
Asynchronous Parallel Stochastic
Gradient Descent

A study of the influence of synchronization methods and hy-
perparameters

Master’s thesis in Computer science and engineering

Hampus Ek

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Master’s thesis 2021

Asynchronous Parallel Stochastic
Gradient Descent

A study of the influence of synchronization methods and
hyperparameters

Hampus Ek

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Asynchronous Parallel Stochastic Gradient Descent
A study of the influence of synchronization methods and hyperparameters
Hampus Ek

© Hampus Ek, 2021.

Supervisor: Philippas Tsigas, Department of Computer Science and Engineering
Examiner: Marina Papatriantafilou, Department of Computer Science and Engi-
neering

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2021

iv

Asynchronous Parallel Stochastic Gradient Descent
A study of the influence of synchronization methods and hyperparameters
Hampus Ek
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Artificial Neural Networks (ANN) can solve complex tasks and be found in applica-
tions such as language translation, object recognition, and more. The underlying
optimization algorithm for training ANNs is often Stochastic Gradient Descent
(SGD). SGD is a first-order numerical optimization algorithm that repeatedly
takes a step in the negative gradient direction of a loss function.
Training ANNs generally require a large amount of data, and with an increasing
amount of data, more complex tasks can be learned. However, more data increases
the training time since several passes through the data are required. The train-
ing time can be reduced by parallelizing the training process. There are several
ways to do this, and parallelizing the SGD iterations is one way. Parallelizing the
SGD iterations can mainly be done in two different ways, synchronously or asyn-
chronously. The asynchronous parallel SGD has shown performance benefits over
the synchronous approach and has therefore gained increased attention in recent
literature.
However, asynchrony introduces challenges with understanding the execution and
convergence criteria of SGD. These challenges originate from the fact that asyn-
chrony allows for gradient updates on stale (old) views of the state. Parallel SGD
and asynchronous parallel SGD, in particular, can make hyperparameter tuning
even more time-consuming and challenging compared to regular sequential SGD.
Parallelization of SGD introduces an additional dimension, e.g., the level of par-
allelism, to the training phase. Increased parallelism also increases the risk of
crashed executions.
This work aims to increase the understanding of the convergence properties of SGD
under asynchronous parallelism. This is done by (i) analyzing how the memory
model affects convergence under different levels of parallelism. (ii) What impact
batch size and step size have on convergence under a varying level of parallelism
is also analyzed. (iii) Moreover, an analysis of how the staleness distribution is
affected by different batch sizes is made. Furthermore, (iv) backoff methods are
tested to reduce contention for the lock-based algorithms and Leashed-SGD.
An alternative lock-based approach to regular mutex lock is proposed using a
read-write lock. The read-write lock, mutex lock, and two lock-free algorithms,
Leashed-SGD [1] and HOGWILD! [2], are compared in all of the dimensions stated
in the previous paragraph (i-iv).
We can empirically see that the memory model used impacts convergence, where
NUMA converges faster than UMA for both lock-based and lock-free AsyncSGD.
Further, the level of parallelism has a high impact on what hyperparameters to
use. The level of parallelism is also related to the number of crashed and diverged
executions, where higher parallelism increases the risk of crashed executions.
Keywords: Stochastic gradient descent, parallelism, asynchrony, machine learning

v

Acknowledgements
First and foremost, I am incredibly grateful to my supervisor, Philippas Tsigas, for
his advice, support, and guidance. I would also like to thank Marina Papatriantafilou
and Karl Bäckström for their technical support and guidance. The weekly meetings
with Philippas, Marina, and Karl have been invaluable for my work and a great
source of inspiration. Finally, I would like to express my gratitude to my friends
and family for their support and encouragement.

Hampus Ek, Gothenburg, June 2021

vii

Contents

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Statement of the problem . 2
1.2 Purpose of the study and hypotheses 3
1.3 Limitations and Delimitations . 3

2 Theory and Background 5
2.1 Stochastic Gradient Descent . 5

2.1.1 Metrics of interest . 7
2.1.2 Parameters and hyperparameters 8
2.1.3 Artificial Neural Networks . 10
2.1.4 The training process . 11

2.2 Parallel Stochastic Gradient Descent 11
2.2.1 Parallel computer architecture and parallelization 12
2.2.2 Synchronous parallel SGD . 13
2.2.3 Asynchronous parallel SGD 14
2.2.4 A note on hyperparameters and parallel SGD 17

2.3 Problems and challenges . 18
2.3.1 Convergence and asynchrony 18
2.3.2 Scalability . 18
2.3.3 Testing and Benchmarking . 19

3 Methods 21
3.1 Algorithms and fine-grained synchronization 22
3.2 Memory model and parallel SGD . 25
3.3 Convergence and hyperparameter selection 25
3.4 Staleness and hyperparameter selection 25
3.5 Backoff . 26

4 Empirical study 27
4.1 Experiment setup . 27
4.2 Memory model and convergence . 29
4.3 Convergence analysis . 32
4.4 Staleness distribution and batch size 42

ix

Contents

4.5 Convergence comparison . 44
4.6 Backoff . 47
4.7 Discussion of Experiments . 48

5 Conclusions and future work 51

A Appendix A I
A.1 Convergence analysis . I

x

List of Figures

2.1 Illustration of a Stochastic Gradient Descent iterative optimization
algorithm for a two-dimensional target function. SGD repeatedly
takes a step in the negative gradient direction of the target function . 6

2.2 Performance and Accuracy of SGD with respect to mini-batch size
for a fixed number of steps (illustration), figure adopted from [3] . . . 9

2.3 Example of a feedforword DNN architecture with N hidden layers and
n input-layers. The output of each layer is the input of the next layer
as illustrated . 10

2.4 Example of a CNN architecture . 11
2.5 Example of a UMA(left) and NUMA(right) architecture 13
2.6 Data access for AsyncSGD and HOGWILD! (left) and Leashed-SGD

(right). AsyncSGD uses locks to ensure mutual exclusion to the
shared state, HOGWILD! uses component-wise atomic read and write
of the shared state. In Leashed-SGD each thread only access θt
through a read operation. The update are then calculated locally
and stored at a new memory location that becomes a candidate for
θt+τ , figure adopted form [1]. 17

4.1 MNIST handwritten digits example 27
4.2 Thread scheduling comparison for 7 threads. NUMA refers to 4

threads scheduled on socket 0 and 3 threads scheduled on socket 1,
and UMA refers to 7 threads scheduled to socket 0. Time to reach
2 %-convergence (top). Average epoch time (e.g. Computational effi-
ciency) (bottom left) and number of epoch to reach 2 %-convergence
(e.g. statistical efficiency) (bottom right). Step size η = 0.005 and
batch size B = 64. 29

4.3 Thread scheduling comparison for 8 threads. NUMA refers to 4
threads scheduled on socket 0 and 4 threads scheduled on socket 1
and UMA refers to 8 threads scheduled to socket 0. Average epoch
time (e.g. Computational efficiency) (left) and number of epoch to
reach 2 %-convergence (e.g. statistical efficiency) (right). Step size
η = 0.005 and batch size B = 64. 30

xi

List of Figures

4.4 Staleness distribution for eight and seven threads with UMA and
NUMA memory model. t1-t8 indicate each individual thread and
Total are the total staleness. Blue represent threads scheduled on
socket 0 and orange threads scheduled on socket 1. Batch size, B = 64
and step size, η = 0.005. 31

4.5 Convergence time to reach 5 % of initial loss for AsyncSGD with mu-
tex lock, 2 and 4 threads for UMA and NUMA. Crashed executions
indicate number of crashed executions. Based on ten independent runs. 33

4.6 Convergence time to reach 5 % of initial loss (left) for AsyncSGD with
mutex lock, 8, 16 and 32 threads, UMA and NUMA for 8 threads and
OS scheduler for 16 and 32 threads. Crashed executions (middle)
indicate number of crashed executions and number of executions that
failed to reach 5 %-convergence are reported as diverged executions
(right). Based on ten independent runs. 34

4.7 Convergence time (left) to reach 5 % of initial loss for AsyncSGD with
mutex lock, 2 and 4 threads for UMA and NUMA. Crashed executions
(middle) indicate number of crashed executions and number of exe-
cutions that failed to reach 5 %-convergence are reported as diverged
executions (right). Based on ten independent runs. 35

4.8 Convergence time to reach 5 % of initial loss (left) for AsyncSGD with
rw-lock, 8, 16 and 32 threads, UMA and NUMA for 8 threads and
OS scheduler for 16 and 32 threads. Crashed executions (middle)
indicate number of crashed executions and number of executions that
failed to reach 5 %-convergence are reported as diverged executions
(right). Based on ten independent runs. 36

4.9 Convergence time (left) to reach 5 % of initial loss for Leashed-SGD
with persistence bound ps = ∞, 2 and 4 threads for UMA and
NUMA. Crashed executions (middle) indicate number of crashed exe-
cutions and number of executions that failed to reach 5 %-convergence
are reported as diverged executions (right). Based on ten independent
runs. 37

4.10 Convergence time to reach 5 % of initial loss (left) for Leashed-SGD
with persistence bound ps = ∞, 8, 16 and 32 threads, UMA and
NUMA for 8 threads and OS scheduler for 16 and 32 threads. Crashed
executions (middle) indicate number of crashed executions and num-
ber of executions that failed to reach 5 %-convergence are reported as
diverged executions (right). Based on ten independent runs. 38

4.11 Convergence time (left) to reach 5 % of initial loss for HOGWILD!,
2 and 4 threads for UMA and NUMA. Crashed executions (middle)
indicate number of crashed executions and number of executions that
failed to reach 5 %-convergence are reported as diverged executions
(right). Based on ten independent runs. 39

xii

List of Figures

4.12 Convergence time to reach 5 % of initial loss (left) for HOGWILD!, 8,
16 and 32 threads, UMA and NUMA for 8 threads and OS scheduler
for 16 and 32 threads. Crashed executions (middle) indicate number
of crashed executions and number of executions that failed to reach
5 %-convergence are reported as diverged executions (right). Based
on ten independent runs. 40

4.13 Staleness distribution for AsyncSGD with mutex lock, based on the
average of 10 independent executions. 42

4.14 Staleness distribution for AsyncSGD with RW-lock lock, based on the
average of 10 independent executions. 42

4.15 Staleness distribution for Lsashed-SGD [1], with persistence bound
ps =∞, based on the average of 10 independent executions. 43

4.16 Staleness distribution for Lsashed-SGD [1], with persistence bound
ps=1, based on the average of 10 independent executions. 43

4.17 Staleness distribution for Lsashed-SGD [1], with persistence bound
ps=0, based on the average of 10 independent executions. 44

4.18 Staleness distribution for HOGWILD! [2], based on the average of 10
independent executions. 44

4.19 Convergence rate for MLP with ε = {10%, 5%, 2%} of the initial error,
maximum level of parallelism m=8 and minimum level of parallelism
m=2. UMA (left), NUMA (right), step size (η) and batch size (B) are
indicated in the legend and in Table 4.3. Diverge indicate the number
of times respective algorithm failed to reach ε-convergence within 60
seconds and crash indicate the number of times the execution crashed.
PS indicate the persistence bound for Leashed-SGD. Based on ten
independent runs of each setting. 45

4.20 Convergence rate for MLP with ε = {10%, 5%, 2%} of the initial
error, for 16 and 32 threads. Step size (η) and batch size (B) are
indicated in the legend and in Table 4.3. Diverge indicate the number
of times respective algorithm failed to reach ε-convergence within 60
seconds and crash indicate the number of times the execution crashed.
PS indicate the persistence bound for Leashed-SGD. Based on ten
independent runs of each setting. 46

4.21 Average epoch time (e.g. computational efficiency, left) and number
of epochs to reach 2 %-convergence (e.g. statistical efficiency, right)
for eight threads. Diverge indicate the number of times respective
algorithm failed to reach ε-convergence within 60 seconds and crash
indicate the number of times the execution crashed. PS indicate the
persistence bound for Leashed-SGD. Based on ten independent runs,
settings presented in Table 4.3 . 46

4.22 Convergence rate with linear, exponential, random and no backoff,
seven (left) and eight (right) threads. ε =2 %, settings used are pre-
sented in Table 4.3. 47

4.23 Convergence rate of AsyncSGD (mutex- and rw-lock) and Leashed-
SGD with linear, exponential, random and no backoff, 16 (left) and
32 (right) threads. ε =2 %, settings used are presented in Table 4.3. . 48

xiii

List of Figures

A.1 Heat map of Leashed-SGD with persistence bound 1, time to reach
5 %-convergence (left). Crashed executions (middle) indicate number
of crashed executions and number of executions that failed to reach
5 %-convergence are reported as diverged executions (right). Based
on ten independent runs. For 2 and 4 threads. II

A.2 Heat map of Leashed-SGD with persistence bound 1, time to reach
5 %-convergence (left). Crashed executions (middle) indicate number
of crashed executions and number of executions that failed to reach
5 %-convergence are reported as diverged executions (right). Based
on ten independent runs. For 8, 16 and 32 threads. III

A.3 Heat map of Leashed-SGD with persistence bound 0, time to reach
5 %-convergence (left). Crashed executions (middle) indicate number
of crashed executions and number of executions that failed to reach
5 %-convergence are reported as diverged executions (right). Based
on ten independent runs. For 2 and 4 threads. IV

A.4 Heat map of Leashed-SGD with persistence bound 0, time to reach
5 %-convergence (left). Crashed executions (middle) indicate number
of crashed executions and number of executions that failed to reach
5 %-convergence are reported as diverged executions (right). Based
on ten independent runs. For 8, 16 and 32 threads. V

xiv

List of Tables

2.1 Notations used . 5
2.2 Overview of the most important metrics 7
2.3 Some of the most commonly used updating rules, table adopted from

[3] . 9
2.4 A brief overview of notation and terminology used regarding concur-

rent operations. 12

3.1 Overview of the dimensions analyzed 21
3.2 Progress guarantees and consistency for the algorithms used in test-

ing, table adopted from [1] . 22

4.1 MLP architecture used, with input of 784 and d = 134 794 28
4.2 Overview of experiments . 28
4.3 Parameter settings for each algorithm that reached 5 % of initial error

the fastest with a maximum of 10 % crashed executions, based on 10
independent runs of all algorithms with step size, η ∈ [0.001, 0.009]
and batch size, B ∈ {16, 32, 64, 128, 256, 512}. Fastest converging
setting reported as Step size and Batch size derived from figures 4.5-
4.12, A.1-A.4. The #Parameter combinations indicates the number
of settings reaching 5 %-convergence within 10 % of the time fastest
execution with a maximum of 10 % crashed executions. Crashes rep-
resent the total number of crashed executions over the whole test
range (540 executions). 41

xv

List of Tables

xvi

1
Introduction

Stochastic Gradient Descent (SGD) is a numerical optimization algorithm widely
used for common optimization problems in data analytics and Machine Learning
(ML), especially for large datasets using Artificial Neural Networks (ANN). Today
ANNs can solve complex tasks and be found in applications such as language trans-
lation, speech recognition, object recognition, face recognition and more [4]. ANNs
originate from the work of W. McCulloch and W. Pitts, [5], when they in 1943
proposed one of the first models on how a neuron might work. Promising early
success such as the perceptron learning simulation by [6] in 1960 resulted in a de-
bate about the capabilities of ANNs. It was concluded that a simple XOR problem
would not be solvable with ANNs [7, 8]. The progress within the field stagnated
as the research decreased. In the mid-80s, ANNs started to regain attention again
with the US-Japan Joint Conference on Cooperative/Competitive Neural Networks,
the American Institute of Physics started Neural Networks for Computing, and the
Institute of Electrical and Electronic Engineer’s had their first International Confer-
ence on Neural Networks. The growing computational capabilities of computers and
the proposal of backpropagation for gradient calculation made practical training of
multi-layer ANNs possible.
ANNs build on the concept of biological neurons, where the model of a neuron is
called a perceptron. Several perceptions can be used in connected layers, forming an
ANN that can be trained on different ML tasks. A perceptron consists of a weight, a
bias, and a non-linear activation function. The network will produce an output for a
given input, and this output can be compared to an expected output through a loss
function. From this point, the training process becomes a numerical optimization
problem where the sets of weights and biases producing the lowest error are the
target. Solving this optimization problem can be done using SGD.
Larger datasets can generally allow for more complex tasks and better generalizing
capabilities of the model. However, training ANN models can be time-consuming,
especially for large datasets. Generally, different parameters, architecture, and al-
gorithms for the model need to be tested before a satisfactory result is reached.
Therefore, it is desirable to speed up training, both to reduce training time and in
order to use larger datasets. The time to reach a satisfactory result is referred to as
convergence time.
There are several ways in which this can be done, such as transferred learning (e.g.,
start the training with pre-trained base parameters for the model), train several
models with different settings concurrently, and make use of parallelism for each
training phase. This thesis will focus on parallelism within each model training.
However, all of these techniques can be used together in a complete development

1

1. Introduction

process.
Parallelism within each model training can further be divided into four main cate-
gories:

1. Training several models concurrently that then is used as an ensemble of mod-
els forming one model

2. Training several models concurrently that are aggregated into one model
3. Make use of data parallelism within the model by parallelizing computations

in each iterative update of the model
4. Parallelize the iterative update process of the model

This thesis will focus on the fourth way of parallelizing the training phase, and
more specifically for a shared memory system using the SGD as the optimization
algorithm. SGD takes a step in the negative gradient direction for each iteration.
The stochasticity comes from randomly sampling a subset of the data for the gradient
calculation. Each update thus builds on the previous state/position. SGD has two
main parameters that need to be selected before the optimization process, step size
and batch size. The step size is a constant that scales the size of the step taken in
each iteration. The batch size is the size of the subset sampled from the data used
to calculate the gradient.
The intuitive way of parallelizing any iterative process is to process multiple in-
stances at each iteration and then average their result at the end of each iteration.
This process is in the context of parallel SGD, known as Synchronous Parallel SGD
(SyncSGD). The other approach is to omit the averaging and let each worker up-
date their result when finished with its calculations. This approach is known as
Asynchronous Parallel SGD (AsyncSGD).
Averaging the results between each iteration implies synchronization between each
iteration, limiting performance in parallel systems. Research has under certain as-
sumptions shown theoretical performance benefits of AsyncSGD, and empirical tests
have also shown performance benefits of AsyncSGD over SyncSGD [2, 9, 1].

