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Abstract 

Most genes in diploid organisms have two “copies”; one copy inherited from each parent.  If an 

individual has two different alleles (code variants) at a specific gene locus, then the individual is 

heterozygous at that locus. Allele specific expression (ASE) can be explained as the differential 

expression between the two different alleles of a gene in a single individual. There are several 

mechanisms that can cause ASE, e. g, it can be caused by a heterozygous variant in the promoter 

region, causing a difference in transcription factor binding affinity between the maternal and 

paternal allele. Accurate measurement and identification of ASE can be obtained by precise 

mapping of reads, generated from RNA next generation sequencing (RNA-seq), towards the 

reference genome of the organism. Mapping bias is a major technical hurdle in ASE studies 

which arises when we map short RNA-seq reads towards a reference genome. This arises mainly 

when the reads which carries non-reference alleles is not matching towards the reference genome 

gives out a lower mapping quality. In this thesis we investigated two proposed methods to reduce 

mapping bias: a read mapping program called GSNAP, and masking the reference genome with 

respect to single nucleotide variants. Masking the reference genome removed the mapping bias 

to a greater degree than GSNAP; however, the masking caused a considerable drop in read 

coverage. In conclusion, none of the two methods reduced the mapping bias satisfactorily, 

highlighting the importance to develop new or modified methods for mapping bias reduction.  
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1. INTRODUCTION 

 

 Next generation sequencing is the most revolutionized exploration of gene expression. Recent 

technical advances in the genome sequencing have enabled the sequence-based approaches for 

quantification of transcriptome. Next Generation sequencing is used for transcriptome 

sequencing inorder to estimate individual gene expression. The reads obtained from deep-

sequencing technologies provides us with lot of information, such as from expression-level to the 

identification of loci with Allele Specific Expression (ASE) [26]. 

 

Understanding the genetic basis of variation in gene expression is an interesting topic in the 

genomic research field. Genetic variants such as Single Nucleotide Polymorphism (SNP), Copy 

number variation (CNV) and mutation results in phenotypic difference, which are due to the 

changes in gene expression. One of the most important types among such class of variations is 

Allele Specific Expression [2, 6]. Thus analyzing gene expression helps us to understand 

genotypic variation better.  

 

Allele specific expression can be explained as the most preferred expression of one among two 

alleles in a gene, that is it can be either of two alleles in a gene within an individual (figure 1a 

and 1b). Accurate measurement of ASE can be obtained by precise mapping of sequence reads 

towards the reference genome. The major technical hurdle lies in ASE studies while mapping is 

mapping bias.  

1.1.1 Aim  
In this thesis work I applied and assessed two existing methods for reducing mapping bias. First, 

a short read alignment program called GSNAP.  It can reduce the read mapping bias towards the 

reference genome by representing both alleles at genomic positions of known genetic variants. 

Second, I applied and assessed a method presented by Degner et al [5] where the known genetic 

variants are masked. Finally as a variant of this method I applied ‘personalized masking method. 

In the following, ASE and reference genome mapping bias are explained in more detail.  

1.1.2 Biological mechanism responsible for ASE 
ASE is typically caused by sequence variation between the two chromosomes within an element 

that regulates gene expression. If the regulatory element is on the same DNA or RNA molecule 

as the element it regulates it is said to be cis-acting. Heterozygous genetic variation within cis-

acting elements can cause ASE by three different mechanisms: (i) Differential transcription 

factor binding (ii) Differential binding of epigenetic factors, and (iii) differential mRNA 

processing including allele-specific alternative transcription initiation, allele-specific alternative 

splicing, allele-specific poly-adenylation, and mRNA degradation. 

1.1.3 Epigenetic factors responsible for ASE 
In an epigenetic context, the mechanisms such as X-inactivation (The process of inactivation of 

one of the X chromosome copies) and genomic imprinting leads to the silencing of one allele 

which in turn leads to the other allele being expressed higher than its heterozygous ‘copy’.  From 

recent studies it is clear that DNA methylation or nucleotide variation (modification of DNA by 

the addition of methyl group to the 5 position of cytosine) has a significant role in ASE. For 
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example, in a recent study on Pediatric Leukemia patients, the sample from bone marrow has 

validated about 16 % of ASE. From this observation ASE shows a direct quantitative correlation 

between CpG site methylation which clearly indicates that unequal epigenetic state of haplotype 

genome contributes towards allelic imbalance in gene expression [23, 28]. In addition to DNA 

methylation,  histone modifications (for example acetylation or methylation of the histone tail or 

histone positioning) also contribute towards ASE [29].  

1.1.4 Why is it interesting? 
Genotype and phenotype mapping describes the basics of biological science. Many phenotypic 

differences results from genetic variants and these are mainly mediated through changes in gene 

expression.  Thus gene expression studies allow better knowledge about genetic variation.  

ASE gathers research focus basically due to its ability to act as marker for the regulatory variants 

(such as cis, trans variants), contribution towards phenotypic variations, how its controls the 

gene expression level, and how it helps in disease susceptibility. In addition to that ASE can be 

used to identify expression Quantitative Trait Loci (eQTL), genomic loci that regulates gene 

expression. 

 1.1.5 ASE in disease susceptibility 
Disease susceptibility can be identified from the heterozygous samples between two groups, e.g. 

from a sample of affected versus unaffected, providing with information on allele responsible for 

disease susceptibility from the ratio of allele expressions in the samples [9].  

