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Abstract
In-memory databases have gained popularity in the last decades due to the increased
demand for high-speed access to data. Redis is one such database that provides a
sub-millisecond response time for incoming requests. These speedups are of par-
ticular interest in the telecommunication industry, where 5G technology needs to
provide multi-Gbps network speeds. Ericsson is a global leader in 5G network equip-
ment that benefits from in-memory database improvements. When a fault occurs
in the system, methods to prevent data loss are needed. One such method is the
data replication on a secondary node. Synchronization after a fault in the replica
node puts pressure on the primary node to withstand the incoming requests from
clients. Requests are buffered until the replica is ready. The buffering can demand
a lot of main memory space, and if the system runs out of memory, the synchro-
nization restarts. The novelty of the thesis work focuses on minimizing the impact
over main memory size when synchronization between primary and replica nodes is
taking place. Practically, adding multiple types of compression over received data
in the Redis network layer. We gather performance metrics related to memory size
reduction, requests per second, CPU utilization, relative time spent on CPU, and
Maximum Main Memory used.

We show that compression over the random data set, an extreme case, does not
provide any memory size reduction, and it has a significant negative impact on per-
formance. Another extreme data set is a single character generated multiple times.
Intuitively, this data set is highly compressible and provided unrealistic compression
ratios of 71.1. Lastly, we showcase the real data set with a 3.582 compression ratio
when using the ZSTD algorithm; furthermore, the above data-set showed a higher
maximum transfer rate when using compression. The maximum transfer rate shows
how much bandwidth can the system support when synchronization is ongoing.
Given these data sets, we showcase the positive impact of adopting compression in
a 5G network.

Keywords: in-memory database, redis, replication, compression, performance, syn-
chronization
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1
Introduction

In today’s software-as-a-service paradigm, we rely on databases to persistently store
data. Redis is an open source in-memory database that provides storage for key-
value pairs. It uses primary nodes and multiple replicas to provide resilience [9].
In-memory databases are used to provide fast response time by removing the disk
from processing requests. Data stored in main memory can be lost when a fault
occurs in the system. Deploying replicating data over multiple servers is a way to
mitigate this drawback.

1.1 Context
In today’s interconnected world of 5G technology, the databases need to service
millions of Requests Per Second (RPS) and have very short response times. The
5G technology needs to provide low latency rates, reaching response times of 1 mil-
lisecond. Using Redis as a service for the 5G technology meets these constraints by
having sub-millisecond response times [10]. The most relevant example in the 5G
context is storing session information. Updates to these sessions occur all the time
and they need to be visible as soon as possible. Thus, it is necessary to analyse
how Redis works in the telecommunication industry and how performance can be
improved and extensively monitored.

Redis is an open-source in-memory key-value storage project that provides extensive
tools for memory analysis and clustering options. It is implemented in the C pro-
gramming language, but it offers a wide variety of tools and interfaces implemented
in many languages such as C++, Java, Go [8]. An example of such tool is the
redis-benchmark. Such tools are used to collect and analyse the data. Moreover,
the Redis benchmark tool gives a quick way to simulate how the database reacts
to clients applying commands, gathering performance metrics such as the RPS and
communication latency.

1.2 Aim
The main goal of the thesis is to provide an extensive analysis of compression algo-
rithms by implementing them into the Redis Network Layer and evaluating perfor-
mance metrics, including but not limited to resources utilisation (maximum memory,
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1. Introduction

processing time, bandwidth), communication latency, and RPS. We hope to pro-
vide better performance for in-memory data structures storage by adding streaming
compression algorithms, such as the LZF, LZ4, and ZSTD, but also provide a better
understanding of a real-life Consistency Protocol implementation. The analysis will
provide new insights into Redis performance in the context of an industry-leading
5G technology company. The primary study case of this thesis is a Redis setup
containing one Primary server and one replica server. Using two servers, we will
simulate different relevant scenarios such as replica restart, bandwidth limitations,
and the addition of compression algorithms to provide an extensive and robust test
framework.

We answer the following research questions by adding the LZF, LZ4 and ZSTD com-
pression algorithms into the main memory data-base (Redis):

• What overall impact do compression algorithms have on the main memory
size, and by how much is the memory footprint reduced?

• Adding a compression step to processing requests from clients could have per-
formance degradation on the Redis server. Determine the performance impact
by measuring the request per second supported by Redis.

• What is the maximum bandwidth supported by the server when a total syn-
chronization is ongoing?

1.3 Compression for In-Memory Data
Compression has become more and more critical in present technology stack due to
increased use of DRAM by applications that need fast response times [18]. Using
in-memory compression also provides a smaller memory footprint and thus reduces
the manufacturing and operating cost of a business [19]. There is, of course, a
performance trade-off between memory reduction and how fast a compression algo-
rithm does the compress and decompress stages. For example, the LZ4 and ZSTD
algorithms [3] [14] provide acceleration parameters to choose the right speedup for
the needs of the application.

The algorithms used in the thesis project are based on the well known lossless com-
pression algorithms called Ziv-Lempel [24] [25] from 1977 and 1978 (also known as
LZ77 and LZ78, respectively). The LZ77 and LZ78 algorithms work based on the
same general principle: finding existing patterns in the stream of bytes and replacing
those with an offset relative to the current cursor pointer (a pair of distance-length).
There is a balancing act when choosing the longest substring length, and in prac-
tice, different algorithms choose different strategies for deciding upon the substring
length [4].

The Redis server is asynchronous and single-threaded when processing commands,
and it mainly benefits from systems with fast CPUs. Having multiple cores does
not really bring any benefit to the processing speed of requests, but multi-thread
support is available, and the cores are used mainly for blocking I/O tasks [6]. With

2



1. Introduction

this in mind, it is essential to evaluate the performance impact of adding compres-
sion, as this would be done on the same core that processes incoming requests.

1.4 Overview
The thesis is structured as follows: The Background chapter dives into the knowl-
edge required to understand the thesis and the following chapters. It will also discuss
related topics within the in-memory database research area. The implementation
chapter will focus on how compression is added to the Redis code and the design
choices for the testing tools. The evaluation chapter shows the testing scenarios
and the hardware resources used to conduct the experiments. It also brings to light
some of the essential Redis configurations changed for our experiments. The Re-
sults chapter will show the impact of compression on the Redis server. We present
the collected performance metrics, memory and processor impact and discuss the
findings. Lastly, a conclusion is formulated in the final chapter with a possibility of
future research based on the open questions resulting from our findings.

3
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2
Background

The following chapter describes concepts relevant to understanding the thesis work.
The first section brings information about Redis Replication. The second section
discusses the Hiredis API used in the implementation. Next, the reply list func-
tionality is described, and it is essential because the compression algorithms are
added here. Flame Graph testing tool is also presented as it is used to measure
important CPU performance metrics. Lastly, we dive into related work and how the
thesis work fits the current research field.

2.1 Redis Replication
Redis uses asynchronous replication between the primary node and the replicas. It
is non-blocking, and the primary node can still serve requests from clients. In short,
the primary node forks a child process that handles the replication and synchroniza-
tion. The child uses copy-on-write to prevent duplicating memory that has not been
modified. One advantage of replication is that the data in the primary database is
replicated onto another server, instead of keeping the data as a backup on the disk.
This does not only makes for a faster handover if the primary process fails, but also
provides resilience in the case of hardware or process failure.

When a transient fault such as a timeout occurs between a primary node and its
replicas, the Redis logic tries to do a partial synchronization. When this method
fails, the replicas have to fully synchronize. This is done by sending ,via sockets,
an Redis DataBase (RDB) file from the primary nodes to the replicas. In Redis
terminology, this is called "diskless replication".

Redis uses a replication buffer, called client-output-buffer that stores the writes
performed recently in the primary database while a partial or total synchronization
is ongoing.

A failure case can occur when the client-output-buffer is full. The limits for
different types of clients can be configured via the client-output-buffer-limit
parameter from the redis.conf file. In Redis terminology, the replica that the pri-
mary talks to is generally called a client, thus the naming convention described
above.

5



2. Background

Redis has multiple types of clients. For example, clients can be of the following
types:

• primary
• replica
• monitor
• multi

When a client is of type primary, it means that the primary node is issuing requests
to the current node. A replica client means that the current primary node servers its
replicas requests. The client-output-buffer-limit parameter tracks the mem-
ory limit for each client type.

If partial synchronization fails, a total synchronization is triggered, and the replica
will try and get the complete copy of the primary database. While the total syn-
chronization is ongoing between the primary and the client (i.e. the replica), all the
writes performed by other clients in the primary node are buffered. The primary
node is waiting for the total sync to finish to send the buffered modifications to the
replica.

Redis offers hard and soft output buffers limits for different types of clients via
the client-output-buffer-limit configuration parameter. If the maximum capacity is
reached, the client is disconnected as soon as possible. The maximum capacity can
be reached if the produced data (writes) rate is greater than the consumed data
(reads).

If a client disconnect occurs while the total sync is ongoing, the primary node restarts
the total sync. If the produced data is still greater than the consumed data, the
total sync step will loop, and thus the replica will never finish the sync.

Redis relies on the eventual consistency model, where high availability is the main
benefit when it comes to replication. As mentioned before, Redis uses primary and
replica nodes where clients can write to both primary and replica nodes. The repli-
cas can be configured as read-only. When a Write to the primary node occurs, that
write is stored in the backlog and forwarded to the open connection that the primary
node has with its replicas.

This approach resembles the Replicated-Write Protocols, more precise the Active
Replication Protocol. In the Active Replication Protocol, a client writes to a replica,
and that replica propagates the writes to the other replicas. In Redis’s case, the pri-
mary node propagates the writes to the replicas. Moreover, clients can only connect
to primary nodes, not to any replicas as in the Active Replication Protocol.

There is a keep-alive mechanism that checks if there is still a connection between
replicas and primary nodes. If there is a timeout on the keep-alive messages, the
replicas would have to request a partial synchronization. The primary node keeps a
backlog of the most recent modifications of the database. In case of a timeout, this
backlog buffer is sent to the replicas to try and fix the out of sync state. However,
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2. Background

sometimes a partial sync does not fix the out of sync state. This can occur when
the databases did not exchange keep-alive messages for a long period of time, as the
replay buffer could be too small to replay all the changes.

