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II 

 

Abstract 

The work of the project was to implement an algorithm of message representation and 

updates for cooperative positioning which is an emerging technique for localization in 

wireless networks. The algorithm indicates in what form and manner the messages are 

exchanged between devices as well as how the nodes update their locations using the 

received information to. The thesis focuses on a parametric message representation, that 

is, each message is represented as a set of parameters. In this algorithm, the set of 

parameters for each message is in the form of a six-dimensional vector. The algorithm is 

implemented in MATLAB, and the results have shown that our parametric message 

representation is more computational efficient compared to non-parametric message 

representations. Also, by applying cooperative positioning, we achieve better 

performance in terms of accuracy of location estimation, more coverage, and flexibility 

in different environment. 

 

Keywords: Cooperative Positioning, Message Representation, Parametric. 
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1. Introduction  

 

1.1 Research background and significance  

Automatic localization has been a critical demand for the effective use of wireless 

networks due to the trend towards globalization and mobility in today’s 

telecommunication industry. New forms of services based on location-awareness are 

considered as the potential market drivers. Some promising applications are: vehicle 

navigation, military target tracking, health care monitoring, etc.  

 

The Global Positioning System (GPS) has already provided a reliable positioning 

solution for users worldwide regardless of weather, darkness or time. It has been applied 

in many military and civilian applications, as GPS receivers are now integrated in many 

3G mobile phones. However, equipping every node or sensor in a wireless network with 

a GPS receiver is impractical as it leads to problems such as an increased cost, higher 

battery consumption and lack of robustness to jamming for military applications [1].  

 

Therefore, in many conventional localization systems, there are a limited number of 

reference nodes, called anchors, which have prior knowledge about their positions (e.g., 

equipped with GPS receivers). The devices with their positions unknown, called agents, 

establish communication links to their surrounding reference nodes, exploiting 

information (e.g., reference node’s coordinates and distance measurements to them) to 

compute and determine their own positions. Generally, to infer an agent’s own position 

in a two-dimensional scenario, at least three anchors are needed within its 

communication range. Hence, the performance of positioning depends to a large extent 

on the network connectivity, which is ensured by either long-range communication or a 

sufficient number of reference nodes distributed throughout the network.  

 

Cooperative positioning technique is emerging to overcome this reliance on the 

coverage of reference nodes by introducing a peer-to-peer (P2P) network model on top 

of the cellular network model [2]. That is, additionally allowing connectivity between 

pairs of agents within communication range to improve performance in both accuracy 

and coverage of the localization system. Fig.1.1 (a) shows an example of the non-
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cooperative positioning network and (b) is the same network after apply cooperative 

positioning. 

  

(a) Non-Cooperative 

 
 (b) Cooperative 

 

Figure 1.1 Comparison between Non-Cooperative and Cooperative Localization 
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The nodes marked in green (Node 2, 3, 6, 7) are anchors and the ones marked in yellow 

(Node 1, 4, 5, 8, 9, 10) are agents. Observe that by allowing cooperation between 

agents, the network connectivity has vastly improved. 

 

One key research topic in cooperative positioning is to indicate what type of 

information should be exchanged between devices (point estimates, distributions, 

regions, etc) and how this information should be represented (e.g., quantization, 

parametric vs non-parametric representation, curves describing regions). Usually, a 

good message representation needs to accurately describe the characteristics of the real 

information, but also to facilitate the computational complexity during processing. This 

thesis deals with message representation of SPAWN (sum-product algorithm over a 

wireless network) [7], where nodes exchange distributions of their positions. A detailed 

description of SPAWN will be introduced in Chapter 2. 

 

1.2 State of the art  

Before going straight to the point of message representations, it is useful to state the 

classification of location algorithms based on their output formats. There are mainly two 

types, namely point-based and area-based localization. 

 

Point-based estimation has been applied as a traditional method in localization for 

previous Wireless Local Area Networks (WLAN) [3]. This type of localization returns 

result as a single point, which can be obtained through probabilistic approaches. One 

example is applying a maximum likelihood estimator to get the single point with highest 

probability [4].  

 

Area-based localization represents the possible position of agent as an area or 

distribution. This brings in a critical advantage over the point-based estimation, which 

is, enabling users of the knowledge about positioning uncertainties and providing them 

with meaningful alternatives. In our framework SPAWN, the messages passing between 

devices are described as certain distributions. SPAWN also describes how messages are 

computed.  
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1.3 Problem Statement 

Our task is to approximate the distributions of agents’ locations based on the received 

information containing other node’s location distributions and distance measurements. 

Example: as shown in Fig.1.2, the agent received messages from three anchors. Given 

an anchor’s position and estimated distance to it, the agent’s possible location can be 

narrowed down to a ring region, where the width of the ring is proportional to the 

ranging uncertainty.  

 

Figure 1.2 An Example of the Localization in SPAWN 

 

Observe that by communicating to these three anchors, the agent can be localized. 

Moreover, we return its distribution over the intersection area as shown in Fig.1.2. 

 

1.4 System model  

In this thesis work, the system model is as follows: There are two types of nodes in a 

wireless network: anchors, which are the reference nodes with known positions, and 

agents, which have unknown positions and iteratively update their estimated positions. 

In non-cooperative positioning, agents receive messages only from anchors within their 

communication range. In cooperative networks, agents get updating information from 

other agents as well as from anchors. 

 

The localization algorithm is range-based. There are several popular ranging methods 

such as received signal strength (RSS), time-of-arrival (TOA), time difference of arrival 

 Anchors 

 Agents 

Intersection area 
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(TDOA), round-trip time of arrival (RTOA), etc. In particular, we consider round-trip 

time of arrival (RTOA) range measurement as it can effectively reduce the effect of 

clock synchronization error between the devices [9]. In this method, the transmitter 

measures the time of signal travels to the receiver and come back based on its local time, 

the time offset between transmitter and receiver can thus be ignored. 

 

We denote by 𝑥𝑖  the position of node 𝑖 in the network and by 𝑥 𝑖  its estimated position. 

𝑆→𝑖  is the set of nodes that send messages to node 𝑖. Based on the signal received from 

node 𝑗 ∈ 𝑆→𝑖 , node 𝑖 can then estimate its distance to node 𝑗 as (see Fig.1.3) 

 𝑑 𝑗→𝑖 =  𝑥𝑖 − 𝑥𝑗 + 𝑛𝑗→𝑖 ,                                                     (1.1)  

where 𝑛𝑗→𝑖  is the measurement noise and we assume 𝑛𝑗→𝑖~𝑁(0, 𝜍𝑗→𝑖
2 ).  

