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Heavy vehicle path control with neural networks
An evaluation of neural networks for control of heavy vehicles
Viktor Insgård
Lucas Jansson
Department of Mechanics and Maritime Sciences
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Adaptive Systems Group
Chalmers University of Technology

Abstract
This thesis explores the possibility of using neural networks for solving the path
control problem, i.e. how to follow a predefined path as closely as possible. Two main
approaches are used to achieve this, namely supervised learning and reinforcement
learning. The supervised learning approach is based on existing path trackers which
are used to generate data for the training procedure. The reinforcement learning uses
a genetic algorithm and simulations to evaluate possible solutions. The supervised
learning controllers are constructed as feed forward neural networks only, while the
reinforcement learning controllers uses a recurrent neural network.

The results shows that neural networks can be trained to solve the path track-
ing problem, both with supervised and reinforcement learning methods. Both the
feed forward networks and the recurrent networks outperform the geometric path
trackers. Further, a recurrent network was shown to perform better than a feed
forward network, which indicates that the dynamical properties of such networks
can be useful in path tracking applications.

Keywords: path control, neural networks, genetic algorithms, autonomous vehicle,
heavy vehicle.
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1
Introduction

The research into autonomous vehicles has gained much interest in recent years,
as is evident by the attention the field has gained from some of the major car
manufacturers (Audi [1], Toyota [2], Volvo [3], to name a few). The assumption
is that the technology will prevent injuries caused by human errors [4], minimize
greenhouse gas emissions [5], reduce the total number of needed vehicles [6], and
more. For businesses, autonomous vehicles may cut expenditures by removing the
need for a driver. It may also open up new possibilities in areas where a human
driver may be impractical, due to safety or size concerns.

An important part of an autonomous vehicle is its ability to follow a defined path.
To control the vehicle upon this path is known as the path tracking problem. The
requirements on the path tracking algorithm of an autonomous vehicle are strict. It
is important that the path controller follows the given path closely to stay on track
and to avoid potential dangers in the surrounding environment, such as oncoming
vehicles or other obstacles.

A number of existing solutions to path tracking problems for autonomous vehicles
have been tested by Snider, Jarrod and others [7]. However, these solutions have
shown unsatisfactory results in either instability for different velocities or inability to
closely follow the predefined trajectory. Additionally, these solutions assumes static
system dynamics. When heavy trucks or similar vehicles are considered, system
parameters can change quite frequently and be rather large due to e.g. the vehicle
being loaded or unloaded.

A field of study that has gained a lot of attention in recent years is that of machine
learning and the use of artificial neural networks. Neural networks have seen a wide
range of applications, including aiding clinical studies [8] and emission prediction [9],
amongst others. The dynamics of front wheel steered vehicles are highly non-linear
which suggest that non-linear control methods could be favourable. The versatility
of neural networks might therefore be of use in this control application.

By refraining from the use of traditional controllers for the path follower and
instead use machine learning and neural networks a more robust and exact controller
may be achieved. Since a neural network can better adapt to the behaviour of the
truck in question, this would likely result in improved performance when compared
to the traditional control methods.
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1. Introduction

1.1 Purpose
Current path tracking solutions show unsatisfactory results. Investigating new meth-
ods aims at finding a new kind of path tracking controller with increased performance
with regards to tracking error and robustness. Thus, the purpose of the thesis is to
evaluate what benefits using neural networks instead of conventional methods will
lead to when solving the path tracking problem.

1.2 Objective
This thesis investigates the possibility to replace existing path tracking methods with
neural networks. Comparisons between the performance of the existing methods and
the developed algorithms are carried out to quantify the advantages.

1.3 Scope
The structure of the neural networks, learning methods and/or system interfaces
and control structure are not predetermined. As such, it is within the scope of this
thesis to evaluate how these factors affect the performance of the system and to
propose a good, working solution.

1.4 Limitations
High level path planning will not be a part of this project, i.e. it is assumed that a
desired path is given as input to the developed control algorithm.

Further, it is assumed that some system states are available for feedback, such
as absolute or relative position, velocity and heading. Some disturbances may be
added to the state readings to test the robustness of developed algorithms, but state
estimation and sensor signals processing is not within the scope of the thesis.

The focus of the thesis is not within vehicle modelling, but in path tracking
control. Therefore the models used are kept as simple as possible. This means that
more advanced concepts such as tire and suspension dynamics are neglected. The
developed solutions may however be tested on more advanced models for verification
purposes.

2



2
Theory

In this chapter the background theory concerning relevant topics is briefly described.
The topics described are machine learning, path tracking and control allocation.

2.1 Machine learning
Machine learning refers to a part of computer science studying algorithms for gen-
erating programs automatically, rather than writing them by hand. In the broadest
sense, machine learning problems may be divided into three different categories:
supervised learning, unsupervised learning and reinforcement learning (see Sections
2.1.2, 2.1.3 and 2.1.4).

2.1.1 Artificial neural networks
Artificial neural networks (ANN) are computing systems inspired by the biological
neural networks that constitutes the nervous systems of e.g. mammals and insects.
They where first proposed by McCulloch and Pitts in 1943 [10].

One of the strengths of ANNs is their ability to approximate any mathematical
function. This is known as the universal approximation theorem. More specifically it
states that a neural network with a single hidden layer can approximate any math-
ematical function on a subset of Rn, under some conditions [11] (explanations for
these concepts are described further down in this chapter). The challenge is how to
adjust the parameters of the ANN to achieve the desired behaviour, i.e. find the
correct function approximation. The problem formulation of the parameter tun-
ing determines whether it classifies as a supervised, unsupervised or reinforcement
machine learning problem.

The biological inspiration ANNs stems from has also influenced the terminology
surrounding them. The parameter tuning of ANNs is commonly referred to as learn-
ing or training. From a mathematical standpoints, the term parameter optimization
might be more fitting.

The artificial neuron

A biological neuron can take any number of inputs and generate a single output [12].
It can be seen as a binary device. Whenever its inputs match a specific requirement
it will send an impulse (which can be seen as the value true). This impulse may in
turn trigger other neurons, which may in turn trigger even more neurons. A single

3



2. Theory

Figure 2.1: The structure of an artificial neuron.

neuron can only solve a very simple task, but if many neurons are connected one
can achieve very complex behaviours.

Artificial neurons have the same activation mechanism as their biological coun-
terpart. A neuron generates its output from any number of inputs. A neuron may
produce binary outputs, but it is more common to configure it to produce continu-
ous outputs. Figure 2.1 illustrates an artificial neuron. Mathematically the output
y of a neuron can be calculated by

y = f

(
b+

m∑
i=1

wixi

)
(2.1)

where b is the bias, wi the i:th weight, xi the i:th input, m the number of inputs
to the neuron and f a static function called the activation function. The input xi

might be the output of another neuron, or one of the inputs to the ANN itself.

Activation functions

Although it is possible to use any function as an activation function, there are some
that are more common. A selection of relevant activation functions are described in
this subsection.

Using the biological neuron as inspiration, one might be tempted to use a binary
activation function, i.e.

f(s) =

0, s ≤ 0
1, s > 0

. (2.2)

Using this activation function has a downside, as it will make it difficult to adjust
the parameters of the network. Making a small adjustment may cause a new neuron
to fire. This may in turn make a larger number of neurons fire later in the network.
A small adjustment may therefore cause a significant change in behaviour. It is also
possible that a change in the network will have no affect at all on the output. This
property of binary neurons makes it difficult to know how to change a network to
improve its performance, i.e. train the ANN. These issues can be solved by using
continuous activation functions. A common one is the sigmoid function, defined as

f(s) = 1
1 + e−s

. (2.3)

4



2. Theory

The sigmoid function is similar to the binary activation function for inputs much
greater, or less, than 0. For such values the output will be close to 0 or 1. The
useful property of the sigmoid function is that it makes small changes in the network
detectable in the output, which simplifies the training process. The reason this is
the case will be further explained in Section 2.1.2.

