

CARAI
Development of an intelligent personal
assistant for cars
Master’s thesis in Algorithms Logic and Languages

William Axhav Bratt and Johan Ekdahl

Department of Computer Science
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

Master’s thesis 2016

CARAI

Development of an intelligent personal assistant for cars

William Axhav Bratt and Johan Ekdahl

Department of Computer Science
Chalmers University of Technology

Gothenburg, Sweden 2016

CARAI
Development of an intelligent personal assistant for cars
WILLIAM AXHAV BRATT AND JOHAN EKDAHL

© William Axhav Bratt and Johan Ekdahl, 2016.

The Techno Creatives:
Supervisor: Oskar Hagberg, CTO The Techno Creatives

Academic
Supervisor: Olof Mogren, Department of Computer Science and Engineering
Examiner: Wolfgang Ahrendt, Department of Computer Science and Engineering

Master’s Thesis 2016
Department of Computer Science and Engineering
Algorithms, Logic and Languages
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: An example of a run demo of the CARAI prototype seen from the graphical
user interface

Department of Computer Science and Engineering
Gothenburg, Sweden 2016

iv

CARAI
Development of an intelligent personal assistant for cars
William Axhav Bratt and Johan Ekdahl
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
This thesis aims to create a proactive Intelligent Personal Assistant (IPA) within
a car environment, utilizing location prediction and a face recognition to provide
the context for that proactive behavior. A Dialogue Manager was implemented to
provide a dialogue driven interface. This was realized as a multimodal interface
using both voice and graphical input/output. The location prediction was realized
with different neural networks to varying degrees of success. The project resulted
in a prototype which acts like a proof of concept for a proactive IPA within a car
environment, the prototype demonstrated the proactive behavior that the thesis
aimed for. However most of the modules that make up the prototype, excluding
face recognition, do not preform well enough to be considered complete, but they
do demonstrate a proof of concept.

Keywords: Machine Learning, Intelligent Personal Assistant, Location Prediction,
Face Recognition, Dialogue Management, Important Locations, Car, Encog, OpenCV,
Talkamatic.

v

Acknowledgements
First of all we, the writers, would like to thank The Techno Creatives for giving
us the opportunity to conduct this thesis. Special thanks to Oskar Hagberg and
Sandeep Gajula, Oskar provided feedback and support, and Sandeep provided the
visual design of the interface, the project became much better because of them.
Secondly a big thanks to Olof Mogren for helping us with feedback and providing
us with a deeper insight into common practises of neural network implementations.
We would also like to thank the development team of Talkamatic, special thanks to
Fredrik Kronlid for providing us with the feedback and support needed to integrate
Talkamatic with our prototype. Lastly thanks to Jeff Heaton for providing the neu-
ral network platform Encog as a free educational tool.

Without the people mentioned above, this project would never have been possible.

William Axhav Bratt, Gothenburg, June 2016
Johan Ekdahl, Gothenburg, June 2016

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Preface . 1
1.2 Background . 1
1.3 Aim . 2
1.4 Limitations . 3

2 Theoretical Background 5
2.1 Neural Networks . 5
2.2 DBSCAN . 6
2.3 Image Matching . 7

2.3.1 Eigenfaces . 7
2.3.2 Fisherfaces . 7
2.3.3 Local Binary Pattern Histogram Matching 8

3 Related Work 9
3.1 Location Prediction . 9
3.2 Existing IPA Platforms . 10

3.2.1 Sirius . 10
3.2.2 OpenCog . 10

4 Description Of The System 13
4.1 The Target Platform . 13
4.2 The System Architecture . 14

4.2.1 Database . 15
4.2.2 Automatic Profile Selection Through Face Recognition 16

4.2.2.1 Improving Confidence 17
4.2.2.2 Proposed Setup . 17

4.2.3 Location Prediction . 18
4.2.3.1 Gathering Training Data 18
4.2.3.2 Training Data Preprocessing 18
4.2.3.3 Selecting clustering method 19
4.2.3.4 Neural Network . 19

4.2.3.4.1 Network 1 20

ix

Contents

4.2.3.4.2 Network 2 20
4.2.3.4.3 Network 3 21

4.2.3.5 Neural Network Prediction Procedure 22
4.2.4 External APIs . 23

4.2.4.1 Google Calendar . 23
4.2.4.2 Google Geolocations 23
4.2.4.3 Google Distance Matrix 23

4.2.5 MQTT . 24
4.2.6 Voice And Dialogue . 25

4.2.6.1 Automatic Speech Recognition 25
4.2.6.2 Dialogue Manager 26

4.2.6.2.1 Example commands 27
4.2.6.3 Text-To-Speech . 28
4.2.6.4 Graphical Interface 28

5 Experimental Setup 31
5.1 Prediction Baseline . 31
5.2 Dataset . 32

5.2.1 Geolife Dataset . 32
5.2.2 Generated Dataset . 33
5.2.3 Personal Dataset . 34

5.3 Experimental: Computer Setup . 35

6 Results 37
6.1 Face Recognition . 37

6.1.1 Lighting Conditions . 37
6.1.2 Confidence . 38
6.1.3 Performance Tests . 38

6.2 Location Prediction . 39
6.2.1 Culling results . 39
6.2.2 Network types . 40
6.2.3 GeoLife test . 41
6.2.4 Generated Data Test . 42

6.2.4.1 Network 2 . 42
6.2.4.2 Network 3 . 43
6.2.4.3 PredictorG . 44

6.2.5 Dialog Interaction . 45

7 Discussion 47
7.1 Discussion of the Results . 47

7.1.1 Culling . 47
7.1.2 Location Prediction . 47
7.1.3 Talkamatic . 49
7.1.4 Face Recognition . 49
7.1.5 Hardware Requirements . 50

7.2 Future Work . 50
7.3 Ethics . 51

x

Contents

7.4 Conclusions . 51

Bibliography 53

xi

Contents

xii

List of Figures

2.1 Figure illustrating the DBSCAN algorithm. Assuming minimum points
set to 4 and a max epsilon of ε. The C points have enough points
within a distance of ε to become core points. The B points do not
have the necessary amount of points within the distance ε to become
core points, but are in range of core points and as such become bor-
der points. Lastly the N points do not have the necessary amount
of points to become core points and are not within ε range of a core
point, as such they are considered noise. 7

2.2 An example of the local histogram pattern algorithm of an image
with 3x3 pixels. The threshold is in this example is 7 and produces
an encoded decimal number of 146. The Binary pattern is read from
the top left corner going clockwise. Inspiration taken from OpenCV . 8

4.1 The boxes represent modules, the arrows represent which way infor-
mation is sent and the man in the tophat at the bottom of the figure
is the user. As can be seen both Face Recognition and Predictor is
connected to the Database module, this is because Face recognition
needs to know what name corresponds to the found ID and the Pre-
dictor needs to know the GPS log of a certain ID. The MQTT module
is connected to and from every core module, acting as a data bus. . . 15

4.2 In this figure the database structure is illustrated, as can be seen the
column name ID is shared between the two tables. This is because
ID acts as an one to many mapping using the primary ID key from
UserInfo table that represents a users identity, to map a users logged
entries in the PositionHistoryTable where ID is not a primary key. . . 16

4.3 A view of a Ford KA from the rearview mirror. If the driver and
all passengers keep their heads in a default position all faces are de-
tectable from this view . 17

4.4 A view of a Ford KA, from the dashboard. Driver and front seat
passenger are clearly visible in multiple head positions, where as the
back seat passengers are hidden. More suited for a multiple camera
setup. 18

4.5 A visual representation of Network 2, a fully connected feed-forward
neural network. Who has varying numbers of input and output nodes
depending on the number of important locations, which in turn makes
Encog vary the number of nodes in the first and third hidden layers. . 21

xiii

List of Figures

4.6 An example of a Node-Red testing flow. The blue squares are in-
ject nodes where one can send data. The purple nodes are MQTT
connection points and the orange are custom JavaScript functions. . 24

4.7 A screenshot taken of the prototype, which displays the initialization
of the system with the greeting, followed up by a question of where
we are, which the system answers to. 29

4.8 A screenshot taken of the prototype, which displays the initialization
of the system. In this example the detection of the driver was uncer-
tain and needed to be verified, the user used a button press to verify
himself as William. 29

5.1 Visualization of a part of a graph produced by predictorG, A, B and
C are nodes in the graph corresponding to locations. In this example
each edge contains time, day of the weak and moth of the year. This
picture shows only the paths from A so that the examples in this
section becomes easier to follow. 32

6.1 A comparison between face images of a ASUS Laptop camera to the
left, in the left center is the C270 Logitech camera and to the right
center is the Microsoft Lifecam Cinema. Finally to the right is the
Raspberry Pi Camera. 37

xiv

List of Tables

4.1 This table shows the structure of Network 1, time of day is represented
in minutes . 20

4.2 This table shows the structure of Network 2, time of day is represented
in minutes. 21

4.3 This table shows the structure of Network 3, time of day is represented
in minutes. 22

5.1 This table details the paths that can be taken on a Monday, in the
fabricated data test. Weight indicates the frequency at which a path
is picked, the minutes indicate the top of a Gaussian distribution
with variance of 20 min and the LX indicate the important location
corresponding to cluster X. 33

5.2 This table details the paths that can be taken on a Saturday, in the
fabricated data test. Weight indicates the frequency at which a path
is picked, the minutes indicate the top of a Gaussian distribution
with variance of 20 min and the LX indicate the important location
corresponding to cluster X. 34

6.1 Table shows the testing of execution time on each of the computer se-
tups. The tests were run back to back without restarting the Java vir-
tual machine. Note the parenthesis values on the Dragon Computer
are execution time with the Microsoft Lifecam. The C270 prints an
error message each frame slowing down the total execution time. . . . 38

6.2 Table showing the results from testing of how much impact the face
recognition module on the systems. The percentage displays the max-
imum load the function performed on each of the systems. 38

6.3 Table showing the statistical data gathered from running the culling
algortihms on the GeoLife Dataset. The percentage value in the first
two rows are in relation to before culling. Percentage value in row
three is in relation to the total number of users (183). 39

6.4 Table showing the statistical data gathered from running the culling
algorithms on the Personal Datasets. The percentage values are in
relation to before culling. 40

6.5 This table shows the averages of training error and validation error,
for 92 neural networks of type Network 1 that was trained with 92
users from the GeoLife dataset, see section 5.2.1. 41

xv

List of Tables

6.6 This table shows the averages of training error and validation error,
for 92 neural networks of type Network 2 that was trained with 92
users from the GeoLife dataset, see section 5.2.1. 41

6.7 This table shows the averages of training error and validation error,
for 92 neural networks of type Network 3 that was trained with 92
users from the GeoLife dataset, see section 5.2.1. 41

6.8 This table showcases the difference between the training errors of the
tables 6.5, 6.6 and 6.7. 42

6.9 This table showcases the difference between the validation errors of
the tables 6.5, 6.6 and 6.7. 42

6.10 This table shows the training and validation error for Network 2,
training and validation error is explained in section 6.2.3 42

6.11 This table shows the Monday, Day of Week is 1, output from the
Network 2 when the inputted important location is set to L1. Each
row shows the start of the time interval which produces the output,
important location, and produces the same output until the start of
the next interval. 43

6.12 This table shows the Saturday, Day of Week is 6, output from the
Network 2 when the inputted important location is set to L1. Each
row shows the start of the time interval which produces the output,
important location, and produces the same output until the start of
the next interval. 43

6.13 This table shows the training and validation error for Network 3,
training and validation error is explained in section 6.2.3 44

6.14 This table shows the Monday, Day of Week is 1 , output from the
Network 3 when the current important location is set to L2 and the
previous important location is set to L1. Each row shows the start of
the time interval which produces the output, important location, and
produces the same output until the start of the next interval. 44

6.15 This table shows the Monday, Day of Week is 1 , output from the
PredictorG when the current important location is set to L1. Each
row shows the start of the time interval which produces the output,
important location, and produces the same output until the start of
the next interval. 45

6.16 This table shows the validation error for PredictorG, Training error
is not applicable as the training of PredictorG consists of just adding
paths see 5.1. 45

xvi

1
Introduction

The introduction will give the ruff outline of the thesis and thereafter follows an
explanation the background that inspired this project, as well as the aim of the
project that was a direct result of the aforementioned background. Lastly this
section contains the limitations that were put in place, so that this project could be
completed in a reasonable timeframe.