When the partial sync does not solve the issue, a total synchronization is needed.
The sync mechanism works as follows: The primary node creates a snapshot of
what the database looks like at a given time. This snapshot is saved in a file format
named RDB (Redis Database Backup file). The RDB file can be configured to use
LZF compression on the database objects via the redis.conf file. The compression
is done regardless of the replication type. Next, the primary node opens a connec-
tion to the replicas and sends the RDB file. Because this is done while the RDB
file is sent, there are still modifications done in the primary database that will be
stored in the backlog buffer. The Redis primary node forks a child process called
redis-rdb-to-replicas that handles the replication. When the sending of the RDB file
is finished, the remainder of the backlog messages not captured in the snapshot is
sent to the replicas.

As mentioned before, Redis is an in-memory database that provides higher access
speeds to data than a regular on-disk database [16]. Moreover, Redis provides
built-in replication mechanisms that provide high availability and resilience. The
replication mechanism is one of the most complex parts of the Redis database and
works by having multiple copies of data from the primary node into replica nodes.
When there are no connection errors, the replicas are kept up to date with the pri-
mary node updates by receiving a copy of the changes via streams. The received
commands are executed on the replicas.

2.2 Hiredis API

Hiredis is a small client for Redis that is implemented in C. It is easy to use, as it
has basic function calls that allow the user to interact with a redis-server easily.
The main functions that one can use are in Listing 2.1. The redisConnect function
creates a redisContext that will hold the communication to the redis-server. In
order to send commands to Redis, the redisCommand sends the given command to
the redisContext. This function is blocking waiting for a reply. The reply struc-
ture contains information about the requested command and keeps the information
about any error messages. The reply types and more about hiredis are described in
more detail in the hiredis repository [7].

1 redisConnect (IP , port)
2 redisCommand (context , format )
3 freeReplyObject (reply)

Listing 2.1: Hiredis Functions

7



2. Background

1 # Commands over string data type
2 GET key
3 SET key value
4 # Command over hash data type
5 HSET key field value

Listing 2.2: Redis Commands Example

2.3 Redis data types
Redis supports multiple data types such as: Strings, Lists, Sets, Hashes, Sorted
Sets, Streams etc. Every data type provides a set of commands that manipulate the
data. Table 2.1 shows some of the most used data types together with some basic
command types that can be applied on these types.

Strings Lists Sets Hashes
GET & MGET LRANGE SADD HGET & HMGET
SET & MSET LPUSH & RPUSH SMEMBERS HSET & HMSET

APPEND LSET SINTER HGETALL

Table 2.1: Redis Data Types and some basic afferent commands.

The most relevant data types for our thesis work are strings and hashes. Because
strings are the most basic data type on which other data types are built, it pro-
vides accurate measurement for the following analysis. In addition, the thesis work
is focusing mostly on commands such as SET and MSET because they provide larger
command sizes compared to GET and MGET. For example, in Listing 2.2 the SET
command will have bigger size compared to the GET command because the former
includes a value parameter that increases the command size. Furthermore, Hashes
is a data type that maps string fields and values, and it is recommended to be used
in the Redis community because they are a versatile data type that can be used to
replace other data types. The HSET command is used in the thesis work to provide
a robust understanding of another data type than the basic one (string). By using
these command types and data types, the thesis work can provide insights into the
differences in results when combining different parameters.

2.4 Reply List
Redis Network layer uses a simple producer/consumer paradigm to send data to
clients. As mentioned before, clients can be of multiple types: normal (including
monitoring) clients, replica clients, pubsub clients. The producer/consumer mecha-
nism is done in the same thread, asynchronously. The producer side tails in a list
the incoming data and the consumer side pops the head from the list. This list is
usually allocated to at least 16KB. Figure 2.1 shows that the producer adds node
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Server 
output buffer

Producer Consumer
chunks >= 16KB

Figure 2.1: Redis Reply List.

elements to the list and checks against the server output-buffer limit.

Interestingly, the zmalloc library used by Redis is interrogated in the producer side
to return the exact number of Bytes allocated. This prevents internal fragmentation
of the allocator. With other words, while there is space in the allocated memory
block, append incoming data to try and fill the block before it is consumed.

2.5 Compression algorithms
The thesis work only considers lossless compression algorithms. Lossless compres-
sion is a type of compression that does not modify the original data when it is
rebuilt after decompression. Other types of compression are not of interest because
the Redis replica should have an exact copy of the primary server.

The LZF algorithm is a lightweight lossless compression method integrated into Re-
dis source code but used only for RDB compression. It is simple, as it only has
compress and decompress functions.

The LZ4 algorithm [3] overs tuning options, in contrast to the LZF algorithm. It can
be configured to accelerate the compression speed, trading CPU time for gains in
compression ratio. The LZ4 compression function can be called using an acceleration
parameter that gives about 3% compression speed. The proposed implementation
in Redis uses the default acceleration value of 1. LZ4 also has an API that allows
for dictionary compression. This is not pursued in this thesis, as it requires storing
the dictionary for the whole lifespan of the database, and it is not data agnostic.
According to the benchmarks performed over a series of compression algorithms [3],
the LZ4 compression speed is about the same as the LZF. However, a difference can
be noticed at the decompression function, LZ4 being about 4 times faster than LZF.

ZStandard [14] is a lossless compression algorithm similar to gzip [15] that offers fast
decompression speeds and multi-thread support. The algorithm uses frames to refer
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Hardware Hardware

Hypervisor Host OS

Container Engine

app1 
lib/bins

app3 
lib/bins

app2 
lib/bins

app1 
lib/bins

app3 
lib/bins

app2 
lib/bins

Guest 
OS

Guest 
OS

Guest 
OS

Virtual
Machine Containers

Figure 2.2: Virtual Machine vs Containers.

to compressed data. Each frame is independent and is decompressed individually.
Moreover, the frames can be concatenated, and the decompression of a list of frames
results in each frame being decompressed and appended next to each other. Same
as with LZ4 compression method, ZSTD offers tunable compression levels, trading
compression speed for compression ratio.

2.6 Docker and VMs

Docker is a platform that allows the users to deploy applications into a virtual
environment called containers. The advantage of using containers is that an ap-
plication can be deployed in a lighter environment compared to virtual machines.
Virtual machines need to deploy an entirely new OS to run the demanded appli-
cations. To clarify, to run two separate applications, one must deploy two virtual
machines with their own operating systems and their own library configurations.

Docker is OS agnostic, as applications can be deployed in a virtual container with
all the dependencies met. Multiple containers can be deployed within one host OS.
Figure 2.2 shows a high-level difference between containers and virtual machines
when it comes to three applications that are deployed with their own specific de-
pendencies and binaries.
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2.7 Flame Graphs
Flame Graphs are a performance visualisation tool, invented by Brendan Gregg,
that plots the stack traces collected by profilers such as perf or DTrace [17]. On
the x-axis, the stack trace is alphabetically sorted. Sorting choice is important to
mention as, when one reads a Flame Graphs, it does not mean that the furthest
to the left stack call is executed first. The Flame Graphs do not show the order of
execution. The width of the stack call is a good metric for how much CPU time that
specific function used. In addition, the tool offers a search option that outputs the
percentage of CPU spent time, relative to the other stack calls. The y-axis keeps
track of stack depth (e.g. function A called function B).

Comparing different Flame Graphs is a difficult task, in the sense that it can become
a tedious task to do by hand. The FLAMEGRAPHDIFF tool was created to ease the
comparison between Flame Graphs and plot the difference between them [11].

Flame Graphs can also be used to profile memory leaks by tracing the function calls
of the allocator. Flame Graphs also offers the option to investigate Off-CPU time [1].
Off-CPU time is the time spent by a process and threads in blocking I/O, paging,
waits, and locks. Off-CPU is a relevant metric as this can impact the performance
of an application that needs to do On-CPU tasks.

2.8 Related Work
A modification of the Redis source code was proposed in 2019 by Q. Liu, and H
Yuan [20] that provides higher performance for the Redis database. The paper
shows cache performance improvements by modifying the hashtable used in Redis.
The authors also propose a segmentation memory management method that reduces
the internal and external fragmentation of the memory (in-memory database). The
results shown in the paper mainly focus on the string data structure, while the other
data structures, such as hashes and sets, do not show any improvements from the
previously mentioned method.

From a security point of view, there is ongoing research in the data recovery area
[13]. An attacker might try to delete all the records from the database. The newly
published paper by R. Chopade and V. Pachghare [13] presents a method that can
recover lost data by modifying the free memory option in the Redis source code.
When a record is deleted, memory will not be freed, and the pointers to the records
are stored in a linked list. The authors conducted a list of experiments, and the
outcome was a data recovery with accuracy ranging from 65% to 95%.

Shansan Chen et al. [12] published a paper on the synchronization topic, that pro-
poses a method called Semi synchronization. Instead of doing a full synchronization
that waits for an OK message to be sent from the replicas to the primary node, the
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semi sync is based on the fact that the data is sent via the TCP protocol (which is
reliable). Their results showed a performance increase in the number of queries per
second compared to the partial synchronization already present in Redis. However,
the baseline comparison of this method is Redis version 3.0.3, while at the time of
writing the thesis, Redis stable version is at 6.2.0.

An Adaptive Logging method for Distributed In-memory Databases was proposed
by Chang Yao et al. [23]. ARIES (Algorithms for Recovery and Isolation Exploiting
Semantics) logging is the backbone choice in the paper. The ARIES logging uses
the disk to store the logs for the commands. Conversely, the thesis project uses only
in-memory storage and focuses on the total recovery time when the primary node
buffers incoming commands. Still related to the Log-based recovery, Gang Wu et al.
[22] are showing in their paper how different algorithms work on the log compres-
sion. They modify the ARIES logging and propose two types of logging: physical
and logical. The paper shows that the compression rate is 95.5% (4.5% reduction
in size) with the dictionary compression.

12



3
Implementation

This chapter presents how is compression added in Redis. We also discuss the tools
used to analyze our implementation. Moreover, we present the environment setup
that simulates two scenarios for extracting metrics. We discuss the performance dif-
ferences of the testing tool and show how we reduced the execution time of injecting
test data to our System Under Test (SUT).

3.1 Adding Compression in Redis
The compression algorithms are added in Redis Network framework. This frame-
work handles the connections and data transfer between the server and its clients.
We add compression inside the reply layer. The reply layer is the part that handles
data without knowing anything about it. More precisely, data is seen as a series
of bytes. The reply layer is an asynchronous single-threaded producer/consumer
procedure that stores incoming and outgoing data in a linked list of 16KB nodes.
The nodes are allocated accordingly if the incoming data comes in bigger chunks
than 16KB.