1.1 Statement of the problem
SyncSGD in its simplest form entails limited scalability [10, 11]. This limitation
comes from the waiting time introduced when different workers calculate gradients
at different speeds. AsyncSGD does not have this problem since there is less synchro-
nization between gradient calculations. However, this reduction of synchronization
is also the origin of the challenges with AsyncSGD.
Gradient calculations can be made on stale (old) parameters with AsyncSGD. Cal-
culations based on old parameters will introduce noise into the model, increasing
the total number of steps required until convergence. The stale gradient calculations
originate from the introduction of two or more workers. When two or more workers
concurrently read and iteratively updates the shared state, one or more updates
from other workers may be applied during the gradient computation, causing the
first worker to have an old view of the shared state. Some proposed methods for re-
ducing the effect of gradient calculations on stale parameters are adaptive step size,
delay compensating terms, variance reduction [11, 12, 13, 14]. All of these methods
are in some way trying to capture the staleness in the mathematical model, e.g.,

2

1. Introduction

changing the updating rule in order to reduce the number of updates required to
reach a certain level of precision.
Another dimension that can be analyzed is how the access to the shared state is
coordinated, i.e., fine-grained synchronization. The shared state is the current state
of the model, e.g., the value of all weights and biases of the model. When multiple
workers are introduced in AsyncSGD, the access to the shared state needs to be
coordinated, which is referred to as fine-grained synchronization. With more work-
ers, the contention for the shared state increases, and depending on the fine-grained
synchronization method, this will have different effects on training.
Hyperparameters such as batch size and step size have a significant impact on train-
ing time. For AsyncSGD, the impact of different hyperparameters is related to the
level of parallelism and the fine-grained synchronization used. In current literature,
within the field of AsyncSGD, this is something that often is overlooked. Most
papers in the field use a baseline model for hyperparameter tuning and then use
these settings across multiple algorithms and levels of parallelism. This thesis will
study how the selection of batch size and step size affect AsyncSGD with different
fine-grained synchronization methods.

1.2 Purpose of the study and hypotheses
The goal of this study is to deepen the understanding of AsyncSGD. This is done
by analyzing how convergence is affected by different fine-grained synchronization
schemes used, i.e., mutex locks, read-write locks, lock-free implementations (HOG-
WILD! and Leashed-SGD) [9, 2, 1], various backoff schemes, and how they relate to
the mini-batch size and step size.
More specifically, the effects of fine-grained synchronization are analyzed and com-
pared in scalability and convergence. How the underlying hardware, e.g., memory
access, affects convergence and staleness distribution for ANNs are also analyzed.
The use of read-write locks as a fine-grained synchronization scheme is proposed
together with three backoff schemes for Leashed-SGD and the lock-based Async-
SGD. These sub-questions are addressed in this together with how they relate to
the synchronization method used:

i How does the memory model affect convergence and staleness?
ii How does the selection of mini-batch size and step size affect convergence?
iii How does the selection of mini-batch size and step size affect staleness?
iv Can a backoff scheme help reduce contention for the shared state and thus

improve convergence or reduce staleness?

1.3 Limitations and Delimitations
This thesis focus on asynchronous parallel SGD. The motivation for asynchrony is
presented in Section 2. The focus is on shared memory systems and is limited to
the available systems at Chalmers.

3

1. Introduction

4

2
Theory and Background

The following chapter introduces the relevant concepts, theory, and background.
It starts with describing the ordinary (sequential) stochastic gradient descent and
its use in deep learning. Furthermore, the chapter also describes how SGD can
be parallelized and what challenges parallelization introduces. In Table 2.1 a brief
explanation of the notations used in this thesis is presented.

Table 2.1: Notations used

Notation Meaning
f Non-negative target/error/loss function
θ Vector of learnable parameters
η Learning rate
ε Precision indicator for convergence criteria
O(l) Output vector from layer l of an ANN
σ Non-linear activation function
N Number of hidden layers in a DNN
vτ The stale view of the state θ
τ Staleness
D The dataset
d The dimension of the learnable parameters, |θ|
t SGD iteration
B Mini-batch size
m Number of concurrent threads
w Weight
b Bias

2.1 Stochastic Gradient Descent
Stochastic gradient descent (SGD) is an iterative numerical optimization algorithm
that repeatedly takes a step in the negative gradient direction of a function f(θ).
The function f often represents the error of the model, and the goal is to minimize
f , as illustrated in Equation 2.1. θ represents the learnable metrics of the model.
The function f are often based on the maximum likelihood for a set of independent
observations that are summed up [15], see Equation 2.2. fB(θ) represents a subset

5

2. Theory and Background

of the data, known as a mini-batch.

minimize
θ

fD(θ) (2.1)

fD(θ) = 1
N

N∑
B=1

fB(θ) (2.2)

Solutions to Equation 2.1 may be found using SGD, defined as Equation 2.3 with
mini-batches, B, sampled randomly from the dataset. The parameter, η > 0 is
known as the step size and t ∈ Z+, indexes the iteration/step of the algorithm. The
updating of θ, Equation 2.3, is repeated until an acceptable tolerance is reached,
f(θ) < ε, this is referred to as ε-convergence. A single update of, θ, according to
Equation 2.3 are referred to as one SGD iteration.

θ(t+1) = θt − η∇fB(θt) (2.3)

Figure 2.1 illustrates SGD optimization over a two dimensional target function,
fD(θ) = fD(w1, w2). The SGD steps are represented by the red line in the figure,
where each step is indicated by a point.

Figure 2.1: Illustration of a Stochastic Gradient Descent iterative optimization
algorithm for a two-dimensional target function. SGD repeatedly takes a step in the
negative gradient direction of the target function

SGD originates from gradient descent, which uses the whole dataset for gradient
calculations instead of mini-batches. The random sampling of mini-batches used in
SGD has the benefit of making each iteration execute faster. The random sampling
of mini-batches is especially beneficial when the dataset is large so that fitting the

6

2. Theory and Background

whole dataset in memory is not possible. Another benefit from sampling mini-
batches randomly is that SGD thereby have a chance of handling some non-convex
target functions. SGD can be used for various numerical optimization problems. One
problem where SGD has proven particularly useful is in Artificial Neural Networks
(ANN) training, especially with large datasets.

2.1.1 Metrics of interest
In order to evaluate the performance, we need to define what metrics that are of
interest. Intuitively for any iterative optimization algorithm, it is of interest to know
the number of steps required to reach a certain accuracy, ε-convergence. It is also
of interest to know the total wall-clock time to reach that accuracy, given that the
algorithm converges.
The convergence rate describes the rate that the computational error is approaching
0 as the number of iterations is approaching infinity. The big-O notation describes
at what asymptotic rate a numerical method converges.
The most relevant metric to consider when evaluating the SGD is the overall con-
vergence rate, i.g. the wall-clock time until ε-convergence. The convergence rate can
be decomposed as the product of statistical efficiency and computational efficiency,
as suggested by [1, 16] where statistical and computational efficiency can be defined
as follows.
(i) Statistical efficiency is the number of SGD iterations required until ε-convergence.
(ii) Computational efficiency is the number of SGD iterations per time unit

By decomposing the convergence rate into two products and measure both overall
wall-clock time and at least one of the two, statistical efficiency or computational
efficiency, it is possible to identify from where the change in performance comes.

convergence rate = statistical efficiency × computational efficiency
Table 2.2 shows an overview of the most important metrics used when evaluating
different algorithms in this work.

Table 2.2: Overview of the most important metrics

Notation Meaning
Convergence rate Time to reach ε-convergence, i.e. wall-clock time until

f(θ) ≤ ε
Statistical efficiency Number of SGD iterations required until ε-

convergence
Computational efficiency Number of SGD iterations per time unit
Stability Percentage of successful executions

7

2. Theory and Background

2.1.2 Parameters and hyperparameters
Hyperparameters are assigned a value before the optimization process, such as mini-
batch size, learning rate, or starting values for θ, e.g., θ0. The selection of these
parameters can affect the learning process, e.g., convergence rate and stability. Sta-
bility in this context is defined as the ratio between successful and failed training
processes.
The starting point, θ0, is usually selected at random. Since the starting point affect
the convergence it might be necessary to run the algorithm several times to reach a
sufficient ε-convergence [15].
The size of the mini-batch is another parameter that affects the convergence rate.
A larger mini-batch makes for a better gradient approximation and can use inherent
concurrency when evaluating the gradient. However, increasing the mini-batch size
also increases memory consumption if all observations in the mini-batch are to be
processed concurrently. Selecting a mini-batch too small will not utilize the inher-
ent concurrency, and choosing it too large can be problematic in three ways. The
first is the available memory; the model needs to fit in the memory during training.
The second is generalization; a larger mini-batch reduces the stochasticity, which,
depending on the dataset and optimization task, can reduce generalization capabili-
ties of the model [17]. The third is computation time; a larger batch size increases the
computation time for each gradient compared to a smaller batch size. The reduced
stochasticity with larger batch sizes can also increase convergence time, depending
on the dataset and optimization task [18, 19]. When it comes to generalization,
techniques like dropout can be used to increase generalization.
The selection of mini-batch size depends on the underlying hardware, and for mul-
ticore systems selecting a mini-batch smaller than some minimum value will not
reduce computation time. Thus the statistical efficiency is increased, and the com-
putational efficiency is constant up to some value of the mini-batch size. The optimal
mini-batch size depends on the application, and finding the optimal mini-batch size
can be challenging and time-consuming. Figure 2.2 adopted from T. Ben-Nun and
T. Hoefler, [3], shows the performance and accuracy of SGD with respect to the
mini-batch size for a fixed number of steps. The figure illustrates three regions with
region B as the desired one. From this figure, we can observe that a small batch size,
e.g., region A, results in lower performance and higher validation error. Going from
region A to region B, we can observe a reduced slope for the performance curve,
indicating that the most performance gain is in the lower range of the batch size.
We can also see that a large batch size, e.g., region C, results in degrading accuracy,
e.g., increased validation error.

8

2. Theory and Background

Performance

Validation Error

Minibatch Size
A B C

Figure 2.2: Performance and Accuracy of SGD with respect to mini-batch size for
a fixed number of steps (illustration), figure adopted from [3]

The rule used to update θ also affects both the statistical and computational effi-
ciency. As presented in Section 2.1, the regular update rule, Equation 2.3, referred
to as learning rate in Table 2.3 are the simplest form of update rule. There are
several other versions of this update rule that try to increase statistical efficiency.
Table 2.3 shows an overview of the most commonly used rules. A more complex
updating rule can increase the statistical efficiency, but this often comes at the price
of lowering the computational efficiency. How the updating rule performs depends
on the dataset and optimization task.
The choice of step size, η, affects the convergence rate. A larger step size can make
the algorithm converge faster by taking longer steps. However, if the learning rate
is selected too large, the algorithm can become unstable and diverge. On the other
hand, a small learning rate requires more steps to reach ε-convergence. There is also
an increased risk that the algorithm gets stuck in a local minimum and never reaches
ε-convergence with a smaller step size. The choice of updating rule can reduce these
risks, but the step size still affects the overall convergence.

Table 2.3: Some of the most commonly used updating rules, table adopted from
[3]

Method Formula Definitions
Learning rate θ(t+1) = θt − η∇(fBθt)
Adaptive Learning Rate θ(t+1) = θt − ηt∇(fBθt)
Momentum θ(t+1) = θt + µ(θ(t) − θ(t−1))− η∇(fBθt)
Nesterov Momentum θ(t+1) = θt + vτ vt+1 = µvt − η∇fB(θt − µvt)
AdaGrad θ

(t+1)
i = θti −

η∇θt
i√

Ai,t+ε
Ai,t = ∑t

τ=0(∇fB(θti))2

RMSProp θ
(t+1)
i = θti −

η∇θt
i√

A
′
i,t+ε

A
′
i,t = βA

′
t−1 + (1− β)(∇fB(θti)2)

Adam θ
(t+1)
i = θti −

ηM
(1)
i,t√

M
(2)
i,t +ε

M
(m)
i,t = βmMm

i,t−1+(1−βm)(∇fB(θ(t)
i))m

1−βt
m

9

2. Theory and Background

2.1.3 Artificial Neural Networks
ANN consists of multiple artificial neurons, called perceptrons, inspired by the bi-
ological neurons in our brain. A deep artificial neural network consists of several
interconnected layers of perceptrons, as shown in Figure 2.3. Each perceptron is
associated with a bias, and one or more input connections are associated with a
weight, w. Each layer can be parameterized by a weight matrix and a bias vector.
Together all weights and biases are represented by the vector θ. The numeric values
of the parameters in θ are learned through Equation 2.3. There are several types of
architects for ANNs where Multi-Layer Perceptron (MLP) and Convolutional Neural
Network (CNN) are among the most commonly used.

Input
Layer

1st Hidden
Layer

2nd Hidden
Layer

Nth Hidden
Layer

Output
Layer

o(0) o(1)

o(2) o()N
1

o()N+1
1

1

1

o(1)2

o(1)3

o(1)n

1

Figure 2.3: Example of a feedforword DNN architecture with N hidden layers and
n input-layers. The output of each layer is the input of the next layer as illustrated

MLP consists of densely connected layers, i.e., each perceptron directly connects to
every perceptron in the next layer. The incoming value (the previous layer’s output)
is multiplied with a corresponding weight at each perceptron. The incoming values
are summed up and, then the bias is subtracted. After that, the aggregated value
is run through a non-linear activation function to produce an output to the next
layer, see Equation 2.4. σ is referred to as the activation function. A commonly
used activation function is ReLU (σReLU = max(0, x)).

o(l) = σ(
n∑
i=1

wi · o(l−1)
i − b) (2.4)

CNN does not have densely connected layers but, instead, CNN uses a sparse net-
work architecture as illustrated in Figure 2.4. CNN consists of layers that convolve
the input with learnable filters. The general structure of a CNN can be divided into
four main sections as shown below and in Figure 2.4.
(i) Convolution

10

2. Theory and Background

(ii) Pooling
(iii) Flattening
(iv) Full Connection
CNN is commonly used in classification tasks for image recognition. CNN has fewer
learnable parameters compared to MLP.

Convolution

Input image Convolutional layer Pooling layer Dense layer Output layer

Pooling Flattering

Y1

Y2

Y3

Figure 2.4: Example of a CNN architecture

2.1.4 The training process
The training process is similar for both MLP and CNN and can be divided into four
main steps that are repeated until ε-convergence is reached:
(i) Select a mini-batch at random from the dataset
(ii) Pass the selected mini-batch trough the network (forward pass)
(iii) Calculate the output error and use backpropagation to estimate the gradient

∇fB(θ) (backward pass)
(iv) Use the update rule, Equation 2.3, to update the learnable parameters of the

network, e.g. the weights and biases
When the whole dataset has been passed through the network, it is called an epoch.
In practice, it usually takes multiple epochs to reach ε-convergence. It is also com-
mon to shuffle the data between each epoch and then select the mini-batches se-
quentially [20] instead of selecting the mini-batches at random each iteration.

