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Abstract
Vehicle speed is one of the most important states that needs to be estimated in a
vehicle. This quantity is safety critical as it drives a majority of the on-board safety
and driver-assistance systems. A normal modern car is equipped with wheel speed
sensors, Inertial Measurement Unit (IMU), steering angle sensor and powertrain
and brake torque sensors which makes the foundations for the speed estimate. The
wheel speed sensors provide a relatively good estimate of the vehicle speed in nor-
mal conditions with limited wheel slip. However, in excessive wheel slip conditions
the wheels speeds significantly diverge from the true speed of the vehicle. In these
situations, no reliable direct measurement of the speed is available and the speed
estimate needs to be complemented with e.g. dead reckoning based on accelerometer
input. In this thesis, a kinematics based extended Kalman filter (EKF) for longitu-
dinal vehicle speed estimation in excessive all-wheel slip conditions is presented. The
filter uses combined vehicle orientation and speed estimation, only considering lon-
gitudinal dynamics. The proposed filter utilizes a slip-detection system that detects
wheel slip and filters out wheel speed measurements from these slipping wheels. It
also has a separate logic for speed estimation in braking on slippery surfaces. Two
slip detection approaches are presented. One approach is to assume slip between
detection of certain events related to the powertrain torque, wheel acceleration and
braking. The other approach makes a decision about slip at every time step. The
filter and slip detection systems are tested on real-world driving data recorded from
two di�erent all-wheel drive vehicles in excessive slip conditions. The results show
that the proposed method provides a better estimate than the reference brake sup-
plier estimate, keeping the estimate within ±4% of the ground truth speed for many
cases. Though, none of the slip-detection systems provide flawless slip detection
resulting in the filter to sometimes rely on non-representative wheel speed measure-
ments degrading the estimate. It becomes clear that the speed estimation is limited
both by the approach of detecting slip and by the limited sensor setup providing no
absolute measurement of the speed in excessive all-wheel slip.

Keywords: Vehicle speed estimation, excessive wheel slip, slip detection, dead reck-
oning, vehicle state estimation, extended Kalman filter
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Additional Work
Further analysis is done on how to improve the kinematics based estimation methods
and two new approaches are developed. These approaches improve the previous
estimation methods. The first approach introduces a modelled GPS speed signal
as a secondary speed measurement. The second approach utilizes only the limited
sensor suite to develop a new slip detection concept using vehicle dynamic principles.
Methods based on these two approaches improve the estimation of vehicle speed
as compared to the previous methods for all data logs. The development process,
comparison with the previous methods and performance analysis of the new methods
and how they improve the estimation are described in "Vehicle Speed Estimation
During Excessive Tyre Slip Using GPS Data and Slip Estimation" in this
thesis work. .
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1
Introduction

Recent years have seen a rising influx of vehicles with some degree of autonomous
driving (AD) capabilities. Creating such vehicles has given new impetus for better
motion control systems, Advanced Driver Assistance Systems (ADAS) and other
safety critical functions. To achieve higher levels of AD, it is highly important
that these systems work accurately at all times given their significance to vehicle
safety. Ensuring the highest standard of accuracy and robustness depends not only
on how these systems are built, but also on the fidelity of input data measured by
the sensors or being estimated in real time. One key input that must be accurate
in every driving scenario and weather condition is the speed of the vehicle. This
input drives almost every vehicle system. The vehicle speed is also a safety-critical
quantity in that significant speed estimate deviations (outliers) from the true speed
can cause systems to make wrong decisions. In turn, this can cause severe hazards
for the driver, occupants as well as other drivers or nearby pedestrians.

Modern cars are normally equipped with an on-board sensor suite which includes
wheel speed sensors, Inertial Measurement Unit (IMU), steering angle sensor and
powertrain and brake torque sensors. These sensors are the foundation for vehicle
state estimation. In nominal conditions, without excessive wheel slip, one or several
wheel speeds provide a relatively accurate measurement of the true speed of the car.
In these cases, the speed estimation can be based on this quantity and be estimated
with di�erent approaches as vehicle dynamics modelling or kinematics modelling.
In vehicle dynamics modelling, the vehicle is modelled using dynamic equations
and relations that have been derived from physics and experimental testing. One
example is a tyre model where the propellant force of the car can be estimated
using experimental data for how the particular tyre behaves depending on factors
like tyre sti�ness, slip ratio and road-tyre friction. The force can then be used as a
component when estimating the speed of the car. This approach requires a lot of
knowledge about parameters specific to the car and the current road-conditions. A
kinematics based approach is based purely on the measured signals. This approach
still requires modelling of the vehicle to some extent but makes it more simplistic
and requires less knowledge about specific parameters.

In normal conditions the speed estimation can be solely based on the wheel speeds
however, in slippery low-friction conditions the wheels tend to spin during accelera-
tion and lock during braking. In these situations the wheel speeds do not accurately
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1. Introduction

represent the true speed of the car. This introduces a big obstacle in vehicle speed
estimation as the wheel speeds are the only available absolute speed measurement
with the mentioned sensor setup. In these situations, the state-estimation becomes
di�cult because the information from the sensors are limited and the uncertainties
in the estimates increase. A kinematics based approach has the advantage that less
parameters and states need to be estimated in these situations. A vehicle dynamics
approach depends on many variables and as the uncertainties in some states a�ect
the estimations of others this becomes a problem. The main strategy presented
in research for speed estimation in all-wheel excessive slip conditions is to rely on
dead-reckoning of the measured or modeled acceleration. However, dead-reckoning
is limited by the errors in state estimation and signals and the integrated quantities
will drift when the errors are integrated over time. This makes it important to be
able to determine what the current state of the wheels are and when they can be
trusted for speed estimation to limit the use of dead-reckoning.

As the speed estimation is very important for the on-board vehicle systems and
extreme slippery conditions are inevitable, it is important to develop strategies for
vehicle speed estimation in these extreme situations with the limited information
from the sensors. In this work, the primary focus is to estimate the vehicle speed in
the forward direction of an all-wheel driven vehicle in excessive wheel slip conditions.
A study has been made on finding indicators of excessive wheel slip. With the
knowledge acquired, two wheel selection and slip detection approaches have been
set up in combination with a kinematics based approach for estimating the vehicle
speed. This thesis work is conducted at Volvo Cars’ Vehicle Energy and Motion
Control department. Volvo supplied supervision and real-world slippery-condition
driving data that has been used for investigating slip and development and testing
of the proposed method.

1.1 About the Logged Data Supplied by Volvo
Volvo Cars supplied the thesis work with logged data from two all-wheel drive vehi-
cles. One is a large powerful hybrid vehicle with a combustion engine propelling the
front axle and an electric engine propelling the rear axle. The other is a mid-size
fully electric vehicle. As the vehicles are all-wheel drive, all wheels are actively sub-
jected to a torque and are likely to spin when the vehicle is accelerating on slippery
surfaces. In contrast, a front wheel or rear wheel driven vehicle has one wheel pair
that is not propelled which reduces the risk of excessive all-wheel spin. All work
presented in this report is developed and tuned for the larger hybrid as this was
made available first. The fully electric car was introduced at a late stage of the
thesis work. It is mainly used to investigate how the proposed solution worked on a
di�erent vehicle with other characteristics and in slightly more extreme conditions
to test it’s robustness.

The logged data consists of signals from state-of-the-art sensors including wheel
speed sensors, 6-Degree of Freedom (DOF) IMU (gyroscope and accelerometer),
front wheel steering wheel angle, powertrain torque and brake torque friction esti-
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mate. The signals where recorded at 100 Hz. Four redundant IMUs as well as wheel
speeds for all four wheel had been recorded. Data from on-board systems as engine
Traction Control System (TCS), Anti-lock braking system (ABS) and stability sys-
tems had also been recorded. A high accuracy positioning system, Oxford Technical
Solutions (OxTS) RT3000 [1], had been used at the point of recording the data. This
data is in the thesis used as a ground truth for the states of the vehicle. It includes
reference measurements for position, speed (longitudinal and lateral), acceleration
(longitudinal, lateral and vertical), orientation (roll, pitch, yaw) of the vehicle and
the rate of change of orientation (roll-rate, pitch-rate and yaw-rate).

The brake control system has a stand alone speed estimator provided by the brake
manufacturer which has been recorded for both vehicles. Only for the fully electric
car, an estimate of the speed from the Volvo lateral state estimation department had
been recorded. This estimate is mainly based on the wheel speeds but is comple-
mented with accelerometer measurements to some extent. This estimate is referred
to as simplified Volvo estimate throughout the report. Although many signals had
been logged including OxTS measurements as reference, parameters like the road-
tyre friction and tyre sti�ness had not been logged. This might not be possible to do
in an easy way, but the authors want to stress that this information is not available.
Also, it is not known on a deeper level exactly what the conditions were when the
data was logged or how the vehicle was driven. Though, is known that the data has
been collected in extreme slippery conditions with aggressive driving with stability
systems turned o�.

The collected data for both vehicles had been logged while driving on snowy and
icy roads with low friction to induce excessive all wheel slip conditions. The data
set is majorly composed of straight ahead driving on flat roads, uphill and downhill
slopes as well as on a test track. The vehicles are driven aggressively with high
accelerations and ABS braking with Electronic Stability Control (ESC) disabled to
override the e�ects of the stability system and let the wheels slip for longer duration.
The data logs for the larger hybrid vehicle majorly comprises of low lateral motion
and thus low or no body-side-slip. The vehicle has been driven as if was driven on
a friction surface but on ice and snow roads with low friction causing the wheels to
lose grip and slip. A few runs in the data set also include more aggressive maneuvers
where the yaw-rate and lateral acceleration is higher. The data logs for the fully
electric car had been logged in a slightly more extreme setting in that the vehicle
had been driven on icy roads with changing road inclination and on a handling track
which induces high yaw-rate and lateral acceleration. In Appendix A descriptions
for each individual log are available.

1.2 Related Research
Vehicle state estimation can be divided into two main categories, model-based and
data-driven approaches [2]. Recently, data driven approaches have seen an increase
in popularity with the advancements in AI and a variety of di�erent works have
been published. The data-driven approaches typically utilise some sort of Artificial
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Intelligence (AI), e.g. an artificial neural network, to extract and learn abstract
relations and trends from data sets which maybe could not been easily found by a
human. The simplified view on this kind of approach is that data from the sensors
of a car is fed to a black box with an artificial neural network. The network is then
asked to estimate the current state (could be speed) based on the data fed. By using
a ground truth the estimate can be scored and this information is then fed back to
the network. Assuming that the network is su�ciently structured and that su�cient
amount of data is available, the network can learn to estimate the state. It has been
shown that a data driven approach can be used to estimate individual states such
as side-slip angle [3] and road friction [4] and to complement other methods with
e.g. fusion of IMU and GPS signals [5], or dynamically selecting weights in filters
used for speed estimation [6]. Thus, this kind of approach shows promising signs of
both enabling new methods and complementing existing for state estimation. Some
general drawbacks with data driven approaches are possible over-fitting to the data
used, how to know how the taught model will behave with data that di�ers from
what it was trained on and that a relatively large and representative data set is
needed to make the model general. Mainly because of the uncertainty of how much
data would be available in the thesis, this approach was not chosen.

The other main approach for state estimation is model-based approaches. These
can be further divided into kinematics based (direct) and vehicle dynamics based
approaches (indirect). The di�erence is that in a kinematics based approach, the
measured quantities from the sensors are directly related to the states being esti-
mated whereas in a vehicle dynamics approach the measured quantities are input
to experimentally developed mathematical models.

In a vehicle dynamics approach mathematical expressions that describe the transient
behavior of the vehicle dynamics are used to estimate the states. These approaches
lead to development of vehicle models consisting of force-based equations of motion
in tandem with tyre models, that explain it’s behaviour based on experimental
data. During extreme slip conditions, the dynamics are highly non-linear, making
it di�cult to model and accurately estimate the sought after state. Some research
with limited sensor data similar to the thesis set up provided is cited below.

Work in [7] proposes the use of a simple 3-DOF 1-track model to set up dynamic
equations of motion with longitudinal, lateral speeds and yaw rate used as the states
for an Adaptive Kalman Filter. It was shown that the filter produces good results
for vehicle speed on high and average friction surfaces. However the paper does
not talk about wheel slip conditions, very low slip on ice and snow roads. It also
assumes availability of non-linear tyre parameters, which is crucial in modelling a
tyre in the slipping situation. Use of a bicycle model does not take into account the
e�ects of gravity when driving on a slope or inclined road.

[8] proposes a non-linear tyre model comparable to the Magic Formula along with
a nonlinear observer to estimate longitudinal velocity. However, the estimation is
based on the fact that there is trustworthy reference wheel speed data available i.e.
one wheel is rolling, which defeats the purpose of the thesis work. This model fails
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therefore, on low friction surfaces and when all wheels slip, most cases with large
slip angles.

[9] uses front/rear axle torque, longitudinal acceleration, pitch rate and wheel rota-
tional velocities in estimating the longitudinal velocity and pitch angle. Again, the
work mentioned does not motivate a solution in cases when all wheels are slipping,
thus providing no reference wheel speed to trust.

Increased complexity, non-linear dynamics and the inter-related states mean that
the small errors in the sensor data heavily a�ect the estimated states. tyre inter-
actions with the road surface is also di�cult to model without experimental data
in the non linear range, when it is slipping. Reduced friction, di�erent friction co-
e�cients on each tyre, dynamic changes by the driver, vehicle propulsion are some
parameters that largely influence how the vehicle motion is modelled. Research for
the vehicle dynamics approach motivates the use of a vehicle and tyre model only
during steady state cases or nominal conditions where some or no wheels are slip-
ping on a fairly higher road-tyre friction. In extreme cases however, the results are
either not presented or a solution not robust enough to estimate velocity accurately
is provided.

Kinematics based approaches are generally more simplistic than vehicle dynamics
approaches in that the measured signals are used directly. One of the early and
arguably most simplistic methods for estimating the longitudinal speed of a vehicle
is to directly convert the angular velocity of the wheels to translational velocity by
multiplying with the radius of the wheels. This gives a relatively accurate estimate
of the vehicle speed given that the the measurements are accurate, the tyre radius
is known and the wheels do not slip severely [10]. In the case of the vehicle turning,
each wheel travel with di�erent speeds relative the true speed of the car which
in turns depends on where on the car the speed is estimated. Normally this is
defined as a point along the center-line of the car, e.g. in the center of gravity or
at one of the axles of the vehicle. This speed di�erence induced by turning can be
compensated for using di�erent techniques. [11] presents two approaches that are
based on calculating the radius of which the individual wheels are traveling along
when turning and utilising the knowledge about the steering angle of the wheels,
yaw-rate and body-slip angle to transform the wheel speeds to the equivalent speed
at the center of gravity. The steering angle and yaw-rate can easily be measured
with available sensors on normal cars but the body-slip normally has to be estimated
separately as it directly related to the lateral speed of the car which normally is
hard to estimate. This is because the lateral speed needs to be estimated as it is
not measurable with standard sensors used in modern cars [12].

Many modern cars are also equipped with wheel speed sensors for each wheel which
gives a redundancy in the speed measurement. This is important if a particular
wheel speed deviates from the true speed of the car which can happen during e.g.
acceleration or braking. Then the speed estimate could be improved if it is based on
the most representative wheel or wheels. [13] argue that in acceleration, the slowest
wheel should provide the best measurement and vice versa in braking cases. On
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the other hand, [14] argue that the second slowest wheel should be used as the best
estimate during acceleration. Thus, there’s not a unified view of which wheels are
the most reliable in di�erent situations.

Furthermore, given a typical modern car, e.g. the vehicles used in this thesis, the
wheel speed senors provide the only direct measurement of the speed of the car.
This poses a challenge in slippery conditions. In these conditions, the wheels tend
to slip severely in acceleration and braking. In the case of excessive all-wheel slip,
no accurate speed measurement is available. The main approach that has been
presented in literature is to complement the wheel speed sensors with an accelerom-
eter which enables dead-reckoning during events when the wheels cannot be trusted
[10], [11], [13], [15]. Due to economical reasons related to the challenges of mass-
production, low-cost IMUs with limited consumer-grade performance are normally
used in vehicle state applications [2]. This further complicates the speed estimation
problem as the limited performance in the sensors only allows for dead-reckoning
during short time-periods before the dead-reckoning starts to drift due to the noise
and o�sets in the measurements [16] [17]. The accelerometer measurements are also
contaminated by the gravity component and accelerations induced by centripetal
forces from turning of the vehicle [16]. In order to compensate for the gravity the
orientation of the car needs to be estimated.

With the limited sensor setup, many challenges arise when the vehicle speed is
to be estimated in excessive slip situations. [10] presented a simplistic kinematic
based approach for estimating the vehicle speed. Using measurements from wheel
speed sensors and longitudinal accelerometer, a fuzzy logic Kalman filter (based on
wheel slip estimation) was used to handle situations with wheel slip by trusting
the accelerometer in the form of dead reckoning. [15] proposed a similar approach
with the addition of an estimation of the accelerometer o�set and tyre radius. In
excessive slip conditions, the estimate of the vehicle can drift from the true speed
of the car and thus the slip estimation might be inaccurate. [11] also proposed a
fuzzy-logic based linear Kalman filter approach where the importance of wheel speed
correction was stressed. There are also works like [18] where a Rao-Blackwellized
particle filters have been used to estimate speed of the vehicle.

In [19] another kinematics based approach with empirical corrections on multi-
timescales for estimation of vehicle velocity is proposed. On a longer timescale,
the estimated velocities are corrected by two empirical judgements. Firstly, when
the yaw rate and steering wheel angle remain around zero for some time, the car
is going straight and the lateral velocity can be set to zero. Secondly, when the
velocity of each tyre is about the same and the varying rates crosses zero, the slip
can be estimated to be zero and thus the longitudinal velocity can be accurately
estimated as the product of the tyre radius and average wheel speed. On a short
timescale the acceleration bias is recursively estimated.

[13] recognized the importance of minimizing the initial o�set before initializing dead
reckoning. An excessive slip detection algorithm utilising an estimated max torque
limit based on the utilized friction was presented. The proposed method allowed for
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early detection of slip. A simple linear Kalman filter with separate road-gradient
and vehicle speed estimation was used. The speed estimate was only based on wheel
speed sensors and longitudinal accelerometer which was bias compensated with a
fixed measured bias value. A best-wheel selection algorithm was also introduced
choosing the fastest wheel when breaking and slowest when accelerating. The algo-
rithm was tested in real snow conditions with all wheel slip and showed promising
results with estimation errors within 5% during about 5 seconds of excessive wheel
slip.

With only wheel speed sensors, IMU, steering wheel angle, powertrain and brake
torque available, the options for speed estimation in severe all wheel slip conditions
are limited. Still, it constitutes an important challenge in the vehicle industry as the
vehicle speed estimate is crucial for many safety-systems. The authors also found
that the literature focusing specifically on extreme excessive all-wheel slip situations
with the given sensor setup is limited. This thesis continues the work of estimating
the vehicle speed particularly in extreme conditions with excessive all-wheel slip. A
similar approach to [13] is taken where slipping wheels is tried to be identified and
not used in the speed estimate. An investigation of di�erent indicators of slip has
been made. The knowledge from the investigation has been used to put together two
combined slip-detection and wheel selection concepts. The first slip detection system
is based on assuming slip in between certain events. The second slip detection system
is based on detecting slip at every time instance mainly based on the characteristics
of the error between the speed estimate and the wheel speed measurements. A logic
for speed estimation during ABS braking in slippery conditions is also proposed.
For relative ease of implementation and good sensor fusion capabilities, an extended
Kalman filter (EKF) was set up with a joint estimation of speed and orientation
(roll/pitch). Only longitudinal dynamics is considered in the approach. It’s also
shown that only compensating the bias-o�sets in the gyroscopes while the car is
standing still and letting the pitch-estimate compensate for the accelerometer bias
is a feasible approach for speed estimation. Though, the pitch estimate will in
itself be o�set relative the true pitch estimate. The proposed methods are tested
and compared to the brake manufacturers estimate for the vehicles in real-world
extreme excessive all-wheel slip conditions

1.2.1 Other Sensors
This section brings up some alternative ways to estimate speed using other sensors.
The main approaches mentioned in literature is utilizing GPS, radar, lidar and
cameras.

GPS/GNSS is an existing technique that provides absolute position measurements.
INS and GNSS measurements can be fused and provide more accurate estimations
of vehicle states as velocity compared to dead reckoning based on IMU data. GPS
has been used in a variety of works to estimate speed, wheel slip, body slip, tyre-
side slip, tyre radius estimation, tyre sti�ness among other states and parameters
[20]–[22]. The drawbacks with GPS is, among other things, the risk of the signal
being interrupted from surrounding objects as buildings and a slow measurement
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frequency relative wheel speed sensors [17].

[23] presents a review of the state-of-the-art visual odometry (VO) techniques (us-
ing onboard cameras). It is stated that VO is an inexpensive alternative odometry
technique that can be more accurate than conventional techniques as GPS, INS and
wheel odometry in certain applications. It is described that the technique has dis-
advantages as camera exposure problems, problems with finding features in outdoor
terrain and scale uncertainty when using monocular vision. Another technique is to
use radar to estimate the velocity as proposed by [24]. This alternative approach
has the advantage of being more reliable in low visibility scenarios compared to VO.
However, the speed estimate from Radars degrades fast if enough points cannot be
observed. There has also been experimental approaches using acoustic sensors [25]
and chassis vibration [26] to estimate vehicle velocity.

1.3 Objective and Purpose

The purpose of this thesis work is to develop a strategy for estimating the longitu-
dinal speed of a vehicle in excessive wheel slip conditions. This is with a standard
sensor suite which includes wheel speed sensors, Inertial Measurement Unit (IMU),
steering angle sensor and powertrain and brake torque sensors. The approach cho-
sen is kinematics based with a separate slip-detection system to filter out inaccurate
wheel speed measurements during slip. The development and testing of the method-
/algorithm will be made on recorded data from real-world driving in extreme slippery
conditions.

The main research questions considered are:

• How well can the longitudinal velocity be estimated in all-wheel slip condi-
tions using sensors available on existing production vehicles (including steering
wheel angle, IMU, wheel speed sensors, brake signals, powertrain torque)?

• What are the limiting factors in the presented method?

• How could the estimate be further improved on?

The vision is to present a longitudinal speed estimation method/algorithm that
can estimate the vehicle speed in all wheel slip conditions over longer time periods,
approximately 10 seconds with less than ±4% estimation error relative to the ground
truth. As there might be extreme outlier conditions at times, the estimate error
should not exceed the ±4% error limit for 99% of the time during excessive slip.
The speed should also be estimated without considerable time-delay to provide an
online speed estimate feasible in a real-world application. An acceptable outcome
would be that the presented method shows promising results during extreme slippery
conditions though it may not meet the vision in all conditions.
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1.4 Scope and Limitations
The thesis work only focuses on providing an accurate vehicle speed estimate. This is
only in the longitudinal direction of the car and lateral dynamics are not considered.
Scenarios with high lateral acceleration/velocity or yaw rate are omitted for this
purpose. This is done to limit the extent of the work as the complexity of the
estimation becomes much higher when including lateral dynamics as e.g. the lateral
speed is not measurable with the available sensors. The speed estimation is also only
prioritized for normal driving speeds ranging from 10-120 km/h. Speed estimation
while reversing with slip is not considered as the data provided did not include such
scenarios.

To further limit the scope, online tyre radius estimation and bias compensation for
gyroscopes and accelerometers is not considered. This is mainly because most data
logs are short and also contain slip right from the starting seconds. This would make
such estimations di�cult as normally this is done in steady-state situations. Also,
scenarios with severe and excessive all-wheel slip over very long time (20+seconds)
will not be considered. This is because the approach will be very limited by the
sensor performance and maybe requires a di�erent approach.

The hybrid vehicle is equipped with multiple IMU’s. Using multiple IMU’s can
give an improvement in the measurement uncertainty [27] and can also be used to
detect failing or deviating IMU’s. In this thesis only one IMU is considered. It is
assumed that a single IMU can provide reliable measurements under the the short
time scales of the data log files. It will also simplify the estimation process. Severe
failures would be detected when the estimate is compared with the OxTS reference
measurements.
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2
Theory

In this chapter basic theory for the methods used is presented. This includes theory
about Bayesian filtering, the Kalman filter, sensors and a section about vehicle
dynamics and tyres.

2.1 Bayesian Filtering
Assume that the states of a time varying system are to be described. Let the true
state-vector for each discrete time step, k, be denoted as xk. The true quantities
of the states are hidden for an observer and can only be measured indirectly with
noisy measurements {y1, y2..., yk}. In a filtering sense, the goal is to estimate the
unknown state-vector at time k, given the previous measurements. In Bayesian
filtering the goal is the same but it is done in a Bayesian statistical way, where the
filtering is considered as a statistical inversion problem [28]. In the following sections,
the concepts of Bayesian filtering is explained and the Kalman filter equations are
presented.