1.1.6 ASE as marker for regulatory variants 
 Often the gene is under allelic imbalance, that is the expression of allele is not equal then it 

states that the gene expression is under the cis-regulation.  In an ASE study, the proportion of 

mRNA expression level of 2 allele of a heterozygous variant is measured under same cellular 

environment. In that condition one of the alternate allele acts as a within sample control of each 

other and hence there is no chance of an external or Trans acting elements to influence the gene 

expression, thus it explains that the gene expression is under control of cis-regulation. [24]. 

 1.1.7 ASE to identify eQTL 
eQTL can be explained as a genomic loci that regulate the expression of mRNA or protein, it’s a 

type of inherited variance. That is when a genetic mutation regulates gene expressions such 

genetic variants are known as eQTL.  There are two types of primary eQTL, cis-eQTL and trans-

eQTL.  If a cis allele of gene alters the expression of a allele in a heterozygote gene differently, 

then it is said to be cis-eQTL, otherwise it’s a trans-eQTL. These eQTLs can only be accurately 

distinguished by ASE method, because from a total gene expression one cannot separate cis and 

trans eQTL since these two type of eQTL results in similar pattern across a group of individuals 

[27, 13]. 
 

Measurement of gene expression across multiple individuals is a long process, since the varying 

genomic and environmental conditions of different individuals reduce the statistical power to 

discover eQTL. In addition to that it is difficult to demonstrate the reliable correlation between 

SNP allele and gene expression levels when the differences of expression between haplotype are 

small. ASE provides an alternative method for addressing these limitations. 
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As an epitome to all the above mentioned reasons ASE is an elegant method of assessing 

expression within an individual rather than across the subjects hence it avoids major errors [13]. 

1.1.8 Haplotype 
A haploid consists of half the number of chromosomes in somatic cells, diploid consists of two 

set of homologous chromosome, usually one set from father and another set from mother. 

Polyploidy consists of more than two pairs of homologous set of chromosomes. Triploid has 

three set of homologous chromosome and tetraploid consist of namely four set of homologous 

chromosome.  

1.1.9 Phasing 
Phasing is a method to distinguish the allele location, that is which of the allele exist together on 

the same chromosome. Phasing helps to find which genes from the parents which are inherited to 

the child.  

 

A haplotype refers to DNA derived from a single chromosome. 

 

 

 
 

Figure 1a: Allele Specific expression with the paternal haplotype with high expression rate. 

 
Figure1b: Allele Specific expression with the maternal haplotype with low expression rate 
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2 ASE MEASUREMENT TECHNIQUES 

 

There are a few methods to measure ASE,  in a simple way ASE can be measured by comparing 

the allelic transcripts within a sample by gene specific RT-PCR, or one can use the most  latest 

next generation sequencing which provides more information such as intronic SNPs. Next 

generation sequencing is the most efficient tool for genome-wide quantification of DNA and 

RNA. 

 

 ASE measurement such as Allele specific expression PCR, pyro sequencing and Allele specific 

expression micro arrays has its own technical challenges such as the difficulty in designing the 

probe that is the probe will be similar for two alleles with a variation on only one location. And 

these are low-throughput technologies. 

 

Next generation sequencing technology provides a very efficient way of measuring ASE in a 

very accurate and high throughput manner using the read counts [2].These reads are obtained 

from individual transcripts via high throughput sequencing. Next generation sequencing is a high 

throughput technology used for RNA sequencing (RNA-seq) to estimate the expression level of 

each gene. The first step is to isolate the messenger RNA from the sample and then these are 

converted to cDNA (complementary DNA) library of fragments with adapters attached to one or 

both ends. Sequencing these fragments using deep-sequencing technologies produce millions of 

short reads (figure 2).  
 

These reads obtained can be paired end reads and Single end reads. A paired end read is obtained 

by sequencing both ends of the same DNA molecule. The two sequences you receive after 

sequencing both ends are termed as Paired End Sequencing. Single end is obtained by 

sequencing one end of the DNA molecule. 
 

Reads are mapped towards a reference genome or transcriptome which will return the huge 

number of reads mapped to the transcriptome. These are read counts, which enables to quantify 

the transcriptome. Read counts are based on the number of reads mapped to the transcriptome or 

reference genome, which helps to analyze the expression level of transcripts [25, 26]. 
 

ASE studies generally depend on the accurate mapping of short reads towards the reference 

genome in the presence of sequence variation. RNA sequencing technique provides an efficient 

way for ASE studies. 

2.1 RNA-Seq 
RNA seq is the most elegant and powerful method for profiling, discovering and quantification 

of   RNA transcripts. RNA-Seq helps the deep analysis of the transcriptome. Unlike the micro 

array experiments RNA-Seq provide more accurate measurement of known or unknown 

transcripts in a wider range. The sequences generated are mapped towards known libraries of 

exons of known transcripts, which is not present in micro array [7]. 
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The complexity in gene expression level and regulation requires a more sensitive measurement 

of transcripts and hence to detect its structural abundance. In addition to gene expression RNA-

seq discover information about alternative splicing events, ASE, and rare novel transcripts 

depending on the analysis tools used.  
 