When a client is in the wait state, the reply layer logic waits until the state
switches to online to send data. The buffered data is then compared against the
client-output-buffer-limit that closes the producers when the limit is reached
(hard limit). The output buffer limit parameter also offers a soft limit option that
can be applied to prevent memory usage above a certain threshold. The soft limit
parameter looks at the rate with which data is sent for a given amount of time. If
the rate is higher than the chosen time and size thresholds, the client is disconnected
as soon as possible. The implementation focuses on compressing the incoming data
and decompressing it when ready to be sent to the clients. The compression is ap-
plied only when the replica is in waiting state. The Redis parameter showing this
state is called REPLICA_STATE_WAIT_BGSAVE_END.
In Listing 3.1 it is described how the compression is done in the addReplyProtoToList
function. This function is used for all client data communication, and it always tries
to append data to the tail of the list. If the tail is full or has no tail node yet, this
function requests memory allocation by calling the zmalloc function. Compression
is only applied when the tail buffer is full. The tail node has two variables that track
the actual allocated size and the used size. When these two are equal (lines 10, 11,
12), the node is full, and we can apply compression on the buffer. In most cases,
the reallocation will return significantly less memory than before (line 15).
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1 def addReplyProtoToList (client , data , data_size ):
2 tail = listLast (client ->reply)
3 if (tail):
4 if (tail ->flag == BLOCK_COMPRESSED ):
5 goto create_new_node
6

7 copy_data (tail ->buf , data , data_size )
8

9 if (client -> replstate == REPLICA_STATE_WAIT_BGSAVE_END &&
10 tail ->size == tail ->used &&
11 tail ->flag != BLOCK_COMPRESSED ):
12 compression_buffer = zmalloc (tail ->size)
13 compress (tail ->buf , compression_buffer )
14 zrealloc (tail)
15 tail ->flag = BLOCK_COMPRESSED
16 create_new_node :
17 if (client -> replstate == REPLICA_STATE_WAIT_BGSAVE_END &&

data_size >= PROTO_REPLY_CHUNK_BYTES ):
18 create_new_node (tail)
19 compression_buffer = zmalloc ( data_size )
20 compress (tail ->buf , compression_buffer )
21 tail ->flag = BLOCK_COMPRESSED
22 else:
23 create_new_node (tail)
24 copy_data (tail ->buf , data , data_size )

Listing 3.1: Compression of data

When the data is bigger than PROTO_REPLY_CHUNK_SIZE (currently defined as 16KB),
the algorithm allocates a heap memory block to store the compression. The block
is a temporary allocation and is freed at a later point. The compressed data is
added to the newly created node (lines 18, 19, 20). If the data size is smaller than
PROTO_REPLY_CHUNK_SIZE, the algorithm creates the tail node and waits for it to
be populated with further data.

It is essential to mention that the consumer always tries to grab data from the list.
In other words, consuming data immediately after it becomes available. For exam-
ple, if there is node in the list that is not yet compressed and the client has gone
into the online state, then that data will be consumed and sent to the corresponding
clients.

The decompression is done in the writeToClient function right before it is sent over
the socket. Most of the code from 3.2 has been omitted, and just the decompression
logic is highlighted. The consuming of the reply buffer is done from the head (lines
4-8). This guarantees that the data will be consumed in the order it arrived (recall
that the producer appends data to the tail).

The compression type for the client-output-buffer is configuration is added to
the redis.conf file. The configuration is only relevant for the primary node as
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1 def writeToClient ( client ):
2 [...]
3 head = listFirst (client ->reply)
4

5 if (client ->flags & CLIENT_REPLICA && client ->flags
BLOCK_COMPRESSED ):

6 decompress_buffer = zmalloc (head ->size)
7 decompress (head ->buf , decompressed )
8 connWrite (client ->connection , decompressed )
9 else:

10 connWrite (client ->connection , head ->buf)
11 [...]

Listing 3.2: Decompression of data

the current implementation does not apply compression algorithms outside the pri-
mary node. The replica-output-buffer-compression configuration parameter
can take the following values: no - meaning that there will be no compression ap-
plied on the buffer, lzf - meaning that the simple LZF (existing in Redis source
code) compression will be applied to the data inside the buffer, lz4 - meaning that
the LZ4 standard compression will be applied, and zstd - which applies the ZSTD
compression algorithm to the data inside the buffer. In Listings 3.2 and 3.2, the
compress and decompress functions are wrappers that use the different compression
algorithms presented before.

Source code for both ZSTD and LZ4 are included in Redis repository. On one
hand, LZ4 comes in the form of .c, .h files that is compiled together with the
redis-server binary. On the other hand, ZSTD comes in the form a library that
is included in the dep folder that includes all external dependencies necessary for
the redis-server binary compilation. Lastly, LZF source code is already present in
the Redis repository, but it is used in other parts such as compression queue and
RDB compression.

3.2 Tuning Redis-benchmark
Redis-benchmark is a tool used to test the Redis servers. It connects to a specified
Redis instance via an IP and Port using the TCP Protocol. The tool offers a wide
variety of options for testing the Redis instances. It can test how the Redis server re-
sponds to command types including, but not limited to GET, SET, LPUSH, RPUSH. Ran-
domly generated data is sent via the commands mentioned above. The benchmark
tool creates event loops for each connecting client communicating with the Redis
server. The request message sent contains the randomly generated data. The num-
ber of requests is configurable and can be specified through the redis-benchmark
command arguments.
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Figure 3.1: Environment Setup.

1 redis - benchmark -h $IP -t set -c 8 -n 2000 -d 1000 --random -data 1

Listing 3.3: Redis Benchmark example

As the redis-benchmark is open source, we have modified it so that it can sat-
isfy our evaluation and testing needs. For example, the –random-data argument
has been modified for the purpose of this thesis so that we can generate generate
extremely compressible data when set 0 (i.e. ’aaaaaaaa’ string). For example, in
Listing 3.3 the redis-benchmark command creates eight clients that will send 2000
SET requests with 1KB of data per request. This will yield about 2MB of data into
the specified Redis instance (through IP and Port) . The tool can output metrics
related to the Redis instance that receives the requests. For example, it can output
the transfer latency and how may RPS are accepted by the server.

The redis-benchmark tool is also modified to fetch a data set from a Redis server
instance that contains a loaded dump file. The data is injected to the Redis testing
environment composed of one primary and one replica. The tool is deployed on the
host VM that holds containers for each Redis server deployed. The communication
between the Redis server holding the data is done via a different network bridge
than the one used in the Redis testing setup. The data is fetched and passed to the
primary Redis server node via the docker-bridge. The container used to deploy the
primary Redis server node is connected to two bridges: the docker-bridge and the
redis-bridge. It is essential to keep the connections separate, as the redisbridge
contains traffic control queuing disciplines that could impact test setup. Figure 3.1
shows how the infrastructure for the implementation looks.

Functionality wise, the redis-benchmark tool uses the SCAN command to parse and
find all the data types stored in the database. Each type of data is then fetched and
pushed to the primary Redis server node. The data is pushed using commands such
as MSET and MGET. The MSET command in Redis adds multiple keys and values via a
single command, and by doing this reduces the overhead of sending SET commands
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individually.

command SET MSET tuned SET tuned MSET
requests 2053920 102696 2053920 102696

exec time (sec) 91 20 27.94 6.3
pairs per command 1 20 1 20

RPS 22570.5 5134.8 73511.8 16300.9

Table 3.1: Testing tool Performance Results.

Performance is essential for fetching the data set and feeding it to the testing envi-
ronment. If the writing speed is limited by the testing tool, then the bottleneck will
be the testing tool itself and not the SUT. We believe it is relevant to describe the
design choice of the testing environment.

Table 3.1 shows the difference in performance between using the redis-benchmark
tool and hiredis API in testing the Redis deployment. The table only refers to
the string type in Redis data, which consists of key-value pairs data. The total
number of pairs is the same for all the command types described in the table. For
references about the data size see Table 3.2.

The first two columns shows the SET and MSET commands sent through the hiredis
API. The commands are sent using the redisCommand() function. This func-
tion blocks until a reply is received from the redis-server. In Table 3.2 men-
tioned above, it is observed that the execution time for the SET and MSET via the
redisCommand is significantly slower than when using the redis-benchmark tool.

The redis-benchmark tool uses event loops to handle writes and reads to and
from the redis-server. The event loop handlers are writing and reading to the
redis-server, using very similar commands to the read and write functions from
the POSIX standard. This approach is quite fast because the functions work directly
with raw buffers that are send through a redis context. It can be observed in
Table 3.1 that our redis-benchmark modification can send more than three times
the amount of requests compared to the previous implementation. For example,
using our redis-benchmark implementation total number of RPS sent is 16300.9,
while using the basic hiredis API only a total of 5134.8 RPS is sent.

Data Parameters Values
key/value pairs (type string) 2053920

average value size (Bytes) 753
average key size (Bytes) 44

Table 3.2: Data information.
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3.3 Redis Configuration
As Redis offers a wide variety of configuration parameters, it is worth describing the
parameters chosen for the testing scenarios.

The save option enables recovery from a disk snapshot after a restart occurs. We
disabled it in both primary and replica nodes because we want to trigger a to-
tal synchronization event, which is impossible with the option enabled. Next, the
Rdbcompression option is used to compress the Redis objects sent between Redis
instances over the network. We set rdbcompression to no because we want more
time to do the total synchronization when testing.

Redis also allows disk and socket synchronization configuration. The disk-backed
replication works well with partial synchronization, as replication can resume from
the last snapshot stored on the disk. However, we have selected to use diskless
replication by setting repl-diskless-sync to yes and thus preventing any partial
synchronization. The repl-diskless-sync-delay option is set to 0, as this param-
eter is useful when waiting for more replicas to go into ONLINE state in order to feed
them the data. In the thesis case, we only use one replica, so thus this is irrelevant.

The client-output-buffer-limit for the replica is set to 0, meaning there is no
buffer limit. The limitless buffer allows the tests to show the total used memory
without forcing the synchronization restart. However, the limits are given the RAM
size, but test parameters are selected so that we do not go above the available RAM
of the SUT. In the unlikely case of reaching RAM limits, the Linux Out of Memory
killer will clean the process causing the issue.

