
Neural Networks,
Edge Computing or Offloading

A study about how offloading neural network calculations stands
in contrast to edge computing for embedded hardware

Master’s thesis in High-performance computer systems

ERIK FRENNBORN ADAM OLIV

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022

ii

Master’s thesis 2022

Neural Networks,
Edge Computing or Offloading

A study about how offloading neural network calculations stands in
contrast to edge computing for embedded hardware

ERIK FRENNBORN
ADAM OLIV

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2022

Neural Networks, Edge Computing or Offloading
A study about how offloading neural network calculations stands in contrast to edge
computing for embedded hardware
ERIK FRENNBORN, ADAM OLIV

© ERIK FRENNBORN, ADAM OLIV 2022.

Supervisor: Pedro Petersen Moura Trancoso, Department of Computer Science and
Engineering
Advisor: Magnus Agren, Prevas AB
Examiner: Risat Mahmud Pathan, Department of Computer Science and Engineer-
ing

Master’s Thesis 2022
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Image of i.MX 8M Plus on the Symphony carrier board that was used in the
thesis work.

Typeset in LATEX
Gothenburg, Sweden 2022

v

Neural Networks, Edge Computing or Offloading
A study about how offloading neural network calculations stands in contrast to edge
computing for embedded hardware
ERIK FRENNBORN
ADAM OLIV
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The use of machine learning and neural networks shows no signs of slowing down
in the embedded sector, but since embedded hardware often face performance or
energy constraints that heavily limit the computational capacity of applications, it
might not always be optimal to perform computations locally on the device. This
study compares on-chip computing of neural networks on the embedded hardware
i.MX 8M Plus with offloading the computation to a remote server supplied with Intel
i9-10850K and a GeForce RTX 3070. This study also investigates to what extent
the common compression techniques quantization, pruning and weight clustering
affect performance metrics such as latency and energy consumption for embedded
hardware. After measuring latency and energy consumption for non-pipelined in-
ferences for 33 network variations we have discovered both a latency and energy
consumption threshold where it is more effective to offload rather then computing
on the edge device. These thresholds exist since latency for the offloading scenario
remains almost constant. The latency threshold of 0,031 s is obtained from offload-
ing via Ethernet to remote GPU, and is strongly limited by the network latency.
This inference time could be used as a guideline for development meaning that if
the inference time on embedded device exceeds set time, it is probably more effi-
cient to offload calculations to remote server. Other discoveries points towards the
conclusion that the NPU of the i.MX 8M Plus heavily favors compressed models,
showing an average speedup of 188x on the NPU when models are compressed using
quantization and pruning.

Keywords: Offloading, Convolutional neural networks (CNNs), Deep neural net-
works (DNNs), Embedded systems, Edge computing, Energy reduction, Optimiza-
tion, Compression.

vi

Acknowledgements
We would like to thank our supervisor Pedro Petersen Moura Trancoso for his help
and insights around the topic of neural network compression as well as overall guid-
ance during this period. We also would like to thank the people at Prevas especially
our advisor Magnus Agren for his mental and technical support along the work.

Erik Frennborn and Adam Oliv, Gothenburg, June 2022

viii

x

Contents

List of Figures xiii

List of Tables xvii

List of Abbreviations xix

1 Introduction 1
1.1 Background . 2

1.1.1 Offloading . 3
1.2 Aim . 3
1.3 Scope . 3

2 Theory 5
2.1 Neural Networks . 5

2.1.1 Convolutional Neural Networks 5
2.1.2 Neural Network Compression 6

2.2 Neural processing unit . 7
2.3 Offloading . 8
2.4 Network model . 8

3 Method 11
3.1 Hardware . 11
3.2 Environment Setup . 11
3.3 Neural Networks . 12

3.3.1 Hyperparameters . 13
3.4 Modelling and Evaluation . 14
3.5 Known Limitations . 15

4 Results 17
4.1 Latency . 17
4.2 Energy Consumption . 20
4.3 Energy Delay Product . 22

5 Discussion 27
5.1 Neural Network Compression . 27
5.2 Model Properties . 27
5.3 Thresholds . 32

xi

Contents

5.4 Other observations . 37
5.5 Future Works . 38

6 Conclusion 39

A Figures I
A.1 Model input size . I
A.2 Energy Latency Correlation . IV
A.3 Offloading contributions . X
A.4 5G . XI
A.5 Compression Technique Isolation . XII
A.6 Perf Results . XIV

A.6.1 Instructions . XIV
A.6.2 L1d cache loads . XVI
A.6.3 L1 dcache misses . XVII
A.6.4 Page Faults . XIX
A.6.5 Instruction vs parameters . XXI
A.6.6 L1-dcache-loads vs parameters XXIII

B Yocto Manifest XXV

xii

List of Figures

2.1 Visualization of the weight clustering concept. 8

3.1 Architecture diagram of i.MX 8M Plus 11
3.2 Testbench setup . 15

4.1 Graph of inference latency obtained from executing the inference on
different compute platforms. Y-axis is logarithmic. 18

4.2 Illustration of latency contributions of network communication and
execution time of model, using radio to offload to GPU 19

4.3 Illustration of latency contributions of network communication and
execution time of model, using Ethernet to offload to CPU 20

4.4 Graph of energy consumption obtained from measuring the power
over the execution of the inference on different compute platforms.
Threshold for radio at 207 mJ and Ethernet at 75 mJ. Y-axis is
logarithmic. 21

4.5 Graph of energy consumption obtained from measuring the power
over the execution of the inference on different compute platforms,
with lower idle energy consumption. Threshold for radio at 32 mJ
and Ethernet at 23 mJ. Y-axis is logarithmic. 22

4.6 Energy delay product(EDP) for each model and compute platform
with high idle.Y-axis is logarithmic. 23

4.7 Energy delay product(EDP) for each model and compute platform
with low idle.Y-axis is logarithmic. 24

4.8 Correlation between energy and latency for 1 embedded CPU core.
Both axis are logarithmic. 24

5.1 Plotting inference latency obtained from running on one CPU core
on embedded device, with varying input sizes. 28

5.2 Plotting energy consumption over a single inference, obtained from
running on one CPU cores on the embedded device, with varying
input sizes. 28

5.3 The number parameters in networks plotted against the input size
and where the size is the inference speed on one core. Shown for all
full compressed networks . 29

5.4 The number parameters in networks plotted against the networks
depth and where the size is the inference speed on one core. Shown
for all full compressed networks . 30

xiii

List of Figures

5.5 The percentage of layers that fits in L1d cache plotted against the
inference latency for one core for each of the full compression. 31

5.6 The percentage of layers that fits in L2 cache plotted against the
inference latency for one core for each of the full compression. 31

5.7 The percentage of layers that fits in RAM plotted against the infer-
ence latency for one core for each of the full compression. 32

5.8 Number of instructions plotted against the latency on 1 core for re-
ceptive model. Both axis are logarithmic 34

5.9 Number of l1d cache loads plotted against the latency on 1 core for
receptive model. Both axis are logarithmic 34

5.10 Number of l1d cache loads misses plotted against the latency on 1
core for receptive model. Both axis are logarithmic 35

5.11 Illustration of latency contributions of network communication and
execution time of model, using 5G to offload to CPU 35

5.12 Illustration of latency contributions of network communication and
execution time of model, using 5G to offload to GPU 37

A.1 Plotting inference latency obtained from running on four CPU core
on embedded device, with varying input sizes. II

A.2 Plotting inference latency obtained from running on the NPU of the
embedded device, with varying input sizes. II

A.3 Plotting energy consumption over a single inference, obtained from
running on four CPU cores on the embedded device, with varying
input sizes. III

A.4 Plotting energy consumption over a single inference, obtained from
running on the NPU of the embedded device, with varying input sizes. III

A.5 Correlation between energy and latency for 4 embedded CPU core.
Both axis are logarithmic. V

A.6 Correlation between energy and latency for the embedded NPU. Both
axis are logarithmic. V

A.7 Correlation between energy and latency for the embedded NPU. Both
axis are logarithmic. VI

A.8 Correlation between energy and latency for the embedded NPU. Both
axis are logarithmic. VII

A.9 Correlation between energy and latency for the embedded NPU. Both
axis are logarithmic. VIII

A.10 Correlation between energy and latency for the embedded NPU. Both
axis are logarithmic. IX

A.11 Illustration of latency contributions of network communication and
execution time of model, using radio to offload to CPU X

A.12 Illustration of latency contributions of network communication and
execution time of model, using Ethernet to offload to GPU XI

A.13 Illustration of latency contributions of network communication and
execution time of model, using 5G to offload to CPU XII

A.14 Latencies of tested models featuring only the variations compressed
with Pruning, Weight clustering and quantization. XIII

xiv

List of Figures

A.15 Latencies of tested models featuring only the variations compressed
with Pruning and quantization. XIII

A.16 Latencies of tested models featuring only the uncompressed variations.XIV
A.17 Number of instructions plotted against the latency on 4 cores for

receptive model. Both axis are logarithmic XV
A.18 Number of instructions plotted against the latency on NPU for re-

ceptive model. Both axis are logarithmic XV
A.19 Number of l1d cache loads plotted against the latency on 4 cores for

receptive model. Both axis are logarithmic XVI
A.20 Number of l1d cache loads plotted against the latency on NPU for

receptive model. Both axis are logarithmic XVII
A.21 Number of l1d cache loads misses plotted against the latency on 4

cores for receptive model. Both axis are logarithmic XVIII
A.22 Number of l1d cache loads misses plotted against the latency on NPU

for receptive model. Both axis are logarithmic XVIII
A.23 Number of page faults misses plotted against the latency on 1 core

for receptive model. Both axis are logarithmic XIX
A.24 Number of page faults misses plotted against the latency on 4 cores

for receptive model. Both axis are logarithmic XX
A.25 Number of page faults misses plotted against the latency on NPU for

receptive model. Both axis are logarithmic XX
A.26 Number of parameters plotted against the number of instructions on

1 core for receptive model. Both axis are logarithmic XXI
A.27 Number of parameters plotted against the number of instructions on

4 cores for receptive model. Both axis are logarithmic XXII
A.28 Number of parameters plotted against the number of instructions on

NPU for receptive model. Both axis are logarithmic XXII
A.29 Number of parameters plotted against the number of L1-dcache-loads

on 1 core for receptive model. Both axis are logarithmic XXIII
A.30 Number of parameters plotted against the number of L1-dcache-loads

on 4 cores for receptive model. Both axis are logarithmic XXIV
A.31 Number of parameters plotted against the number of L1-dcache-loads

on NPU for receptive model. Both axis are logarithmic XXIV

xv

List of Figures

xvi

List of Tables

2.1 Selected neural networks with their network depth and parameter
count. 6

2.2 Variable description . 9

4.1 Explanation of Figure legends. *Model name could be any model
name for example InceptionV3 . 17

4.2 Threshold latency . 20
4.3 Threshold energy high idle . 23
4.4 Threshold energy low idle . 23

5.1 Average layer fit for respective model and for each memory level . . . 33

xvii

List of Tables

xviii

List of Tables

List of Abbreviations

Abbreviation Meaning
AI Artificial Intelligence

NPU Neural Processing Unit
DCNN Deep convolutional neural networks
FPGA Field-programmable gate array
ASIC Application-specific integrated circuit
tflite Tensorflow-lite
RTT Round Trip Time
EDP Energy delay product

xix

List of Tables

xx

1
Introduction

The last couple of years machine learning have been a growing topic among re-
searchers and in the industry opening up doors to many new technical solutions in
the facial recognition [1] and autonomous driving [2] domains among others. Tra-
ditionally many papers on the topic of machine learning has fell into one of two
categories, either pure algorithmic where hardware is not a concern, or papers fo-
cused on developing hardware to better suit common tasks found in the machine
learning topic. Lately a third category called co-design [3] has been growing in inter-
est, which is when the hardware and software are designed together. While hardware
is being optimized for machine learning, the neural networks are also adapted to the
desired hardware memory, energy and time constraints set on the device. This is a
growing subject because it is one of the key elements in order to introduce machine
learning to embedded computing [4].

Currently it is common for embedded applications to offload computer heavy tasks
to cloud servers where the Artificial Intelligence (AI) models are executed. When
only considering the performance metrics that comes with offloading computational
heavy tasks to cloud or remote server, there are many arguments for and against
offloading computation. In order to perform calculations on the edge device the
device needs to be powerful enough to handle the heavy computation in a timely
fashion. There are multiple factors that contribute to the decision of whether or not
some calculations should be calculated on the device or offloaded. Performance crit-
ical tasks as for example real-time person detection in autonomous vehicles should
probably not be offloaded since performance and latency could be safety critical in
some situations. There are also other factors that can exclude the offloading alterna-
tive, some devices do not have reliable internet connection as for example embedded
devices in cars or other mobile devices. These devices that are mobile can not rely
on internet connection and must work independently and thus requiring on-chip
calculation or local offloading to other connected devices. On the other hand some
tasks are not heavily performance or safety critical in the same sense and can afford
the extra added communication latency.

1

1. Introduction

Offloading limits the application space since the offloading requires internet connec-
tivity, thus introducing latency and privacy concerns. There exists different ways
to improve security when offloading, studies like Privacy Aware Offloading of Deep
Neural Networks [5] have developed methods for improving security for offloading
neural networks. If instead the model would be executed on the embedded device
these limitations would be resolved and open up new possibilities for embedded de-
vices.