2.1.1 Probabilistic State Space Models
In Bayesian filtering, the time-varying system of interest is described using a prob-
abilistic state space model [28]. This means that the states and measurements are
described by probability density distributions that are conditionally dependent on
previous states. Such a model consists of a process model, equation (2.1), and a
measurement model, equation (2.2).

xk = fk≠1(xk≠1, uk, qk≠1) ≥ p(xk|xk≠1; uk) (2.1)
yk = hk(xk, uk, rk) ≥ p(yk|xk; uk) (2.2)

The process model, equation (2.1), describes how the evolution of the states depends
on the past states. The main idea with the process model is to make a prediction of
how the states will evolve over time to be able to rule out unlikely measurements.
The process, fk≠1, can be a linear or nonlinear function. It can also take in inputs,
uk, from e.g. accurate measurements. qk≠1 is the process noise vector that describes
the stochastic properties of the state propagation. An example of a process model is
a train where the the velocity in the next time step can be described by the current
velocity plus the acceleration times the time-step size.
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The measurement model, equation (2.2), describes the distribution of the measure-
ments given the current state. That is also known as the likelihood function. A
measurement model, hk, can also be linear or non-linear and take in inputs, uk, as
well. Here rk is the measurement noise vector which describes the stochastic prop-
erties of the measurements. One example of a measurement model is for a sensor
that measures a quantity e.g. angular velocity. The measurement will be contami-
nated with noise from the sensor that will have some characteristics, e.g. a normal
distribution with a noise vector, rk.

In Bayesian filtering the state space model is assumed to be Markovian [28]. For
simplicity, the input, uk, is left out in the following sections but the theory still
holds. A Markovian state space model has two properties. Firstly, it is assumed
that state vector at time k is independent on all states prior to xk≠1. The state form
what is known as a Markov chain. That is,

p(xk|x1:k≠1, y1:k≠1) = p(xk|xk≠1). (2.3)
Secondly, it is assumed that all measurements are conditionally independent of past
measurements and states. That is,

p(yk|x1:k, y1:k≠1) = p(yk|xk). (2.4)
As a result, the noise vectors qk≠1 and rk are assumed to be independent of all other
noise vectors.

Using a probabilistic graphical model, known as a Bayesian network, it is possible
to illustrate the Markov-properties. A Bayesian network is a directed acyclic graph
where the states and measurements are represented by vertices and the conditional
dependencies are represented by the arcs or arrows [29]. In Figure 2.1 the Markov-
properties described in equations (2.3)-(2.4) are visualized.

xk-1 xk

ykyk-1

Hidden

Observed

p(xk|xk-1)

p(yk|xk)p(yk-1|xk-1)

Figure 2.1: Bayesian network illustrating the Markov-properties of a probabilistic
state space model. The true state-sequence is hidden from an observer who can only
observe the states via noisy measurements yk. The conditional dependencies of the
state and measurement distributions are written beside the corresponding arrow.

2.1.2 Bayesian Filtering Equations
As mentioned in the previous section, the goal with Bayesian filtering is to estimate
the unknown state-vector at time k given the previous measurements. This can be
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seen as a statistical inversion problem [28]. What is sought for is the conditional
distribution p(xk|y1:k) known as the posterior distribution. As pointed out in [28],
theoretically the joint posterior distribution for all states, x0:T , could be computed
using Bayes’ rule relating the priors, p(x0:T ), and likelihoods, p(y1:T |x0:T ), according
to equation (2.5).

p(x0:T |y1:T ) = p(y1:T |x0:T )p(x0:T )
p(y1:T ) (2.5)

Based on the Markovian assumption of the state space model, the joint prior dis-
tribution of the states and the joint likelihood of the measurements can be derived
according to equations (2.6) and (2.7).

p(x0:T ) = p(x0)
TŸ

k=1
p(xk|xk≠1) (2.6)

p(y1:T |x0:T ) =
TŸ

k=1
p(yk|xk) (2.7)

This approach will give a solution to the filtering problem. Though, it is not feasible
to do this in a practical sense. As time passes the number of calculations increases
with every time step. This makes the approach very computationally heavy.

Fortunately it is possible to express the solution to the filtering problem in an
recursive form. This solution is called the Bayesian filtering equations [28]. The
approach can be divided into three steps, initialization, prediction and measurement
update. The initialization step is to form a prior distribution, p(x0), that is the
starting point for the recursion. In the prediction step the Chapman-Kolmogorov
equation, equation (2.8), is utilized. It makes it is possible to express the predictive
distribution of a state xk given the process model without adding more computations
with each time step.

p(xk|y1:k≠1) =
⁄

p(xk|xk≠1)p(xk≠1|y1:k≠1)dxk≠1 (2.8)

The last step is the measurement update step in which Bayes’ rule is used according
to equation (2.9). The normalization factor, p(yk|y1:k≠1), can be left out as this is
a constant that only will scale the distribution.

p(xk|y1:k) = p(yk|xk)p(xk|y1:k≠1)
p(yk|y1:k≠1) Ã p(yk|xk)p(xk|y1:k≠1) (2.9)

The Bayesian filtering equations allows for recursive solving of the posterior distri-
bution without increasing the computational complexity over time. In the case of a
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Gaussian distributed posterior, the distribution can be described by its mean, x̂k|k,
and covariance. The mean, x̂k|k, is in that case the state estimate for the given
time-step. The filtering steps are summarized in Figure 2.2.

Prediction
step

Time
update

Measurement
update step

p(xk|xk-1)

p(xk|y1:k)

p(x0)

k→k+1

yk !xk|k

p(xk-1|y1:k-1)

Figure 2.2: Recursive Bayesian filtering illustrated. The recursion is initialized
with an prior distribution P (x0). Next, a prediction is made using a process model
in the prediction step. The posterior density, p(xk|y1:k), is calculated with the
measurement update. The recursion continues in the next time-step but now the
posterior density is the last posterior.

2.1.3 Kalman Filter
In previous section the recursive solution for the Bayesian filtering problem was
covered. In a linear Gaussian setting, both the process and measurement models
are assumed to be linear and all distributions are Gaussian. It turns out that
the Kalman filter [30] is the closed form solution to the filtering equations in a
linear Gaussian setting [28]. This means that the Kalman filter provides an optimal
solution in the Bayesian sense for a discrete linear Gaussian filtering problem. This
property in combination with the relative simplicity in setting up the filter makes the
Kalman filter widely used in many engineering applications [31]. In the following
section the Kalman filter equations are presented. The explicit derivation of the
Kalman filter equations is not included in this thesis but can be found in works like
[28] and [31].

In a linear Gaussian setting, the state space model can be written as equation
(2.10).

xk = Ak≠1xk≠1 + Bk≠1uk + qk≠1

yk = Hkxk + rk

(2.10)

Here, A is the state transition matrix, B is the input-matrix and H is the mea-
surement matrix. The additive noise in the process model and measurement model
is described by zero-mean Gaussian distributions. That is, qk ≥ N (0, Qk) and
rk ≥ N (0, Rk). As with the filtering equations, the Kalman filter consists of three
steps, initialization, prediction and measurement update. All the corresponding dis-
tributions are Gaussian, which are fully characterized by its mean and covariance.
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Thus, only these moments are needed to be calculated to describe the distribu-
tions.

The initial prior distribution of the states is described by the Gaussian distribution
N (x̄0, P0|0). The initial mean, x̄0, and covariance, P0|0, needs to be set with a
reasonable guess to get a good starting point for the recursion. The prediction and
update distributions are described in equation (2.11).

p(xk|y1:k≠1) = N (xk|x̂k|k≠1, Pk|k≠1)
p(xk|y1:k) = N (xk|x̂k|k, Pk|k)

(2.11)

In this notation, x̂k|k≠1 is the prior mean, x̂k|k≠1 is the predicted mean and x̂k|k
is posterior mean. These means represent the states estimations at each filter step.
The moments for the prediction distribution are calculated as equation (2.12).

x̂k|k≠1 = Ak≠1x̂k≠1|k≠1 + Bk≠1uk

Pk|k≠1 = Ak≠1Pk≠1|k≠1A
T
k≠1 + Qk≠1

(2.12)

For the update step the calculations are as in equation (2.13).

x̂k|k = x̂k|k≠1 + Kkvk

Pk|k = Pk|k≠1 ≠ KkSkK
T
k

vk = yk ≠ Hkx̂k|k≠1

Sk = HkPk|k≠1H
T
k

+ Rk

Kk = Pk|k≠1H
T
k

S
≠1
k

(2.13)

It is in the update step that the new information from the measurements is fused
with the prediction of process model. vk is called the innovation and describes
the di�erence between what is predicted and observed. The Kalman gain, Kk,
is then calculated based on the covariances (uncertainties) of the prediction and
measurements and is used to decide how much to trust the new information.

Based on that the process and measurement models are su�ciently accurate, the key
to get a good filtering result is the tuning of the filter. The tuning is made through
the covariance matrices Qk≠1 and Rk. One strategy is to use previous knowledge
about the sensors to tune the measurement noise matrix Rk first. This can be based
on specifications from the manufacturer or by characterization of the sensor signals in
known conditions. Then only the process noise matrix needs to be tuned to get good
results. The signal to noise ratio (SNR) describes the characteristics of the response
of the filter. A high SNR gives a quicker response to changes in measurements. A
lower SNR means that the filter relies more on the predictions.
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2.1.4 Extended Kalman Filter
The Kalman filter, presented in previous section, is bound to linear Gaussian pro-
cess and measurement models. In the case of non-linear process and measurement
models, the Kalman filter cannot be directly applied. The extended Kalman filter
(EKF) is a modified version of the linear Kalman filter that works for non-linear
models [28]. It builds on the same principles as the linear Kalman filter but instead
non-linear models are linearized to approximate the linear case. In the following
section the EKF equations are presented.

Let the process and measurement models be described by two non-linear functions,
f and h. Assuming that the functions are not too non-linear, the functions can
locally be represented by a first order Taylor expansion. In the EKF, the functions
are linearized around the corresponding mean according to equation (2.14) where F

and H are the Jacobians of the functions.

xk = f(xk≠1, uk) + qk≠1 ¥ f(x̂k≠1|k≠1, uk) + F (x̂k≠1|k≠1, uk)(xk≠1 ≠ x̂k≠1|k≠1) + qk≠1

yk = h(xk) + rk ¥ h(x̂k|k≠1) + H(x̂k|k≠1)(xk ≠ x̂k|k≠1) + rk

(2.14)

As with the Kalman filter, the filtering consists of the same three steps, initialization,
prediction and measurement update. The initialization is done as with the regular
Kalman filter as described in section 2.1.3. The prediction and posterior distribution
is still expressed by equation (2.11). Though, the moments are calculated with a
slight modifacation as described in [28].

The moments for the the prediction distribution is calculated as equation (2.15).

x̂k|k≠1 = f(x̂k≠1|k≠1, uk)
Pk|k≠1 = F (x̂k≠1|k≠1, uk)Pk≠1|k≠1F (x̂k≠1|k≠1, uk)T + Qk≠1

(2.15)

For the posterior distribution, the calculations are as equation (2.16).

x̂k|k = x̂k|k≠1 + Kkvk

Pk|k = Pk|k≠1 ≠ KkSkK
T
k

vk = yk ≠ Hk(x̂k|k≠1)x̂k|k≠1

Sk = Hk(x̂k|k≠1)Pk|k≠1Hk(x̂k|k≠1)T + Rk

Kk = Pk|k≠1Hk(x̂k|k≠1)T
S

≠1
k

(2.16)

EKF is one of several approaches for filtering in a non-linear setting. The Unscented
Kalman filter and particle filter are two other examples mentioned in [28]. Compared
to those approaches, EKF is a relatively computationally e�cient alternative. As
long as the models are not too non-linear the EKF performs well as it approximates
the optimality of the linear Kalman filter. Though, it should be clear that it is not
an optimal solution in the same sense as the Kalman filter is in a linear Gaussian
setting.
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2.2 Sensors
In this section, a brief overview of the main sensors used in this work is pre-
sented.

2.2.1 Inertial Measurement Unit
An inertial measurement unit (IMU) is a device that measures acceleration, angu-
lar velocity and sometimes the magnetic field. This is done using a combination of
accelerometers, gyroscopes and sometimes magnetometers. There are many applica-
tions of IMUs, ranging from inertial navigation to use in consumer electronics. Early
IMU systems used in aerospace in the 1950’s used mechanical gyroscopes and could
weigh up to 1200kg [32]. Modern IMUs fit inside a phone and weighs only a few
grams. In the following section, a short introduction to accelerometers, gyroscopes,
di�erent types of IMUs is made.

An accelerometer measures proper acceleration, which means that the acceleration
is measured relative free-fall. In free fall the accelerometer will measure 0 m/s2.
At rest on the surface of the earth it will measure the gravity acceleration g. It
can also be subject to measuring additional accelerations caused by e.g. centripetal
acceleration. A single accelerometer measure the acceleration along a one axis.
By combining several accelerometers it is possible to measure the direction and
magnitude of the acceleration.

Gyroscopes are devices that measure the rate of change of orientation. Histori-
cally, gyroscopes were mechanical devices that contained a spinning disc on an axis
mounted to freely move in any direction [32]. When moved, the rotating axis will
induce a counter moment and remain it’s orientation. The gyroscope can either be
used to define a certain direction in the inertial frame or be used in a strap-down
configuration where it is mounted to e.g. a vehicle and measure the angular ve-
locities of the body. Today there exist several types of gyroscopes with di�erent
accuracy, weights and prices. The performance is normally described by the amount
of orientation error that accumulates over time expressed in degrees per hour. Some-
times the performance is referred to as bias stability or the bias drift. On the higher
end, ring-laser and fiber-optic gyroscopes can typically achieve drift of 1¶/hour with
a cost per unit around 10000 USD [16]. Whereas on the lower end micro electro
mechanical systems (MEMS) provide a smaller and more a�ordable solution that
achieve a typical drift of 70¶/hour with a price of around 100 USD [16].

2.2.2 Sensor Noise
All sensors are a�ected by errors and biases. Although there exists very accurate
sensors, the performance of a sensor needs to be weighted to the cost and what
is needed for the application at hand. Especially in consumer products where the
margins might be low. One example of the di�erence between consumer grade
and military grade gyroscopes is in the bias stability over time. A military grade
gyroscope can have a bias drift of less than 0.00002 deg per hour while consumer
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grade could be as high as 0.01-0.2 deg per second [32]. The military grade sensor
outperforms the consumer grade sensor but the precision might not be needed in
let’s say a phone where maybe it is enough to know if there’s rotation or not.

[32] explain that a signal measured by a sensor, xm, can be related to the true
signal, x, by a scale factor, s, an o�set or bias, b, and a random noise, ‘, according
to equation (2.17).

xm = sx + b + ‘ (2.17)

These parameters and additional specifications and tolerances of a sensor are nor-
mally made available by the manufacturer. The properties of e.g. the bias can also
be experimentally determined. In an MEMS IMU the scale factor, s, and bias, b,
varies with time and temperature. The scale error is usually not the biggest problem
in practice, it is the bias which makes the biggest impact, at least in applications
where the signals are integrated [32]. For example, if an angle was to be calculated
from a gyroscope signal with a constant bias of 0.2/s. Then the angle estimate will
drift linearly and have a 12 degrees error after one minute.

The biases of a sensor can be accounted for in several ways. One way is to put the
device in a stationary position with known orientation right before use. During this
time, it is known that the IMU is not moving and it is possible to measure what
the gyroscope o�sets are [32]. The accelerometer o�sets could also be determined if
the gravity was accounted for. As the o�sets vary with time this approach is fairly
limited for use over longer times. An alternative approach would be to estimate the
biases online. This could be done using e.g. a Kalman filter where the biases are
described as slowly changing states [33].

2.2.3 Wheel Speed Sensors
Wheel speed sensors are a type of tachometers that are used in the automotive
industry. The working principle is that a disc with a number of cutouts is mounted
to the axle/wheel. By counting the number of ticks per time unit it is possible to
determine the angular velocity of the wheel. The translational velocity can then be
calculated by multiplying the angular velocity with the radius of the wheel. The
sensor has the advantage of measuring the velocity in the plane of the road, thus not
being a�ected by road inclination and banking. In nominal conditions where the
wheel is not slipping, wheel speed encoders give accurate estimates of the velocity
assuming that the tyre radius is known accurately. If a vehicle are equipped with
several wheel speed sensor there is also a redundancy in the measurement.

However, wheel speed encoders are prone to errors. The tyre radius may di�er
from it’s nominal value when driving which can cause an error in the radius of up
to 5%. The sensor can at times make corrupt readings and therefore give outlier
observations as 0 speed. The angular speed is also measured in the direction of
the wheel. That is, when the car is turning, the measured velocities will have an
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o�set compared to the true speed and needs to be corrected for. Likewise, if the
tyre slips or skids the speed measurement will be o�set. Lastly, in low speeds the
measurements is not very accurate as the gaps between each "tick" is too far to get
accurate estimation of the speed. [10].

2.2.4 Steering Wheel Angle Sensor

Steering wheel angle gives a measurement of the wheel angles i.e. in which direction
the steered wheels are pointing. It is an important quantity in assessing vehicle
dynamics and motion. In most cases, optical sensors are used that work on the hall
e�ect principle. The sensor is mounted in the steering column.

Steering angle sensors can either be analog or digital. When the steering angle
changes,the sensor generates a signal whose resolution is calibrated such that the
maximum voltage generated relates to 360¶ turn of the steering wheel. The sensors
are also calibrated such that they give positive or negative voltage based on the
direction of turning. Digital sensors produce a signal that indicates the angle of
steering. The steering angle measurements can be easily related to the wheel angles
via a set of mechanical connection equations.

In a steering module, multiple sensors used for redundancy, accuracy and safety since
this sensor is a part of the stability program which is safety critical. The output of
the two sensors gives accurate reading on the steering and thus wheel angle, how
fast the angle is changing as well as can be used to cross check the values produced
on both outputs.

2.2.5 Powertrain Torque

Powertrain torque sensors are used to measure the applied torque from the engine
to the wheels to propel the vehicle. Torque sensors are categorized as using an-
gular displacement as measurement or a transducer mounted on the drive shaft.
The angular displacement method measures the torsion angle between the point
where the sensor is placed and the end of that shaft. It needs a longer shaft to
work which reduces its use in automotive powertrains. Transducers are more widely
used in the automotive industry for torque sensing. Transducers can be based on
strain gauges, Software Acoustic Waves using ultrasonic pulse propagation, or using
magneto-electric properties of a ferromagnetic substance.

For most cases, the accuracy of the torque sensor depends on temperature and
prolonged exposure to vibrations. Torque sensors are subjected to lot of relative
movements in the driveline, engine braking, dynamic driving that induce mechanical
and signal noise in the measurements. All these parameters increase it’s intensity
and e�ects on the torque measurement as speed increases.
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2.2.6 Brake Friction Torque
Applied braking torque can either be measured by using piezoelectric sensors mounted
in the brake calipers or by pressure sensors in the brake lines. The transferred brake
torque that eventually works to stop the vehicle is not directly measured, but es-
timated based on the friction between the brake pads and the disc. The brake
friction torque data is calibrated and translated with high accuracy for di�erent
working temperatures and speeds after rigorous testing. For most vehicle OEMs,
brake sensors are tightly integrated and calibrated by the brake supplier.

2.3 Tyres Dynamics
Tyres are the only part of the vehicle that are in contact with the road and play
a pivotal role in generating forces necessary to provide motion. They are generally
made from rubber compounds that interact with the road surface to provide tractive,
braking or turning forces as well as produce grip. Tyres are also responsible for
carrying the weight of the vehicle. They dictate the way power produced from the
powertrain unit is "put down" on the road to accelerate or brake the vehicle as well as
generate lateral forces through the steering mechanism to provide manoeuvrability
and controllability to the vehicle.

Tyres used throughout this thesis and for explanation in the report are pneumatic
tyres made from a rubber compound used widely in every passenger vehicle. The
wheel is defined as the hub and rim assembly on top of which the tyre sits.

The wheels that are actively provided driving torque from the powertrain are called
driven wheels. The wheels not connected to any active drive axle are non-driven
wheels. For eg. on a Front-Wheel-Drive car, the driven wheels are the front
wheels.

2.3.1 Producing Grip
Here is a simplified explanation of grip produced by the tyre to help the reader
visualize. The knowledge of exactly how the grip is generated is beyond the scope
of the thesis however the reader is directed to [34] for in depth explanation.

Imagine a tyre on a flat road that is carrying a certain vertical load and connected
to a drive axle. The area of the tyre that is contact with the road surface is called a
contact patch which is produced due to the elasticity of the tyre and the subjected
vertical load. We now apply a propulsion torque on the axle that will make the tyre
roll on the surface. As the tyre starts rolling, the treads come in contact with the
road, press against it on the contact patch and release contact as they move long,
creating adhesion between the tyre and road. This happens continuously at low and
high speeds through every rotation producing grip that keeps the tyres in contact
with the road. The deformation and contact patch formation can be seen in figure
2.3.
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Figure 2.3: Deformation and Contact Patch of the Tyre

2.3.2 Brush Tyre Model
A brush tyre model is used to understand the interactions of the tyre and road and
explain how forces are generated. The model consists of a row of elastic bristles
that touch the road plane, and can deflect in a direction parallel to the road surface.
These bristles are called tread elements as seen in figure 2.4a. The tail of the tread
is attached to the rim body upon which the tyre sits. The head of the tread is
in contact with the road surface and produces the adhesion or grip. For further
detailed reading the, reader is directed to [34].

2.3.3 E�ective Rolling Radius
Assume a loaded tyre moving with angular velocity Ê on a flat surface in figure 2.4b.
The unloaded radius of the tyre is R0. The point A on the tyre is the point under
compression just before the contact patch, which has a radius of Ra also known as
reduced radius. Point B is just after the contact patch begins which has a radius
called the e�ective radius, Re. It is this radius that gives the tangential/peripheral
velocity of the tyre. Next, at point C is the loaded radius Rh. Point D is again
the e�ective radius as it is just about to leave the contact patch and point E is just
after it leaves the contact patch.

The changing radius between point A and B is R1, between B and D is R2 and
between D and E is R3. The velocity of motion or longitudinal velocity of the
wheel is given as Vx = Re.Ê. However, the tangential velocity is actually changing
at each point on the tyre. It can be seen from the figure 2.4b that the radius
R0 > Ra > Re > Rh. This means that (R1 = R3) > R2.

Thus within every region, the tangential velocity di�ers from the longitudinal ve-
locity.
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Region A ≠æ B

Vt = R1.Ê > Vx (2.18)

Region B ≠æ D

Vt = R2.Ê < Vx (2.19)

Region D ≠æ E

Vt = R3.Ê > Vx (2.20)
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(a) Brush Tyre Model with tread ele-
ments
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ω
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(b) Changes in e�ective rolling radius
that a�ect translation speed

Figure 2.4: Brush Tyre Model and E�ective Radius

2.3.4 Longitudinal Force

Longitudinal Force is generated by the tyre through it’s interaction with the road
via adhesion or grip, and from the torque provided through the drive axle. These
forces provide acceleration or braking to the vehicle.

To better explain these forces, it is best to use the brush tyre model depiction in fig-
ure 2.5 and the equations 2.18,2.19 and 2.20. The explanation below is simplified to
understand slipping phenomenon. This is based on works in CHAPTER III [34],[35]
to which the reader can refer for detailed understanding and explanations.
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Figure 2.5: Longitudinal Force generated in di�erent scenarios - Free Rolling ,
Acceleration and Braking

Free Rolling
Let us assume a loaded, free rolling tyre i.e. no torque or force is applied to it.
The contact patch in this case is theoretically just a point in 2-D or a line in 3-D
consideration. The tread tail and head move with the same velocity. Thus the
longitudinal velocity of the vehicle and tangential velocity of the tyre is the same
Vx = Vt. This means that there is no relative movement between the tail and head
and thus no tangential forces are generated.

Acceleration
When positive torque is applied to the wheel, the tyre deforms as seen for accel-
eration in figure 2.5. The adhesion between the tread head and the road surface
holds the tread where it initially enters the contact patch. The tail, connected to
the rim, is subjected to varying tangential velocities Vt as discussed in section 2.3.3
due to applied torque and the e�ective rolling radius, given by equations 2.18,2.19
and 2.20. The head is subjected to the longitudinal velocity of motion Vx, which
is the forward velocity of the vehicle. While there is enough adhesion for the tread
head to remain attached to the road, a di�erence in velocities between the tread
tail and head creates a tension Ftr in the tread elements which when resolved, gives
longitudinal force Fx. This is the tractive force that propels the car forward.

Braking
When maximum brake torque is applied such that it locks the wheel and thus it
skids along the road surface. The tyre deforms again as seen for the braking case in
figure 2.5. However this time, the tangential speed of the tyre Ê = 0 and thus Vt = 0.
Now, the tail connected to the rim has no velocity. However the head is subjected
to the velocity Vx with which it was moving along the ground. This di�erence in
velocities causes a tension force in the opposite direction within the tread elements
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such that the head is behind the tail. Resolving with force gives the braking force
≠Fx that helps to brake the vehicle.

2.3.5 Longitudinal Slip
We know that a di�erence in the longitudinal velocity and tangential velocity of
the tyre, as the tread sticks to the road, generates a force to propel or brake the
vehicle. This di�erence in velocities causes a relative motion between the tread head
and tail thus giving rise to a phenomenon called slip. Slip velocity is defined as the
di�erence between the longitudinal velocity of the tyre and the tangential velocity
of the tyre. This velocity when normalized by the longitudinal velocity gives the
slip ratio [35].

Sx = (Vx ≠ ReÊ)
ReÊ

in Acceleration Sx = (Vx ≠ ReÊ)
Vx

in Braking (2.21)

This forms an important physical relation that tyres produce slip when the tyres
have grip to stick to the road surface, which then generates the tractive or braking
forces.