RNA-seq consists of following computation steps such as, read mapping, transcriptome 

reconstruction, transcript abundance estimation and differential expression analysis. Among the 

existing methods for ASE analysis RNA-seq is more computationally intense and provides both 

allelic and total expression data.   
 

In RNA-seq experiment reads are mapped to transcriptome/genome as appropriate followed by 

counting the number of allele-specific reads that mapped back to heterozygous SNP (The SNP 

location where both the allele are different). By doing so one of the major analytical challenges 

here is  mapping bias, that is mapped allelic reads will be  biased by the allele present in the 

reference genome (Explained in detail in mapping bias section below) [7, 27]. 
 

 

 

 

 
 

 

 

 

 

 

 

 

 Figure 2: Workflow of RNA-seq, Starts with RNA isolation from a sample, followed by 

conversion to cDNA by fragmenting   and reverse transcription. Reads are generated from a 

high-throughput sequencer. These reads are further mapped using alignment tools towards 

transcript set. Counts of the reads mapped to each gene obtained after mapping helps to estimate 

gene expression level [29]. 

 

Paired end reads are generated by sequencing the two ends of a fragment in the library, which 

will give out two reads. This is known as paired end sequencing. RNA-seq provides simplified 

data analysis workflow and it is a cost effective high through put technology. Compared to 

Genomic DNA, which is for genomic variation analysis; RNA-seq is for expression analysis. 

2.1.1 Read Mapping 
If a species has been sequenced, reads can be aligned, also known as ‘mapped’, to a reference 

genome of that species. 

2.1.2 Mapping Bias 
Achieving a perfect alignment of short reads to a genome is complicated. These difficulties are 

mainly caused by (i) a read is relatively short, (ii) genetic variation causes a personal sequence to 

differ from the reference genome and (iii) sequencing errors. 

Isolated 

RNA 
 Reads 

generated 

Convert to 

cDNA 

 Reads 

Mapped 

 Reads Count 
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In order to estimate ASE accurately there should be a proper mapping of short reads towards the 

correct position in the reference genome. The major technical hurdle lies here. Especially when 

the short reads are mapped towards the reference genome there is a high chance for the reads 

which carry non-reference alleles to get discarded which in turn gives inaccurate results for ASE. 

Mapping bias is an inherent issue which occurs while assessing the ASE using sequencing data. 

 

 
 

Figure 3: Illustrates the Mapping bias that is when a short read is mapped towards a reference 

sequence it can be mapped with the identical allele (G) with difference sequence whereas it 

discards the reads with non-reference allele (A) due to lower mapping quality.  As a result, reads 

identical to the reference genome have a higher chance of being aligned as compared to reads 

carrying non reference alleles [28]. 

 

3.  ASSESSED METHODS 

 

In order to study the effects and methods for reducing mapping bias we identified few published 

methods which are used for reducing mapping bias. From these existing methods I assessed two 

methods for testing and benchmarking. The tests were done with synthetic simulated RNA-seq 

data comprising 16 samples. 

3.1 Genetic variation masking of the reference genome 
Recently there have been a few studies that addressed the ASE analysis with emphasis on 

reducing mapping bias issues. From the identified published methods Degneret.al in the paper 

“Effect of read mapping biases on detecting allele-specific expression from RNA-sequencing 

data” explains about the masking of SNP from each allele. They modify the reference genome by 

masking each SNP locus with a third base for example if A/T is identified in the reference 

sequence, then change A G or C at that position. 

 

The study managed to prove that masking of SNP do reduce the systematic bias towards the 

reference allele. In addition to that simulation studies helped to understand SNP are biased due to 

the read mapping. Simulations helped in removal of the false positive rate to a large extent [5]. 
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3.1.1 Personalized masking 
As a part of the masking we have also done a personalized masking analysis, this was done by 

masking the genomic variants in reference genome with respect to a single sample. The sample 

used for this is ‘1_LPS’ and masking procedure is the same as this described above. The variants 

used correspond to the sample used for mapping. 

 

3.1.2 Short read alignment program that makes use of known genetic 

variation 
One way to reduce the mapping bias towards the reference genome is to use a short read 

alignment program which is capable of incorporating information about genetic variation. One 

such program is GSNAP, ‘Genomic Short Read Nucleotide Alignment Program’ [17]. Another 

program with a similar capability is Novo align, as was used in a study of ASE by Heap et al 

[13]. But GSNAP was chosen in our analysis since Novo align partly is proprietary software.  

 

GSNAP creates a ‘reference space’ which is the combination of all major and minor alleles. By 

mapping reads to such generated ‘reference spaces’ the program avoids treating minor alleles as 

mismatches and helps to declare them as true genotypes in the alignment [15]. 

 

The authors of GSNAP claim that it is able to align reads against the entire genome even in the 

presence of substantial polymorphisms and sequence errors [15]. We were therefore interested in 

the extent to which this feature could alleviate the issue of read mapping bias and thereby 

improve the performance of allele specific expression analysis.  

 

4.  MATERIALS AND METHODS 

 

In this thesis work we applied and assessed two existing methods for reducing read mapping bias 

towards the reference genome. First, I assessed a short read alignment program called GSNAP. It 

can reduce the read mapping bias towards the reference genome by representing both alleles at 

genomic positions of known genetic variants. Second, I applied and assessed a method presented 

by Degner et al. [5] where the reference genome sequence is masked with respect to known 

genetic variants. To be able to evaluate the performance of these two methods in terms of their 

ability to reduce the mapping bias, I used simulated synthetic RNA-seq data. 