1.1 Preface
In the following thesis a prototype for an proactive Intelligent Personal Assistant
(IPA) within a car environment is developed and tested. To achieve proactiveness,
location prediction and an automatic profile selection is implemented along with a
dialogue manager providing a dialogue driven interface with the information required
to proactively act and ask.

1.2 Background
The car industry is moving towards becoming a more digital environment. Large
computer related companies such as Google and Apple, are on the front line pushing
new software solutions, right into the car. This is why digital applications, that has
relevance to cars, can start to be developed right on the car platform.

Digitally aiding the driver, is becoming a topic of interest within the car industry.
At the same time, the interest shown for digital intelligent personal assistants (IPA)
within the mobile phone industry is growing. A reasonable next step is to combine
these two fields, to have IPAs tailored for a car environment. One of the reasons
behind this is a greater possibility to gather relevant information from the car envi-
ronment, compared with a cell phone. An example is that one can, with the help of
cameras, monitor the interior of a car. This extra information could be feed to an
IPA, giving it more situational awareness. With this awareness a system like this,
could take advantage of knowing who the users are. For example linking different
settings like air conditioning and favorite music directly to the users, without or
with very little direct interaction.

With the help of GPS and online capabilities, a system like this can remember pre-
vious meetings and traveled locations. This personal data, could possibly be used to
predict an upcoming location or meeting automatically. Apart from providing help

1

1. Introduction

with localizing scheduled meetings, a device like this could also offload the driver by
notifying other meeting participant that the driver will be late, if such is the case.
Which would let the driver keep his or her focus on the road.

Robustness is something that is desired in all forms of applications, this combined
with the car industries high demands for fault tolerance, makes robustness a crucial
part of this type of software. A bug or flaw in a system, could lead to an accident
even if that system is not part of the basic operations of the car. For example a
malfunction in one of the quality of life applications could dangerously distract the
driver, which in turn could lead to an accident.

When developing an application of this complexity for a car, hardware limitations
must be taken into account. But something that can be assumed is that such an ap-
plication has a connection to the Internet. This assumption is based on the growing
trend of connected cars, there are already some newer car models that are already
connected [AT&T, 2014]. This presents an opportunity to run heavier computations
on an external server or cloud platform, thus reducing the applications computa-
tional strain on the cars local hardware.

This project attempts to utilize the potential powers in information gathering that
can be achieved in a car environment, to implement a prototype for an IPA. Which
main features are centered around: Destination prediction, handling multiple active
users, as well as minimizing required user input, in a proactive manner.

1.3 Aim
The aim of this project is to develop a prototype for a proactive intelligent personal
assistant for a car environment, that can predict the user’s transits and use that
information to initiate dialog. As well as perform the role of an interface between
the user and the car.
The functionality of the finished prototype is expected to be as follows:

• Location and calendar features such as
– Ability to proactively give the driver suggestions of locations that should

be traveled to, based on earlier gathered location data.
– Making a routing schedule for the driver and passengers of the car, by

using previously gathered driving patterns as well as looking at their in-
dividual calendar entries. This routing schedule should be able to provide
a GPS, with the data necessary to make a route complete with drop off
points for the passengers. This feature should also be able to detect con-
flicting appointments considering estimated travel distances. Given no
conflicting appointments, this system should function without user input
apart from calendar entries.

– Predicting geographically relevant locations corresponding to the calen-
dar appointments and previously visited locations, either through remem-
bering previous occurrences and destination, or through appointment en-
tries.

2

1. Introduction

• Automatic profile selection system
– In-Vehicle computer vision system, that could set profiles without user in-

put. The user profiles will contain GPS sampling for location prediction,
and is therefore a key component in removing the need for user input in
the location prediction. These profiles could later easily be expanded to
include preferences, such as seat position and radio station.

1.4 Limitations
To make this project fit into acceptable deadlines some limitations were put in
place. Firstly building a complete IPA demands a large amount of manhours and is
usually done by large teams of developers. Therefore the goal of this project is to
build a prototype showcasing some features rather than having a complete product.
Secondly security is a large concern when managing a lot of personal data, but due
the limiting timeframe, security will not be considered further than the standard
security protocols such as SSL for online communication. This is something that
needs to be considered for a full scale application. Thirdly Location prediction will
be limited/tailored to be able to make accurate predictions in regards to limited
areas. Also the exact hardware specifications of modern cars will not be considered
further than their performance. Lastly this thesis will not cover the interaction
design difficulties as this is not inline with the researcher’s expertise.

3

1. Introduction

4

2
Theoretical Background

The following chapter will detail the theoretical aspects behind the CARAI pro-
totype starting with an brief explanation of neural networks. Followed by an ex-
planation of DBSCAN and a sub chapter on image matching where three different
matching algorithms are described. Both neural networks and DBSCAN will be
used for location prediction, and one of the image matching algorithms will be used
in automatic profile selection.

2.1 Neural Networks
Neural network or more specifically artificial neural networks is a broad field that is
usually employed to solve complex problems where there are large amounts of data
available. A neural network is a graph consisting of nodes that each have an acti-
vation function, the activation function modifies data that passes through its node.
The nodes can be connected in various ways creating different types of networks
with different characteristics and behaviors, to describe these networks it is helpful
to think of them as a collection of layers containing nodes. In this way one can de-
scribe an neural network as a input layer, an output layer and the layers in between
which are called hidden layers.In more complex networks the layer representation
is very useful for describing the connections between the nodes, as connections be-
tween layer, however in this thesis the network type feed-forward is used which only
has connections in one direction. A visual representation of a feed-forward network
can be seen in figure 4.5.

After constructing a network by selecting: amount and size of layers, connections
between layers, the activation functions for the nodes. The network needs to be
trained, training in the context of neural networks is the process by which the acti-
vation functions are adjusted. In supervised learning which is the training method
used in this thesis the weights are adjusted with known input-output combinations,
running the input trough the network and scoring the networks output against the
expected output and adjusting the internal activation functions accordingly.

A simple example, teaching a neural network to behave like a NAND-gate. To
do this one would construct a neural network to have two inputs and one output,
like a NAND-gate. Then train the network on the NAND-gate behaviour (1 NAND
1 = 0, 0 NAND 0 = 1, ...) for several iterations of training. Once the training
has been completed, feeding the neural network with a combination ones and zeroes

5

2. Theoretical Background

should yield a correct result or something close to the correct result depending on
length of training and how well the network suits the problem, the NAND in our
example might get a result of 0.998 for an input of 1 and 0. As long as there is
a way to model a problem as having defined inputs and a score-able result, neural
networks could feasibly solve any problems provided sufficiently available training
data. For example there has been successful attempts at teaching a neural network
to play GO. GO is an ancient Chinese board game which is impossible to brute force
with today’s computer power. ALPHAGO managed to beat the world’s best GO
player by utilizing the power of neural networks. [Google, 2016a]

2.2 DBSCAN
Density Based Spatial Clustering of Applications with Noise (DBSCAN), is a clus-
tering algorithm made by a team from the Institute for Computer Science at the
University of Munich. DBSCAN is a density based clustering method, which is noise
resistant and works as follows:

DBSCAN constructs clusters by dividing the points that make up a cluster into
two groups, these groups are core points and border points. To decide what points
are considered core and border points, one must first decide the parameters mini-
mum points (minP) corresponding to density and epsilon (ε) corresponding to what
is considered close. Core points are the points that are in the densest part of a
cluster and are defined as having at least minP points within ε distance. Border
points are the points which are not surrounded by minP amount of points, but are
within ε of at least one core point. Points which are neither border nor core points
are considered noise and thus not part of any cluster. One cluster is a set of points
containing all the core points that are within ε of other core point of that set, as
well as all border points associated with those core points. [Ester et al., 1996]

6

2. Theoretical Background

N2

B1

C1
C2

C3

B2

C4

N1ᶗ

Figure 2.1: Figure illustrating the DBSCAN algorithm. Assuming minimum points
set to 4 and a max epsilon of ε. The C points have enough points within a distance
of ε to become core points. The B points do not have the necessary amount of points
within the distance ε to become core points, but are in range of core points and as
such become border points. Lastly the N points do not have the necessary amount
of points to become core points and are not within ε range of a core point, as such
they are considered noise.

2.3 Image Matching
In this section there will be explanations of the three image matching methods, that
were considered in the implementation of the automatic profile selection described
in section 4.2.2.

2.3.1 Eigenfaces
Eigenfaces is a way extract unique features from images using Eigenvectors. The
resulting unique features can be used for a variety of purposes, such as representing
images as a combination of these unique features. But the more interesting appli-
cation in terms of this project is face recognition. Face recognition with Eigenfaces
works by extracting Eigenvectors from the input image and comparing them with
the Eigenvectors extracted from a training set of images. Resulting in a face recog-
nition that is resistant towards lighting differences and different tilt of the head, but
has the restriction of a set resolution as a side effect of how the Eigenvectors are
extracted. [Turk and Pentland, 1991] [Team, 2016]

2.3.2 Fisherfaces
Fisherfaces is a way to use Eigenvectors to classify images rather then represent
them. The classification is done in such a way that the distance, error, between the

7

2. Theoretical Background

elements of the same class becomes as close as possible, while the distance between
the classes become as great as possible. In terms of recognising faces this is very
useful as face recognition is a classification problem. Fisherfaces share the need for
a fixed image resolution. Compared with Eigenfaces, [Belhumeur et al., 1997] found
that Fisherfaces were more resistant to lighting conditions.

2.3.3 Local Binary Pattern Histogram Matching
Local Binary Pattern Histogram matching (LBPH) traverses an image, for each pixel
in that image the surrounding 8 pixels are stored as a color value in a new image.
Each of these 8 pixels are thresholded in such a way that if the pixel’s color value
is higher or equal to the center pixel, it will be set to one and zero otherwise. This
leads to each pixel in the new image being encoded with an binary number of eight
bits, where each bit is the threshold of a neighbouring pixel. Finally the matching
is done by matching the local histograms of the new image, with a training set of
histogram sets extracted in the same way. LBPH is lighting resistant and does not
require a set resolution for the image matching. [Team, 2016]

9 4 3

5 7 7

8 6 1

1 0 0

0 1

1 0 0

Threshold
Binary: 10010010
Decimal: 146

Figure 2.2: An example of the local histogram pattern algorithm of an image with
3x3 pixels. The threshold is in this example is 7 and produces an encoded decimal
number of 146. The Binary pattern is read from the top left corner going clockwise.
Inspiration taken from OpenCV

8

3
Related Work

In the related work section, papers related to location prediction are referenced.
Furthermore existing platforms which are related to and have inspired this project,
are described.

3.1 Location Prediction
Within the field of location prediction the primary focus, of research, has been to
predict pedestrian movement, which is more complex in terms of the possible space
of movement; Cars are restricted to roads and parking lots, whereas pedestrians are
not restricted to follow predefined routes and may take any method of transporta-
tion. Predicting pedestrian movement usually involves a large amount of data and
rely on that the data is continuously sampled, so that the path taken can be used
in the prediction.

In the paper Mathew et al. [2012], a location prediction algorithm using Hidden
Markov Models is presented. Their aim was to predict pedestrian movement across
the entire globe. Their method for discretization of data was to divide the globe
into triangles with a Hierarchical Triangular Mesh and group time according to day,
night and if it was a weekend. The end result was a prediction accuracy of about
13.85%, average error in distance of 143.5 kilometers, and a median error distance
of 4957 meters. In relation to our thesis this type of prediction is not directly appli-
cable as the continuity of samples of an individual is not guaranteed. Users might
be picked up in one place, dropped of in another and then be picked up in a third
for example. Secondly the problem this thesis aims to solve with location prediction
requires a higher degree of accuracy.

Another location prediction method for predicting pedestrian movement is presented
in Gambs et al. [2012]. This method uses what is referred to as n-MMC which is
a variation of the Markov Mobility Chain that takes into account the previous n
locations. What makes this interesting in terms of this project, is that with the
rather low n of two they achieved prediction accuracy between 70% to 95%.

Ashbrook and Starner [2003] make the observation that finding significant loca-
tions helps the prediction process. For example predicting that the user will move
a few meters to the west is not very helpful, because it is likely that this is the
same location. Their approach for finding important locations allowed for multiple

9

3. Related Work

resolutions, which was achieved with a hierarchical structure of locations, that in
turn could be divided into locations. The predictions were made through a n-th
order Markov chain, but its accuracy has not been documented. Unlike the well
documented tests for finding the important locations, there was no mentioning of
how well the predictions corresponded to reality. In relation to our thesis, what is
of interest is their work on finding important locations, as it serves as a great point
of inspiration for part of our thesis. What differs is that the solution suggested in
our thesis, does not have the same need for multiple resolutions. As there is only
one form of transit, by car, and therefore takes on a different solution to the what
is essentially the same problem.

