectly separable.

As noted by Xia, Lyu, Lok, et al. (2005) [46] and Cortes and Vapnik (1995) [36], the
expected value of the probability of a wrong classification on a test example is related to
the expected value of the number of support vectors and the number of training vectors.
This holds only if the training vectors are completely separable by the SVM. This bound
is described as in Equation (4.1).
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E[Pr(error)] ≤ E[# support vectors]
# training vectors (4.1)

Therefore, using all training vectors as support vectors and if the training data is
perfectly classified, this will bound the expected probability of testing error to 100 % and
might also imply bad generalisation capability [46].

The ”training error” that might occur when using all available data as support vec-
tors might therefore be a reason for acquiring AUC lower than 0.5 which suggest worse
performance than a coin flip classifier.

4.2.3 Class distribution and data processing

It has been noted before that the dimensions of the raw measurements are very high
and therefore the dimension reduction is achieved using the linear subspace model that
reduces the measurements to the weight vector α. In the ISC this is the step prior to
calculating the sizes within the subspaces. However, using either the sizes within the
subspaces or the weight vector in SVM, these features are used to map the data again to
higher dimensions to acquire an optimal separating hyperplane. It might seem odd that
first reduce dimensions but then again map them to a higher-dimensional space. It might
therefore be the case that information that might be of use to the SVM or the LMNN
algorithms might be removed. This project however, did not intend to redesign the feature
extraction algorithm using the linear subspace model, but it still is an interesting thought
if dimension reduction could have been done in another way to benefit other decision
algorithms. The results acquired when using the sizes within the subspaces as input to
the algorithms compared to using the weight vector indicate that information of value to
the subsequent classifiers are removed.

Further, the training datasets used contained patients that were of different age and
gender. In dataset B-1, there were also patients included that had stroke mimics (diseases
that look like stroke) and one with subdural haematoma. The time from stroke onset to
measurement was also not considered when analysing the data. There are many metadata
correlations that would be of interest when designing and improving the classification
algorithms as some patients might introduce a bias.

One important task in classification is the preprocessing step. In this thesis, prepro-
cessing has not been varied, but set statically to a preprocessing algorithm that has been
used previously. This algorithm was selected based on the empirical results for the ISC
algorithm. However, this does not necessarily mean that this is the ideal for other algo-
rithms [47]. Investigating preprocessing methods must therefore be done once for every
classifier used.

It is suggested that some feature extraction technique might be tested to select a subset
of features from the weight vector that has the most impact on classification for both SVM
and LMNN. By reducing the dimensions and identify features in the weight vector that
have a positive contribution a better classification might be possible.

4.2.4 Cross-validation methods

Throughout this project, the LOOCVmethod has been used to evaluate the performance of
the classifier. However, it has been noted that using LOOCV might suffer from substantial
negative bias [40].

The reason for this method not being used in this project was due to the computational
complexity. Consider a case in which m are the number of patients belonging to one class
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and n are the number of patients belonging to the other class. In LOO, the number of
folds are equal to the number of patients included, i.e. m + n. Testing all possible pair
combinations of all m patients of one class and n patients of the second class yield in total
n ·m folds.



Chapter 5

Conclusion

The reimplementation of the classification algorithm to create a faster and more versatile
program being able to use different classification algorithms was successful.

Of the different classifiers studied, using the weight vector acquired from the LSM
performed better in comparison to using the sizes within the subspaces acquired from the
ISC. This conclusion holds for when the internal ISC parameters are selected based upon
the outcome when using the ISC for classification and cannot be interpreted as a general
case.

SVM used with an RBF kernel did perform well and acquired a higher AUC than the
ISC algorithm for one of the datasets. For another dataset, SVM with the RBF kernel
could be observed to yield a better ROC-curve than the ISC algorithm even though the
AUC was lower. SVM with a linear kernel was never observed to outperform SVM with
an RBF kernel or the ISC algorithm. The LMNN algorithm was not found to perform
convincing results on any of the datasets.

The SVM with the RBF kernel as well as the ISC remains are found to be interesting
techniques for future investigation and evaluation. Even though the LMNN algorithm
did not perform good, the concept of using a different metric than the Euclidean remains
interesting and should be further investigated.
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Chapter 6

Future work

For SVM it is of interest to find a better way to acquire the ideal parameters C and
γ. Cross-validation accuracy has a bias to the largest class and it would therefore be
interesting to acquire the parameters to use the AUC measure. It would also be interesting
to study the impact of different values for the parameters apart from those involved in
this study. For unbalanced datasets, Eitrich and Lang (2006) [48] proposed optimisations
on how to find optimal parameters for SVM for unbalanced datasets that might be of
interest.

For the feature extraction, it would be interesting to test the case where the dataset
is divided in two parts, one to estimate the subspaces and one to extract features that
is used to train the algorithms, as previously discussed. Also using a feature selection
algorithm to identify which of the features in the weight vector that might be of value for
classification.

It would also be of interest to study the impact of including the reflection S-parameters
in the data as opposed to only the transmission S-parameters.

Some datasets have reference measurements performed on a phantom in connection to
the actual patient measurement. It would be interesting to investigate how these could
be used to perform preprocessing of the data by e.g. normalising each measurement to
the corresponding reference measurement. Exactly how this should be done is an open
question.

Investigating the use of LPOCV instead of LOOCV to evaluate the classifier perfor-
mance would be of interest to see if there is substantial negative bias.

As the Matlab code produced as a part of this thesis is written very generally, this al-
lows the investigation of other discrimination procedures than SVM and LMNN by simply
creating a module. One method that in recent studies has shown efficient is the support
vector metric learning, SVML, that combines the concepts of metric learning and support
vector machines. This concept is described in Xu, Weinberger, and Chapelle (2013) [49].

The future work can be summarised as:

• Select internal parameters C and γ by using cross-validation AUC instead of cross-
validation accuracy.

• Investigate other ranges for the parameter values C and γ.

• Split training dataset in two, one to estimate subspaces and one to train the custom
classifiers.

• Study impact on different preprocessing methods and usage of reference measure-
ments.

53
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• Implement and test a plugin using SVML.

• Investigating impact of considering reflection coefficients.

• Test different cross-validation methods such as LPOCV
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