Free Rolling
In free-rolling conditions, there is no relative motion or velocity between the tread
head and the tail. Thus the slip ratio Sx = 0 and no force is generated, Fx = 0.

Acceleration
In acceleration, the Vx < Vt, which means that the slip ratio Sx is positive and a
propulsion force Fx is generated.

Braking
In extreme braking when the wheels lock, the Vt = 0 which means that the slip ratio
Sx = ≠1 and braking force ≠Fx is generated.

2.4 Parameters that a�ect Grip and Slip
As mentioned in 2.3.5, slip produced when there is adhesion or grip between road
and tyre, that holds the tread head in contact, creates a di�erence between the
longitudinal velocity of the vehicle and tangential velocity of the tyre. This produces
the tractive or braking force. This means that grip plays a major role in generating
slip that produces longitudinal force. Grip is basically the road surface holding on
to the tread head through friction or adhesion . The friction or adhesion between
the road surface and the tyre is a function of the interaction of the two surfaces.
This also dictates the magnitude of maximum slip ratio and force generated, as well
as how much torque can be applied to the wheel before grip is lost. However, the
two most important ones are - vertical loading on the tyre and the road-tyre friction
that are discussed next.
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2.4.1 E�ect of Vertical Loading
E�ects of di�erent vertical loads on the tyre can be seen in figure 2.6. For a load
of 1000 N on a tyre, the longitudinal force is lowest. This means that the amount
of deformation and tension in the tread is only enough to produce such low forces
before the tyre starts losing grip. The longitudinal force values increase with the load
on the tyre. The increase is initially linear as torque is applied, till the tyre develops
maximum friction or grip. At that peak point, it produces maximum traction or
braking force for a slip ratio. Beyond this peak as the applied torque and slip
ratio increase, the grip and longitudinal force decreases. This means that the tyre’s
contribution to the longitudinal motion keeps reducing. The longitudinal force drops
down to the kinetic friction force that makes the wheel spin without contributing
to vehicle propulsion. It is important to note that this decrease does not instantly
make the tyre visibly spin or lock up. However, the tyre visibly spinning or locking
up is an indication that the torque applied to the tyre way too high for it to catch
any grip on the road.
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Figure 2.6: Longitudinal Force vs Slip Ratio for di�erent vertical loads on a dry
asphalt road

2.4.2 E�ect of Road-Tyre Friction
The e�ect of road tyre friction can be observed in figure 2.7 for a constant load. For a
tyre rolling on ice, the friction coe�cient is usually around 0.15 while on dry asphalt
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it is around 0.8. Looking at the figure 2.7, one can observe that the longitudinal
force generated by the tyre is higher when the friction coe�cient is higher.

First we consider the tyre rolling on dry asphalt. As the engine torque applied to the
tyre, slip is generated through di�erence in tangential and longitudinal velocity. As
the amount of torque increases, slip increases and the amount of longitudinal force
increases linearly as the tread elements are subjected to more and more tension.
This increase happens up until the peak static friction is reached. This is the point
where maximum force is generated at a slip ratio. Beyond this point i.e. when the
engine torque provided to the tyre crosses the friction limit, the tyre starts slipping
more and more till they start spinning in place and do not contribute to the vehicle
motion.

For a tyre rolling on ice, the longitudinal forces generated are much smaller since
there is not enough friction to hold the tread head to the ground and can be easily
overcome by low engine applied torque. The longitudinal force peaks out at 250 N
and at a slip ratio of 0.03 or 3%. When compared to dry asphalt, the longitudinal
peaks out at 3000 N and achieves a higher slip ratio at 0.2 or 20% before losing grip
and inducing wheel spin. Given such a low threshold for inducing spinning condition
on ice means that the tyres are bound to spin under acceleration or braking in normal
as well as extreme driving maneuvers.
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Figure 2.7: Longitudinal Force vs Slip Ratio for di�erent road surfaces at constant
load
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2.5 Modelling Tyre Behaviour
Modelling tyre behaviour is di�cult based on it’s characteristics as the parameters
mentioned above and others, change dynamically in real time, a�ecting how the tyre
reacts, how the slip is generated and thus how much force is produced.

2.5.1 Non Linear Tyre Model
The most widely used model is the non linear tyre model called the Magic Formula
Tyre Model developed by Hans B. Pacejka [34]. In this model, the tyre character-
istics are modelled into an equation that fits the curve of experimental data points.
Data generated from testing a tyre on a test rig, with di�erent loads, friction, slip
and speed gives data points that are used for curve fitting using the equation :

Fx = D. sin (C. arctan (Bx ≠ E(Bx ≠ arctan (Bx)))).Fz (2.22)

where, B is the sti�ness factor that decides the initial slope for the tyre curve, where
to force and slip increase linearly, C is the shape factor of the curve, D is the peak
value of the tyre curve and E models the e�ect of friction, deciding where the peak
value of force occurs.

Advantages of using magic formula tyre models are that they base the tyre curve
on experimental data, providing su�ciently accurate behaviour, both in linear and
non linear range. Modelling of the non-linear range helps in determining how peak
force is achieved and how the tyres react when the grip is lost i.e. just after the
peak as the slip increases and wheel spin situations occur. However, the accuracy
of the curve is limited by the availability and accuracy of the experimental data
itself. Each coe�cient mentioned above depends on factors such as wheel load,
temperature, pressure, camber and slip, which need to be accurately analysed and
recorded during testing.

2.5.2 Linear Tyre Model
A simpler way of modeling tyre characteristics is by using a tanh tyre model given
by the equation 2.23. It accurately represents the linear range, where there is slip in
the presence of grip and force increases linearly. It depicts peak longitudinal force
but does not represent the non linear range accurately, which is the region of most
uncertainty since the tyre loses grip and starts to spin. In fact, the model peaks out
the force and makes it constant as slip increases beyond this peak, depicting that
there is no reduction in force, but a constant peak force propelling or braking the
vehicle. Less complexity and less data requirements are some plus points of using
this model, however it does not accurately represent wheel slip and spin cases. It also
requires the coe�cient of friction and slip to get longitudinal force. As calculation
of slip depends on velocity which is what needs to be estimated, using the tanh
model does not help.
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Fx = µFz tanh
A

Cx.Sx

µFz

B

(2.23)

where µ is the coe�cient of friction and Cx is the longitudinal sti�ness of the tyre,
which is also the slope of the tyre plot.
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(a) Non Linear Tyre Model
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(b) Linear tanh Tyre Model

Figure 2.8: Non Linear and Linear Tyre model curves for Longitudinal Force vs
Slip Ratio

2.5.3 Load Transfer
Load transfer is an unavoidable phenomenon that occurs during vehicle motion.
The weight distribution of the car changes dynamically in acceleration, braking and
turning, inducing two kinds of load transfer - geometric and elastic. Calculating
elastic load transfer requires a lot of spring-damper sti�ness data. Geometric load
transfer about the centre of gravity can be calculated in a very simple way by
considering rigid axles using the equation:

Fz,F L = m · g · b

2l
≠ m · ax · h

l
≠ m · ay · h

tw

Fz,F R = m · g · b

2l
≠ m · ax · h

l
+ m · ay · h

tw

Fz,RL = m · g · a

2l
+ m · ax · h

l
≠ m · ay · h

tw

Fz,RR = m · g · a

2l
+ m · ax · h

l
+ m · ay · h

tw

(2.24)

where,
m = mass of the vehicle
g = acceleration due to gravity
a = distance from front axle to centre of gravity
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b = distance from rear axle to centre of gravity
l = wheel base
tw = track width
ax = longitudinal acceleration
ay = lateral acceleration
h = distance of centre gravity from the ground

2.6 Challenges using Tyre Dynamics for Velocity
Estimation

The biggest challenge is to accurately represent tyre behaviour, especially in the non
linear region which is the central to velocity estimation for this thesis. A non linear
magic formula based tyre model accurately represents the non-linear range where the
wheels are spinning but, unavailability of experimental data makes this unfeasible to
model. Using the data available, a linear tyre model was feasible, which accurately
represents wheel speed in nominal or no spin conditions in the linear range. But in
the spin condition, the tanh model caps the longitudinal force at the peak value,
depicting that even after the tyre has lost grip, the longitudinal force produced is the
maximum possible and is actively contributing to the motion of the vehicle. This
incorrectly biases the calculated force and the slip ratio. The slip ratio, having slip
velocity, which is basically the di�erence between wheel speed and vehicle speed,
then cannot be used to compensate and estimate vehicle velocity.

Another way of compensating for slip ratio or slip velocity could be by using these
set of connected equations

Sx = (Vx ≠ rÊ)
rÊ

in Acceleration

Sx = (Vx ≠ rÊ)
Vx

in Braking

Fx = Cx.Sx

T = Re.Fx

(2.25)

where,
Sx = Slip Ratio
Re = E�ective radius of tyre
Fx = longitudinal Force
T = Rotational Torque applied on the wheel
Cx = Longitudinal Sti�ness of the Tyre
Merging equation 2.25 gives a slip compensation term that can be used to calculate
actual speed of the vehicle as

Vx = rÊ
3

1 ≠ T

r.Cx

4
(2.26)
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where (1 ≠ T
r.Cx

) is the slip compensation term. However, a lack of accurate power-
train torque values and longitudinal sti�ness but most importantly, the wheel speed
values under slip or spin conditions skew the slip compensation velocity and thus
the final velocity estimation.

The road-tyre friction cannot be measured directly and thus also needs to be esti-
mated. An experimental tyre model such as the non-linear magic formula tyre model
can be fitted for di�erent coe�cients of friction however, it requires a lot of testing
data which was not available. In real-world driving, each tyre might be subjected
to di�erent coe�cients of friction. Couple this with varying amount of load on each
tyre on an AWD car means that the value of applied torque that induces wheel spin
is di�erent on each wheel and thus each wheel has a di�erent slip ratio at a given
time. This kind of modelling is di�cult given the limited quantity and accuracy of
tyre data from testing. A study and analysis of velocity estimation using a feasible
linear tyre model was conducted but produced bad results, especially in extreme slip
or spinning conditions, which is the main part of the thesis objective.
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In this chapter, the approach for speed estimation is presented in detail. First, an
overview of the approach is given in section 3.1. In the following sections, the di�er-
ent components of the speed estimation is presented. This includes the modelling
of the vehicle, sensor characteristics, filter setup, investigation of ways of detect-
ing slip, slip detection and wheel selection concepts and speed estimation strategy
during braking.

3.1 Overview of the Speed Estimation Approach

In Figure 3.1 an overview of the structure of the speed estimation is presented. The
speed estimation is based on an extended Kalman filter which consists of a prediction
step and an update step. In the prediction step the speed for the current time step
is predicted using a process model which takes inputs from the IMU. In the update
step the wheel speed measurements, which are the only absolute measurement of the
vehicle speed, are used to update the speed estimate. The modelling of the vehicle
and the Kalman Filter is explained in detail in section 3.2 and 3.4. The main idea
with the speed estimation approach is to use a slip-detection system that decides
which wheels are slipping and should not be used to update the speed estimate in
the update step. An investigation of di�erent ways of detecting slip is presented
in section 3.5. Based on this investigation, two slip-detection and wheel selection
concepts are set up and presented in section 3.6. An additional speed estimation
strategy specific for when the vehicle is braking is presented in section 3.7. As the
data is pre-recorded a for-loop is used to loop-through the data in the files. This
also allows for pre-processing of the data and setting initial values for the estimation
beforehand.
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Speed estimation
Pre-processing

Calculate:   Wheel-speed correction, wheel acceleration, powertrain torque rate, gyroscope bias
Set: Initial values for estimation

for-loop - over logged data
Prediction step
Slip-detection and wheel selection concept 1 or 2
Update step

if braking
Speed estimation strategy for braking

else
Update with # of wheels input 

end
end

Figure 3.1: Overview of speed estimation approach

3.1.1 Pre-Processing
In the pre-processing step, the wheel accelerations and powertrain torque rates,
wheel speed measurement correction and gyroscope bias is calculated. This is mainly
because the data is pre-recorded and this can be made beforehand to reduce the
amount of computations needed in each for-loop. The wheel accelerations and pow-
ertrain torque rates are calculated in a simplified manner by low-pass-filtering the
numerical derivative calculated by the finite di�erence of the quantities. These quan-
tities are later utilised by the slip-detection concepts. The wheel speed corrections,
which are explained in detail in section 3.2.5, are made to compensate for di�erent
speeds of the wheels induced by turning of the vehicle. As the vehicle is standing
still in the beginning of each file, the gyroscope bias can be calculated. This is
done before the speed estimation is made and this is further explained in section
3.4.5.

3.1.2 Comment on Speed Estimation
If no slip is detected, all wheel speed measurements are fed to the update step of
the Kalman filter. Otherwise a varying number of wheel speed measurements are
fed to the filter by the slip-detection and wheel selection concept used. Depending
on if the car is accelerating or decelerating, the fastest or slowest wheel is assigned a
larger measurement covariance to bias the estimate towards the more likely wheels.
If no wheels are input then dead-reckoning is performed which means that the speed
estimation at this time is completely based on the integration of the gravity com-
pensated accelerometer readings. The gravity compensation is further explained
in section 3.2. The speed estimation uses a specific strategy when the vehicle is
braking. This is further explained in section 3.7.
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3.2 Modelling of Vehicle
In the following section the modelling of the vehicle is described. This includes
definitions of coordinate frames, how the orientation of the vehicle is described,
kinematic relations and correction of wheel speed measurements.

3.2.1 Defining Coordinate Frames
In this thesis, two coordinate frames are defined. The inertial coordinate frame (X,
Y, Z) and the vehicle coordinate frame (x, y, z). Both frames follow the right hand
rule convention. The inertial frame is aligned with the Earth such that the Z-axis is
pointing up parallel with the gravity and X-axis and Y-axis are parallel with the sea
level. The vehicle coordinate frame is fixed with the vehicle body and centered in
the center of gravity (CoG) with the x-axis pointing in the forward direction of the
car and z-axis up as in Figure 3.2. In this thesis, it is the longitudinal component of
the speed at the center of gravity that is estimated. That is the quantity of the vx

component relative the inertial frame. The lateral speed component, vy and thus the
side slip angle, — is assumed to be negligible. The rotation around each coordinate
axis is described by Euler roll, pitch and yaw angles which is further explained in
section 3.2.2.

X

Y
Z

Figure 3.2: Schematic sketch of the coordinate frames and vehicle.

3.2.2 Describing the Orientation of a Rigid Body
There exists di�erent ways to describe the orientation of a rigid body in relation
to a fixed orthogonal reference coordinate frame. One commonly used method in
vehicle modelling is Euler angles [32]. According to Euler’s rotation theorem, any
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rotation of a three dimensional orthogonal coordinate system can be described by
sequence of three consecutive rotations about di�erent coordinate axles where no
consecutive rotation is made about the same axle. There are 12 possible consecutive
rotations which can be divided into two groups. One is proper Euler angles where
the rotations are made around two axes (e.g. ZYZ), and the other is Cardan angles
(also known as Tait-Bryan angles) where the rotations are made around each axle
(e.g. ZYX). The angles describing the rotation about the axes x, y, z are usually
notated Ï, ◊, and Â respectively. Following, the elementary rotation matrices around
each axis are introduced.

Rx(Ï) =

S

WU
1 0 0
0 cos (Ï) ≠ sin (Ï)
0 sin (Ï) cos (Ï)

T

XV

Ry(◊) =

S

WU
cos (◊) 0 sin (◊)

0 1 0
≠ sin (◊) 0 cos (◊)

T

XV

Rz(Â) =

S

WU
cos (Â) ≠ sin (Â) 0
sin (Â) cos (Â) 0

0 0 1

T

XV

(3.1)

In this thesis the Euler angles convention ZYX (also known as roll-pitch-yaw angles
XYZ) is used to represent the orientation of the car. During acceleration, braking
and cornering, the suspension of the car compresses and induces chassis roll and
pitch angles. The road inclination and bank angle is not separated from the chassis
roll and pitch and pitch angle in this thesis. As the orientation estimate is only used
for compensation of the gravity vector in accelerometer this simplification should
not a�ect the speed estimation. The Euler angles roll, Ï, pitch, ◊, and yaw, Â, are
expressed relative a non-moving inertial coordinate frame which is fixed in the center
of gravity of the car and has parallel axes with the sea-level and gravity vector. See
Figure 3.2 for notation. The two coordinate frames are related by a rotation matrix,
R, according to,

Xbody = R
T
Xinertial = R

T
z
R

T
y
R

T
x
Xinertial, (3.2)

where a vector in the inertial frame can be expressed in the body frame by multi-
plication of the rotation matrix described by equation (3.3). Note that c and s are
used as abbreviations of cos and sin in this equation.

R
T =S

WU
c (◊) c (Â) c (◊) s (Â) ≠s (◊)

c (Â) s (◊) s (Ï) ≠ c (Ï) s (Â) c (Ï) c (Â) + s (◊) s (Ï) s (Â) c (◊) s (Ï)
s (Ï) s (Â) + c (Ï) c (Â) s (◊) c (Ï) s (◊) s (Â) ≠ c (Â) s (Ï) c (◊) c (Ï)

T

XV
(3.3)
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It is noted that Euler angles su�er from what is known as gimbal lock. In a physical
gyroscope this means that two of the gimbals align and thus one degree of freedom
is lost. The same apply for Euler angles and the orientation cannot be completely
determined at that point. According to [32] the gimbal lock for ZYX Euler angles
occur at ◊ = ±(2k + 1)fi

2 , where k is an integer. In this thesis it is assumed that the
vehicle will not be rotated by 90 degrees in pitch. Therefore gimbal lock should not
be a problem for the intended use.

3.2.3 Relating Gyroscope Measurements and Euler Angular
Rates

The gyroscopes measure the angular velocities, Êx,y,z, in the vehicle coordinate
frame. This is not the same velocities as the Euler angular rates. Utilizing the
conjugate Euler angle rates matrix, E

Õ, it is possible to relate angular velocities
expressed in the fixed vehicle coordinate frame to the Euler angular rates [36]. The
conjugate Euler angle rates matrix is defined as,

E
Õ =

S

WU

S

WU
1
0
0

T

XV , R
T

x

S

WU
0
1
0

T

XV , R
T

x
R

T

y

S

WU
0
0
1

T

XV

T

XV

=

S

WU
1 0 ≠ sin (◊)
0 cos (Ï) cos (◊) sin (Ï)
0 ≠ sin (Ï) cos (◊) cos (Ï)

T

XV .

(3.4)

By inverting the conjugate Euler angle rates matrix it is possible to express the
Euler angular rates in terms of the vehicle coordinate frame fixed angular velocities
measured by the gyroscopes according to,

S

WU
Ï̇
◊̇
Â̇

T

XV =

S

WU
1 0 ≠ sin (◊)
0 cos (Ï) cos (◊) sin (Ï)
0 ≠ sin (Ï) cos (◊) cos (Ï)

T

XV

≠1 S

WU
Êx

Êy

Êz

T

XV

=

S

WWU

1 sin (Ï) tan (◊) cos (Ï) tan (◊)
0 cos (Ï) ≠ sin (Ï)
0 sin(Ï)

cos(◊)
cos(Ï)
cos(◊)

T

XXV

S

WU
Êx

Êy

Êz

T

XV .

(3.5)

3.2.4 Modeling Acceleration of a Car
A vehicle experiences accelerations in longitudinal (x), lateral (y) and vertical (z)
directions when driving. The on board IMU measures these accelerations. As men-
tioned in section 2.2.1, the accelerometer does not solely measure the linear accel-
eration of the car, e.g. v̇x, but is also a�ected by other accelerations. Similar to
[16], [37] and [38] it is assumed that the measured acceleration can be modelled as
in equation (3.6).

ameas = v̇ + Ê ◊ v + g =

S

WU
v̇x

v̇y

v̇z

T

XV +

S

WU
Êzvy ≠ Êyvz

Êxvz ≠ Êzvx

Êyvx ≠ Êxvy

T

XV + g

S

WU
≠ sin ◊

cos ◊ sin Ï
cos ◊ cos Ï

T

XV (3.6)
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The accelerations are divided into three components, linear acceleration, centripetal
acceleration and gravitational acceleration. The linear acceleration is related to
how fast the car is accelerating in the inertial frame denoted as v̇. The centripetal
acceleration is induced when the car is moving and rotating at the same time.
Finally, the gravity component is measured as well, e.g. when turning hard. In the
inertial frame the gravity is only acting in the z-direction. As the IMU is mounted to
the car, it will have the same orientation as the vehicle coordinate frame. Thus, the
gravity component measured by the accelerometer in each direction can be found
using the last column in the rotation matrix in equation (3.3).

For practical reasons it is seldom possible to mount the IMU at the absolute center of
gravity [39]. This will introduce an additional acceleration component because of the
lever arm from the center of gravity o�set [38]. In this thesis it is assumed that the
IMU is placed in the exact CoG of the vehicle and that the IMU is perfectly aligned
with the vehicle coordinate frame. Thus the CoG-o�set component is neglected. It
is also assumed that the o�set will cause a relatively small error in comparison with
wheel slip and orientation estimation error. The correction used in [39], also utilizes
the derivative of the gyroscope measurements which will introduce noise.

3.2.5 Compensating Wheel Speeds

As mentioned in section 2.2, a wheel speed sensor measures the angular velocity of a
wheel. This quantity di�ers from the longitudinal speed at the CoG of the car which
should be estimated. Therefore, these measurements need to be processed such that
they can be used as observations for this state. The processing used in this thesis
consists of two steps. First the wheel speeds are multiplied with the wheel radius
to obtain the translational velocity in the direction of the wheel. Secondly, each
individual wheel speed measurement has to be transformed to the center of gravity.
For simplicity the tyre-radius is assumed to be constant. This is because the data
files used are rather short, contain all-wheel slip from the beginning of the logs and
that no external absolute velocity measurements signals as GPS are available which
makes it hard to estimate the tyre radius.

The CoG-transformation can be made in several ways. A simplistic technique pre-
sented in [11] is used in this thesis. It is based on the assumption that if the distance
from the vehicle CoG to the instantaneous center of motion is su�ciently large com-
pared to the distance between the CoG and each wheel, then the di�erential curve
radii can be assumed to be parallel. The transformation then uses the di�erential
curve radii, yaw-rate, body slip angle and steering angle to correct the wheel speeds
measurements according to equation (3.7). In this equation, VF L is the corrected
front left (FL) wheel speed measurement, VÊ,F L is the angular wheel speed measure-
ment for the front left (FL) tyre multiplied with the tyre radius, bf and br is the
front and rear track width, lf and lr the distance between the CoG and the front
and rear axle and ”W the steering wheel angle. The reader is referred to [11] for the
full derivation of the wheel speed compensation.
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VF L = (VÊ,F L + Â̇(bf

2 ≠ lf—)) cos(”W ≠ —)

VF R = (VÊ,F R ≠ Â̇(bf

2 + lf—)) cos(”W ≠ —)

VRL = (VÊ,RL + Â̇(br

2 + lr—)) cos(—)

VRR = (VÊ,RR ≠ Â̇(br

2 ≠ lr—)) cos(—)

(3.7)

Furthermore, as it is assumed that the lateral velocity is low, it is assumed that
the body slip angle, —, is negligible. Also, for large steering angles, it has been
decided to set a max-limit on the steering angle compensation to 11 degrees. For
angles larger than 11 degrees the compensation is limited to the compensation for
11 degrees. The specific angle of 11 degrees does not have a great importance. This
modification has been done with the idea that it is better to have a measurement
related to the rotational equivalent wheel speed than to have a very distorted wheel
speed measurement for large steering angles. E.g. if the car is turning sharply,
the cos(”W ) would be very small causing the front wheel speed measurements to be
overcompensated.

In Figure 3.3 the transformation of the wheel speeds are showcased. Figure 3.3a
show that the non-transformed wheel speeds are di�ering with roughly 4% from the
reference speed when the car is turning in this example. Figure 3.3b show that the
wheel speeds follow the reference speed much closer after transformation. Hence
showing the importance of the wheel speed correction.
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Figure 3.3: Wheel speed measurements multiplied with wheel radius and corrected
and transformed wheel speed measurements compared to reference OxTS velocity.
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3.3 Sensor Characteristics
In this section the characteristics in the signals are analysed. Using data from nom-
inal conditions (without wheel spin) and when the car is standing still, the noise
characteristics of the signals can be determined. The main signals used for esti-
mating the velocity and orientation of the car is the longitudinal accelerometer, the
gyroscopes and the corrected wheel speed measurements. Each of these signals are
analysed in the following subsections. Note that the lateral and vertical accelerome-
ter is not included in this section. This is because these measurements are not used
in the speed estimation which is further explained in 3.4.

3.3.1 Gyroscope and Longitudinal Accelerometer
The IMU signals were analysed for a couple of data log files when the car was
standing still. Everything mentioned in this section is related to the hybrid vehicle.
This is to remove all noise induced by the dynamics of the motion of the car. The
files looked at are from the same sensors but from di�erent days. This is to get
a better understanding about the sensors. In the first file (case 1), the car was
standing still for roughly 6 seconds before a test run. In the second file (case 2)
the car was standing still for roughly 5 seconds after a test run. The variance and
mean of the signals were calculated for these samples and are found in Table 3.1.
As the data is logged at 100 Hz, this corresponds to roughly 500-600 data points.
This is assumed to be enough to get an idea of what the characteristics in the noise
is but this short time samples does not give an idea of how the sensor bias changes
over time. As mentioned in section 2.2, the bias in MEMS IMU sensors vary with
time and temperature. Though, most of the data logs provided were short roughly
one-minute scenarios. It is assumed that the drift of the sensor bias is not severe in
this short amount of time.