3.2 Existing IPA Platforms

3.2.1 Sirius
Sirius is an open-source IPA platform developed at Michigan University. The plat-
form provides an automatic speech recognition tool, an image matching library, and
a questions-answer library. Data exchange between these modules is handled by a
python client-server architecture.
Speech Recognition capabilities are powered by either a combination of Hidden-
Markov-Models and Gaussian Mixture Models, powered by Sphinx or with the help
of a neural network powered by Kaldi. Both these automatic speech recognition
libraries are further explained in section 4.2.6.1.
Sirius image matching is done through OpenCV where it compares an input image,
with an already created image database. The software scores possible images from
the database based on how similar the features of that image are compared to the
inputted image. The highest matching result is returned. This results in a quick
match that has no failure state, a best matched image is always returned.
Sirius‘s question answers module is powered by OpenEphyria (OE), OE is connected
to a local copy of the Wikipedia Database. By the usage of different informa-
tion extraction techniques OE creates relevant search queries that are given to the
Wikipedia database. Depending on different scores returned by possible matches,
OE chooses and returns the best answer possible [Hauswald et al., 2015]

3.2.2 OpenCog
OpenCog is an open-source project that strives to develop a platform for Artifi-
cial General Intelligence (AGI). It is developed and maintained primarily by the
OpenCog Foundation. The project has an ambitious goal of being able to achieve
an AI with human preschool-level intelligence, within years and not decades if their
roadmap is followed. Currently the framework contains “a number of cognitive
agents at varying levels of completion” [OpenCog, 2016]. Among other projects de-
velopers has created a Nao robot [ROBOTLAB, 2016] controlled by OpenCog and
a learning Minecraft bot using this framework. [Goertzel, 2010] As of writing this
thesis, OpenCog is an advanced library but unstable as it is under rapid develop-
ment. OpenCog also does not have many pre-built features, which is unfortunate as

10

3. Related Work

pre built features are helpful when developing a project of this size in a short time
frame.

11

3. Related Work

12

4
Description Of The System

The following chapter will give a thorough description of the CARAI prototype,
providing insight to design decisions and how the prototype works. Starting with
describing the target platform, followed by a description of the system witch details
all of the software modules of the prototype.

4.1 The Target Platform
The target platform for the software system described in this thesis, would have to
comply with the following:

An in-car computer: Be able to run on computer hardware that, could feasibly
exist or be installed in, a car. This means it should be compact, consume
little power, and have robust hardware that preferably does not need active
cooling. A computer that meet these criterias is a Raspberry Pi 2 Model B [PI,
2016b]. The Raspberry Pi can perform under passive cooling and is powered
through a 5V USB port [PI, 2016a]. It is made to be an experimental board
and therefore it is designed to be robust. The Raspberry Pi 2 Model B uses
an Broadcom BCM2836 processor, which is a 32-bit quad-core ARM processor
running at 900 MHz.
Alternatively a Next Unit of Computing (NUC) computer [Intel, 2016] could
be targeted, these computers are more lenient when it comes to hardware, as
they contain standard computer components, such as Intel Core processors etc.
This means the software performance optimizations causes less of an issue, as
the hardware is more powerful.

An in-car camera monitoring system: One or several cameras providing cov-
erage each of the occupants in the car, this could for example be achieved
by a centrally mounted camera, above the rearview mirror or placed on the
dashboard.

A sensor array: Sensors that can detect when the interior of the car might have
changed, making it possible to run face recognition only when it is necessary.
An example of how this could be done is by having sensors that detect the
opening and closing of the car doors, or alternatively seat pressure sensors.
This approach was selected over an active face recognition approach where face
recognition would always be running, as having face recognition always running
posed performance concerns. More on this can be found in the discussion at

13

4. Description Of The System

chapter 7.

A CAN bus interface: The CAN interface is to access the car sensors and allows
the prototype to both sample and set the car’s GPS system. The CAN inter-
face can also give possibilities to automatically set user specific settings. An
example of this could be the positioning of mirrors, which is driver specific,
and the seat position could also be set for each user’s seat independently.

4.2 The System Architecture

The system is divided into several modules, that are managed both as client and
server applications. The figure below represents what components exists and how
they interact with each other. The following chapter will give a more detailed de-
scription of what components exists and what they do.
The system is divided into six different self contained modules. The Database
(4.2.1) stores GPS logs together with user specific data. The Face Recognition
module (4.2.2) is used to create an automatic profile selection. The Predictor mod-
ule (4.2.3) is used to create prediction where one will travel based on travel history.
The Talkamatic module (4.2.6) is used to handle dialogue management together
with multimodal inputs and outputs to the system. MQTT (4.2.5) is a TCP/IP
based connection protocol to handle connections between the modules. Finally the
Car module is a representation of car signal. Each module will be further described
in the referenced sections. How these modules are connected with each other can
be seen in figure 4.1.

14

4. Description Of The System

Car

Database

Face Recognition

External API’s MQTT

Talkamatic

Predictor

Figure 4.1: The boxes represent modules, the arrows represent which way infor-
mation is sent and the man in the tophat at the bottom of the figure is the user.
As can be seen both Face Recognition and Predictor is connected to the Database
module, this is because Face recognition needs to know what name corresponds to
the found ID and the Predictor needs to know the GPS log of a certain ID. The
MQTT module is connected to and from every core module, acting as a data bus.

4.2.1 Database
The Database holds the names and GPS logs mapped to there respective IDs, the
names are used to greet the user and the GPS logs are used in location prediction.
MySQL [MySQL, 2016] was used as it has all the necessary features for the type of
database layout that this project uses.
The layout of the database consists of two tables and six stored procedures. The
tables are PositionHistoryTable and UserInfo, UserInfo maps ID’s to user names
while PositionHistoryTable maps trips to IDs. A trip is five columns containing two
positions as longitude and latitude corresponding to a start and end point, as well
as a date/time column containing a timestamp with the precision down to minutes.
In the UserInfo table IDs are auto incremented primary keys pared with a name and
yet to be implemented settings variable. The reasoning behind this setup is, firstly
that every new user should have an unique ID even if they do not have a unique
name. Secondly each user should be able to have any number of logged entries,
including no entries. The stored procedures are as follows: createUser which creates
a user, deleteUser which deletes a user, enterPositionData adds a trip associated
with an ID, getAllUsers returns all users and their respective IDs, getPos returns a
specified amount of trips associated with a specified ID, and lastly getUser returns

15

4. Description Of The System

the name of a specified ID.
Tue Jun 07 14:50:36 2016, New Model - EER Diagram (part 1 of 2)

1 of 2

PositionHistoryTable

ID INTEGER

Lon DOUBLE

Lat DOUBLE

nextLon DOUBLE

nextLat DOUBLE

Date DATETIME

Indexes

UserInfo

ID INTEGER

UName VARCHAR(50)

SettingsPath VARCHAR(100)

Indexes

Figure 4.2: In this figure the database structure is illustrated, as can be seen the
column name ID is shared between the two tables. This is because ID acts as an
one to many mapping using the primary ID key from UserInfo table that represents
a users identity, to map a users logged entries in the PositionHistoryTable where ID
is not a primary key.

4.2.2 Automatic Profile Selection Through Face Recogni-
tion

The pre-study, at the start of the project, showed that OpenCV [Itseez, 1016] has
all the necessary tools to build a face recognition algorithm, with the secondary
benefit of performing all the computations locally. OpenCV has been used to im-
plement similar features in Sirius. Performance wise OpenCV has been shown to
run face recognition applications on smartphones [Liu, 2014] which are well below
the hardware constraints set in this project. [Itseez, 2016]
To detect if registered users are in the picture, two standard methods from the
OpenCV library are used. First the areas where faces are located is found using a
cascade classifier, the faces are cropped to minimize the effect of the background.
The resulting cropped images are then matched with reference images, of users, using
the method of Local Binary Pattern Histogram Matching. A match will always be
found, but with different confidence levels as LBPH Matching looks for the closest
match.
Knowing which users are present in the car is useful as it removes of the need for the
users to identify themselves. This in turn leads to an increased perceived intelligence
as the application appears and to some extent does know who the users are. In
addition to finding what users are present, the algorithm can also contextualize
their location within the car, opening possibilities to for example address the driver.
Detecting where in the car a user is located is done by dividing the image into a
grid and depending on where the person’s face is detected, in the image, it can be
assigned to a specific seat. This method is scalable for a multi-camera setup by
concatenating the resulting images and adjusting the grid appropriately.
In the prototype there are ten pictures taken, so this procedure is repeated ten times.
After that the most frequent face is picked, per seat, and assigned a confidence value
equal to the mean confidence value of all occurrences of that face. A minimum

16

4. Description Of The System

confidence threshold is set so that unknown users will not be identified as other
known users. The confidence is normalized to meet the expected confidence interval
of Talkamatic, which will be described in detail in the Talkamatic sub-chapter, see
section 4.2.6.2.

4.2.2.1 Improving Confidence

Using a re-normalization (values [0.6-1.0]) of the confidence yielded from the face
recognition Talkamatic will respond accordingly: On a confident identification the
user profile will be set; On a almost confident identification, the user will be informed
of who the user was identified as; On an uncertain identification the user will be
asked to confirm the identification; On a failed identification the user will be asked
about the user’s identity. In the case of an uncertain but correct identification,
the pictures that were taken in this analysis are added to that user’s profile so that
future attempts will yield higher confidence. If the user answers no to a confirmation
question, the confidence is lowered to unknown user and the system asks for the
user’s name.

4.2.2.2 Proposed Setup

A camera is setup so that it has coverage over all the seats, two possible placements
could be centered on top of the dashboard or by the rearview mirror. Ten pictures
are taken when a door is closed. The pictures are divided into different regions, each
corresponding to a different seat. Then the face recognition software analyzes the
pictures and finds faces on a seat by seat basis to find out if and what has changed.

Figure 4.3: A view of a Ford KA from the rearview mirror. If the driver and all
passengers keep their heads in a default position all faces are detectable from this
view

17

4. Description Of The System

Figure 4.4: A view of a Ford KA, from the dashboard. Driver and front seat
passenger are clearly visible in multiple head positions, where as the back seat
passengers are hidden. More suited for a multiple camera setup.

4.2.3 Location Prediction
The primary feature of this IPA is that it can predict where the car will travel, by
performing analysis on previous traveled data. The following section will describe
in detail how the location prediction is performed with neural networks.

4.2.3.1 Gathering Training Data

To perform accurate machine learning, a good training data set is required. Col-
lecting data presents two challenges, firstly how initially train the network, secondly
how to collect data during the application’s runtime.
To acquire personally relevant data for initial training of a network, GPS logs can
be extracted from devices such as smartphones. Smartphones tend to passively logs
GPS data for a lot of features, such as Google traffic, iCloud:Locate your device
or Google locations. Because of new directives from the EU [EU, 2016], all data
gathered is owned by the user and therefore must be made available to him or her
and as such this data can be used, by the user, to initialize the neural network.
Some prepossessing is required to extract the relevant data from the continuously
sampled logs, see section 4.2.3.2.
Gathering data during runtime is not a great challenge, as the face recognition
combined with sensors provide information of when and where users enter or leave
the car. Logging a user’s travel is done by combining where and when they entered
the car with where they exited the car, storing it as an entry.

4.2.3.2 Training Data Preprocessing

As mentioned earlier most passively collected data is collected continuously. The
data that is interesting is the start and end location of uninterrupted movement, in
the following sections this shall be referred to as a path. The paths of interest to
the prediction are paths taken by car. The distance between continuously gathered
samples are often short, within tens of meters. Depending on the user this data could
also contain high amounts of samples in close proximity to the user’s home, which in
its turn would mean that paths that would start in the home has its destination in a

18

4. Description Of The System

neighbouring room. These types of paths are not relevant for predictions related to
car travel. The data must be filtered to make the data more relevant to predict car
destinations. The most critical aspect of these filtering methods are that the paths
taken must be intact after a point is removed. If a point is removed then the point
before it, has to be connected the next point that is not removed by the filtering
algorithm. Three culling techniques were tested to filter the data:
Box culling:

Box culling is a method where a box of a certain size is placed over the sampled
points. If the points are inside the box they are kept else they are removed.
This is used to remove points that are sampled outside of a desired area, a
town or a country.