 

Figure 1.3 Range Measurement Model 

 

1.5 Outline of the thesis report 

The rest of this thesis report is organized as follows. We elaborate SPAWN in the next 

chapter and further describe the objectives of this thesis work. In Chapter 3, we apply 

parametric message representations to non-cooperative positioning, focusing on the 

initialization and optimization problems of the estimated distributions. After finding a 

suitable way to define the set of parameters and operations by which information is 

processed, we then extend the solution to cooperative positioning model in Chapter 4. 
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Simulation work is done in Chapter 5 and results are analyzed. Chapter 6 summarizes 

the whole thesis, presents our conclusion and gives some suggestion for future work. 
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2. Localization Framework (SPAWN) 

 

The thesis work is built in a basic localization algorithm called SPAWN (sum-product 

algorithm over a wireless network) introduced in [7]. This algorithm is fully distributed, 

which means in contrast to centralized localization where a central processor collects 

and computes information for all agents, each agent infers its own position only based 

on the local information. The sum-product algorithm (or belief propagation) is a popular 

message passing algorithm operating on factor graphs. Therefore, we will first introduce 

the basic concepts of factor graphs and the sum-product algorithm in this chapter. 

 

2.1 Factor Graphs 

A factor graph is a diagram that represents a factorization of a function or a distribution. 

Consider a function 𝑓 𝑋1, 𝑋2, 𝑋3, 𝑋4  that can be factorized as follows: 

 𝑓 𝑋1, 𝑋2, 𝑋3, 𝑋4 = 𝑓𝐴 𝑋1 𝑓𝐵 𝑋1, 𝑋2 𝑓𝐶 𝑋1, 𝑋2 𝑓𝐷 𝑋1, 𝑋3, 𝑋4 ,                    2.1   

where 𝑋 = {𝑋1, 𝑋2, 𝑋3, 𝑋4}  are variables and 𝑓 = {𝑓𝐴 , 𝑓𝐵 , 𝑓𝐶 , 𝑓𝐷}  are factors. We can 

create a factor graph as shown in Fig.2.1 (a). If we merge 𝑓𝐵 𝑋1, 𝑋2  and 𝑓𝐶 𝑋1, 𝑋2   

into a new factor 𝑓𝐵𝐶 ′ (𝑋1, 𝑋2), the corresponding factor graph is shown in Fig.2.1 (b) .  

 

 

 

 

 

 

 

    

(a) (b) 

Figure 2.1 Factor Graphs of 𝑓 𝑋1, 𝑋2, 𝑋3, 𝑋4  

 

Observe that factor graph (a) has a cycle while (b) does not. This is an important 

distinction, as when there are cycles in the graph, messages on any edge of the cycle 

will be iteratively transmitted round the same cycle without natural termination [8]. 

Therefore, message passing algorithms are usually exact for cycle-free graphs. 
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2.2 Sum-product algorithm 

We now describe the computational rules of the sum-product algorithm [8]. Fig.2.2 

shows a fragment of factor graph containing variable nodes drawn in circles and factor 

nodes drawn in squares. Messages are passing along the edges between variables and 

factors in both directions.  

 

 

 

 

 

 

 

 

    

 

 

Figure 2.2 A fragment of Factor Graph showing the Sum-Product Algorithm 

 

Let us denote by 𝜇𝑖→𝑗 (𝑥{𝑖,𝑗 }) the message sent from node 𝑖 to node 𝑗. Rules of sum-

product algorithm that indicate message computation can be expressed as follows: 

A message from a factor node to a variable node: 

𝜇𝑓𝑜→𝑥0
 𝑥0 =  …

𝑥1

 𝑓 𝑥0, 𝑥1, … , 𝑥𝑛 ∙ 𝜇𝑥𝑖→𝑓0
 𝑥𝑖 

𝑛

𝑖=1

.

𝑥𝑛

                    2.2  

A message from a variable node to a factor node: 

𝜇𝑥0→𝑓0
 𝑥0 =  𝜇𝑓𝑖→𝑥0

𝑛

𝑖=1

 𝑥0 .                                                2.3  

The marginal distribution of node 𝑥0 is given by 

𝑔 𝑥0 = 𝜇𝑥0→𝑓0
 𝑥0 𝜇𝑓𝑜→𝑥0

 𝑥0 =  …

𝑥1

 𝑓 𝑥0, 𝑥1, … , 𝑥𝑛 .

𝑥𝑛

              (2.4) 

We name the operation in (2.2) as message filtering and operation in (2.3) as message 

multiplication.  
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2.3 SPAWN 

Our framework SPAWN maps a factor graph onto the network topology and develops 

the message passing scheme over the network factor graph [7]. To create the factor 

graph, we need first to formulate the relationship between all variables in the network 

and factorize it. Then we create a net factor graph based on this factor graph by 

associating each node with its local information. We implement the sum-product 

algorithm over the net factor graph, therefore, for each agent in the localization 

algorithm SPAWN, the updating of its own belief is based on the above mentioned rules 

in Eq. (2.2)(2.3).  

 

For a demonstration, let us consider the example of network given in Fig.1.2 where an 

agent ( 𝑥1 ) talks to three anchors ( 𝑥𝐴 , 𝑥𝐵 , 𝑥𝐶 ). Having observed the distance 

measurements ( 𝑑 𝐴→1 , 𝑑 𝐵→1, 𝑑 𝐶→1 ), we can write the posteriori distribution function and 

factorize it as:  

𝑝 𝑥1, 𝑥𝐴 , 𝑥𝐵 , 𝑥𝐶 𝑑 𝐴→1 , 𝑑 𝐵→1, 𝑑 𝐶→1 ∝ 𝑝 𝑥1 𝑝 𝑥𝐴 𝑝 𝑥𝐵 𝑝 𝑥𝐶                                             

∙ 𝑝 𝑑 𝐴→1 𝑥1, 𝑥𝐴 𝑝  𝑑 𝐵→1 𝑥1, 𝑥𝐵 𝑝 𝑑 𝐶→1 𝑥1, 𝑥𝐶 .         (2.5) 

In the corresponding factor graph of this factorization, we associate each variable with 

the factors that contains its local information (shown in the colored block), resulting a 

net factor graph depicted in Fig.2.3 where arrows indicate the flow of messages. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 A Net Factor Graph and Its Message Passing 
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Anchor A 

𝑋1 
 

𝑋𝐴 
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𝑝 𝑥𝐶  

𝑝 𝑥𝐴  Agent 1 

𝑝 𝑑 𝐶→1 𝑥1, 𝑥𝐶  

𝑝 𝑑 𝐵→1 𝑥1, 𝑥𝐵  

𝑝 𝑑 𝐴→1 𝑥1, 𝑥𝐴  
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Observe that there are two types of messages: the ones within the blocks that are 

computed within the nodes and the ones between the blocks that are passing over the 

link. The former are from factor to variable therefore we apply Eq. (2.2) to compute 

them, while the latter are from variable to factor that need to obey the computation rule 

in Eq. (2.3). 