We have added a new configuration parameter, replica-output-buffer-compression,
that enables the user to select which compression type should be applied on the
client-output-buffer. Currently, the options are: no, lzf, lz4, and zstd. Such
command was necessary because we can interactively configure compression types,
without the need for recompilation or redeployment.

Next, Listing 3.4 presents the essential Redis configuration parameters used for the
thesis setup. Moreover, as mentioned before, we have implemented a new parame-
ter to control the compression types without the need to redeploy or recompile the
redis-server and this is shown below as well.
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1 # No supervision (e.g. systemd ) or daemonize the Redis process
2 supervised no
3

4 # Process title is the default
5 proc -title - template "{title} {listen -addr} {server -mode}"
6

7 # Save the Redis database to disk is disabled
8 save ""
9

10 # No compression when dumping the database , and LZF compression is
the only option .

11 rdbcompression no
12

13 # Replicas do not accept writes .
14 replica -read -only yes
15

16 # Use the socket to send data to the replica node directly to the
process instead of dumping it on disk first.

17 repl -diskless -sync yes
18

19 # Server waiting time before it initiates the sync to replicas .
20 repl -diskless -sync -delay 0
21

22 # Because this option is experimental , it is not enabled in our
setup.

23 repl -diskless -load disabled
24

25 # Disable the TCP_NODELAY flag on the replica
26 repl -disable -tcp - nodelay no
27

28 # Limits for the buffers that store data in order to be consumed by
the server

29 client -output -buffer -limit normal 0 0 0
30 client -output -buffer -limit replica 0 0 0
31 client -output -buffer -limit pubsub 32mb 8mb 60
32

33 # The client output buffer supports multiple types of compression
such as 'lzf ', 'lz4 ', and 'zstd '.

34 replica -output -buffer - compression no

Listing 3.4: Contents of the redis.conf file.
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4
Evaluation

This chapter will discuss the hardware resources and how the tests were conducted.
We will present the steps taken for each test scenario and how the redis-servers
are configured. In addition, we present how the resource utilization metrics are col-
lected together with the tools used for extraction and visualization.

4.1 Environment setup

The experiments are conducted on an Ubuntu 20.04 VM (kernel version 5.4.0-90-
generic) having the following specifications: Intel(R) Xeon(R) Gold 6148 CPU @
2.40GHz processor (8 cores), 32 GB RAM, 64GB SSD.

The modified Redis code an its configurations are deployed to the Docker containers
using Ansible. Ansible uses playbooks to copy files, execute commands and change
VM configurations by simply running the playbook from the local machine; further-
more, Ansible allows flexibility in deploying different configurations and automating
the testing environment.

Using Docker containers offers options for local traffic shaping, deployment, and
monitoring flexibility. The Redis primary and replica nodes are deployed in sepa-
rate containers and connected via an isolated network bridge. By using a network
bridge unique to the two containers, we can apply traffic control rules only on the
containers network devices.

21



4. Evaluation

4.2 Testing Scenario 1

This test scenario measures how well the compression algorithms work when no
buffer limit or client rate limit is applied. During these tests, we extract metrics
including, but not limited to, RPS, Online Synchronization Duration, and Used
Memory.

• Setup Containers. Deploys 3 redis-server instances. Two of the instances
are a primary-replica pair with their private network, and the third one is a
redis-server that is used by the redis-benchmark to fetch the data set.

• Populate the Redis DB with random data. This is done because we
want to have data to synchronize between the primary node and the replica
after restart.

• Restart the replica DB. This will trigger a total bulk sync from the primary
Redis instance (as configured).

• Apply traffic control. tc rules are configured on the network between the
primary and the replica to simulate real-life scenarios. The tc is needed be-
cause we are on the same host, and the network speed is too high.

• Send requests to Redis primary node. In this step, all the incoming
requests are being appended to the client reply buffer, waiting for the bulk
sync from the previous step to finish. Because the client-output-buffer
limit is removed from the redis.config file, we can measure the actual used
size of the client-output-buffer.

• primary node syncs the buffered data The Redis primary node will send
the data as a stream to the replica after wait state switches to online. Every
data buffered after the snapshot occurred will be sent. This step also measures
the impact decompression has over the total synchronization duration, as the
data will be decompressed before being sent to the replica.

• Cleanup the testing environment. We flush the data and remove the
traffic control rules imposed on the network.

The data extraction from the testing environment is done in a JSON format and it
has the following design:
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{
"compression-type": "no",

"items": [
{

"start-test-time": "Sun May 22 22:25:14 CEST 2022",
"data-type": "real",
"command-type": "set",
"rate-limit": "250mbit",
"bulk-sync-duration": "52",
"used-mem": "1699272136",
"online-sync-duration-msec": "11139",
"page-faults": "4722432",
"end-test-time": "Sun May 22 22:27:08 CEST 2022",
"latency-report": {

"exec_time_sec": "31.04",
"rps": "66176.50",
"avg": "0.489",
"min": "0.176",
"p50": "0.423",
"p95": "0.871",
"p99": "1.175",
"max": "16.375"

}
},
...
]

},
...

The data-type in the JSON format can be real, compressible, or random. We
test the compression algorithms for each data-type. The rate-limit is the max-
imum rate limit on the network interface between the Primary Redis server and
the replica Redis Server. This limit is applied so that the synchronization will not
finish too fast and end up in the case where we cannot fully pass all the data to the
primary redis-server. Used-mem, expressed in Bytes, keeps track of how much
memory was used by the client-output-buffer during the synchronization. The
latency-report will output a multitude of metrics, from which the most relevant is
the RPS. RPS are an important metric for the CPU pressure that the compression
ads to the Redis Server.

Every element presented above is incorporated into an items list. The items list
mainly keeps track of the different data types and command types executed for each
compression-type.
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4.3 Testing Scenario 2

The next testing scenario will export the maximum transfer rate supported by the
redis-server. The problem statement is as follows: For a given output buffer
size, find the maximum transfer rate that the server can support. The transfer
rate represents the bandwidth supported by the server that has multiple parallel or
asynchronously clients doing requests. The output buffer size is tested incrementally
starting from 200MB to 1GB with a step of 50MB. The Maximum transfer rate starts
from 600Mbps and decrements to 75Mbps in steps of 25Mbps.

• Setup Containers. Deploys 3 redis-server instances. Two of the instances
are a primary-replica pair with their private network, and the third one is a
redis-server that is used by the redis-benchmark to fetch the data set.

• Populate the Redis DB with random data. This is done because we
want to have data to synchronize between the primary and the replica after
restart.

• Restart the replica DB. This will trigger a total bulk sync from the Redis
primary instance.

• Apply traffic control rules on the network between the primary node and
the replica to simulate real-life scenarios. The tc is needed because we are on
the same host, and the network speed is too high.

• Send requests to the Redis primary node. All the requests are being
appended to the client reply buffer, waiting for the bulk sync from the previous
step to finish.

• Add buffer and rate limits Add client-output-buffer-limit in order to
show maximum possible rate limit that the Redis primary server can support
during a total synchronization.

• Cleanup the testing environment. We flush the data and remove the traf-
fic control rules imposed on the network in this step.

Data extraction format for the second scenario is presented below. For each com-
mand type, data set type and command type we extract the client-rate-limit
together with the client-output-buffer-limit.
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{
"data-type": "real",
"command-type": "set",
"rate-limit": "250Mbps",
"client-rate-limit": "375Mbps",
"client-output-buffer-limit": "1050MB",
"buffer-filled-time": "26"

}

{
"data-type": "compressible",
"command-type": "mset",
"rate-limit": "250Mbps",
"client-rate-limit": "600Mbps",
"client-output-buffer-limit": "250MB",
"used-mem": "38181920",
"buffer-filled-time": "0"

}

4.4 Test framework
Testing is done by deploying Redis servers into docker containers and monitoring
them via the redis-cli command. Before restarting the replica redis-server, we
check the status of the ongoing synchronization. The replica can be in an online
state but transfer of data can still occur. In order to check if the transfer is finished,
we can inspect the primary node offset against the replica offset. The offset is
a random number that shows the current version of that in the server. Inspection
of the offset is done by a simple bash script that inspects the output of the info
replication command given in the redis-cli tool. The test waits via a while loop
until the offsets are the same. When they are in sync, we can proceed to the restart
step. The replica restart is done by restarting the Docker container that deployed it.

After the restart, we apply traffic control rules to simulate a more real-life scenario
where the bandwidth is not unlimited but fixed. The traffic control is applied using
the tc command. In Listing 4.1 we present how the rate limit is applied on a Redis
instance. The tc command applies a token-bucket-filter on the specified network
device. The token-bucket filter limits the transfer speed only on the interface be-
tween the Redis primary node and its replica. We do not want to apply network
limits on any other network devices in our testing as we want to prevent gathering
data to be a bottleneck. The setup was described in Figure 3.1.

1 def add_rate_limits ():
2 docker exec $container_ID tc qdisc add dev eth1 root tbf rate

$rate_limit burst $burst_byes limit $rate_bytes

Listing 4.1: Traffic Control Command
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While the synchronization is ongoing (after restart), the replica is in waiting state.
The test tool inspects the current state by parsing the output of the info repli-
cation command redis-cli output again. The synchronization transfer speed
was reduced by using the tc command to give us more time to populate the
client-output-buffer with data.

A time pattern is followed by the Test execution for the no limits buffer scenario.
To better understand the upcoming plots, we present approximate time moments
(expressed in seconds) for when the test steps are executed. To be precise, these
time frames provide a better understanding of resource utilization plots presented
in Chapter 5.

From t = 0 to about t = 5 the Redis nodes are redeployed, and rate limits are
set. Continuing from t = 5 to about t = 40, the SUT is populated with random
data to use as dummy data to send when total synchronization is triggered between
primary and replica nodes. Starting from t = 40 to about t = 50 the replica node
is restarted, total synchronization starts and the population of different data types
is sent to the primary node by a selected few command types. t = 50 marks the
beginning of data transfer. Some data type and command type combinations could
end the execution as fast as the t = 60 mark. However, most tests yield different
transfer finish times, some ending at the t = 100 mark. The total synchronization
is running from when the transfer is done to the end of the test. The buffered data
is transferred via streams to the replica when the total sync is done, starting from
about t = 120.

The relevant time interval to evaluate is the data transfer time, from about t = 40
to around t = 100 (depending on the test parameters and data). The interval men-
tioned before is the interval that applies compression over the incoming blocks of
data from clients.