Speed culling:
Removes the entries that have a lower speed than a specified threshold or that
has zero distance traveled or that has zero difference in time. Speed culling
also has a threshold for the amount of slow samples required to signify a stop.

Distance culling:
Distance culling uses the concept that if a path is longer than a certain distance
than it most probably was traveled by car. The method uses two modes a
standstill mode and an traveling mode. The traveling mode is triggered when
paths are longer than a distance γ only the starting point is saved. Standstill
mode triggers if the distance traveled is shorted than γ for x amount of samples.
The mean off all standstill points are added as the destination point of the
trip.

4.2.3.3 Selecting clustering method

Clustering is a the very broad field of grouping data points together through some
metric of locality. But it is not only metrics that differ, different algorithms have
different approaches and therefore different result when clustering the same data
set. Examples of types of clustering methods are location, centroid, connectivity,
and density based clustering. Each have their uses, but for the purpose of clustering
location data only density based clustering seems reasonable, as dense regions is
what would constitute an important location. There exists density based clustering
algorithms that are noise resistant, in such an algorithm stray points will not affect
the result of the clustering. Such stray points could be created if for example the
driver’s favorite coffee place is closed for a day, forcing the driver to find another.
The clustering algorithm used in this project is one such noise resistant density
based clustering algorithm, DBSCAN see section 2.2.

4.2.3.4 Neural Network

The neural networks were implemented in Java™, using the machine learning frame-
work Encog [Heaton, 2016]. Three neural network configurations where imple-
mented, each containing three hidden layers whose size are determined by Encog
at the point of training. Each using TANH as the activation function for the first
two hidden layers and a linear activation function for the last layer.

19

4. Description Of The System

4.2.3.4.1 Network 1
Network 1 has: a GPS position, longitude and latitude, day of week, time of day
as input and a GPS position as output. The longitude and latitude are double
precision variables, time of day and day of week are discrete integer values from an
ordered set ranging [0-1439] and [1-7] respectively. Ordered set means that unlike
an unordered set where every element is equally different from every other element,
the ordered sets elements are as different as the difference in index.

Inputs Hidden Layer Outputs

GPS Latitude Double 3 Hidden Layers
Layers: GPS Latitude Double

GPS Longitude Double

Layer1:
Activation function:

TANH
Amount of Nodes:

2 + 7 + 1

GPS Longitude Double

Time of Day Set of ordered
integers [0-1439]

Layer2:
Activation function:

TANH
Amount of Nodes:

7

Day of Week Set of ordered
integers [0-7]

Layer3:
Activation function:

Linear
Amount of Nodes:

2

Table 4.1: This table shows the structure of Network 1, time of day is represented
in minutes

4.2.3.4.2 Network 2
Network 2 has: A important location ID, time of day, day of week as input and
important location ID as output. Important location ID is an unordered set of
integer values, ranging from, one to the maximum number of clusters. time of day
and day of week are ordered sets of integer values that range from [0-1439] and [1-7]
respectively.

20

4. Description Of The System

Inputs Hidden Layer Outputs

Important location ID Set of
unordered integers

3 Hidden Layers
Layers: Important location ID Set of

unordered integers

Time of Day Set of ordered
integers [0-1439]

Layer1:
Activation function:

TANH
Amount Nodes:

Number of
important locations + 7 + 1

Day of Week Set of ordered
integers [0-7]

Layer2:
Activation function:

TANH
Amount Nodes:

7
Layer3:

Activation function:
Linear

Amount Nodes:
Number of

important locations

Table 4.2: This table shows the structure of Network 2, time of day is represented
in minutes.

Figure 4.5: A visual representation of Network 2, a fully connected feed-forward
neural network. Who has varying numbers of input and output nodes depending on
the number of important locations, which in turn makes Encog vary the number of
nodes in the first and third hidden layers.

4.2.3.4.3 Network 3
Network 3 has: A important location ID representing the current location, a im-
portant location ID representing the previous location, time of day, day of week as
input and a important location ID as output. Important location ID is an unordered
set of integer values, ranging from, one to the maximum number of clusters. Time

21

4. Description Of The System

of day and day of week are ordered sets of integer values that range from [0-1439]
and [1-7] respectively.

Inputs Hidden Layer Outputs

Important location ID Set of
unordered integers

3 Hidden Layers
Layers: Important location ID Set of

unordered integers

Important location ID Set of
unordered integers

Layer1:
Activation function:

TANH
Amount Nodes:

2∗number of
important locations + 7 + 1

Time of Day Set of ordered
integers [0-1439]

Layer2:
Activation function:

TANH
Amount Nodes:

7

Day of Week Set of ordered
integers [0-7]

Layer3:
Activation function:

Linear
Amount Nodes:

Number of
important locations

Table 4.3: This table shows the structure of Network 3, time of day is represented
in minutes.

4.2.3.5 Neural Network Prediction Procedure

The method put forward in this thesis that use neural networks for location predic-
tion, consists of several steps.

Step 1: Gathering GPS data for the users in the form of start and end locations
for their travels. It is important to not flood the prediction process with data
that is irrelevant to the prediction, as this can lead to incorrect predictions.
Filtering data is a possible solution but it is far easier to take correctly samples
to begin with. To this end, samples are taken and logged individually when
a user enters or leaves the vehicle. This is accomplished by running the face
recognition when the doors of the car have been closed, as this constitutes the
possibility of a user entering or leaving the car. Entering or leaving the car
via windows, although possible, is an edge case and is not considered.

Step 2: The coordinates for the start and end points are grouped into points of
interest, as it is incredibly unlikely that the car will stop at the exact same GPS
coordinate every visit to a certain location. Therefor a clustering algorithm
is used to group the GPS coordinates so that a start and endpoint goes from
important location to an important location. Where the GPS coordinates of
an important location is calculated as a mean of the associated coordinates. It
should however be noted that one of the networks does not use this approach,
but instead relies on the neural network’s ability to classify locations.

Step 3: Paths corresponding to the start to end important locations along with the
time from the start sample is feed as training data to a neural network. The
training can and should be done on a remote platform as the training is quite
demanding and generates a small and easily transmittable neural network.

22

4. Description Of The System

Step 4: Using the model created by the training data, a prediction is created. De-
pending on the certainty of the prediction the driver will either: be presented
the prediction, be prompted to agree or select one of several predictions, or
the prediction will be ignored. The next step is to give the car’s GPS the
coordinates of the predicted location.

Step one should run for a considerable amount of time in between step two and
three, weekly or monthly recalibrations are reasonable. A few new data sample
points will not change the neural network much.

4.2.4 External APIs
There are some external APIs connected to extend the possibilities of the application,
helping to provide a more complete experience. All these external components are
primarily connected to the TDMs device interface, which will be further explained
in the Dialogue Manager chapter 4.2.6.2.

4.2.4.1 Google Calendar

To be able to provide synchronized calendar information between the IPA interface
and regular services, Google calendar was chosen. This partly because it is provided
with an excellent API documentation as well as language and system independent
libraries for easy and quick installation and development.
Google calendar provides the same support Google’s standard web interface, this
means full support for creation, modification and deletion of calendar events.[Google,
2016b]

4.2.4.2 Google Geolocations

Google geolocations is a sub-API under Google Maps. The data provided by this
API is related to getting specific data from a GPS positions, for example street
names. It is also possible to do the reverse by sending in a street name or name of a
relevant locations, it can generate possible gps locations that match that description.
[Google, 2016d]
The main feature that the IPA utilizes from this library is the position to name
functionality. When the user asks the IPA where he currently is, the IPA can
respond with the current street address rather than a longitude, latitude-pair.

4.2.4.3 Google Distance Matrix

The final Google APIs feature the IPA is using is the Distance Matrix API. This
library provides functionality to get the distances between two given coordinates
considering traversable roads. The other feature is that with this distance combined
with real time traffic data, this library can provide an estimated arrival time to the
destination. [Google, 2016c]

23

4. Description Of The System

4.2.5 MQTT

Message Queue Telemetry Transport (MQTT) [ISO 20922:2016] is a publish sub-
scribe messaging protocol. It is a TCP/IP server-client based protocol where a
broker is set up as the server, and the different components of the program acts
as clients who are connected to topics. If a client publishes new information all
subscribed clients will be notified that their subscribed topic has been changed.
This is really useful since the full applications is built upon a lot of different modules,
written in different programing languages. By sending a standardized JSON string
between these modules, there are no language barriers. A new component written
in any programing language language can be initialized to listen and speak with the
system, requiring only an MQTT interface, as well as a JSON formatter/parser. In
this project’s case there are Java, Python and JavaScript components and all are
connected with each other through MQTT.

MQTT has fault tolerance features Wills, a Will is a description of what should be
done if a client should disconnect unexpectedly.

MQTT is very useful when testing and debugging, when using debugging tools such
as Node-Red all topics can be monitored to verify that information is correctly sent
and managed. There also exists a possibility to inject messages to specific compo-
nents during runtime to test behaviours and or bugs. Node-Red makes injecting
signals and messages easier. An example of a Node-Red flow, that was used in this
project, can be seen in figure 4.6. [IBM, 2016b]

Figure 4.6: An example of a Node-Red testing flow. The blue squares are inject
nodes where one can send data. The purple nodes are MQTT connection points
and the orange are custom JavaScript functions.

24

4. Description Of The System

4.2.6 Voice And Dialogue
Early on in the design and research process it was decided that Voice and Dia-
logue would be the preferred interface method for the IPA, as manual interaction
is undesirable when driving. The dialogue management system consists of three
parts: Automatic Speech Recognition, a Dialogue Manager and a Text-To-Speech
synthesizer.

4.2.6.1 Automatic Speech Recognition

An ASR converts spoken words into text and different ASRs do this with different
degrees of accuracy. The ASR software that was evaluated was the online solutions:
IBM Bluemix, powered by IBMWatson [IBM, 2016a], Nuance Dragon and the offline
solutions Sphinx [CMU, 2012] and Kaldi [Povey et al., 2011].
The offline solutions Kaldi and Carnegie Mellon University (CMU) Sphinx, are both
open source ASR solutions. CMU has several projects among them the lightweight
application PocketSphinx written in C, this is the library CMU recommends for
real-time application. It has been successfully tested on embedded devices and on
mobile phones, such as IPhone and Nokia. Sphinx4 is their most recent incarnation,
written in Java, it is primarily developed for cloud computing and web services and
therefore not encouraged to run locally on a lightweight machine. [CMU, 2012]

Kaldi is a C++ open source ASR application, it performs its synthesis through
Gaussian Mixture Models (GMM), which is the conventional way to model acous-
tics. Most prevalent is the fact that Kaldi has a highly non restrictive licence. Tests
from another research group found that Kaldi had a fast executing time of around
4 seconds. [Povey et al., 2011]

Bluemix is IBMs cloud based general purpose commercial API. With direct possibil-
ities to implement Watson related interfaces, such as a Dialog interface for natural
dialog management or Visual recognition as a machine learning interface for image
recognition. [IBM, 2016a]

Pocketsphinx biggest strengths are, that it runs on a local machine and is open
source, but its accuracy was not deemed good enough. Initial testing showed good
results on the pre-trained dialogue samples, but when used with custom recorded
audio, the accuracy was much lower. During tests, Kaldi did not perform as well
as the performance claimed by Hauswald et al. [2015]. With far longer response
times and with varying accuracy. The high response times could be due to the
hardware or virtual machine setup, it was tested on. Both of the online solutions
had better recognition, but had some delay due to the data transfer. The delay
was not significant enough to obstruct the responsiveness of the system. In the end
this project used IBM Bluemix, but a future implementation can employ any ASR
without significant changes, as long as the ASR can provide an interpreted string.

Another aspect to be considered was how ASR should be integrated with the TDM.
The two main interaction methods with an ASR are: Push-to-Talk and Wake-up-

25

4. Description Of The System

words [Këpuska and Klein, 2009]. Wake-up-word (also known as Trigger word or
Magic word), implies that a device is constantly listening, only reacting to commands
when a certain word is uttered. An example of this is Google Now, which is using the
command “Ok, Google” to start figuring out the intention of the user. The problem
with this solution is bandwidth limitations, the existing services are allowing limited
usage of their service before requiring a subscription. This means running an always
on application will use that limited amount of bandwidth. Because of this it was
decided that the prototype should use Push-To-Talk, with a silent detection to
determine when the command ends.