2.2 Parallel Stochastic Gradient Descent
The increasing amount of available data and growing demand for data analysis
have led to an increased demand for more efficient systems that can utilize modern
many-core processing architecture and larger distributed systems. Parallel algo-
rithms can intuitively use such systems more efficiently. Therefore, parallelization
of the SGD has been given an increased amount of attention lately. Although gra-
dients calculated in parallel will increase the throughput of calculated gradients
this, does not necessarily imply improvements of the total execution time to reach
ε-convergence. This is because of the inherent sequential nature of the SGD; each
update is dependent on its previous value. This makes parallel gradient calculations
non-trivial, requiring synchronization after each iteration to not break the original

11

2. Theory and Background

SGD algorithm’s semantics. This method is referred to as Synchronous Parallel SGD
(SyncSGD). Synchronization is costly and tends to limit the scalability of a paral-
lel system; therefore, it is of interest to investigate how lowering the requirement
for synchronization affects parallel SGD. This approach is known as Asynchronous
Parallel SGD (AsyncSGD). AsyncSGD does not require synchronization after each
gradient calculation, and it has been shown, under certain conditions, that Async-
SGD converges faster and scales better than SyncSGD [2, 11].
The challenge with SyncSGD originates from synchronization. Threads that are
slower with their gradient calculation will delay all other threads. These slower
threads are referred to as stragglers, and the impact of stragglers can significantly
affect the convergence time of SyncSGD.
AsyncSGD, on the other hand, reduces the negative effects of stragglers by not
requiring synchronization at each iteration. However, relaxing the synchronization
requirement after each iteration changes the semantics of the algorithm, it is no
longer guaranteed that each update is based on the same view of the state, θ.
By not synchronizing after each gradient calculation, there is a risk of gradient
calculations being done on stale views of the state, θ. There have been theoretical
and empirical studies on how gradient calculations on stale views of the state affect
the convergence and efficiency, together with proposals on how to reduce the effect
of gradient calculations on stale parameters, [12, 9, 21, 11]. In Table 2.4 an overview
of the notation and terminology used regarding concurrent operations can be seen.

Table 2.4: A brief overview of notation and terminology used regarding concurrent
operations.

Notation Meaning

Starvation-freedom Every thread wanting to enter a critical section even-
tually succeed [22], implies deadlock freedom.

Lock-based synchronization Blocking progress condition. A lock is used to pro-
tect access to limited resources.

Lock-freedom At least one thread is making progress at all time,
starvation is allowed [22].

Wait-freedom All threads is making progress at all time, starvation
is not allowed

Consistent Read operations return a consistent snapshot, [1],
e.g. a read operation can not return a partially up-
dated state.

2.2.1 Parallel computer architecture and parallelization
The underlying hardware system used for training affects how the parallelization
can be done. The system used for training can roughly be categorized into single-
machine and multi-machine. The single-machine system often uses shared memory,

12

2. Theory and Background

while the multi-machine system often uses distributed memory [3].
Parallelization of the SGD can be done both on shared memory systems and dis-
tributed systems. This thesis focus on single-machine shared memory systems, but
many general concepts can be transferred to distributed systems. A shared memory
system has a global shared memory that stores the data of an application and can
be accessed by all processors or cores of the hardware systems [23]. Communica-
tion between threads is done through shared memory, where one thread writes to a
shared variable, and another reads that variable [23]. Access to shared data needs
to be coordinated by synchronization between threads [23].
Multi-core architectures are shared memory systems where there are multiple pro-
cessor cores on the same computer chip. Typically each processor has a private L1
cache and a shared L2 or L3 cache where processors can communicate [22].
Multi-threaded architecture allows a single processor to execute two or more threads
concurrently [22]. Modern computers combine multi-core with multi-threading,
where there can be multiple individual multi-threaded cores on the same chip [22].
Shared memory systems can further be divided into:

1. In Uniform Memory Access (UMA) all identical processors have equal access
time (latency) and access speed.

2. In Non Uniform Memory Access (NUMA), the processors are divided into
clusters where each cluster has its own local memory. Accessing memory
from outside the cluster requires going through an interconnection resulting in
different accessing times depending on where the data is located in memory
relative to the CPU requesting the data.

Figure 2.5 shows an example of UMA and NUMA architectures.

Memory

Core 1 Core 2

Core 3 Core 4

Memory Memory

Interconnect Interconnect Interconnect

Core 2Core 1

Socket 0

Core 4Core 3

Socket 1

UMA NUMA

Interconnect

Figure 2.5: Example of a UMA(left) and NUMA(right) architecture

2.2.2 Synchronous parallel SGD
Synchronous parallel SGD (SyncSGD) use the concept of regular sequential SGD.
However, at each iteration, multiple threads or nodes read the state, θ, select a
random sample from the dataset and calculate the gradients, ∇fB(θt), locally. The

13

2. Theory and Background

threads then synchronize by averaging the resulting local gradients and then updates
the global state, θ, according to Equation 2.3. In [11] K. Bäckström et.al. argues
that SyncSGD in its original version is statistically equivalent to sequential SGD
with larger mini-batch size. With this view, SyncSGD does not break the semantics
of the SGD, and most of the theoretical convergence guarantees and empirical results
for SGD hold even for SyncSGD.
As argued in Section 2.2, synchronization after each iteration impose challenges
for scalability. The challenge in scalability comes mainly because each iteration
is limited to the slowest thread, stragglers. The presence of stragglers becomes a
bottleneck for SyncSGD [3].
Stale-Synchronous Parallelism (SSP) can be used to reduce the impact of stragglers.
SSP relaxes the semantics of SGD by allowing asynchronous updates and only syn-
chronizes the threads after a maximum number of steps have been performed [3].
Stragglers are more prominent in heterogeneous systems making this approach work
especially well for these systems [3].
Even though SSP reduces the problems with stragglers slowing down the progress,
halting threads will still cause the whole system to halt indefinitely in the synchro-
nization phase [24]. The n-softsync method, proposed by [25], partially addresses
this issue by allowing for updates with only n threads contributing to the update,
thus relaxing the synchronization.

2.2.3 Asynchronous parallel SGD
The Asynchronous approach removes the coarse-grained synchronization, e.g., the
gradient averaging between steps, allowing for asynchronous updates of the shared
state. Asynchronous SGD implies that while an update is being calculated by one
thread, multiple concurrent updates are calculated by other threads. As mentioned
in Section 2.2, this changes the semantics of the algorithm, and there have been
several works dedicated to understanding the effect of asynchrony [12, 9, 21, 11].
The stale view of the state can be represented as vt = θt−τ , where τ is the staleness;
this gives us the following update rule.

θ(t+1) = θt − η∇fB(vt) (2.5)

Asynchronous reads and updates of the global state, θ, enable better computational
efficiency with a higher degree of parallelism. However, because of the shared global
state, θ, the contention of shared memory access increases with increased paral-
lelism. At a certain point, the computational efficiency no longer increases with the
increasing number of threads [1]. Increased parallelism also increases the gradient
updates based on stale parameters, and therefore reduces the statistical efficiency.
In [9], S. Chaturapruek et al. investigated the effects of gradient calculations on
stale parameters. S. Chaturapruek et al. showed, under assumptions such as con-
vexity, that the noise introduced by gradient calculations on stale parameters are
asymptotically negligible compared to the noise introduced by the stochasticity [9].
I. Mitliagkas et al., [21], further extended the understanding of AsyncSGD by relax-
ing the assumptions made in [9]. In [21], I. Mitliagkas et al. show that running SGD
asynchronously can be viewed as adding a momentum term to the SGD updating

14

2. Theory and Background

rule. There is no assumption on the convexity of the target function in their work,
i.e., it is applicable to deep learning. However, there are assumptions on bounded
staleness and number of threads [21].
In [25], W. Zhang et al. investigate the effects of learning rate and staleness, propos-
ing a version of AsyncSGD with staleness adaptive step size for n-softsync protocol.
This work is extended by K. Bäckström et al. in [11], by proposing a new distribution
model that better captures the staleness.
As mentioned above, there are two different synchronization levels; first, there is
the algorithmic level, e.g., asynchronous or synchronous, which can be referred to as
coarse-grained synchronization. Then, there is the thread coordination for Async-
SGD, which can be referred to as fine-grained synchronization. AsyncSGD can be
implemented in several different ways, both when it comes to coarse-grained and
fine-grained synchronization.
Coarse-grained synchronization ranges from synchronous parallel SGD to fully asyn-
chronous parallel SGD with intermediate methods such as SSP and n-softsync. Fine-
grained synchronization focuses on thread coordination, e.g., how shared resources
are accessed.
Different updating rules have different properties. These properties can indirectly
or directly affect synchronization and convergence. For instance, can updating rules
focus on statistical efficiency, computational efficiency or reduce the adverse effects
of staleness.

Fine-grained synchronization and synchronization primitives

In each SGD step (each iteration of Equation 2.5), the shared state, θ, is first
read and then updated, resulting in two critical sections. The first when reading
the shared state and the second when updating the shared state. Fine-grained
synchronization is used to coordinate the access of these critical sections. The goal
of the fine-grained synchronization is to increase scalability by reducing contention
at the critical sections. This is done with different synchronization primitives for
access to the shared state, θ. One of the simplest forms of synchronization primitives
is blocking synchronization.
Blocking synchronization uses some locking mechanism to prevent multiple threads
from accessing the same limited recourse simultaneously. Blocking synchronization
implies that any thread’s delay can delay other threads [22]. In practice, this implies
that a thread put to sleep by the OS-scheduler can block the progress of the program.
A mutually exclusive (mutex) lock can be used to protect a critical section by only
allowing for one thread in a critical section at a time. A thread is only allowed to
enter the critical section when holding the lock, making updates to the shared state
perfectly safe.
Since there are no modifications to the shared state, θ, in the first critical section,
we can allow multiple reads concurrently, e.g., there is no need for mutual exclusion
on that critical section. A read-write lock (rw-lock) allows for multiple concurrent
reads, and an exclusive write lock [26]. Readers need to lock out other writers
and readers since a write modifies the object [22]. rw-locks locks can be designed
differently, prioritizing readers, the writers, or unspecified priority. What priority
that is specified leads to different trade-offs with regards to progress guarantees.

15

2. Theory and Background

If priority is given to the readers, this allows for maximum concurrency but can
lead to starvation if contention is high. The priority can be either strong or weak.
Whenever a writer releases the lock for a strong priority, any blocking reader will
always acquire it. For a weak priority, multiple readers may hold the lock, and even
though a writer is waiting for the lock to be released, new readers can acquire the
lock. If priority is given to the writers, the readers can no longer acquire the lock
if a writer is waiting for the lock. The problem with starvation for the writers is
thereby addressed but with a trade-off in concurrency.
In systems with contention, backoff can be used to reduce contention. The contention
is reduced by backing off instead of persistently try to access the contended state.
For example, if a thread tries to acquire a lock that is not available in the case of
a lock-based system, it will back off before trying to acquire the lock again. Some
of the most commonly used backoff schemes are linear, exponential, and random
backoff. For linear and exponential backoff, the initial backoff is selected at random.
For each failed attempt to acquire the lock, the backoff time is increased linearly or
exponentially up to a maximum backoff time. For random backoff, the backoff time
is just selected randomly for each thread.
Another type of synchronization is non-blocking synchronization. Non-blocking syn-
chronization does not make use of locks to synchronize threads accessing limited
resources. There are three main types of non-blocking synchronization. The first
and weakest progress guarantee is the obstruction-freedom. A method is said to be
obstruction-free if, executed in isolation, it finishes in a finite number of steps [22].
The obstruction freedom ensures that not all threads can be blocked by a sudden
delay of one or more threads. The Lock-Free progress condition implies that at least
one thread is making progress at all times, e.g. system progress. A method is said
to be lock-free if it guarantees that infinitely often, some method call finishes in
a finite number of steps [22]. Lock-freedom thus implies obstruction-freedom, but
obstruction-freedom does not guarantee lock-freedom. Wait-free progress guarantee
has the strongest progress condition and guarantees that every thread that takes
steps makes progress. More formally, a method is wait-free if each method call fin-
ishes in a finite number of steps, independently of how its execution is interleaved
with steps of other concurrent method calls [22].
HOGWILD!, [2], is one of the most widely-used AsyncSGD algorithms for shared
memory, multi-core machines [27]. HOGWILD! is a lock-free implementation of
AsyncSGD, which is achieved by letting threads component-wise atomic update the
shared global state θ without any locks, proposed by F. Niu et. el. [2]. The HOG-
WILD! algorithm has shown to be efficient in training ML models, especially when
gradient updates are sparse [28]. For sparse gradient updates, HOGWILD! has
shown a near-linear speedup in convergence [2]. However, when relaxing the spar-
sity assumption the convergence bound increases with

√
d [29]. In [1], K. Bäckström

et al. proposed a consistent lock-free implementation of the AsyncSGD aimed to
keep the benefits of lock freedom while keeping the consistency, especially for higher
dimension problems. Consistency in this context refers to read operations returning
a consistent snapshot of the shared state θ, e.g., a read operation can not return a
partially updated θ as in an inconsistent algorithm. With the Leashed-SGD frame-
work, they showed promising results with 20 % up to four times improvements in

16

2. Theory and Background

convergence time compared to regular AsyncSGD, and HOGWILD! [1].
The data access for AsyncSGD and HOGWILD! is similar to each other, while
Leashed-SGD uses a different structure where the read of the shared state and update
to the shared state have been separated as illustrated in Figure 2.6.

R W R

R
R

W
W W

...Thred 1 Thred m

...

...

Thred 1 Thred m

θt

θt

θt+τ1 θt+τm

P

C
AS

Figure 2.6: Data access for AsyncSGD and HOGWILD! (left) and Leashed-SGD
(right). AsyncSGD uses locks to ensure mutual exclusion to the shared state, HOG-
WILD! uses component-wise atomic read and write of the shared state. In Leashed-
SGD each thread only access θt through a read operation. The update are then
calculated locally and stored at a new memory location that becomes a candidate
for θt+τ , figure adopted form [1].

Leashed-SGD uses a compare and swap (CAS) operation in a retry-loop for updating
the global state. A CAS operation is a type of read modify write instruction and is
guaranteed to be atomic. It compares the content of a memory location with a given
value and only modifies the value of that memory location if they are the same. In
Leashed-SGD a persistence bound is introduced to the CAS retry-loop, indicating
a maximum number of CAS retries for each update.

2.2.4 A note on hyperparameters and parallel SGD
In Section 2.1.2 the training process and hyperparameters are discussed for sequen-
tial SGD. Here the influence of parallelization will be taken into account. Since
SyncSGD can be viewed as sequential SGD with larger batch sizes [1, 28], the focus
will be on AsyncSGD.
S. Chaturapruek et al., [9], investigate L1, L2 and L3 cache misses for batch size
B ∈ {1, 10} for dense linear regression problems. They show that B=10 reduces
cache incoherency, resulting in halved epoch time for ten threads compared to B=1
[9].
Most papers in the field of AsyncSGD use a baseline model for hyperparameter
tuning. Since the selection of hyperparameters highly affects the convergence of the
algorithms, it is essential to understand how different settings affect the different
types of algorithms. This work aims to increase the understanding of how batch sizes
and step sizes for different fine-grained synchronization schemes affect convergence
and staleness by empirically analyzing various settings for the batch and step size.
Memory access can also affect convergence and scalability, as discussed in Section
2.2.1. The research on this topic is, to the best of my knowledge, limited. HOG-

17

2. Theory and Background

WILD! suffer from performance degradation when NUMA increases communication
time, according to H. Zhang et al., [27]. An important note is that their results
are based on linear SVM tasks and not ANN. Therefore, the optimization space is
different, where ANNs generally have more parameters than SVM, and each SGD
step will be more computational intensive for ANNs.

2.3 Problems and challenges
In this section, the problems and challenges of parallel SGD will be highlighted. The
section is divided into three main parts, starting with convergence and asynchrony,
then moving over to scalability, and lastly, testing and benchmarking.

2.3.1 Convergence and asynchrony
AsyncSGD introduces questions about statistical efficiency, e.g., how is the conver-
gence affected by asynchrony. As mentioned in Section 2.2, asynchrony increases
computational efficiency while the statistical efficiency is reduced. The trade-off
between statistical and computational efficiency is highly dependent on the applica-
tion. The reason for reduced statistical efficiency is the noise introduced by gradient
calculations based on stale parameters. Methods such as delay compensation, vari-
ance reduction, and adaptive step size, [14, 13, 11] can reduce the effect of gradient
calculation on stale parameters. With adaptive step size, [11], showed an average
speedup of ×1.5 compared to regular AsyncSGD. Leashed-SGD, [1] showed improve-
ments in wall-clock time to convergence from 20 % up to four times improvement
compared to AsyncSGD and HOGWILD!.

2.3.2 Scalability
The statistical efficiency is reduced by asynchrony with an increasing number of
threads, as mentioned in the previous section. Different techniques such as delay
compensation, variance reduction, adaptive stepsize, momentum can potentially re-
duce the statistical penalty for gradient calculations on stale parameters, allowing
for increased scalability of AsyncSGD.
For regular sequential SGD, observations in the mini-batch can potentially be calcu-
lated concurrently, making use of the data parallelism. For parallel SGD, depending
on the hardware system used, all available hardware resources might be used to run
concurrent SGD iterations. Then, the system will not fully use the gained data
parallelism with larger batch sizes. Another challenge for asynchronous updates is
memory contention. As more threads are introduced, there is increased competition
to access the shared state, θ. As described in Section 2.2.3, different synchronization
primitives for fine-grained synchronization can reduce contention of the critical sec-
tions and increase scalability. K. Bäckström et. al shows in [1] that coordination of
threads with the Leashed-SGD framework increases the overall convergence rate and
scalability compared to uncoordinated reads and writes to θ, like in the HOGWILD!
framework.