4.1.1 Allele specific synthetic RNA-seq data 
Allele specific RNA-seq data had previously been generated by an in-house application and it 

was used as the benchmarking dataset in this study. The dataset contained synthetic RNA-seq 

data corresponding to 8 individuals, each subjected to two different conditions (white blood 

cells, untreated or treated with LPS, ‘lipo-polysaccharide’), rendering a total of 16 samples.  

 

Synthetic individual diploid genomes were created by sampling SNPs from the individuals of 

European ancestry in the 1000 Genome Project (Nov. 2010 release, 629 samples). Expression 

levels were sampled from phased real RNA-seq data of LPS-treated and untreated white blood 

cells. Finally, Illumina paired end reads were simulated with a program from the MAQ software 
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suite using the synthetic individual transcriptome and sampled expression levels. This program 

also simulates read base sequencing quality using base qualities from real data. 

 

4.2 Application of a read alignment program that makes us of genetic 

variation 
The synthetically generated RNA-seq reads were aligned using GSNAP (downloaded version: 

12-06-2012). Apart from read-data three other types of input were supplied to GSNAP: (i) a 

reference genome (hg19) (ii) known single nucleotide variants and (iii) known splice sites. 

 

Read-data is paired end (PE) fastq file, a total of 32 fastq files were used as input file, by giving 

each pair at a time. I used cloud computing system (uppmax cloud computer system) to run the 

command for the 32 files (Paired end 16 samples) with the aid of SHELL scripts jobs were 

submitted to the super computer. 

4.2.1 GSNAP input: Known single nucleotide variants 
As known SNVs I used the common variants from the database dbSNP, build 135. This includes 

SNVs with a MAF >1% in the global population where MAF (minor allele frequency) is the 

frequency at which the less common allele (the minor allele) occurs in a population. 

4.2.2 GSNAP input: Known splice sites 
Inputting known splice sites helps GSNAP to correctly align across intron-exon boundaries. 

GSNAP has a utility program ‘gtf_splicesites’ which creates a splice site index using a GTF file 

containing known exon positions. I used known exons from Ensemble version 59 as input 

‘Homo_sapiens.GRCh37.59.gtf’. 

4.2.3 Read mapping 
The synthetic reads were mapped with GSNAP to the human reference genome (hg19) using 

default parameters as well as piped with samtools for BAM output (detailed description of 

parameters is shown in Appendix section). 

 

Initially I started with parameters such as -D reference directory, -d reference file, -A sam, -s 

splicesite, -v snpfile, -V snpdir, and quality parameter --quality-protocol=illumina which is equal 

to pred-scaled probability score  64. But majority of BAM output was with multi-mapped reads 

and was not able to perform further steps from PCR duplicate removal. In order to discard multi 

mapping of reads I set the quality parameter (--npaths=1 --quiet-if-excessive) and ran the 

mapping program. But this didn’t help for all samples hence still there existed certain reads 

(reads from 19 BAM files) mapped to multiple loci of the reference genome.  

4.2.4 Multi-mapped reads 
Multi mapped reads are the reads which are mapped to multiple loci of the reference genome. 

Despite setting the unique-alignment flag of GSNAP, several multi-mapped reads persisted. A 

custom-Perl script was therefore implemented to remove remaining multi-mapped reads.  

4.2.5 Processing of aligned reads to retrieve allele specific read counts 
After alignment of reads to the reference genome and manual removal of multi-mapped reads 
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from the 19 BAM files, a number of computational steps were performed as to retrieve counts of 

each of the two alleles at variants called as heterozygous. The following steps describe the 

computational steps which we followed to retrieve the allele counts (Flow Chart 1a). 

4.2.6 PCR-duplicate removal 
To remove PCR duplicates I applied Picard Mark Duplicates to the aligned reads. This helped to 

filter out the duplicate reads that were identified in the paired end reads. Then the next step is to 

merge all the BAM files from each sample into a single BAM file this was accomplished by 

samtools merge. And then these BAM files were sorted, Samtools sort the BAM file based on the 

position in the reference genome. In order to allow a fast look up of the sorted BAM file we 

indexed them with Samtools index. This helps the program to read data and work with data in 

associated files more efficiently. 

4.2.7 Variant calling 
To find sequence variants we did variation calling with Samtools mpileup and bcftools was piped 

to get the output in VCF format [19]. Samtools mpileup helps the data storage in VCF format 

(Explained in detail in the file format section below). Firstly a list of all BAM files was created.  

Then it is needed to create a region file from the reference genome with the information of all 

genomic regions (that is the chromosome name its genomic region in the reference sequence) so 

we indexed the reference genome with Samtools faidx. Thereafter we extracted the variant 

information into VCF files for each of the BAM files (the command used here is explained in 

detail in appendix section command 2). Then we extracted data from all VCF files and a single 

list was created for further steps. 

  

4.2.8 Variant filtering 
Allele specific expression analysis can only be done using heterozygous variants as to be able to 

distinguish the two alleles. Furthermore, a certain read depth is required both for the variant 

calling to be reliable as well as to be able to reach statistical significance with respect to whether 

two alleles have different expression levels. We therefore extracted heterozygous variants with a 

minimum read depth of 10.  