4.2.6.2 Dialogue Manager

In order to improve the dialog interface from a simple commands and raw string
output, it was decided that a dialogue manager (DM) was to be integrated with the
prototype. Talkamatics DM was chosen as Talkamatic offered to provide support
with the development and integration.
Providing the Talkamatic engine with a custom Dialogue Domain Descriptions
(DDDs), allows it to perform dialogues using the necessary rules and context pro-
vided by the DDD. The DDDs consists of four modules: Ontology, Domain, Gram-
mar and Device.

The Ontology consists of variable declarations, predicates, and sorts. A sort is
a collection of words that can be associated with a certain type of predicates. An
example of this could be a contact list. The contact list contains all known contacts,
if you want to select a user this utterance will be compared against the contact list
sort. Here Talkamatic can verify that the user exists and that it has understood the
command correctly.

Domain is where the plans are created. The plans are the general structure of
how a command/procedure in Talkamatic should be executed and what should be
done thereafter.

The Grammar module of Talkamatic contains the grammar of the specific DDD.
Here one can create several possible utterance for a certain command, as well as
define how Talkamatic should respond. The grammar is loosely connected to the
DDD which allows for easy switching between several languages or language config-
urations.

Device creates the interactions with the outside environment. Because it is cre-
ated with pure python code it is highly adaptable, to the specific use cases of the
DDD is built for. In the case of the prototype that is developed in this thesis, Device
handles for example the integration with MQTT. Furthermore the Device also has a
local model of the car stored, which is updated with MQTT events. MQTT can also
externally trigger events for example greetings. Device also connects the application
to External APIs and connects Talkamatic to the database.

26

4. Description Of The System

Confidence, and Talkamatics built in confidence management is an important aspect
of this projects dialogue management. Dependant on the confidence values produced
in the other modules of the program, Talkamatic will react differently creating the
proactiveness the project strives to create. The confidence, with a value between 0
and 1, is set into 4 distinct parts: Low uncertainty, uncertain, certain, high certainty.
If Talkamatic is given a result with Low uncertainty (a value between [0-0.4)) it will
ignore the event as the certainty was to low. If the result is uncertain, a value
between [0.4-0.6), it will acknowledge that an event has happened but will ask the
user to resolve the uncertainties. If the result is certain [0.6-0.8) Talkamatic will
acknowledge the result querying the user if the produced result is correct, with a
yes/no question. Finally if the result has a high certainty [0.8-1.0] Talkamatic will
assume that the produced result is correct executing the command on its own.

4.2.6.2.1 Example commands
The following are some example commands that are implemented into the prototype.
In the examples the users utterance will be displayed as U> and the Talkamatic re-
sponse will be displayed as S>

Customized Greetings The face recognition data is given to the dialogue man-
ager, if there are any information that is unclear this will be resolved in a
conformation question to the users. All users that are detected and confirmed
are greeted in an introductory message. This also leads to the activation of
their user profile and gives the opportunity to start logging location data.

Navigation When profiles are set and loaded, the location prediction module starts
generating a prediction with a confidence. This confidence is verified as well
and the published to the navigator. The verification takes in regard known
named locations, this means it is not possible to just give the DM an address
and it will know where it is. At the time of writing this table of known loca-
tions are hard coded into a hashmap in the DM. It is also possible to ask for
the estimated arrival time during a trip.

Car Control There exist frontend possibilities to set the temperature of the air
conditioning in the car.
- U> Set temperature to 20 degrees
- S> Ok setting temperature to 20 degrees

Calendar Through the Google Calendar API it is possible to query for the next
meeting and ask for specific meetings within a week forward in time. Next
meeting will also tell you how long time is left until the event is scheduled.
- U> What is my next scheduled event?
- S> Your next scheduled event is an Event Name in Time left

or
- Do i have a scheduled event on Thursday?
- S> Yes you have an Event Name at Scheduled Time

27

4. Description Of The System

User Creation Another goal was to be able to create an user during runtime.
If a new user enters the car, he would be able to create a new profile, and
start logging new data directly and saving settings to a personal profile. The
problem was the fact that the Sort collections in Talkamatic, has to have
recognizers that are predefined. This means to be able to create a new profile,
the recognizer must have access to all names and match against them. This is
not an option as matching thousands of names will take too long. To go around
this issue users must be entered through the device part of Talkamatic, which
is a possibility but then Talkamatics standard utterance methods can not be
utilized. Utterances are directly linked to voice commands in Talkamatic and
although it might be possible to find an alternative solution, it would take to
long to implement. Therefor on the user creation during runtime was scrapped
so that it would not interfere with the design goal of seamless voice interaction.

4.2.6.3 Text-To-Speech

Text-To-Speech (TTS) converts text into spoken words and different TTS software
does this with different degrees of accuracy. Two restrictions where early on recog-
nized when it came to choosing and implementing a TTS module. Firstly it has to
be compatible with Talkamatic, which is not directly compatible with all different
TTS modules. Lastly the goal is to run as much software on the local machine as
possible, to reduce delay which comes from uploading and downloading data to ex-
ternal servers. A program that met both these requirements was Festival, which is a
linux based voice synthesizer developed by the University of Edinburgh. [Univeristy
of Edinburgh, 2016]
The default voice package provided by festival was deemed a bit too robotic sound-
ing. But there was possibilities to install other voices on top of the existing library,
which were more natural sounding. These are provided by Carnegie Mellon Univer-
sity (CMU) and the chosen voice package was the CMU_SLT_ARCTIC package,
which is recorded by an American female with experience of building synthetic
voices [Black, 2015]. This change created an improved perceived experience due to
its capability to reassemble regular speech.

4.2.6.4 Graphical Interface

Talkamatic also provides possibilities to integrate a graphical user interface (GUI) to
the application. Through the available websocket interface a GUI was implemented,
as having the ability to monitor and verify the application was desired. Furthermore
after discussion with the Talkamatic team, it was also concluded that having access
to quick commands can sometimes be more useful, than a pure voice based interface.
Another aspect that was considered, was Talkamatics feature to provide a list of
possible inputs when a question needs more information. These suggestions can
be provided as buttons for quick interactions. The graphical interface combined
with the Voice interface provides a multimodal experience where the user chooses
him/herself how the system should be interacted with.

28

4. Description Of The System

Figure 4.7: A screenshot taken of the prototype, which displays the initialization
of the system with the greeting, followed up by a question of where we are, which
the system answers to.

Figure 4.8: A screenshot taken of the prototype, which displays the initialization
of the system. In this example the detection of the driver was uncertain and needed
to be verified, the user used a button press to verify himself as William.

29

4. Description Of The System

30

5
Experimental Setup

In this chapter, relevant information for the testing of the prototype will be detailed.
Firstly a simpler comparison method will be described, which is used to compare the
results of the neural networks prediction capabilities. After that follows a description
of the datasets that are used in the testing. Lastly an overlook of what type of
computer systems where used in the testing of the prototype is described.

5.1 Prediction Baseline

To have a point of comparison for the neural network implementations, a naive im-
plementation was made: the Predictor Graph (PredictorG).

The graph used in predictorG is an unidirectional graph where a node represents a
place and an edge represents a trip made from one node to the other. Each edge
also keeps track of when the trip took place, with the date represented as the time
of day, day of the week, and month of the year.
By feeding the algorithm paths consisting of a start and end node, as well as time
information (currently time of day (t), day of week (d), month of year (m)), the
algorithm constructs the graph mentioned above.
For the prediction step the day of week and month of the year are considered as
Boolean features, either the day/month matches or it does not. While the time of
day can match more or less depending on how close the value is.
Given a constructed graph the algorithm can predict an end node from a given node
and time. The prediction is done by summing all the paths that are close in time and
are tied for the most Boolean features, into their corresponding destination nodes.
The sums are weighted sums over the time of day weighted negatively depending on
the difference in relation to the inputted time of day. The largest of the sums is the
predicted next node.
The following is a representation of a single node labeled A, this node has connections
to node B every weekday with time variations between 8:00 and 8:45. Node A also
has connections with node C at Tuesday at 10:00 and at Sunday at 8:00. All edges
in this example have the same month value.

31

5. Experimental Setup

t:(8:30)d:(1)m:(1)
t:(8:40)d:(2)m:(1)

t:(8:10)d:(3)m:(1)

t:(8:45)d:(5)m:(1)
t:(8:00)d:(4)m:(1)

A
B

C

t:(10:00)d:(2)m:(1)t:(8:00)d:(7)m:(1)

Figure 5.1: Visualization of a part of a graph produced by predictorG, A, B and
C are nodes in the graph corresponding to locations. In this example each edge
contains time, day of the weak and moth of the year. This picture shows only the
paths from A so that the examples in this section becomes easier to follow.

For example if a prediction from node A in the above figure was made at 9:10 on a
Tuesday. The algorithm would consider C:t:(10:00)d:(2)m:(1) and B:t(8:40)d:(2)m:(1)
as viable candidates as they both have three matching Boolean features while the
others have less. With the weight function 1/(1+time difference) in this example.
And the “close” in time being +-50 min. Then the sums should be made as follows:

8 : 40 = 520min
9 : 10 = 550min
10 : 00 = 600min

B : 1
(1+abs(550−520)) = 1

(1+30) = 1
31

C : 1
(1+abs(550−600)) = 1

(1+50) = 1
51

Therefor B is the predicted node as 1
31 >

1
51

5.2 Dataset
Three types of data sets were used to test the network’s prediction capabilities. The
three sets where the Geolife Dataset, a large collection of users; a generated data
set, with predefined behaviours; and a personal dataset, gathered from location data
passively gathered from a smartphone.

5.2.1 Geolife Dataset
The Geolife Dataset is a dataset made by Microsoft Research Asia, detailing moment
of civilians mostly in the Shanghai area, it contains 182 users collected over a period
of five years. The dataset consist of samples containing longitude, latitude, altitude,
date and time, most is densely sampled data, 97.5%, meaning that its sampled at

32

5. Experimental Setup

1-5 second intervals or 5-10 meters. 73 out of the 182 users has also labeled the
gathered data with method of transport, but these special cases was not utilized for
the testing. [Zheng et al., 2008, 2009, 2010]

5.2.2 Generated Dataset
Judging the accuracy of predictions from a real life dataset proved difficult, as the
intent of the sampled individuals is unknown. Therefore most predictions could
seem plausible, to fix this problem it was decided that an artificial dataset would be
generated, where what is likely, unlikely, and impossible is known respectively.
The dataset was constructed by stepping through a time period, 1992/11/19 to
2020/4/6, picking paths associated with each day. The paths chosen was based on
a weighted random distribution, the paths and the corresponding weights can be
seen in the table below. The Path column shows paths represented as important
locations, L1-L21, and transitions indicated by arrows with a time of day indicated
in minutes; The time given represents the center of a Gaussian distribution with
a variance of 20 minutes. The Weight column details the weight of the path that
ultimately determines the frequency a path would be picked in that day of the week.
Below follows two of the seven tables representing the possible paths taken on that
weekday.

Monday
Weight Path

1 L1 - 780 min → L9 - 880 min → L1
1 L1 - 780 min → L10 - 880 min → L1
40 L1 - 480 min → L2 - 690 min → L3 - 750 min → L2 - 1020 min → L1
60 L1 - 480 min → L2 - 690 min → L4 - 750 min → L2 - 1020 min → L1
10 L1 -480 min → L2 - 690 min→ L3 - 700 min → L2 - 1020 min → L9 - 1100 min → L1
10 L1 - 480 min → L2 - 690 min → L4 - 700 min → L2 - 1020 → L9 - 1100 min → L1
18 L1 -480 min → L2 - 690 min → L3 -750 min → L2 - 1020 min → L10 - 1100 min → L1
20 L1-480 min → L2 - 690 min → L4 - 750 min → L2 - 1020 min → L10 - 1100 min → L1
6 L1-480 min → L2 - 690 min → L3 - 700 min → L9 - 740 min → L2 - 1020 min → L1
2 L1-480 min → L2 - 690 min → L4 - 700 min → L9 - 740 min → L2 - 1020 min → L1
4 L1-480 min → L2 - 690 min → L3 - 700 min → L10 - 740 min → L2 - 1020 min → L1
8 L1-480 min → L2 - 690 min → L4 - 700 min → L10 - 740 min → L2 - 1020 min → L1
2 L1 - 480 min → L2 - 690 min → L3 - 765 min → L1
2 L1 - 480 min → L2 - 690 min → L4 - 765 min → L1
1 L1 - 480 min → L2 - 690 min → L3 - 765 min → L9 - 810 min → L1
1 L1 - 480 min → L2 - 690 min → L4 - 765 min → L9 - 810 min → L1
1 L1 - 480 min → L2 - 690 min → L3 - 765 min → L10 - 810 min → L1
1 L1 - 480 min → L2 - 690 min → L4 - 765 min → L10 - 810 min → L1

Table 5.1: This table details the paths that can be taken on a Monday, in the
fabricated data test. Weight indicates the frequency at which a path is picked, the
minutes indicate the top of a Gaussian distribution with variance of 20 min and the
LX indicate the important location corresponding to cluster X.