18

2. Theory and Background

2.3.3 Testing and Benchmarking
Since the performance of different algorithms is highly dependent on the dataset,
hardware, and architecture used, comparison between papers can be challenging.
Another challenge with testing and benchmarking is that selection of hyperparame-
ters might not have the same effect on every algorithm. Optimizing each algorithm
with respect to hyperparameters and optimization tasks is a very time-consuming
and resource-intensive task that might not be feasible. This work aims to give
an increased understanding of how synchronization schemes affect the selection of
hyperparameters.

19

2. Theory and Background

20

3
Methods

In this chapter, methods used and evaluated in the thesis are presented, starting with
the algorithms used for testing and then the dimensions in which the experiments
have been performed. There are five main dimensions in which the AsyncSGD is
explored in this thesis. A short summary of these a presented in Table 3.1 and in
Table 4.2 corresponding overview of the results to each step can be found. The
goal of this thesis is to answer the questions presented in Section 1.2. This is done
through the five steps presented in Table 3.1 and 4.2.

Table 3.1: Overview of the dimensions analyzed

Step Study description
S1 Memory model and parallel SGD. Here the impact of UMA and

NUMA are explored in terms of convergence time. Further more are the
statistical and computational efficiency analyzed together with the stale-
ness distribution to get full view of how the memory model affect conver-
gence.

S2 Convergence and hyperparameter selection. Here the effects of
hyperparameter selection are analyzed in terms of convergence time and
stability. This is done for different fine-grained synchronization schemes
and level of parallelism.

S3 Staleness and batch size. Here the staleness distribution are analyzed
for various levels of parallelism and batch size

S4 Comparison over tuned settings. The algorithms are compared us-
ing hyperparameter settings resulting in the fastest convergence time for
each individual algorithm and level of parallelism while still maintaining
a stability of 90 %.

S5 Backoff. Three backoff schemes are introduced for the lock-based algo-
rithms and Leashed-SGD. These are tested in terms of convergence rate
using the settings obtained from S2.

21

3. Methods

3.1 Algorithms and fine-grained synchronization
In order to understand how step size and batch size relate to fine-grained synchro-
nization, three different algorithms were selected for comparison, with each algo-
rithm with different fine-grained synchronization. The fine-grained synchronization
methods can be evaluated from their progress guarantees or in terms of consistency,
Table 2.4. Table 3.2 shows the algorithms used for testing and how they are cate-
gorized in terms of progress guarantees and consistency.

Table 3.2: Progress guarantees and consistency for the algorithms used in testing,
table adopted from [1]

Algorithm Progress guarantees Consistent
AsyncSGD [9] lock-based yes
HOGWILD! [2] lock-free no
Leashed-SGD [1] lock-free yes

All algorithms were implemented using the ParameterVector data structure pro-
posed by [1]. The data structure can be instantiated as local or shared among
threads and supports reading and submitting updates to the shared state. Algo-
rithm 1 shows an overview of the ParameterVector data structure. The data struc-
ture does not implement synchronization for protecting reads of updates. Instead,
this is left for the algorithmic implementation [1].

Algorithm 1 ParameterVector datastructure, [1]
1: Float[d] theta
2: Int t← 0 . sequence number of the most recent update of theta
3: Int n_rdrs← 0
4: Bool stale_flag ← false, deleted← false
5: function rand_init()
6: theta← N (0, 0.01)
7: function safe_delete()
8: if stale_flag ∧ n_rdrs = 0 ∧ CAS(deleted, false, true) then
9: delete theta

10: function start_reading()
11: n_rdrs.fetch_add(1)
12: function stop_reading()
13: n_rdrs.fetch_add(−1)
14: self.safe_delete()
15: function update(δ, η)
16: t.fetch_add(1)
17: for i = 0, ..., d-1 do
18: theta[i]← theta[i]− η · δ[i]

22

3. Methods

Besides regular AsyncSGD with a mutex lock, another version was implemented
using a rw-lock, resulting in four different algorithms for comparison. rw-locks allow
multiple concurrent reads but only one write at a time, as described in Section 2.2.3.
The hypothesis was that shared reads would reduce contention on the shared state
and thereby allow for better scalability. The implementation of the rw-lock was
done using the POSIX rw-lock [26]. Algorithm 2 shows an overview of the lock-
based AsyncSGD algorithm using the ParameterVector structure from Algorithm 1.

Algorithm 2 Lock-based AsyncSGD, [1]
1: GLOBAL ParamVector PARAM
2: GLOBAL Float η . step size
3: GLOBAL Lock shared_state . mutex lock / rw-lock

Initialization:
4: PARAM ← new ParamVector
5: PARAM .rand_init()

Each thread:
6: local_grad← new ParamVector
7: local_param← new ParamVector
8: repeat
9: Fetch a random mini-batch

10: shared_state.lock() . lock / read lock
11: local_param.theta = copy(PARAM.theta) . Make local copy of θ
12: shared_state.unlock() . release lock
13: local_grad.theta← comp_grad(local_param.theta)
14: shared_state.lock() . (exclusive) lock on θ
15: PARAM .update(local_grad.theta, η)
16: shared_state.unlock() . release lock
17: until convergence

For HOGWILD!, the algorithm is very similar, with the difference that locks are
removed and read/write to the shared state θ needs to be performed atomically. This
is also why read operations of the shared state in HOGWILD! can not guarantee
to return a consistent view of the state. Leashed-SGD, on the other hand, uses a
different structure. Algorithm 3 shows an overview of Leashed-SGD; for a more
detailed explanation of Leashed-SGD, see [1].

23

3. Methods

Algorithm 3 Leashed-SGD [1]
1: GOLBAL ParamVector **P . address to latest pointer
2: GLOBAL Float η . step size
3: GLOBAL Int Tp . persistence threshold
4: function latest_pointer()
5: repeat
6: latest_param← *P . fetch latest pointer
7: latest_param.start_reading() . prevent it from being recycled
8: if ¬latest_param.stale_flag then
9: return latest_param

10: else
11: latest_param.stop_reading()
12: until break

Initialization:
13: init_pv ← new ParamV ector()
14: init_pv.rand_init()
15: P ← &init_pv

Thread i:
16: local_grad← new ParamV ector
17: repeat
18: latest_param← latest_pointer()
19: local_grad.theta← comp_grad(latest_param.theta)
20: latest_param.stop_reading()
21: new_param← new ParamV ector()
22: Int num_tries← 0
23: repeat
24: latest_param← latest_pointer()
25: new_param.t← latest_param.t
26: latest_param.stop_reading()
27: new_param.update(local_grad.theta, η)
28: succ← CAS(P, latest_param, new_param)
29: if succ then
30: latest_param.stale_flag ← true
31: latest_param.safe_delete()
32: else
33: num_tries← num_tries+ 1
34: if num_tries > Tp then
35: delete new_param
36: break
37: until succ
38: until convergence

24

3. Methods

3.2 Memory model and parallel SGD
How threads are scheduled on the system can have an impact on convergence and
staleness. Therefore a comparison of uniform memory access (UMA) and non-
uniform memory access (NUMA) was made before exploring the impact of hyper-
parameters and fine-grained synchronization. Using a system with two sockets and
eight cores on each socket made it possible to schedule a maximum of eight threads
on one socket (e.g., UMA) or split them between the two sockets (e.g., NUMA).
The convergence time, computational efficiency, staleness distribution for individ-
ual threads, and the total number of updates were measured for UMA and NUMA
configuration using seven and eight threads. The reason for using seven threads
was so that handling of the global state would be done without hyper-threading on
the same socket as the other threads for UMA. By doing this with eight and seven
threads, it is possible to see if this has any effects on convergence.
For hyperparameter selection, the initial test was done with a batch size of 64 and
a step size of 0.005. In the initial experiment, the difference between UMA and
NUMA is the focus. If the difference in performance between UMA and NUMA is
insignificant, then the hyperparameter exploration can be done using either UMA
or NUMA. On the other hand, if the memory access impacts convergence, then
hyperparameter exploration will be done on both UMA and NUMA.

3.3 Convergence and hyperparameter selection
The selection of learning rate and batch size can have a high impact on convergence
time and stability, as stated in Section 2.1.2. A parameter search was done for
the algorithms presented in the previous section to explore what impact parallelism
and fine-grained synchronization have on different hyperparameter settings. The
parameter search was done over stepsize, η ∈ [0.001, 0.009] and batch size B ∈
[16, 512], for 2, 4, 8, 16 and 32 threads. The time to reach a convergence of 5 %
of the initial loss, f(θ0) ≈ 2.3, was selected as a convergence criterion. Each run
was limited to 60 s, executions that did not manage to reach 5 %-convergence in
that time are reported as diverge. The step size and batch size with the fastest
convergence time for each level of parallelism was selected for comparison between
the algorithms, see Table 4.3 and Figure 4.19 and 4.20.
Since the memory access had a noticeable impact on convergence, mainly from
computational efficiency, the hyperparameter exploration for 2, 4, and 8 threads
was done using both UMA and NUMA architecture.

3.4 Staleness and hyperparameter selection
The total staleness distribution for each algorithm, setting, and level of parallelism
was also measured to see how the staleness is affected by different settings. Since
the step size does not affect staleness, the focus will be on how batch size affects
staleness for different synchronization schemes and level of parallelism. Increasing
the batch size implies longer time to compute each update, and less updates for

25

3. Methods

each epoch. The batch size therefor have a direct impact on the contention on the
shared state, and potentially the staleness. This will be tested for the different
synchronization schemes presented in Section 3.1.

3.5 Backoff
The three backoff schemes mentioned in Section 2.2.3 were implemented for the
lock-based versions of AsyncSGD, e.g., RW-lock and mutex lock. The backoff was
implemented by using a non-blocking try-lock version of the locks in a while loop
with the backoff as described by Algorithm 4. Each thread creates a pointer to
a base backoff class from which the specific backoff class is created (e.g., linear,
exponential, or random).

Algorithm 4 Backoff implementation for lock-based AsyncSGD
1: while try_lock() do
2: backoff → start_backoff()

For Leashed-SGD, the backoff was implemented in the CAS retry-loop, e.g., between
lines 38 and 39 in Algorithm 3.
When introducing a backoff schemes the contention for the shared state are po-
tentially changed and this could affect the selection of hyperparameters and what
settings that results in the fastest convergence time. Furthermore, will a backoff
scheme introduce backoff specific hyperparameters such as maximum backoff, initial
backoff distrubution and increments in backoff time for linear backoff. Due to limita-
tions in time the settings obtained from the initial hyperparameter search was used
when evaluating the backoff. The backoff specific parameters was initially explored,
however due to limitations in time this exploration was limited.

26

4
Empirical study

In this chapter, a summary of the results is presented. Additional data such as
the complete hyperparameter search can be found in Appendix A. The experiment
setup and hardware used are presented in Section 4.1. Table 4.2 shows a summary
of the experiments and where to find corresponding results.

4.1 Experiment setup
The empirical study has been performed in five main steps as stated in Section 3.
This was done in order to answer the questions stated in Section 1.2.
A c++ framework implemented by K. Bäckström for shared-memory parallel SGD
training, [1], was extended to include a rw-lock version of AsyncSGD and the
three backoff schemes in Section 3.5 for both lock-based versions of AsyncSGD and
Leashed-SGD. The framework builds on the MiniDNN library and relies on Eigen,
[30], and OpenMP [31]. MiniDNN is a lightweight c++ library for DNN training
built on top of Eigen, a c++ template library for linear algebra.
All tests were performed on a 3.40 GHz Intel(R) Xeon(R) E5-2687W v2 system with
16 cores distributed on two sockets, each with eight cores, all supporting hyper-
threading. The MNIST dataset was used during all experiments [32].
The MNIST dataset contains 60 000 images of handwritten digits for training and
10 000 images for testing, [32]. Each image is in grayscale format and has a size of
28 × 28 pixels containing one digit that has been normalized and centered in the
image. Since the dataset contains numbers that are to be classified, the network’s
output layer has a size of 10, and since each image is represented in grayscale, the
input to the network is of size 28×28 = 784. Figure 4.1 shows an example of some
digits from the MNIST dataset.

Figure 4.1: MNIST handwritten digits example

For the MLP architecture, three hidden layers with the size 128 were used during
testing. This architecture was selected for its simplicity, and other architecture
structures might produce higher accuracy for this classification task. Table 4.1
shows an overview of the MLP architecture.

27

4. Empirical study

Table 4.1: MLP architecture used, with input of 784 and d = 134 794

Layer # Type # Neurons Act. func.
1-3 Dense 128 ReLU
4 Dense 10 Softmax

In Table 4.2 a summary of the experiments done and where to find the corresponding
results are shown. The experiments are divided into five steps. In S1 the effects of
UMA and NUMA memory models used are analyzed in-depth for seven and eight
threads using the same hyperparameter settings (η = 0.005, B = 64). S1 partially
addresses the question of how the memory model affects convergence and staleness.
In order to answer the question more definitively, the comparison was extended to a
range of hyperparameters (η ∈ [0.001, 0.009], B ∈ [16, 512]) over 2, 4, and 8 threads,
S1, S2, focusing on convergence rate and staleness distribution.
How convergence is affected by the selection of batch size and step size for different
fine-grained synchronization schemes are analyzed by the hyperparameter search in
S2 together with the convergence comparison in S4. In S3 the effects different batch
sizes have on staleness are analyzed.
In the last step, S5, the three backoff schemes presented in 3.5 are compared to their
corresponding algorithms not using a backoff, addressing the question if backoff can
reduce contention for the shared state.
The proposed rw-lock and how it compares to the other fine-grained synchronization
schemes are addressed through all of the steps S1-S5.

Table 4.2: Overview of experiments

Experiment overview

Step Architecture Description N.o.
threads

(m)

Memory
model

Precision
(ε)

Step size
(η)

Batch
size (B)

Outcome

S1 MLP Memory model 7, 8 UMA,
NUMA

2 % 0.005 64 figures
4.2-4.4

S2 MLP Parameter Search 2-32 UMA
(2-8),
NUMA
(2-32)*

5 % 0.001-
0.009

16, 32, 64,
128, 256,

512

figures
4.5-4.12,
Table 4.3,
figures
A.1-A.4

S3 MLP Staleness and batch
size

2-32 UMA
(2-8),
NUMA
(2-32)*

- 0.001-
0.009

16, 32, 64,
128, 256,

512

figures
4.13-4.18

S4 MLP Comparison over
optimal settings

7, 8 UMA,
NUMA

2 % ** ** figures
4.19-4.21

S5 MLP Backoff and conver-
gence

7, 8, 16,
32

- 2 % ** ** figures
4.22-4.23

* OS scheduler used for m > 8
** Settings gained from parameter search (Table 4.3) used

28

4. Empirical study

4.2 Memory model and convergence
Here the results from comparing UMA to NUMA are presented. Starting with
convergence rate, computational and statistical efficiency for seven threads, then
followed with eight threads. All results are based on ten independent executions.
The settings used was batch size, B = 64 and step size η = 0.005. The box contains
the 1st and 3rd quantile, outliers are indicated as points. Crashed executions are
reported as crashed, and executions that did not manage to reach ε-convergence
within 60 s are reported as diverge.

UMA NUMA
Memory_access

10

20

30

40

50

Ti
m

e
[s

]

Convergence rate (= 2%, 7 threads)
mutex
RWLOCK
LSHps = 0

LSHps = 1
LSHps = 200

HOG

UMA NUMA
Memory access

Crash

Diverge

1 1 1 1 1

UMA NUMA
Memory_access

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Av
er

ag
e

ep
oc

h
tim

e
[s

]

7 threads
Computational efficiency

mutex
RWLOCK
LSHps = 0

LSHps = 1
LSHps = 200
HOG

UMA NUMA
Memory access

Crash
Diverge

1 1 1 1 1 UMA NUMA
Memory_access

12

14

16

18

20

22

Ep
oc

h
N.

o.

Statistical efficiency
mutex
RWLOCK
LSHps = 0

LSHps = 1
LSHps = 200
HOG

UMA NUMA
Memory access

Crash
Diverge

1 1 1 1 1

Figure 4.2: Thread scheduling comparison for 7 threads. NUMA refers to 4 threads
scheduled on socket 0 and 3 threads scheduled on socket 1, and UMA refers to 7
threads scheduled to socket 0. Time to reach 2 %-convergence (top). Average epoch
time (e.g. Computational efficiency) (bottom left) and number of epoch to reach
2 %-convergence (e.g. statistical efficiency) (bottom right). Step size η = 0.005 and
batch size B = 64.