 

Therefore, any representation of messages must enable efficient computation of these 

two operations. More specifically, given initialization of node 𝑖 ’s prior as 𝑝𝑖(𝑥𝑖) and 

incoming messages 𝜇𝑗→𝑖(𝑥𝑖) from the set of neighboring nodes 𝑆→𝑖 , the belief is 

𝑏𝑋𝑖 𝑥𝑖 ∝ 𝑝𝑖 𝑥𝑖  𝜇𝑗→𝑖
𝑗∈𝑆→𝑖

 𝑥𝑖 ,                                                (2.6) 

which is simply multiplying every incoming messages with its previous prior. Thus one 

significant objective of this master thesis is to solve the problem formulation of message 

multiplication to capture the true distribution.  

 

2.4 Three types of Message Representations 

There are different types of message representations, among which the simplest way is 

discretized message representation. Given the node’s estimated distribution pX x , 

discretized means that rather than considering continuous x, we pre-define a finite grid 

of possible values for x. Hence, Eq. (2.6) only needs to be evaluated for a finite set. For 

example, a continuous distribution pX x  can be captured by a finite set of N values 

generated by  pX (xi) }i=1
N  with {xi}i=1

N  being the grid points over a finite region X [5]. 

One of the main drawbacks of this solution is that the length of messages N  is 

proportional to the number of grid points over X. Once there is a large uncertainty in 

node position which means the estimated distribution 𝑝𝑋 𝑥  is over a large domain 𝑋, 

the length of the messages can be very long when ensuring an accurate estimation. That 

is why the discretized message representation is not an efficient or even realistic 

solution to SPAWN. 

 

Another type of message representation is sample-based message representation in 

which each message is represented by a number of samples that reside with high 

probabilities in the region. For example, a distribution 𝑝𝑋 𝑥  can be represented by a set 
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of 𝑁 weighted samples{𝑥𝑖 , 𝑤𝑖}𝑖=1
𝑁  , where 𝑥𝑖  are samples and 𝑤𝑖are their corresponding 

probabilities [6]. Since we only draw samples from the estimated distribution  𝑝𝑋 𝑥  , 

the number of samples used in sample-based method is much smaller compared to the 

one in the discrete method. However, an inadequacy of this solution is its computational 

complexity, especially when computing the multiplication of several incoming 

messages.  Due to the fact that different messages may use different sets of the samples, 

thus the operation can not be simply multiplying the probabilities of the samples from 

individual messages as  

𝑏𝑋 𝑥 ∝  𝑝𝑋
 𝑚 

𝑀

𝑚=1

 𝑥  ,                                                     2.7  

but requiring more complex and larger amount of calculation. Therefore, the sample-

based message representation has higher computational complexity when applying 

message multiplication operations. 

 

A third way is so-called parametric message representation where message is 

represented as a set of parameters. We assume the distributions of true messages can be 

characterized from a family of some particular parameterized distributions (e.g., 

Gaussian distribution). Comparing with the former two representations, the parametric 

method has the lowest computational complexity but can only represent massages of 

some certain shapes. The thesis will focus on a parametric way of message 

representation in the positioning algorithm SPAWN. 
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3. Non-Cooperative Positioning  

 

In this chapter, we will focus on the message representation and updates for non-

cooperative positioning. Having described in Chapter 2 that we apply a parametric 

representation for messages, we will elaborate now how these messages are computed 

in our framework SPAWN, specifically the message multiplication step.  

 

3.1 Message multiplication  

As we have introduced in the previous chapter, message multiplication is a key step in 

SPAWN. Given 𝑀  independent incoming messages with corresponding distributions 

𝑝𝑋
 𝑚  𝑥   (𝑚 = 1, … ,𝑀), the operation is to compute the joint probability distribution 

𝑏𝑋 𝑥 ∝  𝑝𝑋
 𝑚 

𝑀

𝑚=1

 𝑥  ,                                                     3.1  

usually this 𝑏𝑋 𝑥  can not be exactly represented parametrically but can be 

approximated.  

 

Let us consider a simply case according to our system model. Suppose that some agent 

can communicate with 3 anchors, and their true positions are shown in Fig.3.1 (a). Each 

anchor sends a message containing information about its coordinates 𝑥𝑗 , (𝑗 ∈ 𝑆→𝑥𝑖) and 

distance measurements to the agent 

 𝑝 𝑑 𝑗→𝑖  𝑥𝑖 =  𝑁   𝑥𝑖 − 𝑥𝑗 , 𝜍𝑗→𝑖
2  .                                     (3.2)   

According to Bayes' rule, agent can then get a posterior distribution based on this single 

message: 

𝑝 𝑥𝑖 𝑑 𝑗→𝑖 =
𝑝 𝑑 𝑗→𝑖  𝑥𝑖 𝑝 𝑥𝑖 

𝑝 𝑑 𝑗→𝑖 
   ∝ 𝑝 𝑑 𝑗→𝑖  𝑥𝑖        

        = 𝑁   𝑥𝑖 − 𝑥𝑗 , 𝜍𝑗→𝑖
2  .                                                  (3.3) 

Fig.3.1 (b) gives an example of such posterior distribution of the agent based on the 

message received from anchor 1. Since the distribution has a shape similar to a donut, 

we will name such distribution “donut” for the rest of our report. 
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                                    (a)                                                                 (b) 

 

                                    (c)                                                                 (d) 

Figure 3.1 Example of Message Multiplication for Localization 

 

Fig.3.1 (c) plots all the distribution 𝑝 𝑥𝑖  𝑑 𝑗→𝑖 , (𝑗 = 1,2,3)  from the three anchors. 

Since the distance measurements are independent, we can get 

𝑝 𝑑 1→𝑖 , 𝑑 2→𝑖 , … , 𝑑 𝑛→𝑖 𝑥𝑖 =   𝑝 𝑑 𝑗→𝑖  𝑥𝑖 .