Another activation function, that is similar to the sigmoid function, is the hyper-
bolic tangens function, defined as

f(s) = 2
1 + e−2s

− 1. (2.4)

A graphical comparison between the described activation functions is shown in Fig-
ure 2.2.

-2 0 2

-1

0

1

(a) Binary function.
-2 0 2

-1

0

1

(b) Sigmoid function.
-2 0 2

-1

0

1

(c) Hyperbolic tangens
function.

Figure 2.2: Graphical representations of a few selected activation functions.

Neural network topologies

The topology of an ANN refers to the structure of the connections between the
neurons in a network. Two common topologies are feed forward neural networks
(FFNN) and recurrent neural networks (RNN). An ANN where every neuron has a
connection to every other neuron is known as a fully connected ANN.

The neurons of an ANN is typically arranged into layers. The input layer is
where outside information enters the network. The output-layer is the final layer
that generates the outputs from the network. Between the input and output layers
there are a number of hidden layers. A fully connected layer is a layer where all
inputs are fed into every neuron in that layer. Figure 2.3 shows the structure of a
few different neural networks.

(a) A FFNN with fully connected layers. (b) A non-fully connected RNN.

Figure 2.3: Illustration of two different topologies for neural networks.
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2. Theory

In an FFNN all of the neurons are oriented in the same direction. Information
flows from the input to the output neurons. This makes an FFNN a static function.
It’s output will not depend on past inputs.

RNNs allows loops in the network. The loops will give the network a memory
function. The input-output relationship will therefore not be static, but rather
depend on the current input as well as past inputs. This property can make RNNs
useful for applications such as speech recognition, where previous sounds matter as
well as the current sound [13]. The dynamical nature of RNNs may also be of use in
control and modelling of dynamical systems, as has been demonstrated by Narendra
et al. [14].

2.1.2 Supervised learning

Supervised learning uses data in the form of input-output pairs to tune ANNs.
Given the available data, the learning algorithm will optimize the parameters of
the network so the specific inputs are mapped to the correct outputs. The most
commonly used training algorithm for supervised learning is backpropagation, which
uses gradient descent to find the solution.

Gradient descent is an optimization method based on following the gradient of the
function to optimize. As an example, consider a simple one dimensional function,
such as y(x) = x2, with the gradient dy

dx
= 2x. Gradient descent requires a specified

initial guess of the optimum. In this case, the initial guess might be that the
optimal value is x = 1. This guess gives y(1) = 1 and dy

dx
|x=1 = 2. By looking at the

gradient, it is known that y(x) is increasing in the positive x direction, implying that
the optimal minimum point lies in the negative x direction. The gradient descent
algorithm works as described in Algorithm 2.1.

Make an initial guess
while Convergence is not reached do

Calculate the gradient
Take a step indicated by the gradient

end
Algorithm 2.1: The gradient descent algorithm.

The usage of the gradient descent algorithm is one of the reasons using continuous
activation functions is preferred over the binary activation function since the gradient
is discontinuous. The gradient of the binary activation function is zero for all values,
except for x = 0 where it is infinite, hence it is impossible to know how to change
the parameters of the neuron to improve the performance of the ANN if a gradient
based optimization method is used.

The gradient descent then uses backpropagation to relate the weights and biases
of a multilayered ANN to its output error. More specifically, it calculates the gra-
dient of the error as a function of the ANNs weights and biases. Once the gradient
of the error is known, the gradient descent algorithm can be used to tune the pa-
rameters of any FFNN. Backpropagation was first used to tune ANNs in 1986 by
Rumelhart et al. [15].

6



2. Theory

Apart from the standard gradient descent algorithm, there exists a number of
similar gradient based algorithms. An example of such an algorithm is stochastic
gradient descent, which randomly selects only a few weights to optimize each step
in the algorithm.

2.1.3 Unsupervised learning

Unsupervised learning does not use input-output pairs, rather it will try to find un-
derlying structures in the provided data. Because if there is no correct observations
provided to the learning algorithm, there is no measure of its accuracy, which makes
it fundamentally different from supervised and reinforcement learning methods.

2.1.4 Reinforcement learning

Reinforcement learning is used when there is no feasible way to form correct input-
output pairs or when it is impractical to generate good training data. As an example,
consider a chess robot. It can be difficult to determine whether an individual move
in the game is good or bad. Therefore, constructing correct input-output pairs
might not be reasonable, which in turn means that it will be hard to use supervised
learning algorithms. Instead one might let a group of slightly different chess robots
compete against each other. The robots with the best strategies can then be used
as a base to form a new group of robots, ready for the next round of games. Re-
peating this process will reinforce positive traits in the ANNs controlling the chess
robots and improve their performance over time. Section 2.1.5 provides a more in
depth explanation of how reinforcement learning may be implemented using genetic
algorithms (GA).

2.1.5 Genetic algorithms

GAs are a group of evolutionary algorithms, which are stochastic optimization meth-
ods inspired by natural selection. This is summarized by Wahde in [12]. In nature an
individual is described by either one or a set of chromosomes. These chromosomes
are what results in the physical properties of the individual. Much like natural se-
lection a GA seeks to transfer information from a successful individual in order to
retain the properties that makes said individual successful. Practically this is done
by storing the chromosome as a string of numbers, which can be of any type, de-
pending on the task at hand. The chromosomes are then given a comparative score,
known as fitness, calculated from a fitness function. The fitness function is formu-
lated in such a way that it favours wanted behaviour whilst penalizing unwanted
behaviour. A simple example would be to minimize a mathematical function, where
the chromosome represents the variables of the function. Algorithm 2.2 gives a quick
overview of how a GA works.

7



2. Theory

while End is not reached do
for All individuals in population do

Score and record the fitness of each chromosome in the population
end
for Size of next generation do

Select individuals according to chosen selection method
Generate children, cross over with a probability of pc, otherwise keep the
parent chromosomes as before
Mutate the chromosomes with a probability of pmut

end
end

Algorithm 2.2: A general overview of a genetic algorithm.

Selection methods

There exists several different ways to select the chromosomes that get to carry on
their information to the next generation. The simplest way to carry out this selection
is to randomly select two chromosomes from the population, where each chromosome
has the same probability to be selected. A potential drawback of this method is that
due to the randomness of the selection there exists a probability that a chromosome
with a higher fitness score is discarded in favour of a low scoring chromosome, re-
sulting in a slower convergence. Other methods utilizes the fitness as a likelihood in
order to aid in decreasing the time of convergence for the optimization. A common
method to take the chromosomes fitness into consideration is roulette-wheel selec-
tion. Roulette-wheel selection chooses the two potential individuals by giving each
individual a probability to be selected such as pselect = fitness of individual

total fitness of population . How-
ever a selection method which always favours the fittest individual has an increased
probability to get stuck at a local optimum.

Crossover

If the chromosomes are represented by two arrays of numbers, the crossover function
swaps parts of the chromosomes between two selected chromosomes. This can be
implemented in a few different ways but the simplest method is the single-point
crossover function where a point in the array is selected and the data after that point
is swapped between the two chromosomes. Another way to implement this function
is to select and swap several points in the data array representing the chromosome.
This is known as uniform crossover. However, for smaller populations, crossover
may result in a particular chromosome spreading too fast and thus the population
may converge to a local optimum and therefore never find the global optimum. To
circumvent this unwanted behaviour crossover is typically restricted to only occur
with a probability of pc, allowing other solutions to be explored.

Mutation

Just like in nature, the GA’s introduce a possibility of mutating a chromosome.
Mutation occurs in order to assure that the population explores the solution space

8



2. Theory

sufficiently. Mutation is implemented such that for every generation each data entry
of a chromosome has a chance to mutate, pmut. For binary encoded chromosomes
a mutation would be a change from 0 to 1 or vice versa. If the chromosome data
is represented by real numbers a mutation is commonly represented by adding a
Gaussian distribution with a mean value of 0 to the gene value.