4.2.9 Allele counts 
Samtools mpileup outputs number of reads mapped to each of the two alleles (allele counts). 

However, since the variant calling was performed using all samples as input as to get as high 

reliability as possible of the called variants, we reran samtools mpileup for each specific sample 

using the called variants as input. In this manner the allelic counts for the called variants were 

retrieved (the command used here is described in appendix section command 3). 

4.2.10 Coverage calculation 
To determine how many reads are mapped towards each base in reference genome we calculated 

coverage. In order to calculate the mapped read coverage on the exons we used bedtools. This 

provides the amount of the exome which is covered by at least n reads (read depth). For example, 

80% of the exome may be covered with a read depth of at least 10. As exon annotation CCDS 

(Consensus Coding DNA Sequence) was used, which provides a complete set of annotation for 

the protein coding regions (exons) of the human genome [21]. The command used here is 
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described in appendix section (command 4). And therefore we calculated the coverage obtained 

from each sample, the formula used here is, 

 

Coverage =
𝑅𝑒𝑎𝑑𝑑𝑒𝑝𝑡ℎ∗𝐵𝑎𝑠𝑒𝑠𝐶𝑜𝑣𝑒𝑟𝑒𝑑

𝐸𝑥𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ
 

 

Where depth read represents the reads covered at each position of the sample and it is an integer 

value. A base covered represents the length of bases covered in the exome. Exon length is the 

length of the exon. 

4.2.11 Variant annotation 
To annotate the called variants we used a custom PERL script. This program annotates variants 

with respect to various annotation databases, such as presence in dbSNP and within which gene a 

variant is located.  And therefore we merged the annotated variants and converted it into RData 

structure for further statistical analysis. 

4.2.12 ASE analysis 
The values obtained from the above methods are used for further ASE analysis. Statistical tests 

such as two-sided binomial test and multiple corrections of these tests were done on this data for 

plotting histogram for the mapping bias with minimal error rate. Read depth of alternative allele 

is taken from data obtained by allele counts and variant calling methods (described the materials 

and methods sections above). Alternative allele fraction represents the allele towards the 

alternative allele not in reference genome. 

 

First started by plotting smoothed histograms for all alternative allele fractions, and then filtered 

the variants based on relative frequencies of alternative allele direction and significant P-value 

<=0.05.For both of them we plotted graphs (shown in results section). 

 

Furthermore we checked the number of variants obtained before and after annotation. 

 In addition to that we analyzed the genes with multiple significant values for ASE within genes 

with minimum of 2 heterozygous variants. And then filtered all variants within the gene to make 

ASE significant using multiple corrected P-value. 

 

In order to find out the occurrence of alternative allele within a gene we filtered on number of 

significant alternative alleles per gene when number of sample is >=1 as well as number of 

sample >=2 (Numerical values is shown in the results section). 
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Flow Chart 1a: Figure explains the pipeline I followed for the GSNAP method. The input used 

here is the Single Nucleotide Variant (SNV) database with MAF>=1% and the reference 

genome. 

 

4.3 Genetic variation masking of the reference genome 

To avoid mapping bias at positions where an individual genome may differ from the reference 

genome we masked known genetic variants from the reference genome (version hg19) [5]. The 

known genetic variants that were masked were the same European SNPs retrieved from the 1000 

Genomes Project which is used to construct the synthetic RNA-seq data (see below). Masking 

was accomplished by changing the reference allele to a third allele that was neither the reference 

allele nor the alternative allele.  

4.3.1 Read mapping to the masked reference genome 
Alignment of sequencing reads to the masked reference genome was done with the RNA-seq 

alignment tool Tophat (version 1.4.0) [22]. Tophat uses the Bowtie aligner and we therefore 

Bowtie-indexed the masked reference genome with Bowtie, version 0.12.6. 

 

The input given to Tophat was the synthetic RNA-seq reads the masked reference genome and 

an exon annotation file (ensemble version 59) (flowchart 1b). 

Tophat has a required parameter which informs about the mean fragment length and this was set 
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to the mean fragment length used to generate the synthetic reads. 

 

Tophat uses ‘inner distance’ which can be obtained by ‘insert length -2*read length’ where the 

insert length were different for each of the fastq files since the reads were fragmented by 

ultrasonic waves. The insert length is calculated by the bioanlayser plots and each fragment 

length varies from the other one. Read length is 100 for all samples used. 

 

The Tophat command used in the analysis is described below in the appendix section. Tophat provides 

the output reads in BAM file format after mapping towards reference genome.  Further steps are 

similar from the above method towards the results (section 2). 

 

 
 

Flowchart 1 b:  Explains the workflow I followed for the ‘masked reference’ method. Here in this 

method the inputs were the Exon annotation database and the masked reference genome, the 

mapping tool used is Tophat. 

4.3.2 Personalized masking 
As a part of the masking we have also done a personalized masking analysis. This was done by 

masking the genomic variants in the reference genome with respect to a single sample. The 

sample used for here is ‘1_LPS’ and masking procedure is same as above. 

 

Further steps are same as the above method. 
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5. RESULTS 

 

 Allele specific Expression analysis was performed on the Synthetic RNA –seq data from 8 

individuals, a total of 16 samples. Each of these 16 samples was mapped towards the reference 

genome and transcriptome with TOPHAT (Masked reference and personalized masked 

reference) and GSNAP alignment program. 