Extracting Synchronization Time

In order to measure the impact that decompression has over the SUT, we need to
extract the time it takes for the nodes to be in ONLINE state after a total synchro-
nization event. The test script starts logging the time right after the connection
between the primary and replica nodes changed from WAIT to ONLINE state. The
rate limits are removed from container network devices to precisely measure the
fastest possible configuration. Redis-cli offers the possibility to inspect replica-
tion status by using info replication command. Below is shown an output example
for the command. The primary_repl_offset is compared against the connected
replica’s offset. If the offsets are equal, then the synchronization has finished. The
test framework busy-waits for the offsets to be in sync and logs the time difference
between the transition to ONLINE state (t1) and the time the offsets are equal (t2).

26



4. Evaluation

> redis-cli -a redis -h 172.17.0.2 info replication

# Replication
role:primary
connected_replicas:1
replica0:ip=172.18.0.3,port=6380,state=online,offset=3851898030,lag=0
max_mem_used=27504432
bgsave_close_time=0
primary_failover_state:no-failover
primary_replid:fe3b9669ad6501773655e033474d125e13b0f720
primary_replid2:0000000000000000000000000000000000000000
primary_repl_offset:3851898030
second_repl_offset:-1
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:3850849455
repl_backlog_histlen:1048576

Page Fault Extraction
Page Faults are an important performance metric for Redis DB because being mainly
single threaded, requesting memory is slower than processing data on the CPU and
could become a bottleneck ending up not utilizing the maximum capacity of the pro-
cessor. The test framework deploys a perf stat record in the container holding
the primary Redis node. We extract the page-faults for all threads and processes
that the primary node has created. By doing this for all tests, there is no difference
between the metric and different compression types could be compared and yield
valid results.

When the test execution is completed, perf output binary data is converted to
text by using the perf script command. This file contains some of the following
fields: CPU, THREAD, VAL, TIME, EVENT. For example, in the case of page-faults,
all threads show the page-fault event, but only some of them have the value counter
incremented. The test script sums up the page-fault event counters and outputs
them into the JSON file that gathers the data for plotting.

4.5 Random and compressible data set
The random data is generated by the redis-benchmark tool, and it is created every
time a new request is sent. This string is appended to the SET command as the
value. In order to have different (key, value) pairs, the keys are randomized by
generating a 12 digit number that is appended to each key. This approach populates
the database with different keys containing different random data.

The first option we tried to generate random data was the rand() function in C.
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This is not really desirable as the rand() function is slow and could produce a bot-
tleneck in the benchmark tool. Moreover, using the rand() function to generate a
number for the hashing function did not provide a good enough random data set.

The random data set was finally generated by reading random data directly from
/dev/urandom special file. The data set is created before the execution of the tests
because it is not desirable to wait for data generation while trying to test the system.

We kept the random data format as close as possible to the real data set with
respect to size, providing a constant in our testing. For example, the size of each re-
quest is about 1KB, whereas for the real data set, the average size is about 700Bytes.

Table 4.1 shows the data generation parameters and how tests are conducted. The
testing tool used a single thread and 4 asynchronous clients. The clients were send-
ing requests to the redis-server while measuring the response time.

Parameters Values
clients 4

requests 1600000
data size 1 KB

MSET size 10
Threads 1

Table 4.1: Test Framework parameters for Random and Compressible data.

Moreover, the random data set is generated before the test starts, so that there is
no time spent on data generation when the redis-benchmark tool starts sending
requests and measuring RPS. The tool waits for a SIGURS1 to start the testing.

The compressible data is something we have also added to test the performance of
the compression algorithms, and it only contains one repeated character. Using this
type of data shows how the added compression algorithms behave in an extreme
case. The running of the benchmark tool is similar to the random case. However,
there is no need to wait for a signal, as one repeated character is fast enough to not
impact our testing results. We still append the 12 digit number to the keys in order
to prevent duplicates in the database. Key duplicates are not desired because they
are not applied to the database and do not help with analyzing the compression
ratios.

We explore how the compression works on random and compressible data with
different types of Redis commands.
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Figure 4.1: Resource monitoring using cAdvisor, Grafana, and Prometheus con-
tainers.

4.6 Resource Utilization Metrics Collection
Monitoring of Docker containers is done to extract resource utilization such as:
CPU Usage, Memory Usage, Network Bandwidth. These metrics are monitored us-
ing cAdvisor (Container Advisor) [2].

A Container with Prometheus Server is deployed to pull metrics from the redis-server
applications launched in two separate containers. Prometheus [5] is a TSDB (Time
Series Data Bases) [21] that enables a HTTP port to allow queries by applications.
More precisely, metrics are extracted by Grafana using PromQL (Prometheus Query
Language). Figure 4.1 shows how the resource monitoring is setup in the thesis
project.

The CPU metric represents the total amount of time spend in the user space by
the Container holding the primary Redis Server node. The Prometheus counter
container_cpu_user_seconds_total is used together with rate() function to
form an average CPU usage over the last 5 seconds. The memory usage is extracted
through the container_memory_usage_bytes counter. As the name suggests, it ex-
tracts the memory usage for the container. In our case, every Redis node is within
a separate container. By using these counters we can collect metrics for each Redis
node. Listing 4.2 shows an example of how these queries look like.

The last metric presented in 4.2 extracts the maximum CPU usage at both User
Space and Kernel Space levels, for each CPU. After this, only the CPU that had
the highest usage is chosen. Finally, all absent data points are replaced with zeros.
This is a relevant metric to showcase because the Redis server utilizes only one core
(the same core) to process commands and to apply compression on data.
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1 > rate( container_cpu_user_seconds_total {image !=""}[5s]) * 100
2 > container_memory_usage_bytes {image !=""}
3 > irate( container_network_transmit_bytes_total {image !=""}[1m])
4 > irate( container_network_receive_bytes_total {image !=""}[1m])
5

6 > max(rate( container_cpu_usage_seconds_total {name=" redis_6379 ",
image !=""}[5s])) * 100 or absent (rate(
container_cpu_usage_seconds_total {name=" redis_6379 ",image !=""}[5
s])) * 0

Listing 4.2: Prometheus Queries
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Results

In this chapter we present the findings of the thesis work. We show how the memory
is reduced by about 50% when we use the real data set. We present a comparison
of the CPU usage in case of no compression and in the case of LZF, LZ4, ZSTD com-
pression algorithms. Throughout this chapter, we will refer to the baseline case as
the no compression case. Next, we present the RPS and Online sync duration as
an average over 20 executions, together with the corresponding standard deviation.
Lastly, the results for memory impact section is presented in MB sizes, while the
other following sections presents results in percentages relative to baseline.

5.1 Memory impact and Compression results
We see a significant reduction in memory footprint of the client-output-buffer
when compression is used. The Compression ratio is presented in Table 5.1. The
random data set is not compressible, thus the ratio is 1.0 for all command types and
compression types. The Real data set has a compression ratio of about 2.0. Mem-
ory footprint of the buffer is not significantly different when comparing the LZF and
LZ4 algorithms; however, ZSTD outperformed the previously mentioned algorithms
in terms of compression ratio. The results for memory usage of the compression
algorithms is not averaged over the course of multiple test execution because the
compression size is always the same. The performance impact of these algorithms
is discussed later in this chapter.

Random data set
Figure 5.1 a) shows that the tested compression algorithms do not compress random
data. As an implementation choice, data compression is skipped if the compressed
data result is bigger than the decompressed size (which can happen with lossless
compression over random data). Data shows no difference between command types
regarding the buffer size.

The algorithm tries to apply compression to all incoming chunks of data. In the case
of SET and HSET command, the chunk size is 1KB and in the case of MSET command,
the data chunk size of 10KB. Next, memory is allocated for the upcoming compres-
sion of received data. All compression algorithms tested return an error or a pointer
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SET
Compression Random data set Compressible data set Real data set

LZF 1.0 30.868 2.141
LZ4 1.0 46.044 2.185

ZSTD 1.0 73.163 3.582
MSET

Compression Random data set Compressible data set Real data set
LZF 1.0 29.992 2.128
LZ4 1.0 43.425 2.173

ZSTD 1.0 71.173 3.555
HSET

Compression Random data set Compressible data set Real data set
LZF 1.0 30.868 N/A
LZ4 1.0 43.418 N/A

ZSTD 1.0 61.998 N/A

Table 5.1: Compression ratios for each compression algorithm on three different
data sets.

to a compressed size bigger than the decompressed size due to the random nature
of the data set. Next, as compression was unsuccessful, the temporary allocated
buffer is freed, keeping only the uncompressed buffer. Lastly, to keep track of how
much memory is used by the client-output-buffer, we increment the size counter.

Compressible data set
The compressible data set has a compression ratio of about 73.0 when using the
ZSTD algorithm when using the SET command. Figure 5.1 b) shows significant dif-
ferences in compression ratio between the no compression case and all other com-
pression algorithms. However, the compression data set is an extreme case, and the
experiments are conducted to showcase the compression algorithms’ potential. A
comparison between the real data set and the compressible data set is of interest to
better understand the impact of data types over compression.

A closer look at the differences between compression algorithms is presented in Fig-
ure 5.2. Looking at the SET command, it is observed that the buffer size is reduced
to 54MB when using the LZF algorithm, 36MB for the LZ4 algorithm, and 22MB
when using ZSTD compression.

We observe a slight difference in compression ratios when comparing the command
types. For example, in the case of the ZSTD algorithm, SET command used 22.9MB,
MSET command used 23.2MB, and HSET command used 27.4MB. The way command
types are constructed yields negligible differences when comparing small data sizes.
For example, when comparing SET and MSET commands, the first one sends more
data corresponding to command construction. In detail, data such as the command
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Figure 5.1: Compression results on all data sets. Figure a) shows impact on
Random data, b) shows memory impact on compressible data, and c) shows impact
on real data.

string SET repeats and can be better compressed. Conversely, the MSET is a bulk
version that replaces ten commands, and the data from the command construction
is smaller compared to sending ten SET commands. The difference in command data
is revealed in the slight difference in compression ratio.

Real data set
The real data set compression performance is shown in Figure 5.1 c). The ZSTD
algorithm achieved the best results regarding the used buffer size. The data size is
reduced from about 1.6GB to 474MB when using the SET command and to 470MB
when using the MSET command. The small difference in compression of about 4MB
is because MSET does ten SET in bulk, thus omitting the string command strings
used in the SET command.
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Figure 5.2: Results on compressible data zoomed.