Evaluation

Just like any other optimization algorithm, the GA needs some definition of what to
minimize or maximize. In a GA this is defined by the fitness function. The fitness
function determines the difference between a good and bad solution and therefore
it should be defined with care.

Since the GA will optimize the given parameters (the genome) according to the
fitness function it is important that it reflects the desired behavior. In a simple case,
such as finding the minimum of a mathematical function, the fitness function will
simply be the function itself. A genome resulting in a higher output value from the
mathematical function will not be as fit as one that results a low value. In this way
it is easy to evaluate and compare different solution candidates. In a more complex
case, such as finding the optimal parameter combination for a PID-controller, it is
less obvious how to define the fitness function. In this case it would probably be
necessary to run a simulation where the PID-controller controls some system and
then evaluate how well the system output signal followed a desired output signal.

2.2 Path control

Path control is a specific application of automatic control regarding controlling
agents so that they follow a desired path. The goal is to make the agent follow
a specific path, while the distance to the path is minimized. For autonomous vehi-
cles a path controller and a control allocator forms a complete control chain, i.e. a
mapping from states x to actuator commands u. Control allocation is described in
Section 2.3.

To give an overview of how path tracking control can be carried out, this section
will describe two geometric path tracking methods, namely the pure pursuit and the
Stanley method.

2.2.1 Pure pursuit

Examples of pure pursuit and its usefulness can be seen in the papers written by
Snider et al. [7] and Amidi et al. [16], among others. The idea behind this control
method is quite simple. A "look ahead" distance ld is used to find a goal point further
down the path. The lateral distance e between this point and the heading vector is
then used to calculate a steering angle. Amidi et al. used a fixed look ahead distance
ld, which makes the pure pursuit a pure proportional controller, while Snider et al.
proposed that ld should be assigned as a function of the vehicle’s velocity. The
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mathematical expression for the steering angle is defined by

φ(t) = 2
l2d
e(t) (2.5)

where φ(t) is the steering angle. Figure 2.4 shows a geometric interpretation of the
pure pursuit controller. For a mathematical derivation of this control method, the
reader is directed to the paper by Amidi et al. [16].

ld

v

e 
r 

Figure 2.4: Geometrical relationships used in the pure pursuit path tracking method.
In this figure, r is the arc the rear wheels will follow with the current steering angle.

2.2.2 The Stanley method
The Stanley method is a path tracking method that was first used by the vehicle
"Stanley" in the DARPA grand challenge in 2005 [17], a desert race for fully au-
tonomous vehicles. The control method uses a simple heading error ψe formulated
as

ψe(t) = ψ(t)− ψp(t) (2.6)

where ψ is the yaw angle of the vehicle and ψp is the angle of the path. Hence, the
steering error is simply the difference of the heading of the path and the heading of
the vehicle. Additionally a distance error ed between the front wheels and the path
is used to formulate the final control law as

φ(t) = ψe(t) + arctan
(
ked(t)
vx(t)

)
(2.7)

where k is an adjustable gain and vx(t) is the longitudinal velocity. Figure 2.5 shows
the geometric relationships used in equation (2.7). It can be shown that using this
control method provides exponential convergence of the cross track error [17].

2.3 Control allocation
Control allocation is an issue that arises for an over-actuated system, where there
is an actuator redundancy compared to the degrees of freedom of the system. The
issue is that, due to the actuator redundancy, there may be several combinations of
actuator outputs that acquire the desired total output of the system. The allocator
divides the control signal to each of the actuators of the system as seen in figure 2.6.
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v

ϕ

�e
ed

Figure 2.5: Geometrical relationships used in the Stanley path tracking method.

Figure 2.6: A block diagram structure of a control system with a control allocator.

The complexity of the allocation varies depending on the method of choosing an
actuator combination. A simple way of solving the issue is to select a solution which
fulfills the desired control signal v ∈ Rm×1 without considering the effectiveness of
the solution used compared to other potential solutions. However, this may lead
to inefficient use of the actuators, where e.g. actuators may work against each
other in achieving the goal. To solve this potential problem, one might instead
form an optimization problem to deduce the control signals for the given target
and constraints that gives a unique solution. One issue with the more advanced
optimizing allocation solvers is the required computational power.

The correlation between the total output and the existing actuators u ∈ Rn×1, is
given by the effectiveness matrix B ∈ Rm×n. Therefore the goal is further formulated
as

Bu = v. (2.8)

It is common that the control allocator should also acknowledge the limitations in
the actuators. This is done by subjecting equation (2.8) to the actuator constraints

u ≤ u ≤ ū. (2.9)

where u is a vector of the minimum values that the actuators can supply and ū is
a vector of the maximum values that the actuators can supply.
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3
Approach

This chapter gives an overview of the tools, methods and work flow used during this
thesis.

The work was split up into two main increments or iterations, with the goal of
achieving a controller using different approaches. The goal with the first increment
was to create a path controller with supervised learning methods. The developed
solution would serve as a base when delving deeper into the project. The purpose
of the second iteration was to improve the solution from the first increment by
using other learning methods as well as different neural network structures, whose
performance would not depend on the provided data, i.e. reinforcement learning
methods.

A figure depicting the structure of the system is shown in Figure 3.1. This general
structure was used throughout the project and most of the interfaces between the
blocks was kept the same. The desired forces used were the longitudinal force Fx, the
lateral force Fy, and the torque around the z-axis Mz. The path data was defined
as a list of coordinates. The available actuator commands was also kept the same,
namely throttle and steering. A more advanced vehicle model with more actuators
could have been used, but since the focus was on the path tracking rather than the
vehicle modelling, this simpler approach was used. The interface between the path
pre-processor and ANN, as well as used system states, was changed as new solutions
were developed.

Path pre-processing

ANN Control
Allocator Vehicle 

Path Data

Vehicle States Desired Forces

Vehicle Controller 

Actuator Signals

Figure 3.1: The structure of the control system displayed as a block diagram.
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3.1 Development environment

Much of the work was carried out within the "robot operating system"-framework
(ROS). ROS is not an actual operating system (OS), rather it is a collection of
software and libraries for robotics software development. In ROS’s own internal
wiki page the term "meta-operating system" is used. The implication of this is
that even though ROS runs on Linux systems (Ubuntu and Debian, experimental
support for other OSs are available), it provides many features typically provided by
an OS, such as low level hardware abstraction, message passing between processes
and package management. Additionally, ROS provides visualization tools such as
the graph plotting application qrt and the 3D-visualization tool rviz [18].

ROS uses a server-client model, where the central application (ROS-core) acts as
a server. Development within ROS is carried out by constructing so called nodes,
which acts as clients. A node is its own separate program and executes code asyn-
chronously from the ROS-core and other ROS nodes. Nodes may communicate with
each other by publishing and subscribing to topics and by providing services, which
can be called on request. Distributing nodes on different computers in the same
network is supported, which allows a cluster of computers running ROS to act as
one. This is a useful feature in applications where several different electronic control
units are used, such as in a modern vehicle.

3.1.1 Simulation environment

Two different simulation environments were used to test and evaluate the results;
one simplistic simulator implemented as a C++ class (see Section 3.3) used in the
evaluation step of the genetic algorithm as well as a more advanced simulator know
as Gazebo, which can be integrated with ROS. The reason for using two simulation
environments were to have one fast, in terms of execution time, and one which could
be used as a verification tool.

Gazebo is a multibody physics simulator. Collisions between objects, friction
between surfaces, e.t.c. are all handled by the simulation environment. Models are
built by assembling two distinct types of elements. Links, which are physical objects
such as wheels and chassis, and joints, which connects links. Links are defined by
their shape, mass and inertia. Joints are defined by their parent link, child links and
type of allowed movement, which can be anything from rotation around a vector to
movement in a plane. Between each link there must be a joint and between each
joint there must be a link. It is not possible to directly connect two links or joints.
Hence, the movement of the links is restricted by their corresponding parent joint.