𝑛

𝑗=1

                          (3.4) 

According to Bayes' rule, 

𝑝 𝑥𝑖  𝑑 1→𝑖 , 𝑑 2→𝑖 , … , 𝑑 𝑛→𝑖 ∝   𝑝 𝑑 𝑗→𝑖  𝑥𝑖 = 𝐶 ∙

𝑛

𝑗=1

  𝑁   𝑥𝑖 − 𝑥𝑗 , 𝜍𝑗→𝑖
2  

𝑛

𝑗=1
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= 𝐶 ∙ exp   −
1

2𝜍𝑗→𝑖
2 (𝑑 𝑗→𝑖 −  𝑥𝑖 − 𝑥𝑗 )2 

𝑛

𝑗=1

 ,                     3.5  

where 𝐶 is a constant. This operation is called message multiplication as it takes the 

product of all incoming messages. Fig.3.1 (d) plots the resulting distribution of the 

message multiplication.  

 

3.2 Initial Estimation of Agent’s distribution  

Observe from Fig.3.1 (d) that the agent fall into the area given by posterior distribution. 

However, it is always not realistic to represent the exact distribution in Eq. (3.5) by 

message, so we project it onto a family of distributions that we are able to represent. For 

example, the distribution in Fig.3.1 (d) can be approximated by a two-dimensional 

Gaussian distribution. More cases are taken into consideration in this section. 

 

3.2.1 Overlapping Region of Incoming Messages  

A first estimate of the posterior distribution can be determined geometrically by taking 

the overlapping area of all donuts given by the incoming messages. Given a message 

[𝑥𝑗 , 𝑑 𝑗→𝑖 , 𝜍𝑗→𝑖
2 ], one way to capture the donut shape is to plot two circles around the 

contour lines. While the midpoints are easy to decide as 𝑥𝑗 , radius can be chose from 

(𝑑 𝑗→𝑖 ± 𝑡 ∙ 𝜍𝑗→𝑖), 𝑡 is a constant (e.g., 𝑡 = 2). 

   

                                    (a)                                                                 (b) 

Figure 3.2 Capture the Donut Shape Using Two Circles 
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When we have captured the donut shape as shown in fig.3.2 (b), the next step is to 

capture the overlapping region. This can be done by calculating the intersections of any 

two circles and selecting those within all the donuts. For instance, in the above network, 

if an intersection from the Anchor 1’s circle and Anchor 2’s circle falls also between 

Anchor 3’s circles, then we consider it as useful, otherwise, we discard it.  

  

                                    (a)                                                                 (b) 

Figure 3.3 Select Useful Intersections for the Initialization 

 

Once all the meaningful intersections are found out as in Fig.3.3 (a), we can obtain the 

knowledge of the overlapping area. One way to represent this area is to use a Gaussian 

distribution 𝑁  [𝑚𝑥 , 𝑚𝑦 ], 𝜍2  , with [𝑚𝑥 , 𝑚𝑦 ]  being the mean of the intersections’ 

coordinates and 𝜍2 being the corresponding variance. We plot the estimated mean and 

radius of 2* 𝜍 in Fig.3.3 (b). 

 

3.2.2 Decide the Type of Distribution 

 

3.2.2.1 A Single Gaussian Distribution  

A single Gaussian distribution can well model such distribution as shown in above 

example. However, it can not properly describe every location distribution. There are 

mainly two typical unfit cases: one often occurs when agent only talks to two anchors 

and results in two possible locations as shown in Fig.3.4 (a), the other is when the 

distribution looks like a “banana” as shown in Fig.3.4 (b).   
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                                    (a)                                                                 (b) 

Figure 3.4 Two Typical Cases Unfit for Single Gaussian Representation 

 

To distinguish whether the posterior distribution can be captured by a single Gaussian 

distribution, we need to judge whether all the useful intersections are concentrated in a 

small area. That is, if intersections are scattered over a wide area (e.g., Fig 3.4 (b)) or an 

area with more than one center (e.g., Fig 3.4 (a)), the distribution can not be projected to 

a single Gaussian distribution. An efficient way to judge the closeness of intersections is 

to compute the ratio of standard deviation of the intersections 𝜍 to the average standard 

deviation of input donuts  
1

𝑛
 𝜍𝑗→𝑖
𝑛
𝑗=1 . The smaller this ratio, the “tighter” the 

distribution tends to show. A reasonable threshold can be set as 4 (which is used in our 

work) and any distribution fall below this threshold shall be considered as a single 

Gaussian distribution.  

 

3.2.2.2 A Mixture of Two Gaussians Distribution  

Such distribution as in Fig3.4 (a) can be represented by a mixture of two Gaussians 

distribution 

𝑝𝐺𝑀 𝑥, 𝑦 = 𝑤1

1

 2𝜋𝜍1
2

exp −
1

2𝜍1
2   

𝑥

𝑦
 −  

𝑚𝑥1

𝑚𝑦1
  

2

  

+𝑤2

1

 2𝜋𝜍2
2

exp −
1

2𝜍2
2   

𝑥

𝑦
 −  

𝑚𝑥2

𝑚𝑦2
  

2

 ,                (3.6) 
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where 𝑤1 and 𝑤2 are the weights with constraints 𝑤1 ∈  0,1  and 𝑤2 = 1 − 𝑤1 . We 

assume that the two locations have equal probabilities, that is, 𝑤1 = 𝑤2 = 0.5. 

 

To decide whether a distribution looks like a mixture of two Gaussians, an intuitive 

method is to separate the intersections into two groups, if the distance between the 

groups are fairly large and each group of intersections satisfies the condition of single 

Gaussian in Section 3.2.2.1, then the distribution can be captured by a mixture of two 

Gaussians. 

 

An approach using linear regression can divide intersections into two groups.  Linear 

regression is a model of the linear relationship between different dependent variables. In 

our case, the x and y coordinates of intersections are the variables.  

 

We use the following diagram to explain this approach. Suppose we have 20 points as 

shown in Fig.3.5 (a), the linear regression returns the line in (b) modeling the linear 

relationship of the 𝑥 and 𝑦 coordinates of points. Knowing the slope of this line and the 

mean of the 20 points, we can plot an orthogonal line passing the mean value of points 

as the dividing line in (c). The last step is to grouping the points on each side of the 

orthogonal line into a new group and (d) shows the final two groups marked in different 

colors.   

 

                                        (a)                                                        (b) 
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                                       (c)                                                           (d) 

Figure 3.5 Linear Regression Approach to Divide Points into Two Groups 

 

It is of importance to distinguish whether there are actually two possible locations or 

there is only one possible location with a large uncertainty (e.g., the “banana” shape 

distribution from Fig.3.4 (b)). A fairly good criterion of judging how far these two 

groups are departed from each other is the ratio 𝑑max →𝑝𝑜𝑖𝑛𝑡𝑠 𝑑min →𝑙𝑖𝑛𝑒 . Here 

 𝑑max →𝑝𝑜𝑖𝑛𝑡𝑠  denotes the maximum distance between any two intersections belong to a 

same group and 𝑑min →𝑙𝑖𝑛𝑒 is the minimum distance between any points to the dividing 

line. We set a threshold of 6 and distributions have ratios below this can be considered 

as two groups.  