This work have evaluated inference performed on different compute platforms such
as on embedded CPU, embedded Neural Processing Unit (NPU) and offloaded CPU
and GPU. These different compute platforms will be evaluated on problems in
the object classification domain. Specifically deep convolutional neural networks
(DCNN), with the expectations that some of the results will be applicable in a
larger part of neural network domain. DCNNs have been predominant in the task
of object detection and classification of images during the recent years in the aspect
of pure classification accuracy. DCNNs has therefore been picked as the result would
be relevant to a larger number of applications as for example edge computing. DC-
NNs also introduce memory constraints since they normally are memory intensive,
which is a common problem when integrating large neural networks on embedded
devices.

1.1 Background
Embedded devices have a number of limitations that general computing systems
lack. Mainly the limited resources, primarily memory size, CPU and GPU per-
formance as well as sometimes limited battery. These limitations means that the
commonly used machine learning techniques are infeasible or impractical on embed-
ded devices as they would not be suitable for the device. This is because performing
heavy calculations on the embedded device may either too slow to be useful or fall
short on other requirements. Additionally as many embedded devices are battery
powered, thus making energy consumption of the device of high importance as it
would otherwise run out of battery too quickly. These issues gets considerably worse
when taking into account that embedded systems often are sensors and often con-
sist of multiple devices deployed over a wide area, because maintenance of such
number of devices is costly and tedious, resulting in less application of this kind of
technology.

2

1. Introduction

1.1.1 Offloading
Research is also advancing an other related topic which is the topic of offloading.
Recent studies [5, 6] on the topic have made major strides in improving the latency
and security of offloading between edge devices and cloud servers, with little or none
accuracy loss. Even if offloading introduces communication latency sometimes it is
still the best option when considering implementation cost as opposed to perfor-
mance. Edge devices capable of performing on-chip heavy calculations are more
expensive thus making it less cost effective to implement edge computing in those
scenarios.

1.2 Aim
This work explores existing trade-offs of offloading the execution of neural network
models from edge device to cloud computer, more specifically comparing perfor-
mance metrics such as latency and energy consumption when calculations are per-
formed on embedded CPU, NPU, offloaded CPU and offloaded GPU. The compari-
son is evaluated on different DCNNs differentiating them primarily by network size
and input size in order to gain a broad overview of how differently scaled networks
affect the selected performance metrics.

1.3 Scope
This work explores how the common compression techniques quantization, prun-
ing and weight clustering affect performance metrics such as inference latency and
energy consumption. Other compression techniques are not evaluated in this work
since Tensorflow only support these named techniques to this day. Since the NPU
is support the Tensorflow lite tooling this decision was made in order to gain a
smoother integration between models and hardware.

The energy measuring is only considering the energy consumption of the edge device,
meaning that energy from the network infrastructure is not considered. This would
not alter the results since only the edge device has potential energy consumption
constraints. When deploying an embedded device it is important to estimate the
devices’ energy consumption since it may run on battery while the networks energy
consumption is not free it does not contribute to the edge device performance met-
rics and may thus be excluded from this work.

The selected hardware is limited to the i.MX 8M Plus as the edge device, while the
offloading host computer is limited to Intel i9-10850K CPU and a GeForce RTX
3070 GPU with the main reason behind this scope being resources availability.

3

1. Introduction

4

2
Theory

2.1 Neural Networks
Neural networks [7] can be described as a series of algorithms that aims to imitate a
more complex function. Neural networks are made up by a group of neurons, were
each neuron applies an input specific weight to a number of inputs and outputs the
sum of the weighed outputs. The neurons are usually grouped into three different
layers being input, hidden and output layers, where each of the layers has its own
contribution to the neural network. A common use case for neural networks is
image recognition and classification, where in the case of image classification the
input layer is traditionally represented by one neuron per pixel that holds the grey
scale or RBG values of each pixel of an image. The hidden layers are not mandatory
but exist in order to gain a better classification accuracy. This is because splitting
up the neurons into layers adds higher levels of abstraction to the neurons, since
the input of the second layer neurons is the first layers outputs. An example of
this is where the neurons of the first layer represents the color value of each pixel,
the second layer may weigh the inputs to represents edges or sections of the image.
The output layer is traditionally used as classification label where the number of
neurons often match the number of classifiable classes, with the exception of binary
classifiers where a single output neuron could do the same work outputting either one
or zero for the different labels. For example a network meant to classify handwritten
numbers should have ten output neurons where each symbolises the probability of
that class for the image.

2.1.1 Convolutional Neural Networks
A convolutional neural network[8] is a neural network where some hidden layers are
constructed with whats called convolutional layers. A convolutional layer is made
up out kernels also known as filters. The kernel is usually a smaller part of the image
often consisting out of a few pixels each. The product of the kernel and respective
image pixels are connected instead of having all neurons of the previous layer con-
nect to each neuron in the layer, this enables neural networks both to learn that
neighboring pixels have larger contributions to other nearby pixels as well as reduce
the parameter count of the network.

This work will evaluate the convolutional neural networks listed in Table 2.1. These
neural networks are sometimes called deep convolutional neural networks, this is
because they contain multiple of hidden layers.

5

2. Theory

Table 2.1: Selected neural networks with their network depth and parameter
count.

Model Input size Network depth Network size (#parameters)
Inceptionv3 75x75 189 22353028
Inceptionv3 128x128 189 23925892
Resnet 50 32x32 107 24137956
Resnet 50 75x75 107 28332260
Resnet 50 128x128 107 32002276
MobileNet 32x32 105 3516964
MobileNet 75x5 105 4303396
MobileNet 128x128 105 7449124
VGG16 32x32 16 14871716
VGG16 75x75 16 15264932
VGG16 128x128 16 16837796

2.1.2 Neural Network Compression

In order to improve the performance of AI on embedded devices studies have been
made on neural network compression, these papers state and evaluate techniques
that manipulate neural networks to better fit to embedded devices [9, 10]. Com-
pression of neural network has proven to reduce the size of network models while
keeping or with minor losses in accuracy. Other papers also compare different models
of different sizes against each other [11] proving that a comparative study is valu-
able for both future research and providing support for real application scenarios.
The most frequently used compression techniques are quantization, weight cluster-
ing (also called weight sharing) and pruning [12]. These compression techniques are
independent but can be utilized in combination for greater compression.

Quantization

Quantization [13] is a technique that reduces the number of bits used to represent
each weight in the neural network. A common example is reducing the bit weight
size from 32 bit floating point values to 8 bit integers. This conversion is one of the
most commonly used compression techniques for neural networks and reduces the
size linearly to the weight bit size. This example conversion from 32 bit to 8 bit
achieves a compression rate of 4x. In addition it is common to covert the standard
float weights into the integer datatype, since integers is a much more efficient and
less complex datatype than floats. As shown in "Loss-aware weight quantization of
deep networks" [14], quantization as low as 3-bit weights results in as and even more
accuracy compared to full-precision network.

6

2. Theory

Pruning

Pruning [15, 16, 17, 18] is a compression and regularization technique, apart from
quantization and weight clustering, pruning actively changes the network behavior.
There are many ways to decide which weights to keep and which to prune, one of the
most common pruning strategies is to prune the weights with the smallest values.
Intuitively this makes sense since removing the weights that contribute the smallest
amount will result in the minimum network behavior variance. Since pruning also
is a regularization technique it can sometimes even improve the accuracy because
it helps to reduce overfitting. Overfitting can occur for a number of reasons, either
when a model has been trained on a non general dataset or simply memorized
the training dataset. The problem that overfitting introduces is that the model
performs poorly on new previously unseen data making the model perform worse
when deployed. There are multiple ways to combat overfitting, model pruning being
one of the more prominent methods [19].

Weight Clustering

Weight clustering [12] recognises weights in the same layer that are close enough
to each other in value and normalizes and reuses the centroid values for all weights
in the cluster, this is visualised in Figure 2.1. The centroid values are commonly
calculated with the average weight values within a interval of the maximum and
minimum weights inside a layer. The weights are replaced by cluster index val-
ues usually consisting out of one to 4 bits depending on how many bits needed to
describe the number of clusters. The centroid values are then possibly fine-tuned
on the training dataset in order to minimize the potential performance loss ob-
tained from reducing the weight bit size. This technique is powerful in combination
with quantization since reducing the bit weight size reduces the amount of poten-
tial different weight values resulting larger utilization of the clustering technique
[12]. This technique does not provide linear compression rate and works better the
larger networks is, since there are more weights that can be clustered together. The
clustering technique introduces some extra allocated memory needed to store the
centroid values, but together with specialized run-time or compiler software and
dedicated machine learning hardware further compression can be achieved and this
extra memory becomes negligible [20, 21].

2.2 Neural processing unit
The execution of neural networks consist of highly parallel operations as such the
executuion accelerates well on GPUs. Along with the advances in the different fields
of embedded neural networks such as compression and offloading, newer hardware
architectures are also emerging. Different architectures [22, 23] propose different
approaches to the problem of deploying neural networks efficiently on embedded
devices. All implementations of Neural Processing Units (NPUs) are meant to op-
timize the instructions and data flow common found in neural networks, such as
multiply add instructions, in order to speed up the inference time and lower energy

7

2. Theory

Figure 2.1: Visualization of the weight clustering concept.

cost for computation.

2.3 Offloading
Offloading is a concept that builds on separating the data collection from its pro-
cessing, meaning that parts of the computation are executed on another device than
the one that produced the input for the computation. It exists different and more
advanced offloading techniques [24], which improves the performance of execution
latency and throughput. Offloading allows resource limited devices to use much
larger models than otherwise possible by hosting these models on stronger devices,
this of course comes with downside of needing to communicate with remote host
device for each inference.

2.4 Network model
The latency model for offloading can be split into three different contributing factors
being the following.

• The time needed to send input data to the offloading machine, in this case the
image.

• The inference latency on the remote server or computer.
• The time to return the result.

Likewise the energy consumption model breaks into similar parts.
• The energy needed to transmit the data,

8

2. Theory

• The energy used to receive the result
• The energy consumed by the CPU while it is waiting for the result.

Table 2.2: Variable description

sinput Input size (B)
sresult Result size (B)
tOINF Offloaded inference time (s)
tlatency Network lactency (s)
Pidle Embedded CPU idle (w)
ENetwork Network energy consumption (j/Byte)
BUpload Network bandwidth upload (Byte/s)
BDownload Network bandwidth download (Byte/s)

The total network delay can be calculated using the formulas 2.1 and 2.2

tRT T = 2tlatency (2.1)

tnetwork_tot = tRT T + sinput

Bupload

+ sresult

Bdownload

(2.2)

The network latency then consist of the Round Trip Time (RTT) and the time
to send and recessive. This is done for both Ethernet and wireless. The network
latencies for offloading to CPU or GPU is created using the formulas 2.3.

tOINF _tot = tOINF + tnetwork_tot (2.3)

The energy consumption of the embedded device for the offloading case can be
calculated by the sum of the energy used by the network and the energy consumed
by the CPU/NPU while waiting for a response. Shown in formula 2.4

Enetwork_tot = sinput

EUpload

+ sresult

EDownload

(2.4)

The total energy consumption for offloading to CPU/GPU is calculated with 2.5,
starting with energy used for the communication together with the idle waiting time.

EOINF _tot = tOINF _tot ∗ Pidle + Enetwork_tot (2.5)

The corresponding calculations for the non-offloaded case is trivial since the to-
tal latency and energy consumption are simply the measured latency and energy
consumption for the embedded CPU and NPU respectively.

9

2. Theory

10

3
Method

3.1 Hardware
The specific hardware that will be used for this work is an i.MX 8M Plus [25] as
the edge device. The i.MX 8M Plus is an device optimized for machine learning
and neural network applications, which is equipped with an Quad Arm Cortex A53
CPU that includes an NPU that runs at 2.3 Terra operations per second (TOPS),
however little other information exist about the design of the NPU. The architecture
of the i.MX 8M Plus is displayed in Figure 3.1

Figure 3.1: Architecture diagram of i.MX 8M Plus

As for the offloading hardware a personal computer supplied with an Intel i9-10850K
CPU and a GeForce RTX 3070 GPU is used.

3.2 Environment Setup
In order to run the models on the i.MX 8M Plus board it was necessary to install
an image while the provides support for the NPU. The image was the nxp-demo-
experience image for this platform with it a Linux distribution and the required

11

3. Method

software needed to evaluate TensorFlow-lite (tflite) models. The image was built
using the Yocto build system [26] and the manifest can be found in appendix B. The
Tensorflows benchmarking tool had to be built from source [27] in order to work as
expected on the offloading host computer. When rebuilding the tool additional flags
had to be specified in order for the tool to correctly utilize the GPU for computation.
The command 3.1 includes the complete command with necessary flags in-order to
rebuild the tool.
Listing 3.1: Build command used to build Tensorflows benchmarking tool with

GPU support.
baze l bu i ld −−opt=−DCL_DELEGATE_NO_GL
−−copt=−std=c++17
−−copt=−DCL_TARGET_OPENCL_VERSION=220
−−copt=−DMESA_EGL_NO_X11_HEADERS
−−copt=−DEGL_NO_X11
ten so r f l ow / l i t e / t o o l s /benchmark : benchmark_model

3.3 Neural Networks
The models used for this experiment are pre-trained models without top classifica-
tion layers that consist out of normal fully connected layers with an output shape
representing the number of classes to classify, downloaded from the Keras API [28].
The motivation behind having pretrained models is to imitate real world scenarios
as much as possible, and the fact that transfer learning [29, 30] has a growing trend
of application it was appropriate to use pretrained models. The selected models are
VGG16 [31], ResNet50 [32], InceptionV3 [33], and MobileNet [34]. These networks
were selected as they provide a wide spectrum of network architectures, input size,
and network sizes. As such they provide a good reference for how the networks
parameters effect performance. All models are pretrained on ImageNet [35] and
combined with two non trained dense classification layers. The added top classifi-
cation layers are needed since standard top layers from Keras API only support one
input shape per network.