Gazebo’s interface to ROS implements services and published topics which can be
called or subscribed to. These topics and services allows nodes to read model states.
The models can also be controlled by publishing to specific topics that Gazebo is
subscribed to. This allows forces and torques to be applied to joints or states of
joints and models to be set.

The simplistic C++ simulator is described in Section 3.3.
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3.1.2 ANN-frameworks
The deep-learning library Caffe [19] was used to train and implement the ANNs de-
veloped with supervised learning methods. Contrary to many popular deep learning
frameworks, which only supports Python, Caffe also supports development in C++
and Matlab (for Matlab versions up to 2015a) as well. The optimization algo-
rithm used for the supervised learning was stochastic gradient descent (see Section
2.1.2).

Caffe, however, did not provide sufficient support for the networks with recurrent
structures, the RNNs. Thus another support library had to be used to implement
networks with this structure. The library that was used instead was nnetcpp [20],
which as the name suggests is a C++ library. This library was chosen due to its
minimalist implementation and the simplicity of using it to design an ANN. Another
desired property with this library is that the weights and biasases of the network
could easily be accessed and changed, which is required to use the network with the
GA, as described in Section 5.1.

3.1.3 GA-framework
In order to improve on the solution obtained with supervised learning, optimization
of the ANNs were also done with a GA. In contrast with optimization methods
like the ones used for supervised learning, a GA does not need to be told what to
optimize for, it only needs a way to evaluate solution candidates (see Section 2.1.5).
For this reason, it was used to implement reinforcement learning.

The learning procedure was realized with the assistance of the C++ library GAlib,
which was developed by Mathew Wall at Massachusetts Institute of Technology [21].
This library utilizes a user specified fitness function in order to evaluate the perfor-
mances of each network. Since some built in functions were considered unsatisfactory
in the sense that they limited the search space, new versions were developed and
added. These new functions included a method that handles mutations, as well as
the scoring function. The used fitness function is described in Section 3.3.

3.2 Path pre-processing
There are a variety of methods that can be used to represent a path. Some examples
included as checkpoints, as line segments, or as different types of splines. This can
be an issue when designing a path controller, since these different representations
requires different interpreters to generate error signals for the controller to act upon.
A solution to this is to split the path interpretation and the control signal generation.
This allows seamless changes between different interpreters and controllers, as long
as they share a common interface. Throughout this report, the path interpretation
block is referred to as the path pre-processor (PPP).

The role of the PPP is to interpret the path data, which can vary in size, along
with the state vector of the vehicle into a control error on a standardized form. This
control error is then sent as input to the ANN controller which uses a fixed size
input vector.
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The implemented PPP uses a set of two dimensional points in the global reference
frame as a path. When calculating an output error, it will use linear interpolation
to interpret the path as a set of line segments.

The PPP acts in the global reference frame, i.e. it uses the global pose of the
vehicle along with the path defined by global coordinates to generate an output.
The output of the PPP is, however, given in the vehicles local coordinate frame for
the ANN controller to act upon. If the PPP output was not in the local frame, the
size of the ANN would have to be increased to incorporate the transform between
reference frames, and the number of inputs would also have to be greater. This
would decrease the converge rate of the training procedure, while providing limited
benefits.

3.3 Evaluation of results
To be able to measure and compare the performance of different methods, an eval-
uation equation was used. This evaluation was based on three different groups of
metrics: input signals, velocity and distance to the path. To further penalize meth-
ods that let the vehicle operate far away from the intended path, desired input
signals or desired velocity, each metric was squared. Further, it was also deemed
a good quality if as much as possible of the vehicle was on the path at all times,
therefore three different distance metrics where used. The measured distances where
from the center of the vehicle to the path, from the center of the front axle to the
path and lastly, from the center of the rear axle to the path. Mathematically, it was
defined as

Γc =
∫ tf

t0
yT (t)Wy(t) dt,

y(t) = [ve Fx Mz df dc dr]T
(3.1)

for continuous time. For the implementation a discrete version of the evaluation
function was defined as

Γd = ∆t
N∑

n=0
yT [n]Wy[n],

y[n] = [ve Fx Mz df dc dr]T ,
(3.2)

where ve is the difference between the reference and actual velocity, Fx is the desired
forward force, Mz is the desired torque around the z-axis and df , dc and dr are the
front, center and rear distances respectively as seen in Figure 3.2. W is a weighting
matrix. Fx and Mz are the global forces used as input to the control allocator, as
described in Figure 3.1. The parameter values of the weightings used are defined in
Table 3.1.

Three test tracks where defined with three different aspects to test in mind. Track
A demonstrates a lane change maneuver, which could be viewed as the step response
equivalence for path tracking controllers. Track B is meant to give an idea of the
steady state behaviour of a controller. Some path tracking methods have a tendency
of cutting corners in curves and this type of track with long curves illustrates this
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Figure 3.2: Illustration of the three distances used in the evaluation, namely the
front, center and rear distances from the vehicle to the path, which are represented
by df , dc and dr respectively.

Table 3.1: Parameters used in the evaluation function.

Parameter Value
∆t 1/30
N path dependent
wv 1.0
wFx 10−11

wMz 10−1

wdf
1.0

wdc 1.5
wdr 1.0

behaviour well. Track C is meant to represent a more realistic path, with more
varied path characteristics. The test tracks are shown in Figure 3.3.

The controller evaluation tests where carried out in two simulation environments,
namely in the Gazebo simulation environment as well as a custom C++ simulator.
The purpose of using two different simulations was to have one environment which
could act as a verification tool, and one which would be fast to execute. The
implementation of the C++ simulation was based on a simple bicycle model. Bicycle
models can be found in many sources, but this one in particular was taken from
a paper by Kong et al. [22] and then slightly modified. The system of differential
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Figure 3.3: Plots of the three tracks used in the evaluation of different controllers.

equations is described by

ẋ = v cos(ψ + β) (3.3a)
ẏ = v sin(ψ + β) (3.3b)

ψ̇ = v

lr
sin(β) (3.3c)

v̇ = τ

m
− µv (3.3d)

β = arctan
(

lr
lf + lr

+ tan(φ)
)

(3.3e)

were x and y are the 2D coordinates of the vehicle, ψ is its heading, v its velocity
and β its slip angle. lr is the length from the center of gravity to the rear axle of
the vehicle and lf is the length from the center of gravity to the front axle. τ is the
longitudinal force, m is the mass, µ is a friction coefficient and φ is the angle of the
front wheel [22].

The set of differential equations where discretized using a first order Euler ap-
proximation, resulting in

x[n+ 1] = x[n] + ∆t · v[n] cos(ψ[n] + β[n]) (3.4a)
y[n+ 1] = y[n] + ∆t · v[n] sin(ψ[n] + β[n]) (3.4b)

ψ[n+ 1] = ψ[n] + ∆t · v[n]
lr

sin(β[n]) (3.4c)

v[n+ 1] = v[n] + ∆t ·
(
τ [n]
m
− µv[n]

)
(3.4d)

β[n] = arctan
(

lr
lf + lr

+ tan(φ[n])
)
. (3.4e)

In addition to the bicycle model itself, an inertia was added to the steering input,
to improve the realism to the model. The time discrete expression for the steering
angle was therefore defined as

φ[n] = 0.25φ[n− 1] + 0.75φd[n] (3.5)

where φd[n] is the desired input steering angle.
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Supervised learning path

controller

Initially, an ANN controller was developed with supervised learning methods. The
purpose of this was to show that a neural network could be generated to solve the
path tracking problem. Additionally, the trained ANN would provide insights into
suitable network structures when using an alternative training method, as is done
in Chapter 5.