Table 3.1: Mean and variance for longitudinal accelerometer and gyroscopes for
two cases when the vehicle was standing still.

Case 1 Case 2
ax Êx Êy Êz ax Êx Êy Êz

Mean -0.87 8.67e-5 -0.32e-2 0.52e-2 -5.28e-2 8.13e-5 -0.34e-2 0.52e-2
Variance 2.32e-4 5.33e-7 6.83e-7 1.10e-6 5.31e-4 5.28e-7 9.24e7 1.11e-6

As the car is standing still, the gyroscope should be zero-mean if there are no biases.
As can be seen in Table 3.1 and Figure 3.4a the signals are not zero mean. The
non-zero mean for the gyroscopes indicate that there are biases in the order of up to
1e-2 for these sensors. However for the accelerometer it is not possible to distinguish
any bias from the gravity component if the true orientation is not known. Using the
reference pitch estimate from the OxTS it is possible to compensate for the gravity
component. The OxTS measurement delivers a pitch angle measurement with an
accuracy of 0.05¶ for one standard deviation [1]. The pitch angle was in case 1 0.066

38



3. Method

rad and case 2 -0.0177 rad. If this is factored in, the accelerometer bias in the two
cases are -0.2203 and -0.2262.
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(a) Gyroscope measurements in case 1
from stationary vehicle.

(b) Histogram of longitudinal accelerom-
eter readings from case 1. The histogram
includes roughly 500 data points.

Figure 3.4: Gyroscope measurements and histogram of longitudinal accelerometer
measurements in case 1.

The noise in the of the IMU signals seems to be pretty accurately described as
Gaussian. This is illustrated in Figure 3.4b where the accelerometer readings are
plotted in a histogram indicating a bell-curve. Summarizing Table 3.1, the variance
of the noise for the gyroscopes are in the order of 1e-6 and around 1e-3 for the
accelerometer. It is observed that the biases (mean) and variances change slightly
with time but the change between these two cases from di�erent days are relatively
small.

3.3.2 CoG Translated Wheel Speed Measurements
The wheel speed sensor measure the angular velocity of the wheel. As described
in section 3.2.5, these measurements are translated to the CoG to represent the
longitudinal speed of the vehicle. Only the corrected signal is later used in the filter.
Therefore it is motivated to analyse the corrected signal. The main attribute of
interest is the variance of signal in nominal conditions. This is the conditions when
the wheel is not slipping and the measurements can be used to update the speed of
the car.

When the car is standing still, the wheel speed sensors does not produce a noise as
with the IMU. Instead a constant 0 is output as a consequence of the tachometer.
This makes the characterization slightly trickier. The variance of the wheel speed
signal was evaluated using two techniques. First, a short section of a nominal log
file where the speed is constant was used to calculate the variance of each individual
wheels. As the data logs was very sparse on this data, only very short sections was
found as can be seen in Figure 3.5a. Secondly, the di�erence between the corrected
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wheel speeds and the reference velocity was used to calculate the variance of the
signal. The idea is that during nominal conditions, the wheel speed measurements
should relatively accurately measure the true speed which in this case is represented
by the OxTS measurement. In Figure 3.5b a histogram for the residual between the
corrected wheel speed and the OxTS measurement is plotted for roughly 20 seconds
of data corresponding to 2000 data points. The distribution is well represented by
a Gaussian distribution as indicated with the red bell-curve.
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Figure 3.5: Corrected wheel speed measurements and histogram of residual of
corrected wheel speed and reference OxTS velocity.

The variance was calculated for all four wheels using both techniques. The result,
presented in Table 3.2, points at that the variance in the corrected wheel speed
measurements is in the order of 1e-3.

Table 3.2: Variance of corrected wheel speed measurements in nominal conditions
using two di�erent techniques.

Technique 1 Technique 2
FL FR RL RR FL FR RL RR

Variance 0.95e-3 0.66e-3 1.03e-3 0.69e-3 1.12e-3 1.11e-3 0.74e-3 1.11e-3

3.4 Filter Base
The filter is the backbone of the velocity estimation. In this tool, the motion of the
vehicle is modelled and measurements from wheel speed sensors and IMU are fused
in order to produce an estimate of the states. An extended Kalman filter (EKF) was
used for this purpose. In the following section the kinematic equations used in the
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filter are described. Then three variations of the filter with slight variations of the
states are set up. The three variations are set up and tested to see if there are any
indication that some state combinations produce significantly better estimate.

In this thesis, the goal is to estimate the longitudinal speed, mainly in cases with
low lateral acceleration and velocity. This allows for simplifications in the modelling
of the vehicle. It is assumed that the lateral acceleration/velocity and vertical
acceleration/velocity are low. Therefore these states are disregarded in the filter.
The lateral and vertical velocities are also challenging to estimate in this case as
they are not directly measured. By reducing the number of states, the filter also gets
computationally lighter and has fewer parameters to tune. Though, only modeling
the longitudinal dynamics will have an impact of the filter performance in conditions
where the assumptions do not hold.

In the accelerometer model presented in equation (3.6), only the equation that
describes the longitudinal acceleration, ax, will be considered. Furthermore the
centripetal force will be excluded from this model as the components Êxvz, Êzvy

are assumed to be negligible. The Euler pitch angle, ◊, which includes both the
road inclination and chassis pitch angle, needs to be estimated to compensate for
the gravity component. Thus, at least vx and ◊ needs to be a state in the filter.
The gyroscope measures the angular rate of change of the vehicle orientation which
is related to the Euler angular rates according to equation (3.5). The change in
orientation (Euler angles) can be obtained by integrating the Euler angle rates. This
information is then used in the filters to achieve a better estimate the orientation of
the vehicle.

As a result of the Euler angular rate translation, it can be seen in equation (3.8)
that the Euler pitch-rate is dependent on the Euler roll angle and that the Euler
roll-rate is dependent on both Euler pitch and roll angle. As the Euler pitch-rate
depends on both the Euler roll and pitch angle, the Euler roll angle should also be
included as a state. Alternatively, it could be argued that the Euler roll angle for the
most part is small in low lateral acceleration scenarios and that sin(◊) ≥ 0 for small
angles. Then the Euler roll angle could be assumed to be fixed to 0 and removed as
a state. The kinematics of the vehicle can thus be summarized with the following
equations.

v̇x = ax + g sin(◊)
Ï̇ = Êx + sin(Ï) tan(◊)Êy + cos(Ï) tan(◊)Êz

◊̇ = cos(Ï)Êy ≠ sin(Ï)Êz

(3.8)

As described in section 3.2.5, the wheel speed measurements are pre-processed before
they are input to the filters. This processing consists of converting the angular
velocity to linear velocity and transforming the speeds to the center of gravity. The
transformed quantity is then treated as a direct measurement of the longitudinal
speed.

The filter can be set up in many configurations varying the states, inputs and mea-
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surements. Based on the equations in 3.8 three filters were set up and tested to see
if there are any indications of which states need to be modelled. The filters were
for simplicity named by the states they use. That is VxP , VxRP and VxV̇xP . All
filters have joint orientation and speed estimation combined. This is because the
states are related and it is assumed that combining the estimations will have positive
e�ects on the estimate as there will be cross-correlation that adjust the estimates.
Specifically, this means that the Euler pitch angle will partly be estimated based on
the integration of the Euler pitch rate, partly corrected in the gravity compensation
equation which is related to the speed and acceleration. Alternatively, the orienta-
tion and velocity estimation could be done separately in two filters. The kinematic
equations (3.8) are discretized using the forward Euler method.

3.4.1 Filter VxP

In this filter only the longitudinal velocity, vx, and the Euler pitch angle, ◊, is
considered as states. The Euler roll angle, Ï, is assumed to be small and is neglected.
The acceleration is not modelled as a state but is together with the pitch-rate input
to the filter in the prediction step. This limits the filtering of the acceleration
measurement but reduces the delay in the measurement as the measurement update
is not lagging one step behind. The noise of the gravity corrected acceleration
measurement is assumed to be white and zero mean which would cancel out when
integrated over time. The process model equations for filter VxP is presented in
equation (3.9) and the Jacobian in equation (3.10).

vxk+1 = vxk + Ts (axk+1 + g sin(◊k))
◊k+1 = ◊k + TsÊyk+1

(3.9)

F =
C

1 Tsg cos(◊k)
0 1

D

(3.10)

The wheel speed measurements are used in the measurement update. As this is
considered a direct measurement of the longitudinal speed the update is linear.
The measurement matrix for one wheel measurement, H , is presented in equation
(3.11). If several measurements of the wheel speeds are used, multiple measurement
matrices can be stacked on top of each other.

H =
Ë

1 0
È

(3.11)

3.4.2 Filter VxRP

The filter VxRP di�er from VxP in that the roll angle, Ï, is included as a state. As
the lateral velocity and acceleration is not modelled, the idea is that the roll angle
can be used to compensate the pitch estimate for lateral dynamics. This should
improve the estimate as these dynamics are modelled. Though, the Euler roll angle
is not directly measured or directly related to the velocity as with the pitch angle.
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This might be make the estimate o�set at times which in turn would have an e�ect
on the other states. The process model equations for the filter are presented in
equation (3.12) and the Jacobian in equation (3.13).

vxk+1 = vxk + Ts (axk+1 + g sin(◊k))
Ïk+1 = Ïk + Ts

1
Êxk+1 + sin(Ïk) tan(◊k)Êyk+1 + cos(Ïk) tan(◊k)Êzk+1

2

◊k+1 = ◊k + Ts

1
cos(Ïk)Êyk+1 ≠ sin(Ï)Êzk+1

2
(3.12)

F =

S

WWWU

1 0 Tsg cos(◊k)
0 Ts

1
Êyk+1 cos(Ïk) tan(◊k) ≠ Êzk+1 tan(◊k) sin(Ïk)

2
+ 1 Ts

(Êzk+1 cos(Ïk)+Êyk+1 sin(Ïk))
cos(◊k)2

0 ≠Ts

1
Êzk+1 cos(Ïk) + Êyk+1 sin(Ïk)

2
1

T

XXXV (3.13)

As for the filter VxP , the measurement model is linear and the measurement matrix
for one wheel speed measurement is described by equation (3.14).

H =
Ë

1 0 0
È

(3.14)

3.4.3 Filter VxV̇xP

The third filter, VxV̇xP , disregards the roll motion but models the linear acceleration,
v̇x, as a state. In this configuration, the acceleration, ax, is not input in the prediction
step but is instead used as a measurement in the update step. In the prediction
step the acceleration is modelled as a slowly varying Gaussian process. With this
setup, the acceleration measurement will be filtered before it is integrated in the
prediction step. Depending on the tuning of the filter, the filtering properties of
the Kalman filter will make the linear acceleration state have a slight lag as it is
filtered. Compared to the other filters this might a�ect velocity estimation during
dead-reckoning as the acceleration is not input directly in the prediction step and
runs with a slight delay. The process model equations are described in equation
(3.15) and the prediction step is in fact linear for this filter. The state transition
matrix, A, is presented in equation (3.16).

vxk+1 = vxk
+ Tsv̇xk

v̇k+1 = v̇xk

◊k+1 = ◊k + TsÊyk+1

(3.15)

A =

S

WU
1 Ts 0
0 1 0
0 0 1

T

XV (3.16)

The measurement update for this filter is non-linear with the measurement model
equations presented in equation (3.17).
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vwhlk+1 = vxk

axk+1 = v̇xk ≠ g sin(◊k)
(3.17)

The Jacobian for a single wheel speed measurement and accelerometer update is
presented in equation (3.18). Based on the number of wheel speed measurements,
the first row in the matrix can be repeated accordingly.

H =
C

1 0 0
0 1 ≠g cos(◊k),

D

(3.18)

3.4.4 Filter Tuning and Initial Conditions
A Kalman filter is tuned with the process and measurement noise covariance matrices
Q and R. As mentioned in section 2.1.3, a high signal to noise ratio, |Q|

|R| , will make
the filter respond quickly to changes in the measurements and a low signal to noise
ratio will make the filter respond slower to changes in the measurements. The
process noise matrix Q is not known and has to be tuned. The tuning is mainly
made such that the speed estimate does not respond too quickly to noise or abrupt
changes in the wheel speed measurements which frequently happens when driving
on a slippery surface. First the measurement noise covariance, R, for the wheel
speed measurements for all filters is tuned according to the measured variance in
the corrected wheel speed signal presented in section 3.3.2 (roughly 1e ≠ 3). Then
process noise covariance, Q, was by trial and error tuned to a value of 6e ≠ 6.
This yields a low signal to noise ratio and the estimated speed is smoother than
the wheel speed measurements but still follows the wheels speeds. The process
noise covariance for the pitch and roll states are set to a low value (1e ≠ 8) as
the input gyroscope measurements are integrated and were known to have a low
variance from the measurements in section 3.3. For the VxV̇xP filter, the tuning of
the noise covariance for all states is kept the same as the VxP filter. However, the
measurement covariance for the ax has been set to achieve a slight low pass filtering
e�ect which di�er from the other filters where the accelerometer readings are input
directly to the process model.

The initial prior state values for the filters has been set as the first wheel speed
measurement (and first accelerometer value for VxV̇xP filter) and 0 for the orientation
states. The initial prior state covariance has been set to the process noise covariance
but with 10-100 times larger values. This is to describe that the initial values are
uncertain and to let the filter converge to the measurements initially.

3.4.5 Handling of O�set-Biases
As mentioned in section 3.3, both gyroscope and accelerometer sensors are contam-
inated by a slowly varying o�set bias. The online bias estimation problem is out of
scope for this thesis as mentioned in section 1.4. Though, if the biases are not con-
sidered, the integration of the o�set signals will introduce errors in the estimations
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and greatly reduce the dead-reckoning capabilities. In this thesis a simplified bias
estimation method is used where only the gyroscope bias is directly compensated
for.

In the beginning of the data-log files, the vehicle is standing still for a few seconds.
As a part of the pre-processing step, the mean of the gyroscope measurements are
calculated for the time that the car is standing still. As the vehicle is still, it is
assumed that the gyroscope measurements should be zero mean. If not, the mean
is a direct measurement of the o�set-bias. The calculated mean is then used to
compensate all gyroscope measurements for the rest of the file. This bias estimation
is only accurate for a short time-period as the o�set-bias is changing with time and
temperature. Though, the data log-files used are short and only contain roughly
one minute of data each. Therefore it is assumed that the constant bias-estimation
is a good approximation of the o�set-bias. The bias estimation is also done for each
log-file individually.

The longitudinal accelerometer used in the Kalman filter is also contaminated by
an o�set-bias. This bias is not directly compensated for as with the gyroscope. The
o�set-bias and the gravity-component in the accelerometer readings are not distin-
guishable unless the Euler pitch angle is known. Thus, the mean of the measured
accelerometer does not represent what the sensor bias is. As the longitudinal accel-
eration is gravity compensated in the filter solely using the Euler pitch angle and
that the speed and pitch-orientation estimation is made jointly, the accelerometer
o�set will be included in the Euler pitch-estimate according to equation (3.19).

v̇x = ax + g sin(◊true) + Bias ≥ ax + g sin(◊true + ◊bias) ≥ ax + g sin(◊est) (3.19)

This works because firstly the joint estimation of Euler pitch and velocity introduces
cross-correlations in the Kalman gain thus making the wheel speed update influence
the Euler pitch angle estimate, secondly the gyroscopes are bias compensated such
that the integration of the Euler pitch and roll rates does not drift as fast as when
not compensated. The filter needs some time with updates before the Euler pitch
angle estimate converges to the o�set angle estimate that includes the accelerometer
bias. This means that the Euler pitch estimate is o�set and does not accurately
describe the true pitch angle, but it is only used for compensation of the longitudinal
accelerometer in the filter. It is only the longitudinal speed that is the quantity of
interest to accurately estimate. With this setup, the o�set-bias of the accelerometer
is indirectly compensated for which improves the dead-reckoning capabilities.

3.4.6 About Dead-Reckoning
Assuming that all wheels slip severely, the wheel speed measurements cannot be
trusted and speed estimate needs to be entirely based on dead-reckoning. In these
situations, the accuracy in the speed estimate is highly dependent on the dead-
reckoning process which in turn is dependent on several factors. The main factors
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are the initial o�sets in the state estimates and the errors in the quantities that are
being integrated. In the case of dead-reckoning, the speed estimate is based on the
gravity-compensated accelerometer measurements where the gravity compensation
is in turn based on the Euler pitch estimate which during dead-reckoning completely
relies on dead-reckoning of the gyroscope measurements. The chain of the dependent
states are apparent.

Assuming that the fixed gyroscope compensation is valid, i.e. that the initial bias
has not drifted, and that the vehicle is in nominal conditions where the Euler pitch
has converged to an angle which includes the accelerometer bias as mentioned in
section 3.4.5, then the current state estimates are good for providing dead-reckoning
performance. However, if the filter is fed wheel speed measurements from a slipping
tyre, the state estimates will soon degrade. An initial o�set in the speed estimate is
not the main concern with the current filter setup (unless it is very large). This is
because when dead-reckoning, the danger is that an o�set occurs in the integrated
quantity, i.e. the error in the corrected acceleration. The initial speed o�set can
limit how long the dead-reckoning can be sustained before the process drifts outside
a certain error limit. However, the o�set in the integrated acceleration builds up
an additive speed error where the speed in the error build up, i.e. the drift-rate,
depends on how large the o�set is. Thus, to achieve a good dead-reckoning process,
the initial detection of slip becomes crucial.

3.4.7 Comment on Acceleration Estimate
In section 3.5 it is mentioned that the di�erence between the wheel acceleration and
vehicle acceleration is used as an indicator of slip. In section 3.1 it is mentioned
that a weight is assigned to the fastest or slowest wheel speed measurement based
on if the vehicle is accelerating or decelerating. However, as the acceleration is not
a state in two of the filters presented, the acceleration is not an available quantity.
The linear vehicle acceleration is therefore calculated in an alternative way. As the
wheel acceleration and vehicle acceleration is compared, the quantities should have
the same phase such that there’s not a delay in between the signals. The wheel
acceleration is calculated by low-pass-filtering the numerical derivative of the wheel
speed measurements. Therefore, the vehicle acceleration is calculated by low-pass-
filtering the accelerometer measurements and then gravity-compensating this with
the calculated Euler pitch estimate.

3.5 Ways to Detect Positive Slip
In order to make a slip detection system it is important to be able to accurately
distinguish whether the wheels are slipping or free-rolling. Therefore an investiga-
tion has been made to identify and break down di�erent indicators of slip using the
available signals. Practically, it turns out that it is a hard problem to deterministi-
cally detect slip. The di�culties do not only lie in detecting the initial slipping of
the wheel but also being able to track the continuous slipping over time and when
the wheels come back to free rolling. In the search for indicators of slip, the goal
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of keeping the speed estimate within ±4% of the true speed has shaped the inves-
tigative process. E.g. with this condition, trusting a wheel that is slipping with one
or two percent would not be needed to be detected as slip as the measurement is
within the limits but the wheel is still slipping.

If we start by breaking down what’s happening with the wheel. The wheel itself
has a direction of heading, angular speed, angular acceleration and higher order
angular dynamics. Slip can be defined as when there is a speed di�erence between
the linear speed of the wheel and the vehicles speed relative the ground at the road-
tyre contact point. If the linear speed of the wheel is higher than the car, the tyre
spins (positive slip), and if it is lower the tyre might lock (negative slip). At the
point of slip the friction between the tyre and ground surface cannot hold the force
applied to the tyre which can be either powertrain or brake torque. In Figure 3.6a
a simplified model of the wheel is illustrated with the mentioned quantities marked.
In the following sections di�erent indicators of positive slip that were identified and
investigated are presented and discussed. This quantity is only used in acceleration
comparison and to determine if the vehicle is accelerating or decelerating.

(a) Simple model of a wheel. (b) Example of drift and speed di�erence
between slipping wheel and drifted esti-
mated speed.

Figure 3.6: Simple model of wheel (a) and example of drifted speed estimate in
slip scenario (b).

3.5.1 Wheel Speed
The wheel speed measurement on its own is not su�cient to detect if the wheel
slips. E.g. the measurement 10 m/s doesn’t provide enough information to tell if
the wheel is slipping. However, if the true speed of the car is known it is possible to
calculate the absolute di�erence or the relative di�erence between the wheel speed
and true speed, also known as the slip ratio. Theoretically, the slip ratio could be
used to accurately determine how much the wheel is slipping. The problem lies
in that the true speed is not known and is estimated online. The wheel speed and
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speed estimate comparison is highly dependent on that the current speed estimation
is accurately representing the true speed of the car. This is something that is hard
to guarantee in severe all-wheel slip conditions.

As mentioned in the section 3.4.6 the dead-reckoning process is mainly a�ected by
the initial o�sets of the states and the errors in the states that are integrated. In
the case of good initial slip detection and a relatively short slip the dead-reckoning
process should provide a good estimate of the speed. Then the di�erence between
wheel speed and estimated speed should be fairly accurate. If the speed estimate on
the other hand has drifted from the true speed (e.g. by late slip detection or drift
in dead-reckoning), the slip ratio will not be accurately representing how much the
wheel is slipping. This is illustrated in Figure 3.6b.

For example, if the current estimate has drifted to 3% slower than the true speed
and the current wheel speed measurement is 2% faster than the true speed. The
di�erence in terms of true speed would be 5% and slightly higher compared to
the current estimate. In this case it would be hard to know that the wheel speed
measurement has a better estimate than the current estimation. Another example
is when the estimate drift to 3% above the true speed and the wheels slip by 5%.
Now the di�erence is only 2% in terms of the true speed, but the wheel speed
measurement is outside the 4% limit. This makes it very hard to tell whether the
measurement is good or not when compared to the current estimate.

Another point in regards of using the speed di�erence or slip ratio as a hard threshold
is that it might lead to a critical flaw. Assume that a threshold is set such that the
di�erence between the current estimate and the wheel speed measurement needs to
be within a certain limit in order for the filter to trust the wheel speed measurement.
If the estimate by some reason drifts far enough, the criteria would never be fulfilled
and thus an infinite loop is created where no wheel is trusted and the estimate drift
further away.

3.5.2 Wheel Acceleration
The wheel acceleration can be used on its own to detect slip. By using knowledge
about the physical limitations of the vehicle it is possible to rule out unreasonable
measurements of the car. E.g. if a car cannot accelerate/decelerate with more than
± 1g then the tyre can be assumed slipping if it has higher acceleration. A problem
with a threshold like this is that it is fairly limited to extreme slip situations where
the wheel rapidly looses traction. This is not always the case as the wheel might
slowly lose traction and increase the slip. Instead, if the longitudinal acceleration
of the vehicle is known, a threshold could be set to relate the acceleration of the
car and the wheels. This way, it is possible to more accurately detect when the
wheels slip as the acceleration limit can be set with a narrower limit. This threshold
would activate faster than the one relating to the max theoretical acceleration as
the current acceleration is known.
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It’s important to emphasize that depending on the tuning of the acceleration di�er-
ence threshold, the threshold might activate even though the wheel is not slipping.
It could be that the current acceleration of the wheel is momentarily higher than the
car because of noise in the measurements or that the wheel for a short time acceler-
ates faster than the car because it previously was slower for some reason. Though,
the acceleration di�erence threshold does give an indication that the wheel speed is
changing relative the vehicle speed which is an early indication of that wheel might
be slipping. Therefore it might be advantageous to have a relatively low threshold
such that indications of slip can be detected early.

Another problem with using acceleration as a slip detection is that in a slip-situation,
the wheel is not accelerating at all times. Initially in an slip-event the acceleration
might be high, but after some time the wheel speed tends to "hover" above the true
speed but it is still slipping, see Figure 3.7a. Around this point, the acceleration is
rather low and might coincide with the acceleration of the car, making the threshold
inactive illustrated in Figure 3.7b. Therefore it is hard to track the wheel slip only
based on this threshold.

(a) Example of acceleration scenario, ve-
locity plot. The wheel speed (upper
graph) increases faster (higher accelera-
tion) than the true speed (lower graph).
After some time the speed di�erence is
constant meaning that the wheel is still
slipping but the acceleration di�erence is
low.

(b) Example of acceleration scenario, ac-
celeration plot. The wheel speed (upper
graph) increases faster (higher accelera-
tion) than the true speed (lower graph).
After some time the speed di�erence is
constant meaning that the wheel is still
slipping but the acceleration di�erence is
low.

Figure 3.7: Example of wheel slip with initial acceleration di�erence between wheel
and vehicle and which ends with a constant o�set-slip.
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Theoretically, higher order of wheel angular dynamics could be used to determine
the state of the wheel. The second derivative of the velocity could e.g. be used to
detect when the acceleration is increasing and decreasing. This information might
be tricky to accurately calculate as the wheel speeds are rather noisy and derivation
of the higher dynamic quantities introduces noise. The derivatives could for example
be estimated by modelling the wheel as a higher order Taylor expansion in a Kalman
filter. Though this was not further investigated in this thesis.

3.5.3 Powertrain Torque
The data logs from the test cars included powertrain torque signals for front and rear
axle. These signals provide information about how the wheels are propelled and can
also indicate when certain events as slip occur. The characteristics in torque signals
from combustion and electric engines di�er. An electric engine has a quicker torque
response in comparison to a combustion engine. This is a result of the internal
inertia of the engine and lag in the combustion. In the following section two ways
of utilizing the powertrain torque for detection of slip are presented.