12

3. Method

The models uses the CIFAR100 [36] dataset as a representational dataset, since a
sample dataset is needed as the chosen compression techniques require either fine
tuning training or a representative dataset. CIFAR100 is a labeled subset of the
80 million tiny images dataset [37] consisting out of 100 labels with 600 images for
each label. These models were then compressed using a combination of compression
techniques, them being pruning, quantization and weight sharing in order to get a
good compression rate. The pruning and weight sharing required fine tuning that
was performed on the original dataset used for initial retraining of the network.
In order to perform full eight bit integer quantization a unlabelled representative
dataset was needed, for this a test subset from CIFAR100 was used. Both the
compressed and uncompressed versions of each model was evaluated to the extent
of hardware support. This was done in order to gain a better understanding of
how much the compressed networks differ in execution interference on the different
hardware processors.

3.3.1 Hyperparameters

The compression techniques can be specified with hyperparameters in order to tweak
the aggressiveness of the compression. The hyperparameters used by the compres-
sion techniques in order to generating the models are described below.

The quantization technique used for the compressed networks is full int quantiza-
tion [38], meaning that the default 32 bit float weights are converted to 8 bit integer
values. This is because it first most shrinks the model bit size by 4x and convert
weights into a less computational datatype. 8 bit quantization was selected since
it is currently the smallest quantization variant supported by Tensorflow Lite [39],
making this closer related to what a real use case could look like.

The pruning technique uses a pruning schedule [40] that uses constant sparsity of
50%, meaning that half of the weights in each layer are pruned. As such that all
pruned networks will be evaluated with the same amount of pruning. Constant
pruning might not always be the best technique, as it might prune none redun-
dant weights there by reducing the classification accuracy. Constant pruning entails
that all networks are compared against each other fairly and was thus the choice of
method for pruning.

For the clustering [21] compression technique the number of clusters per layer was
set to 16, meaning how many different lookup values the weights can be represented
by. 16 was selected as the number of clusters since it provides a large enough range
of cluster to be efficient in a real possible scenario. The way that these cluster values
are obtained can be specified by its own hyperparameter cluster centroids init where
the alternative LINEAR is used, meaning that the cluster centroid values are evenly
spaced between the maximum and minimum weights of that layer.

13

3. Method

3.4 Modelling and Evaluation
In order to simplify the experiments by removing the need to build a framework
for offloading. The evaluation was done using a theoretical model of the system
rather implementing a system for the offloading. The model used is described in
Network model 2.4. The latency and energy consumption per inference was created
and measured experimentally for each of the models. While the network speed and
latency are based on aggregated data [41] for both wired and wireless connections.
These results in latency of 10 ms and 29ms for Ethernet and wireless respectively.
The radio gives a download speed of 3.53MB/s and 1 MB/s upload as well as a
energy efficiency 110nj/B download and 139 nj/B upload. While the Ethernet give
a download speed 7,13 MB/s and 3,04 MB/s upload and a energy efficiency 128nj/B
and 57nj/B respect upload and download.

Tensorflows implementation of weight clustering normalizes and clusters the weight
values to the centroid values. This means that the size of the network is practically
the same as the non clustered model. According to Tensorflow common compres-
sion techniques like zip can be used to visualize its effect, Tensorflow also state "To
further unlock the improvements in memory usage and speed at inference time as-
sociated with clustering, specialized run-time or compiler software and dedicated
machine learning hardware is required" [20], with this it became reasonable to test
versions without weight clustering active, and investigate if the clustering technique
brings any unexpected consequences when applied without specialised hardware.

Measuring the inference latency on the embedded device was conducted using Ten-
sorflows benchmarkings tool [42]. The tool measure the distribution of the latency
for inferring a random input, where the average inference latency was used. The
benchmark allows the user to specify among other things the number of inferences,
number of threads to use, and if to use the NPU or GPU.

In order to measure the energy consumption of the embedded device a Joulescope
[43] was connected to the power feed port. The Joulescope is a tool that is connected
in series with the device under test on both the positive and negative leads. Then
the device measures several metrics, among which voltage and amplitude, which
then can be integrated of period of time. The test bench used in this work consist
of a Velleman LABPS3005DN power supply with an output of 12v and max 1.5A,
which is connected via the Joulescope and lastly to the i.MX 8M Plus card, as shown
in Figure 3.2.

In order to calculate the energy per inference, the Tensorflows benchmarking tool
was executed to for 150 seconds in order to get a large sample and reduce the im-
pact of noise. When the benchmark completes, it provide the number of inferences
completed. While the benchmark executes the Joulescope records the power con-
sumption, which the Joulescope later uses to calculate the energy consumption over
the inference time. It worth noting that only the time use of inference is measured,
meaning that warm up periods are ignored. This choice was made as the NPU is

14

3. Method

Figure 3.2: Testbench setup

slow to load new weights and will mostly in a real world scenario be loaded once dur-
ing initiation. Hence including the warm up energy would result in unfairly weighed
results against NPU usage. Finally the energy over the inference period is divided
by the number of completed inferences, resulting the energy per inference metric.

In order to further profile the AI models, performance counters was used. The Linux
tool perf [44] was used to access the counter and allows monitoring of valuable met-
rics during inference. The metrics that were observed in this study are L1a dcache
loads and misses, page-fault, and instruction count. These metrics was selected as
they provide an insight into the performance of the memory system and show how
many instructions that were executed. The evaluation of performance counters for
a model can performed as seen below.

perf stat -e {Metrics} ./linux_aarch64_benchmark_model
--graph={model_filename} --num_threads={num_threads}
--use_nnapi={use_nnapi} --warmup_runs=0 --num_rubns=250

In this work a python script was used to automate the evaluation, the script can be
found in the accompanying files with the name perf_script.py

3.5 Known Limitations
A number of limitations have been noticed that may skew the results away from real-
ity. There are two primary such limitations have been identified in this experiment.
Due to the energy being measured is the entire power consumption for the device.
This is because the platform used to execute the model is a Linux system, so some
background tasks had be running and effecting the energy usage. This factor should
have limited impact on the relevant comparisons due to the long sample times, as
such the energy consumption of background task average out to have lite impact on
the final results.

15

3. Method

Another potential source of error is that the network parameters are estimated and
as such could be erroneous. This is believed to be fair estimations since they are
relied on data and other sources, but they are still classified as error sources since
they are not real measured values.

16

4
Results

The results featured in this section visualises inference latency, energy consumption
as well as Energy Delay Product (EDP) for the tested models together with analysis
of potential causes and contributing factors to the obtained results.

Table 4.1: Explanation of Figure legends. *Model name could be any model
name for example InceptionV3

Model Variant Input dimension
Model name* (Q/P/W) (32/75/128)

In this work the models are denoted with the model name follow by the compression
techniques used and lastly the input size. The compression techniques are denoted
with the first letter in the name of the compression technique, quantization(Q),
pruning(P), and weight clustering(W). Additionally the compression technique let-
ters appear in the order the techniques where applied to the model. Lastly the
input dimension states the shape of the input image into the networks meaning that
a model that ends with 32 takes a 32x32 image as its input. For instance Mobilenet
PQ 32, represents the Mobilenet model with an input shape of 32x32 values, com-
pressed with pruning and quantization.

Following the method described in sections Network model 2.4 and modeling och
evaluation 3.4 result was obtained for both cases, edge computing and offloading to
host. Both cases feature inference time and device energy consumption when both
computing locally on CPU or NPU or offloaded to a CPU or GPU.

4.1 Latency
The obtained inference latency from executing a single inference on each listed unit
can be seen in Figure 4.1. The units denoted with "Ethernet" or "Radio" are the
offloaded cases where the latency of offloading is estimated with different offloading
techniques being Ethernet or over WiFi radio. The offloading technique is followed
by the computational units denoted "CPU" and "GPU" which reference to the 10
core Intel i9-10850K offloaded CPU and GeForce RTX 3070 offloaded GPU. While
the standalone CPU 1-core and CPU 4-core relates to the edge device CPU Quad
Arm Cortex A53 since no offloading technique is used in this scenario. Similarly the
edge device NPU is denoted NPU.

17

4. Results

Models

La
ne

nc
y

(s
)

0,001

0,01

0,1

1
In

ce
pt

io
nv

3
P

W
Q

 7
5

In
ce

pt
io

nv
3

P
Q

 7
5

In
ce

pt
io

nv
3

 7
5

In
ce

pt
io

nv
3

P
W

Q

In
ce

pt
io

nv
3

P
Q

 1
28

In
ce

pt
io

nv
3

 1
28

M

ob
ile

N
et

 P
W

Q
 3

2
M

ob
ile

N
et

 P
Q

 3
2

M
ob

ile
N

et
 3

2
M

ob
ile

N
et

 P
W

Q
 7

5
M

ob
ile

N
et

 P
Q

 7
5

M
ob

ile
N

et
 7

5
M

ob
ile

N
et

 P
W

Q
 1

28
M

ob
ile

N
et

 P
Q

 1
28

M
ob

ile
N

et
 1

28

R
es

ne
t 5

0
P

W
Q

 3
2

R
es

ne
t 5

0
P

Q
 3

2
R

es
ne

t 5
0

 3
2

R
es

ne
t 5

0
P

W
Q

 7
5

R
es

ne
t 5

0
P

Q
 7

5
R

es
ne

t 5
0

 7
5

R
es

ne
t 5

0
P

W
Q

R

es
ne

t 5
0

P
Q

 1
28

R
es

ne
t 5

0
 1

28

V
G

G
16

 P
W

Q
 3

2
V

G
G

16
 P

Q
 3

2
V

G
G

16
 3

2
V

G
G

16
 P

W
Q

 7
5

V
G

G
16

 P
Q

 7
5

V
G

G
16

 7
5

V
G

G
16

 P
W

Q
 1

28
V

G
G

16
 P

Q
 1

28
V

G
G

16
 1

28

CPU 1-core

CPU 4-core

NPU

Radio CPU

Ethernet CPU

Radio GPU

Ethernet GPU

Figure 4.1: Graph of inference latency obtained from executing the inference on
different compute platforms. Y-axis is logarithmic.

From analysing Figure 4.1 it becomes clear that the offloading latency remains
fairly consistent between models. This is visualised by the green and blue dots in
Figure 4.1. These offloading latency’s forms two thresholds for radio and Ethernet
offloading, each of these thresholds indicate whether or not offloading is the optimal
choice for respective offloading technique. The average, maximum, minimum and
standard deviation of total latencies are described in Table 4.2 for each offloading
scenario. For the Ethernet the threshold in located around 24 ms with a standard
deviation of 3 ms. The threshold for radio is located around 68 ms with a standard
deviation of 7 ms. The thresholds depends on the models and the input size of the
models, however from the results seen in this work a upper bound can be seen. The
upper bound was calculated by the maximum latency when offloading to GPU over
Ethernet and over radio, visualised with the dark blue and dark green dots in Figure
4.1 respectively. This results in a upper bound of 31 ms for Ethernet and 79 ms
for radio, these bounds should give a good estimation for models with similar sized
input and design. It is important to note that these threshold are specific to the
offloading connection and compute platform used in this work. However the increase
in latency is likely to be limited as the offloading latency is dominated by the round
trip time as shown in Figure 4.2.

18

4. Results

0,00

0,02

0,04

0,06

0,08
In

ce
pt

io
nv

3
P

W
Q

 7
5

In
ce

pt
io

nv
3

P
Q

 7
5

In
ce

pt
io

nv
3

 7
5

In
ce

pt
io

nv
3

P
W

Q

In
ce

pt
io

nv
3

P
Q

 1
28

In
ce

pt
io

nv
3

 1
28

M
ob

ile
N

et
 P

W
Q

 3
2

M
ob

ile
N

et
 P

Q
 3

2

M
ob

ile
N

et
 3

2

M
ob

ile
N

et
 P

W
Q

 7
5

M
ob

ile
N

et
 P

Q
 7

5

M
ob

ile
N

et
 7

5

M
ob

ile
N

et
 P

W
Q

 1
28

M
ob

ile
N

et
 P

Q
 1

28

M
ob

ile
N

et
 1

28

R
es

ne
t 5

0
P

W
Q

 3
2

R
es

ne
t 5

0
P

Q
 3

2

R
es

ne
t 5

0
 3

2

R
es

ne
t 5

0
P

W
Q

 7
5

R
es

ne
t 5

0
P

Q
 7

5

R
es

ne
t 5

0
 7

5

R
es

ne
t 5

0
P

W
Q

R
es

ne
t 5

0
P

Q
 1

28

R
es

ne
t 5

0
 1

28

V
G

G
16

 P
W

Q
 3

2

V
G

G
16

 P
Q

 3
2

V
G

G
16

 3
2

V
G

G
16

 P
W

Q
 7

5

V
G

G
16

 P
Q

 7
5

V
G

G
16

 7
5

V
G

G
16

 P
W

Q
 1

28

V
G

G
16

 P
Q

 1
28

V
G

G
16

 1
28

Inference GPU Transmission time Radio Latency Radio

Figure 4.2: Illustration of latency contributions of network communication and
execution time of model, using radio to offload to GPU

This pattern exist in most offloading scenarios as can be seen in Figures A.11 and
A.12. However some edge cases exist as seen in Figure 4.3, where larger input sizes
on the models Resnet 50 and VGG16 are slow on CPUs. Even in these edge cases the
latency of the communication remains to be the highest contributing factor of the
total inference time indicating that it is a bottleneck even for worst case scenarios.