4.1 Data acquisition

Initially a controller would be developed using supervised learning. Supervised learn-
ing requires substantial amounts of data that represents the scenarios that the ANN
should be able to manage. A way to gather this data would be to record the actions
of a human driver for a large set of routes. However it was deemed to be unfeasible
to achieve a sufficient data set within the thesis time line. The data was instead
recorded from simulations in the Gazebo environment using a setup with two differ-
ent geometric path controllers. These provided the desired longitudinal and lateral
forces in the local frame, Fx and Fy, as well as the torque around the local z-axis,
Mz. A control allocator responsible for calculating the actuator commands was also
added to the control chain.

4.1.1 Pure pursuit controller

One of the controllers used to generate the training data was a variant of the pure
pursuit controller, with a fixed look ahead distance and the angle to the path inter-
section rather that the lateral distance.

The geometric path trackers described in Section 2.2 only considers the steering
of the vehicle, i.e. how to control the angle of the front wheels. Decoupling the
steering from the velocity control may be desired to decrease the complexity of the
complete control scheme of the vehicle. It does, however, neglect the interaction
between the two. In a sharp curve a lower speed than desired may be required to
stay on course. To add the consideration of velocity to the controller, a proportional
regulator was included to control it. The velocity and steering are still decoupled in
this case, but once neural networks are considered, this is not necessarily the case.

With the addition of the velocity control, the mathematical expression for the
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control law was defined according to

Fx = PFx (vref − vx)
Mz = PMzθ

(4.1)

where PFx is the velocity controller gain, vref is the reference velocity, vx is the for-
ward velocity of the vehicle in its local reference frame, PMz is the steering controller
gain and θ is the angle to the path 10 m ahead, seen from the center of the vehicle.
The gains where determined experimentally and set to PFx = 5000 and PMz = 1.

4.1.2 Stanley method controller
In addition to the pure pursuit controller, data was also recorded with a controller
based on the Stanley method. This controller was also paired with a proportional
controller for the velocity, since it also only controls the steering angle of the front
wheel (the motivation for this is presented in Section 4.1.1). The mathematical
expression for the complete controller could therefore be defined as

Fx = PFx (vref − vx)

Mz = ψe + arctan
(
ked

vx

) (4.2)

where the gain parameter k was set to 1.0.

4.1.3 Collecting the data
Simulations in Gazebo using the two controllers were run for four different tracks,
shown in Figure 4.1. A simulation was run twice for each track, one in each direction.
To enable for the ANN to learn all the different modes of the controller, the reference
speed was changed randomly every fourth second and set back to zero every thirtieth
second. The changes in reference speed was drawn from a uniform distribution in
the range 0 to 10 m/s. The simulations where run until the vehicle had reached
the end of each track. In total, roughly 90 000 training samples were recorded from
each controller, which was deemed a sufficient data set.

4.2 ANN controller
The type of network that was used to imitate the controller was a FFNN, as shown
in Figure 2.3a. As such, the ANN only uses current information to calculate an
output, which can be a drawback in control applications. However, for this particular
scenario the goal was to imitate the behaviors of a static controller, which also lacks
any dynamic behaviour. Due to the similarities in the attributes of the FFNN and
the controller it was considered to be possible for the ANN to perform similarly to
the controller.

Two tests where carried out to test this hypothesis, one for each controller type.
For the pure pursuit data an ANN with one hidden layer containing six neurons
was constructed. This small network was found to be able to imitate the controller
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Figure 4.1: The paths used to generate training data for the supervised learning
methods.

sufficiently close. The small size of the network being sufficient is likely due to the
simple nature of the pure pursuit control law, Equation (2.5). For the data generated
with the controller based on the Stanley method, an ANN with two hidden layers
containing 9 neurons each was generated. The requirement of a larger network is
likely due the more complex control law used to generate the data. The sizes of the
ANNs where chosen so that the validation step in the training process yielded a root
mean square error of about 0.01. The network structure used for these ANNs are
summarized in Table 4.1.

For the training process, the ordering of the acquired data was randomized and
split into two different data sets. Two thirds of the data set were used for the pa-
rameter optimization of the ANN. The remaining third was used for the validation
step of the training procedure. The validation step was used to confirm the per-
formance of the ANN on a different data set, i.e. that the mapping from inputs to
outputs was done correctly. Note that a network that passes this validation step not
necessarily performs well when controlling a vehicle, it only concerns the mapping
of values discussed earlier.
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Table 4.1: Summary of the two constructed ANNs trained with supervised learning.

Pure pursuit ANN Stanley method ANN
Inputs vx, vr, θ vx, vr, ψe, ed

First layer 6 neurons 9 neurons
Activation tanh tanh
Second layer 3 neurons (output) 9 neurons
Activation tanh
Third layer 3 neurons (output)

4.3 Results

The Stanley method controller, the pure pursuit controller and the generated ANN
controllers where tested on the three test tracks, both in the Gazebo simulation
environment and in the simpler custom C++ simulation.

Figure 4.2 shows the lateral distance between the center of the vehicle and the
path during the C++ simulations run with the pure pursuit controller and its ANN
counterpart. Both of the controllers manage to follow each of the paths. Figure
4.2a and 4.2b illustrates the tendency of cutting corners in sharp curves for this
controller type.

The pure pursuit controller performs better in the wide long curve scenario of
track B, where it is only drifting a way from the path initially. The cause of this
is probably the nature of the preview distance. When it is at the end of one of the
curves and about to change turn direction, it will look at the path in the next curve
and follow that path, even though it is still in the previous curve.

Figure 4.3 shows the results from the simulation run with the Stanley controller
and its corresponding ANN controller. Both of them also manages to follow all of
the paths. On track A (Figure 4.2a and 4.3a) the difference between the two simple
control methods is hard to spot. A reason for this is a slight similarity between the
two. The Stanley method is based on the position of the front axle of the vehicle.
Looking from the center of the vehicle, this is in some sense a preview distance, just
like the one used in the pure pursuit. This is also evident in Figure 4.3c. In theory,
the Stanley method should not have any remaining error, since the last arctan-term
in the control law should steer the front wheels towards the path. However, this
will only put the front wheels on the path, the rest of the vehicle will lag behind
and follow the more narrow turn radius of the rear wheels. Therefore a remaining
control error is to be expected when the center of the vehicle is considered.

By comparing the ANN controllers trained on the data from the pure pursuit
and Stanley method controllers respectively, it is evident that the ANN controllers
behaves similarly to the controllers they are based upon. However, it is clear that the
performance of the ANN controllers is worse than the traditional control methods.
The likely cause of this is a combination of several factors. The size of the ANNs
may not have been large enough, the learning algorithm may not have been properly
tuned or the training data may not have been good enough. Many of these issues
could probably be solved, but the focus of this thesis was not to create ANNs that
mimic existing control schemes, rather it was to find new path tracking methods.
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(a) Lateral distance from the path to the
center of the vehicle when following test
track A using pure pursuit.
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(b) Lateral distance from the path to the
center of the vehicle when following test
track A using the ANN generated from pure
pursuit.
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(c) Lateral distance from the path to the
center of the vehicle when following test
track B using pure pursuit.
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(d) Lateral distance from the path to the
center of the vehicle when following test
track B using the ANN generated from pure
pursuit.
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(e) Lateral distance from the path to the
center of the vehicle when following test
track C using pure pursuit.
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(f) Lateral distance from the path to the
center of the vehicle when following test
track C using the ANN generated from pure
pursuit.

Figure 4.2: Lateral distance from the path to the vehicle when using the pure pursuit
controller and the ANN controller trained with the pure pursuit generated data, for
each of the test tracks. These simulations where run with the C++ simulation.

Therefore more effort was put into exploring alternatives to these controllers, rather
than optimizing the existing ones.