 

                                    (a)                                                                 (b) 

Figure 3.6 A Criteria to Distinguish Whether There are Two Possible Locations  
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After applying the above criteria, only (b) in Fig.3.6 can be viewed as having two 

possible locations. We take the same step in 3.2.2.1 for each group of (b), if both satisfy 

the condition of being single Gaussian, then the distribution can be captured by a 

mixture of two Gaussians. 

 

Figure 3.7 Initialization of a Mixture of Two Gaussians distribution 

 

3.2.2.3 A Single Donut Distribution  

Another common case is when agent only talks to one anchor, it will return with a 

single donut distribution (e.g., Fig.3.1 (b)). In order to mathematically represent such 

distribution, we introduce a new type of distribution: 

𝒟 𝑥, 𝑦;  𝑚𝑥1
, 𝑚𝑦1

, 𝜍2 , 𝜌 =
1

∁ 𝜍2, 𝜌 
exp −

1

2𝜍2
   

𝑥

𝑦
 −  

𝑚𝑥1

𝑚𝑦1

  − 𝜌 

2

 ,    (3.7) 

where  𝑚𝑥1
, 𝑚𝑦1

  indicates the midpoint of the distribution, 𝜍2 is the variance and 𝜌 is 

the radius, ∁ 𝜍2, 𝜌  is a normalization constant:  

∁ 𝜍2, 𝜌 = 2𝜋𝜍2  exp −
𝜌2

2𝜍2
 +

1

2
 

2𝜋𝜌2

𝜍2
+ (1 + erf 

𝜌2

2𝜍2
) .             (3.8) 
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Figure 3.8 One example of the 𝒟 distribution 

 

As shown in Fig.3.8, the distribution looks like a donut. Note that one important feature 

of 𝒟 distribution is it can revert to a two-dimensional Gaussian distribution by setting 

the value of 𝜌 to be 0.   

 

3.2.3 Message Representation     

We intend to determine a family of distributions that enables a large proportion of 

agents to represent their outgoing messages to neighboring agents.  Therefore, we need 

to analyse which are the cases that frequently occur in order to find a general message 

representation to cover those cases.  

 

 Case 1: When an agent talks to three or more anchors, it will have either a 

Gaussian or a “banana” shape distribution. The latter cases are not considered. 

We can represent a Gaussian distribution N  [mx , my ], σ2  using three 

parameters. As we mentioned in Section 3.2.1, [mx , my] can be estimated as the 

mean of the donuts’ intersections and σ2 is the corresponding variance.  

 

 Case 2: When an agent talks to two anchors, it will have either a mixture of two 

Gaussians or a “banana” shape distribution. The mixture of two Gaussians 

 pGM  x, y = 0.5 ∙ N  mx1
, my1

 , σ2 + 0.5 ∙ N  mx2
, my2

 , σ2  is an extension 

of Case 1. The initial estimates of each Gaussian distribution   mx1
, my1

 , σ1   
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and   mx2
, my2

 , σ2 can be get respectively from each group of intersections as 

Case 1. Then we initialize σ as 0.5 ∙   σ1+σ2 . 

 

 Case 3: When an agent talks to one anchor, it will have a donut distribution. 

𝒟  mx1
, my1

, σ2 , ρ , these four parameter can be directly get from the incoming 

message, as  mx1
, my1

  is anchor’s position, ρ is the distance measurement and 

σ2 is the variance. 

 

Notice that a single Gaussian distribution can be treated as a special case of a mixture of 

two Gaussian distribution when  𝑚𝑥1
, 𝑚𝑦1

 =  𝑚𝑥2
, 𝑚𝑦2

 , also both single Gaussian 

distribution and mixture of two Gaussians distribution can be easily represented by 

setting 𝜌 to be 0. Therefore, to capture all cases (1-3), we represent all exchanging 

messages in the form of a six-dimensional vector 𝛂 = [mx1
, my1

, mx2
, my2,

, σ2, ρ] as a 

mixture of two 𝒟 distributions: 

𝑝𝒟2
 x, y = 0.5 ∙ 𝒟 x, y;  mx1

, my1
, σ2 , ρ + 0.5 ∙ 𝒟 x, y; mx2

, my2,
, σ2 , ρ .           (3.9) 

 

We name this family of distributions 𝒟2  in the rest of this report. This family of 

distributions will turn out to be sufficient for the cooperative case as well. A table of 

message representation for cooperative positioning is given as follows: 

 

Representation 

Type 

𝑚𝑥1
 𝑚𝑦1

 𝑚𝑥2
 𝑚𝑦2

 𝜍 𝜌 

Single Gaussian 

Distribution 

𝑚𝑥  𝑚𝑦  𝑚𝑥  𝑚𝑦  𝜍 0 

Mixture of two Gaussians 

Distribution 

𝑚𝑥1
 𝑚𝑦1

 𝑚𝑥2
 𝑚𝑦2

 (𝜍1 + 𝜍2)

2
 

0 

Other distribution 

(incoming message exists) 

𝑚𝑥1
 𝑚𝑦1

 𝑚𝑥2
 𝑚𝑦2

 𝜍 𝜌 

 

Table 3.1 Message Representation for Non-Cooperative Positioning 
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Given a message [𝑚𝑥1
,𝑚𝑦1

,𝑚𝑥2
, 𝑚𝑦2 

, 𝜍2 , 𝜌], the represented distribution is 

𝑝𝒟2
 𝑥, 𝑦 =

1

2 ∙ ∁ 𝜍2, 𝜌 
exp −

1

2𝜍2
   

𝑥

𝑦
 −  

𝑚𝑥1

𝑚𝑦1

  − 𝜌 

2

 

+
1

2 ∙ ∁ 𝜍2, 𝜌 
exp −

1

2𝜍2
   

𝑥

𝑦
 −  

𝑚𝑥2

𝑚𝑦2

  − 𝜌 

2

                   (3.10) 

 

3.3 Optimization of Agent’s Distribution  

The optimization step is to find the best match of the posterior distribution out of the 

family of mixture Donuts distributions. Before the specific description of our approach, 

we first introduce some theoretical background. 