 

 For all the methods the read coverage is calculated. Read coverage obtained from the GSNAP 

method shows a better coverage than the masked reference method and personalized masking 

method. The GSNAP method as described it assigns even minor mismatches as matches (due to 

reference space) and hence results in a better coverage. In the other two methods the genomic 

variants are masked, which results in relatively lower coverage. The table showing coverage 

obtained from all methods are shown below (table1a, table 1b, table 1c).  

5.1 Read coverage for three methods is as following: 

5.1.1 GSNAP: Short read alignment program and masked reference 
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Figure 1a: Give the read coverage obtained from the ‘masked reference’ and  GNSAP method. 

 

5.1.2 Personalized masked reference 
 

Sample 1_LPS 

Coverage 11 

Table 1c: Give the coverage obtained from personalized masking method for a single sample. 

5.2 Mapping Bias for all Variants 

5.2.1 GSNAP: Short read alignment program 
Histograms (smoothed) of ASE were plotted for all methods. In the histogram we considered 

only alternate allele fraction from all heterozygous variants with a minimum read depth of 10. 

 However both the methods (short read alignment and masked reference) still shows a certain 

amount of mapping bias. We have used two-sided binomial test here, and hence any 

heterozygous variants which have any deviation from 50 % are considered to be bias and in the 

histograms we can observe deviation from that, hence it shows that mapping bias still preexist.   

That is if there is no mapping bias existed the mean of these probability distribution should be on 

0.5, but here we can see the mean is smaller so there is mapping bias existing toward the non-

reference allele direction. 

 

Whereas the histogram for mapping bias obtained from personalized masking method has shown 

a reduction in mapping bias compared to other two methods. This is mainly due to its genomic 

variants masked in reference genome.  The read mapping bias at the SNP position in reference 

genome is due to the occurrence of a flanking sequence sharing sequence identity in other region 

of reference genome. With masking both  the reference allele and alternate allele makes one base 

pair mismatch at correct location, but either allele will map to the corresponding position in the 

alternative location thereby biasing against correct mapping of allele that matches elsewhere [5].  

 

In the histogram the x-axis represents allele fractions, which means the number of reads within 

samples has alternate allele. Y-axis represents the estimated probability density from the number 

of occurrence of reads. 
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Figure 5 a:  Smoothed histogram of alternative allele fraction for all variants from the GSNAP 

method. The histogram shows the mapping bias still exists. 

 

5.2.2 Mean and Median 
In order to get the numerical value of mapping bias we further calculated the mean and median 

obtained for each sample from the histogram. The following table defines the mean and median 

obtained from GSNAP method. 

 

 
GSNAP  

 
Sample  Mean  Median  

1_LPS        0.467                0.467  

1_unstim     0.479                0.479  

2_LPS        0.478                0.478  

2_unstim     0.477                0.477  

3_LPS        0.476                0.476  

3_unstim     0.476                0.476  

4_LPS        0.476                0.476  
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4_unstim     0.477                0.477  

6_LPS        0.477                0.477  

6_unstim     0.471                0.477  

7_LPS        0.477                0.471  

7_unstim     0.476                0.476  

8_LPS        0.476                0.476  

8_unstim     0.474                0.476  

9_LPS        0.470                0.473  

9_unstim     0.478                0.478  

Average  0.477  0.477  

 

 

Table 2a: Shows the mean and median obtained from short reads alignment program. Obtained 

mean is 0.477 and median is 0.477. 

 

5.2.3 Masked Reference 
 

 

 
Figure 5 b: Smoothed histogram of alternative allele fraction for all variants from the masked 
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reference method.  

 

5.2.4 Mean and Median 
 

 

 

Table 2b: Table shows the mean median value obtained from masked reference method. The 

average mean value from all samples is 0.49, and median is 0.5 

 

5.2.5 Personalized masked reference 
 

 
Figure 5 b:  Smoothed histogram of alternative allele fraction for all variants from the 

personalized masked reference method 

 

Degner 

Sample Mean Median 

LPS1 0.49238309 0.4893617 

LPS2 0.49534388 0.5 

LPS3 0.49346107 0.49324324 

LPS4 0.49680817 0.49612403 

LPS6 0.49702571 0.5 

LPS7 0.49192292 0.4893617 

LPS8 0.49329803 0.49555547 

LPS9 0.49246006 0.5 

UNSTIM1 0.49331384 0.5 

UNSTIM2 0.49484297 0.49036044 

UNSTIM3 0.49641828 0.49525971 

UNSTIM4 0.49503177 0.49473684 

UNSTIM6 0.49034261 0.49557522 

UNSTIM7 0.4948537 0.5 

UNSTIM8 0.49412747 0.49190633 

UNSTIM9 0.49724266 0.5 

Average 0.49430476 0.49571779 
 



[26] 
 

5.3 Mapping bias of variants Shown significant ASE 

 

To get a more precise picture of mapping bias we filtered out the significant variants and plotted 

the histogram for those. From the obtained histogram, it shows that mapping bias persist in short 

mapping method and masked reference method. But it shows a reduction in personalized 

masking method. Histogram from all methods is plotted as follows. The peaks in left side 

indicate that majority of the ASE variants has expression shifted towards reference allele (figure 

6a, 6b, 6c). 