The second best result is achieved using the LZ4 algorithm, having reduced the data
size from 1.6GB to about 777MB. However, comparing the LZF algorithm with LZ4,
there was no big difference in compression ratio, the former achieving a compressed
buffer size of about 793MB. Lastly, the same small compression difference, related
to SET and MSET command types (present in the ZSTD case) is observed with LZ4
compression.

5.2 Requests per Second
This section discusses the maximum RPS that the Redis Server supports, given
different data types, compression algorithms, and command types. This metric is
important because it shows the impact of compression on performance. Intuitively,
the performance when adding compression should be lower than without compres-
sion, as the Redis server will spend more CPU time compressing incoming data.
Compression adds one more step to the server logic after parsing the commands
because the Redis server process commands in a single-threaded mode. Figure 5.3
shows the RPS on all data sets.

The RPS metric only analyzes the performance impact of compression functions
because decompression takes place at a later stage in the redis-server. In the test
scenario, the clients send requests to the primary node while the connection between
the primary and replica nodes is in wait state. The total synchronization between
the nodes finishes when the connection switches from wait to online state. Decom-
pression is applied right after the state transition when data is sent via streams to
the replica node. The performance impact of decompression is analyzed in Section
5.3, which looks at the time it takes for the nodes to be synchronized based on offset
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Figure 5.3: RPS on random, compressible, and real data set and the standard
deviation of the results.

Random data set
Figure 5.3 a) shows the results for the RPS metric on random data set given different
command types such as SET, MSET, and HSET.

The data over the LZF algorithm shows a 43% performance degradation of RPS
compared to the baseline when testing the SET command. Furthermore, LZF per-
formed the worst on the MSET command, compared to all other tested compression
algorithms, having an RPS degradation of about 73%. One reason behind poorer
performance when testing the MSET command is that data is ten times bigger than
when testing the SET command, reaching 10KB per chunk. This chunk is received
by the redis-server, and it tries to apply compression, but because the data chunk
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is bigger than when using SET commands, the compression takes a longer time, pre-
venting the redis-server from processing incoming requests. Data shows that LZF
compression has the biggest performance degradation of the RPS metric compared
to all the other compression algorithms.

The ZSTD compression algorithm tests, show better performance compared to LZF.
Further more, the number of RPS processed by the redis-server is reduced with
about 22%, when testing the SET command, compared to baseline case.

Best RPS results, are achieved when using the LZ4 compression. When comparing
the results against the baseline, data shows a 11.62% and 11.58% RPS reduction
when using the SET and HSET command, respectively. LZ4 performance is about
four times better than the one of the LZF compression and about two times better
performance compared to resulted RPS when using ZSTD compression. Overall, the
data over HSET command shows a better performance by about 1.92% compared to
SET command. This small percentage difference between the previously mentioned
commands shows no significant difference between them when testing the random
data set.

As an overall trend on the random data set results, using MSET command ended in
having the highest RPS reduction when comparing all command types and com-
pression algorithms. This trend is because the data chunks received by the Redis
Server are bigger and require more CPU time to apply the compression, thus pre-
venting other tasks from executing. In addition, over the course of our testing of the
MSET command, data shows around 73% RPS reduction when using LZF, 46% RPS
reduction when using ZSTD, and approximately 25% RPS reduction when LZ4 when
compared against the baseline. Lastly, analyzing only the MSET command tests for
all compression algorithms, the best RPS values are achieved with LZ4 compression
(only 25% degradation).

Compressible data set
Figure 5.3 b) shows the RPS results of the compressible data set given different the
command types. The outcome of using compression over this data set is that the
client-output-buffer of the Primary Redis server is significantly smaller; more-
over, the result is confirmed by analyzing compression ratios from Section 5.1.

The results of testing the LZF algorithm have about 10% reduction in performance
compared to the baseline, using the SET command. When using the MSET, the
performance degradation was around 29%. In the latter case, the explanation for
performance degradation is the significant increase in data size of each command
(ten times bigger than with SET). As mentioned above, the chunk of data needs
more processing time in the redis-server process.

Comparing the ZSTD compression with the baseline, we notice no big differences in
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RPS performance. For example, when testing the SET command, the performance
impact was only 1.19% compared to the baseline. Results of MSET command show
a 2.81% RPS performance improvement, while HSET command suffered 2% degra-
dation when compared to baseline RPS.

Real data set
Figure 5.3 c) shows the RPS results of testing the compression algorithms on real
data set given different only two commands types: SET and MSET.

The data shows a reduction in RPS of about 13% when using LZ4 compression over
the SET command and also around 37% performance impact with MSET command.
LZ4 compression provided the best results among all the compression types. Con-
versely, the LZF test results show the biggest performance degradation compared
to baseline, resulting in 21% reduction of RPS when using SET command and 52%
reduction of RPS when using MSET. Lastly, the ZSTD compression results of RPS
are by about 20% lower on SET command, while using MSET, RPS is reduced with
around 52% when compared against the baseline.

5.3 Synchronization Duration
Decompression could potentially affect the synchronization duration between the
Redis primary and replica servers. Therefore, we chose to analyze synchronization
duration with no limits over bandwidth. When the primary node and the replica
connection change from wait to ONLINE state, the Redis primary node decompresses
the buffered data, stored in the reply list afferent to the replica, and sends it as a
stream. In this section, we present our findings by analyzing the three data sets.
Figure 5.4 shows differences in synchronization when using different compression
algorithms.

Random data set
Synchronization duration is quite similar for all compression types when the SET
command is used. The longest sync duration result is when using LZ4 compression,
lasting 11.450 seconds. The highest difference in sync duration between all com-
pression types is only 0.432 seconds, resulting from the comparison between the LZ4
compression case and ZSTD compression case. Moreover, data shows 0.216 seconds
difference in sync duration when comparing LZ4 compression to the baseline, in the
testing of the MSET command. Moreover, there is a difference of 0.195 between LZF
compression (11.326 seconds) and LZ4 compression (11.521 seconds) when tests are
executed using HSET command.
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Figure 5.4: Sync duration when primary and replica nodes are in online state,
including the standard deviation of results.

Compressible data set
The biggest difference between sync time is 0.324 seconds, by comparing tests
over theHSET command for LZ4 compression (11.638 seconds) and LZF compres-
sion (11.314 seconds). In this particular case, the sync finished faster when using
LZF compression. When MET command is tested, data shows the smallest difference
between sync times for all compression types, having a maximum difference of 0.103
seconds (less than 1% increase in sync duration from the slowest case).

Real data set
The data shows a difference of 2.11% in synchronization time between the maxi-
mum and minimum duration. These results are achieved when SET command is
used. What is more, the maximum sync duration results from the case when no
compression is used and by testing the SET command (12.442 seconds). As for the
minimum sync duration, is achieved when the ZSTD algorithm is used over the test-
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ing on MSET commands (11.106 seconds).

Duration diff over min/max time
Command type Random Compressible Real

SET 3.77% 1.84% 2.11%
MSET 1.97% 0.97% 2.86%
HSET 1.69% 2.78% N/A

Table 5.2: Difference between maximum and minimum sync time duration
concerning command types and data set.

5.4 Find the maximum transfer rate

This section shows the different results for each compression type in relation to the
maximum transfer rate supported by the Redis server. The transfer rate refers to
the possible maximum transfer data guaranteeing that the client-output-buffer
will not fill. If the buffer fills, the connection with the client will be closed as soon
as possible along with a restart of the synchronization task between the primary
node and its replica. Moreover, if the incoming changes to the primary node keep
the same transfer rate as before the synchronization restart, then synchronization
restart loops. Looping is not a desirable state, and thus it is relevant to show
what would be the maximum transfer rate supported by the Redis Server. Figure
5.5 shows the maximum transfer rate and its afferent client-output-buffer-size.

Before discussing the results, we present some clarifications to guide the reader
when analyzing the figures in this section. The plots show the maximum transfer
rate achieved when the output buffer size varies. Extracted data points on the x-
axis start from x = 75 (Mbps), the smallest transfer rate tested in our system. The
lower bound of the transfer rate (not present in the figure) shows that the maximum
transfer rate can be much higher with the given output buffer size and represents
a limitation of the data sets and our testing scenarios. For example, with a buffer
size of 550MB the max transfer rate is around 200Mbps. Even though it is not
visible in the plots, tests are conducted till the 600Mbps Maximum Transfer Rate.
All data sets are of limited size, and if compression can provide a smaller size than
the Output Buffer Size for a given test, then that test will be able to support the
600Mbps transfer rate. We chose only to show the points that have been tested with
compressed data size smaller than the Output Buffer Size.

For clarity, we only present the maximum transfer rate results only for the data that
looks at the SET command type usage. Results for MSET and HSET command types
can be found in Appendix A, Figure A.7 and Figure A.6.
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Figure 5.5: Max Thresholds for different data types and the corresponding client-
output-buffer size.

Random data set

Tests results for the random data set are shown in Figure 5.5 a). At first glance,
there is no difference between compression types and the baseline when it comes
to the maximum transfer rate. Throughout most of the tests, the addition of com-
pression behaved similarly to the baseline. However, there is a small transfer rate
difference of 25Mbps when the output buffer size equals 1GB, and the lower value
is achieved when using LZF compression. Additionally, the ZSTD algorithm results
for output buffer sizes lower than 750MB are not visible in the plot because the
transfer rate is somewhere below 50Mbps (which is the minimum point tested in our
scenarios).
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Compressible data set

The experiment results for the compressible data set are presented in Figure 5.5
b). On one hand, the baseline had a maximum transfer rate of 150Mbps, starting
from 75Mbps with no noticeable improvement of the maximum transfer rate. On
the other hand, when applying compression (LZF, LZ4, and ZSTD), the maximum
transfer rate is above the 600Mbps max transfer rate lower bound and it is reached
when using compression over this data set. This result is mainly due to the high
compression ratio over the compressible data set shown previously in Table 5.1.
With such small memory buffer size the system can withstand much higher transfer
rates than the ones achieved through our testing.

Real data set

The analyzed data shows that compression algorithms on the real data set provide
higher maximum transfer rates at small buffer sizes when compared to the baseline.
The best performance is achieved with the ZSTD compression algorithm, which is
able to support a client-rate-limit of 100Mbps with a client-output-buffer
of 250MB. To the contrary, the no compression case supports a client-rate-limit
of 100Mbps with 850MB. The buffer size needed for a maximum transfer rate of
100Mbps is more than three times smaller when using the ZSTD compression.