 

3.3.1 Kullback-Leibler Divergence  

Kullback-Leibler divergence is a measure of the difference between two probability 

distributions, defined as 

𝐷𝐾𝐿 𝑝𝑥 𝑞𝑥   =  𝑝𝑥 𝑥 log
𝑝𝑥 (𝑥)

𝑞𝑥 (𝑥)
𝑑𝑥.                                       (3.11) 

The closer 𝑝𝑥  is to 𝑞𝑥 , the smaller 𝐷𝐾𝐿 𝑝𝑥 𝑞𝑥    will be.  𝐷𝐾𝐿 𝑝𝑥 𝑞𝑥   =0 when the two 

distribution are the same. In our case, given posterior distribution 𝑝𝑃𝐷 , the optimal 𝑝𝒟2
 

to it can be found by minimizing 𝐷𝐾𝐿 𝑝𝒟2
 𝑞𝑃𝐷   , with respect to the parameters of 𝑝𝒟2

. 

 

It is complicated to directly compute the definite integral in Eq. (3.11). We thus use 

Monte Carlo integration to get an approximate value of the integral. Suppose we wish to 

integrate a function  

𝐼 =  𝑝𝑥(𝑥)𝑓 𝑥 
𝑏

𝑎

𝑑𝑥.                                                          (3.12) 

Monte Carlo integration scheme picks 𝑁 distributed points 𝑥1, 𝑥2, … , 𝑥𝑁  at random, 

traditionally these points can be uniformly distributed over the interval  𝑎, 𝑏 , but to use 

adaptive sampling over the region can get a better estimate. The integral is then 

approximated to: 

𝐼 ≈
1

𝑁
 𝑓 𝑥𝑖 

𝑁

𝑖=1

,       𝑥𝑖~𝑝𝑥 𝑥 .                                        (3.13) 
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Based on this technique, we can determine our Kullback-Leibler divergence by 

𝐷𝐾𝐿 𝑝𝒟2
 𝑞𝑃𝐷   ≈

1

𝑁
   log 𝑝𝒟2

 𝑥𝑖,𝑦𝑖 − log 𝑞𝑃𝐷 𝑥𝑖 , 𝑦𝑖  

𝑁

𝑖=1

,       

 𝑥𝑖 , 𝑦𝑖 ~𝑝𝒟2
 𝑥, 𝑦 .      (3.14)       

Since 𝑝𝒟2
 𝑥, 𝑦 is mixture of two 𝒟  distributions given in Eq. (3.9), we can draw 

samples    𝑥𝑖 , 𝑦𝑖  𝑖=1
𝑁  by taking 

𝑁

2
  samples from each 𝒟 distribution. We can apply the 

importance sampling technique to sample from the donut distribution. 

 

Note that Monte Carlo integrations are based on samples which are random, so that the 

results will come up with small difference each time. Larger amount of samples 𝑁 can 

provide with more reliable approximations.     

 

3.3.2 Gradient Descent 

To find the optimal distribution represented by [𝑚𝑥1
,𝑚𝑦1

, 𝑚𝑥2
,𝑚𝑦2 

, 𝜍2 , 𝜌]  that 

minimize the 𝐷𝐾𝐿 𝑝𝒟2
 𝑞𝑃𝐷   . We use a method named gradient descent which takes 

steps proportional to the negative gradient of  𝐷𝐾𝐿 𝑝𝒟2
 𝑞𝑃𝐷    at the current point. This 

is because the negative gradient is the direction in which the error decreases the fastest 

[10]. 

 

Let us denote the six-dimensional vector [𝑚𝑥1
,𝑚𝑦1

,𝑚𝑥2
, 𝑚𝑦2 

, 𝜍2 , 𝜌] by 𝜶,  

𝐷𝐾𝐿 𝑝𝒟2

 𝜶  𝑞𝑃𝐷   ≈
1

𝑁
   log 𝑝𝒟2

 𝜶  𝑥𝑖,𝑦𝑖 − log  𝑞𝑃𝐷 𝑥𝑖 , 𝑦𝑖  

𝑁

𝑖=1

,       

 𝑥𝑖 , 𝑦𝑖 ~𝑝𝒟2
(𝜶) 𝑥, 𝑦 .          (3.15)     

The gradient of  𝐷𝐾𝐿 𝑝𝒟2
 𝑞𝑃𝐷    at the point 𝜶 is then given by  

∇𝜶 𝐷𝐾𝐿 𝑝𝒟2

 𝜶  𝑞𝑃𝐷   =

 
 
 
 
 
 
 
 
 

∂

∂𝑚𝑥1
∂

∂𝑚𝑦1
∂

∂𝑚𝑥2
∂

∂𝑚𝑦2

∂

∂𝜍2

∂

∂ρ  
 
 
 
 
 
 
 
 

 𝐷𝐾𝐿 𝑝𝒟2

 𝜶  𝑞𝑃𝐷     
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  .                      3.16   

 

 

After obtaining the gradient ∇𝜶 𝐷𝐾𝐿 𝑝𝒟2

 𝜶  𝑞𝑃𝐷   , we can move 𝜶 to a new position 

 𝜶′ =  𝜶 + 𝜀 ∙  −∇𝜶 𝐷𝐾𝐿 𝑝𝒟2

 𝛼  𝑞𝑃𝐷    ,                         (3.17) 

where 𝜀 is a small positive step that 0 < 𝜀 ≪ 1. 
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3.4 Flowcharts 

A flowchart of the initialization step is shown as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Flowchart of the Initialization Step 
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A flowchart of the optimization step is shown as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Flowchart of the Optimization Step 
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4. Cooperative Positioning  

 

Having defined the general concept of cooperative positioning in Chapter 1, we are now 

interested in the message representation and updates for such system. As we have 

illustrated through Fig.1.1, the most essential difference between non-cooperative and 

cooperative positioning is whether the communication between agents are allowed. 

From the message point of view, sequentially two problems arise compared to non-

cooperative positioning:  

1. The format of incoming messages received from other agents.  

2. What happens if an agent received message from other agent who has a mixture 

of two Gaussians distribution or a single donut distribution. 

To cope with the first question, we represent all incoming messages as a distribution of 

the 𝒟2  family, with a six-dimensional vector 𝜶 = [𝑚𝑥1
,𝑚𝑦1

, 𝑚𝑥2
,𝑚𝑦2,

, 𝜍2 , 𝜌] (to be 

discussed in Section 4.1). About the second question, we would elaborate our solution 

in later sections of this chapter. 

 

4.1 The Format of Incoming Messages 

Let us consider several examples of network to illustrate the format of incoming 

message. A first example is shown in Fig.3.1 where Agent 1 can communicate with two 

anchors while Agent 2 has no communicate links to anchors. 