Max Torque Estimation

At the point of excessive all wheel slip, all tyres are saturated meaning that the
tyres utilize all available friction. According to equation (3.20), the propelling force
of the vehicle, Fx, is equal to the normal force for all wheels, Fz, times the friction
µ. Thus, the maximum utilized friction for the car or the average friction for each
wheel can be calculated according to equation (3.21) where M is the total weight of
the vehicle.

Fx = Mv̇x Æ Mgµ = Fzµ (3.20)

µ = ax

g
(3.21)

As described in [13], the maximum utilized friction estimate can be used to estimate
the theoretical maximum torque that can be applied for the rear axle which in turns
can be compared to the measured powertrain torque. This can then be used indicate
when the wheel is likely to slip as more torque is applied than can be supported by
the friction. The the theoretical maximum torque can be estimated with the max
utilized friction estimate, the axle load and the wheel radius according to equation
(3.22). The longitudinal load transfer needs to be included in the axle load.

Tmax = Fz,axleµrwheel, (3.22)
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When testing this criteria, it was found that the indicator is somewhat inconsistent
for the larger hybrid vehicle. In cases with clear severe excessive slip, as shown
in Figure 3.8b, the criteria could provide a good indication that the wheels are
slipping as the applied powertrain torque exceeds the estimated max torque. In
other cases when not all wheels are slipping at the same time, the criteria was
sometimes activated, sometimes it did not. Theoretically, if the friction was known
for each wheel the criteria could be used on individual level by taking the current
load transfer into account. Though, as the powertrain torque is provided per axle,
in this thesis the criteria was only looked at per axle.
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(a) Wheel speeds and reference speed in
an excessive all wheel slip scenario.
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(b) Example where applied powertrain
torque on rear axle exceeds the estimated
max torque.

Figure 3.8: Example of max powertrain torque estimation criteria.

Powertrain Torque Rate

When investigating the powertrain torque signals it was found that before the wheels
slipped, the torque tended to increase rapidly. This can alternatively be expressed
as that before the wheel slip the powertrain torque rate tended to be high. In Figure
3.9 the phenomenon is shown. It is believed that when the tyre starts to slip, the
torque applied exceeds what can be sustained by the friction. The torque peaks
were found to align well with when slip occurred for the hybrid vehicle data logs.
However, it could be that the peaks are a result of how the vehicle was driven and
that the peaks actually is a result of that the throttle was increased rapidly to induce
slip.

It was also found that when the wheels was in slip and the powertrain torque rate
was very low, i.e. the torque dropped fast, the wheels tended to return to free-
rolling. This phenomena is also showed in Figure 3.9. It is believed that when the
torque drops fast, the wheels are not propelled as much by the engine and thus the
wheels should be allowed to come back to free-rolling. It could also be that some
system activates when the throttle is let go.
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Rear powertrain torque rate

Figure 3.9: Rear powertrain torque rate for an excessive wheel slip example. A
clear peak is visible in beginning of the slip-event and a dip is visible in the end of
the slip-event.

However, the torque-rate indicator is prone to errors in that for example the torque
rate could be high when the vehicle accelerates hard in nominal conditions even
though the wheels does not slip. This could be ruled out by combining this criteria
with another criteria as for example looking at the wheel acceleration as mentioned
earlier. Also, in the case of the wheels returning from slip while the torque is not
significantly dropped the rapid torque drop criteria would not detect that the wheels
are back.

3.5.4 Relating Wheel Speeds and Estimate Over Time
Variance of Residual of Estimated Speed and Wheel Speeds

It was found that based on the characteristics of the di�erence between the estimated
speed and the measured speed it is possible to get indications on whether the wheels
are slipping or not. When a wheel is not slipping it provides relatively accurate
measurements of the true speed in terms of noise and absolute speed, assuming
that the radius is known and that the wheel speeds are corrected for turning of the
vehicle. However when slipping, the measurements gets noisier and drift away from
the true speed. By observing the speed di�erence between the true speed and the
measured wheel speed over time it is possible to see how much the error is changing.
As the exact amount of drift in the current speed estimate at a given point is not
known, the absolute and relative speed di�erence might not give a good indication if
the wheel is slipping or not, as mentioned in section 3.5.1. Therefore a measurement
of how much the speed di�erence is changing is to calculate the variance of the error
for some past time instances. When the wheel is not slipping, the variance is low and
when the wheel is slipping the variance is higher as the wheel speed measurement is
nosier and the speed is changing. This principle was found to be applicable to the
estimated speed as well. This is because the filter is tuned such that the estimated
speed is to a large extent is based on the integration of accelerometer making the
estimate not quickly respond to the noise in the wheel speed measurements, as
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explained in section 3.4.4. In Figure 3.10 an example of this is shown.

35 35.5 36 36.5 37 37.5 38

Time [s]

3

4

5

6

7

8

9

10

11

12

V
e

lo
ci

ty
 [

m
/s

]

FL

Ref.

Ref.+-4%

(a) Example of slipping front left wheel
and reference speed. Prior to 35 seconds
and around second 37, it can be seen that
the wheel is not slipping.
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(b) Speed di�erence between the true
speed and wheel speed.

35 35.5 36 36.5 37 37.5 38

Time [s]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

V
a

ri
a
n

ce
 o

f 
e

rr
o

r 
fo

r 
la

st
 2

5
 t

im
e

 s
te

p
s

(c) Variance of the speed di�erence. It
can be seen that the variance is lower be-
fore 35 seconds and around 37 seconds
when the wheel is not slipping.

Figure 3.10: Example of how the variance of the speed di�erence can be used to
indicate slip.

This indicator of slip might as well as the previous presented indicators fail to detect
slip at times. Depending on how the residual evolves over time the criteria might
falsely deactivate. For example situations where the wheel speeds slowly drift away
from the true speed, the error variance could be low. Or if the wheels slip with a
constant velocity o�set to the true speed, then the error variance could also be low.
The size of the interval for the residual plays a role for how the indicator detects slip.
A short interval would make the indicator be able to detect when the variance is low
faster with an increased risk of the variance being low for the short amount of data.
Conversely, a long interval would make the unnecessarily response slow. However,
these flaws could possibly be corrected for by additional slip indicators.
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Variance Between Wheel Speed Measurements

Another indicator of slip was found looking at the the di�erences of the individual
wheel speed measurements. In nominal conditions the wheel speed measurements
provide similar measurements that are closely related to the true speed. When one
or several wheels are slipping, the di�erence between the wheel speed measurements
for the given time becomes relatively large. By looking at how the variance of the
wheel speed measurements evolve over time it is possible to identify when all wheels
are back at traction. In Figure 3.11 an example is shown. In the beginning and end
of the example, the wheels are not slipping. At those points the variance between
all wheel speed measurements are relatively low for some time. If the variance is
observed to be low for some time interval, the wheels can be assumed to be not
slipping. Theoretically, if all wheels slip with the same amount and with relatively
low noise for a certain time instance this criteria could fail. Therefore the variance
threshold should be set low and should be needed to be fulfilled for a certain amount
of time before assuming that the wheels are back.
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(a) Wheel speed measurements during
slip and reference speed.
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(b) Variance between the speed measure-
ments. It can be seen that the variance
between the wheel speeds is low when the
wheels are not slipping.

Figure 3.11: Example of variance between the wheel speeds during slip.

3.5.5 Vehicle System Signals
In the data-log files, flags from the vehicles safety systems as TCS, ABS and yaw-
stability programs was included. The flags indicate when di�erent systems are
active. The main flag that was found useful was the engine TCS for the front and
rear engine. Though, it was not enough to solely rely on the flag for slip detection
in that it was only activated for severe slip and that the activation of the flag was
slow compared to other slip indicators mentioned in this section. In general the
delay in activation was roughly up to one second when the vehicle experienced slip
in acceleration. It is believed to be a result of that the system has to first detect slip
and then activate before it can send out the flag which is then logged. The main
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application for the TCS signal was found to be an alternative view of the current
state of the vehicle. If the TCS is activated, probably the wheels are slipping.

3.5.6 Summary of Ways to Detect Slip
To summarize, several di�erent indicators of slip were investigated and presented,
see point-list below. When analysing the indicators one by one it becomes apparent
that it is hard to find a single indicator or threshold that solely can be used to detect
whether a wheel is slipping or not. Therefore several indicators need to be combined
and assumptions to be made in order to successfully detect and isolate the wheels
during a slip-event. One way of looking at this is to divide the slip-event into three
stages, identification of initial slip, continuous tracking of the slip and identification
of when the wheels come back. In section 3.6 two concepts for estimating the speed
and detecting slip are presented. These concepts utilize the indicators presented
in this chapter and uses some further logic and assumptions to identify slipping
wheels.

• Slip ratio

• Wheel acceleration

• Acceleration di�erence between wheel and vehicle

• Max torque estimation

• Powertrain torque rate

• Variance of residual of estimated speed and wheel speeds

• Variance between wheel speed measurements

• Vehicle system flags (Engine TCS)

3.6 Slip Detection and Wheel Selection Concepts
A slip detection system could be set up in very many ways combining di�erent meth-
ods, logic and indicators of slip. Based on the di�erent indicators of slip discussed
in section 3.5, two concepts for detecting slip and selecting which wheels to feed the
filter with have been constructed. The two concepts presented in this section are
two possible ways of how a slip detection system could be set up. The concepts are
specifically made for detecting positive slip. Concept 1 was developed first out of
the two. It is based on assuming slip between certain events occurring. Concept 2
is instead completely based on detecting slip at every time instance and does not
lock a slip assumption based on di�erent events.
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3.6.1 Concept 1
Concept 1 has been developed with the idea of detecting slip individually on each
wheel and then feeding the wheel speed measurements related to all wheels that are
not detected to slip to the filter. The concept is based on deterministically assuming
that a wheel is slipping in between certain slip-indicators are activated. In section
3.5 di�erent indicators of slip were discussed and presented. It was observed that a
high powertrain torque rate (sudden increase increase of torque) could be seen as an
indicator of slip. With slip detection concept 1 this is assumed to be true and set as
the base principle for detection of slip. Though, as the powertrain torque is supplied
per axle this indicator is not enough to determine on each wheel individually whether
it is slipping or not. Therefore the torque rate indicator is complemented with the
indicator that monitors the di�erence between wheel and vehicle acceleration. With
this combination of indicators it is possible to detect the initialization of a slip-event
for individual wheels. When both indicators are activated within a short time-period
of 0.2 seconds, a slip-flag is raised for the particular wheel. The slip flag indicates
that the wheel is slipping. When the flag is raised, it can only be cleared by a set of
slip-release events when the engine TCS system is not activated. Slip is also assumed
if the TCS activates but the slip-flag is not activated. As mentioned in section 3.5,
the TCS-flag in the logs are raised with a delay and this slip-flag activation is used
a back-up if slip is not successfully detected for some reason.

The slip-release events are defined as the following events:

• High powertrain torque decrease rate

• Low torque and acceleration di�erence between wheel and car

• After hard braking

The first and main slip-release event is based on when a high powertrain torque
decrease rate is observed. As mentioned in section 3.5 it was observed that when
the powertrain torque is subject to a sudden decrease (a high decrease rate) the
wheels tended to come back to free-rolling after a short delay. This was used as
one of the slip-release events. When slip is released, the trust in the wheel speed
measurement is faded in with a linear change of the measurement noise covariance.
This is to get a smoother switch from dead-reckoning and to the trust in the wheel
speed measurements.

If there was no high torque decrease rate, the slip flag would not be decreased.
Therefore a second slip-release event is added to complement the first. When the
powertrain torque for the axle in question is low for a certain time and the di�erence
between the wheel acceleration and vehicle acceleration is low, it is assumed that
the wheel is not slipping anymore. This is because when a low amount of torque is
applied the wheel it is less likely that the wheel is slipping. To make this criteria
more accurate it is combined with the acceleration di�erence indicator. Thus, the
slip is not released if the acceleration between the car and wheel still is large.
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The last slip-release-event is based on an assumption that after braking, the wheels
should not be positively slipping. As the slip-detection is active at all times, it could
also be activated during braking. As mentioned in section 3.1, the speed estimation
strategy specifically used when braking does not depend on which wheels the slip-
detection system determine as slipping. This means that any slip activation during
braking doesn’t a�ect the speed estimation. The strategy specific for braking is
explain in detailed in section 3.7. However, when the vehicle has been braking for
at least one second it is assumed that the wheels should not be a�ected by excessive
slip. Thus, the slip flag is released after such an event.

During long accelerations in slippery conditions, it was found that after initially slip-
ping, the rear wheels tended to regain traction during the acceleration when higher
speed was reached. In many cases the slip flag was initially locked but remained
locked throughout the acceleration as none of the slip-release-event occurred. This
is partially because the torque was not dropped during the acceleration and if it was
dropped the TCS might hinder the slip-release. Also, the torque level is generally
not low during acceleration. To make use of the rear-wheels that regained traction,
a logic was set up to detect this. The logic is set such that if there is no engine TCS
activated and that the wheel have the slip flag activated for 3 seconds or more and
that the acceleration di�erence between the wheel and vehicle is low and that the
slip ratio is less than 6% then the wheel speed measurement on the particular wheel
is updated with even if the slip flag is raised.

Additionally, a safety feature was added to ensure that the estimate does not drift
positively by an uncontrolled amount in the case that the dead-reckoning process
would fail for some reason. If the estimated speed is more than 1 m/s faster wheel
speed, during all wheel slip, the slowest wheel is set to be trusted. This is supposed
to work as an upper limit for the speed estimation such that the estimated speed
does not provide a considerably faster speed than the slipping wheels if something
in the dead-reckoning process fails.

All tuning of the thresholds was made with trial and error for some data files from
the hybrid vehicle. The threshold for the front and rear powertrain torque rate for
the activation of the slip flag is set to 650 Nm/s and 950 Nm/s respectively. The
powertrain torque rate for the slip-release is set to -950 Nm/s and -750 Nm/s for
the front and rear respectively. The levels are set di�erently for the the front and
rear axle as they were found to have di�erent characteristics. The threshold for the
wheel and car acceleration di�erence was to 0.8m/s2. The low-torque limit is set to
150 Nm for 0.5 seconds. At the same time as the acceleration di�erence is below
the 0.8 for same time.

3.6.2 Concept 2
Slip detection and wheel selection concept 2 was developed after concept 1 was
developed. This concept does not include any slip-lock assumptions as with concept
1. Instead the slip detection is made individually for every wheel in every time step.
This allows for a more dynamic slip detection that theoretically can pick out short
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sections where the wheels are not slipping and update the speed of the estimate
with the detected non-slipping wheels. The main idea of the concept is to provide
all wheel speed measurements to the filter if no slip is detected and if any wheel
is detected slipping only the slowest of the non slipping wheels is fed to the filter.
Only the slowest wheel is used to test if this is a good approach or not.

As discussed in section 3.5, during slip the acceleration of the wheels di�er from the
acceleration of the car. The speed of the wheels also di�er from the true speed of
the car which makes the variance of residual between the two larger. It’s also known
that during severe slip, the wheel speeds are much faster than the true vehicle speed.
The slip detection of concept 2 is based on these observations. The following three
indicators of slip, which are discussed individually in section 3.5, are combined in
order to form a way of detecting slip throughout a slip-event.

• Variance of residual of estimated speed and wheel speeds

• High acceleration di�erence between wheel and car

• Slip ratio

The indicators are set up to complement one another. If any of these indicators
are triggered, the wheel in question is seen as slipping. The variance of the residual
indicator is the main indicator in this concept. As long as the estimated speed follows
the "shape" of the true speed of the car (there’s almost always an o�set between the
estimated speed and true speed), this indicator can detect slip of a wheel as long
as the wheel speed is changing su�ciently much relative the estimated speed. The
acceleration indicator can detect when the wheel is accelerating di�erently relative
the vehicle. Thus, this indicator can complement the variance-indicator in order to
correctly detect the initial identification of slip. The slip ratio is added to keep track
of the relative speed error of each wheel. In the case of a wheel spinning up but then
following the speed of the car with a constant o�set, which was found common, then
the slip ratio can be used to rule out wheel speed measurements with unreasonable
high slip ratio.

When positive slip is detected on one or more wheels, the vehicle is assumed to
be in a slip-situation. In these situations it is decided that only the slowest non
slipping and non braking wheel should be trusted. The reason for why only the
slowest wheel is trusted is because in a slip-situation, the wheels tend to be faster
than the car. Thus, the slowest wheel should be the most representative speed
measurement. The reason for why braking wheels are excluded is because it was
found that individual wheels were braked at times which made the measurements
relatively slow and sometimes not very reliable. Thus, it is tried to avoid these too
slow measurements.

In the case of dead-reckoning, the estimate is sensitive to noise and o�sets in the
states as this can cause the estimate to drift. This will a�ect the estimate and
also how well the indicators work. Especially the slip-ratio and the variance of the
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residual indicator might be sensitive to an inaccurate speed estimation. E.g. if the
dead-reckoning drifts positively for some reason, the slip-ratio might be locked indef-
initely. In order to avoid indefinite-slip lock, two additional features where added.
Firstly, the indicator presented in section 3.5 which monitor the variance in-between
the individual wheel speed measurements over a time-period was added. The idea
is that if the variance between the wheel speed measurements are very low for a
certain time, it is very likely that the wheels are stable and are not slipping. When
this is detected, any slip detection by the earlier mentioned indicators are overruled
and it is assumed that all wheels are free-rolling. Secondly, in the case that the
estimated speed is for a consecutive time period faster than any of the wheel speed
measurements during an all wheel slip sequence, the slip-detection for the slowest
wheel is released. This is added as a safety feature such that if something goes wrong
in the dead-reckoning process the estimate does not drift away to infinity.

All tuning of the thresholds was made with trial and error. The threshold for the
variance of the residual is set to 0.005 (m2/s2) and is calculated for the residual of
the previous 0.25 seconds. The variance threshold is set relatively low and should
only allow the slip-detection to trust the wheels if the residual is changing relatively
little. The time interval for which the variance is calculated is important in that it
determines how fast the criteria can detect slip and free-rolling. A longer interval
would mean that the residual would need to be low for a relatively long time before
no slip is decided. This would make it rather slow in detecting when wheels are back.
On the other hand, a too short interval would make it relatively easy to indicate
that the wheels are back. In turns this could make the criteria indicate no slip too
fast when the wheel actually is slipping. The threshold for the wheel acceleration
di�erence indicator is set to 0.8m/s2 as with concept 1. The threshold for the slip-
ratio indicator was set such that slip was detected if the wheel speed measurements
di�ered by the max of either 0.5 m/s from the current estimated speed or 4% from
the estimated speed. This was because when traveling at slow speeds, naturally
the relative error becomes rather large. Furthermore, the threshold for the variance
in between the wheel speed measurements is set to 0.01 and the variance needs to
be consecutively below this value for 0.2 seconds for the indicator to activate. The
threshold of the when the estimate is faster any wheel speed was set such that it
activated when the estimate is consecutively faster than any of the wheels by 1 m/s
for 0.1 seconds when all wheel slips.

3.7 Speed Estimation Strategy in Braking
When braking, the wheels speeds tend to be slower than the true speed of the car.
Though, unless the wheels are braked aggressively the wheels speeds still represents
the true speed of the car relatively accurately as can be seen in Figure 3.12a. In
hard braking the wheels tend to lock for a short amount of time. This is happens
as the applied brake force exceeds the road-tyre friction. All modern cars utilizes
ABS-systems when braking heavy. These systems build on the idea of keeping the
tyre at the friction limit to maximize the braking force that can be applied. The
ABS works in cycles where the wheel is braked until it locks and then for one or
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several wheels the brake force is reduced such that the wheel momentarily comes
back to free-rolling. This is so that the ABS system can update what the current
speed is and make decisions on how much brake force should be applied. The ABS-
cycles becomes very clear when observing the wheel speed measurements during
heavy braking as shown in Figure 3.12b.
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(a) Normal braking, the wheel speeds are
slightly slower than the reference speed of
the car.
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(b) ABS-braking, the ABS-cycles are vis-
ible in the plot.

Figure 3.12: Examples of wheel speeds in normal and ABS braking

When estimating the speed of a vehicle, unreliable and faulty wheel speed measure-
ments should be avoided. With the knowledge that the wheel speeds tend to be
slower and lock when braking it was decided that a separate logic for the update
step should be used in braking conditions. To successfully do this it is needed to
define how to detect that the car is braking. It turned out that defining when a
vehicle is braking and decelerating is not very easy. Sometimes individual wheels
are braked when the car is driving to counter act slip and stabilize the car. There-
fore one wheel braking is not enough to determine that the car is braking. It was
found that when in slippery conditions, the amount of brake torque applied before
the wheel was locked varied a lot. Sometimes a relatively low amount of brake
torque could make the wheel lock. Furthermore, it was found that at the time the
acceleration changed sign to negative, some wheels where already locked. With this
in mind it was decided that when three or more wheels are braking (brake-torque
measurement), the car is defined as actively braking.

Utilizing the knowledge that the wheel speeds tend to be slower than the true speed
of the car and that the wheels tend to lock, the main idea when estimating the
speed in braking is to try to keep the estimate at the peaks of the wheel speed
measurements. The brake-update-logic is divided into two parts. First, when three
or more wheels are detected braking, dead-reckoning is performed for 0.25 seconds.
This is to not perform any measurement updates if the wheels where initially locked.
This also makes it so that if there is no long braking-section the fastest wheel does
not need to be updated with. Secondly, it is determined if the fastest wheel speed is
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faster or slower than the current predicted speed. If the fastest wheel speed is faster
than the prediction, the measurement is assigned a lower measurement covariance
to make the filter trust the measurement more and bring the estimate "up" to what
likely is the true speed of a free-rolling wheel. However, if the fastest wheel speed
is slower than the current estimate, the measurement covariance is set higher such
that the measurement is not trusted as much. This is because it is believed that the
wheel is locking.
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4
Results

In this chapter, the performance of the proposed filters and slip detection concepts
are evaluated for the data logs from the two vehicles. First the evaluation process is
described in section 4.1. Then the partition of the data and the evaluation param-
eters are defined in section 4.2 and 4.3. Finally, the results for the hybrid and fully
electric vehicle is presented in section 4.4 and 4.5. In these sections, both quantita-
tive tables of the performance metrics and examples and comparisons between the
di�erent filters and brake manufacturer estimate are made.

4.1 Process of Evaluating Performance
Initially, only the data logs from the hybrid vehicle were available. At a later stage of
the thesis the data logs from the fully electric vehicle were made available. Therefore
the evaluation for these data sets are split into two separate sections. The evaluation
of the filter and slip detection combinations as well as the brake manufacturer and
simplified Volvo estimates (which are based on the wheel speed sensors only) is made
in two parts. In the first part of the evaluation, the estimates from the filter and slip
detection combinations for the data logs is generated. Then the statistical parame-
ters described in section 4.3 are calculated for the complete data and specifically for
the sections of the data where the vehicle is experiencing positive slip and braking.
The partition of the data is explained in detail in section 4.2. The statistical param-
eters includes metrics as the RMSE, standard deviation and the percentage of time
the estimate is within the error of ±4% for each file. All performance numbers are
put in a consolidated table to provide an overview and comparison of each method.
The second part of the evaluation is to bring up examples from di�erent logs and
to analyse how the di�erent slip-detection concepts perform and why they struggle
at times. In both parts of the evaluation, the proposed filters and slip detection
concepts are compared with the brake manufacturer and simplified Volvo estimate
(only available for the fully electric vehicle).

As mentioned in section 3.4, three filter variations called VxP , VxRP and VxV̇xP were
set up to investigate any indications that show if one set of states makes a better
speed estimate. The filters were evaluated with slip-detection concept 1. As the slip-
detection depends on the estimate and the estimate depends on the slip detection,
the performance of the estimate does not only represent the filters but also how the
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combination of the filters and slip detection works. This makes the performance
result for each individual filter slightly ambiguous. Without anticipating events, the
three filter combinations performs very similar. Therefore slip-detection concept 2
was only evaluated with the VxRP filter as it solved most amount of the data log
files out of the three filters, based on the results of the hybrid testing for the filters
and slip detection concept 1. This is further discussed in section 4.4.1.

4.2 Data Description
The data for this thesis is provided by Volvo Cars from their winter testing for au-
tonomous drive development. All data logs are recorded while driving on extremely
icy and snow-packed roads with very low friction, including various maneuvers. De-
tailed explanation of the logged data is provided in section 1.1. In Appendix A
descriptions of each individual logs are available.

4.2.1 Data Selection
To evaluate the performance of longitudinal velocity estimation methods, data logs
with very high lateral motion and velocity are excluded. Also, data logs that have
next to, or no wheel slip i.e. data logs where the wheel speeds can be su�ciently
trusted to keep estimated velocity within the desired ±4% of the reference speed are
omitted. Lastly, all performance evaluation for each data log is done for velocities
above 10 km/h defined by the thesis scope in section 1.4.

4.2.2 Data Categorization
To evaluate the performance of the filter and slip detection concept in di�erent
driving scenarios, each data was categorized into three di�erent cases. As explained
above, all cases are defined for speeds above 10 km/h. These three cases are used
to partition the data logs such that all data, only data in slipping or braking can
be looked at separately. This way, the performance of the estimated speed can be
analysed for the di�erent parts of files separately, making it easier to see where the
filter and slip detection concepts struggles.