19

4. Results

0,00

0,01

0,02

0,03

0,04

0,05
In

ce
pt

io
nv

3
P

W
Q

 7
5

In
ce

pt
io

nv
3

P
Q

 7
5

In
ce

pt
io

nv
3

 7
5

In
ce

pt
io

nv
3

P
W

Q

In
ce

pt
io

nv
3

P
Q

 1
28

In
ce

pt
io

nv
3

 1
28

M
ob

ile
N

et
 P

W
Q

 3
2

M
ob

ile
N

et
 P

Q
 3

2

M
ob

ile
N

et
 3

2

M
ob

ile
N

et
 P

W
Q

 7
5

M
ob

ile
N

et
 P

Q
 7

5

M
ob

ile
N

et
 7

5

M
ob

ile
N

et
 P

W
Q

 1
28

M
ob

ile
N

et
 P

Q
 1

28

M
ob

ile
N

et
 1

28

R
es

ne
t 5

0
P

W
Q

 3
2

R
es

ne
t 5

0
P

Q
 3

2

R
es

ne
t 5

0
 3

2

R
es

ne
t 5

0
P

W
Q

 7
5

R
es

ne
t 5

0
P

Q
 7

5

R
es

ne
t 5

0
 7

5

R
es

ne
t 5

0
P

W
Q

R
es

ne
t 5

0
P

Q
 1

28

R
es

ne
t 5

0
 1

28

V
G

G
16

 P
W

Q
 3

2

V
G

G
16

 P
Q

 3
2

V
G

G
16

 3
2

V
G

G
16

 P
W

Q
 7

5

V
G

G
16

 P
Q

 7
5

V
G

G
16

 7
5

V
G

G
16

 P
W

Q
 1

28

V
G

G
16

 P
Q

 1
28

V
G

G
16

 1
28

Inference CPU Transmission time Ethernet Lantency Ethernet

Figure 4.3: Illustration of latency contributions of network communication and
execution time of model, using Ethernet to offload to CPU

Further Figures A.14-A.16 visualises the same content found in Figure 4.1 but
grouped and isolated by compression techniques. These Figures better visualize
the the optimal computation platform for each model variation, since Figure 4.1
may be hard to interpret.

Table 4.2: Threshold latency

Average (ms) stdev (ms) max (ms) min (ms)
Radio CPU 72 12 96 59
Ethernet CPU 29 8 47 20
Radio GPU 68 7 79 59
Ethernet GPU 25 3 31 21

Noteworthy is that the latency of uncompressed models are penalised on the NPU
and suffer from heavy in terms of both latency and energy. The average speedup
obtained from compressing the neural network with pruning and quantization is
188x, with a maximum speedup of 716x on the NPU.

4.2 Energy Consumption
Figure 4.4 visualizes the energy consumption of the device for the same cases pre-
sented in Figure 4.1. Since it is possible to suspend or enter a lower power mode by
suspending the OS when waiting for the response from host in the offloaded cases

20

4. Results

the result is supplemented with Figure 4.5 that represents the energy consumption
for the same cases with the exception that a new lower idle consumption is used for
the offloading cases.

Similar to the latency, two clear thresholds can be seen for both offloading over
Ethernet and over radio. For the scenario with higher idle consumption visualised
in Figure 4.4 the thresholds for offloading over Ethernet are 75 mJ and over radio
are 207 mJ which a 9 mJ and 21 mJ respectively. The energy consumption statistics
for the high idle power scenario are collected in table 4.3. While for the scenario
with the lower idle consumption visualised in Figure 4.5 the thresholds for Ethernet
is around 23 mJ with a standard deviation 3 mJ, and for radio around 32 mJ and
a standard deviation of 6 mJ. Then the upper bound for offloading over Ethernet
would be 28 mJ and 72 mJ for radio for low idle. The energy consumption statistics
for the low idle power scenario are collect in table4.4 While for the higher idle
scenario the Ethernet break point 94 mj and 241 mJ for radio.

Models

E
ne

rg
y

(j)

0,01

0,1

1

10

In
ce

pt
io

nv
3

P
W

Q
 7

5
In

ce
pt

io
nv

3
P

Q
 7

5
In

ce
pt

io
nv

3
 7

5
In

ce
pt

io
nv

3
P

W
Q

 1
28

In
ce

pt
io

nv
3

P
Q

 1
28

In
ce

pt
io

nv
3

 1
28

M

ob
ile

N
et

 P
W

Q
 3

2
M

ob
ile

N
et

 P
Q

 3
2

M
ob

ile
N

et
 3

2
M

ob
ile

N
et

 P
W

Q
 7

5
M

ob
ile

N
et

 P
Q

 7
5

M
ob

ile
N

et
 7

5
M

ob
ile

N
et

 P
W

Q
 1

28
M

ob
ile

N
et

 P
Q

 1
28

M
ob

ile
N

et
 1

28

R
es

ne
t 5

0
P

W
Q

 3
2

R
es

ne
t 5

0
P

Q
 3

2
R

es
ne

t 5
0

 3
2

R
es

ne
t 5

0
P

W
Q

 7
5

R
es

ne
t 5

0
P

Q
 7

5
R

es
ne

t 5
0

 7
5

R
es

ne
t 5

0
P

W
Q

 1
28

R
es

ne
t 5

0
P

Q
 1

28
R

es
ne

t 5
0

 1
28

V

G
G

16
 P

W
Q

 3
2

V
G

G
16

 P
Q

 3
2

V
G

G
16

 3
2

V
G

G
16

 P
W

Q
 7

5
V

G
G

16
 P

Q
 7

5
V

G
G

16
 7

5
V

G
G

16
 P

W
Q

 1
28

V
G

G
16

 P
Q

 1
28

V
G

G
16

 1
28

CPU 1-core

CPU 4-core

NPU

Radio CPU

Ethernet CPU

Radio GPU

Ethernet GPU

Figure 4.4: Graph of energy consumption obtained from measuring the power
over the execution of the inference on different compute platforms. Threshold for

radio at 207 mJ and Ethernet at 75 mJ. Y-axis is logarithmic.

These two thresholds are dependent on the idle power of the edge device, in this
case lowest idle power observed in this study is about 1 watt.

21

4. Results

Models

E
ne

rg
y

(j)

0,01

0,1

1

10

In
ce

pt
io

nv
3

P
W

Q
 7

5
In

ce
pt

io
nv

3
P

Q
 7

5
In

ce
pt

io
nv

3
 7

5
In

ce
pt

io
nv

3
P

W
Q

 1
28

In
ce

pt
io

nv
3

P
Q

 1
28

In
ce

pt
io

nv
3

 1
28

M

ob
ile

N
et

 P
W

Q
 3

2
M

ob
ile

N
et

 P
Q

 3
2

M
ob

ile
N

et
 3

2
M

ob
ile

N
et

 P
W

Q
 7

5
M

ob
ile

N
et

 P
Q

 7
5

M
ob

ile
N

et
 7

5
M

ob
ile

N
et

 P
W

Q
 1

28
M

ob
ile

N
et

 P
Q

 1
28

M
ob

ile
N

et
 1

28

R
es

ne
t 5

0
P

W
Q

 3
2

R
es

ne
t 5

0
P

Q
 3

2
R

es
ne

t 5
0

 3
2

R
es

ne
t 5

0
P

W
Q

 7
5

R
es

ne
t 5

0
P

Q
 7

5
R

es
ne

t 5
0

 7
5

R
es

ne
t 5

0
P

W
Q

 1
28

R
es

ne
t 5

0
P

Q
 1

28
R

es
ne

t 5
0

 1
28

V

G
G

16
 P

W
Q

 3
2

V
G

G
16

 P
Q

 3
2

V
G

G
16

 3
2

V
G

G
16

 P
W

Q
 7

5
V

G
G

16
 P

Q
 7

5
V

G
G

16
 7

5
V

G
G

16
 P

W
Q

 1
28

V
G

G
16

 P
Q

 1
28

V
G

G
16

 1
28

CPU 1-core

CPU 4-core

NPU

Radio CPU

Ethernet CPU

Radio GPU

Ethernet GPU

Figure 4.5: Graph of energy consumption obtained from measuring the power
over the execution of the inference on different compute platforms, with lower idle
energy consumption. Threshold for radio at 32 mJ and Ethernet at 23 mJ. Y-axis

is logarithmic.

4.3 Energy Delay Product
The energy delay product(EDP) is a metric that provides a trade off between latency
and energy consumption, as shown in equation 4.1. The EDP can be seen in Figure
4.6 and 4.7 for high and low idle power respectively.

EDP = Energy per inference ∗ Latency (4.1)

From analysing Figure 4.6 and 4.7, the same pattern as for energy and latency can
be observed. This is because inference latency and energy consumption is strongly
correlated which can clearly be observed in Figure 4.8.

22

4. Results

Table 4.3: Threshold energy high idle

Average (mJ) stdev (mJ) max (mJ) min (mJ)
Radio CPU 220 35 291 180
Ethernet CPU 89 25 144 62
Radio GPU 207 21 241 180
Ethernet GPU 76 9 94 63

Table 4.4: Threshold energy low idle

Average (mJ) stdev (mJ) max (mJ) min (mJ)
Radio CPU 66 11 87 54
Ethernet CPU 27 7 43 19
Radio GPU 62 6 72 54
EThernet GPU 23 3 28 19

Models

E
P

D
 (s

j)

0,0001

0,01

1

100

In
ce

pt
io

nv
3

P
W

Q
 7

5
In

ce
pt

io
nv

3
P

Q
 7

5
In

ce
pt

io
nv

3
 7

5
In

ce
pt

io
nv

3
P

W
Q

 1
28

In
ce

pt
io

nv
3

P
Q

 1
28

In
ce

pt
io

nv
3

 1
28

M

ob
ile

N
et

 P
W

Q
 3

2
M

ob
ile

N
et

 P
Q

 3
2

M
ob

ile
N

et
 3

2
M

ob
ile

N
et

 P
W

Q
 7

5
M

ob
ile

N
et

 P
Q

 7
5

M
ob

ile
N

et
 7

5
M

ob
ile

N
et

 P
W

Q
 1

28
M

ob
ile

N
et

 P
Q

 1
28

M
ob

ile
N

et
 1

28

R
es

ne
t 5

0
P

W
Q

 3
2

R
es

ne
t 5

0
P

Q
 3

2
R

es
ne

t 5
0

 3
2

R
es

ne
t 5

0
P

W
Q

 7
5

R
es

ne
t 5

0
P

Q
 7

5
R

es
ne

t 5
0

 7
5

R
es

ne
t 5

0
P

W
Q

 1
28

R
es

ne
t 5

0
P

Q
 1

28
R

es
ne

t 5
0

 1
28

V

G
G

16
 P

W
Q

 3
2

V
G

G
16

 P
Q

 3
2

V
G

G
16

 3
2

V
G

G
16

 P
W

Q
 7

5
V

G
G

16
 P

Q
 7

5
V

G
G

16
 7

5
V

G
G

16
 P

W
Q

 1
28

V
G

G
16

 P
Q

 1
28

V
G

G
16

 1
28

CPU 1-core

CPU 4-core

NPU

Radio CPU

Ethernet CPU

Radio GPU

Ethernet GPU

Figure 4.6: Energy delay product(EDP) for each model and compute platform
with high idle.Y-axis is logarithmic.

23

4. Results

Models

E
P

D
 (s

j)

0,0001

0,01

1

100

In
ce

pt
io

nv
3

P
W

Q
 7

5
In

ce
pt

io
nv

3
P

Q
 7

5
In

ce
pt

io
nv

3
 7

5
In

ce
pt

io
nv

3
P

W
Q

 1
28

In
ce

pt
io

nv
3

P
Q

 1
28

In
ce

pt
io

nv
3

 1
28

M

ob
ile

N
et

 P
W

Q
 3

2
M

ob
ile

N
et

 P
Q

 3
2

M
ob

ile
N

et
 3

2
M

ob
ile

N
et

 P
W

Q
 7

5
M

ob
ile

N
et

 P
Q

 7
5

M
ob

ile
N

et
 7

5
M

ob
ile

N
et

 P
W

Q
 1

28
M

ob
ile

N
et

 P
Q

 1
28

M
ob

ile
N

et
 1

28

R
es

ne
t 5

0
P

W
Q

 3
2

R
es

ne
t 5

0
P

Q
 3

2
R

es
ne

t 5
0

 3
2

R
es

ne
t 5

0
P

W
Q

 7
5

R
es

ne
t 5

0
P

Q
 7

5
R

es
ne

t 5
0

 7
5

R
es

ne
t 5

0
P

W
Q

 1
28

R
es

ne
t 5

0
P

Q
 1

28
R

es
ne

t 5
0

 1
28

V

G
G

16
 P

W
Q

 3
2

V
G

G
16

 P
Q

 3
2

V
G

G
16

 3
2

V
G

G
16

 P
W

Q
 7

5
V

G
G

16
 P

Q
 7

5
V

G
G

16
 7

5
V

G
G

16
 P

W
Q

 1
28

V
G

G
16

 P
Q

 1
28

V
G

G
16

 1
28

CPU 1-core

CPU 4-core

NPU

Radio CPU

Ethernet CPU

Radio GPU

Ethernet GPU

Figure 4.7: Energy delay product(EDP) for each model and compute platform
with low idle.Y-axis is logarithmic.