33

5. Experimental Setup

Sunday
Weight Path

40 L1 - 700 min → L9 - 990 min → L1
20 L1 - 200 min → L9 - 990 min → L10 - 1040 min → L1
30 L1 - 222 min → L10 - 300 min → L13 - 700 → L1
30 L1 - 400 min → L13 - 500 min → L14 - 600 min → L15 - 700 min → L1
40 L1 - 500 min → L14 - 660 min → L5 - 760 min → L14 - 900 min → L1
40 L1 - 500 min → L20 - 600 min → L19 - 800 min → L21 - 1000 min → L1

Table 5.2: This table details the paths that can be taken on a Saturday, in the
fabricated data test. Weight indicates the frequency at which a path is picked, the
minutes indicate the top of a Gaussian distribution with variance of 20 min and the
LX indicate the important location corresponding to cluster X.

5.2.3 Personal Dataset
The personal dataset was derived from Google Locations, which is passively gathered
data from Android Devices. The resulting data was about 3 years of personal
traveling information from one of the thesis writers. The conditions for this gathered
data is the most similar type of data, the project expects to receive as training data
for an end user application.

34

5. Experimental Setup

5.3 Experimental: Computer Setup
The system will be tested on three computer setups: Raspberry Pi, ASUS Laptop
and “The Dragon Computer”. The system hardware of the devices are the following:

Raspberry Pi:
A Standard Raspberry PI 2 Model B

• CPU: A 900MHz quad-core ARM Cortex-A
• RAM: 1GB
• OS: Raspbian
• Camera: Raspberry PI board camera

Notes: Tests are run with the graphical interface active, which will have an
impact on performance.

ASUS Laptop:
ASUS UX302L

• CPU: Intel Core(™) I7-4500U Max Clock at 2.4 GHz Standard clock
770MHz

• RAM:8 GB
• OS: Windows 10
• Camera: Built-in Camera

Notes: Tests are run with Windows performance mode enabled.

The Dragon Computer:
MSI Dragon Nightblade

• Intel Core(™) I5-4460, Max Clock at 3.2GHz
• RAM: 8GB
• OS: Ubuntu 12.04
• Camera: Logitech C270

35

5. Experimental Setup

36

6
Results

The following chapter will display the academic results of the project. Starting the
face recognition, followed by location prediction, ending with the dialogue interac-
tion.

6.1 Face Recognition
The following section will display the results of the testing of the face recognition
module. The tests were run on the “Dragon Computer” unless otherwise specified.
The Face recognition results are divided into, Lighting conditions, confidence and
performance tests.

6.1.1 Lighting Conditions
All the face matching methods mentioned in the theory 2.3 are intolerant to non-
optimal lighting conditions. Automatic histogram equalization is performed to flat-
ten the extremes within the image, but results are varying. The camera plays a big
role in creating a good enough image as a baseline for image processing. Several
cameras were tested, with different combinations of hardware. Beside the C270, a
Microsoft Lifecam Cinema Webcam was tested for comparison on the same setup.
The four images in figure 6.1 where taken in the same position with the same passive
lighting and post processing techniques. The image quality varied greatly depending
on what camera was used, the C270 provided the highest contrast while the ASUS
laptop camera resulted with a very dark image. The other two are the most similar
and are in between the C270 and ASUS laptop in terms of contrast.

Figure 6.1: A comparison between face images of a ASUS Laptop camera to the
left, in the left center is the C270 Logitech camera and to the right center is the
Microsoft Lifecam Cinema. Finally to the right is the Raspberry Pi Camera.

37

6. Results

6.1.2 Confidence

The cascade classifier provided by OpenCV accurately detects faces up to 5 meters,
with a minimum distance of 0.2 meters. The accuracy of the matching is dependent
on what distance the reference images are taken at. This means if all reference
images are taken from an interval of [0-1.5] meters it will result in a lower confidence
when compared to an image taken from [2-3.5] meters. The confidence produced by
OpenCV is a distance (error) to closest matched image, this threshold is remapped
to a confidence value between [0.6-1] to be compatible to Talkamatics confidence
levels. This forces Talkamatic to always make sure that it knows who are in the car,
if they are detected.

6.1.3 Performance Tests

Execution time of Sample method (milliseconds)

Raspberry Pi ASUS Laptop Dragon Computer
7298 10392 4444 (1588)
6583 10020 4263 (1544)
7417 9216 4291 (1519)
7314 8605 4214 (1555)
7250 7599 4224 (1538)

Average: 7172.4 9166.4 4287.2 (1548.8)

Table 6.1: Table shows the testing of execution time on each of the computer
setups. The tests were run back to back without restarting the Java virtual machine.
Note the parenthesis values on the Dragon Computer are execution time with the
Microsoft Lifecam. The C270 prints an error message each frame slowing down the
total execution time.

Maximum Performance load of Java Process (%)

Raspberry Pi ASUS Laptop Dragon Computer
75% 25% 22%
73% 20% 23%
80% 18% 23%
76% 22% 17%
77% 14% 17%

Average: 76% 20% 20%

Table 6.2: Table showing the results from testing of how much impact the face
recognition module on the systems. The percentage displays the maximum load the
function performed on each of the systems.

38

6. Results

6.2 Location Prediction
The testing of the location prediction module consists of the testing of the separate
subprocedures: training data culling, network prediction statistics, and prediction
examples.

6.2.1 Culling results
To filter out the relevant data from the continuously sampled datasets two methods
were tested. The first method is distance based culling and the second is a speed
based culling. There were two test, the first was the total distance between points
before and after culling with the two different techniques. This was done to get an
approximation of how much information was lost. The second test was to find out
how many points were removed, looking for a compression factor. The amount of
important locations, clusters, that was found by using DBSCAN after the culling
was also recorded.
The parameters for the test is the following: DBSCAN is using an Epsilon of 200m
with a Minimal amount of points of 3. Speed culling uses a threshold 25.0 and
distance culling uses a threshold of 25 meters with 10 points as a minimum amount
of points.
The primary test were performed on the entire GeoLife dataset of 183 users. The
following information could be gathered:

Before
culling

After
Speed

culling (%)

After
Distance

culling (%)
Entries per

user (average) 136584.1 236.46 (0.17%) 865.83 (0.63%)

Average distance traveled
per user 7102.57 km 5690.36 km (80.11%) 9360.72 km (131.79%)

Completely
culled users 4 (2.2%) 25 (13.81%)

Average amount
of clusters 18.45 39.83

Amount of users that
have at least 1 cluster (%) 52.48% 70.71%

Amount of users
with no clusters 20 26

Amount of users
where clustering resulted

in only noise points
67 28

Table 6.3: Table showing the statistical data gathered from running the culling
algortihms on the GeoLife Dataset. The percentage value in the first two rows are
in relation to before culling. Percentage value in row three is in relation to the total
number of users (183).

The same tests were performed on the Personal Datasets where correctness could

39

6. Results

be verified by the owner of the data.

Personal Data
Set 1

Before
culling

After
Speed

culling (%)

After
Distance

culling (%)
Total Distance 739912,2 km 86167,7 km (11.645%) 12583,6 km (1.7%)
Amount of
samples 646386 8081 (1.25%) 1369 (0.21%)

Amount of
Clusters: 80 23

Personal Data
Set 2

Total Distance 16092km 7290,9 km (45.307%) 4120,7 km (25.607%)
Amount of
samples 193250 1197 (0.619%) 869 (0.44%)

Amount of
Clusters: 41 12

Table 6.4: Table showing the statistical data gathered from running the culling
algorithms on the Personal Datasets. The percentage values are in relation to before
culling.

When applying one of the culling algorithm to a users data, the ideal outcome would
be removing a high percentage of points, while keeping the traversed distance almost
the same with just a small decrease from converting the real paths to beelines. When
looking at table 6.3 we see that speed culling reduced the data with a compression
ratio of 577.62, meaning that only 0.17% remained, while 80.11% of the total dis-
tance was preserved. These numbers seems reasonable in terms of the compression
and distance reduction, but it should be noted that when speed culling was under
visual inspection using the personal data sets, it seamed to identify important loca-
tions poorly. Distance culling yielded a compression factor of 157.75, meaning that
0.63% remained, while the distance actually got inflated by 31.79%. The inflation
of distance came from around a third of the users and is most probably because the
distance culling algorithms tends to move points. This tendency was observed in
the personal data set aswell, but there it was very minor. Movement of important
locations can not be confirmed in the Geo-life dataset as there actual important lo-
cations are not known. The result of running the culling algorithms on the personal
datasets can be seen in table 6.4, what is most noteworthy is the relatively high
reduction in distance, but as mentioned previously in visual inspections the most
important locations where present, further discussion of this matter can be red in
the discussion, section 7.1.1.

6.2.2 Network types
There were three network configurations that were tried in the pursuit of a network
suitable for predicting the destination of a trip. These networks where a network

40

6. Results

that used GPS coordinates (Network 1) and two networks that used important lo-
cations as an abstraction of the GPS coordinates (Network 2 & 3). Network 1 was
the first type of network that was considered, as it seemed the simplest solution.
Unfortunately it did not perform well, as the network tended to either converge
all predictions to a single point in the center of the dataset or over/undershoot
predictions with unacceptable margins of several kilometers.

6.2.3 GeoLife test
To test how well the networks, accompanied by Distance culling, performed on a
larger set of real user data, that was not one of the two datasets that was used
during development, the GeoLife dataset was used. See description in section 5.2.1.
The test consisted of training each network for each user from the Geolife dataset,
logging the training and validation error for each combination of user and network.
If a user had to few entries to train all the networks, that user was discarded. This
process 92 out of total of 184 users meaning that about 48% of users had too few
entries to train the most demanding network, Network 3. Training error is what
degree of error the network has when predicting the training set. The validation
error is the degree of error when predicting the validation data. The validation data
was thirty percent of the training data that was held back for validation from the
original training set.

Network 1
Training Error Validation Error

1,826% 1,9%

Table 6.5: This table shows the averages of training error and validation error,
for 92 neural networks of type Network 1 that was trained with 92 users from the
GeoLife dataset, see section 5.2.1.

Network 2
Training Error Validation Error

1,4% 2,6%

Table 6.6: This table shows the averages of training error and validation error,
for 92 neural networks of type Network 2 that was trained with 92 users from the
GeoLife dataset, see section 5.2.1.

Network 3
Training Error Validation Error

10,3% 19,67%

Table 6.7: This table shows the averages of training error and validation error,
for 92 neural networks of type Network 3 that was trained with 92 users from the
GeoLife dataset, see section 5.2.1.

41

6. Results

Training error difference
1 vs 2 1 vs 3 2 vs 3
0,4% −8,477% −8.9%

Table 6.8: This table showcases the difference between the training errors of the
tables 6.5, 6.6 and 6.7.

Validation error difference
1 vs 2 1 vs 3 2 vs 3

−0.69% −17,768% −17.07%

Table 6.9: This table showcases the difference between the validation errors of the
tables 6.5, 6.6 and 6.7.

6.2.4 Generated Data Test

To determine the neural network’s ability to capture patterns corresponding to our
expected input, a test was devised using the generated data from section 5.2.2. The
test consisted of feeding the network with the generated data, which consists of
30830 entries, and then activating the network for every reasonable input. 30% of
the entries were held back for validation, the entries held back for validation were
selected randomly. The output was logged as ranges of input that resulted in a
certain output, this was done for two of the three different network configurations
as Network 1 can not utilize important location directly.

6.2.4.1 Network 2

Network 2 has the inputs of current important location, day of week, and time of
day. Its output is the predicted destination important location.

Network 2 Error report
Training Error Validation Error

6.8% 6.57%

Table 6.10: This table shows the training and validation error for Network 2,
training and validation error is explained in section 6.2.3

The following is an example of the Monday mapping, Day of Week: 1, of going from
L1. The ranges are shown as the start each new output, important location, and
continue until a new output is outputted. For example important location 2 was the
output between 00:00 and 12:39 in table 6.11.