When looking at the LZ4 compression algorithm, we observe a worse performance
than the ZSTD algorithm. LZ4 compression can support a maximum transfer rate of
100Mbps with an output buffer size of 400MB, which is a buffer two times bigger
than when using ZSTD. In addition, lower bound transfer rate is achieved when the
client-output-buffer size is 750MB, which is with 200MB more than what ZSTD
was able to reach.

The LZF algorithm provided the worst maximum transfer rate for the tested output
buffer sizes. In order to achieve a maximum transfer rate of 100MB the compression
algorithm needs a buffer size of 400MB. This result is similar to the performance
given by LZ4. However, achieving the lower bound threshold needs a bigger buffer
size than all the other compression algorithms tested. It requires a buffer size of
800MB, while LZ4 needs with 50MB less.

5.5 Performance metrics

This section presents many performance metrics such as Page Faults, CPU Uti-
lization, and Memory Usage for the Container; besides, we present Flame Graphs
results. Please note that the CPU Utilization and Memory Usage plots had t = 0
as the point when the test scenario reached the replica restart phase.
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5.5.1 Page Faults
There is a correlation between performance and page faults. The higher the page
fault number, the bigger the performance impact. When a soft page fault occurs,
the process tries to access a memory block stored somewhere else in memory. Mem-
ory needs to be brought to the proper location to be accessed. This mechanism
slows the redis-server process, as it needs to wait for memory access. Table 5.3
showcase the number of page faults for each compression type, data set type, and
command type.

No Compression
Command type Random Compressible Real

SET 4718674 ± 8349 4716620 ± 6269 4922791 ± 577
MSET 4489141 ± 26149 4535460 ± 25582 4885821 ± 351
HSET 4714659 ± 4545 4703759 ± 4890 N/A

LZF
Command type Random Compressible Real

SET 4743947 ± 3651 2333726 ± 3074 3398651 ± 231
MSET 4633038 ± 4702 2291031 ± 7193 3390270 ± 507
HSET 4736606 ± 2991 2285642 ± 3033 N/A

LZ4
Command type Random Compressible Real

SET 4729454 ± 5293 2307166 ± 2555 3379078 ± 262
MSET 4541235 ± 16138 2228610 ± 11841 3371620 ± 303
HSET 4721163 ± 4888 2263235 ± 3316 N/A

ZSTD
Command type Random Compressible Real

SET 4730340 ± 5134 2293199 ± 3910 3004188 ± 595
MSET 4581633 ± 12316 2224023 ± 9215 2999980 ± 338
HSET 4727390 ± 5268 2249039 ± 3130 N/A

Table 5.3: Number of Page Faults and the corresponding standard deviation for
each compression type, including no compression, for all command types. Results

are averaged over 20 test executions.

Data shows a significant reduction of page faults when using the compressible data
set, by about 51% when using ZSTD compression, in the case of SET command.
As a general trend, there is about a 50% reduction on average from the baseline
case and all other compression types when the compressible data set is analyzed.
Intuitively, the random data set did not see any reduction in page faults from com-
pression. This is correlated to compression ratios from Table 5.1. However, MSET has
a slightly smaller page fault count, and this is due to the nature of the command,
where the chunks of data are ten times bigger.

Regarding the real data set, our analysis shows a reduced number of page faults by
about 38.5% when using ZSTD compression. Overall, the number of page faults is re-
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duced by about 30% regardless of the compression type. The result mentioned before
shows that with data that is compressible, we do not only gain memory reduction
and can store more data (see Section 5.1), but also gain better performance from
not spending CPU time on page faults. However, there is a trade-off between the
CPU impact of compression and the gains from reducing the number of page faults.
The impact of compression on the CPU utilization is discussed next in Section 5.5.2.

5.5.2 CPU Impact
This subsection shows extracted data from Grafana regarding CPU utilization. Fig-
ure 5.6 presents CPU User Space Usage rate over 5 seconds, for each compression
type, and for the SET and MSET command when real data set is tested. The plot
starting point is relative to the time when the Redis replica node is restarted. We
omit the random and compressible data set for legibility but they are included in
Appendix A.
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Figure 5.6: CPU Usage for SET and MSET data types over time. Labels show
compression type.

Our data shows that CPU usage on the primary Redis Server is higher when using
the MSET command. In the baseline case, the CPU Usage reaches about 46%, while
when using compression, it almost doubled, reaching about 82%. The LZ4 algo-
rithm has the lowest CPU usage, reaching 75%. In contrast, the other compression
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algorithms went over 80%. The SET command does not reach high CPU Usage,
peaking at about 46%. In the baseline case, tests executed with SET command show
a maximum CPU Usage of about 31%. However, when comparing the CPU usage
over time, MSET tests spent half of the SET time to finish.

5.5.3 Memory Usage
Figure 5.7 shows the memory used by the container that deployed the redis-server
primary instance. Time-wise, the plot starting time correlates with the replica
restart point. Moreover, Figure 5.7 presents memory usage for each compression
type when the real data set test is executed. Both SET and MSET commands are
shown. It is observed that the memory increases faster for the MSET command,
and this is due to the data size being significantly bigger; thus, the Redis Server
processes these commands faster. Memory usage comparison between the SET and
MSET commands in the baseline case is rather different. SET memory usage is slightly
higher than with MSET. This difference is mainly due to increased command strings
that the SET commands produces. Moreover, this slight difference in compression
size between the two commands is preserved throughout all the compression types
tested (LZF, LZ4, ZSTD).
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Figure 5.7: Memory Usage for SET and MSET data types over time. Labels show
compression type.
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5.5.4 Flame Graph analysis
This Section presents the Flame Graph results arising from the evaluation. Table
5.4 and 5.5 show the CPU usage of compress and decompress functions over the
course of test execution. As a general trend, the compression functions are more
CPU intensive than the decompression functions.

When looking at the compression functions over the tests executed with MSET com-
mand, it is observed a two-times increase in CPU usage compared to the SET com-
mand case. Moreover, we remark that LZF compression function uses around 60%
of the CPU time throughout the test, while LZ4 spends only about 10%. The re-
sult mentioned above shows that LZF is more processor intensive than LZ4 in the
random data set case. Next, we notice that the compressible data set when testing
MSET command used the least resources, reaching a maximum of 22% time spent on
the CPU. Lastly, when the LZ4 algorithm is utilised (on compressible data set), the
compression function only uses 2.4% CPU time.

Our gathered information over the real data set shows about the same CPU us-
age when comparing ZSTD and LZ4 compression functions, with the former being
moderately better (18.7%) than the latter (20.5%); nonetheless, LZF has the worst
performance amongst the three, reaching a CPU usage of about 30% and 17.7% in
MSET and SET case respectively.

LZ4
Command type Random Compressible Real

SET 10.6% 1.3% 10.9%
MSET 18.6% 2.4% 20.5%
HSET 10.8% 1.1% N/A

LZF
Command type Random Compressible Real

SET 41.1% 12.2% 17.7%
MSET 60.9% 22.4% 30.07%
HSET 39.4% 11.9% N/A

ZSTD
Command type Random Compressible Real

SET 12.6% 1.9% 10.9%
MSET 23.4% 3.7% 18.7%
HSET 12.3% 1.9% N/A

Table 5.4: Flame Graphs results. Percentage (from max 100%) for relative time
spend on CPU for compress functions.

The execution of the decompression function is way less CPU intensive than it’s
counterpart. Data from Table 5.5 over the random data set shows little to no CPU
usage, compared to the other data sets. The reason behind the result will be de-
tailed in the Discussion Chapter 6, but the general idea is that random data set is
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not compressible and thus decompression function calls are scarce.

Regardless of compression types, the MSET command has twice the CPU utilization
of SET. This observation holds for all data sets, exception making some random data
set scenarios where decompression is almost 0%. In addition, the HSET command
behaved similarly to the SET command, having the same CPU utilization through-
out all the relevant compression and data set types.

LZ4
Command type Random Compressible Real

SET 1.1% 0.6% 2.6%
MSET 2.5% 1.2% 5.2%
HSET 1.1% 0.5% N/A

LZF
Command type Random Compressible Real

SET 0% 6.2% 5.4%
MSET 0% 11.9% 9.7%
HSET 1.9% 6.2% N/A

ZSTD
Command type Random Compressible Real

SET 1.3% 1.4% 3.6%
MSET 0% 3.1% 6.5%
HSET 1.3% 1.4% N/A

Table 5.5: Flame Graphs results. Percentage (from max 100%) for relative time
spend on CPU for decompress functions.

Figures 5.8 and 5.9 show the results of the metrics extracted via the perf tool us-
ing Flame Graphs. The perf tool is started inside the container that deploys the
primary Redis Server and monitors the CPU Usage throughout the test execution.
The perf process monitors all redis-server processes, including its children and
threads. Once the test finishes, the perf process is killed, and the scrip that gener-
ates Flame Graphs is run over for data resulting from perf execution. Both Flame
Graphs Figures represent the results of executing the ZSTD compression algorithm.

The first Figure (5.8) presents the perf stacktrace when using the SET command.
The Most CPU intensive functions are the writeToClient() (about 27% CPU time)
and connSocketEventHandler() (about 34% CPU time) that are called inside the
aeProcessEvents() polling function. The ZSTD compress, decompress, and auxil-
iary function calls are separate from the
textttmain() function of the redis-server. The reason for it is that ZSTD is in-
cluded as a library and the perf tool included these calls at the same level as the
main function call (__libc_start_main()). In total, ZSTD functions account for
about 27% of the CPU usage.
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Figure 5.8: Flame Graphs for SET command over real data set using ZSTD com-
pression.

The second Figure (5.9) presents the perf stacktrace when using the MSET command.
The Most CPU intensive functions are different from the SET case, having the ZSTD
compression, decompression, and auxiliary function calls accounting for more than
42% of the total CPU usage. The connSocketEventHandler() function call spent
about 38% CPU time. Conversely, the writeToClient() function accounted for
only approximately 4% of the CPU time.