 

 
 

Figure 6 a:  Smoothed histogram shows the alternative allele fraction for variants showing on 

5% level of ASE. This Histogram Obtained from GSNAP method 
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5.2.3 Masked Reference 

 
 

Figure 6 b:  Smoothed Histogram shows the alternative allele fraction for variants showing 5% 

level of ASE. 

5.2.5 Personalized masked reference 
 

 
 

Figure 6c:  Smoothed histogram shows the alternative allele fraction for variants showing 5 % 

level of ASE. 
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5.4 Allele Specific Analysis 

5.4.1 GSNAP: Short sequence alignment 
In order to estimate the differently expressed allele within a gene we have followed some filters 

to all variants. Initially, we have taken the numerical value of all variants from all methods. Then 

we have filtered out the significant variants and calculated its value. 

 

For GSNAP method we measured the subset of SNP from the both the reference genome and the 

dbSNP used for mapping, we have found around 80 % of similarity between both. In addition to 

that for both methods we have taken the value for alternate variants and calculated the value for 

significant variants towards alternative allele direction. In GSNAP the difference between 

significant variants and significant variants towards alternative direction is very little. 

 

 Whereas in masked reference method the difference is quite large, this could be mainly because 

of the masking of genomic variants in reference genome. And hence forth the variants towards 

alternative allele direction are comparatively less. Then FDR (False Discover Rate) has taken for 

both methods. 

 Further filtering was done for the fraction of significant ASE within the gene with a minimum of 

2 heterozygous variants. The further filter is on the alternative allele expressed per gene, that is 

the common gene across a sample and the value is taken. When the sample is at least 2 the 

amount of allele expressed is quite low (flowchart 2a and 2b). 
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Flowchart 2a: Shows the numerical values obtained by GSNAP method for all variants and 

significant variants from the mapping bias estimation.  

 

5.4.2 Masked Reference 

 
Flowchart 2b: Shows the numerical values obtained by masked reference method for all variants 

and significant variants from the mapping bias estimation.  

5.4.3 Personalized masking 
We obtained a total of 5403variants after mapping with personalized masked reference genome. 

The amount for all alternative variants obtained is 706. Similarly we observed 1404 significant 

variants towards alternative allele direction. We found 62 significantly expressing ASE in a gene 

while filtering on fraction of significant ASE in gene. On other hand while filtering on the 

number of significant alternate allele per genes we got 43, while the number sample is 1 and 0 

when more than one sample. 

5.4.4 FDR Estimation  
In order to increase the power of statistical tests in ASE analysis False Discovery Rate (FDR) for genes 

and variants with ASE are estimated. 

 

For all methods both methods with respect to a true synthetic RNA-seq data set consisting of 16 samples 

which closely reflects the natural RNA –seq data and observed ASE expression. We had a set of 

expression from True RNA-seq data set so we used it as true positives and calculated the FDR and 

sensitivity. Both FDR and sensitivity values are calculated here for allele towards alternative allele 
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direction, before filtering and after filtering. From the three methods   the personalized masking method 

gives better FDR value. In addition to that both FDR and sensitivity values are calculated when the 

number of sample is 1 and 2 (table 3a, table 3b, and table 4a and 4b). 

 

Sensitivity = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+ 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
 

 

FDR = 
𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  

 

 

Both FDR and sensitivity is calculated in the following sections. 

FDR 

 

VARIANTS  GSNAP  Personalized masking Masked Reference  

Before Filtering 7.4 %  3.5% 1.5 %  

After Filtering 6.3 %  0.09% 2.5 %  

 

Table 3a: Defines the Sensitivity of variants before and after filtering. 

 

 

 

GENES  GSNAP  Personalized masking Masked Reference  

When Number of 

Sample >=1  

19 % 2.8%  23 % 

When Number of 

Sample >=2  

46 % 0 31 % 

Table 3b: Defines the Sensitivity of genes when sample number is equal to or greater than 1 and 

2 respectively. 

 

 

Sensitivity 

 

 

VARIANTS  GSNAP  Masked Reference  Personalized Masking  Masked Reference  

Before Filtering 2.07%  9.9%  8.13%  9.9%  

After Filtering 1.24 %  6.2 %  4.8%  6.2 %  
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Table 4a: Shows the specificity for variants before and after filtering 

 

 

GENES  GSNAP  Personalized masking Masked Reference  

When Number of 

Sample >=1  

9.6%  0.16%  

16%  

When Number of 

Sample >=2  

1%  0 2.7%  

 

Table 4b: Shows the specificity for the Genes with sample number greater than and equal to 1 

and 2 respectively. 

 

6. DISCUSSION 

In this thesis I have analyzed three different methods for mapping bias reduction for 

benchmarking the efficient one. From the results it is clear that mapping bias still preexists, none 

of the methods reduced mapping bias fairly which highlights the importance to develop new 

method for mapping bias reduction. 

 

In the short sequence alignment program, initially there were a lot of technical issues such as the 

tool doesn’t have any flags to handle multi-mapped reads and the tool wasn’t able to handle the 

file size, so it was required to subdivide the input fastq file before mapping. However the 

coverage obtained is higher than the masked methods; this is mainly because the tool can handle 

minor allele as matches with help of ‘reference spaces’ (explained in methods section). 