From this stage there were mainly two apparent approaches in order to improve
the controller, namely to either use different controller data (as mentioned earlier)
to train the ANN or to change learning method. One limitation with supervised
learning is that the recorded data decides the optimum of the ANN, i.e. the ANN
will at best exactly mirror the recorded data used during the training. Therefore
it was deemed to be more beneficial to use a different learning method rather than
record new data. This would allow training of a controller that was better than
either of the pure pursuit or Stanley method controllers. The learning method and
how it was implemented as well as its results are further described in Chapter 5.
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(a) Lateral distance from the path to the
center of the vehicle when following test
track A using the Stanley method.
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(b) Lateral distance from the path to the
center of the vehicle when following test
track A using the ANN generated from the
Stanley method.
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(c) Lateral distance from the path to the
center of the vehicle when following test
track B using the Stanley method.
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(d) Lateral distance from the path to the
center of the vehicle when following test
track B using the ANN generated from the
Stanley method.
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(e) Lateral distance from the path to the
center of the vehicle when following test
track C using the Stanley method.
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(f) Lateral distance from the path to the
center of the vehicle when following test
track C using the ANN generated from the
Stanley method.

Figure 4.3: Lateral distance from the path to the vehicle when using the Stanley
method controller and the ANN controller trained with the Stanley generated data,
for each of the test tracks. These simulations where run with the C++ simulation.
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(a) Lateral distance from the path to the
center of the vehicle when following test
track A using pure pursuit.
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(b) Lateral distance from the path to the
center of the vehicle when following test
track A using the ANN generated from pure
pursuit.
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(c) Lateral distance from the path to the
center of the vehicle when following test
track B using pure pursuit.
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(d) Lateral distance from the path to the
center of the vehicle when following test
track B using the ANN generated from pure
pursuit.
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(e) Lateral distance from the path to the
center of the vehicle when following test
track C using pure pursuit.
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(f) Lateral distance from the path to the
center of the vehicle when following test
track C using the ANN generated from pure
pursuit.

Figure 4.4: Lateral distance from the path to the vehicle when using the pure pursuit
controller and the ANN controller trained with the pure pursuit generated data, for
each of the test tracks. These simulations where run with the Gazebo environment.
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(a) Lateral distance from the path to the
center of the vehicle when following test
track A using the Stanley method.
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(b) Lateral distance from the path to the
center of the vehicle when following test
track A using the ANN generated from the
Stanley method.

0 50 100 150 200 250 300 350 400

Traveled length [m]

-4

-2

0

2

4

L
a

te
ra

l 
d

is
ta

n
c
e

 [
m

]

(c) Lateral distance from the path to the
center of the vehicle when following test
track B using the Stanley method.
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(d) Lateral distance from the path to the
center of the vehicle when following test
track B using the ANN generated from the
Stanley method.
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(e) Lateral distance from the path to the
center of the vehicle when following test
track C using the Stanley method.
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(f) Lateral distance from the path to the
center of the vehicle when following test
track C using the ANN generated from the
Stanley method.

Figure 4.5: Lateral distance from the path to the vehicle when using the Stanley
method controller and the ANN controller trained with the Stanley generated data,
for each of the test tracks. These simulations where run with the Gazebo environ-
ment.
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5
Reinforcement learning path

controller

The controller obtained with supervised learning can only be as good as the con-
troller that generated the training data. To improve it further, a method involving a
GA was formulated. This chapter describes such a method and the results obtained
from it.

5.1 Implementation of the GA

The task of the GA was to optimize the controller to keep the vehicle as close to
the path as possible, i.e. to minimize deviation from the path. In addition, the
controller should control the speed of the vehicle, all in such a way that neither the
steering nor the throttle use excessive commands.This is described in more detail in
Section 5.1.2.

5.1.1 Genome formulation
In order to use the GA for the ANN controller the ANN must first be expressed
as a genome. A genome was formulated as an array of real values, where each
value corresponds to a weight or bias of the ANN. Thus an initial population, i.e.
several genomes, could easily be generated and evaluated as described in Section
5.1.2. The individuals of the population were initialized by assigning each gene a
random number drawn from a uniform distribution. The parameters used in the
GA are shown in Table 5.2.

5.1.2 Genome evaluation
To speed up the training procedure, the simpler C++ simulator was used, as opposed
to the Gazebo model (see Section 3.3).

The states that were recorded for the evaluation were the output torque around
the z-axis (Mz), the forward force (Fx), the error velocity of the vehicle (ve = vr−v)
and three distances, namely the front (df ), center (dc) and rear (dr) distances from
the vehicle to the path. The measured distances are illustrated in Figure 3.2. The
intention with these measurements were to promote a controller that could keep the
vehicle on track in the correct angle, i.e. facing down the path, at a desired velocity,
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5. Reinforcement learning path controller

while consuming minimal energy. The fitness function itself is defined in Equation
(3.2).

The weights used in the fitness function where developed and changed frequently
throughout the thesis work. The final weights used are defined in Table 5.1. Some
observations were made on what constitutes a good set of weights. Most importantly,
if the velocity weight was chosen to be too small, the controller would get stuck at a
local optimum where the vehicle would stand completely still. Also, the weights for
Fx and Mz were set low. The purpose of them were not to encourage driving where
the vehicle went off track because using the steering was too expensive. Rather
it was to discourage excessive use of large control signals, such as sudden changes
between maximum steering wheel angles.

Table 5.1: The weights used in the fitness function of the GA.

Weight Value
wMz 10−1

wFx 10−11

wve 1
wdf

1
wdc 1.5
wdr 1

The simulations were run on a path that was designed to test the controller in
every possible system state, i.e. every possible driving situation. More specifically,
the path was built with both left and right curves of varying radius, as well as long
straight parts. Figure 5.1 shows a plot of the used path. The total length of this
track is almost 1 km. In theory several shorter paths could have been used just as
well. However, from the point of view of the C++ implementation of the algorithm,
using a longer path required less effort. The reference velocity was changed between
zero and a positive non-zero value every fourth second. This was required for the
ANN to learn how to control the throttle to match the reference speed.

-50 0 50 100 150 200

-50

0

50

100
Path

Start

Figure 5.1: The path used to evaluate genomes in the GA.
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5. Reinforcement learning path controller

5.1.3 GA parameters
Other than an evaluation function, the GA requires a selection, a crossover, and a
mutation method. As mentioned in Section 2.1.5, there are several alternatives for
each of these methods. The selection method used was a roulette wheel selection
model. If the selected individuals were to crossover, the uniform crossover method
was used. For each individual value of a genome a mutation was made with a given
probability. If a genome was to be mutated, a random value drawn from a zero
mean normal distribution was added to the genomes current value. The specific
parameters used can be found in Table 5.2.

Table 5.2: The parameters used in the GA. The mutation standard deviation was
changed from large to small as the training progressed.

Parameter Value
Individuals 100
Init. range ±0.01
Crossover likelihood 90 %
Mutation likelihood 1 %
Mutation σ 1 - 0.01

5.2 Network structure
Based the networks developed during the supervised learning part of the project,
a network structure was designed with the purpose of improving the previous con-
troller. The hypothesis was that a controller that could use the strength of both a
pure pursuit controller and a Stanley method controller would be better than any
one of them alone. With this in mind an FFNN with two hidden layers was gener-
ated. The structure of the ANN is shown in Table 5.3. The inputs used in both of
the simple controllers was added. The ANN was then trained with the GA.

Table 5.3: Summary of the two constructed ANNs trained with reinforcement learn-
ing.