Comparing the two executions, we can observe that the ZSTD compression algorithm
utilizes more CPU time when using the MSET command than when using SET. In
addition, the writeToClient() is less significant when it comes to the CPU impact
in the MSET case, being a difference in CPU usage of 23% between command types.
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Figure 5.9: Flame Graphs for MSET command over real data set using ZSTD com-
pression.
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6
Discussion

This chapter comments on the data presented in Results Chapter 5, interpreting
and connecting performance metrics results with the performance of the compres-
sion algorithms.

6.1 Command types
We have observed that the memory footprint depends on the command type that
the client is using to write to the redis-server. For example, the MSET and SET
commands yield different memory footprints when compression was applied. This
dependency takes place because the reply buffer allocates bigger chunks of data in
the case of the MSET command, and thus the compression is applied on a bigger
chunk of data. In addition, the MSET command utilizes the CPU better, as data is
sent faster and the memory increases sharply. While for the SET command, the
sending time is longer, the memory increases steadily and the CPU usage is kept at
a lower utilization. In connection to command types, it was also observed that the
bigger the data size, the higher the resource utilization and the faster the requests
were processed by the primary Redis Server.

6.2 Flame Graph analysis
When comparing compression and decompression functions CPU usage over the
random data set we can observe a big CPU utilization difference between them.
Looking at the SET and MSET commands when the selected compression algorithm
is LZF, Table 5.4 shows that CPU usage is 41% and 60%, respectively; in contrast,
over the same selection of parameters, we see in Table 5.5 that the CPU usage is 0%
for the decompression function. The reasoning for the mentioned result resides in
the nature of the random data set. Because random data does not compress well,
the number of chunks to decompress is so small that is almost 0%; unsurprisingly,
the compression algorithm still needs to try the compression of such data, resulting
in high CPU usage, but with no to little benefits. Most test results show lower CPU
usage on random data set than over compressible and real data sets. The decom-
pression function is called more often on data sets with a good compression ratio
than to the random data set where the compression ratio is 1.0.
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6.3 No performance degradation
Our tests concluded that there was better RPS performance when using LZ4, com-
pared to the baseline, over the compressible data set. In other words, there is no
performance degradation when running LZ4 compression over the compressible data
set. The finding holds true for all command types: SET, MSET, and HSET. The time
spent to allocate memory was reduced, so the processor spent less time on page
faults (show page faults for this case) and allocation. In this case, we have added
compression and had no cost on performance, gaining better RPS performance. In
addition, data over ZSTD shows a positive performance when HSET command was
tested.

Next, we present the reasoning for why the achieved RPS metric was better when
adding an extra step to the redis-server’s command processing procedure. Lastly,
all the below arguments combined achieved the performance benefit and were not
taken separately.

First explanation: When data is received, the allocator gives the redis-server
a pointer with some allocated block of data. This data is about 1KB. Because the
compression ratio is very good with the compressible data set, the reallocation, when
calling the zfree() function, does not release the memory right away, keeping it
for later use. Jemalloc uses background threads to purge memory asynchronously
from time to time. This gives the redis-server process more time to serve in-
coming commands instead of requesting memory. In the baseline case when using
the SET command, the function jemalloc_bg_thd() spends a total of 1.62% on the
processor, while when using ZSTD it spent only 0.03% on the processor. Note that
compression ratios for compressible data set are shown in Table 5.1 and the per-
centages are relative to the total time spent on the processor while running the tests.

Second explanation: Compression on chunks of the same letter repeating was not
as CPU intensive as random or real data set. This was presented in more detail in
Section 5.5.2 and in 5.5.4.

Third explanation: Analyzing the page faults for each compression type, data set,
and command type, we saw a smaller number of page faults when the compressible
data set was tested. The reduction in page faults was visible for all compression
algorithms, but the performance benefit was only achieved in combination with the
other arguments presented above. For example, ZSTD had a reduction in page-faults
of 51% compared to baseline when using SET command.

6.4 Sync duration
Table 5.2 shows the synchronization duration differences between compression al-
gorithms and baseline. Data shows a general trend of not having more than 3.77%
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difference in sync duration, averaging at 2.25%. However, these results could po-
tentially be affected by performance tools that run on VM, such as perf, Grafana,
Prometheus, cAdvisor. Most of these use the same network bandwidth, and when
there is no limit on Ethernet devices, there could be interference, as the transfer
rates between the primary and replica nodes can reach up to 13Gbps transfer rate.
Transfer rate without traffic control limits can be easily approximated by dividing
the transferred data size over the sync duration.

Based on the gathered data, it could be interpreted that the decompression algo-
rithm does not impact the synchronization duration. We saw faster sync duration
when decompression algorithms are used. The slight differences in sync time are
not significant enough to show a performance impact of decompression algorithms
when no transfer limit is applied.

Moreover, by inspecting Table 5.5, it can be observed that decompression functions
do not spend too much time on the CPU, the worst case being 9.7% relative CPU
time throughout the test execution. In addition, it needs to be specified that the
number of page faults is significantly reduced when compression algorithms are used.
By combining the performance loss from CPU spent time and the benefits of reduced
page faults, it can be said that sync time is not affected by applying decompression
on the data sent to the replica.

The synchronization time was overall shorter with about 10% (1 second) when using
MSET command. This observation holds when MSET command is compared against
all other command types, regardless of what type of data set or compression algo-
rithm is used.
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7
Conclusion

The thesis work focused on analyzing how a widely used solution such as the Redis
DB behaved when stream compression was added to output buffers present on the
Primary node while a total synchronization was ongoing. The tested system con-
sisted of a Primary node and a replica node. The replica node was a read-only node
that kept an exact copy of the data received from the primary Redis Server. We
chose three compression algorithms: LZF, LZ4, and ZSTD. The first one was already
present in the Redis source code and used for compressing Redis Objects. While
the last ones are industry-standard compression algorithms widely adopted.

Compression was added into the Redis Network Layer, where all the client (client
- from the node’s point of view) data communication is done. While synchroniza-
tion between nodes is ongoing, the compressed data was buffered until they were
back in online state. From here on, decompression was added. Our evaluation was
conducted by extracting the following metrics for the Redis Server: memory usage
of the application, CPU Usage of the application, supported Requests Per Sec-
ond (RPS) by the Redis Server, Page Faults, Maximum Transfer Rate for a given
client-output-buffer, synchronization Duration, and Flame Graphs for compres-
sion and decompression functions. Our tests were averaged over 20 test executions
for the RPS and Sync Duration metrics.

We saw that compression significantly reduced memory usage for our most data
sets, exception being the random data set. In addition, the CPU usage was about
two times higher than the baseline when compression was added. On one of the
data sets (compressible), we have had a two times reduction in page faults. The
page-fault reduction positively impacted the performance, and the compression case
performed better on the RPS metric.

The RPS was overall reduced when compression was added, thus impacting perfor-
mance. However, compression increased the maximum threshold for transfer rate
that a Redis Server can support from incoming client requests. In order to accom-
modate the same Maximum Transfer Rate, on the real data set, our results showed
that compression reduced the client-output-buffer usage by an order of three.
Our tests concluded that decompression does not have a significant performance
impact over the synchronization duration.

In the future, based on the current work done in this area, we can expand on the
following ideas:
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• Instead of decompressing in the same node, we can pass the compressed data
directly to the socket and expect the other end to decompress. Decompression
done on the replica node could also have a bandwidth performance.

• Currently, the thesis work has focused on a primary and a replica node. In
future work, the case with N primary nodes and K replicas could be studied,
potentially with the built-in solution offered by Redis called Cluster Nodes.

• This work was none on an open-source project and with some minor refactor-
ing, the compression addition could be submitted to the Redis Source Code
to be widely available to all its users.

• The ZSTD and LZ4 algorithms offer parameters to balance the trade-off between
CPU utilization and compression ratio. The thesis work focused on using the
default values for these algorithms. In future work, one can find the best values
for the compression parameters to satisfy the application needs.
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show compression type and command type

I



A. Appendix 1

0 20 40 60 80 100 120
Time [s]

0

10

20

30

40

50

60

70

CP
U 

Us
ag

e 
%

CPU Usage  for compressible data-set
no set
lzf set
lz4 set
zstd set
no mset
lzf mset
lz4 mset
zstd mset
no hset
lzf hset
lz4 hset
zstd hset

Figure A.2: CPU Usage for SET, MSET and HSET data types over time. Labels
show compression type

0 20 40 60 80 100
Time [s]

0

1

2

3

4

5

6

M
em

or
y 

Us
ag

e 
Gi

B

Memory Usage GiB for compressible data-set
no set
lzf set
lz4 set
zstd set
no mset
lzf mset
lz4 mset
zstd mset
no hset
lzf hset
lz4 hset
zstd hset

Figure A.4: Memory Usage for SET, MSET and HSET data types over time. Labels
show compression type.II



A. Appendix 1

0 20 40 60 80 100
Time [s]

0

1

2

3

4

5

6

M
em

or
y 

Us
ag

e 
Gi

B

Memory Usage GiB for random data-set
no set
lzf set
lz4 set
zstd set
no mset
lzf mset
lz4 mset
zstd mset
no hset
lzf hset
lz4 hset
zstd hset

Figure A.3: Memory Usage for SET, MSET and HSET data types over time. Labels
show compression type.

III



A. Appendix 1

0

1

2

3

4

5
1e6a)

set
mset
hset

0

1

2

3

4

5
1e6b)

set
mset
hset

no lzf lz4 zstd
0

1

2

3

4

5
1e6c)

set
mset

Page Faults on random, compressible, and real data-set  (avg over 20 executions)

Compression type

Nu
m

be
r o

f P
ag

e 
Fa

ul
ts

Figure A.5: Number of Page Faults during test executions and the corresponding
standard deviation.

IV



A. Appendix 1

500 600 700 800 900 1000
50

100

150

200
a)

200 300 400 500 600 700 800 900 1000

100

200

300

400
b)

no
lzf
lz4
zstd

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
c)

Thresholds for random, compressible, and real data-set (hset)

Output Buffer Size (MB)

M
ax

 Tr
an

sf
er

 ra
te

 (M
bp

s)

Figure A.6: Max Thresholds for different data types and the corresponding client-
output-buffer size.
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Figure A.7: Max Thresholds for different data types and the corresponding client-
output-buffer size.
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Figure A.8: Flamegraphs
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Acronyms

RDB Redis DataBase. 5, 7, 9, 15
RPS Requests Per Second. xi, 1, 2, 16, 17, 22, 23, 31, 34–37, 50, 53

SUT System Under Test. 13, 17, 18, 26
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