 

Furthermore by the simulated synthetic reads we were able to identify and remove a large 

number of false positives. The FDR value obtained is really good from all the methods. The 

study shows that the read coverage obtained from both masking methods (Degner and 

personalized masking) is very low, since all the genomic variants were masked. 

 

RNA- seq is a very powerful tool for ASE studies, but we need to account for mapping bias.  

The thesis highlights the importance for developing tools for read mapping tools that can in 

cooperate multiple SNPs, particularly in the context of identification of ASE. Although there are 

a few tools like GSNAP has the ability to incorporate the variants, but these tools have 

limitations for regions with multiple SNPs in close proximity and thus it increases the search 

space increases rapidly.  If you have a lot of variations there then it creates lot of difficulties in 

accurate mapping of these regions.  

 

And also we need to be careful about what reference we are using while mapping if we are 
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studying about ASE. For example we can customize the reference genome according to the 

requirement such as masked reference, personalized masking or personalized enhanced masking, 

by adding alternate allele at SNP position. 

 

Each and every human genome has its own Novel SNP/variants which are not found in the 

standard DbSNPs. Thus a ‘Two way approach’ can be implemented for addressing mapping bias 

in ASE study. Mostly bias is at SNP regions of the reference genome (i.e. there is no alternate 

allele), first approach could be creation of an enhanced reference genome, i.e. by incorporating 

all alternate alleles (from existing dbSNPs) to the exiting reference genome. Then map our short 

to that enhanced reference genome. Thus we are able to know the Novel SNPs and then 

incorporate these Novel SNP also to the enhanced reference genome, further use this reference 

genome for mapping this could also helps in reducing mapping bias (Ravi satya et.al).  

 

In addition to that the study shows the need to design different statistical models for variability 

from multiple SNPs in gene, for example the selection of models such as Bayesian models which 

can in turn return good true positive as you are not biased by small and very consistent difference 

in SNP all over the gene. 

Advance studies in ASE will definitely contribute towards clinical benefits especially, for 

example in the area of diagnosis, for instance by exploring ASE it helps in tumor type evaluation 

and classification [24]. Increasing the length of reads may help in mapping reads accurately to 

the reference genome. 
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APPENDIX 1 

1. Commands used  

Command 1: 
 

gsnap -D  refdir -d  ref  -A sam -s  splicefile -V  snpdir -v  snpfile –quality protocol=illumina  --

npaths=1  -Q --quiet-if-excessive fastqfile .readp_1  fastqfile.readp_2 | samtools view -Sb - 

>outdir}/${sbatchfile}.bam 

 

Command 2: 

Samtools mpileup -q1 -d10000 -L10000 -DSugfref  -r  region -b  bamfilelist | bcftools  view  -vcg 

- | vcfutils.pl  varFilter>vcffile 

 

 

Command 3: 

Samtools mpileup -q1 -d10000 -L10000 –Dsugfreferencegenome -l 1_LPS.merged.hetvars 

1_LPS.merged.bam | bcftools view - >*.mpileup.nocall.vcf 

 

Command 4: 

coverageBed –abam bamfile  -b  bed  -hist -split >ccds.bedtools.out2 

 

coverageBed –abam bamfile  -b gtf  -hist –split >ensembl.bedtools.out2  

 

genomeCoverageBed –ibam bamfile -g genome -split -max 1000 >genome.bedtools.out2 

 

Command 5: 

 

  

 

 

tophat --solexa1.3-quals -p   threads .  -o outdir –GTF gtffile  isize  --mate-std-dev  isizedev  

referencegenome  fastqfile_1   fastqfile_2  
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APPENDIX 2 

2. FILE FORMATS 

2.1. File formats in the analysis 
 

Information about read sequences generated from a sequencing machine can be stored in a file 

format called ‘fastq’.  

2.1.1 FASTQ 

A fastq file has a minimum of four lines representing a single sequence and possibly more since 

the sequence can be wrapped. The first line starts with a ‘@‘character followed by a sequence 

identifier and a description. The second line is the raw sequence. The third line starts with a ‘+’ 

signifying the end of the sequence and it is optionally followed by a sequence identifier. The 

fourth line contains the base quality score for the bases on line 2, one base quality character for 

each base.  
 

For example: 

@SEQ_ID 

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAG

TTT 

+ 

!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65 
 

2.1.2 SAM and BAM 

Typically the positional information about where the reads were mapped along the genome as 

well as mapping quality information is stored in a file format called SAM (Sequence Alignment 

Map) format. Due to the size of these files they are typically compressed into binary versions for 

the SAM format, called BAM. This is a compact and index-able representation of nucleotide 

sequence alignments. 

2.1.3 VCF file format 

A VCF file is consisting of a header section with information about sample with the sample 

name at the 10th column and a data section which is TAB delimited.VCF file provides 

information about genotype and read depth and with respect to sample name chromosome name, 

chromosome position, reference allele, alternative allele, ID which represents the variant 

identifier, QUAL which shows the phred-scaled probability of all samples being homozygous 

reference, INFO represents the variant information, and FORMAT colon delimited format of 

individual genotype [30]. 

Genotype represents the allele value, for a diploid the representation of genotype is 0/0, 1/0 or 

1/1, where the 0 stands for the reference allele and 1 for alternative allele. Read depth represents 

the reads covered at that position of the sample and it is an integer value. 



[38] 
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