Latency(s)

E
ne

rg
y

(j)

0,05

0,1

0,5

1

0,005 0,01 0,05 0,1

1 core

Figure 4.8: Correlation between energy and latency for 1 embedded CPU core.
Both axis are logarithmic.

24

4. Results

For the embedded platform these correlations are 99%, 98%, and 99% for 1 CPU
core, 4 CPU cores, and the NPU respectively, as can be seen in Figures A.5 - A.6.
This correlation is even more clear for the offloading scenarios, as seen in Figures A.7
- A.10 which is for the lower idle power case. For the offloading case the correlation
is rounded up to 100% for both Ethernet and radio offloading to either CPU or GPU,
for the sake of space the plots for the case featuring the high idle consumption are not
included as they show the same result. This high degree of correlation is connected
to how offloading is modeled in this work, as seen in equation 2.5. Equation 2.5 show
that the total energy consumed from offloading is the energy used while waiting for
the results and the energy used to send and receive data. In this case the energy
consumed for sending and receiving data is negligible when compared to the idle
energy.

25

4. Results

26

5
Discussion

5.1 Neural Network Compression
Previous in chapter result 4, the latency and energy thresholds were discovered for
both inference latency and energy consumption. These thresholds remained fairly
consistent for all variants of a model network (PQ, PWQ and uncompressed). This
is because the offloading host computer featured small variance in the inference time
for the different model variations.

While compression does not seem to have any noticeable effect on performance
on offloading scenarios the compression has noticeable effect on the edge device
inference time. The impact of the compression is most noticeable when comparing
inference latency’s on the NPU. As shown in section 4.1 the average speedup for PQ
models was 188x compared to uncompressed models on the NPU. The edge device
CPU also featured a consistent speedup of 6-8% for both 1 core and 4 core execution,
when compressing models with pruning and quantization. For CPU execution there
was no noticeable performance change when compressing models with pruning and
quantization (PQ) or with pruning weight clustering and quantisation (PWQ).

5.2 Model Properties
From the results described in section 4 and in appendix A there are numerous of
possible discussions to be made around how different types of networks favor different
compute platforms. As shown in Figures 5.1 and 5.2 the input size of the data passed
to the different networks heavily affect the final result for both inference time and
energy consumption, the same pattern exist for 4 cores and the npu as shown in
Figures A.1-A.4.
This means that when developing a network with performance constraints it is ap-
propriate to minimize the input size of the network as much as possible without
compromising to much of the accuracy, in order to gain both a good performance
while still having a useful network. While the input size may not be treated as a
free factor parameter it is useful to know the effect input size has on performance
metrics. For instance if given a VGG16 model that has to use a 80x80 input, then
that in becomes evident that if the embedded platform does not have a NPU that
offloading would be the better option when considering performance metrics such
as inference latency and energy consumption.

27

5. Discussion

La
te

nc
y

(s
)

0,00

0,25

0,50

0,75

1,00

1,25

MobileNet
PWQ

MobileNet
PQ

Resnet 50
PWQ

Resnet 50
PQ

VGG16
PWQ

VGG16 PQ

32x32 75x75 128x128

1 core

Figure 5.1: Plotting inference latency obtained from running on one CPU core
on embedded device, with varying input sizes.

E
ne

rg
y

co
ns

m
pt

io
n

(j)

0

1

2

3

4

MobileNet
PWQ

MobileNet
PQ

Resnet 50
PWQ

Resnet 50
PQ

VGG16
PWQ

VGG16 PQ

32x32 75x75 128x128

1 core

Figure 5.2: Plotting energy consumption over a single inference, obtained from
running on one CPU cores on the embedded device, with varying input sizes.

28

5. Discussion

We observe that the latency and the input size are closely related. Figure 5.3
describes that when the input size increase then the number of parameters grow,
however we also see that the latency of the model doesn’t necessarily correlate with
the number of parameters. As such there must be something in the structure of the

Input size

#p
ar

am
et

er

0

10000000

20000000

30000000

40000000

40 60 80 100 120 140

Inceptionv3 MobileNet Resnet 50 VGG16

Figure 5.3: The number parameters in networks plotted against the input size
and where the size is the inference speed on one core. Shown for all full

compressed networks

models that cause the difference in performance. Figure 5.4 shows how the number
of parameters and depth of models effects latency.
In this Figure we see that models with fewer layers performs worse than models
with more layers even when these models have more parameters. This does not
necessarily mean that more layers are strictly better, results points towards that a
lack of memory could be the potential cause of this problem.

As neural networks consist of a number of layers which get executed sequentially.
Models that are too large to be stored in memory all at once, need to continuously
load the weights of the following layers into memory during execution[45]. If the
model is able to fit inside L1 cache compared to L2 cache, fewer cache collisions
occur. Similar holds for models able to fit inside L2 cache compared to RAM. Fewer
cache collisions results in faster execution, given that memory is being reused, as
it avoids to fetch data from slower memory levels fewer times. Knowing that the
CPU on the NXP card has 32kB L1 D cache, 512kB L2 cache, and 868kB RAM[25]
and knowing how many parameters each layer in the models contain, it was then
possible to calculate how much of the layers fit in respective memory level. Table
5.1 shows how well the average layers fits in respective memory level for each of the
models. There are two major points of interests. VGG16 being the slowest network

29

5. Discussion

Depth

#p
ar

am
et

er
s

0

10000000

20000000

30000000

40000000

0 50 100 150 200

Inceptionv3 MobileNet Resnet 50 VGG16

Figure 5.4: The number parameters in networks plotted against the networks
depth and where the size is the inference speed on one core. Shown for all full

compressed networks

has considerably the worst fit percentage out of the tested networks. Inversely we
see that the fastest network has a much higher percentage. This trend can also
be seen when plotting the fit percentage against inference latency for the different
memory levels as seen in Figure 5.5-5.7.

30

5. Discussion

Layer size / cache size (%)

In
fe

re
nc

e
(s

)

0,00

0,25

0,50

0,75

1,00

1,25

500 1000 1500 2000

L1

Figure 5.5: The percentage of layers that fits in L1d cache plotted against the
inference latency for one core for each of the full compression.

Layer size / cache size (%)

In
fe

re
nc

e
(s

)

0,00

0,25

0,50

0,75

1,00

1,25

25 50 75 100 125

L2

Figure 5.6: The percentage of layers that fits in L2 cache plotted against the
inference latency for one core for each of the full compression.

31

5. Discussion

Layer size / RAM size (%)

In
fe

re
nc

e
(s

)

0,00

0,25

0,50

0,75

1,00

1,25

20 40 60 80

RAM

Figure 5.7: The percentage of layers that fits in RAM plotted against the
inference latency for one core for each of the full compression.

This shows a correlation between inference latency and the number of parameters
in each layer and the sizes of device memory structures.

The same trend can be seen when looking at the results from perf. It can be observed
that the number of instructions and L1-dcache-loads executed correlate well with
the performance latency for one core, while relation is somewhat less clear for four
cores which might be due to parallelism factors, see Figures 5.8 & A.17 as well as
Figures 5.9 & A.19.
This was expected as was when the size of the data to process increase, then the
number of instructions needed to execute increase, and as such the time need to
execute does. As such we would expect the number of instructions and data loads
to correlated against the number of parameters, however this is not what can be
seen in the Figures A.26-A.31. While the number of L1d cache misses are fairly
similarly for 1 and 4 cores and correlates well against the latency. Figures 5.10 and
A.21.
None of these correlation was observed for the NPU, this might be due to how the
inference is being accelerated as can be seen in Figures A.18, A.20 and A.22.

5.3 Thresholds
From Figure 4.3 - 4.2 it becomes clear that communication is the dominant factor
and as progress is made in the communication sector the threshold for when to
offload is likely to shift in favour of offloading. A clear case of this is the upcom-
ing 5G technology, which promises reliable (User plane) latency of 1-4 milliseconds

32

5. Discussion

Table 5.1: Average layer fit for respective model and for each memory level

Model name L1 (%) L2(%) RAM(%)
Inceptionv3 75 217 14 8
Inceptionv3 128 233 15 9

Resnet50 32 414 26 15
Resnet50 75 486 30 18
Resnet50 128 549 34 20
Mobilenet 32 120 8 4
Mobilenet 75 148 9 5
Mobilenet 128 255 16 9

VGG16 32 2063 129 76
VGG16 75 2117 132 78
VGG16 128 2336 146 86

depending on usage scenario[46].

33

5. Discussion

Number of intrustions

La
te

nc
y

(s
)

0,01

0,05

0,1

0,5

1

5×10^+9 10×10^+9 50×10^+9 100×10^+9

Instruction count vs latency 1 core

Figure 5.8: Number of instructions plotted against the latency on 1 core for
receptive model. Both axis are logarithmic

Number of L1d cache loads

La
te

nc
y

(s
)

0,01

0,05

0,1

0,5

1

1×10^+9 5×10^+9 10×10^+9 50×10^+9

L1-dcache-loads vs latency 1 core

Figure 5.9: Number of l1d cache loads plotted against the latency on 1 core for
receptive model. Both axis are logarithmic

34

5. Discussion

Number of L1d cache loads misses

La
te

nc
y

(s
)

0,01

0,05

0,1

0,5

1

50×10^+6 100×10^+6 500×10^+6 1×10^+9

L1-dcache-loads misses vs latency 1 core

Figure 5.10: Number of l1d cache loads misses plotted against the latency on 1
core for receptive model. Both axis are logarithmic

Models

La
ne

nc
y

(s
)

0,001

0,01

0,1

1

In
ce

pt
io

nv
3

P
W

Q
 7

5

In
ce

pt
io

nv
3

P
Q

 7
5

In
ce

pt
io

nv
3

 7
5

In
ce

pt
io

nv
3

P
W

Q

In
ce

pt
io

nv
3

P
Q

 1
28

In
ce

pt
io

nv
3

 1
28

M
ob

ile
N

et
 P

W
Q

 3
2

M
ob

ile
N

et
 P

Q
 3

2

M
ob

ile
N

et
 3

2

M
ob

ile
N

et
 P

W
Q

 7
5

M
ob

ile
N

et
 P

Q
 7

5

M
ob

ile
N

et
 7

5

M
ob

ile
N

et
 P

W
Q

 1
28

M
ob

ile
N

et
 P

Q
 1

28

M
ob

ile
N

et
 1

28

R
es

ne
t 5

0
P

W
Q

 3
2

R
es

ne
t 5

0
P

Q
 3

2

R
es

ne
t 5

0
 3

2

R
es

ne
t 5

0
P

W
Q

 7
5

R
es

ne
t 5

0
P

Q
 7

5

R
es

ne
t 5

0
 7

5

R
es

ne
t 5

0
P

W
Q

R
es

ne
t 5

0
P

Q
 1

28

R
es

ne
t 5

0
 1

28

V
G

G
16

 P
W

Q
 3

2

V
G

G
16

 P
Q

 3
2

V
G

G
16

 3
2

V
G

G
16

 P
W

Q
 7

5

V
G

G
16

 P
Q

 7
5

V
G

G
16

 7
5

V
G

G
16

 P
W

Q
 1

28

V
G

G
16

 P
Q

 1
28

V
G

G
16

 1
28

Latency em cpu 1-core(s) Latency em cpu 4-core(s) Latency em npu (s) Latency offload CPU (s) Latency offload GPU (s)

Figure 5.11: Illustration of latency contributions of network communication and
execution time of model, using 5G to offload to CPU

35

5. Discussion

User plane latency is defined as the one-way time it takes to deliver an application
layer message from the radio protocol layer. If it is possible to offload models to
the base stations then this would result in roughly a 6 times speedup. The pro-
gression of communication technology does not end with 5G, the development 6G
is underway [47]. With further improvements on communication latency offloading
will likely become more competitive as time goes on, given that embedded CPUs
and accelerators improve at a similar rate.

When modeling same offloading previously shown but with communication param-
eters from 5G, that being 1 ms latency and 202 Mbps [48]. This considered changes
the offloading breakout as seen in Figures 5.12 and A.13 .

36

5. Discussion

0,0000

0,0025

0,0050

0,0075

0,0100
In

ce
pt

io
nv

3
P

W
Q

 7
5

In
ce

pt
io

nv
3

P
Q

 7
5

In
ce

pt
io

nv
3

 7
5

In
ce

pt
io

nv
3

P
W

Q

In
ce

pt
io

nv
3

P
Q

 1
28

In
ce

pt
io

nv
3

 1
28

M
ob

ile
N

et
 P

W
Q

 3
2

M
ob

ile
N

et
 P

Q
 3

2

M
ob

ile
N

et
 3

2

M
ob

ile
N

et
 P

W
Q

 7
5

M
ob

ile
N

et
 P

Q
 7

5

M
ob

ile
N

et
 7

5

M
ob

ile
N

et
 P

W
Q

 1
28

M
ob

ile
N

et
 P

Q
 1

28

M
ob

ile
N

et
 1

28

R
es

ne
t 5

0
P

W
Q

 3
2

R
es

ne
t 5

0
P

Q
 3

2

R
es

ne
t 5

0
 3

2

R
es

ne
t 5

0
P

W
Q

 7
5

R
es

ne
t 5

0
P

Q
 7

5

R
es

ne
t 5

0
 7

5

R
es

ne
t 5

0
P

W
Q

R
es

ne
t 5

0
P

Q
 1

28

R
es

ne
t 5

0
 1

28

V
G

G
16

 P
W

Q
 3

2

V
G

G
16

 P
Q

 3
2

V
G

G
16

 3
2

V
G

G
16

 P
W

Q
 7

5

V
G

G
16

 P
Q

 7
5

V
G

G
16

 7
5

V
G

G
16

 P
W

Q
 1

28

V
G

G
16

 P
Q

 1
28

V
G

G
16

 1
28

Lantency GPU (s) Transmission time RTT

Figure 5.12: Illustration of latency contributions of network communication and
execution time of model, using 5G to offload to GPU

This show that for 5G offloading the inference latency would be the dominant part,
this is contrary to what can be seen for radio and Ethernet offloading, as seen in
Figures 4.2, 4.3, A.11, and A.12. This improvement in offloading latency also has
a considerable impact on the offloading decision. As can be seen in Figure 5.11,
offloading out performs the inference on CPU for all model expect Mobilenet 32 and
even out performs the NPU for some models.