FFNN RNN
Inputs vx, vy, θ, ed, ψe, vr vx, vy, θ, ed, ψe, vr

First layer 15 neurons 15 neurons
Activation tanh tanh
Second layer 12 neurons 12 neurons
Activation tanh tanh
Third layer 3 neurons (output) 3 neurons (output)

In control applicatios, using integrals and derivatives of signals is common. It
could be of use in path tracking as well. To test this, an RNN with the same
amount of neurons as the FFNN were created. Its structure is shown in Table 5.3.
Since an FFNN does not have the feedback property of the RNN, the new network
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5. Reinforcement learning path controller

structure can offer improvement by allowing these integrals and derivatives to be
calculated. The recurrence was implemented such that the input for each hidden
layer is the output of the previous layer as well as a time delayed output of the
following activation function.

Another difference in the two networks is the number of parameters that have
to be set. As shown in Chapter 2, a neuron is a weighted sum and an added bias.
When viewing the two networks described in Table 5.3 the number of trainable
parameters change due to the increased connections in the RNN. The number of
trainable parameters to be set for the FFNN are

K∑
k=1

(nk−1 + 1)nk = 336, (5.1)

and for the RNN are

nK · nK−1 +
K−1∑
k=1

(nk−1 + 1 + nk)nk = 705, (5.2)

where k denotes each layer, nk the amount of neurons in each layer, n0 is the input
layer and nK is the output layer. This results in the RNN having more than twice
the amount of adjustable parameters compared to the FFNN. As described above
the optimization of the RNN is more complex and hence requires more time.

5.3 Results
The performance of the two different types of ANNs created were tested in the
Gazebo simulation environment as well as in the custom C++ simulation. The results
are presented in this section.

The training results from the C++ simulations using the FFNN and RNN can
be seen in Figure 5.2. Both of the controllers manage to follow the paths in these
simulations.

By comparing the FFNN and RNN it can be deduced that the RNN performs
better in most scenarios. This is the expected result, since the recurrence in the
network provides additional information. It also seems to outperform the controllers
presented in Chapter 4 in most scenarios. Behaviour wise the two controllers are
quite similar. The overall shape of the graphs are almost the same, but the RNN
seems to stay closer to the path for the most part. However, the FFNN seems to
have learned an interesting strategy. When it approaches a curve, it first steers in
the opposite direction.

In Figure 5.2b there is a constant error of about 2 cm. Apart from this constant
error, the vehicle stays close to the track and behaves well. The easiest solution to
get rid of this error would probably be to simply let the RNN train for a longer time.
However, there is no guarantee that it would produce a solution without the offset.
It might simply be advantageous to stay on the right side of the path on the track
used in the training procedure. Extending it with different tracks could potentially
also improve the ANN in this regard.
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(a) Lateral distance from the path to the
center of the vehicle when following test
track A using the FFNN.
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(b) Lateral distance from the path to the
center of the vehicle when following test
track A using the RNN.
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(c) Lateral distance from the path to the
center of the vehicle when following test
track B using the FFNN.
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(d) Lateral distance from the path to the
center of the vehicle when following test
track B using the RNN.
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(e) Lateral distance from the path to the
center of the vehicle when following test
track C using the FFNN.
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(f) Lateral distance from the path to the
center of the vehicle when following test
track C using the RNN.

Figure 5.2: Lateral distance from the path to the vehicle when using the FFNN
controller and the RNN controller, for each of the test tracks. These simulations
where run with the C++ simulation.

The results from running the Gazebo simulation with the FFNN and RNN con-
trollers are displayed in 5.3. In these simulations the controllers did not manage to
keep the vehicle on path for all of the tracks.

Although the controllers showed promising performance in the C++ simulations,
the Gazebo simulation did not show as good of a result. The main difference between
these simulations were the complexity of the model, therefore this is a likely cause
for the poor behaviour. Note especially the distances traveled in Figures 5.3e and
5.3f compared to Figures 5.2e and 5.2f. In the Gazebo simulations, the vehicle was
not able to reach the end of the track.

A more in depth comparison between the different controllers and potential solu-
tions to the problems encountered in the Gazebo simulations is presented in Chapter
6.
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(a) Lateral distance from the path to the
center of the vehicle when following test
track A using the FFNN.
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(b) Lateral distance from the path to the
center of the vehicle when following test
track A using the RNN.
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(c) Lateral distance from the path to the
center of the vehicle when following test
track B using the FFNN.
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(d) Lateral distance from the path to the
center of the vehicle when following test
track B using the RNN.
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(e) Lateral distance from the path to the
center of the vehicle when following test
track C using the FFNN.
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(f) Lateral distance from the path to the
center of the vehicle when following test
track C using the RNN.

Figure 5.3: Lateral distance from the path to the vehicle when using the FFNN
controller and the RNN controller, for each of the test tracks. These simulations
where run with the Gazebo environment.
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6
Discussion and results

This chapter analyzes the methods used as well as compares the results obtained for
each of the methods shown in Chapters 4 and 5.

6.1 Learning methods

Each approach has its obvious advantages and disadvantages. Given that the net-
work to be trained is sufficiently large, a supervised learning method tends to yield
a fast result in terms of required training time compared to the method used for
reinforcement learning. This is a good way to generate prototype networks and
compare different structures and sizes of networks.

A prominent issue with supervised learning methods is the data requirements in
order to train the ANN. The quality of the data limits the potential performance
of the network and whether it will converge to a controller similar to that which
was used for the data generation. Alternatively, the data could be generated by
recording a person driving and then used to train a network that imitates how a
human would drive a vehicle. But even this may not produce an optimal solution
to the problem. Another issue is the sheer amount of data required to represent
all scenarios one might face on the road. Because of these data requirements, using
supervised learning with this kind of data was not considered a suitable alternative
for this thesis.

Using reinforcement learning instead allows the controller to be generated without
existing data but impose other problems. To start with, implementing reinforcement
learning may be far from simple, and does not guarantee an optimal solution. Also,
selecting the evaluation function may be difficult depending on the task at hand,
and will greatly impact the behavior of the controller. Essentially the issue in
formulating the expression lies in the difficulty in defining what "good driving" is
in a mathematical expression. Since there is no formal definition this had to be
done without extensive knowledge of the subject. This may affect the controller,
since it is trained to minimize the given function, and if that function is lacking in
some aspect the resulting controller may be unsatisfactory. Reinforcement learning
is however a strong alternative method in order to find a better solution than what
the recorded data enables.

Another issue with reinforcement learning methods in control applications is that
of model correctness. The goal is typically to create a controller which can be
used to steer a mechanical, electrical, or other type of physical system. To enable
a computer to learn such a task one needs to let it experiment and explore its
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6. Discussion and results

environment. In many cases that might not be safe or practical. As such it is
typically carried out in a simulated environment, out of danger. If the simulations
are inaccurate, the reinforcement learning algorithm will not provide any realistic
results. To some extent this is also true for traditional control methods, which
are tested in simulations before being deployed, but tuning such methods are often
easier than manually tuning a neural network. The benefit of not having to design
a controller by hand is therefore partly reduced by the requirement to use a very
exact model.

A weakness of using the GA is a rather slow convergence. Since it is driven
purely by randomness, many solution candidates are bad by a large margin. There
is also no guarantee that a proposed solution has not already been tested. Other
reinforcement learning algorithms relying on "educated guesses" might provide a
faster learning rate while yielding comparable results.

The fitness function used in the GA does work in the sense that a working con-
troller is obtained. The question is if an objectively better ANN could have been
produced with a different one. The current fitness function is expressed in terms
of time. This leads to aggressive behavior, since it is better to do everything fast.
This might be a reasonable argument for some of the evaluated system states, e.g.
the control error in the velocity. But when measuring the distance to the path this
focus on time leads to the controller rushing to get back on the path once it looses
it. In a real vehicle, being off the path is associated with danger. The last thing you
would want in such a scenario is to increase the throttle. Instead more safety ori-
ented measurements could be included in the fitness function, such as lateral force,
to decrease the risk of wheel slippage.