29

4. Empirical study

UMA NUMA
Memory_access

10

20

30

40

50

60

Ti
m

e
[s

]

Convergence rate (= 2%, 8 threads)
mutex
RWLOCK
LSHps = 0

LSHps = 1
LSHps = 200

HOG

UMA NUMA
Memory access

Crash

Diverge

2 1
5

1 1 3

UMA NUMA
Memory_access

1

2

3

4

5

Av
er

ag
e

ep
oc

h
tim

e
[s

]

8 threads
Computational efficiency

mutex
RWLOCK
LSHps = 0

LSHps = 1
LSHps = 200
HOG

UMA NUMA
Memory access

Crash
Diverge

2 1
5

1 1 3 UMA NUMA
Memory_access

12

14

16

18

20

22

24

26

Ep
oc

h
N.

o.
Statistical efficiency

mutex
RWLOCK
LSHps = 0

LSHps = 1
LSHps = 200
HOG

UMA NUMA
Memory access

Crash
Diverge

2 1
5

1 1 3

Figure 4.3: Thread scheduling comparison for 8 threads. NUMA refers to 4 threads
scheduled on socket 0 and 4 threads scheduled on socket 1 and UMA refers to 8
threads scheduled to socket 0. Average epoch time (e.g. Computational efficiency)
(left) and number of epoch to reach 2 %-convergence (e.g. statistical efficiency)
(right). Step size η = 0.005 and batch size B = 64.

30

4. Empirical study

0 2 4 6 8 10 12 14
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

mutex, 7 threads, UMA
t1
t2
t3
t4
t5
t6
t7
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

mutex, 7 threads, NUMA
t1
t2
t3
t4
t5
t6
t7
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

mutex, 8 threads, UMA
t1
t2
t3
t4
t5
t6
t7
t8
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

mutex, 8 threads, NUMA
t1
t2
t3
t4
t5
t6
t7
t8
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

RWLOCK, 7 threads, UMA
t1
t2
t3
t4
t5
t6
t7
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y

RWLOCK, 7 threads, NUMA
t1
t2
t3
t4
t5
t6
t7
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.2

0.4

0.6

Pr
ob

ab
ilit

y

RWLOCK, 8 threads, UMA
t1
t2
t3
t4
t5
t6
t7
t8
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

RWLOCK, 8 threads, NUMA
t1
t2
t3
t4
t5
t6
t7
t8
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y

LSHps = , 7 threads, UMA
t1
t2
t3
t4
t5
t6
t7
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

LSHps = , 7 threads, NUMA
t1
t2
t3
t4
t5
t6
t7
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

LSHps = , 8 threads, UMA
t1
t2
t3
t4
t5
t6
t7
t8
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

LSHps = , 8 threads, NUMA
t1
t2
t3
t4
t5
t6
t7
t8
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

LSHps = 1, 7 threads, UMA
t1
t2
t3
t4
t5
t6
t7
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

LSHps = 1, 7 threads, NUMA
t1
t2
t3
t4
t5
t6
t7
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

LSHps = 1, 8 threads, UMA
t1
t2
t3
t4
t5
t6
t7
t8
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

LSHps = 1, 8 threads, NUMA
t1
t2
t3
t4
t5
t6
t7
t8
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

LSHps = 0, 7 threads, UMA
t1
t2
t3
t4
t5
t6
t7
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

LSHps = 0, 7 threads, NUMA
t1
t2
t3
t4
t5
t6
t7
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

LSHps = 0, 8 threads, UMA
t1
t2
t3
t4
t5
t6
t7
t8
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

LSHps = 0, 8 threads, NUMA
t1
t2
t3
t4
t5
t6
t7
t8
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

HOG, 7 threads, UMA
t1
t2
t3
t4
t5
t6
t7
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

HOG, 7 threads, NUMA
t1
t2
t3
t4
t5
t6
t7
Total

0 2 4 6 8 10 12 14
Staleness

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ob

ab
ilit

y

HOG, 8 threads, UMA
t1
t2
t3
t4
t5
t6
t7
t8
Total

0 2 4 6 8 10 12 14
Staleness

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

HOG, 8 threads, NUMA
t1
t2
t3
t4
t5
t6
t7
t8
Total

Figure 4.4: Staleness distribution for eight and seven threads with UMA and
NUMA memory model. t1-t8 indicate each individual thread and Total are the
total staleness. Blue represent threads scheduled on socket 0 and orange threads
scheduled on socket 1. Batch size, B = 64 and step size, η = 0.005.

31

4. Empirical study

4.3 Convergence analysis
Figure 4.5-4.12 shows a selection of the results from the hyperparameter search,
Leashed-SGD with persistence bound of zero and one are located in Appendix A.
All results in this section are based on ten independent executions, and each ex-
ecution was limited to 60 s. The heatmaps (figure 4.5-4.12) shows time to reach
ε-convergence of the initial error, θ0 ≈ 2.3, where ε = 5 %. Crash indicates the num-
ber of times the algorithm crashed and diverge the number of times the execution
failed to reach ε-convergence. PS indicates the persistence bound of Leashed-SGD.
AsyncSGD with mutex lock, rw-lock is referred to as mutex, and RWLOCK respec-
tively. The section starts with presenting the results from each algorithm over 2-32
threads and for UMA and NUMA using heatmap representations of mean time to
reach 5 %-convergence for different hyperparameter settings, the number of crashed
and diverged executions are also presented.
In Table 4.3 a summary of the settings reaching 5 %-convergence the fastest for
each level of parallelism, memory model, and algorithm is presented. The table
is derived from figures 4.5-4.12, A.1-A.4. Over the test range (η ∈ [0.001, 0.009],
B ∈ [16, 32, ..., 512]) there are 54 possible combinations of hyperparameter settings.
As a measurement of parameter selection robustness, the number of parameter com-
binations within 10 % of the training time with the fastest convergence was mea-
sured. From this, all parameter combinations with more than 10 % crashed execu-
tions were excluded. They indicate the range of hyperparameters resulting in an
optimal or close to optimal convergence time for that level of parallelism and algo-
rithm. The time for this range is also reported in the table. The total number of
crashed execution over the whole test range is reported, indicating the algorithm’s
general stability over that level of parallelism.

32

4. Empirical study

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

40 52

25 30 44

20 22 32 50

20 19 25 39

16 18 22 31 56

15 15 20 28 48

15 15 19 25 43

15 15 16 23 37

15 15 16 21 35 61

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 10 10 10 10

0 0 0 10 10 10

0 0 0 0 10 10

0 0 0 0 10 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 5

N.o. diverged executions

20

30

40

50

60

0

2

4

6

8

10

0

2

4

6

8

10

mutex, 2-threads, UMA

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

40 52

25 30 44

20 22 32 50

20 19 25 39

18 19 22 31 55

15 15 19 28 47

15 15 19 25 42

15 15 17 22 37

15 15 16 20 34 59

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 10 10 10 10

0 0 0 10 10 10

0 0 0 0 10 10

0 0 0 0 10 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 1

N.o. diverged executions

15

20

25

30

35

40

45

50

55

0

2

4

6

8

10

0

2

4

6

8

10

mutex, 2-threads, NUMA

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

26 27 42

17 15 24 38

13 12 18 27 47

13 10 14 21 38

13 10 12 18 30 56

11 8 11 16 27 51

10 8 11 15 25 46

10 8 10 14 24 42

10 8 9 14 22 37

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 10 10 10

0 0 0 0 10 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. diverged executions

10

20

30

40

50

0

2

4

6

8

10

0

2

4

6

8

10

mutex, 4-threads, UMA

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

25 26 40

16 15 22 35

13 12 16 25 43

13 10 13 20 34

12 10 12 17 28 54

10 8 10 15 25 48

10 8 10 14 23 43

10 8 10 13 21 42

10 8 9 13 20 35

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 10 10 10

0 0 0 0 10 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. diverged executions

10

20

30

40

50

0

2

4

6

8

10

0

2

4

6

8

10

mutex, 4-threads, NUMA

Figure 4.5: Convergence time to reach 5 % of initial loss for AsyncSGD with mutex
lock, 2 and 4 threads for UMA and NUMA. Crashed executions indicate number of
crashed executions. Based on ten independent runs.

33

4. Empirical study

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

34 40 40 55

22 23 22 29 45

17 18 18 21 33

17 17 15 18 28 55

17 15 13 16 24 47

17 14 13 14 22 40

17 14 13 15 20 39

17 14 12 16 20 40

17 15 12 13 21 42

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 2 0 0 0

0 0 1 2 0 0

0 1 2 2 0 0

0 2 6 2 1 0

0 1 2 2 2 1

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 10 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. diverged executions

15

20

25

30

35

40

45

50

55

0

2

4

6

8

10

0

2

4

6

8

10

mutex, 8-threads, UMA

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

27 23 23 40

17 13 13 21 36

13 10 11 15 27 50

14 9 9 13 22 41

14 8 8 11 20 34

13 9 8 10 17 31

14 8 7 10 17 31

14 7 8 10 15 29

14 7 10 17 33

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 0 1 2 1 0

0 0 2 1 0 0

0 0 6 2 2 1

0 0 10 5 1 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 10 10

0 0 0 0 0 10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. diverged executions

10

15

20

25

30

35

40

45

50

0

2

4

6

8

10

0

2

4

6

8

10

mutex, 8-threads, NUMA

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

36 28 33 36 48

23 19 20 22 29

22 17 16 18 22 44

19 16 15 17 20 38

21 16 14 16 20 39

21 16 16 16 23 46

20 16 19 17 30

22 17 26 24 31

22 21 20 27 34 43

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 3 1 0 0

0 0 4 3 1 0

0 1 3 2 0 0

0 0 0 3 0 0

0 1 5 1 2 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 5 0 0 5 10

0 0 0 0 2 10

0 0 0 0 0 5

0 0 0 0 0 5

0 0 0 0 0 5

0 1 0 0 0 8

0 1 0 0 1 10

0 3 0 0 6 10

0 2 1 2 7 8

N.o. diverged executions

15

20

25

30

35

40

45

0

2

4

6

8

10

0

2

4

6

8

10

mutex, 16-threads

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

40 39 45 43

42 39 30 29 44

43 42 28 26 39

42 46 26 26 36

35 47 32 36 46

36 47 32 36

40 52 47

60

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 2 1 0 0 0

0 4 0 1 2 0

0 3 3 4 3 0

3 5 7 2 3 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

5 5 0 0 10 10

2 0 0 0 5 10

1 1 0 0 5 10

1 4 0 0 5 10

4 5 0 1 7 10

4 7 0 2 10 10

5 5 2 9 8 10

10 7 6 6 7 10

7 5 3 8 7 10

N.o. diverged executions

30

35

40

45

50

55

60

0

2

4

6

8

10

0

2

4

6

8

10

mutex, 32-threads

Figure 4.6: Convergence time to reach 5 % of initial loss (left) for AsyncSGD
with mutex lock, 8, 16 and 32 threads, UMA and NUMA for 8 threads and OS
scheduler for 16 and 32 threads. Crashed executions (middle) indicate number of
crashed executions and number of executions that failed to reach 5 %-convergence
are reported as diverged executions (right). Based on ten independent runs.

34

4. Empirical study

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

40 52

25 30 44

20 22 32 50

20 19 25 39

18 18 22 31 56

15 15 19 28 48

15 15 19 25 43

16 15 16 22 37

15 15 16 20 35 61

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 10 10 10 10

0 0 0 10 10 10

0 0 0 0 10 10

0 0 0 0 10 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 4

N.o. diverged executions

20

30

40

50

60

0

2

4

6

8

10

0

2

4

6

8

10

RWLOCK, 2-threads, UMA

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

40 52

25 30 44

20 22 31 50

20 19 26 39

17 19 22 31 55

15 15 19 28 47

15 15 19 25 42

15 15 16 23 37

15 15 16 20 34 59

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 10 10 10 10

0 0 0 10 10 10

0 0 0 0 10 10

0 0 0 0 10 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 2

N.o. diverged executions

15

20

25

30

35

40

45

50

55

0

2

4

6

8

10

0

2

4

6

8

10

RWLOCK, 2-threads, NUMA

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

26 27 42

17 16 24 38

13 11 17 28 48

13 10 14 22 37

13 10 12 19 31 57

10 8 11 16 28 49

10 8 11 15 25 45

10 8 10 14 23 42

10 8 9 14 21 38

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 10 10 10

0 0 0 0 10 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. diverged executions

10

20

30

40

50

0

2

4

6

8

10

0

2

4

6

8

10

RWLOCK, 4-threads, UMA

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

25 26 39

16 15 22 35

13 12 16 25 43

13 10 13 20 34

12 10 12 17 29 53

10 8 10 15 25 48

10 8 10 14 23 42

9 8 10 13 21 40

10 8 9 13 20 35

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 10 10 10

0 0 0 0 10 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. diverged executions

10

15

20

25

30

35

40

45

50

0

2

4

6

8

10

0

2

4

6

8

10

RWLOCK, 4-threads, NUMA

Figure 4.7: Convergence time (left) to reach 5 % of initial loss for AsyncSGD
with mutex lock, 2 and 4 threads for UMA and NUMA. Crashed executions (mid-
dle) indicate number of crashed executions and number of executions that failed to
reach 5 %-convergence are reported as diverged executions (right). Based on ten
independent runs.

35

4. Empirical study

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

34 40 40 57

22 22 22 28 45

17 18 18 21 33

17 17 15 18 28 54

17 15 13 17 24 47

18 14 13 15 22 42

18 14 13 14 21 40

17 14 12 14 20 42

17 14 11 13 20 40

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 1 1 0 0 0

0 1 2 1 0 0

0 0 3 3 0 0

0 4 4 0 1 0

0 1 4 1 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 10 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. diverged executions

20

30

40

50

0

2

4

6

8

10

0

2

4

6

8

10

RWLOCK, 8-threads, UMA

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

27 23 23 39

17 13 13 20 36

13 10 10 15 26 50

14 8 9 13 22 40

13 8 8 12 19 36

13 8 8 10 18 31

14 8 8 10 17 30

13 8 8 10 16 28

14 7 7 10 16 32

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 1 0 0

0 0 1 0 0 0

0 0 2 1 1 0

0 1 1 3 2 0

0 0 4 2 2 0

0 3 6 2 2 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 10 10

0 0 0 0 0 10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. diverged executions

10

15

20

25

30

35

40

45

50

0

2

4

6

8

10

0

2

4

6

8

10

RWLOCK, 8-threads, NUMA

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

33 28 31 36 47

21 17 19 21 29

21 14 15 18 22 44

18 13 14 16 21 40

18 13 13 15 22 39

18 14 15 15 23 43

19 13 13 17 28

20 16 15 17 38 48

20 22 17 34 36

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 1 1 0

0 1 0 0 1 0

0 0 0 3 2 0

0 1 2 2 2 0

0 0 3 1 0 0

0 2 3 0 0 1

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 1 10

0 0 0 0 0 10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 5

0 0 0 0 1 10

0 0 0 1 2 8

0 0 0 2 6 9

N.o. diverged executions

15

20

25

30

35

40

45

0

2

4

6

8

10

0

2

4

6

8

10

RWLOCK, 16-threads

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

38 40 36 42

29 30 24 29 43

26 38 24 27 43

25 50 28 27 41

30 31 33 46

30 36 40

42 44

46 37 59

48

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 3 0 0 0 0

0 5 0 1 3 0

3 6 2 5 1 2

7 10 5 4 0 2

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 10 10

0 0 0 0 0 10

0 0 0 0 1 10

0 2 0 0 0 10

0 10 0 0 6 10

0 7 1 2 10 10

2 5 4 9 7 10

4 4 7 4 9 8

3 0 3 6 10 8

N.o. diverged executions

25

30

35

40

45

50

55

0

2

4

6

8

10

0

2

4

6

8

10

RWLOCK, 32-threads

Figure 4.8: Convergence time to reach 5 % of initial loss (left) for AsyncSGD with
rw-lock, 8, 16 and 32 threads, UMA and NUMA for 8 threads and OS scheduler for
16 and 32 threads. Crashed executions (middle) indicate number of crashed execu-
tions and number of executions that failed to reach 5 %-convergence are reported as
diverged executions (right). Based on ten independent runs.

36

4. Empirical study

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

40 52
25 30 44
20 22 31 49
20 18 25 39
18 19 22 30 55
15 15 18 28 47
15 15 19 25 41
15 15 16 22 37
15 15 16 20 34 61

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 10 10 10 10
0 0 0 10 10 10
0 0 0 0 10 10
0 0 0 0 10 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 3

N.o. diverged executions

20

30

40

50

60

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = , 2-threads, UMA

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

50 56
31 32 46
25 24 33 51
25 20 26 40
21 20 23 31 55
19 16 20 28 47
19 16 20 26 42
19 16 17 23 37
18 17 16 21 34 59

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 10 10 10 10
0 0 0 10 10 10
0 0 0 0 10 10
0 0 0 0 10 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 0

N.o. diverged executions

20

25

30

35

40

45

50

55

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = , 2-threads, NUMA

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

30 31 41
19 18 23 37
16 13 16 27 47
15 11 13 21 36
16 11 11 18 31 56
12 9 10 16 26 49
12 9 10 15 24 45
11 9 10 14 22 42
11 9 9 14 20 37

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 10 10 10
0 0 0 0 10 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. diverged executions

10

20

30

40

50

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = , 4-threads, UMA

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

37 34 40
23 20 23 36
18 15 16 26 44
19 12 13 20 35
18 12 12 17 29 55
15 10 10 15 25 48
14 10 10 15 23 44
14 10 10 13 22 41
14 10 9 12 20 36

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 10 10 10
0 0 0 0 10 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. diverged executions

10

20

30

40

50

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = , 4-threads, NUMA

Figure 4.9: Convergence time (left) to reach 5 % of initial loss for Leashed-SGD
with persistence bound ps = ∞, 2 and 4 threads for UMA and NUMA. Crashed
executions (middle) indicate number of crashed executions and number of executions
that failed to reach 5 %-convergence are reported as diverged executions (right).
Based on ten independent runs.