Noteworthy is that it was found that the lowest in this work obtainable idle energy
consumption of the i.MX 8M Plus was 1 watt. This is comparatively high compared
to other embedded devices such as for example Raspberry Pi Zero 2 W [49, 50] that
has an obtainable idle consumption of 600 mW. This means that other devices may
compromise execution power for a lower power consumption that will result in a
different outcome in regards to latency and energy consumption and as well EDP.

5.4 Other observations
From analysing the results we can also conclude that Mobilenet is well suited for
embedded devices. This is seen as its on-chip CPU and NPU inference latency is the
lowest among all tested networks. Together with its low energy consumption it out-
performs offloading in all scenarios with the exception of the uncompressed variant.
This was expected since Mobilenet is designed with the core intention of achieving
good performance on embedded devices, and our experiment validates that intention.

37

5. Discussion

It could also be relevant to briefly discuss the accuracy of the evaluated models, for
this propose we will use Keras achieved accuracy on Mobilenet[51]. Note that input
size used in Keras evaluation is 224x224 which is larger than the input sizes consid-
ered in this study, as such the result are not directly comparable but give a relative
accuracy for the different models. Keras results show that both Mobilenet(v2) and
VGG16 achieved an accuracy 90.1%. When combined with the result of this study,
Mobilenet becomes the obvious choice as it has considerable better performance.
While Resnet50 and InceptionV3 achieved an accuracy of 92.1% and 93.7% respec-
tively, however these models are larger and slower when compared to Mobilenet, as
such there is a accuracy performance trade off to keep in mind.

5.5 Future Works
As this work only consider the energy consumption on the embedded device and
not the entire system, a complementary study looking at the energy used for the
entire system would give a better holistic understanding of benefits and cons of of-
floading. Such studies could have a greater focus on network energy consumption,
such as base station and routers as well as comparing dedicated servers compared
with cloud computing solutions. This would better the understanding on how the
decision of where to offload and how the communication medium used to offload
affect the environmental factors and infrastructure costs.

In this work only the native offloading case was considered, it would be interesting
to see how more advanced offloading techniques such as PerDNN [24]. This would
give insight how energy efficient modern offloading techniques are and such better
map the solution space.

While this work is not considering model accuracy when evaluating the different
model architectures, the Deep compression[12] paper shows that high compression
can be achieved with little or zero accuracy loss. With that it might be valuable
to perform additional studies where accuracy is considered since it can potentially
yield additional insight to the decision of offloading or on-chip computation. This
is because a hard accuracy constraint might exclude some model architectures since
smaller is not always better in that sense.

In this work we have shown some correlations between neural network designs and
the latency and energy efficiency, however a study focused on how network design
affect performance could be useful for future embedded AI research. Such study
could explore how to optimize a model for the memory structure and how such
optimizations effect accuracy and performance.

38

6
Conclusion

The data visualised in Figures 4.1 and 4.4 indicates a strong correlation with NPU
performance and model compression techniques. This can be seen since all uncom-
pressed models perform significantly worse on the embedded NPU than compressed
models. Compressed models obtains an average 188x speedup compared to non
compressed models when executed on the NPU. With this we conclude that it is
of best interest to compress neural networks using compression techniques such as
quantization, pruning when deploying neural network models on the i.MX 8M Plus
NPU in order to gain the best performance possible. In addition it is said that
utilizing weight clustering can be used in the case where hardware and software
support is available, but does not contribute to other performance gains otherwise.

We conclude that when the inference time aspect is of the highest priority it is for
all our tested networks best to perform the calculation on the edge device’s NPU
if one is available. This conclusion is made based on the fact that the NPU had
the fastest inference time for all tested compressed networks when including the
communication for the offloading scenario. On the other hand the answer is not as
clear when it comes to energy consumption since if the idle power can be lowered
while waiting for response from host the result is not unanimous.

As been shown in this work the offloading performance is heavily influenced by the
round trip time, and as such the decision whether to offload or not in regards to
performance is heavily dependent on the commutation media used. Using the global
average latencies for wired and wireless commutation [41], and the offloading plat-
form use in this work, then thresholds for single inferences are around 24 ms and
68 ms for Ethernet and radio offloading respectively. While for newer commutation
techniques or when the compute server moves closer to the edge device then the
inference time on the offloading becomes less influential on the total latency. With
data from Minimum requirements related to technical performance for IMT-2020
radio interface (s) [46] newer 5G communication would be able to obtain network
latencies of around 1-4 ms making offloading a much more competitive option, as-
suming hardware performance of devices tested in this work.

39

6. Conclusion

40

Bibliography

[1] Diaa Salama AbdELminaam et al. “A deep facial recognition system using
computational intelligent algorithms”. In: Plos one 15.12 (2020), e0242269.

[2] Mrinal R Bachute and Javed M Subhedar. “Autonomous Driving Architec-
tures: Insights of Machine Learning and Deep Learning Algorithms”. In: Ma-
chine Learning with Applications 6 (2021), p. 100164.

[3] Nitthilan Kannappan Jayakodi et al. “Trading-Off Accuracy and Energy of
Deep Inference on Embedded Systems: A Co-Design Approach”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
37.11 (2018), pp. 2881–2893. doi: 10.1109/TCAD.2018.2857338.

[4] Nasir Abbas et al. “Mobile Edge Computing: A Survey”. In: IEEE Internet of
Things Journal 5.1 (2018), pp. 450–465. doi: 10.1109/JIOT.2017.2750180.

[5] Sam Leroux et al. Privacy Aware Offloading of Deep Neural Networks. 2018.
arXiv: 1805.12024 [cs.LG].

[6] Shuochao Yao et al. “Deep Compressive Offloading: Speeding up Neural Net-
work Inference by Trading Edge Computation for Network Latency”. In: Pro-
ceedings of the 18th Conference on Embedded Networked Sensor Systems. New
York, NY, USA: Association for Computing Machinery, 2020, pp. 476–488.
isbn: 9781450375900. url: https://doi.org/10.1145/3384419.3430898.

[7] Sun-Chong Wang. “Artificial Neural Network”. In: Interdisciplinary Comput-
ing in Java Programming. Boston, MA: Springer US, 2003, pp. 81–100. isbn:
978-1-4615-0377-4. doi: 10.1007/978- 1- 4615- 0377- 4_5. url: https:
//doi.org/10.1007/978-1-4615-0377-4_5.

[8] Shih-Chung B. Lo et al. “Artificial convolution neural network for medical
image pattern recognition”. In: Neural Networks 8.7 (1995). Automatic Target
Recognition, pp. 1201–1214. issn: 0893-6080. doi: https://doi.org/10.
1016/0893-6080(95)00061-5. url: https://www.sciencedirect.com/
science/article/pii/0893608095000615.

[9] Cesare Alippi, Simone Disabato, and Manuel Roveri. “Moving Convolutional
Neural Networks to Embedded Systems: The AlexNet and VGG-16 Case”. In:
2018 17th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN). 2018, pp. 212–223. doi: 10.1109/IPSN.2018.00049.

[10] Subarna Tripathi et al. “LCDet: Low-Complexity Fully-Convolutional Neural
Networks for Object Detection in Embedded Systems”. In: 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops (CVPRW).
2017, pp. 411–420. doi: 10.1109/CVPRW.2017.56.

41

https://doi.org/10.1109/TCAD.2018.2857338
https://doi.org/10.1109/JIOT.2017.2750180
https://arxiv.org/abs/1805.12024
https://doi.org/10.1145/3384419.3430898
https://doi.org/10.1007/978-1-4615-0377-4_5
https://doi.org/10.1007/978-1-4615-0377-4_5
https://doi.org/10.1007/978-1-4615-0377-4_5
https://doi.org/https://doi.org/10.1016/0893-6080(95)00061-5
https://doi.org/https://doi.org/10.1016/0893-6080(95)00061-5
https://www.sciencedirect.com/science/article/pii/0893608095000615
https://www.sciencedirect.com/science/article/pii/0893608095000615
https://doi.org/10.1109/IPSN.2018.00049
https://doi.org/10.1109/CVPRW.2017.56

Bibliography

[11] Alfredo Canziani, Eugenio Culurciello, and Adam Paszke. “Evaluation of neu-
ral network architectures for embedded systems”. In: 2017 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE. 2017, pp. 1–4.

[12] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compress-
ing Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding. 2016. arXiv: 1510.00149 [cs.CV].

[13] Vivienne Sze et al. “Efficient processing of deep neural networks: A tutorial
and survey”. In: Proceedings of the IEEE 105.12 (2017), pp. 2295–2329.

[14] Lu Hou and James T Kwok. “Loss-aware weight quantization of deep net-
works”. In: arXiv preprint arXiv:1802.08635 (2018).

[15] Yann LeCun, John Denker, and Sara Solla. “Optimal brain damage”. In: Ad-
vances in neural information processing systems 2 (1989).

[16] Stephen Hanson and Lorien Pratt. “Comparing biases for minimal network
construction with back-propagation”. In: Advances in neural information pro-
cessing systems 1 (1988).

[17] Babak Hassibi and David Stork. “Second order derivatives for network prun-
ing: Optimal brain surgeon”. In: Advances in neural information processing
systems 5 (1992).

[18] Nikko Ström. “Phoneme probability estimation with dynamic sparsely con-
nected artificial neural networks”. In: The Free Speech Journal 5.1-41 (1997),
p. 2.

[19] IBM Cloud Education. What is overfitting? Mar. 2021. url: https://www.
ibm.com/cloud/learn/overfitting.

[20] Tensorflow model optimization toolkit - weight clustering API. url: https:
//blog.tensorflow.org/2020/08/tensorflow- model- optimization-
toolkit-weight-clustering-api.html.

[21] Weight clustering: tensorflow model optimization. url: https://www.tensorflow.
org/model_optimization/guide/clustering.

[22] Tianshi Chen et al. “DianNao: A Small-Footprint High-Throughput Acceler-
ator for Ubiquitous Machine-Learning”. In: Proceedings of the 19th Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems. ASPLOS ’14. Salt Lake City, Utah, USA: Association for
Computing Machinery, 2014, pp. 269–284. isbn: 9781450323055. doi: 10 .
1145 / 2541940 . 2541967. url: https : / / doi . org / 10 . 1145 / 2541940 .
2541967.

[23] Reza Hojabr et al. “SkippyNN: An Embedded Stochastic-Computing Accel-
erator for Convolutional Neural Networks”. In: 2019 56th ACM/IEEE Design
Automation Conference (DAC). 2019, pp. 1–6.

[24] Hyuk-Jin Jeong et al. “PerDNN: Offloading Deep Neural Network Computa-
tions to Pervasive Edge Servers”. In: 2020 IEEE 40th International Confer-
ence on Distributed Computing Systems (ICDCS). 2020, pp. 1055–1066. doi:
10.1109/ICDCS47774.2020.00114.

[25] i.MX 8M Plus Applications Processor Datasheet for Industrial Products. IMX8MPIEC.
Rev. 1. NXP Semiconductors. Aug. 2021.

[26] Yocto project. https://www.yoctoproject.org/. Accessed: 2022-02-07.

42

https://arxiv.org/abs/1510.00149
https://www.ibm.com/cloud/learn/overfitting
https://www.ibm.com/cloud/learn/overfitting
https://blog.tensorflow.org/2020/08/tensorflow-model-optimization-toolkit-weight-clustering-api.html
https://blog.tensorflow.org/2020/08/tensorflow-model-optimization-toolkit-weight-clustering-api.html
https://blog.tensorflow.org/2020/08/tensorflow-model-optimization-toolkit-weight-clustering-api.html
https://www.tensorflow.org/model_optimization/guide/clustering
https://www.tensorflow.org/model_optimization/guide/clustering
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1109/ICDCS47774.2020.00114
https://www.yoctoproject.org/

Bibliography

[27] Martín Abadi et al. TensorFlow, Large-scale machine learning on heteroge-
neous systems. Nov. 2015. doi: 10.5281/zenodo.4724125.

[28] Francois Chollet et al. Keras. 2015. url: https://github.com/fchollet/
keras.

[29] Huan Liang, Wenlong Fu, and Fengji Yi. “A Survey of Recent Advances in
Transfer Learning”. In: 2019 IEEE 19th International Conference on Commu-
nication Technology (ICCT). 2019, pp. 1516–1523. doi: 10.1109/ICCT46805.
2019.8947072.

[30] Chuanqi Tan et al. “A Survey on Deep Transfer Learning”. In: Artificial Neural
Networks and Machine Learning – ICANN 2018. Ed. by Věra Kůrková et al.
Cham: Springer International Publishing, 2018, pp. 270–279. isbn: 978-3-030-
01424-7.

[31] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2015. arXiv: 1409.1556 [cs.CV].

[32] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv:
1512.03385 [cs.CV].