The distance measurements used in the fitness function encourages control of the
whole length of the vehicle, which is not usually the case when geometric control
methods are used. The control law used in the Stanley method for instance, is good
at controlling the position of the front wheels, but the rear wheels are left without
consideration. This is a reasonable simplification if a typical car is considered. For
larger vehicles such as trucks, this simplification may result in the rear ending up
significantly off track. The ability to consider the whole length of the vehicle is a
strength with the approach used in this thesis.

6.2 Network structures
An important factor in the ability of the controllers is the structure of the ANNs.
The amount of neurons and layers, as well as the used topology all affect its potential
effectiveness. Theoretically an RNN should be able to obtain a better performance
than that of an FFNN, due to the internal feedback of the network, which can
enable important information such as the derivatives and integrals of the system
states to be calculated by the ANN. Such information is used in many other control
schemes and as such it could be of use in path tracking as well. This thesis has
not formally proven that this is the case, but from comparing the results from the
different controllers, it can be deduced that the RNN controller has properties not
shared with the other controllers that are beneficial in many situations, see Figure
6.1. This is a good thing, since it means that using RNNs opens up actual useful
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6. Discussion and results

possibilities.
The structure of the nets, i.e. amount of neurons and their connections, that were

used was decided by analyzing the performance of the controllers obtained with su-
pervised learning. Even though the goal was to find a better control strategy, the
sizes of these ANNs gave an idea about the minimal size that would be required
to match the used controllers, namely the Stanley method and pure pursuit, see
Sections 2.2.2 and 2.2.1. Although, a smaller network was considered preferable in
order to keep the computational complexity of the controller low. Another benefit
of using a smaller network is the number of parameters to be calculated by the
GA. Since the behaviour of an ANN depends not only on the individual parameters
themselves but rather the combination of parameters, the complexity of the opti-
mization is increased drastically when the number of parameters increase. This is
especially noticeable for an RNN, both due to the increased number of weights as
well as the internal feedback dynamics of the RNN, which itself enables complex
dynamics to be calculated.

This thesis has implemented a GA that changes the weights and biases of an ex-
isting network. It would, however, be possible to let the GA adjust other parameters
as well, such as number of neurons and layer setup. This could potentially find an
optimal amount of neurons, but would most likely require an even longer training
time. This could be an interesting area for future work.

6.3 Controller results
A comparison between the performance of the different controllers is shown in Figure
6.1 and 6.2. Figure 6.1 shows the results from the C++ simulations and Figure 6.2
shows the results from the Gazebo simulations.

The results from the C++ simulations shows the potential of the reinforcement
learning approach to the path tracking problem. The results from the Gazebo
simulations illustrates some of the issues with it. When searching for the best
possible solution to a problem, the obtained solution might be very specialized to
that particular problem. If the problem is changed, e.g. another model is considered,
there is no guarantee that the solution still works.

Although a controller has been generated using these methods there may exist a
potential weakness in the robustness of the controller due to that of the ideal sensor
assumption, i.e. no noise nor biases in the sensor data. The information used in
both the development and evaluation of the controllers was directly gathered from
the simulation environment. A more realistic like simulation could be achieved by
emulating sensor noise in order to show how well the ANN can handle such a scenario.
Doing so would also increase the robustness of the controller. This could potentially
solve some of the problems encountered while running the Gazebo simulations with
the reinforcement learning controllers.

A comparison including all of the control schemes dealt with during this thesis,
points to the difficulty of determine which path tracking method to use. The results
from the C++ simulations are not consistent with the ones obtained in the Gazebo
simulations. The conclusion that can be drawn from this is that there is no single
control method which is better in every situation. Each one has their strengths
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6. Discussion and results

and weaknesses. Even though a reinforcement learning controller should be able
to outperform the geometric path trackers in theory, the model used might be too
different from the actual vehicle that a geometric path tracker would perform just
as well.

Even though the generated controllers performed well in the C++ simulations, the
results from the Gazebo simulations were not satisfactory. The most likely cause
for this is the differences in the models used. Even though the FFNN performs
better than most other controllers on track A and B, track C reveals some issues
with the ANN. The training of the reinforcement learning controllers was done in
the C++ simulation, so it is expected that the results is better when using that
same simulation. However, the results points to something else. The behavior of
the ANNs are unstable. A possible explanation for this is the nature of the GA
implementation. When the ANNs get better at their task, they seldom end up far
off the track. This means that knowing what to do once that happens becomes
unimportant and hence unaccounted for, i.e. the ANN becomes overfitted to the
specific task. When the controller is used on a different model where it ends up
off track the result is unwanted behaviour. Expanding the training procedure to
include a set of different scenarios for the ANN to handle could potentially solve
this issue and produce a more stable controller.

Another approach to this problem would be to instead introduce uncertainties in
the model by doing the same simulation but with several different model parameter
sets. This would in theory force the ANN to be more stable, since the developed
controller would have to account for several different possible outcomes of an action,
due to an unknown model.

Alternatively, some form of adaptiveness could be added to the control scheme.
This would allow the ANN to adjust its parameters to match different vehicles and
driving conditions. This could solve the issue of inaccurate models and perhaps even
result in a "universal" path tracker that can perform at the same level as the RRN
does in the C++ simulations in all scenarios.
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(a) Lateral distance from the path to the center of the vehicle when following test
track A.
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(b) Lateral distance from the path to the center of the vehicle when following test
track B.
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(c) Lateral distance from the path to the center of the vehicle when following test
track C.

Figure 6.1: A comparison of the lateral distances in the C++ simulations for the
different controllers.
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(a) Lateral distance from the path to the center of the vehicle when following test
track A.
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(b) Lateral distance from the path to the center of the vehicle when following test
track B.
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(c) Lateral distance from the path to the center of the vehicle when following test
track C.

Figure 6.2: A comparison of the lateral distances in the Gazebo simulations for
the different controllers.
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7
Conclusion and future work

Autonomous vehicles are a highly discussed subject both in today’s research as well
as within the industry. In order for this to be realized in an actual vehicle there are
several parts of the system that have to work together, such as obstacle detection,
path planning, path following, control allocation and so on. Another subject that
has gained attention in recent years is that of machine learning and neural networks.
Through this thesis different neural network path controllers have been developed
in order to evaluate whether a neural network is a realistic option to traditional
control methods.

7.1 Conclusion

Existing path tracking methods based on static non-linear functions show unsatis-
factory results in many cases. Instead, ANNs can be used, which have been proven
to be able to imitate any mathematical function. This thesis has shown that ANNs
are a good alternative to geometric path trackers. However, the results from the
Gazebo simulations points out some problems that have to be addressed before this
approach can be used in a physical system. Mainly that the model used for train-
ing the ANN affects how well the controller performs. Using a too simple model
limits the robustness of the controller once applied in a more realistic environment.
Therefore a more realistic training model should improve the results. Additionally,
introducing uncertainties during training may also increase the robustness. Another
alternative to cope with the model discrepancies would be to make the controller
adaptive.

7.2 Future work

Even though the reinforcement learning methods have shown promising results, more
work is needed to obtain a controller that can be used in an actual physical system.
Specifically, a more sophisticated model which includes tire dynamics needs to be
formulated. Additionally, there has not been much work in assuring the safety of
the controller. The experiments in the Gazebo simulations shows that this has had
a negative impact on the final result, e.g. the ANN has learned to speed up while
far from the track to minimize the time away from it. From the authors’ point of
view, the most important issues that has to be solved for these control schemes to
work are:
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7. Conclusion and future work

• Improve the model. The assumption of no wheel slippage encourages danger-
ous behavior.

• Introduce uncertainties in sensor readings and model parameters. Realistically,
no system model or sensor is 100 % accurate. This has to be accounted for if
ANNs are to be put in control of autonomous vehicles.

• Investigate different fitness functions. The fitness function used in the GA
currently encourages optimallity in the least time sense, i.e. do things as fast
as possible. Safety should be of highest priority and this kind of behaviour
defies that sentiment.
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