37

4. Empirical study

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

60 58
59 37 31 46
45 29 22 34
42 25 19 29 55

64 37 22 17 25 48
37 21 16 21 40

52 37 22 15 22 40
38 20 14 20 36
37 22 14 20 39

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 2 1 0
0 0 2 0 1 0
0 0 1 2 2 0
0 0 2 2 1 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

10 10 5 5 10 10
10 1 0 0 0 10
10 0 0 0 0 10
10 0 0 0 0 0
9 0 0 0 0 0
10 0 0 0 0 0
9 0 0 0 0 0
10 0 0 0 0 0
10 0 0 0 0 0

N.o. diverged executions

20

30

40

50

60

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = , 8-threads, UMA

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

34 28 29 41
21 16 16 21 36
17 12 13 16 26 51
17 12 11 13 22 42
17 10 10 12 20 35
17 10 9 11 17 32
17 10 10 11 16 31
17 10 8 11 16 29
17 10 9 10 16 32

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 3 2 2 0 0
0 1 3 3 0 0
0 1 2 4 0 0
0 2 7 3 2 1

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 10 10
0 0 0 0 0 10
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. diverged executions

10

15

20

25

30

35

40

45

50

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = , 8-threads, NUMA

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

55
61 38 35 36
48 29 25 28 45
46 26 21 23 41
41 23 20 27 40
39 21 18 31 46
41 20 17 34 45
38 20 17 37 48
39 20 16 44

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 3 0
0 0 0 2 0 0
0 0 2 2 0 0
0 0 2 1 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

10 10 10 10 5 10
10 0 0 0 0 10
10 0 0 0 0 0
10 0 0 0 0 0
10 0 0 0 0 0
10 0 0 0 0 8
10 0 0 0 0 9
10 0 0 0 3 9
10 0 0 0 4 10

N.o. diverged executions

20
25
30
35
40
45
50
55
60

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = , 16-threads

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

61

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 9 10
10 10 10 10 10 10
10 10 10 10 10 9

N.o. diverged executions

56

58

60

62

64

66

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = , 32-threads

Figure 4.10: Convergence time to reach 5 % of initial loss (left) for Leashed-SGD
with persistence bound ps =∞, 8, 16 and 32 threads, UMA and NUMA for 8 threads
and OS scheduler for 16 and 32 threads. Crashed executions (middle) indicate
number of crashed executions and number of executions that failed to reach 5 %-
convergence are reported as diverged executions (right). Based on ten independent
runs.

38

4. Empirical study

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

40 52

25 30 43

20 22 31 50

20 18 25 39

19 18 22 30 56

15 15 19 28 47

15 15 18 25 42

15 15 16 23 37

15 15 16 20 34 61

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 10 10 10 10

0 0 0 10 10 10

0 0 0 0 10 10

0 0 0 0 10 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 2

N.o. diverged executions

20

30

40

50

60

0

2

4

6

8

10

0

2

4

6

8

10

HOG, 2-threads, UMA

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

42 41 48

33 30 34 51

33 25 28 40

33 25 24 33 55

25 20 21 29 47

25 19 21 26 42

25 20 17 23 36

25 20 17 21 34 59

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

10 10 10 10 10 10

0 0 0 10 10 10

0 0 0 0 10 10

0 0 0 0 10 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 3

N.o. diverged executions

20

25

30

35

40

45

50

55

0

2

4

6

8

10

0

2

4

6

8

10

HOG, 2-threads, NUMA

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

21 26 42

13 15 24 38

10 11 17 27 47

10 10 14 22 37

10 9 12 19 31 56

8 8 10 16 27 50

8 8 11 15 25 45

8 8 10 14 23 43

8 8 10 14 22 39

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 10 10 10

0 0 0 0 10 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. diverged executions

10

20

30

40

50

0

2

4

6

8

10

0

2

4

6

8

10

HOG, 4-threads, UMA

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

30 33 45

19 19 24 36

15 14 17 26 43

15 12 13 20 34

14 12 12 18 29 53

11 10 10 15 26 47

11 9 10 14 23 42

11 9 10 13 22 40

11 9 9 12 20 37

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 2 0 0 0

0 0 3 1 2 0

0 0 3 4 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 10 10 10

0 0 0 0 10 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. diverged executions

10

15

20

25

30

35

40

45

50

0

2

4

6

8

10

0

2

4

6

8

10

HOG, 4-threads, NUMA

Figure 4.11: Convergence time (left) to reach 5 % of initial loss for HOGWILD!, 2
and 4 threads for UMA and NUMA. Crashed executions (middle) indicate number
of crashed executions and number of executions that failed to reach 5 %-convergence
are reported as diverged executions (right). Based on ten independent runs.

39

4. Empirical study

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

32 32 39 56

20 18 22 30 46

16 15 16 22 34

16 13 14 19 28 54

16 12 13 17 24 48

16 12 12 14 22 41

16 12 12 14 20 39

16 12 12 13 20 42

17 11 11 13 20 39

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 2 1 2 0 0

0 1 1 2 0 0

0 0 4 2 2 0

0 3 3 1 0 1

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 2 10 10

0 0 0 0 0 10

0 0 0 0 0 10

0 0 0 0 0 2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. diverged executions

15

20

25

30

35

40

45

50

55

0

2

4

6

8

10

0

2

4

6

8

10

HOG, 8-threads, UMA

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

15 17 24 39

9 10 13 21 36

8 7 10 15 27 51

7 7 9 13 22 41

7 6 8 12 20 36

8 6 7 10 17 32

7 6 7 10 16 31

7 7 7 10 16 31

7 7 7 10 16 30

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 2 0 0 0 0

0 6 3 0 0 0

0 5 3 0 0 0

0 6 2 3 1 0

0 3 6 0 3 0

0 6 5 4 2 0

0 5 7 4 1 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 10 10

0 0 0 0 0 10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N.o. diverged executions

10

15

20

25

30

35

40

45

50

0

2

4

6

8

10

0

2

4

6

8

10

HOG, 8-threads, NUMA

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

18 19 23 31 47

12 13 15 19 29

12 11 12 15 23 42

12 9 11 14 20 40

10 10 12 14 20 39

11 9 11 15 20 43

11 9 10 13 24 46

12 10 11 17 31 48

14 12 17 22 36

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

1 2 0 0 0 0

5 4 0 2 0 0

2 4 2 1 0 1

2 5 4 4 1 0

1 5 3 3 1 0

2 5 4 3 2 1

3 3 4 3 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 3 5 7 10

0 0 0 0 5 10

0 0 0 0 5 5

0 0 0 0 2 5

0 0 0 0 1 5

0 0 0 1 3 7

0 0 0 0 5 8

0 0 0 2 6 8

0 0 0 4 6 10

N.o. diverged executions

10

15

20

25

30

35

40

45

0

2

4

6

8

10

0

2

4

6

8

10

HOG, 16-threads

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

29 28 34 45

22 20 25 29 49

24 20 23 38 58

32 28 31 43

38 39 46

48

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 0 0 0 0 0

0 0 0 0 0 0

0 3 3 0 0 0

1 0 0 0 0 0

1 4 1 1 0 0

3 5 3 3 2 1

7 7 4 4 6 2

9 5 4 4 3 2

5 7 5 6 6 1

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

St
ep

 si
ze

0 4 5 5 10 10

0 0 0 5 5 10

0 0 0 5 8 10

1 1 4 8 10 10

2 5 7 9 10 10

7 5 6 7 8 9

3 3 6 6 4 8

1 5 6 6 7 8

5 3 5 4 4 9

N.o. diverged executions

20

25

30

35

40

45

50

55

0

2

4

6

8

10

0

2

4

6

8

10

HOG, 32-threads

Figure 4.12: Convergence time to reach 5 % of initial loss (left) for HOGWILD!,
8, 16 and 32 threads, UMA and NUMA for 8 threads and OS scheduler for 16 and
32 threads. Crashed executions (middle) indicate number of crashed executions and
number of executions that failed to reach 5 %-convergence are reported as diverged
executions (right). Based on ten independent runs.

40

4. Empirical study

Table 4.3: Parameter settings for each algorithm that reached 5 % of initial er-
ror the fastest with a maximum of 10 % crashed executions, based on 10 inde-
pendent runs of all algorithms with step size, η ∈ [0.001, 0.009] and batch size,
B ∈ {16, 32, 64, 128, 256, 512}. Fastest converging setting reported as Step size and
Batch size derived from figures 4.5-4.12, A.1-A.4. The #Parameter combinations
indicates the number of settings reaching 5 %-convergence within 10 % of the time
fastest execution with a maximum of 10 % crashed executions. Crashes represent
the total number of crashed executions over the whole test range (540 executions).

Threads Memory model Algorithm Step size
(10−3)

Batch size #Parameter
combinations

Time
[s]

Crashes

Mutex 9 32 11 15-16 0
9 32 10 15-17 0

RW-lock 9 32 10 15-16 0
9 32 11 15-17 0

LSHPS=∞
9 32 10 15-16 0
9 64 7 16-18 0

LSHPS=1
9 32 11 15-17 0
8 64 7 16-18 0

LSHPS=0
8 64 5 21-23 0
9 64 4 25-27 0

2 UMA
NUMA

HOG 9 32 10 15-16 0
9 64 3 17-19 0

Mutex 9 32 5 8-9 0
9 32 5 8-9 0

RW-lock 9 32 5 8-9 1
9 32 6 8-9 1

LSHPS=∞
9 64 8 9-10 1
9 64 8 9-10 0

LSHPS=1
9 64 8 9-10 1
9 64 5 9-10 4

LSHPS=0
9 64 4 20-22 0
9 64 3 19-21 0

4 UMA
NUMA

HOG 9 32 9 8-9 2
9 16 4 9-10 16

Mutex 6 64 3 13-14 30
9 32 8 7-8 37

RW-lock 5 64 6 13-14 28
8 32 7 8-9 35

LSHPS=∞
7 128 2 15-17 16
5 64 5 10-11 37

LSHPS=1
8 128 3 16-18 9
8 64 4 9-10 22

LSHPS=0
9 64 2 27-28 0
9 64 7 16-18 3

8 UMA
NUMA

HOG 8 32 8 12-13 25
9 16 6 7-8 77

Mutex 4 64 10 15-17 31
RW-lock 5 64 7 13-14 28
LSHPS=∞ 9 128 2 16-18 13
LSHPS=1 9 64 5 20-21 9
LSHPS=0 9 128 6 25-28 0

16 *

HOG 4 64 5 11-12 82
Mutex 3 128 5 26-29 44
RW-lock 3 64 4 24-26 60
LSHPS=∞ - - - - 1
LSHPS=1 8 128 5 53-58 2
LSHPS=0 8 128 4 49-54 1

32 *

HOG 2 32 2 20-22 118
* OS scheduler used

41

4. Empirical study

4.4 Staleness distribution and batch size
The following figures shows the total staleness distribution for 8 and 32 threads for
different batch sizes. The step size do not affect staleness and was therefor set to a
value in the middle of the ranged used during testing, e.g. η = 0.005.

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

mutex, 2 threads, UMA
batch_size

16
32
64
128
256
512

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

mutex, 2 threads, NUMA
batch_size

16
32
64
128
256
512

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

mutex, 4 threads, UMA
batch_size

16
32
64
128
256
512

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

mutex, 4 threads, NUMA
batch_size

16
32
64
128
256
512

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

mutex, 8 threads, UMA
batch_size

16
32
64
128
256
512

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

mutex, 8 threads, NUMA
batch_size

16
32
64
128
256
512

0 10 20 30 40
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

mutex, 16 threads, NUMA
batch_size

16
32
64
128
256
512

0 10 20 30 40 50
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y

mutex, 32 threads, NUMA
batch_size

16
32
64
128
256
512

Figure 4.13: Staleness distribution for AsyncSGD with mutex lock, based on the
average of 10 independent executions.

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

RWLOCK, 2 threads, UMA
batch_size

16
32
64
128
256
512

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

RWLOCK, 2 threads, NUMA
batch_size

16
32
64
128
256
512

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

RWLOCK, 4 threads, UMA
batch_size

16
32
64
128
256
512

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

RWLOCK, 4 threads, NUMA
batch_size

16
32
64
128
256
512

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

RWLOCK, 8 threads, UMA
batch_size

16
32
64
128
256
512

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

RWLOCK, 8 threads, NUMA
batch_size

16
32
64
128
256
512

0 10 20 30 40
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y

RWLOCK, 16 threads, NUMA
batch_size

16
32
64
128
256
512

0 10 20 30 40 50
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

RWLOCK, 32 threads, NUMA
batch_size

16
32
64
128
256
512

Figure 4.14: Staleness distribution for AsyncSGD with RW-lock lock, based on
the average of 10 independent executions.

42

4. Empirical study

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

LSHps = , 2 threads, UMA
batch_size

16
32
64
128
256
512

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

LSHps = , 2 threads, NUMA
batch_size

16
32
64
128
256
512

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

LSHps = , 4 threads, UMA
batch_size

16
32
64
128
256
512

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

LSHps = , 4 threads, NUMA
batch_size

16
32
64
128
256
512

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Staleness

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

LSHps = , 8 threads, UMA
batch_size

16
32
64
128
256
512

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

LSHps = , 8 threads, NUMA
batch_size

16
32
64
128
256
512

0 10 20 30 40
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ilit

y

LSHps = , 16 threads, NUMA
batch_size

16
32
64
128
256
512

0 10 20 30 40 50
Staleness

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

LSHps = , 32 threads, NUMA
batch_size

16
32
64
128
256
512

Figure 4.15: Staleness distribution for Lsashed-SGD [1], with persistence bound
ps =∞, based on the average of 10 independent executions.

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

LSHps = 1, 2 threads, UMA
batch_size

16
32
64
128
256
512

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

LSHps = 1, 2 threads, NUMA
batch_size

16
32
64
128
256
512

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

LSHps = 1, 4 threads, UMA
batch_size

16
32
64
128
256
512

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y

LSHps = 1, 4 threads, NUMA
batch_size

16
32
64
128
256
512

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y

LSHps = 1, 8 threads, UMA
batch_size

16
32
64
128
256
512

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Staleness

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

LSHps = 1, 8 threads, NUMA
batch_size

16
32
64
128
256
512

0 10 20 30 40
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

LSHps = 1, 16 threads, NUMA
batch_size

16
32
64
128
256
512

0 10 20 30 40 50
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

LSHps = 1, 32 threads, NUMA
batch_size

16
32
64
128
256
512

Figure 4.16: Staleness distribution for Lsashed-SGD [1], with persistence bound
ps=1, based on the average of 10 independent executions.

43

4. Empirical study

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

LSHps = 0, 2 threads, UMA
batch_size

16
32
64
128
256
512

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

LSHps = 0, 2 threads, NUMA
batch_size

16
32
64
128
256
512

0 2 4 6 8 10
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

LSHps = 0, 4 threads, UMA
batch_size

16
32
64
128
256
512

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

LSHps = 0, 4 threads, NUMA
batch_size

16
32
64
128
256
512

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Staleness

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

LSHps = 0, 8 threads, UMA
batch_size

16
32
64
128
256
512

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Staleness

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

LSHps = 0, 8 threads, NUMA
batch_size

16
32
64
128
256
512

0 10 20 30 40
Staleness

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

LSHps = 0, 16 threads, NUMA
batch_size

16
32
64
128
256
512

0 10 20 30 40 50
Staleness

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

LSHps = 0, 32 threads, NUMA
batch_size

16
32
64
128
256
512

Figure 4.17: Staleness distribution for Lsashed-SGD [1], with persistence bound
ps=0, based on the average of 10 independent executions.

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

HOG, 2 threads, UMA
batch_size

16
32
64
128
256
512

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

HOG, 2 threads, NUMA
batch_size

16
32
64
128
256
512

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

HOG, 4 threads, UMA
batch_size

16
32
64
128
256
512

0 2 4 6 8 10
Staleness

0.0

0.2

0.4

0.6

0.8
Pr

ob
ab

ilit
y

HOG, 4 threads, NUMA
batch_size

16
32
64
128
256
512

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y

HOG, 8 threads, UMA
batch_size

16
32
64
128
256
512

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Staleness

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ilit

y

HOG, 8 threads, NUMA
batch_size

16
32
64
128
256
512

0 10 20 30 40
Staleness

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ilit

y

HOG, 16 threads, NUMA
batch_size

16
32
64
128
256
512

0 10 20 30 40 50
Staleness

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

HOG, 32 threads, NUMA
batch_size

16
32
64
128
256
512

Figure 4.18: Staleness distribution for HOGWILD! [2], based on the average of 10
independent executions.