42

6. Results

L1

Day of Week Hour Minute Important location
1 0 0 L2
1 12 40 L13
1 12 59 L20
1 15 46 L9

Table 6.11: This table shows the Monday, Day of Week is 1, output from the
Network 2 when the inputted important location is set to L1. Each row shows
the start of the time interval which produces the output, important location, and
produces the same output until the start of the next interval.

Compared with the table 5.1, it can be seen that the most common destination
taken Monday morning, important location 2, is indeed predicted around that time.
A more interesting example is Saturday and Sunday as there are a greater variance in
destinations based on time. Here follows the output for Saturday important location
1:

L1

Day of Week Hour Minute Important location
6 0 0 L9
6 2 32 L10
6 4 46 L13
6 7 45 L14
6 8 1 L20
6 9 41 L9
6 14 0 L1

Table 6.12: This table shows the Saturday, Day of Week is 6, output from the
Network 2 when the inputted important location is set to L1. Each row shows
the start of the time interval which produces the output, important location, and
produces the same output until the start of the next interval.

Compared to the table 5.2, it can be seen that although L9, L20 and L1 are garbage
results, L10, L13 and L20 have been categorized in reasonable time intervals. The
garbage result are probably a result of not having any training data at those time
intervals.

6.2.4.2 Network 3

The following is the Monday mapping, day of the week: 1, of going from L2 having
been at L1. The ranges are shown as the start each new output, important location,
and continue until a new output is outputted. For example important location 10
was the output between 00:00 and 04:51.

43

6. Results

Network 3 Error report
Training Error Validation Error

6.3% 6.17%

Table 6.13: This table shows the training and validation error for Network 3,
training and validation error is explained in section 6.2.3

The following is the Monday mapping, day of the week: 1, of going from L2 having
been at L1. The ranges are shown as the start each new output, important location,
and continue until a new output is outputted. For example important location 10
was the output between 00:00 and 04:51.

L1 → L2

Day of Week Hour Minute Important location
1 0 0 L10
1 4 52 L2
1 6 37 L20
1 6 43 L9
1 13 55 L14
1 22 34 L1

Table 6.14: This table shows the Monday, Day of Week is 1 , output from the Net-
work 3 when the current important location is set to L2 and the previous important
location is set to L1. Each row shows the start of the time interval which produces
the output, important location, and produces the same output until the start of the
next interval.

Comparing the resulting input output mapping to the expected patterns, showed
that the network had utterly failed to capture even the most prominent of patterns
from the generated dataset. For example, in the generated data: a Monday starts
in 98.94% of cases with a trip from L1 to L2, and those cases are followed by a trip
to L4 or L5 in 100% of cases, see table 5.1. But when looking at the input output
mapping of the neural network, Monday leaving L2 with L1 as a previous location,
ranging over all time inputs none of them resulted in either L4 or L5. What is
stranger still is that they are mapped to important locations that have never been
accessed from L2.

6.2.4.3 PredictorG

PredictorG is the algorithm that was to serve as a baseline to which the networks
could be compared to, it is described in section 5.1. The binary features were limited
to day of the week and to make the data more readable it was also set as a required
match. To clarify, this network has the inputs of current important location, day of
the week and time of day. Its output is the predicted destination important location.
The following is the Monday mapping, day of week: 1, of going from L1. The ranges
are shown as the start each new output, important location, and continue until a
new output is outputted

44

6. Results

L1

Day of Week Hours Minute Cluster
1 0 0 L−1
1 5 57 L2
1 10 8 L−1
1 11 32 L9
1 11 39 L10
1 11 41 L9
1 12 4 L10
1 12 9 L9
1 13 30 L10
1 13 39 L9
1 13 51 L10
1 14 1 L−1

Table 6.15: This table shows the Monday, Day of Week is 1 , output from the Pre-
dictorG when the current important location is set to L1. Each row shows the start
of the time interval which produces the output, important location, and produces
the same output until the start of the next interval.

The most notable difference compared with the neural network methods is that the
output becomes jittery when there are two approximately equal current destination
important locations. Also as can be seen at table 6.15, entry 2 and 11 has a important
location labeled with -1, as there are no entries close to that input time.

PredictorG Error report
Training Error Validation Error

− 14%

Table 6.16: This table shows the validation error for PredictorG, Training error is
not applicable as the training of PredictorG consists of just adding paths see 5.1.

6.2.5 Dialog Interaction
The dialog interaction provided a functioning interface, whose primary functionality
is to let the system to acquire information from the user. But also provides basic
command style request from the user to be processed. The system can:

• Ask and acquire the name of unidentified individuals in the car.
• Ask and clarify uncertainty of a poorly identified user.
• Ask and clarify uncertain location predictions.

The user can:
• Set predefined settings with exact voice commands.
• Acquire status information with exact voice commands.
• Use touch buttons for quick access to commands and answers to confirmation

questions.

45

6. Results

46

7
Discussion

In this chapter we will discuss some of the findings and results of the the tests,
thereafter possible future work will be suggested. The chapter ends with an ethics
discussion and a conclusion.

7.1 Discussion of the Results
In this section the most prominent results are discussed, starting with the culling
algorithms followed by a lengthy section discussing the results of location prediction.
After that follows a short mention of our thoughts on the selection of Talkamatic
for this project, thereafter the section will be concluded with the discussion of Face
recognition and hardware requirements.

7.1.1 Culling
We found that culling with Distance culling or Speed culling, section 4.2.3.2, pro-
vided great compression of the data, and it also made finding points of interest
easier. In addition the culling solved the issue of having multiple successive samples
in the same location, that could have lead to predicting movement to the current
location. Distance culling was deemed the superior of the two culling methods as
although it tends to move points slightly, it does not place points along paths trav-
eled like the Speed culling tended to do. Both are very rudimentary using the same
parameters for all datasets, returning a rough estimate rather than a complete map
of all points of interest. However combined with clustering the results of the culling
methods seemed quite good. An odd consequence is that the statistics produced
in 6.2.1 indicate that speed culling would be the best method, although on visual
inspection, with knowledge of where the important locations should be, indicates
that distance culling is superior. This might indicate that distance culling works
well on some data but fails when exposed to the more varying data of the Geo-Life
dataset.

7.1.2 Location Prediction
The idea behind Network 1 was to let the neural network do the abstraction, in
a sense this was the simplest approach as the neural network would do all of the

47

7. Discussion

work. The idea behind Network 2 was that limiting the number of possible outcomes
would make it easier to pick the correct answer, in addition to not being able to
make absurd predictions, like the center of the Atlantic ocean. Network 3 was essen-
tially just providing Network 2 with more information, namely the previous location.

Network 1 was proved to be unreliable as although it had the lowest validation
error, it never seemed to actually predict reasonable points. It quite often con-
verged the points to the geographical center of the set, and when it appeared to get
the direction right it either over or undershoot the distance by several kilometers.
Out of the three network configurations, Network 2 performed the best as it had a
lower validation error than Network 3 in the GeoLife dataset test 5.2.1 by 17.074%
and did not have the troubles of Network 1. When it comes to Network 3 there is
obviously something wrong as it has such a high validation error. We suspect that
the network is too small, as the important locations’s input are represented as one
hot and there are two input important locations. Which means that there are two
times the number of clusters found plus eight, day of week and time of day, going
through three hidden layers whose size are decided by Encog. Using the Generated
data on Network 3 yielded, 48 input nodes going through hidden layers of 49, 8
and 14 nodes respectively. We suspect that the second layer, in this case, is too
small and might be the cause for the relatively high training and validation error of
Network 3 in the test, see table 6.13.

When comparing with the baseline, predictorG, only Network 2 seemed relevant
as it uses the same inputs and was the network structure that preformed the best.
Network 2 had a better validation error of 6.57%, see table 6.6 against that of
predictorG who had 14% in the generated data test, see table 6.16, but even if this
discrepancy in validation error is ignored, Network 2 would still be a better solution.
Another advantage of using Network 2, over predictorG is that it does not produce
the same type of noise, when encountering two almost equally relevant prediction
possibilities, Instead one of the predictions dominates the time slot, see table 6.11.
The negative aspects of Network 2 compared with predictorG is that in time slots
where no data is available, there is still a prediction made which is often wrong
with no connection to that day or time, for example c9, c20 and c1, see table 6.12.
However the issue with producing odd results where there is no available data is
not a big problem, as when dealing with real data, samples will cover much more of
the day. Additionally if the samples do not cover some part of a day, it is unlikely
that that user will be using the car during those time intervals. The jittery response
of predictorG is more of a problem, as it may be experienced as random or erratic
behavior by a potential user. Thus we conclude that, at least in our case, the layer
of abstraction that neural networks provide, gives an advantage compared to rule
based solutions, as simple rules can not in a good way capture the driving patterns
and making the rules more complex will radically increase the complexity of the
algorithm.

Using a general dataset is a usual technique to initiate a network. In this case,
using the the Networks 2 or 3 as an example, they use a classifier structure. Where

48

7. Discussion

the input size is a one-to-one representation of how many important locations there
are. The amount of important locations found differs greatly between each user,
which the GeoLife dataset and personal datasets showed. These ranges could vary
from 3 clusters for someone who recently has moved to the area or up towards 100
and the significance of each cluster is also very user dependant. Without a deeper
analysis of the data, finding places such as home and work, there will be no real
common patterns between users. As the identifying number of a cluster, that is to
say what important location ID it will receive, will most likely not be attributed
to the same type of location between users. Therefore we believe that a general
training set would, in the current state at best give no significant improvement and
at worst skew the results of the majority of predictions.

Multiuser predictions had its implementation started, but was not integrated with
the system. At the time of giving up on the feature the following functionality was
implemented: First it used the normal location prediction for all users. Then it
looked at the upcoming appointments of the users, the appointments replaced the
predicted location, if it was applicable for this travel and added a time constraint
for that user. Then it used Google to query the expected time between all the users
desired locations, as well as the current location of the car. After that all possible
paths are iterated through with the constraint that the drivers appointment is never
missed. Lastly the trips that delivered the most passengers on time, are compared
according to how many additional drop-offs they managed and lastly the minimum
amount of time taken. It can be seen in this explanation there are a lot of assump-
tions made about what is important and this is the main reason way the feature
was not implemented. As the current priorities where implemented as a placeholder
and finding a list of priorities that where justifiable proved harder than initially ex-
pected. In addition to this there would not have been time to conduct or construct
proper tests, nor would there be time to integrate the multiuser predictions with
the rest of the prototypes modules.

7.1.3 Talkamatic
Talkamatic provided an interesting platform for dialogue management. It was prob-
ably not the easiest platform to choose for a project like this, but provided a good
interface, with which the confidence values used throughout the other modules could
be integrated. Hopefully our feedback helped their platform to become better.

7.1.4 Face Recognition
There were two options for the implementation of the automatic profile selection.
Either the face recognition would run constantly, or the face recognition would be
run when users entered and left the car. There is no real benefit to have face recog-
nition running constantly, as the internal passenger state does not change when the
car is in motion. The only possible advantage might be if an initial face detection

49

7. Discussion

fails and then succeeds during the trip, data could be logged on the appropriate
user. But assuming that the face recognition fails defeats the point of having the
system recognise the user, as the user sits down in the car.

7.1.5 Hardware Requirements

On the subject of hardware, there was problems when trying to install the entirety
of the client onto the Raspberry Pi 2 model B, as Talkamatic did not have an ARM
build at the time of making this project. However the hardware should be able to
run the application performance wise, as long as face recognition is not run con-
tinuously. Our reasoning behind this statement is that the the Talkamatic client
ran without any problems on a computer that had a lower clock frequency than
the Raspberry Pi 2 model B. But the face recognition took 70% of the processing
power of the Raspberry Pi 2 model B when we tested it on the system, which would
most lightly cause sluggish behavior, if it ran continuously alongside the Talkamatic
client. In any case there should exist a NUC unit that can run the entirety of the
prototype, as NUCs can be much more powerful and have the standard x86/x64
processor architecture.

7.2 Future Work

For further development it should be noted that it is easier to remove and reroute
false positives, than create new points of interest in place of missing ones. As adding
a point provides no context of how the point is connected to the rest of the paths.