• Complete data: This includes the complete driving data set from start to
finish.

• Slipping in acceleration: Also called "spinning", this case includes the times
where the wheels are slipping e.g. while the car is accelerating. To pick out
these cases from the data, a slip scenario flag is created which canopies this
scenario as seen in figure 4.1a. The flag switches ON 1 second before at least
one wheel spins 4% faster than the reference velocity. This is done to include
the beginning of slipping. The flag stays ON as long as the condition above is
true and no brake torque is applied at any time.

While the slip flag is ON, if all wheels are back i.e. less than 4% faster and
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at most 1% slower than the reference velocity for 1 full second, the flag turns
OFF. Allowing the wheel speed to drop to 1% slower than reference is done to
avoid false flag OFF due to Electronic Stability Program (ESP) activating the
brakes. Further, this 1-second delay is to allow the wheel speeds to stabilize
and get back close to the reference velocity. Also, the flag will instantly turn
OFF if the speeds are more than 1% slower as compared to the reference
velocity or a brake torque is actively applied on 3 or more wheels.

• Braking : This case includes all the braking scenarios in the data. The
braking scenarios consist of situations ranging from no wheel lock to all-wheel
lock situations. A Brake Flag that canopies this scenario in the data observed
in figure 4.1b. A driving scenario is labelled as braking if a brake torque
is applied to three or more wheels. This is done to avoid false detection of
braking case due to ESP interventions. The short drop in the flag between 25
and 30 seconds disregards coasting or engine braking scenario i.e. when the
brake is not actively applied by the driver.
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(a) Slipping in Acceleration Scenario
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(b) Braking Scenario

Figure 4.1: Data Categorized into 2 di�erent scenarios for evaluation

4.3 Performance evaluation parameters
The performance of the estimation methods is evaluated upon reviewing a few sta-
tistical parameters for each data log in each scenario 4.2.2.

4.3.1 Amount of data log solved
This parameter gives an overall idea of how good the estimation is by looking at the
amount of time it keeps the velocity within a defined accuracy range. It is defined
as

Solved = Twork

Ttot
◊ 100 % (4.1)

where Tworking is the amount of time the estimation is within the desired ±4% of
the reference velocity Vxref and Ttot is the total time of the data log.
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4.3.2 Root-Mean-Squared Error
Root Mean Squared Errors (RMSE) basically is the standard deviation of the esti-
mation errors. It tells how well the estimation is concentrated around the reference
or how far away the estimation errors are spread out from the reference. This pa-
rameter has been calculated to evaluate the accuracy of these estimation methods.
Two kinds of RMSE were calculated which are explained subsequently.

The RMSE in absolute sense depicts the RMSE of estimation in the units of the
estimated variable, which is m/s for velocity. It is calculated as :

RMSE =
ı̂ıÙ 1

N

Nÿ

i=1
(V xRef,i ≠ V xEst,i)2 (4.2)

where N is the number of data points of observed reference velocity.

RMS Relative Error or RMSRE is a parameter that helps in comparing errors pro-
duced in each estimation, however they are highly sensitive when velocities are
slower. It is calculated as

RMSRE =
ı̂ıÙ 1

N

Nÿ

i=1

A
V xRef,i ≠ V xEst,i

V xRef,i

B2

(4.3)

where V xRef ≠V xEst

V xRef
is the relative error between the estimated and reference veloc-

ity.

4.3.3 Peak errors
Peak errors are calculated to find the peak deviation in how much slower or faster
the estimated velocity is compared to the ground truth in all scenarios.

Peak Absolute Errors
Maximum absolute error gives the largest deviation in m/s between the estimated
and ground truth velocity.

emax,abs = max(V xEst ≠ V xRef ) (4.4)

A positive emax,abs depicts that the estimate is faster than the ground truth and
the number gives the magnitude of how much faster it is in m/s. A negative value
depicts that the estimate is never faster than the reference.

When the estimated velocity is slower, the minimum absolute error gives the largest
deviation value in m/s between the estimated and ground truth velocity.

emin,abs = min(V xEst ≠ V xRef ) (4.5)

66



4. Results

A negative emin,abs depicts that the estimated velocity is slower than the reference
velocity, while the number gives the magnitude of how much slower it is in m/s. A
positive value depicts that the estimate is never slower than the reference.

Peak Relative Errors
Relative error indicates the error between the estimation and reference in %, however
they are highly sensitive at lower speeds. Maximum relative error gives the relative
error at the time when maximum error as defined above is reached i.e. greatest
relative di�erence between estimated and reference velocity, when estimated velocity
is faster.

emax,rel = max

A
V xEst ≠ V xRef

V xRef

B

(4.6)

Minimum Relative Error indicates the relative error between the estimation and ref-
erence at the time when the minimum error as defined above is reached i.e. greatest
relative di�erence between estimated and reference velocity when estimated velocity
is slower.

emin,rel = min

A
V xEst ≠ V xRef

V xRef

B

(4.7)

Standard Deviation

StdDev =
ı̂ıÙ 1

N

Nÿ

i=1
(V xEst ≠ V xRef )2 (4.8)

4.4 Results for Hybrid Car

4.4.1 Complete Data
The amount of data solved i.e. the amount of time the estimated velocity is within
±4% of reference velocity for each estimation method and the brake manufacturer’s
estimate is consolidated in Table 4.1. The cell color ranges from green indicating
most of the data log is solved, to red indicating less amount of data log is solved.
This on its own does not represent how good the estimate is, but it gives an idea of
how well the method performs on average. A complementary consolidated table of
averaged statistic parameters for each estimation method can be seen in 4.2. Here,
the five estimations are compared among each other with green being the best and
red being the worst performing. The main purpose of these parameters is to give
some insight on the accuracy of each method. It is important to note that this are
average errors over fifteen data logs which might be skewed by some outlier estimate
in some data log.
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Table 4.1: Filter performance in terms of share of estimated speed within the ±4%
of reference speed for hybrid car: Complete data

BRAKE 
MANUFACTURER 

Data Logs Solved [%] Solved [%] Solved [%] Solved [%] Solved [%]
HY - 1 89.26 88.70 88.47 89.58 74.63
HY - 2 84.25 86.93 87.08 92.77 71.78
HY - 3 98.17 97.37 97.61 97.13 84.42
HY - 4 97.82 98.08 98.16 97.99 75.58
HY - 5 96.24 96.24 91.76 97.13 43.01
HY - 6 49.90 40.15 25.81 66.16 19.50
HY - 7 96.86 96.91 96.97 95.91 94.75
HY - 8 94.06 94.06 93.99 94.16 46.26
HY - 9 90.18 83.59 83.76 87.59 66.95
HY - 10 88.08 88.35 88.50 84.45 60.92
HY - 11 88.69 88.69 88.69 87.80 65.15
HY - 12 99.13 99.11 98.98 99.08 77.10
HY - 13 99.73 99.79 99.79 99.79 98.05
HY - 14 99.57 99.57 99.55 100.00 99.63
HY - 15 99.94 99.95 99.96 99.94 99.79

Average 91.46 90.50 89.27 92.63 71.83

COMPLETE DATA
Vx-R-P with 
CONCEPT 1

Vx-P with 
CONCEPT 1 

Vx-P-VxDOT with 
CONCEPT 1 

Vx-R-P with 
CONCEPT 2 

                                                                                                                                                                                                                    

By observing the percentage of the data files solved in Table 4.1, it is clear that the
proposed filters and slip detection systems solve a lot more of the data logs. This
of course is only with respect to the estimate being within the ±4%. It is also clear
that none of the combinations solve all data logs within this limit which means that
the estimate deviates more than 4% from the reference at times. Only looking at
this parameter, the performance of the three filters with concept 1 are similar. This
is partly because the evaluation is ambiguous as both the filters and slip detection
depends on one another.

Table 4.2: Average statistic parameters over every driving data for Hybrid car :
Complete Data

Stat Parameters Unit
Vx-R-P with 
CONCEPT 1

Vx-P with 
CONCEPT 1 

Vx-P-VxDOT with 
CONCEPT 1 

Vx-R-P with 
CONCEPT 2 

BRAKE 
MANUFACTURER 

Solved [%] 91.46 90.50 89.27 92.63 71.83

Absolute RMSE [m/s] 0.29 0.29 0.30 0.28 0.86
Max Absolute Error [m/s] 0.52 0.52 0.54 0.44 2.46
Min Absolute Error [m/s] -1.01 -0.99 -0.99 -1.11 -1.73
Relative RMSE [%] 2.14 2.19 2.23 2.06 9.80
Max Relative Error [%] 4.49 4.33 4.59 4.02 36.92
Min Relative Error [%] -6.27 -6.00 -6.07 -6.67 -10.78
Standard Deviation [m/s] 0.26 0.26 0.26 0.25 0.74

COMPLETE DATA  : Average of each statistic parameter
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It can also be seen in Table 4.2 that, the average performance metrics for the three
filters in combination with slip detection concept 1 are similar. However, on average,
the filter combination VxRP solves slightly more amount of the data files than the
other filters. As no obvious performance di�erence was found between the filters
when tested with slip detection concept 1, it was decided to only evaluate slip
detection concept 2 with filter VxRP .

In Table 4.2 the average performance metrics for the filters and brake manufacturer
estimates are presented. It can be observed that all of the filters greatly improve
in all the metrics. The greatest improvements are made in reducing the peak es-
timation errors as a result of the slip-detection concepts. This also improves the
standard deviation and RMSE significantly. What can also be observed is that the
combination VxRP and concept 2 is the best performing on average for all metrics
except the mean absolute error. This might have an explanation in that concept 2
only relies on the slowest non-slipping wheel when in slip. Though, the di�erence in
mean minimum absolute error compared to the best performing is still rather low,
being roughly 0.11 m/s.

4.4.2 Slip Scenario Data

In Table 4.3 the share for when the speed estimate is within the ±4% estimation error
for the slipping partition of each data file is presented. The average of the statistical
parameters for the same intervals is presented in Table 4.4. Only considering the
positive slip sections of the estimates, the results are similar as when considering
all data. It is noted that the estimates for the filter and slip detection concept
combinations are within the error limit for more of the files when only considering
the slipping partition. It is also noted that the combination VxRP and concept 2
is the best performing with respect to all parameters except the average minimum
errors.

For log files HY-2, HY-6 and HY-9, it is observed that the share for when the speed
estimate within the ±4% estimation error is particularly low. HY-2 is a challenging
log file as the vehicle was deliberately attempted to drift. In HY-6, slip-detection
concept 1 incorrectly detects slip at a low speed when the speed is o�set, similarly as
shown in the example in section 4.4.4. The dead-reckoning then keeps the estimate
just outside the ±4% error limit. Finally, in log file HY-9 it is observed that the
dead-reckoning of the IMU data di�ers from the reference speed, see example in
section 4.4.6. This causes the dead-reckoning process to drift relative to the reference
speed. However, when dead-reckoning the reference acceleration from the OxTS, the
estimate still drifts relative the reference speed. The speed estimate drift in this file
is one of the reasons for the large minimum error for the filters in comparison to the
brake manufacturer estimate seen in Table 4.4.
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Table 4.3: Filter performance in terms of share of estimated speed within the ±4%
of reference speed for hybrid car: Slipping in acceleration scenarios

BRAKE 
MANUFACTURER 

Data Logs Solved [%] Solved [%] Solved [%] Solved [%] Solved [%]
HY - 1 100.00 100.00 100.00 100.00 76.32
HY - 2 72.87 77.48 77.74 87.54 48.26
HY - 3 95.44 93.81 94.24 93.26 59.63
HY - 4 100.00 100.00 100.00 100.00 65.75
HY - 5 95.49 95.49 90.13 96.57 26.15
HY - 6 66.00 65.20 34.80 99.20 13.43
HY - 7 91.28 91.42 91.57 91.35 85.41
HY - 8 100.00 100.00 100.00 100.00 31.88
HY - 9 84.46 70.51 70.74 79.29 34.93
HY - 10 100.00 100.00 100.00 94.43 65.66
HY - 11 100.00 100.00 100.00 100.00 72.86
HY - 12 100.00 100.00 100.00 100.00 71.35
HY - 13 100.00 100.00 100.00 100.00 93.34
HY - 14 99.22 99.22 99.17 100.00 95.33
HY - 15 100.00 100.00 100.00 100.00 96.34

Average 93.65 92.88 90.56 96.11 62.44

 SLIPPING IN ACCELERATION SCENARIOS
Vx-R-P with 
CONCEPT 1

Vx-P with 
CONCEPT 1 

Vx-P-VxDOT with 
CONCEPT 1 

Vx-R-P with 
CONCEPT 2 

Table 4.4: Average statistic parameters over every driving data for Hyrbid car :
Slipping in acceleration scenarios

Stat Parameters Unit
Vx-R-P with 
CONCEPT 1

Vx-P with 
CONCEPT 1 

Vx-P-VxDOT with 
CONCEPT 1 

Vx-R-P with 
CONCEPT 2 

BRAKE 
MANUFACTURER 

Solved [%] 93.65 92.88 90.56 96.11 62.44

Absolute RMSE [m/s] 0.22 0.23 0.24 0.19 0.91
Max Absolute Error [m/s] 0.50 0.50 0.53 0.44 2.50
Min Absolute Error [m/s] -0.34 -0.36 -0.36 -0.47 -0.14
Relative RMSE [%] 1.76 1.82 1.94 1.50 11.03
Max Relative Error [%] 3.49 4.33 3.94 3.23 35.80
Min Relative Error [%] -2.84 -2.83 -3.01 -3.90 -0.48
Standard Deviation [m/s] 0.17 0.18 0.18 0.16 0.61

SLIPPING IN ACCELERATION SCENARIOS :  Average of each statistic parameter

4.4.3 Brake Scenario Data
In Table 4.5 the share for when the speed estimate is within the ±4% estimation
error for the braking partition of each data file is presented. The average of the
statistical parameters for the same intervals are presented in Table 4.6. For this
partition of the data the same trend with the estimates being generally better than
the brake manufacturer is observed. All filters and slip concept combinations have
the same speed estimation strategy for braking. It can be seen that they perform
similarly with slight variations. This can be explained by the fact that the estimates
are di�erently o�set in the beginning of the braking scenarios because of the di�erent
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slip-detection concepts. However, it can be seen in Table 4.6 that the combination
VxRP and concept 2 is not the best performing estimate in terms of the share of data
solved within the error limit or with respect to the di�erent statistical parameters.
Though, the statistical metrics are similar between the four filters. The files with
a low share of the speed estimate inside the error limit normally includes severe
wheel lock situations. This causes the speed estimate to be too slow due to the
measurement updates as explained in section 3.7.

Table 4.5: Filter performance in terms of share of estimated speed within the ±4%
of reference speed for hybrid car: Braking with and without locking up scenarios

BRAKE 
MANUFACTURER 

Data Logs Solved [%] Solved [%] Solved [%] Solved [%] Solved [%]
HY - 1 72.64 71.23 70.64 73.47 62.15
HY - 2 100.00 100.00 100.00 97.83 100.00
HY - 3 100.00 99.11 99.56 96.97 99.04
HY - 4 91.65 92.64 92.96 92.31 46.97
HY - 5 100.00 100.00 100.00 100.00 82.50
HY - 6 38.54 21.53 21.88 39.24 24.31
HY - 7 100.00 100.00 100.00 94.23 100.00
HY - 8 84.29 84.29 84.11 84.55 68.48
HY - 9 95.38 96.31 96.42 95.38 97.08
HY - 10 63.52 64.34 64.82 63.99 44.04
HY - 11 65.81 65.81 65.81 65.90 58.16
HY - 12 97.02 96.94 96.51 96.85 84.34
HY - 13 97.75 97.83 97.92 97.79 80.12
HY - 14 100.00 100.00 100.00 100.00 97.92
HY - 15 99.36 99.39 99.51 99.36 99.56

Average 87.06 85.96 86.01 86.52 76.31

ALL BRAKING SCENARIOS WITH AND WITHOUT LOCKING
Vx-R-P with 
CONCEPT 1

Vx-P with 
CONCEPT 1 

Vx-P-VxDOT with 
CONCEPT 1 

Vx-R-P with 
CONCEPT 2 

Table 4.6: Average statistic parameters over every driving data for Hybrid car :
Braking with and without locking up scenarios

Stat Parameters Unit
Vx-R-P with 
CONCEPT 1

Vx-P with 
CONCEPT 1 

Vx-P-VxDOT with 
CONCEPT 1 

Vx-R-P with 
CONCEPT 2 

BRAKE 
MANUFACTURER 

Solved [%] 87.06 85.96 86.01 86.52 76.31

Absolute RMSE [m/s] 0.37 0.36 0.36 0.38 0.58
Max Absolute Error [m/s] 0.07 0.06 0.06 0.08 0.48
Min Absolute Error [m/s] -0.94 -0.90 -0.89 -1.02 -1.73
Relative RMSE [%] 2.61 2.62 2.60 2.65 4.34
Max Relative Error [%] 2.41 0.33 2.56 2.75 4.24
Min Relative Error [%] -5.76 -5.37 -5.35 -6.18 -10.78
Standard Deviation [m/s] 0.23 0.22 0.22 0.25 0.43

ALL BRAKING SCENARIOS WITH AND WITHOUT LOCKING :  Average of each statistic parameter
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4.4.4 Example of When Both Concepts Work in Hill Sce-
nario (HY-5)

In Figure 4.2a the reference velocity, wheel velocity, brake manufacturer estimate
and estimated velocity for an all-wheel slip scenario is shown (HY-5). The vehicle
was driven up a hill with a slippery surface. The traction was lost at a low velocity.
Both concepts detect slip and initiate dead-reckoning at this point. What can be
seen in Figure 4.2b is that the wheel speed measurements never converged to the
true speed before they start to slip. This means that the dead-reckoning starts with
a slight speed o�set.
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(a) Estimated velocity, brake manufac-
turer estimate, wheel speeds, and refer-
ence velocity for all wheel slip case in hill.
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(b) Zoomed in figure in the beginning
showing that the wheels do not converge
to the true speed before slipping and
showing that the estimated speed (green)
is outside the ±4% limits in the begin-
ning.

Figure 4.2: Plots of speed estimate for concept 2 in all-wheel slip example from
data log file HY-5.

As can be seen in Figure 4.3a and 4.3b, both concepts perform very similar and the
estimates do not drift much in particularly. This is because the orientation estimate
was su�ciently accurate estimated such that the gravity bias in the accelerometer
could be corrected for. Another factor is that as the speed increases the ±4% relative
error will span a greater absolute error which partly explains why the relative error
starts outside the ±4% relative error line in the error figures. Initially, the orientation
is not known and therefore set to 0 degrees for both pitch and roll angles. What
can be seen in Figure 4.4a is that the Euler pitch angle converges within the first
second of data. As the Euler pitch estimate includes the accelerometer o�set the
Euler pitch estimate is o�set. Throughout the scenario it can be seen that the o�set
is relatively constant. It can also be observed that the Euler roll estimate initially
is o�set and does not converge as seen with the Euler pitch estimate.
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(a) Relative and absolute error for brake
manufacturer and concept 1 estimate
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(b) Relative and absolute error for brake
manufacturer and concept 2 estimate

Figure 4.3: Plots of speed estimate error for concept 1 and 2 in all-wheel slip
example from data log file HY-5.
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(a) Euler pitch estimate for hill scenario.
Initial convergence of pitch estimate oc-
cur within first second of the data. It
is visible that the there’s and pitch-angle
o�set which is explained by that the ac-
celerometer bias is not corrected for.
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(b) Euler roll estimate for hill scenario.
The estimate follow the shape of the ref-
erence but includes an o�set. This o�set
does not converge as for the pitch esti-
mate as the pitch is based on the integra-
tion of the gyroscope.

Figure 4.4: Euler pitch and roll estimate for the example.

Using the reference pitch angle, it is possible to check if the o�set in the Euler pitch
estimate is reasonable. As the car is standing still in the beginning of the scenario,
the linear acceleration and velocity is zero. By calculating the mean of the measured
acceleration for the time the car is still and subtracting the gravity component based
on the reference pitch angle, the accelerometer bias can be calculated, see equation
(4.9). This is with the assumption that the reference pitch angle is accurate.

Bias ≥ ax + g sin(◊ref ) (4.9)
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The bias can also be calculated using the di�erence in the Euler pitch estimate and
the reference pitch, see equation (4.10). The accelerometer bias estimate for the
accelerometer based method is 0.2336 and 0.2296 with the angle di�erence method.
This means that the di�erence in the bias estimation is roughly 0.0039 m/s2 for the
initial stationary section of the data. The accuracy of the bias estimation will vary
with time.

Bias ≥ g(sin(◊ref ) ≠ sin(◊ref + ◊bias)) ≥ g(sin(◊ref ) ≠ sin(◊est)) (4.10)

4.4.5 Examples of Speed Estimation Strategy in Braking
This is an example of how the brake logic works. In Figure 4.5a it can be seen that
the speed estimate follows the reference relatively close but slowly drifts away to-
wards the wheel speeds. This is because the wheel speed measurements are trusted
with a larger measurement noise covariance when the speed estimate is faster than
the fastest wheel. Over time the estimate slowly converges to the wheel speeds.
Though, when the speed estimate is slower than the fastest wheel speed measure-
ment, the covariance is decreased and the speed estimate gets "slingshot" up towards
the true speed. An alternative approach would be to dead-reckon throughout the
braking-sequence. This is demonstrated in Figure 4.5b. What can be seen in this
Figure is that the speed estimate drifts in the positive direction and the estimate
surpasses the upper 4% error limit. This positive-drift is limited with the pro-
posed brake logic. At second 27 in Figure 4.5b the dead-reckoning process has been
active for roughly 5 seconds and at this point the magnitude of positive error in
the speed estimate is larger than the magnitude of negative error in the proposed
method.
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(a) Example of speed estimation strategy
when ABS braking.
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(b) Example of pure dead-reckoning in-
stead of brake logic. Figure shows that
the estimate drifts outside the ±4% error
limit at around 26 seconds.

Figure 4.5: Example of speed estimation strategy in ABS braking.
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In Figure 4.6a, an example of a nominal braking case is shown. The speed estimate
then remains at the fastest wheels. The fastest wheel speeds are well within the
4% limit. However, in Figure 4.6b, an example of the brake logic working in an
extreme wheel-lock situation in data log HY-6 is shown. The wheel speeds remain
well below the reference speed of the car for roughly 2 seconds, without any wheel
speeds getting close to the reference speed in an ABS-cycle. This causes the estimate
to slowly drift from the true speed. Though, at around 11.5 seconds, an ABS-cycle
peak occurs and the estimate now updates with a lower covariance causing it to
slingshot back towards the true speed. The speed estimate is well outside the 4%-
limit for most of the shown interval but it is closer to the reference speed than the
brake manufacturer for the most part.
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(a) Example of speed estimation strategy
in nominal braking.
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(b) Example of speed estimation strategy
in extreme wheel lock situation.

Figure 4.6: Example of speed estimation strategy in normal and extreme braking.

4.4.6 Example When Dead-Reckoning Fails (HY-9)
This is an example from data log file HY-9 when the dead-reckoning process seems
to not work. In Figure 4.7a a section of the log file is shown where the vehicle
first is ABS-braking and then accelerating hard such that all wheels slip. Both
slip detection concepts detect that the wheels are slipping and force the filter to
dead-reckon. However, the estimate is observed to drift considerably in comparison
to the reference speed. This is surprising because the dead-reckoning earlier in the
log file was working without considerable drift. It is even more surprising that
when dead-reckoning the reference accelerometer measurement from the OxTS, the
speed estimate also drifts relative the reference speed measurement of the OxTS. In
Figure 4.7b the speed estimate from the dead-reckoning of the filter, dead-reckoning
of the reference OxTS accelerometer measurements and dead-reckoning of the raw
longitudinal accelerometer that is not bias or gravity compensated is shown. The
dead-reckoning processes are started at the same time from the same initial velocity
before the acceleration starts. It can be seen that the speed estimate from the dead-
reckoning of the raw IMU is the closest to the reference speed. It is not known if it
is the IMUs that fail specifically after braking or if the reference speed estimate is
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unreliable at this point.
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(a) Example where dead-reckoning unex-
pectedly fails.

64 65 66 67 68 69 70 71 72

Time [s]

8

10

12

14

16

18

20

22

24

26

28

V
e

lo
ci

ty
 [

m
/s

]

FL

FR

RL

RR

Est.

Ref.

Brk mfr.

Dead-reckon. ref acc

Dead-reckon. raw IMU

Ref.+-4%

(b) Dead-reckoning comparison for the
specific time interval. All dead-reckoning
speed estimates, including the reference
accelerometer, di�er from the reference
speed.

Figure 4.7: Example where dead-reckoning fails in data log HY-9 and comparison
of dead-reckoning of di�erent measurements.