4.5 Convergence comparison
In this section a comparison of the the algorithms are done based on the settings
from Table 4.3. The comparison are done by analyzing convergence rate for 2-32
threads. Then statistical and computational efficiency, individual staleness for each
thread, and number of updates will be analyzed for eight threads.

44

4. Empirical study

The following figures shows time to ε-convergence, where ε = {10%, 5% and 2%} of
the initial loss, for AsyncSGD with mutex lock, RW-lock, HOGWILD! and Leashed-
SGD with the settings gained from the parameter search, e.g. Table 4.3. The
box contains the 1st and 3rd quantile from 10 independent executions, outliers are
indicated as points. The step size (η) and batch size (B) used for each algorithm
are presented in the legend and in Table 4.3.

10% 5% 2%

10

15

20

25

30

35

40

45

Ti
m

e
[s

]

Convergence rate
2-threads, UMA

mutex,
=0.009, B=32

RWLOCK,
=0.009, B=32

LSHps = ,
=0.009, B=32

LSHps = 1,
=0.009, B=32

LSHps = 0,
=0.008, B=64

HOG,
=0.009, B=32

10% 5% 2%

Crash

Diverge

10% 5% 2%

10

20

30

40

50

Ti
m

e
[s

]

Convergence rate
2-threads, NUMA

mutex,
=0.009, B=32

RWLOCK,
=0.009, B=32

LSHps = ,
=0.009, B=64

LSHps = 1,
=0.008, B=64

LSHps = 0,
=0.009, B=64

HOG,
=0.009, B=64

10% 5% 2%

Crash

Diverge

10% 5% 2%
5

10

15

20

25

30

35

40

Ti
m

e
[s

]

Convergence rate
4-threads, UMA

mutex,
=0.009, B=32

RWLOCK,
=0.009, B=32

LSHps = ,
=0.009, B=64

LSHps = 1,
=0.009, B=64

LSHps = 0,
=0.009, B=64

HOG,
=0.009, B=32

10% 5% 2%

Crash

Diverge

10% 5% 2%
5

10

15

20

25

30

35

40

Ti
m

e
[s

]

Convergence rate
4-threads, NUMA

mutex,
=0.009, B=32

RWLOCK,
=0.009, B=32

LSHps = ,
=0.009, B=64

LSHps = 1,
=0.009, B=64

LSHps = 0,
=0.009, B=64

HOG,
=0.009, B=16

10% 5% 2%

Crash

Diverge

1 1 1

10% 5% 2%

10

20

30

40

50

60

Ti
m

e
[s

]

Convergence rate
8-threads, UMA

mutex,
=0.006, B=64

RWLOCK,
=0.005, B=64

LSHps = ,
=0.007, B=128

LSHps = 1,
=0.008, B=128

LSHps = 0,
=0.009, B=64

HOG,
=0.008, B=32

10% 5% 2%

Crash

Diverge

1 1 1

2

10% 5% 2%

5

10

15

20

25

30

35

Ti
m

e
[s

]

Convergence rate
8-threads, NUMA

mutex,
=0.009, B=32

RWLOCK,
=0.008, B=32

LSHps = ,
=0.005, B=64

LSHps = 1,
=0.008, B=64

LSHps = 0,
=0.009, B=64

HOG,
=0.009, B=16

10% 5% 2%

Crash

Diverge

1 1 1

Figure 4.19: Convergence rate for MLP with ε = {10%, 5%, 2%} of the initial
error, maximum level of parallelism m=8 and minimum level of parallelism m=2.
UMA (left), NUMA (right), step size (η) and batch size (B) are indicated in the
legend and in Table 4.3. Diverge indicate the number of times respective algorithm
failed to reach ε-convergence within 60 seconds and crash indicate the number of
times the execution crashed. PS indicate the persistence bound for Leashed-SGD.
Based on ten independent runs of each setting.

45

4. Empirical study

10% 5% 2%

10

20

30

40

50

60

70

Ti
m

e
[s

]

Convergence rate
16-threads, NUMA

mutex,
=0.004, B=64

RWLOCK,
=0.005, B=64

LSHps = ,
=0.009, B=128

LSHps = 1,
=0.009, B=64

LSHps = 0,
=0.009, B=128

HOG,
=0.002, B=32

10% 5% 2%

Crash

Diverge

1 1 1

1 1 2

10% 5% 2%
10

20

30

40

50

60

Ti
m

e
[s

]

Convergence rate
32-threads, NUMA

mutex,
=0.003, B=128

RWLOCK,
=0.003, B=64

LSHps = ,
=0.009, B=128

LSHps = 1,
=0.008, B=128

LSHps = 0,
=0.008, B=128

HOG,
=0.002, B=32

10% 5% 2%

Crash

Diverge 5 10 1 10 10 10 5

Figure 4.20: Convergence rate for MLP with ε = {10%, 5%, 2%} of the initial
error, for 16 and 32 threads. Step size (η) and batch size (B) are indicated in the
legend and in Table 4.3. Diverge indicate the number of times respective algorithm
failed to reach ε-convergence within 60 seconds and crash indicate the number of
times the execution crashed. PS indicate the persistence bound for Leashed-SGD.
Based on ten independent runs of each setting.

uma numa
1

2

3

4

5

Av
er

ag
e

ep
oc

h
tim

e
[s

]

Computational efficiency
8-threads

mutex
RWLOCK

LSHps = 256

LSHps = 1

LSHps = 0

HOG

uma numa

Crash

Diverge

1 1 1 1 uma numa

10

15

20

25

30

35

40

45

Ep
oc

h
N.

o.

Statistical efficiency
8-threads

mutex
RWLOCK

LSHps = 256

LSHps = 1

LSHps = 0

HOG

uma numa

Crash

Diverge

1 1 1 1

Figure 4.21: Average epoch time (e.g. computational efficiency, left) and num-
ber of epochs to reach 2 %-convergence (e.g. statistical efficiency, right) for eight
threads. Diverge indicate the number of times respective algorithm failed to reach
ε-convergence within 60 seconds and crash indicate the number of times the exe-
cution crashed. PS indicate the persistence bound for Leashed-SGD. Based on ten
independent runs, settings presented in Table 4.3

46

4. Empirical study

4.6 Backoff
The backoff schemes presented in Section 3.5 are compared in Figure 4.22, the
settings used are presented in Table 4.3.

UMA NUMA
Memory_access

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

Ti
m

e
[s

]

mutex (= 2%, 7 threads)
mutex_linear
mutex_exponential

mutex_random
mutex_no

UMA NUMA
Memory access

Crash

Diverge

1 UMA NUMA
Memory_access

15

20

25

30

35

Ti
m

e
[s

]

mutex (= 2%, 8 threads)
mutex_linear
mutex_exponential

mutex_random
mutex_no

UMA NUMA
Memory access

Crash

Diverge

1 1 12 1

UMA NUMA
Memory_access

14

16

18

20

22

24

Ti
m

e
[s

]

RWLOCK (= 2%, 7 threads)
RWLOCK_linear
RWLOCK_exponential

RWLOCK_random
RWLOCK_no

UMA NUMA
Memory access

Crash

Diverge

1 11 1 UMA NUMA
Memory_access

20

30

40

50

Ti
m

e
[s

]

RWLOCK (= 2%, 8 threads)
RWLOCK_linear
RWLOCK_exponential

RWLOCK_random
RWLOCK_no

UMA NUMA
Memory access

Crash

Diverge 1
4
1

3 11 1

UMA NUMA
Memory_access

15

20

25

30

35

40

45

Ti
m

e
[s

]

LSHps = (= 2%, 7 threads)
LSHps = _linear
LSHps = _exponential

LSHps = _random
LSHps = _no

UMA NUMA
Memory access

Crash

Diverge

1 2 1 1 4 3 1 UMA NUMA
Memory_access

20

30

40

50

60

Ti
m

e
[s

]

LSHps = (= 2%, 8 threads)
LSHps = _linear
LSHps = _exponential

LSHps = _random
LSHps = _no

UMA NUMA
Memory access

Crash

Diverge

1 2 2 4

UMA NUMA
Memory_access

15

20

25

30

35

40

45

Ti
m

e
[s

]

LSHps = 1 (= 2%, 7 threads)
LSHps = 1_linear
LSHps = 1_exponential

LSHps = 1_random
LSHps = 1_no

UMA NUMA
Memory access

Crash

Diverge

2 1 2 2 1 UMA NUMA
Memory_access

20

30

40

50

Ti
m

e
[s

]

LSHps = 1 (= 2%, 8 threads)
LSHps = 1_linear
LSHps = 1_exponential

LSHps = 1_random
LSHps = 1_no

UMA NUMA
Memory access

Crash

Diverge 1
1 4 1 1

Figure 4.22: Convergence rate with linear, exponential, random and no backoff,
seven (left) and eight (right) threads. ε =2 %, settings used are presented in Table
4.3.

47

4. Empirical study

16 32
Threads

20

30

40

50

60

70

Ti
m

e
[s

]

mutex (= 2%)
mutex_linear
mutex_exponential

mutex_random
mutex_no

16 32
Threads

Crash

Diverge

1 1 1
2 3 1

16 32
Threads

20

25

30

35

40

45

50

55

60

Ti
m

e
[s

]

RWLOCK (= 2%)
RWLOCK_linear
RWLOCK_exponential

RWLOCK_random
RWLOCK_no

16 32
Threads

Crash

Diverge

16 32
Threads

25

30

35

40

45

50

55

60

Ti
m

e
[s

]

LSHps = (= 2%)
LSHps = _linear
LSHps = _exponential

LSHps = _random
LSHps = _no

16 32
Threads

Crash

Diverge

1
1

2
10 10 102 10

16 32
Threads

34

36

38

40

42

44

46

48

Ti
m

e
[s

]

LSHps = 1 (= 2%)
LSHps = 1_linear
LSHps = 1_exponential

LSHps = 1_random
LSHps = 1_no

16 32
Threads

Crash

Diverge

2
10 10 101 10

Figure 4.23: Convergence rate of AsyncSGD (mutex- and rw-lock) and Leashed-
SGD with linear, exponential, random and no backoff, 16 (left) and 32 (right)
threads. ε =2 %, settings used are presented in Table 4.3.

4.7 Discussion of Experiments
S1. Scheduling and memory model: Here, the difference in convergence for UMA
and NUMA are compared. In this step hyperparameters are selected in the middle
of the test range, e.g. η = 0.005 and B = 64. The system is limited to a maximum
of eight threads for UMA; both eight and seven threads were tested. The results
are presented in figures 4.2-4.3, where the convergence rate, statistical and computa-
tional efficiency is presented. We can see that NUMA reaches 2 %-convergence faster
than UMA for all algorithms, both for seven and eight threads. The speedup from
NUMA compared to UMA is between 60 and 80 %. When analyzing from where
the improved convergence comes, we see that all speedup comes from computational
efficiency. The Statistical efficiency is more or less unchanged, with some reduction
in statistical efficiency for NUMA compared to UMA. One possible explanation for
this is because the increased communication time for NUMA contributes to reduced
contention for the shared state θ. In Figure 4.4 the staleness distribution is analyzed.
We can see that for the lock-based algorithms and Leashed-SGD the staleness is con-
centrated at the one less than the number of threads (m−1), which is expected. For
HOGWILD! eight and seven threads with NUMA, the staleness is grouped in two,
one with all threads scheduled on socket zero (blue lines) and the other scheduled
on socket one (orange lines). An explanation on why this is only present for HOG-
WILD! is that the overhead introduced by the other fine-grained synchronization
schemes is larger than the increased communication between threads. The differ-

48

4. Empirical study

ence between seven and eight threads is nothing more than the expected differences
when introducing one additional thread.
S2. Convergence and hyperparameter selection: Here, we analyze how hyperpa-
rameter selection affects convergence for different levels of parallelism. Since the
memory model made a difference in convergence the testes is done for both memory
models, the results can be found in figures 4.5-4.12. In Table 4.3 we have a list of the
fastest converging hyperparameter settings for each algorithm. From Table 4.3 we
can see that the memory model makes less difference when parallelism is low, e.g.,
m = {2, 4}, and that UMA tends to converge slightly faster than NUMA for m = 2.
We can also see that the selection of hyperparameters is highly dependent on the
level of parallelism and individual differences between the different algorithms. We
can see an increase in crashed executions with increasing parallelism, especially for
the lock-based algorithms and HOGWILD!. Generally, the selection of hyperparam-
eters is more limited as parallelism increases because of the increased crashed and
diverged executions. In terms of stability, we can see that Leashed-SGD stands out
compared to the other algorithm with significantly fewer crashed executions. If we
only consider convergence time, HOGWILD! generally is the fastest algorithm to
reach ε-convergence for a higher level of parallelism, m > 8. However, HOGWILD!
is also the algorithm with the most crashed executions, especially for a higher level
of parallelism. The step size for the lock-based algorithms and HOGWILD! needs
to be significantly reduced when parallelism increases. The reason for this is likely
because of the increased staleness when parallelism increases. An update with high
staleness can have a negative impact on convergence. Since the step size essentially
scales the contribution of each update, each update based on a stale view of the state
will not have as high of an impact. Comparing the two lock-based algorithms, we
can see some improvements in terms of convergence time using the rw-lock compared
to the mutex lock for a higher level of parallelism, m > 8.
S3. Staleness and batch size: Here, we investigate the effects parallelism have on
staleness with different batch sizes, the results are presented in figures 4.13-4.18.
We also compare the staleness for UMA and NUMA. We can see that the memory
model have little effect on staleness, except for lock-based AsyncSGD with eight
threads where we can see a difference for batch size 16 and 32. The lock-based
algorithms have almost identical staleness distribution except for higher parallelism
(m = {16, 32}), where we have some differences. Increasing parallelism generally
results in higher staleness which is expected, and we can also see a larger difference
between different batch sizes with increasing parallelism. For leashed and HOG-
WILD!, staleness is increased with increasing batch size.
S4. Convergence comparison: Here we compare the different algorithms using the
hyperparamter settings resulting in the fastest convergence time with no more then
10 % crashed executions. This is done for two to 32 threads and the time to reach
ε-convergence (ε = {10 %, 5 %, 2 %}) are presented in figures 4.19-4.20. The overall
fastest time to reach 2 %-convergence was obtained using eight threads, NUMA,
where the lock-based algorithms had the fastest convergence time.
S5. Backoff: Here, we analyze if backoff can be used to reduce contention of the
shared state resulting in faster convergence time or increased scalability. The results
are presented in figures 4.22. We can see some improvements using backoff, except

49

4. Empirical study

for rw-lock, where the backoff had a slightly negative effect on convergence. However,
further testing and tuning of backoff-specific parameters such as maximum backoff
time and initial backoff are needed. The introduction of a backoff might impact how
hyperparameters should be selected, and therefore, testing with additional hyper-
parameter settings is desirable. Additionally, backoff specific parameters introduced
need to be tuned.

50

5
Conclusions and future work

This thesis empirically analyzes how the memory model used affects convergence for
different fine-grained synchronization schemes in a deep learning application. Other
works studying the impact on the memory model are limited. One study on lower-
dimensional tasks using SVMs indicates that increased communication for NUMA
increases convergence time compared to UMA [27]. The results from experiment S1,
S2, S4 indicate that NUMA actually can reduce time to convergence form > 4. The
increased convergence rate mainly comes from increased computational efficiency,
indicating that the increased communication time might reduce contention for the
shared state.
Hyperparameter selections for AsyncSGD under varying parallelism and different
fine-grained synchronization schemes are also analyzed. In current literature within
the area of AsyncSGD, hyperparameter tuning is often done on a single level of
parallelism and for a single baseline algorithm. Then the same settings are ap-
plied over different levels of parallelism. How hyperparameter settings affect conver-
gence for different fine-grained synchronization schemes is essential to understand
the trade-offs between different algorithms fully. Hyperparameter tuning can also be
a time-consuming task, even for regular SGD. With parallel SGD and AsyncSGD in
particular, this becomes even more challenging, which further motivates the study
of hyperparameters’ impact on convergence. We can see that the level of parallelism
and fine-grained synchronization scheme impact hyperparameter selection. Leashed-
SGD is, in general, more stable than the other algorithms, while HOGWILD! tends
to converge the fastest. For the lock-based algorithms and HOGWILD!, the batch
size should be slightly increased with increasing parallelism, and the step size should
be reduced, especially when moving over eight threads.
For a higher level of parallelism, the proposed rw-lock is a competitive option having
an improved convergence time compared to the mutex lock and Leashed-SGD while
maintaining significantly less number of crashed executions than HOGWILD!.
Introducing a backoff scheme to the lock-based algorithms and Leashed-SGD shows
improvements in convergence for some algorithms and settings. However, further
testing and hyperparameter tuning are needed. Investigating how backoff affects
convergence is a natural next step. Another step for future works includes extending
the study to different ANN architectures and other datasets.

51

5. Conclusions and future work

52

Bibliography

[1] K. Bäckström, I. Walulya, M. Papatriantafilou, and P. Tsigas, “Consistent
Lock-free Parallel Stochastic Gradient Descent for Fast and Stable Conver-
gence,” in 35th IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), (New Orleans, Louisiana USA), 5 2021.