Currently the networks are automatically constructed based on the input data given
to Encog, future work should examine if a better model for deciding the network
structures can be achieved. To a similar end the amount of important location,
clusters, could be culled by importance, as important location with low probability
are unlikely to be predicted. A combination of the two will most likely be the best
approach in making a solution that is more tolerant in regards to varied training
data.

Using or developing a more accurate culling algorithm could possibly improve the
initialization of the networks and should be considered as a possibe significant im-
provement.

An actual implementation would require an integration with the cars internal CAN
network, this was firstly considered a part of this project but was excluded due to
time constraints.

50

7. Discussion

7.3 Ethics
The large amount of private data processed by the suggested algorithms, poses a lot
of privacy concerns. In addition to this is the fact that most of the data must be
processed externally on a server, which evokes trust issues. It is clear that this type
of solution has to be accompanied by agreements and regulations, to remain ethical.

An application like this will add a new layer of logging personal data on top of al-
ready existing tracking services. This is something that has to be emphasized if this
is to be delivered as a commercial product. Having a machine provide a location
suggestion based on previously traveled destinations could unravel places that are
sensitive for the user. Creating a good and easy-to-use control panel so that the
users can easily manage their personal data both to edit or remove logged points is
essential to keep some degree of privacy.

This application is seen as a possibility to aid the driver, but depending on how
the system is realized, as a commercial product, there exists possibilities that an
application like this would do the opposite. Having minor bugs in the code or an
non-ideal design could impair the drivers focus on the road resulting in a possible
cause of harm to the car, with its occupants, or the surroundings of the car. Security
must also be a much larger concern than was considered in this prototype. Having
a computer, that is connected to the Internet, can be susceptible to attacks and
because it connected to the cars internal systems, it could act as a conductor for
hacking attacks that could either harm the occupants of the car or the car it self.

7.4 Conclusions
Not all of the planned features where implemented and some of the ones that where
did not reach their full potential, but the proactive behavior desired of the IPA
prototype was achieved as a combination of all the modules described in this thesis:
Automatic Profile Selection, section 4.2.2, Location Prediction, section 4.2.3, and
Dialogue Manager, section 4.2.6. The location prediction combined with the auto-
matic profile selection makes it possible to proactively greet the user with more than
just a simple hello, in a way that is both personal and performs a function. In addi-
tion, having the program asking verification questions when it has low certainty and
auto resumed on high certainties, improved how intelligent the proactive behavior
seamed. Summing up, this project achieved a proof of concept for a proactive IPA
for a car environment.

51

7. Discussion

52

Bibliography

Daniel Ashbrook and Thad Starner. Using gps to learn significant locations and
predict movement across multiple users. Personal and Ubiquitous Computing, 7
(5):275–286, 2003.

AT&T. Volvo cars and at&t enter multi-year agreement to connect future models
in u.s. and canada | at&t. http://about.att.com/story/volvo_cars_and_
att_enter_multi_year_agreement_to_connect_future_models_in_us_and_
canada.html, April 2014. (Accessed on 05/19/2016).

Peter N Belhumeur, João P Hespanha, and David J Kriegman. Eigenfaces vs.
fisherfaces: Recognition using class specific linear projection. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 19(7):711–720, 1997.

Allan W Black. Festvox: Us slt (us female). http://festvox.org/cmu_arctic/
dbs_slt.html, 2015. (Accessed on 05/28/2016).

CMU. Versions of decoders [cmusphinx wiki]. http://cmusphinx.sourceforge.
net/wiki/versions, March 2012. (Accessed on 05/19/2016).

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Kdd,
volume 96, pages 226–231, 1996.

EU. Protecting your data: your rights - european commission. http://ec.europa.
eu/justice/data-protection/individuals/rights/index_en.htm, March
2016. (Accessed on 05/19/2016).

Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del Prado Cortez. Next
place prediction using mobility markov chains. In Proceedings of the First Work-
shop on Measurement, Privacy, and Mobility, page 3. ACM, 2012.

Ben Goertzel. Opencog foundation | about. http://opencog.org/about/, April
2010. (Accessed on 05/19/2016).

Google. Alphago | google deepmind. https://www.deepmind.com/alpha-go,
2016a. (Accessed on 06/26/2016).

Google. Google calendar api | google developers. https://developers.google.
com/google-apps/calendar/, 2016b. (Accessed on 05/20/2016).

Google. Google maps distance matrix api | google developers. https:

53

http://about.att.com/story/volvo_cars_and_att_enter_multi_year_agreement_to_connect_future_models_in_us_and_canada.html
http://about.att.com/story/volvo_cars_and_att_enter_multi_year_agreement_to_connect_future_models_in_us_and_canada.html
http://about.att.com/story/volvo_cars_and_att_enter_multi_year_agreement_to_connect_future_models_in_us_and_canada.html
http://festvox.org/cmu_arctic/dbs_slt.html
http://festvox.org/cmu_arctic/dbs_slt.html
http://cmusphinx.sourceforge.net/wiki/versions
http://cmusphinx.sourceforge.net/wiki/versions
http://ec.europa.eu/justice/data-protection/individuals/rights/index_en.htm
http://ec.europa.eu/justice/data-protection/individuals/rights/index_en.htm
http://opencog.org/about/
https://www.deepmind.com/alpha-go
https://developers.google.com/google-apps/calendar/
https://developers.google.com/google-apps/calendar/
https://developers.google.com/maps/documentation/distance-matrix/
https://developers.google.com/maps/documentation/distance-matrix/
https://developers.google.com/maps/documentation/distance-matrix/

Bibliography

//developers.google.com/maps/documentation/distance-matrix/, 2016c.
(Accessed on 05/20/2016).

Google. Getting started | google maps geocoding api | google de-
velopers. https://developers.google.com/maps/documentation/geocoding/
start?hl=en_US, 2016d. (Accessed on 05/20/2016).

Johann Hauswald, Michael A Laurenzano, Yunqi Zhang, Cheng Li, Austin Rovinski,
Arjun Khurana, Ronald G Dreslinski, Trevor Mudge, Vinicius Petrucci, Lingjia
Tang, et al. Sirius: An open end-to-end voice and vision personal assistant and its
implications for future warehouse scale computers. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 223–238. ACM, 2015.

Jeff Heaton. Encog machine learning framework. http://www.heatonresearch.
com/encog/, 2016. (Accessed on 05/30/2016).

IBM. Ibm bluemix - what is bluemix. http://www.ibm.com/cloud-computing/
bluemix/what-is-bluemix/, 2016a. (Accessed on 05/19/2016).

IBM. Node-red : Documentation. http://nodered.org/docs/, 2016b. (Accessed
on 06/07/2016).

Intel. Mini pc: Intel® nuc. http://www.intel.com/content/www/us/en/nuc/
overview.html, 2016. (Accessed on 05/19/2016).

ISO 20922:2016. Information technology – Message Queuing Telemetry Trans-
port (MQTT) v3.1.1. Standard, International Organization for Standardization,
Geneva, CH, March 2016.

Itseez. Opencv | opencv. http://opencv.org/, 1016. (Accessed on 05/19/2016).

Itseez. Android | opencv. http://opencv.org/platforms/android.html, 2016.
(Accessed on 05/19/2016).

VZ Këpuska and TB Klein. A novel wake-up-word speech recognition system, wake-
up-word recognition task, technology and evaluation. Nonlinear Analysis: Theory,
Methods & Applications, 71(12):e2772–e2789, 2009.

Haowei Liu. Face Detection and Recognition on Mobile Devices. Elsevier, 2014.

Wesley Mathew, Ruben Raposo, and Bruno Martins. Predicting future locations
with hidden markov models. In Proceedings of the 2012 ACM conference on
ubiquitous computing, pages 911–918. ACM, 2012.

MySQL. Mysql :: Mysql 5.7 reference manual. http://dev.mysql.com/doc/
refman/5.7/en/, May 2016. (Accessed on 05/19/2016).

OpenCog. Opencog framework: Opencog source code documentation. http://
docs.opencog.org/opencog/index.html, May 2016. (Accessed on 05/19/2016).

PI. Power supply - raspberry pi documentation. https://www.raspberrypi.org/
documentation/hardware/raspberrypi/power/README.md, 2016a. (Accessed
on 05/19/2016).

54

https://developers.google.com/maps/documentation/distance-matrix/
https://developers.google.com/maps/documentation/distance-matrix/
https://developers.google.com/maps/documentation/distance-matrix/
https://developers.google.com/maps/documentation/geocoding/start?hl=en_US
https://developers.google.com/maps/documentation/geocoding/start?hl=en_US
http://www.heatonresearch.com/encog/
http://www.heatonresearch.com/encog/
http://www.ibm.com/cloud-computing/bluemix/what-is-bluemix/
http://www.ibm.com/cloud-computing/bluemix/what-is-bluemix/
http://nodered.org/docs/
http://www.intel.com/content/www/us/en/nuc/overview.html
http://www.intel.com/content/www/us/en/nuc/overview.html
http://opencv.org/
http://opencv.org/platforms/android.html
http://dev.mysql.com/doc/refman/5.7/en/
http://dev.mysql.com/doc/refman/5.7/en/
http://docs.opencog.org/opencog/index.html
http://docs.opencog.org/opencog/index.html
https://www.raspberrypi.org/documentation/hardware/raspberrypi/power/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/power/README.md

Bibliography

PI. Raspberry pi 2 model b. https://www.raspberrypi.org/products/
raspberry-pi-2-model-b/, 2016b. (Accessed on 05/19/2016).

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek,
Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz,
et al. The kaldi speech recognition toolkit. In IEEE 2011 workshop on automatic
speech recognition and understanding, number EPFL-CONF-192584. IEEE Signal
Processing Society, 2011.

ROBOTLAB. Robotlab smart useful retail and educational robots. http://www.
robotlab.com/, 2016. (Accessed on 06/01/2016).

OpenCV Dev Team. Face recognition with opencv — opencv 2.4.13.0 doc-
umentation. http://docs.opencv.org/2.4/modules/contrib/doc/facerec/
facerec_tutorial.html, 2016. (Accessed on 05/31/2016).

Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of cognitive
neuroscience, 3(1):71–86, 1991.

Univeristy of Edinburgh. The festival speech synthesis system. http://www.cstr.
ed.ac.uk/projects/festival/, 2016. (Accessed on 05/20/2016).

Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. Understanding
mobility based on gps data. In Proceedings of the 10th international conference
on Ubiquitous computing, pages 312–321. ACM, 2008.

Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. Mining interesting locations
and travel sequences from gps trajectories. In Proceedings of the 18th international
conference on World wide web, pages 791–800. ACM, 2009.

Yu Zheng, Xing Xie, and Wei-Ying Ma. Geolife: A collaborative social networking
service among user, location and trajectory. IEEE Data Eng. Bull., 33(2):32–39,
2010.

55

https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
http://www.robotlab.com/
http://www.robotlab.com/
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html
http://www.cstr.ed.ac.uk/projects/festival/
http://www.cstr.ed.ac.uk/projects/festival/

Bibliography

56

	List of Figures
	List of Tables
	Introduction
	Preface
	Background
	Aim
	Limitations

	Theoretical Background
	Neural Networks
	DBSCAN
	Image Matching
	Eigenfaces
	Fisherfaces
	Local Binary Pattern Histogram Matching

	Related Work
	Location Prediction
	Existing IPA Platforms
	Sirius
	OpenCog

	Description Of The System
	The Target Platform
	The System Architecture
	Database
	Automatic Profile Selection Through Face Recognition
	Improving Confidence
	Proposed Setup

	Location Prediction
	Gathering Training Data
	Training Data Preprocessing
	Selecting clustering method
	Neural Network
	Network 1
	Network 2
	Network 3

	Neural Network Prediction Procedure

	External APIs
	Google Calendar
	Google Geolocations
	Google Distance Matrix

	MQTT
	Voice And Dialogue
	Automatic Speech Recognition
	Dialogue Manager
	Example commands

	Text-To-Speech
	Graphical Interface

	Experimental Setup
	Prediction Baseline
	Dataset
	Geolife Dataset
	Generated Dataset
	Personal Dataset

	Experimental: Computer Setup

	Results
	Face Recognition
	Lighting Conditions
	Confidence
	Performance Tests

	Location Prediction
	Culling results
	Network types
	GeoLife test
	Generated Data Test
	Network 2
	Network 3
	PredictorG

	Dialog Interaction

	Discussion
	Discussion of the Results
	Culling
	Location Prediction
	Talkamatic
	Face Recognition
	Hardware Requirements

	Future Work
	Ethics
	Conclusions

	Bibliography