4.4.7 Example of When Gyroscope is Not Bias-Compensated

This is an example of how the dead-reckoning performance reduces if the gyroscope is
not compensated for the o�set-bias. In Figure 4.8a the speed estimate using concept
2 for data log file HY-12 is shown. Both concepts solves the absolute majority of
the log file except a short section in the braking section as shown in Figure 4.8b. In
Figure 4.8c the speed estimate for the same log file is shown when the filter is forced
to dead-reckon from the 5 second mark without gyroscope bias-compensation. The
dead-reckoning is forced for 30 seconds to showcase how much the dead-reckoning
process drifts without any bias-correction. The speed estimate exceeds 4% error
limit within the first few seconds of the dead-reckoning and di�er by roughly 15
m/s after 30 seconds. The bias of the pitch-rate gyroscope was measured in the
beginning of the log file when the car was standing still to 0.0028. In Figure 4.8d
the Euler pitch estimate is observed to be linearly drifting. It is also observed that
the Euler pitch angle estimate rapidly change when the dead-reckoning is ended.
This is a result of the combined pitch and speed estimation. It may be questionable
to allow these abrupt changes in the estimate.
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(a) Speed estimate, wheel speeds and ref-
erence speed for log file HY-12.
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(b) Error plot for concept 2 for log file
HY-12.
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(c) Example of 30 seconds of dead-
reckoning without any bias compensa-
tion.
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(d) Euler pitch estimate drifts during the
dead-reckoning without gyroscope com-
pensation.

Figure 4.8: Example of the impact of not bias-compensating the gyroscopes.

4.5 Fully Electric Car
During the final weeks of the thesis, a new set of driving data from a fully electric
car was provided for testing of the speed estimation method. The two slip-detection
concepts have not been developed or tuned for these data logs. As mentioned in
section 1.1, these data logs contains slightly more challenging scenarios in that they
are collected from the lateral stability department. The logs both contains scenarios
with slipping in hills causing the vehicle to decelerate and slip scenarios where the
wheel slip is right on the 4% error limit. The evaluation of these data logs was
made in the same way as for the hybrid. First the share of data within the error
limit and the average statistical parameters for the filter and slip detection concepts
in di�erent partitions of the data is presented. Then some examples are given.
However, as only some of the data logs contained braking scenarios, the specific
evaluation for the braking partition of the data is left out. In these data logs an
on-board speed estimate from Volvo beyond the brake manufacturer was available.
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This estimate is for the most part only based on the wheel speed measurements and
is labeled as simple Volvo.

4.5.1 Complete Data
In Table 4.7 and Table 4.8, the share for when the speed estimate within the ±4%
estimation error for the whole data files and the average of the statistical parameters
for the same intervals are presented. It can be seen in Table 4.7 that the filter and
slip detection concepts do not perform significantly better than the wheel-based-
methods for the log files. Slip detection concept 2 still produces an estimate with
on average the most share of the estimate within the error limit. Observing the
average statistical parameters in Table 4.8 it becomes clear that concept 1 performs
the worst out of the estimates. This solely comes down to that the slip-detection
criteria fails to activate at several points, see section 4.5.4 for example. It turns out
that the torque-rate characteristic found and tuned specifically for the hybrid car
does not perform as well for the fully electric car. However, it also becomes clear
that concept 2 on average performs the best out of the estimates even though the
estimate is not kept within the error limit for all files.

Table 4.7: Filter performance in terms of share of estimated speed within the ±4%
of reference speed for fully electric car: Complete data

SIMPLE VOLVO 
ESTIMATE

BRAKE 
MANUFACTURER

Data Logs Solved [%] Solved [%] Solved [%] Solved [%] Solved [%] Solved [%]
FE-1 92.07 92.95 94.93 94.10 94.97 84.06
FE-2 70.23 70.19 70.19 91.69 87.51 83.52
FE-3 52.23 52.23 52.23 67.06 57.76 56.28
FE-4 97.30 97.27 97.20 100.00 96.01 97.36
FE-5 96.70 97.35 97.28 100.00 99.46 99.57
FE-6 94.12 94.39 94.30 97.52 96.41 97.58
FE-7 93.96 93.15 92.99 95.49 96.64 96.97
FE-8 89.08 89.08 89.08 70.70 62.71 75.50
FE-9 82.36 82.32 82.36 95.62 82.02 88.24
FE-10 85.32 85.32 86.47 74.53 81.44 80.72

Average 85.34 85.42 85.70 88.67 85.49 85.98

COMPLETE DATA
Vx-R-P with 
CONCEPT 1

Vx-P with 
CONCEPT 1 

Vx-P-VxDOT with 
CONCEPT 1 

Vx-R-P with 
CONCEPT 2 

Table 4.8: Average statistic parameters over every driving data for Fully electric
car : Complete data

Stat Parameters Unit
Vx-R-P with 
CONCEPT 1

Vx-P with 
CONCEPT 1 

Vx-P-VxDOT with 
CONCEPT 1 

Vx-R-P with 
CONCEPT 2 

SIMPLE VOLVO 
ESTIMATE

BRAKE 
MANUFACTURER

Solved [%] 85.34 85.42 85.70 88.67 85.49 85.98

Absolute RMSE [m/s] 0.66 0.65 0.65 0.23 0.47 0.47
Max Absolute Error [m/s] 1.92 1.87 1.88 0.62 1.81 1.59
Min Absolute Error [m/s] -0.35 -0.32 -0.31 -0.40 -0.55 -0.64
Relative RMSE [%] 10.51 10.29 10.29 2.56 6.35 5.93
Max Relative Error [%] 31.29 30.84 30.87 6.65 21.45 19.03
Min Relative Error [%] -4.70 -4.24 -4.26 -6.13 -6.35 -7.73
Standard Deviation [m/s] 0.57 0.56 0.56 0.21 0.42 0.42

COMPLETE DATA  : Average of each statistic parameter
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4.5.2 Slip Scenario Data

In Table 4.9 the share for when the speed estimate within the ±4% estimation
error for the slipping partition of each data file is presented. It is observed that
all estimates struggle to keep the estimate withing the error limit and that the
performance in regards to this metric seems to be sporadic between the log files.
Concept 2 again solves the most amount of the data. Concept 1 on the other hand
is not performing well in regards to this, though this again comes down to the failing
of the torque-rate criteria. When looking at the average of the statistical parameters
for the same intervals presented in Table 4.10, it becomes clear that concept 2 on
average is the best estimate out of the six compared. Concept 2 does not seem to be
very far from the true speed on average with an RMSE of 0.23 m/s, a max absolute
error of 0.62 m/s and a standard deviation of 0.21 m/s. Only observing the share for
when the speed estimate is within the ±4% estimation error gives a slightly skewed
view of the performance. E.g. in section 4.5.4 an example from log-file FE-3 shows
that concept 2 detects slip slightly late for one occasion causing the speed estimate
to be o�set just outside the 4% error limit. This makes the solved percent only show
up as 67% in Table 4.9. However, the speed error is limited to about 6% in this
estimate compared to the roughly 100% error from the other estimates.

Table 4.9: Filter performance in terms of share of estimated speed within the ±4%
of reference speed for fully electric car: Slipping in acceleration scenarios

SIMPLE VOLVO 
ESTIMATE

BRAKE 
MANUFACTURER

Data Logs Solved [%] Solved [%] Solved [%] Solved [%] Solved [%] Solved [%]
FE-1 89.51 90.67 93.29 92.19 93.28 74.48
FE-2 51.30 51.24 51.24 86.40 79.58 69.05
FE-3 36.86 36.86 36.86 56.47 44.18 37.34
FE-4 90.62 90.50 90.27 100.00 86.04 90.85
FE-5 93.47 94.76 94.63 100.00 98.88 97.65
FE-6 73.62 74.82 74.45 88.88 83.73 81.65
FE-7 87.92 82.64 82.16 88.30 90.73 88.99
FE-8 89.80 89.80 89.80 64.92 57.68 68.77
FE-9 72.64 72.57 72.64 94.89 74.56 77.46
FE-10 100.00 100.00 100.00 56.03 65.52 60.54

Average 78.57 78.39 78.53 82.81 77.42 74.68

 SLIPPING IN ACCELERATION SCENARIOS
Vx-R-P with 
CONCEPT 1

Vx-P with 
CONCEPT 1 

Vx-P-VxDOT with 
CONCEPT 1 

Vx-R-P with 
CONCEPT 2 
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Table 4.10: Average statistic parameters over every driving data for fully electric
car : Slipping in acceleration scenarios

Stat Parameters Unit
Vx-R-P with 
CONCEPT 1

Vx-P with 
CONCEPT 1 

Vx-P-VxDOT with 
CONCEPT 1 

Vx-R-P with 
CONCEPT 2 

SIMPLE VOLVO 
ESTIMATE

BRAKE 
MANUFACTURER

Solved [%] 78.57 78.39 78.53 82.81 77.42 74.68

Absolute RMSE [m/s] 0.78 0.77 0.77 0.29 0.55 0.50
Max Absolute Error [m/s] 1.91 1.87 1.87 0.62 1.81 1.59
Min Absolute Error [m/s] -0.11 -0.10 -0.10 -0.15 -0.12 -0.22
Relative RMSE [%] 12.20 11.96 11.98 3.13 7.42 6.72
Max Relative Error [%] 31.29 30.84 30.87 6.65 21.45 19.03
Min Relative Error [%] -1.50 -1.53 -1.59 -2.64 -1.50 -3.89
Standard Deviation [m/s] 0.57 0.56 0.56 0.17 0.40 0.42

SLIPPING IN ACCELERATION SCENARIOS :  Average of each statistic parameter

4.5.3 Example with Deceleration While Slipping in 20% Hill
(FE-1)

In this example from data log file FE-1, the vehicle slips while driving on a road with
a 20% incline causing the vehicle to decelerate, see Figure 4.9a. Both slip-detection
concepts detect slip, though concept 1 does detect slip slightly later than concept 2
causing the estimate to be just outside the 4% limit when the dead-reckoning starts
as can be seen in Figure 4.10a and 4.10b. In the end of the log at around 14 seconds,
it can be seen in Figure 4.9b that the speed estimate for concept 2 deviates from
the true speed even though the wheels does not slip severely at that point. This
is because the vehicle at that point is yawing by 0.7 rad per second as can be seen
in Figure 4.11b. As the filters only consider longitudinal dynamics and that the
slip-detection concept 2 relies on comparing the acceleration of the wheel with the
acceleration with the car for slip detection, all wheels are determined to be slipping
at around second 14. This makes the filter to rely on dead-reckoning of the yaw-rate
contaminated acceleration which in turns causes the dead-reckoning to drift as can
be seen in Figure 4.11a.
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(a) Wheel speed, reference speed and es-
timated speed plot for concept 2.
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(b) Error plot for concept 2.

Figure 4.9: Speed and error plot for concept 2 in all-wheel slip scenario with
deceleration in hill.
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(a) Wheel speed, reference speed and es-
timated speed plot for concept 1 zoomed
in at first wheel slip peak.
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(b) Error plot for concept 1.

Figure 4.10: Speed and error plot for concept 1 in all-wheel slip scenario with
deceleration in hill.
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(a) Zoomed in speed estimate plot for
concept 2 at the point of heavy yawing.
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(b) Yaw rate for the data log FE-1.

Figure 4.11: Zoomed in speed and yaw-rate plot for data log FE-1.

4.5.4 Example of Tip of the Throttle on Ice-Road (FE-
3)

This example is from data log FE-3 where the vehicle is driven on an ice-road and
the driver tips the throttle such that the wheels experience excessive slip two times
after one another. As can be seen in Figure 4.12a, slip-detection concept 1 fails to
activate and the speed estimate follows the slipping wheels. The slip detection was
not activated because the torque did not increase su�ciently fast, i.e. the torque-
rate is not high enough as shown in Figure 4.12b. However, slip-detection concept
2 successfully activates during the first slip event and activates with a slight delay
during the second slip event. This causes a slight initial o�set and drift in the speed
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estimate as can be seen in Figure 4.13b. With slip-detection concept 2, the speed
estimate is better than both brake manufacturer and the simplified Volvo estimate
as seen in Figure 4.13a. However, the estimate is outside the error limit of 4% for
the second all-wheel slip event.
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(a) Concept 1 fails to detect slip and
speed estimate is based on wheel speeds.
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showing no distinctive spikes above the
thresholds before slip.

Figure 4.12: Example of tip of the throttle on ice for slip detection concept 1
(FE-3)
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(a) Concept 2 successfully detects slip in
the first slip. During the second slip, the
slip is detected with a slight delay causing
an o�set and drift in the estimate.
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(b) Zoomed in view of the start of the
second slip. The wheel speeds slowly drift
away from the true speed before slipping
severely fooling the slip-detection system.

Figure 4.13: Example of tip of the throttle on ice for slip detection concept 2
(FE-3)

4.5.5 Example Where Concept 2 Struggles
In this example, the vehicle is accelerating and the wheels are subject to severe
excessive slip. Slip-detection concept 1 successfully detects the slip and locks the
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slip-detection for the whole slip event which can be seen in Figure 4.14a. Concept 2
on the other hand struggles to detect that the wheels are still slipping at around 14
seconds where the wheels almost regain some traction and slip with about 4%, see
Figure 4.14b. Since the estimate has a slight speed o�set initially, the wheel speeds
are within the slip-ratio-constraint for slip-detection concept 2 and since the residual
between the wheel speed and estimate is relatively constant at this point the system
faulty trusts the wheels at this point. This causes the estimate to be o�set severely
before the slip-detection again detects slip and dead-reckoning starts. When the
wheels comes back to free rolling at around 15.5 seconds, the speed estimate is "too
far away" from the wheel speeds and the wheels are falsely determined as slipping
by the slip-ratio criteria. Though, as can be seen in the figure, the estimate soon
regains trust in the wheels as the criteria that monitors the variance of the speeds
detect that the wheel speeds has been close for some time and thus must be free-
rolling.
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(a) Concept 1 successfully detects slip
and dead-reckons throughout the slip-
event in this example.
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(b) Concept 2 struggles as the wheels
comes back and rolls with a relatively
constant error fooling the system to trust
the wheels.

Figure 4.14: Example where concept 2 struggles to detect slip but concept 1
successfully detects slip.

In Figure 4.15 an additional representative example for when concept 2 struggles to
detect slip. What happens in this case is that the wheels slowly slips and the speeds
slowly drift from the true speed of the vehicle. Also, the noises in the measurements
are not particularly high. This makes none of the criteria for detecting slip to
activate which in turns makes the estimate to be based on the wheel speeds. This
is a common problem in several of the log files for the hybrid vehicle.
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Figure 4.15: Example of slip at 4% border with slow initiation. It is shown that
slip-detection concept 2 does not detect the wheel slip and the estimate is based on
the slipping wheels outside the error limit.
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Discussion

During excessive wheel slip, the wheel speed measurements do not accurately repre-
sent the true speed of the car. In this thesis a simplistic kinematics based approach
for estimating the longitudinal vehicle speed during excessive slip conditions was
taken. There are two main ideas with the approach. Firstly, the filter is kinemat-
ics based and only considers the longitudinal velocity, acceleration and orientation
(pitch and roll) in order to limit the dependencies on di�erent states as e.g. the
road friction which is di�cult to accurately determine in slippery conditions. Sec-
ondly, a slip-detection system is used to deterministically detect and filter out wheel
speed measurements from wheels that experience excessive slip in order to limit the
influence from the distorted measurement on the estimated speed. Additionally,
a specific strategy for speed estimation during braking is complementing the slip-
detection system. With this relatively simplistic approach the results show that the
speed can be estimated within the vision error limit of ±4% relative the true speed
during both excessive positive and negative slip. However, it is hard to specify how
well the speed can be estimated with the approach as the speed estimate cannot be
robustly kept withing the error limit for all data log files. The presented method
does on the other hand provide a better speed estimate than the brake manufacturer
estimate in terms of the average share of speed estimate within the error limit and
that it considerably reduces the RMSE, standard deviation and peak errors for the
data logs for both cars (except slip detection concept 1 for the fully electric vehicle
where the detection does not align well).

5.1 The Limiting Factors in the Presented Method

There are three main limitations with the method. Firstly, the slip detection con-
cepts do not cover for all situations and cannot always detect slip correctly. Sec-
ondly, during excessive all wheel slip the estimate is entirely based on dead-reckoning
which is a delicate process sensitive for errors. Thirdly, the presented speed esti-
mation strategy during braking is struggling with extreme braking scenarios where
the wheels are locking or are heavily reduced in speed. These points are further
discussed in the following subsections.
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5.1.1 The Di�culties With Slip Detection
On a high level, the problem with slip detection is how to define what is an acceptable
amount of slip, how to detect slip and how to track slip throughout a slip-event (from
initiation of slip to when the wheels comes back). The only measurement of the true
speed is from the wheels which are slipping with a varying amount at all times. With
the sensor setup the speed estimate needs to be based on the wheel speeds which
will make the estimate slightly o�set from the true speed at most times. As the
speed is set to be estimated within an error limit, some wheel slip can be tolerated.
How much slip that can be tolerated is a balancing act, trusting a slipping wheel will
cause the speed estimate to be o�set relative the true speed by some amount but the
estimate will not drift as it would if based completely on dead-reckoning. Letting
the estimate be o�set on the other hand can reduce the dead-reckoning capabilities
as the estimate is already o�set which limits how much the dead-reckoning process
can drift before the estimate degrades.

In this thesis one of the main ideas is to limit the influence of wheels that are
excessively slipping as the speed measurements at this point are not representing
the true speed. Therefore excessive slip has to be identified. Theoretically, the slip-
ratio tells how much the wheel is slipping. The problem is that the true speed is
not known and that the estimated speed most times will be slightly o�set and also
drift during dead-reckoning such that the slip-ratio may not be very accurate at all
times. Instead of using the slip ratio, an investigation of how to detect slip using
the provided signals (mainly wheel speeds, accelerometer and powertrain torque)
was made. Ideally, an indicator of slip should be able to detect slip throughout a
complete slip-event and do so without being influenced by what the current state
estimates are. In the investigation it was not found indicators like this. It was
only found indicators of slip that can detect slip for parts of a slip event. E.g. the
acceleration di�erence between wheel and vehicle is high initially during slip but not
necessarily during a complete slip event. The indicators studied are also based on
relating the measurements to the estimated quantities as it allows to detect slip more
accurately. This makes it harder to tune and study the indicators as the estimated
states are influenced by when slip is detected which depends on what the estimated
quantities are. It was also found necessarily to combine di�erent indicators of slip
such that they can constitute a slip-detection concept that can detect excessive slip
throughout a slip event.

The two presented slip detection concepts are based on di�erent principles. Slip
detection system 1 is based on assuming slip in between certain slip indicating
events occur. This way, the tracking of slip during a slip-event is to some extent
left out as only the initialisation and end of slip has to be defined. Slip detection 2
on the other hand is based on detecting slip in every time step. Both concepts were
developed using the data from the hybrid vehicle and in the results it is clear that
both systems perform well for the hybrid vehicle. This is best observed in the Tables
that only consider the positive acceleration partitions of the data logs (Tables 4.3
and 4.4). Both concepts outperforms the brake manufacturer estimate and concept
2 has slightly better performance than concept 1 for the hybrid vehicle. The results
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for the fully electric vehicle data logs shows that none of the slip detection concepts
consistently perform better than the brake manufacturer or the simplified Volvo
estimate in terms of share of estimate within the 4% error limit. Slip-detection
concept 1 is notably the worst performing out of the estimates with large deviations
from the reference speed. This can be explained with that the powertrain torque-
rate criteria, which is the foundation for the slip-detection concept 1, did not work
well for the fully electric vehicle. Concept 2 on the other hand shows that on average
the RMSE, standard deviation and peak errors are lower than the other methods.
The two concepts will be discussed separately in more detail but first some common
problems will be discussed.

None of the slip detection concepts are perfect and even though they work with
di�erent principles they have some common problems which can explain some of
the performance issues. First of all, the excessive slip detection is not necessarily
related to a specific amount of slip. This is because the true speed is not known and
that the detection is based on deterministic thresholds that has been tuned based
on the data logs from the hybrid vehicle. A related problem to this is that none
of the concepts can detect when all wheels are slowly slipping. This is because it
is hard to detect. An example of this can be found in section 4.5.5. As the slip
is slow, there is no clear indicator of slip as e.g. the acceleration di�erence is low,
the torque-rate is not high and the variance of the residual between the estimated
speed and wheel speeds is low. In turn, the wheels are trusted and the speed gets
o�set, sometimes outside the 4% error limit. This phenomena was not observed to
be as frequent in the hybrid vehicle data logs as it was in the fully electric data logs.
Another problem is that the excessive slip detection happens with a slight delay as
the slip needs happen before it can be detected. For the most part this is not a
crucial problem though it introduces a slight o�set in the estimate. Slip detection
in low speeds is also a challenging problem. This is partly because it was found that
the wheel speed measurements does not provide an accurate estimate of the vehicle
speed in low speeds. Partly because estimate will be o�set if slip is detected at low
speeds as the wheels are trusted in low speeds. This will cause the dead-reckoning
to start outside the 4% error limit even though the estimate might not be far from
the true speed in absolute terms.

In slip detection concept 1 a lot of pressure is put on that the identification of the
initialisation of slip and when the wheels comes back can is accurate. To do this,
a combination of powertrain torque-rate, acceleration di�erence between wheel and
vehicle and torque level was used. For the hybrid vehicle, the concept was found
to work relatively well. The speed estimate is better than the brake manufacturer
estimate and compares well with concept 2 but it performs just slightly worse.
However, it was found that the powertrain torque-rate criteria developed for the
hybrid vehicle did not translate well for the fully electric vehicle data logs causing
the concept to fail considerably to detect slip and the estimate to be very degraded.
One example of this is shown in section 4.5.4 where there was no powertrain torque-
peak before slip on an ice road. This raises the question if the powertrain torque rate
slip indicator either is specifically working for the hybrid vehicle or if it is specifically
related to how the vehicle was driven in these data logs. This could be an example
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of over-fitting a slip indicator. Furthermore, the concept is limited to only detecting
slip when there is a combination of high powertrain torque-rate and acceleration
di�erence, which might not always be the case as a wheel could be slipping even
though there is not a particular spike in the powertrain torque level. It has also
been observed that the torque decrease rate criteria does not always align well with
that the wheels are coming back. This is e.g. when the torque level is reduced fast
to a lower level but not completely shut o�. It can also be problematic to clear the
slip-assumption in certain conditions as when the car is accelerating aggressively
for a long time as none of the defined free-rolling assumption events occurs. To
summarize this concept, the particular criteria used for detecting if the wheels are
slipping and when the wheels come back might not be optimal, but this concept
showed in several instances, e.g. in section 4.5.5, that locking the slip assumption
might be a better approach compared to trying to detect slip in every step at some
points.

Slip-detection concept 2 on the other hand, detects slip at every time step. This
instead puts pressure on that the slip-detection is done correctly in each time-step
but it reduces the risk of completely missing detection of obvious slip as with concept
1. Concept 2 proved to be working better and to be more general in it’s formulation
than concept 1 as it performed better for both the hybrid vehicle and the fully
electric vehicle data log. Though it was found to be struggling with slip-detection
particularly in two grey-zones. The first grey-zone is when the wheels are slowly
slipping. This problem was discussed earlier in this section. In these situations
it might be needed to use some sort of delay in the estimate and compare dead-
reckoning from one point in time to the current estimate in order to detect the slow
slip. This could be further researched. The second grey-zone is when the estimate
has drifted slightly but still is within the error limit and a wheel comes back from
severe slip but still slips with an o�set outside the error limit. This is shown in
an example in section 4.5.5. At the point when the wheels slip with a relatively
constant o�set relative to the estimated speed, the acceleration and variance in the
speed error is low. The concept then completely relies on the slip-ratio, however,
this is not the true slip-ratio as the estimate has drifted slightly causing the slip-
detection to falsely assume that the wheel is not slipping. It was not found a easy
solution to this problem. In this concept it was also tested to only rely on the slowest
wheel when slip is detected. This is because theoretically the slowest wheel should
best represent the true speed in acceleration. However, it was found that when
the vehicle is turning relatively sharp during slip, the speed measurements from the
steering wheels can be overcompensated by the presented wheel correction method
which can cause the corrected measurements to be too slow. If the slowest wheel
speed is then trusted the speed estimate can get degraded. This is believed to be the
reason for why concept 2 has the largest minimum speed error during acceleration
slip.
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5.1.2 Dead-Reckoning Process
During all wheel slip, the speed estimate is completely based on dead-reckoning
with the presented method. This is what makes the estimate perform well during
all wheel slip scenarios. Purely basing the speed estimate on the dead-reckoning
process might be questionable, at least over longer periods of time. This is because
the dead-reckoning process is susceptible for many points of errors as sensor biases,
the gravity compensation which requires an accurate Euler pitch estimate as well
that the initial speed o�set plays a role. Unless all of these causes of errors are
su�ciently dealt with, the process is not very accurate over time because of the
error build up during integration. Model inaccuracies is also a factor as for example
shown in section 4.5.3 where the dead-reckoning with a high yaw rate causes the
estimate to drift considerably. However, situations with lateral dynamics was not
within the scope, but it is clear that it has to be considered for those situations. To
limit the risk of positive drift caused by some error in the dead-reckoning process,
both presented slip-detection concepts have a logic that makes the filter trust the
slowest wheel if the estimate is faster than any of the slipping wheels by 1 m/s. This
is to set an upper limit of how much the estimate can di�er from the true speed.
However, a lower limit in the case of negative drift was not formulated because it is
hard to set a limit of how much slower the estimated speed can be as it is hard to
know how much the wheels slips.

5.1.3 Speed Estimation Strategy in Braking
A separate strategy for speed estimation in braking was developed, see section 3.7
for full explanation. This is mainly because it was found that the slip-behaviour in
braking di�ers from the behaviour in positive slip and also that the slip is slightly
more consistent with the ABS is working. Furthermore, it was decided to define
braking as if three or more wheels are experiencing any brake torque. This might
generally be a questionable definition, but as it was found that the wheels could lock
with low amounts of brake torque due to the low road friction and that the brake
friction torque estimates can show up to 50% errors it was found to be a reasonable
definition. This is only used as a way to switch logic in the speed estimation strategy.
The errors in the brake friction torque estimate partly comes down to if the disks are
contaminated with e.g. water. Purely electronically actuated brakes could perhaps
be give a better more accurate estimate of the braking torque. If this information was
available, maybe a more sophisticated brake-definition could be formulated.