[2] F. Niu, B. Recht, C. Ré, and S. J. Wright, “HOGWILD!: A Lock-Free Ap-
proach to Parallelizing Stochastic Gradient Descent,” in Advances in Neural
Information Processing Systems 24 (J. Shawe-Taylor, R. Zemel, P. Bartlett, F.
Pereira, and K. Q. Weinberger, eds.), pp. 693–701, Curran Associates, Inc.,
2011.

[3] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep learn-
ing: An in-depth concurrency analysis,” ACM Computing Surveys, vol. 52, 8
2019.

[4] J. Egger, A. Pepe, C. Gsaxner, and J. Li, “Deep Learning-A first Meta-Survey
of selected Reviews across Scientific Disciplines and their Research Impact,”
CoRR, 2020.

[5] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5, 12 1943.

[6] F. Rosenblatt, “Perceptron Simulation Experiments,” Proceedings of the IRE,
vol. 48, 3 1960.

[7] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Ge-
ometry. The MIT Press, 1969.

[8] M. Arbib, “Review of ’Perceptrons: An Introduction to Computational Geom-
etry’ (Minsky, M., and Papert, S.; 1969),” IEEE Transactions on Information
Theory, vol. 15, 11 1969.

[9] S. Chaturapruek, J. C. Duchi, and C. Ré, “Asynchronous stochastic convex
optimization: the noise is in the noise and sgd don't care,” in Advances in Neural
Information Processing Systems (C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett, eds.), vol. 28, pp. 1531–1539, Curran Associates, Inc., 2015.

[10] S. Gupta, W. Zhang, and F. Wang, “Model Accuracy and Runtime Tradeoff in
Distributed Deep Learning: A Systematic Study,” in 2016 IEEE 16th Interna-
tional Conference on Data Mining (ICDM), IEEE, 12 2016.

[11] K. Bäckström, M. Papatriantafilou, and P. Tsigas, “MindTheStep-AsyncPSGD:
Adaptive Asynchronous Parallel Stochastic Gradient Descent,” in 2019 IEEE
International Conference on Big Data (Big Data), (Los Angeles, CA, USA),
pp. 16–25, IEE, 12 2019.

[12] A. Agarwal and J. C. Duchi, “Distributed Delayed Stochastic Optimiza-
tion,” in Advances in Neural Information Processing Systems (J. Shawe-Taylor,

53

Bibliography

R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger, eds.), pp. 873–881,
Curran Associates, Inc., 2011.

[13] Z. Huo and H. Huang, “Asynchronous Mini-Batch Gradient Descent with Vari-
ance Reduction for Non-Convex Optimization,” in The Thirty-First AAAI Con-
ference on Artificial Intelligence (AAAI-17), pp. 934–946, 2017.

[14] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and T.-Y. Liu, “Asyn-
chronous Stochastic Gradient Descent with Delay Compensation,” in Proceed-
ings of the 34th International Conference on Machine Learning (D. Precup
and Y. Whye Te, eds.), (International Convention Centre, Sydney, Australia),
pp. 4120–4129, PMLR, 8 2017.

[15] Christopher M. Bishop, Pattern Recognition and Machine Learning. 233 Spring
Street, New York, NY 10013, USA: Springer Science+Business Media, 2006.

[16] Y. Ma, F. Rusu, and M. Torres, “Stochastic gradient descent on modern hard-
ware: Multi-core CPU or GPU? Synchronous or asynchronous?,” in Proceedings
- 2019 IEEE 33rd International Parallel and Distributed Processing Symposium,
IPDPS 2019, pp. 1063–1072, Institute of Electrical and Electronics Engineers
Inc., 5 2019.

[17] N. Shirish Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. Tak Pe-
ter Tang, “On Large-Batch Training for Deep Learning: Generalization Gap
and Sharp Minima,” in 5th International Conference on Learning Representa-
tions ICLR, (Toulon, France), OpenReview.net, 4 2017.

[18] D. Mishkin, N. Sergievskiy, and J. Matas, “Systematic evaluation of convolu-
tion neural network advances on the Imagenet,” Computer Vision and Image
Understanding, vol. 161, pp. 11–19, 2017.

[19] D. Masters and C. Luschi, “Revisiting Small Batch Training for Deep Neural
Networks,” 4 2018.

[20] J. Haochen and S. Sra, “Random shuffling beats SGD after finite epochs,”
in Proceedings of the 36th International Conference on Machine Learning
(K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97 of Proceedings of Machine
Learning Research, pp. 2624–2633, PMLR, 09–15 Jun 2019.

[21] I. Mitliagkas, C. Zhang, S. Hadjis, and C. Re, “Asynchrony begets momentum,
with an application to deep learning,” in 54th Annual Allerton Conference on
Communication, Control, and Computing, Allerton 2016, pp. 997–1004, Insti-
tute of Electrical and Electronics Engineers Inc., 2 2017.

[22] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming, vol. 1. 225
Wyman Street, Waltham, MA 02451, USA: Morgan Kaufmann, 1 ed., 2012.

[23] T. Rauber and G. Rünger, Parallel programming: For multicore and cluster
systems. Springer Berlin Heidelberg, 2 ed., 1 2013.

[24] K. Bäckström, “Adaptiveness and lock-free synchronization in parallel stochas-
tic gradient descent.” Lic. thesis, Chalmers University of Technology and
Gothenburg University, Gothenburg, 2021.

[25] W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-Aware Async-SGD for
Distributed Deep Learning,” in Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence (IJCAI-16), (New York, New York,
USA), pp. 2350–2356, AAAI Press, 2016.

54

Bibliography

[26] “IEEE Standard for Information Technology–Portable Operating System Inter-
face (POSIX(TM)) Base Specifications, Issue 7,” IEEE Std 1003.1-2017 (Revi-
sion of IEEE Std 1003.1-2008), pp. 1–3951, 2018.

[27] H. Zhang, C. J. Hsieh, and V. Akella, “HogWild++: A new mechanism for
decentralized asynchronous stochastic gradient descent,” in Proceedings - IEEE
International Conference on Data Mining, ICDM, pp. 629–638, Institute of
Electrical and Electronics Engineers Inc., 1 2017.

[28] F. Lopez, E. Chow, S. Tomov, and J. Dongarra, “Asynchronous SGD for DNN
training on shared-memory parallel architectures,” in Proceedings - 2020 IEEE
34th International Parallel and Distributed Processing Symposium Workshops,
IPDPSW 2020, pp. 995–998, Institute of Electrical and Electronics Engineers
Inc., 5 2020.

[29] D. Alistarh, C. De Sa, and N. Konstantinov, “The convergence of stochastic
gradient descent in asynchronous shared memory,” in Proceedings of the An-
nual ACM Symposium on Principles of Distributed Computing, pp. 169–177,
Association for Computing Machinery, 7 2018.

[30] G. Guennebaud, B. Jacob, et al., “Eigen v3.” http://eigen.tuxfamily.org, 2010.
[31] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-

memory programming,” IEEE Computational Science and Engineering, vol. 5,
no. 1, pp. 46–55, 1998.

[32] Y. LeCun, C. Cortes, and C. J.C. Burges, “MNIST handwritten digit database,”
2010. [Online]. Available: http://yann.lecun.com/exdb/mnist/.

55

Bibliography

56

A

Appendix A

A.1 Convergence analysis

In this section the results from the parameter search for Leashed-SGD with persis-
tence bound, ps=1 and ps=0, are presented. The results are based on ten inde-
pendent runs. The convergence precision was selected to 5 %-convergence and the
maximum time 60 s.

I

A. Appendix A

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

40 52
25 29 44
20 23 31 50
20 19 25 39
17 19 22 30 55
15 15 18 28 47
15 15 18 25 41
15 15 15 22 37
15 15 16 20 34 61

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 10 10 10 10
0 0 0 10 10 10
0 0 0 0 10 10
0 0 0 0 10 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 4

N.o. diverged executions

20

30

40

50

60

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = 1, 2-threads, UMA

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

50 56
32 33 46
25 24 33 51
25 20 26 40
20 20 23 32 55
19 16 20 29 48
18 16 20 26 42
19 16 16 23 37
19 16 17 21 34 60

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 10 10 10 10
0 0 0 10 10 10
0 0 0 0 10 10
0 0 0 0 10 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 3

N.o. diverged executions

20

25

30

35

40

45

50

55

60

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = 1, 2-threads, NUMA

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

34 31 41
22 18 23 37
17 13 16 27 46
17 11 13 21 37
14 11 12 18 32 56
14 9 10 16 28 49
13 9 10 15 25 45
13 9 10 14 24 43
13 9 9 14 22 39

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 10 10 10
0 0 0 0 10 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. diverged executions

10

20

30

40

50

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = 1, 4-threads, UMA

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

41 36 41
25 21 23 36
20 16 17 26 45
21 13 14 20 34
16 13 12 17 29 55
15 11 10 15 26 47
16 10 10 14 23 43
16 11 10 14 22 41
15 11 9 13 22 36

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 1 0
0 0 1 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 10 10 10
0 0 0 0 10 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. diverged executions

10

20

30

40

50

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = 1, 4-threads, NUMA

Figure A.1: Heat map of Leashed-SGD with persistence bound 1, time to reach
5 %-convergence (left). Crashed executions (middle) indicate number of crashed ex-
ecutions and number of executions that failed to reach 5 %-convergence are reported
as diverged executions (right). Based on ten independent runs. For 2 and 4 threads.

II

A. Appendix A

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

60
58 40 35 47
43 30 25 35
36 24 22 29 55

50 36 21 20 25 47
50 29 21 17 23 42
50 29 19 17 21 41
50 29 18 16 21 39
50 29 18 17 21 38

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 2 2 1 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

10 10 10 9 10 10
10 0 0 0 0 10
10 0 0 0 0 10
10 0 0 0 0 0
4 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. diverged executions

20

25

30

35

40

45

50

55

60

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = 1, 8-threads, UMA

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

41 36 36 41
26 21 20 21 38
21 16 15 16 27 51
20 14 13 14 23 42
15 13 10 13 20 37
16 11 10 11 18 33
16 11 10 11 16 33
16 11 9 10 17 32
16 11 9 11 17 29

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 2 2 0
0 0 1 3 0 0
0 0 1 2 2 0
0 0 4 3 0 1

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 10 10
0 0 0 0 0 10
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. diverged executions

10

15

20

25

30

35

40

45

50

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = 1, 8-threads, NUMA

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

60 46 42 42
64 44 34 30 34 49

37 26 26 27 45
50 35 25 23 25 42
49 30 21 21 24 42
50 30 21 20 25 48
50 30 20 20 24 43
50 30 20 20 28 50

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 2 1 0
0 0 0 3 1 0
0 0 0 2 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

10 10 10 10 10 10
10 0 0 0 0 10
9 0 0 0 0 0
10 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 4
0 0 0 0 0 4
0 0 0 0 0 6

N.o. diverged executions

20

25

30

35

40

45

50

55

60

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = 1, 16-threads

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze 60

60 62
63 58 58
63 56 59
62 53 61
62 55

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 9 10
10 10 10 3 8 10
10 10 7 1 7 10
10 10 5 0 9 10
10 10 5 0 8 9
10 10 5 0 10 9

N.o. diverged executions

54

56

58

60

62

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = 1, 32-threads

Figure A.2: Heat map of Leashed-SGD with persistence bound 1, time to reach
5 %-convergence (left). Crashed executions (middle) indicate number of crashed ex-
ecutions and number of executions that failed to reach 5 %-convergence are reported
as diverged executions (right). Based on ten independent runs. For 8, 16 and 32
threads.

III

A. Appendix A

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

46 52 61
35 37 43 59
36 30 35 49
28 30 29 40 60
28 23 26 34 52
29 24 23 31 45
27 25 21 27 41
28 22 22 24 38

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

10 10 10 10 10 10
0 0 3 10 10 10
0 0 0 3 10 10
0 0 0 0 10 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 10

N.o. diverged executions

25

30

35

40

45

50

55

60

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = 0, 2-threads, UMA

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

54 62
44 46 56 58
44 39 42 54
35 38 37 46 60
33 31 31 43 54
33 30 27 38 47
33 31 26 32 42
33 26 25 30 40 62

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

10 10 10 10 10 10
0 0 10 10 10 10
0 0 0 8 10 10
0 0 0 4 10 10
0 0 0 0 5 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 10
0 0 0 0 0 9

N.o. diverged executions

25

30

35

40

45

50

55

60

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = 0, 2-threads, NUMA

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

55 61
43 46 55 59
34 35 41 50 62
33 30 33 38 54
25 27 29 37 46
26 24 26 28 41 59
26 23 23 28 35 55
25 23 21 22 35 54
24 24 20 21 33 48

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

5 8 10 10 10 10
0 0 0 7 10 10
0 0 0 0 6 10
0 0 0 0 2 10
0 0 0 0 0 10
0 0 0 0 0 4
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

N.o. diverged executions

20

25

30

35

40

45

50

55

60

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = 0, 4-threads, UMA

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

62
53 48 53 60
43 41 40 45 56
42 33 32 36 44
34 32 27 30 38 60
30 26 23 27 33 55
31 27 23 23 30 52
31 25 21 22 29 46
32 25 19 20 26 42

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

10 9 10 10 10 10
0 0 1 5 10 10
0 0 0 0 1 10
0 0 0 0 0 10
0 0 0 0 0 8
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. diverged executions

20

25

30

35

40

45

50

55

60

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = 0, 4-threads, NUMA

Figure A.3: Heat map of Leashed-SGD with persistence bound 0, time to reach
5 %-convergence (left). Crashed executions (middle) indicate number of crashed ex-
ecutions and number of executions that failed to reach 5 %-convergence are reported
as diverged executions (right). Based on ten independent runs. For 2 and 4 threads.

IV

A. Appendix A

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

58 54 63
64 49 44 52 57
61 46 38 46 51 59
59 40 33 42 45 56
60 40 32 38 44 52
59 40 28 38 40 48
59 37 27 35 38 47

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

10 10 10 10 10 10
10 10 10 10 10 10
10 0 0 9 10 10
9 0 0 1 3 10
4 0 0 0 0 4
1 0 0 0 0 1
1 0 0 0 0 1
2 0 0 0 0 0
4 0 0 0 0 0

N.o. diverged executions

30

35

40

45

50

55

60

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = 0, 8-threads, UMA

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

52 61
32 35 42 52
27 26 30 37 48 60
28 22 24 30 40 53
20 21 21 25 33 46
21 18 19 23 32 40
20 18 18 20 30 39
20 18 16 20 26 38
20 18 16 20 26 36

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 2 0
0 0 0 1 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

1 0 10 10 10 10
0 0 0 0 10 10
0 0 0 0 0 8
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

N.o. diverged executions

20
25
30
35
40
45
50
55
60

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = 0, 8-threads, NUMA

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

64
59 49 49 48 59
48 40 39 39 52

55 44 34 34 36 47
54 39 29 29 33 45
55 39 30 28 32 45
55 38 25 27 29 43
56 38 26 25 28 49

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

10 10 10 10 10 10
10 10 9 10 10 10
10 0 0 0 0 7
10 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

N.o. diverged executions

25

30

35

40

45

50

55

60

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = 0, 16-threads

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze 64

60 59
56 57

64 51 57
60 49 56
57 52 54

Convergence time [s]

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0

N.o. crashed executions

16 32 64 128 256 512
Batch size

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

St
ep

 si
ze

10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10 10
10 10 10 9 10 10
10 10 10 3 6 10
10 10 10 0 1 10
10 10 9 0 1 10
10 10 4 0 3 10
10 10 4 0 4 10

N.o. diverged executions

50

52

54

56

58

60

62

64

0

2

4

6

8

10

0

2

4

6

8

10

LSHps = 0, 32-threads

Figure A.4: Heat map of Leashed-SGD with persistence bound 0, time to reach
5 %-convergence (left). Crashed executions (middle) indicate number of crashed ex-
ecutions and number of executions that failed to reach 5 %-convergence are reported
as diverged executions (right). Based on ten independent runs. For 8, 16 and 32
threads.

V

	List of Figures
	List of Tables
	Introduction
	Statement of the problem
	Purpose of the study and hypotheses
	Limitations and Delimitations

	Theory and Background
	Stochastic Gradient Descent
	Metrics of interest
	Parameters and hyperparameters
	Artificial Neural Networks
	The training process

	Parallel Stochastic Gradient Descent
	Parallel computer architecture and parallelization
	Synchronous parallel SGD
	Asynchronous parallel SGD
	A note on hyperparameters and parallel SGD

	Problems and challenges
	Convergence and asynchrony
	Scalability
	Testing and Benchmarking

	Methods
	Algorithms and fine-grained synchronization
	Memory model and parallel SGD
	Convergence and hyperparameter selection
	Staleness and hyperparameter selection
	Backoff

	Empirical study
	Experiment setup
	Memory model and convergence
	Convergence analysis
	Staleness distribution and batch size
	Convergence comparison
	Backoff
	Discussion of Experiments

	Conclusions and future work
	Appendix A
	Convergence analysis