[33] Christian Szegedy et al. “Rethinking the Inception Architecture for Computer
Vision”. In: CoRR abs/1512.00567 (2015). arXiv: 1512.00567. url: http:
//arxiv.org/abs/1512.00567.

[34] Andrew G. Howard et al. “MobileNets: Efficient Convolutional Neural Net-
works for Mobile Vision Applications”. In: CoRR abs/1704.04861 (2017). arXiv:
1704.04861. url: http://arxiv.org/abs/1704.04861.

[35] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In:
2009 IEEE conference on computer vision and pattern recognition. Ieee. 2009,
pp. 248–255.

[36] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features
from tiny images”. In: (2009).

[37] Vinay Uday Prabhu and Abeba Birhane. Large image datasets: A pyrrhic win
for computer vision? 2020. doi: 10.48550/ARXIV.2006.16923. url: https:
//arxiv.org/abs/2006.16923.

[38] Post-training quantization;Tensorflow Lite. url: https://www.tensorflow.
org/lite/performance/post_training_quantization.

[39] Martıén Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. 2015. url: http:
//tensorflow.org/.

[40] Tfmot.sparsity.keras.prune_low_magnitude: tensorflow model optimization. url:
https://www.tensorflow.org/model_optimization/api_docs/python/
tfmot/sparsity/keras/prune_low_magnitude.

[41] Internet speed around the world. url: https://www.speedtest.net/global-
index.

[42] Performance measurement. https://www.tensorflow.org/lite/performance/
measurement. Accessed: 2022-02-07.

[43] Joulescope. url: https://www.joulescope.com/.
[44] Linus Torvalds. Linux perf source code. 2022. url: https://github.com/

torvalds/linux/tree/master/tools/perf.

43

https://doi.org/10.5281/zenodo.4724125
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1109/ICCT46805.2019.8947072
https://doi.org/10.1109/ICCT46805.2019.8947072
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://doi.org/10.48550/ARXIV.2006.16923
https://arxiv.org/abs/2006.16923
https://arxiv.org/abs/2006.16923
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/performance/post_training_quantization
http://tensorflow.org/
http://tensorflow.org/
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/sparsity/keras/prune_low_magnitude
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/sparsity/keras/prune_low_magnitude
https://www.speedtest.net/global-index
https://www.speedtest.net/global-index
https://www.tensorflow.org/lite/performance/measurement
https://www.tensorflow.org/lite/performance/measurement
https://www.joulescope.com/
https://github.com/torvalds/linux/tree/master/tools/perf
https://github.com/torvalds/linux/tree/master/tools/perf

Bibliography

[45] Jamie Hanlon. Why is so much memory needed for deep neural networks? Jan.
2017. url: https://www.graphcore.ai/posts/why-is-so-much-memory-
needed-for-deep-neural-networks.

[46] M Series. “Minimum requirements related to technical performance for IMT-
2020 radio interface (s)”. In: Report (2017), pp. 2410–.

[47] Anutusha Dogra, Rakesh Kumar Jha, and Shubha Jain. “A Survey on Beyond
5G Network With the Advent of 6G: Architecture and Emerging Technolo-
gies”. In: IEEE Access 9 (2021), pp. 67512–67547. doi: 10.1109/ACCESS.
2020.3031234.

[48] Darijo Raca et al. “Beyond Throughput, the next Generation: A 5G Dataset
with Channel and Context Metrics”. In: Proceedings of the 11th ACM Multime-
dia Systems Conference. MMSys ’20. Istanbul, Turkey: Association for Com-
puting Machinery, 2020, pp. 303–308. isbn: 9781450368452. doi: 10.1145/
3339825.3394938. url: https://doi.org/10.1145/3339825.3394938.

[49] Raspberry Pi. Raspberry Pi Zero 2 W. url: https://www.raspberrypi.com/
products/raspberry-pi-zero-2-w/.

[50] Jean Luc Aufranc. A deep dive into Raspberry Pi Zero 2 W’s power consump-
tion - CNX software. Dec. 2021. url: https://www.cnx-software.com/
2021/12/09/raspberry-pi-zero-2-w-power-consumption/.

[51] Keras Team. Keras Documentation: Keras applications. url: https://keras.
io/api/applications/.

44

https://www.graphcore.ai/posts/why-is-so-much-memory-needed-for-deep-neural-networks
https://www.graphcore.ai/posts/why-is-so-much-memory-needed-for-deep-neural-networks
https://doi.org/10.1109/ACCESS.2020.3031234
https://doi.org/10.1109/ACCESS.2020.3031234
https://doi.org/10.1145/3339825.3394938
https://doi.org/10.1145/3339825.3394938
https://doi.org/10.1145/3339825.3394938
https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/
https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/
https://www.cnx-software.com/2021/12/09/raspberry-pi-zero-2-w-power-consumption/
https://www.cnx-software.com/2021/12/09/raspberry-pi-zero-2-w-power-consumption/
https://keras.io/api/applications/
https://keras.io/api/applications/

A
Figures

A.1 Model input size

I

A. Figures

La
ne

nc
y

(s
)

0,0

0,1

0,2

0,3

MobileNet
PWQ

MobileNet
PQ

Resnet 50
PWQ

Resnet 50
PQ

VGG16
PWQ

VGG16 PQ

32x32 75x75 128x128

4 core

Figure A.1: Plotting inference latency obtained from running on four CPU core
on embedded device, with varying input sizes.

La
te

nc
y

(s
)

0,0000

0,0025

0,0050

0,0075

0,0100

0,0125

MobileNet
PWQ

MobileNet
PQ

Resnet 50
PWQ

Resnet 50
PQ

VGG16
PWQ

VGG16 PQ

32x32 75x75 128x128

NPU

Figure A.2: Plotting inference latency obtained from running on the NPU of the
embedded device, with varying input sizes.

II

A. Figures

E
ne

rg
y

co
ns

m
pt

io
n

(j)

0,0

0,5

1,0

1,5

2,0

MobileNet
PWQ

MobileNet
PQ

Resnet 50
PWQ

Resnet 50
PQ

VGG16
PWQ

VGG16 PQ

32x32 75x75 128x128

4 core

Figure A.3: Plotting energy consumption over a single inference, obtained from
running on four CPU cores on the embedded device, with varying input sizes.

E
ne

rg
y

co
ns

m
pt

io
n

(j)

0,00

0,02

0,04

0,06

MobileNet
PWQ

MobileNet
PQ

Resnet 50
PWQ

Resnet 50
PQ

VGG16
PWQ

VGG16 PQ

32x32 75x75 128x128

NPU

Figure A.4: Plotting energy consumption over a single inference, obtained from
running on the NPU of the embedded device, with varying input sizes.

III

A. Figures

A.2 Energy Latency Correlation

IV

A. Figures

Latency (s)

E
ne

rg
y

(j)

0,01

0,1

1

10

0,001 0,01 0,1 1

4 cores

Figure A.5: Correlation between energy and latency for 4 embedded CPU core.
Both axis are logarithmic.

Latency (s)

E
ne

rg
y

(j)

0,05

0,1

0,5

1

0,01 0,05 0,1 0,5 1

NPU

Figure A.6: Correlation between energy and latency for the embedded NPU.
Both axis are logarithmic.

V

A. Figures

Latency (s)

E
ne

rg
y

(j)

0,06

0,07

0,08

0,06 0,07 0,08 0,09

CPU Radio

Figure A.7: Correlation between energy and latency for the embedded NPU.
Both axis are logarithmic.

VI

A. Figures

Latency (s)

E
ne

rg
y

(j)

0,02

0,03

0,04

0,03 0,04

CPU Ethernet

Figure A.8: Correlation between energy and latency for the embedded NPU.
Both axis are logarithmic.

VII

A. Figures

Latency (s)

E
ne

rg
y

 (j
)

0,06

0,07

0,06 0,07

GPU Radio

Figure A.9: Correlation between energy and latency for the embedded NPU.
Both axis are logarithmic.

VIII

A. Figures

Latency (s)

E
ne

rg
y

(j)

0,02

0,03

GPU Ethernet

Figure A.10: Correlation between energy and latency for the embedded NPU.
Both axis are logarithmic.

IX

A. Figures

A.3 Offloading contributions

0,000

0,025

0,050

0,075

0,100

In
ce

pt
io

nv
3

P
W

Q
 7

5

In
ce

pt
io

nv
3

P
Q

 7
5

In
ce

pt
io

nv
3

 7
5

In
ce

pt
io

nv
3

P
W

Q

In
ce

pt
io

nv
3

P
Q

 1
28

In
ce

pt
io

nv
3

 1
28

M
ob

ile
N

et
 P

W
Q

 3
2

M
ob

ile
N

et
 P

Q
 3

2

M
ob

ile
N

et
 3

2

M
ob

ile
N

et
 P

W
Q

 7
5

M
ob

ile
N

et
 P

Q
 7

5

M
ob

ile
N

et
 7

5

M
ob

ile
N

et
 P

W
Q

 1
28

M
ob

ile
N

et
 P

Q
 1

28

M
ob

ile
N

et
 1

28

R
es

ne
t 5

0
P

W
Q

 3
2

R
es

ne
t 5

0
P

Q
 3

2

R
es

ne
t 5

0
 3

2

R
es

ne
t 5

0
P

W
Q

 7
5

R
es

ne
t 5

0
P

Q
 7

5

R
es

ne
t 5

0
 7

5

R
es

ne
t 5

0
P

W
Q

R
es

ne
t 5

0
P

Q
 1

28

R
es

ne
t 5

0
 1

28

V
G

G
16

 P
W

Q
 3

2

V
G

G
16

 P
Q

 3
2

V
G

G
16

 3
2

V
G

G
16

 P
W

Q
 7

5

V
G

G
16

 P
Q

 7
5

V
G

G
16

 7
5

V
G

G
16

 P
W

Q
 1

28

V
G

G
16

 P
Q

 1
28

V
G

G
16

 1
28

Inference CPU Transmission time Radio Latency Radio

Figure A.11: Illustration of latency contributions of network communication and
execution time of model, using radio to offload to CPU

X

A. Figures

0,00

0,01

0,02

0,03

0,04
In

ce
pt

io
nv

3
P

W
Q

 7
5

In
ce

pt
io

nv
3

P
Q

 7
5

In
ce

pt
io

nv
3

 7
5

In
ce

pt
io

nv
3

P
W

Q

In
ce

pt
io

nv
3

P
Q

 1
28

In
ce

pt
io

nv
3

 1
28

M
ob

ile
N

et
 P

W
Q

 3
2

M
ob

ile
N

et
 P

Q
 3

2

M
ob

ile
N

et
 3

2

M
ob

ile
N

et
 P

W
Q

 7
5

M
ob

ile
N

et
 P

Q
 7

5

M
ob

ile
N

et
 7

5

M
ob

ile
N

et
 P

W
Q

 1
28

M
ob

ile
N

et
 P

Q
 1

28

M
ob

ile
N

et
 1

28

R
es

ne
t 5

0
P

W
Q

 3
2

R
es

ne
t 5

0
P

Q
 3

2

R
es

ne
t 5

0
 3

2

R
es

ne
t 5

0
P

W
Q

 7
5

R
es

ne
t 5

0
P

Q
 7

5

R
es

ne
t 5

0
 7

5

R
es

ne
t 5

0
P

W
Q

R
es

ne
t 5

0
P

Q
 1

28

R
es

ne
t 5

0
 1

28

V
G

G
16

 P
W

Q
 3

2

V
G

G
16

 P
Q

 3
2

V
G

G
16

 3
2

V
G

G
16

 P
W

Q
 7

5

V
G

G
16

 P
Q

 7
5

V
G

G
16

 7
5

V
G

G
16

 P
W

Q
 1

28

V
G

G
16

 P
Q

 1
28

V
G

G
16

 1
28

Inference GPU Transmission time Ethernet Lantency Ethernet

Figure A.12: Illustration of latency contributions of network communication and
execution time of model, using Ethernet to offload to GPU

A.4 5G

XI

A. Figures

0,000

0,005

0,010

0,015

0,020

0,025
In

ce
pt

io
nv

3
W

P
Q

 7
5

In
ce

pt
io

nv
3

P
Q

 7
5

In
ce

pt
io

nv
3

 7
5

In
ce

pt
io

nv
3

W
P

Q

In
ce

pt
io

nv
3

P
Q

 1
28

In
ce

pt
io

nv
3

 1
28

R
es

ne
t 5

0
W

P
Q

 3
2

R
es

ne
t 5

0
P

Q
 3

2

R
es

ne
t 5

0
 3

2

R
es

ne
t 5

0
W

P
Q

 7
5

R
es

ne
t 5

0
P

Q
 7

5

R
es

ne
t 5

0
 7

5

R
es

ne
t 5

0
W

P
Q

R
es

ne
t 5

0
P

Q
 1

28

R
es

ne
t 5

0
 1

28

M
ob

ile
N

et
 W

P
Q

 3
2

M
ob

ile
N

et
 P

Q
 3

2

M
ob

ile
N

et
 3

2

M
ob

ile
N

et
 W

P
Q

 7
5

M
ob

ile
N

et
 P

Q
 7

5

M
ob

ile
N

et
 7

5

M
ob

ile
N

et
 W

P
Q

 1
28

M
ob

ile
N

et
 P

Q
 1

28

M
ob

ile
N

et
 1

28

V
G

G
16

 W
P

Q
 3

2

V
G

G
16

 P
Q

 3
2

V
G

G
16

 3
2

V
G

G
16

 W
P

Q
 7

5

V
G

G
16

 P
Q

 7
5

V
G

G
16

 7
5

V
G

G
16

 W
P

Q
 1

28

V
G

G
16

 P
Q

 1
28

V
G

G
16

 1
28

Lantency CPU (s) Transmission time RTT

Figure A.13: Illustration of latency contributions of network communication and
execution time of model, using 5G to offload to CPU

A.5 Compression Technique Isolation

XII

A. Figures

Models

La
ne

nc
y

(s
)

0,001

0,01

0,1

1

In
ce

pt
io

nv
3

P
W

Q
 7

5

In
ce

pt
io

nv
3

P
W

Q
 1

28

M
ob

ile
N

et
 P

W
Q

 3
2

M
ob

ile
N

et
 P

W
Q

 7
5

M
ob

ile
N

et
 P

W
Q

 1
28

R
es

ne
t 5

0
P

W
Q

 3
2

R
es

ne
t 5

0
P

W
Q

 7
5

R
es

ne
t 5

0
P

W
Q

 1
28

V
G

G
16

 P
W

Q
 3

2

V
G

G
16

 P
W

Q
 7

5

V
G

G
16

 P
W

Q
 1

28

Latency em cpu 1-core(s)

Latency em cpu 4-core(s)

Latency em npu (s)

Latency offload CPU Radio (s)

Latency offload CPU Ethernet (s)

Latency offload GPU Radio(s)

Latency offload GPU Ethernet(s)

Figure A.14: Latencies of tested models featuring only the variations compressed
with Pruning, Weight clustering and quantization.