 

                                    (a)                                                                 (b) 

Figure 4.1 Incoming Message from Agent with a Mixture of Gaussians Distribution  
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In the first iteration, Agent 1 obtains its location as a mixture of two Gaussians 

distribution as shown in Fig.4.1 (a). In the second iteration, Agent 1 send a message to 

Agent 2 regarding the possible location of Agent 2 based on the distribution of Agent 1 

and the distance measurement between these two agents. The representing distribution 

of this message is depicted in Fig.4.1 (b). The standard deviation of this message  

𝜍1→2 ≈ 2𝜍1 + 𝜍𝑛 , where 𝜍1 given in the estimation of Agent 1 and 𝜍𝑛  is from the range 

measurement.   

 

Let us consider another case (see Fig.4.1) where Agent 1 talks to only one anchor and 

Agent 2 talks to no anchor. After the first iteration, Agent 1 obtains a Donut distribution 

as shown in Fig.4.1 (a). Later on Agent 1 sends a message to Agent 2 based on the 

distribution of Agent 1 and the distance measurement between these two agents. The 

corresponding distribution is described in Fig.4.2 (b). We can see that the donut is very 

“fat” which is due to 𝜍1→2 ≈ 2𝜍1 + 𝑑 1→2. 

  

                                    (a)                                                                 (b) 

Figure 4.2 Incoming Message from Agent with a Donut Distribution  
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about a beneficial effect that both incoming and outgoing messages are of the same 

format. 

 

4.2 Message multiplication  

Given 𝑀  independent incoming messages 𝜶𝑚  (𝑚 = 1,… ,𝑀) with corresponding 

distributions 𝑝 𝑚  𝑥, 𝑦 ∈ 𝒟2  , the operation is to compute the product of these 

distributions as follows: 

𝑝 𝑥, 𝑦 𝜶1, 𝜶2 , … , 𝜶𝑀 =   𝑝 𝑚  𝑥, 𝑦 𝜶𝑚  

𝑀

𝑚=1

=   
1

2 ∙ ∁ 𝜍𝑚2 , 𝜌𝑚  
exp −

1

2𝜍𝑚2
   

𝑥

𝑦
 −  

𝑚𝑥1
(𝑚)

𝑚𝑦1
(𝑚)  − 𝜌𝑚 

2

 

𝑀

𝑖=1

+
1

2 ∙ ∁ 𝜍𝑚2 , 𝜌𝑚  
exp −

1

2𝜍𝑚2
   

𝑥

𝑦
 −  

𝑚𝑥2
(𝑚)

𝑚𝑦2
(𝑚)  − 𝜌𝑚 

2

            (4.4) 

 

As we mentioned in previous chapter, usually this 𝑝 𝑥, 𝑦 𝜶1, 𝜶2, … , 𝜶𝑚  can not be 

exactly represented by 𝒟2 family but can be considered as a posterior distribution which 

we approximated our resulting distribution to. When 𝑝 𝑥, 𝑦 𝜶1, 𝜶2, … , 𝜶𝑚  ∉ 𝒟2 (e.g., 

“banana” distribution), we do not approximate it and keep one original incoming 

message as its output. 

 

4.3 Initial Estimation of Agent’s distribution  

For the initialization, an agent need not distinguish whether its received messages are 

from anchors or agents, but just to capture the area given by posterior distribution. Thus 

this step is similar to the non-cooperative positioning, only that there are some places 

that we need to pay attention.     

 

4.3.1 Overlapping Region of Incoming Messages  

As we described before, different from non-cooperative positioning where all incoming 

messages are of the shapes as single donuts, we consider each message in cooperative 

positioning as mixture of two donuts shape. The motivation is to capture the information 

from the agents who have two possible locations (e.g., a mixture of two Gaussians 
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distribution). For messages from nodes who have good knowledge about their locations 

such as anchors, the two component donuts are actually overlapping so that  

 𝑚𝑥1
,𝑚𝑦1

 =  𝑚𝑥2
,𝑚𝑦2,

 .  

 

Given a distribution 𝜶 = [𝑚𝑥1
, 𝑚𝑦1

,𝑚𝑥2
, 𝑚𝑦2,

, 𝜍2, 𝜌], we can capture its shape of two 

donut by plotting each with two circles (e.g., Fig.4.1 (b)). The midpoints of the two 

donuts are easy to decide as 𝑚𝑥1
, 𝑚𝑦1

  and  𝑚𝑥2
,𝑚𝑦2,

 , and each donut’s two circles 

take radius from  𝜌 ± 𝑡 ∙ 𝜍 , 𝑡 is a constant (e.g., 𝑡 = 2).  

 

To taking the overlapping area of all donuts given by the incoming messages, we 

calculate the intersections of any two circles from different messages and select those 

that fall within all messages distributions. There are two noteworthy points here:  

1. Intersections of two donuts from a same message are not taken into account (see 

Fig.4.3)  

2. Only when an intersection falls in neither of the two donuts from a message 

distribution can we say it is out of that distribution. 

 

Figure 4.3 Useful Intersections of Two 𝒟2 Distributions 
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Once all the meaningful intersections are found out, we apply the same method and 

criteria as in Section 3.2.2 to decide whether the distribution can be projected onto a 𝒟2 

distribution. 

 

4.3.3 Message Representation  

As we mentioned earlier, all exchanged messages in our cooperative positioning 

algorithm are of the 𝒟2  family of distributions.   

 

4.4 Optimization of Agent’s Distribution  

The same method as stated in Section 3.3 for optimization is applied here. In addition, 

for any agent who receives only one message based on which we can not get more 

accurate estimation than itself, we just return this original message as the optimal 

estimation for such cases.  
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5. Simulation  

 

5.1 Simulation Setup  

In the simulation part, we apply the message representation and updates algorithm to 

existing cooperative positioning framework SPAWN (refer to [7]). The simulation is 

performed on MATLAB. 

 

We consider networks with 13 fixed anchors and 100 randomly distributed agents, 

within a 100m*100m area and a communication range of 20 m. Both anchors and 

agents are static. We run 20 iterations for location updating for cooperative positioning. 

Estimates are given as the means of the beliefs at any iteration. 

 

5.2 Results from One Network 

Here we consider one network to provide us with an intuitive view of results from non-

cooperative positioning and the cooperative positioning. 