Models

La
ne

nc
y

(s
)

0,001

0,01

0,1

1

In
ce

pt
io

nv
3

P
Q

 7
5

In
ce

pt
io

nv
3

P
Q

 1
28

M
ob

ile
N

et
 P

Q
 3

2

M
ob

ile
N

et
 P

Q
 7

5

M
ob

ile
N

et
 P

Q
 1

28

R
es

ne
t 5

0
P

Q
 3

2

R
es

ne
t 5

0
P

Q
 7

5

R
es

ne
t 5

0
P

Q
 1

28

V
G

G
16

 P
Q

 3
2

V
G

G
16

 P
Q

 7
5

V
G

G
16

 P
Q

 1
28

Latency em cpu 1-core(s)

Latency em cpu 4-core(s)

Latency em npu (s)

Latency offload CPU Radio (s)

Latency offload CPU Ethernet (s)

Latency offload GPU Radio(s)

Latency offload GPU Ethernet(s)

Figure A.15: Latencies of tested models featuring only the variations compressed
with Pruning and quantization.

XIII

A. Figures

Models

La
ne

nc
y

(s
)

0,005

0,01

0,05

0,1

0,5

1

5

In
ce

pt
io

nv
3

 7
5

In
ce

pt
io

nv
3

 1
28

M
ob

ile
N

et
 3

2

M
ob

ile
N

et
 7

5

M
ob

ile
N

et
 1

28

R
es

ne
t 5

0
 3

2

R
es

ne
t 5

0
 7

5

R
es

ne
t 5

0
 1

28

V
G

G
16

 3
2

V
G

G
16

 7
5

V
G

G
16

 1
28

Latency em cpu 1-core(s)

Latency em cpu 4-core(s)

Latency em npu (s)

Latency offload CPU Radio (s)

Latency offload CPU Ethernet (s)

Latency offload GPU Radio(s)

Latency offload GPU Ethernet(s)

Figure A.16: Latencies of tested models featuring only the uncompressed
variations.

A.6 Perf Results

A.6.1 Instructions

XIV

A. Figures

Number of intrustions

La
te

nc
y

(s
)

0,005

0,01

0,05

0,1

10×10^+9 50×10^+9 100×10^+9

Instruction count vs latency 4 core

Figure A.17: Number of instructions plotted against the latency on 4 cores for
receptive model. Both axis are logarithmic

Number of intrustions

La
te

nc
y

(s
)

0,001

0,002

0,003

0,004

0,005

20
×1

0^
+9

40
×1

0^
+9

60
×1

0^
+9

80
×1

0^
+9

10
0×

10
^+

9

Instruction count vs latency Npu

Figure A.18: Number of instructions plotted against the latency on NPU for
receptive model. Both axis are logarithmic

XV

A. Figures

A.6.2 L1d cache loads

Number of L1d cache loads

La
te

nc
y

(s
)

0,005

0,01

0,05

0,1

4×
10

^+
9

6×
10

^+
9

8×
10

^+
9

10
×1

0^
+9

20
×1

0^
+9

40
×1

0^
+9

60
×1

0^
+9

80
×1

0^
+9

L1-dcache-loads vs latency 4 core

Figure A.19: Number of l1d cache loads plotted against the latency on 4 cores
for receptive model. Both axis are logarithmic

XVI

A. Figures

Number of L1d cache loads

La
te

nc
y

(s
)

0,001

0,002

0,003

0,004

0,005

4×
10

^+
9

6×
10

^+
9

8×
10

^+
9

10
×1

0^
+9

20
×1

0^
+9

L1-dcache-loads vs latency Npu

Figure A.20: Number of l1d cache loads plotted against the latency on NPU for
receptive model. Both axis are logarithmic

A.6.3 L1 dcache misses

XVII

A. Figures

Number of L1d cache loads misses

La
te

nc
y

(s
)

0,005

0,01

0,05

0,1

50×10^+6 100×10^+6 500×10^+6 1×10^+9

L1-dcache-loads misses vs latency 4 core

Figure A.21: Number of l1d cache loads misses plotted against the latency on 4
cores for receptive model. Both axis are logarithmic

Number of L1d cache loads misses

La
te

nc
y

(s
)

0,001

0,002

0,003

0,004

0,005

20
×1

0^
+6

40
×1

0^
+6

60
×1

0^
+6

80
×1

0^
+6

10
0×

10
^+

6

L1-dcache-loads misses vs latency Npu

Figure A.22: Number of l1d cache loads misses plotted against the latency on
NPU for receptive model. Both axis are logarithmic

XVIII

A. Figures

A.6.4 Page Faults

Number of pages faults

La
te

nc
y

(s
)

0,01

0,05

0,1

0,5

1

600 800 1000 2000 4000 6000 8000

Page Faults vs latency 1 core

Figure A.23: Number of page faults misses plotted against the latency on 1 core
for receptive model. Both axis are logarithmic

XIX

A. Figures

Number of pages faults

La
te

nc
y

(s
)

0,005

0,01

0,05

0,1

600 800 1000 2000 4000 6000 8000

Page Faults vs latency 4 core

Figure A.24: Number of page faults misses plotted against the latency on 4 cores
for receptive model. Both axis are logarithmic

Number of pages faults

La
te

nc
y

(s
)

0,001

0,002

0,003

0,004

0,005

20000 30000 40000 50000 60000 70000

Page Faults vs latency Npu

Figure A.25: Number of page faults misses plotted against the latency on NPU
for receptive model. Both axis are logarithmic

XX

A. Figures

A.6.5 Instruction vs parameters

Number of intrustions

N
um

be
r o

f p
ar

am
et

er

4000000

6000000

8000000

10000000

20000000

5×10^+9 10×10^+9 50×10^+9 100×10^+9

Instruction count vs number of parameter 1 core

Figure A.26: Number of parameters plotted against the number of instructions
on 1 core for receptive model. Both axis are logarithmic

XXI

A. Figures

Number of intrustions

N
um

be
r o

f p
ar

am
et

er

4000000

6000000

8000000

10000000

20000000

10×10^+9 50×10^+9 100×10^+9

Instruction count vs number of parameter 4 core

Figure A.27: Number of parameters plotted against the number of instructions
on 4 cores for receptive model. Both axis are logarithmic

Number of intrustions

N
um

be
r o

f p
ar

am
et

er

4000000

6000000

8000000

10000000

20000000

20
×1

0^
+9

40
×1

0^
+9

60
×1

0^
+9

80
×1

0^
+9

10
0×

10
^+

9

Instruction count vs number of parameter Npu

Figure A.28: Number of parameters plotted against the number of instructions
on NPU for receptive model. Both axis are logarithmic

XXII

A. Figures

A.6.6 L1-dcache-loads vs parameters

Number of L1-dcache-loads

N
um

be
r o

f p
ar

am
et

er

4000000

6000000

8000000

10000000

20000000

1×10^+9 5×10^+9 10×10^+9 50×10^+9

L1-dcache-loads vs number of parameter 1 core

Figure A.29: Number of parameters plotted against the number of
L1-dcache-loads on 1 core for receptive model. Both axis are logarithmic

XXIII

A. Figures

Number of L1-dcache-loads

N
um

be
r o

f p
ar

am
et

er

4000000

6000000

8000000

10000000

20000000

4×
10

^+
9

6×
10

^+
9

8×
10

^+
9

10
×1

0^
+9

20
×1

0^
+9

40
×1

0^
+9

60
×1

0^
+9

80
×1

0^
+9

L1-dcache-loads vs number of parameter 4 core

Figure A.30: Number of parameters plotted against the number of
L1-dcache-loads on 4 cores for receptive model. Both axis are logarithmic

Number of L1-dcache-loads

N
um

be
r o

f p
ar

am
et

er

4000000

6000000

8000000

10000000

20000000

4×
10

^+
9

6×
10

^+
9

8×
10

^+
9

10
×1

0^
+9

20
×1

0^
+9

L1-dcache-loads vs number of parameter Npu

Figure A.31: Number of parameters plotted against the number of
L1-dcache-loads on NPU for receptive model. Both axis are logarithmic

XXIV

B
Yocto Manifest

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

<remote name="CAF"
fetch="https://source.codeaurora.org/external/imx"/>

<remote name="OSSystems" fetch="https://github.com/OSSystems"/>
<remote name="QT5" fetch="https://github.com/meta-qt5"/>
<remote name="Timesys" fetch="https://github.com/TimesysGit"/>
<remote name="clang" fetch="https://github.com/kraj"/>
<remote name="community" fetch="https://github.com/Freescale"/>
<remote name="imx-support"

fetch="https://source.codeaurora.org/external/imxsupport"/>
<remote name="oe" fetch="https://github.com/openembedded"/>
<remote name="python2" fetch="https://git.openembedded.org"/>
<remote name="rust" fetch="https://github.com/meta-rust"/>
<remote name="yocto" fetch="https://git.yoctoproject.org/git"/>

<default sync-j="2"/>

<project name="fsl-community-bsp-base" path="sources/base"
remote="community" revision="5a551f453260bd19895e4d847877874eaa51fde3">
<linkfile src="README" dest="README"/>
<linkfile src="setup-environment" dest="setup-environment"/>

</project>
<project name="meta-browser" path="sources/meta-browser"

remote="OSSystems" revision="cb3278e31340c7f081e8deb0683df2145da515c9"/>
<project name="meta-clang" path="sources/meta-clang"

remote="clang" revision="d797409435d3b0e9f2859992439989ff1d81e66d"/>
<project name="meta-freescale" path="sources/meta-freescale"

remote="community" revision="80dbe4bd63bd537fc9cfda2e009f8543464b4698"/>
<project name="meta-freescale-3rdparty" path="sources/meta-freescale-3rdparty"

remote="community" revision="7f23af99cb97a12134a46b5b9d497f05b758bf0c"/>
<project name="meta-freescale-distro" path="sources/meta-freescale-distro"

remote="community" revision="916df6d24c0a33a3b1533bde70b6a2724ec77af4"/>
<project name="meta-imx" path="sources/meta-imx" remote="CAF"

revision="refs/tags/rel_imx_5.10.35_2.0.0" upstream="hardknott-5.10.35-2.0.0">
<linkfile src="tools/imx-setup-release.sh" dest="imx-setup-release.sh"/>
<linkfile src="README" dest="README-IMXBSP"/>

XXV

B. Yocto Manifest

</project>
<project name="meta-nxp-demo-experience" path="sources/meta-nxp-demo-experience"

remote="imx-support" revision="46107357abd2d2da9ffd702c87fce3984a422435"
upstream="imx_5.10.y" dest-branch="imx_5.10.y"/>

<project name="meta-openembedded" path="sources/meta-openembedded"
remote="oe" revision="c3a36263f91e42302ad7c347e051cf1cd83e39f6"/>

<project name="meta-python2" path="sources/meta-python2"
remote="python2" revision="810d6d842f103eb59f18b06426106462b15de7e2"/>

<project name="meta-qt5" path="sources/meta-qt5"
remote="QT5" revision="a00af3eae082b772469d9dd21b2371dd4d237684"/>

<project name="meta-timesys" path="sources/meta-timesys"
remote="Timesys" revision="00f81fbdf7fba2a09ff83d14fc3b040e9ae63b42"/>

<project name="poky" path="sources/poky" remote="yocto"
revision="58cbdaecf75b0248f96780b6882e8d4f232d038a"/>

</manifest>

XXVI

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Offloading

	Aim
	Scope

	Theory
	Neural Networks
	Convolutional Neural Networks
	Neural Network Compression

	Neural processing unit
	Offloading
	Network model

	Method
	Hardware
	Environment Setup
	Neural Networks
	Hyperparameters

	Modelling and Evaluation
	Known Limitations

	Results
	Latency
	Energy Consumption
	Energy Delay Product

	Discussion
	Neural Network Compression
	Model Properties
	Thresholds
	Other observations
	Future Works

	Conclusion
	Figures
	Model input size
	Energy Latency Correlation
	Offloading contributions
	5G
	Compression Technique Isolation
	Perf Results
	Instructions
	L1d cache loads
	L1 dcache misses
	Page Faults
	Instruction vs parameters
	L1-dcache-loads vs parameters

	Yocto Manifest