 

5.2.1 Non-Cooperative Positioning 

 
Figure 5.1 Result of Non-Cooperative Positioning  
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Result of non-cooperative positioning is shown in Fig.5.1. We mark the anchors with 

the red squares and the true positions of agents with blue dots. The black circles that 

each links to an agent are the mean values of estimated distributions of the 

corresponding agents. For example, most agents in the lower right corner (e.g., 13, 66, 

75) link to a same anchor, as those agents can only talk to that anchor and return single 

donut distributions with means being the anchor’s position. We also notice that when an 

agent talks to two anchors, usually it will have a mixture of two Gaussian distribution 

and the mean will be on the line between these two anchors (e.g., 77). Through each line 

between we can easily understand the location error. Observe that most agents can not 

communicate with three or more anchors, and thus have poor positioning estimates.  

 

5.2.2 Cooperative Positioning 

Since the agents have no knowledge about their location at the beginning, in the first 

iteration (𝑡 = 1) of cooperative positioning, agents can only receive messages from 

anchors which leads a same result as the non-cooperative positioning (Fig.5.1). Hence, 

we only show results here from later iterations.  
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(b) 

 

(c) 

Figure 5.2 Result of Cooperative Positioning  
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The result from the second iteration (Fig.5.2 (a)) shows an obvious improvement on the 

first iteration due to the cooperation between agents. To be more specific, most agents 

in the middle area can be well localized while agents on the side achieve less 

improvement. This is because agents in the middle area are more likely to communicate 

to two or more anchors so that after the first iteration, they can be localized as a mixture 

of two Gaussian distribution or a single Gaussian distribution which provide useful 

information for its neighboring agents in later iterations. But for those agents in the 

corner who only talk to one anchor, they can only send each other information as single 

donut distributions with means being that anchor’s location. Observe that in the lower 

right corner those agents are communicating to a same anchor, so that all the messages 

that they send to each other are donut distributions with the same midpoint. Therefore, 

those agents still can not be localized. 

 

After the third iteration, most agents on the side of the network can be localized with the 

help of earlier localized agents. For instance, agents in the lower right corner can be 

localized refer to 19, 27, 71, etc.   

 

Observe that all agents except 18 (18 is not going to be localized as it only talks to one 

anchor and no agents) are localized with high accuracy after the fourth iteration which 

proves that the performance of localization can be significantly improved by 

introducing cooperation between agents. 

 

5.3 Results from 25 Networks 

5.3.1 Accuracy and Coverage 

In order to evaluate the performance statistically, we employ a criteria of the outage 

probability [7]: for a given allowable error 𝑒𝑡𝑕 , any agent whose error  𝑥𝑖 − 𝑥 𝑖  

exceeds this threshold 𝑒𝑡𝑕  is considered to be in outage. The outage probability is then 

to examine the percentage of those agents, given by 

𝑃𝑜𝑢𝑡𝑎𝑔𝑒  𝑒𝑡𝑕 = 𝔼 𝕝  𝑥𝑖 − 𝑥 𝑖 > 𝑒𝑡𝑕  ,                                (5.1) 

where 𝕝 𝑃  is the indicator function, being 1 when 𝑃  is true and 0 when 𝑃  is false. 

Estimate 𝑥 𝑖  is taken as the mean of belief as we have mentioned before. The figure 
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below plots with different curves the outage probabilities of all iterations based on 25 

networks. 

   

Figure 5.3 Outage Probability Estimated from 25 Networks 

 

We can get the result of non-cooperative positioning through the top line (1
st
 iteration) 

that over 90% of agents have errors larger than 1 m, while this rate drops below 1% 

after applying cooperative positioning (see Fig.5.3). Observe that convergence is 

generally achieved after 5 iterations, and over 99% of agents acquire accuracy 
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is the number of messages, 𝑁 is the length of message in discretized and sample-based 
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Approach Operation Complexity Size of 𝑵 

Discretized Filtering 𝒪 𝑁2  Large 

Discretized Multiplication 𝒪 𝑁𝑀  Large 

Sample-based Filtering 𝒪 𝑁  Small 

Sample-based Multiplication 𝒪 𝑁2𝑀  Small 

Parametric Filtering 𝒪 𝑁  Small 

Parametric Multiplication 𝒪 𝑁𝑀  Small 

 

Table 5.1 Comparison of Complexity of Three Types of Representations 

 

Note that in discretized representations, 𝑁 is much larger than for the other two (e.g., 

𝑁 = 108  compared to  𝑁 = 103  for sample-based and parametric representations), 

which leads to the highest complexity. Observe that for message multiplication, the 

complexity of the sample-based method scales as 𝒪 𝑁2𝑀  which is worse than the 

parametric approach (𝒪 𝑁𝑀 ). For example, if we draw 1000 samples (𝑁 = 103) from 

a distribution, the sample-based approach requires106 operations while the parametric 

approach needs only103. We can thus come to a conclusion that the parametric message 

representation is more computational efficient compared to non-parametric message 

representations. 

 

Another way to understand the complexity is to look into the real time cost in our 

simulation. We have set in our algorithm that if an agent has a single Gaussian 

distribution, it will not receive messages from other devices in later iteration so that 

requires little time for updating. Fig.5.3 shows the average time cost by a node from the 

1
st
 to the 20

th
 iterations. Observe that the curve reaches its peak at 10 sec per node in the 

2
nd

 iteration followed by a consistent falling till the 6
th

 iteration. The reason is that a 

largest proportion of agents can be localized in the 2
nd

 iteration, leaving less and less 

nodes to update their beliefs in later iterations. After the 5 iterations, the convergence is 

achieved so that from the 6
th

 to 20
th

 iterations, the average time per node is only about 

0.5 sec. 
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Figure 5.3 Average Time per Node from the 1
st
 to 20

th
 Iterations 
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6. Conclusion and Future Work 

 

Cooperative positioning is an outstanding and potential solution to many wireless 

network applications that require location-awareness. In our thesis work, we apply 

framework SPAWN for cooperative localization and design the message representation 

for this algorithm using a parametric method. The major advantage of parametric 

representation is the computational efficiency. Besides, we have shown that our 

representation can well capture the information in most cases and achieve a standout 

performance in terms of accuracy of location estimation. We have also proved that 

cooperative positioning can release the dependence on equipping anchors, therefore 

gains more coverage and flexibility in different environment. 

 

Here in our work, we take the covariance matrix of two dimensional Gaussian 

distribution as a scalar matrix (  = 
𝜍𝑥𝑦

2 0

0 𝜍𝑥𝑦
2   ), this may be extended to a more 

general case where the variance of the distribution may have different value in different 

axis so that distributions such as the “banana” shape can also be well represented. 

Another research topic that can improve the localization algorithm is known as 

censoring which removes the unnecessary communication links or the poorly estimated 

information. This can result in more computationally efficient and accurate positioning 

for our algorithm.  
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