The results show that the speed estimation strategy for braking in nominal braking
cases works well. This is because the fastest wheel speed measurement is trusted
and this is normally close to the reference speed during normal braking. In more
extreme braking when the ABS activates the strategy works in many cases. Though,
the strategy is based on that the speed peaks for each wheel during the ABS-cycles
are within the ±4% error limit. In the case of a severe speed reduction because of
braking on slippery surfaces or locking the wheels, the speed estimate will many
times drift outside the error limit if the wheel speed peaks are not within the limit.
An example of this is shown in section 4.4.5. The reason for the drift is that the
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wheels are trusted with a high uncertainty even though they are slower than the
estimate (and true speed). An improvement here would be to further extend the
strategy to for example dynamically reduce the trust in the wheels even further if it
was detected that the wheel speed deviation from the estimated speed is particularly
fast or large in the beginning of the braking. Then the initial dead-reckoning that
is in the presented strategy could be extended. An alternative approach would be
to completely rely on dead-reckoning during braking. This was tested and it was
found that the dead-reckoning for many files tended to drift outside the error limit
as shown in Figure 4.5b. Therefore it was decided that it is better to do updates
with the wheel speed measurements at all times as it proved to work except for the
extreme lock-cases. However, this makes share of when the estimated speed is within
the error limit to be reduced in many cases as can be seen in e.g. Table 4.5.

5.2 Which Driving Scenarios Does the Estimation
Work For?

A clear answer was not found for which scenarios the slip-detection concepts works
best. The di�erent slip detection concepts were not developed with specific scenar-
ios in mind except that only longitudinal dynamics were considered in the process
model. Most of the data logs used are fairly similar in that they consists of heavy
acceleration starting from stand still and then either braking followed by more ac-
celeration or braking to stand still. There are also several logs with some amount
of turning while driving on e.g. an ice-track and also logs with attempts of drifting
the vehicle.

One part in answering this is how to define when the estimation is working. One way
is to only look at when the estimate is within the 4 % error limit. By looking at the
positive slip partition and the braking partition of the data logs it can be seen that
for some logs the estimate is kept within the error limit at all times. When looking
at the descriptions of the logs (see Appendix A) it is not clear that the concepts
only work for some particular scenario. Both concepts work for various cases of hard
acceleration, calm driving and also driving with some turning and maneuvers. It is
however clear that none of the methods works well with the drifting data logs as
the high lateral dynamics has a large influence. It is also clear from some examples
shown in the result section that the estimation can work well for most of a log until
a particular problem is ran into. One example is in section 4.5.3 where concept 2
solves the challenging slip scenario in uphill where the vehicle is also decelerating
because of the slip but in the end the concept fails to keep the speed within the
limit when the vehicle is experiencing heavy yawing (lateral dynamics). Similarly,
concept 1 for the same case also solves the particular case but the estimate is just
outside the 4% error limit as slip is detected with a slight delay. Even though the
speed estimate is not within the vision error limit, the error in the estimate is much
lower than compared to the brake manufacturer.

Another part of the answer is basically that it is more a question of which scenarios
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align with the slip-detection concepts the best and where the systems have gaps in
the logic. If the slipping wheels are not successfully filtered out the speed estimate
will degrade. As mentioned, the main limitations of the method is that the slip de-
tection concepts does not cover all scenarios or cannot always detect slip correctly at
all times, that the dead-reckoning might fail or drift and that the speed estimation
strategy in braking does not keep the estimate within the error limit during extreme
braking with wheels locking. These limitation are discussed in greater detail in sec-
tion 5.1. Generally the method for speed estimation strategy works best in scenarios
with straight line driving or with some turning and with relatively clear slip-events
which means that the excessive slip happens quite abruptly such that it is easy to
detect for the systems. Also, normal and hard braking is working fine but when
the fastest wheel is much slower than the true speed the estimate will eventually
degrade during braking. To summarize when the estimation method does not work
well this is when the slip happens at a very low speed, when the slip is slow, when
it is high lateral dynamics, when the torque is going on and o� which makes it hard
for concept 1 to detect slip and finally for concept 2 when the estimate has drifted
and the speed is right outside the error limit.

5.3 Di�erent Filters
Initially, three di�erent filters were set up with slight variations of the states to see
if there were any indications that one filter was performing significantly better. All
filters consider the longitudinal speed and Euler pitch angle with the variations that
filter VxRP includes the Euler roll angle and that filter VxV̇xP includes the accel-
eration as a state. When testing the filters in combination with the slip detection
concept 1, no significant di�erence was observed. As can be seen in Table 4.1 the
performance of the filter and slip detection combinations are very similar. However,
this testing is slightly ambiguous as it is not only the performance of the particular
filter that is evaluated. It is the combination of how the filter and the slip-detection
logic performs.

Out of the three filters, VxRP keeps the speed estimate within the error limit for
the most amount of the data logs for the hybrid car. A reason for this could be
that this filter was used to develop the slip-detection concept 1. It might also
be that taking the roll motion into consideration, the Euler pitch estimate gets
slightly a�ected in the integration of the gyroscopes while turning or if the road
is banking. Therefore this filter was chosen as the filter to compare the two slip
detection concepts with. One thing that speaks against using this particular filter
is that the Euler roll estimate is purely based on the integration of the gyroscopes
which over time will make it drift. However this was not found to be a problem
in this work as the gyroscope was bias-compensated and that the time periods the
filter was running are relatively short. It was also found that the filter variations
was hard to study in the excessive slip condition data and that it seemed to make a
small impact on the estimation results. Therefore this particular investigation was
not focused on.
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5.4 About O�set Compensation
The gyroscope o�set compensation was not made in a practically feasible way as
a car might go for long time without stopping. In this time the biases would have
changed so much that the initial o�set would be inaccurate and the dead-reckoning
capabilities would have reduced. Drift is a big problem and this needs to be further
looked into in an real-world implementation. Additionally, this was not a part of
the scope. However it was shown that only compensating the gyroscopes when
standing still, the dead-reckoning performance with the used sensors was good and
the accelerometer bias could be included in the Euler pitch-estimate, see section
3.4.5. In turn, the Euler pitch estimate is not very accurate as it is o�set. Since
the speed estimate is accurate, this could be used in a separate filter to estimate
the true orientation in a similar manner. Also, it is questionable if this approach
would work if equations relating several accelerometers would have been used in the
process model. This is because the Euler pitch would then be related to the errors
of several accelerometers and it is unclear if it would be possible to distinguish the
di�erent o�sets in the di�erent accelerometers.

5.5 Pointing out error in filter VxRP

Late in the thesis it was realized that the filter VxRP had a problem with stability
of the covariance calculation. In certain combinations of states and inputs, the
covariance was calculated with negative values. This was not detected as the filter
seemed to perform well compared to the other filters as can be seen in Table 4.2. The
reason for the negative covariance is not completely understood. In the following
example it is described how the filter is more or less guaranteed to get negative
values in the first step of prediction.

The covariance in the prediction step is calculated according to equation (5.1) where
F is the Jacobian of the process model, P is the initial covariance and Q is the
process noise.

P = F P F
T + Q (5.1)

In the initial step of the filtering, both P and Q are diagonal matrices. Let P be
described as equation (5.2) where a, b, c are positive values.

P =

S

WU
a 0 0
0 b 0
0 0 c

T

XV (5.2)

In the simplified initial case when both Euler roll and pitch angles are assumed to
be 0 the expression F P F

T have the following explicit expression.

F P F
T =

S

WU
c Ts

2 g2 + a Ts

2
Êz c g Ts c g

Ts

2
Êz c g c Ts

2 Êz
2 + b ≠Ts Êz (b ≠ c)

Ts c g ≠Ts Êz (b ≠ c) b Ts
2 Êz

2 + c

T

XV (5.3)
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It can be seen in equation (5.3) that the elements marked in bold may be negative.
This happens if either Êz is negative or if Êz is positive and b < c. The covariance
matrix P should not be able to take negative values. This means that the filtering
concept is fundamentally flawed. Negative covariance have no physical meaning.
The filter flaw does an impact on the calculation of the Kalman filter gain matrix
which in turns a�ect how the state estimates are updated with the wheel speed
measurements. Though, the negative values in the covariance matrix did not seem
to a�ect the estimate notably in a negative way. This could be because the Kalman
gain is not used during dead-reckoning, as the IMU signals are directly input to the
filter in the dead-reckoning step. Thus, the covariance matrix does not a�ect the
estimate during these sequences.

The root of the problem was not further investigated. The authors believe that
the problem perhaps could originate from either a linearization of a too non-linear
function or that too many states involved in the Euler roll-equation are directly
input in the prediction step. The solution might be to include other states and
equations relating the di�erent states in the filter or to simply put all IMU signals
as measurements in the Kalman filter.

5.6 Future works
In this section, a summary of interesting future research topics are presented.

Introducing Additional Measurement of the Speed

If the main interest is to estimate the speed with the highest possible accuracy and
robustness the authors think that introducing an alternative measurement of the
speed would greatly improve the chances of providing a more robust estimate. This
could be done by introducing other sensors as radars, cameras and GPS for example.
This would increase the computational complexity. It would also introduce a prob-
lem of which of the methods should be trusted. The di�erent methods mentioned
also has its own flaws and specific use cases that has to be considered. For exam-
ple, the GPS might have problems with the reception and cameras problem with
exposure. The main idea however, is that by combining more sensor data, especially
with alternative measurements of the speed, it is far less likely that all sensors fail
at the same time.

Another possibility is to study if using several dead-reckoning processes from di�er-
ent IMUs could improve the speed estimation. At least errors in particular IMUs
could possibly be detected.

Speed Estimation With Time-Delay or Improving the Speed Estimate by
Going Back in Time.

As the detection with the current proposed methods tend to be slightly delayed,
see beginning of examples in Figure 4.14, there will be a slight o�set in the speed
estimate as the wheels are trusted in the initiation of the slip. One thing that was
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tested but was not included in the final version is to use this knowledge to further
improve the estimate. With the current approach dead-reckoning is used to estimate
the speed when all-wheel slip is detected. If the estimate prior to the all-wheel slip
was good without an speed o�set relative the true speed, then the idea is that it
would be better to start the dead-reckoning from this point instead. This would
eliminate the initial speed o�set and any possible Euler pitch angle errors induced
from the slight delay in the detection of the slipping wheel.

The reason this was not included in the proposed method is that it was not found
a way to always be able to know if the speed estimate in every time step is close to
the true speed of the car. It could be that the slip detection system does not detect
any slip but the wheels currently are slipping with some percent. Then further
increasing the dead-reckoning time by initiation a dead-reckoning from an earlier
time could possibly decrease the amount of time the dead-reckoning can be made
before it starts to drift outside the limit.

Alternatively a separate estimate with a time delay could be investigated. By intro-
ducing a time-delay it is believed that it would be possible to make better estimates
about what the true speed is as more information is available. However, this in-
troduces a time-delay in the estimate as well. Therefore this might not be feasible
as the only speed estimate as a lot of systems is depending on what the speed is.
Though, in situations with on-o� slip that is hard to detect it might be a better
option than an online estimation.

Developing a Way to Accurately Describe the Uncertainty in the Speed
Estimate

With the current filter, the calculated covariance does not represent the accuracy or
uncertainty of the speed estimate very well during dead-reckoning. What is meant
is that the true speed can be outside the 3-‡ region from the estimated speed. If
this uncertainties were trusted by some system faulty decisions could be made. The
authors believe it would be a good future work to try to accurately describe the
uncertainty in the speed estimate.

Analysing the E�ects of Feedback When the Estimate is Used in the
Vehicle

Another interesting aspect that is left out in this thesis is to consider the feedback
e�ects that occurs when the speed estimate is used by the systems in the vehicle.
This could introduce unexpected challenges.

Investigating Dynamic Thresholds and Criteria for Detection of Slip

In the presented approach, all thresholds and conditions are fixed. It was shown
to be a big challenge to set up di�erent threshold that can cover all situations.
Therefore an alternative way would be to introduce dynamically changing thresholds
for determining slip. The threshold could perhaps be changing depending on speed or
yawing. It could also be investigated how an approach that is based on dynamically

94



5. Discussion

determining and changing uncertainties in the signals would a�ect the estimate. This
might be advantageous in the mentioned grey-zones where the wheels are slipping
slowly or are just around the error limit.

Also, the dynamics of tyres in slip conditions depends on load which also changes
dynamically during driving. A correlation was looked at but it had very little lin-
ear dependency to fit the tyre dynamics curve and determine maximum torque or
slip. It’s e�ect over each tyre in di�erent conditions could also be investigated
further.

Use Machine Learning for Detection of Slip

Perhaps machine learning could be used in di�erent ways to improve speed estima-
tion. As it was found that it is hard to define and track when a wheel is slipping
by hand, the authors believe that it could be possible to train a neural network,
or similar, for the classification problem of deciding slip based on di�erent input
signals. This would allow for abstract patterns and rules in the data that a human
finds it hard to detect.

Reversing and Lateral Dynamics Scenarios

Both reversing scenarios and scenarios with high lateral dynamics were not studied in
this thesis. However, these scenarios are important to consider. The authors believe
that a similar approach as presented in this thesis could be used in the reversing
cases but, the low-speed cases might be a challenge as the wheel speed encoders
does not provide an accurate measurement in low speeds. Also, for scenarios with
high lateral dynamics, this needs to be considered in the process model.

Take Advantage of the Powertrain Torque and Friction Estimation

One slip indicator that was tested but not used in the final version of the slip-
detection concepts is the max-torque estimation criteria presented in [13]. The
presented version of the threshold is limited to all-wheel slip conditions as it is only
at these times the utilized friction can be directly estimated with linear acceleration.
It is also limited to axle-wise slip indication and will only indicate slip if torque is
actively applied. The authors believe that this criteria would be more relevant if
the individual wheel friction was estimated and if the powertrain torque was pro-
vided for individual wheel enabling for individual max torque estimation at all times.
However, in winter road-conditions, the road-tyre-friction changes momentarily and
also at an individual tyre level. Therefore this might not be very feasible. Alterna-
tively, the torque level could probably be taken advantage of in a better way than
presented in this thesis. This needs to be further investigated.

Study of Larger Data Set of Slip and Testing in CarMaker

If an approach similar to the one presented in this thesis is taken, the authors believe
it is necessarily to study a larger data set with more examples of di�erent types of
slip. This is to try to identify di�erent outlier scenarios and di�erent types of slip
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such that the logic is set up with a better understanding of what can happen. This
could also be combined with a slip-detection indicator development and testing. If
this had been to a further extent in this thesis, maybe it would have been detected
earlier that the powertrain torque rate criteria only worked well for the hybrid vehicle
data. Furthermore, if a large amount of data logs are not available, simulators like
CarMaker could be used to set up di�erent scenarios for testing and evaluating of
the speed estimation strategy.
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The presented approach for estimating speed in excessive all-wheel slip conditions
proved successful in many situations and shows that it is possible to estimate the
speed in line with the vision of keeping the estimate within ±4% of the reference
speed. It was shown that both of the presented slip detection concepts can provide
a good filtering out of the slipping wheel speed measurements. Particularly for
the hybrid car where both methods perform considerably better than the brake-
manufacturer estimate. It was also shown that only compensating the gyroscope
bias when the car is standing still and letting the Euler pitch-estimate be o�set
with an amount corresponding to the accelerometer bias is a feasible approach to
allow for accurate dead-reckoning of the accelerometer. Though, this only works
for a limited time as the sensor biases drift over time. The online bias estimation
problem needs to be considered in an real-world application.

However, the results show that the presented approach is not robust in keeping
the estimate within the vision of ±4% of the reference speed. This mainly is a
result of the complete reliance in the proposed slip detection system, which cannot
detect slip for all situations. The di�culties in detecting slip partly lies in that it is
hard to formulate a way of detecting slip throughout a slip-event, partly that many
indicators of slip depend on the estimated quantities as the speed. This creates a
circle dependency. It was found that the torque-rate criteria used in slip detection
concept 1 did not work well for the fully electric car. The slip detection concept 2
on the other hand showed a more general functionality.

Furthermore, at the point of all wheel slip, the speed estimate is purely based on the
dead-reckoning of the IMU signals. This process is in turns susceptible for errors
in several ways, including sensor biases, gravity and model inaccuracies. The dead-
reckoning on the other hand is what makes it possible to provide a good estimate
of the speed during excessive slip but the process is limited by how well the states
and biases are estimated. With the limitations mentioned it is hard to determine
how well the speed can be estimated in such conditions. Though it was not studied
in this work, the authors are convinced that utilising other sensors as radar, GPS
or another sensor that can provide an absolute measurement of the speed of the
vehicle independently of if the wheels slip would greatly improve the accuracy and
robustness in the speed estimate in excessive all-wheel slip conditions.
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A
Appendix 1

Table A.1: Description of data logs for hybrid vehicle. All logs are from low-friction
conditions in winter driving.

Data Log Description
HY1 Straight acceleration and ABS braking without ESC, main ice track.
HY2 Attempts to drift without ESC, main ice track.
HY3 Half a lap on main ice track without ESC.
HY4 Without ESC high acceleration, constant speed, deceleration, main ice track.
HY5 Spin in uphill, road from main ice track.
HY6 Spin in downhill, road from main ice track.
HY7 More aggressive driving (some drifting) on circular track, anti-clockwise, ESC o�.
HY8 Acceleration without ESC on ice track.
HY9 Acceleration deceleration and various maneuvers also without ESC, partly ice.
HY10 Dito with ESC.
HY11 Dito with ESC.
HY12 Acceleration and deceleration with ESC but "traction control temporarily unavailable".
HY13 Calm driving around main track for o�set compensating, then platform safe stop.
HY14 AD driving on main track, manual intervention.
HY15 AD driving on main track, manual intervention, reactivation of AD.

Table A.2: Description of data logs for fully electric vehicle. All logs are from
low-friction conditions in winter driving.

Data Log Description
FE1 Slip in 20% hill incline
FE2 Hills with varying incline (±15%)
FE3 Throttle tip on ice road
FE4 Throttle tip on snow road
FE5 Handling track calm
FE6 Handling track calm
FE7 Handling track calm
FE8 Throttle tip and braking
FE9 Hills with varying incline
FE10 Straight acceleration and braking
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Abstract
With the advent of autonomous driving cars, the data fed to the autonomous brain is of utmost importance
with vehicle speed being one of the more crucial data. Vehicle speed can be estimated with a standard sensor
suite equipped in a modern car that includes IMU, wheel speed sensors, steering angle sensor, powertrain and
brake torque. When the wheels slip excessively however, they can not be used to represent the true speed
of the vehicle and thus the onus falls on dead-reckoning of the IMU. In the precursor thesis work, vehicle
speed estimation during excessive wheel slip was based on a kinematics approach designed with an Extended
Kalman Filter. To detect the slipping wheels and filter them out from the input, two slip detection concepts
were developed. The first approach used static thresholds for slip indicators such as torque rate and wheel-car
acceleration di↵erence. However, since the thresholds to detect slip were static, it was highly prone to missing
or incorrectly assuming slip on wheel. The second approach was prone to missing slipping wheels when slip
would increase slowly. The work in this project now is based on improving these methods by two di↵erent
ways and analyzing the improvement in the estimate. The first approach is to introduce a GPS speed signal as
another measurement of speed to trust in case all wheels slip and their speeds can’t be used. This reduces the
burden on dead-reckoning at all times. The second approach utilizes the limited sensor suite to develop a new
slip detection concept that is dynamic and that estimates the slip ratio at each time instant. The development
and testing is done a large AWD hybrid for which excessive wheel slipping data from real-world driving is
logged and provided. The results are promising in terms of improvement. Both approaches improve the speed
estimation when compared to the previous method as well as the brake manufacturer Volvo’s wheel speed
based simple estimate. It keeps an even larger share of the data log’s speed estimate within ±4% error limit.
The new methods are better on average over all data logs as well as individual data logs however it does not
solve all data logs 100% of the time. The speed estimation methods in this case also provide a comparison
analysis from the previous methods.

Keywords: Vehicle speed estimation, wheel slip estimation, GPS speed, slip detection, slip ratio, vehicle state
estimation, extended Kalman filter, vehicle dynamics
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1 Introduction

The modern fleet of vehicles comes equipped with various degrees of Autonomous Driving (AD) systems and
Advanced Driver Assistance Systems (ADAS). Running these systems in vehicles calls for better and more
robust control systems. Most of the AD and ADAS systems safeguard are safety-critical to vehicle, occupant
and pedestrian safety alike; making the systems that control it, equally important. Thus, the information fed
to these systems from estimated states and sensors must be accurate at all times. Vehicle speed is one of the
most important inputs to these systems, making it a critical quantity that needs to be known accurately in all
situations. Any significant deviation in the estimated vehicle speed from the true speed can compromise the
functionality of the systems and hinder their ability to make the correct decisions.

A standard sensor suite on a modern car includes an Inertial Measurement Unit (IMU), sensors that measure
wheel speeds, steering wheel angle, powertrain torques and brake torques. This data, along with a vehicle
motion model form the basis of vehicle speed estimation. Driving on high grip surfaces with no or low tyre
slip, wheel speed sensors can be trusted to give vehicle speed measurements very close to the true speed.
However, while driving on slippery surfaces like snow or ice with low friction, the wheel speeds start spinning
in acceleration and lock under braking scenarios. Here, the wheel speed measurements are far o↵ from the true
speed of the vehicle and cannot be used to estimate vehicle speed.

From the research carried out during the thesis work [1], it was found that during all-wheel slip conditions,
the solution is to rely on dead reckoning the acceleration from the IMU. However, this is not a viable solution
for longer duration of slip as the IMU is susceptible to drift due to the integration of errors. This makes it
important to know the current state of the wheels and when they can be trusted to help limit the use of
dead reckoning. The thesis work [1] thus focused on developing two slip detection concepts - one utilizing slip
indicating parameters and the other using wheel speed variances. These concepts were used in combination
with a kinematic based vehicle motion model for estimating the forward velocity of a vehicle being driven in
extreme all-wheel slip inducing conditions.

The lack of direct, on-board speed measurement sensors is one of the limitations for vehicle speed estimation
methods developed in [1]. Wheel speeds are the only direct measurement of speed which, in all-wheel slip
conditions cannot be trusted. Another limitation lies in the slip detection concepts. The first slip detection
concept utilizes two parameters with static thresholds to indicate slip. A static threshold means that it does
not change with dynamic conditions road conditions and driving maneuvers, which means that the thresholds
don’t hold in all cases. So, a change in any of those would mean that wheel slip could be missed or incorrectly
assumed. The second slip detection concept uses variances in errors generated by the di↵erence between wheel
speed and estimated speed. This concept is susceptible to incorrect slip detection when wheel slip increases
slowly or when the wheel variance falls but not below the error limit, making the concept incorrectly assume
slip. Also, the slip ratio calculation used in this concept uses the estimated speed which does not always give
an accurate value.

Now, this continued development of precursor thesis work [1] focuses on developing two new speed estimation
methods that improve upon the previous ones. The first limitation is tackled by introducing a secondary
measurement of speed - a modelled GPS speed signal that is used along with the previously developed slip
detection concept. Using the same slip detection concepts help to keep the number of variables in the method
low, and help to understand how improvements in speed estimation can be made just by introducing a new
speed measurement. The limitations in the slip detection concepts are tackled with a completely new, dynamic
slip detection and wheel selection strategy without using the modelled GPS speed signal. The modelled GPS
speed is not used to keep the number of variables in the method low, which helps in understanding the true
improvement over the previous methods. The kinematics model from the thesis work is used for its lower
complexity and requirement than a vehicle dynamic model. This work is carried out at Volvo Cars’ Vehicle
Energy and Motion Control department who also provided real-world driving data.

1.1 Related Research

During the precursor thesis work [1] , an intensive research on various ways developed to estimate velocity
was carried out. Section 1.2 from the thesis report [1] talks in detail about the relevant research papers and
it’s contribution to the vehicle speed estimation methods. It talks about the various kinematics and dynamic
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models, use of di↵erent sensor setups as well as di↵erent sensors. Research based on using GPS speed data,
visual odometry as well as RADAR and LiDAR is also presented. The reader is referred to [1] for more
information.

INS and GNSS measurements can be fused and provide more accurate estimations of vehicle states as velocity
compared to dead reckoning of IMU. The drawbacks with GPS is, among other things, the risk of the signal
being interrupted from surrounding objects as buildings and slow update frequency [2].

GPS can also be used to improve the estimation of other vehicle states. [3] showed the feasibility of estimating
wheel slip, body slip and tyre side slip angle using GPS vehicle velocity measurements. The wheel slip was
estimated by comparing the GPS velocity to the wheel speed sensors which also allows for tyre radius estimation.
Vehicle side slip angle was measured as the di↵erence between vehicle heading (integration of gyro or dual
antenna GPS) and direction of travel from GPS. tyre slip angle was measured as the di↵erence between tyre
direction translated from the GPS velocity and the tyre longitudinal axis relative the car.

[4] further demonstrated how GPS measurements can enable estimation of longitudinal sti↵ness of the tyres.
This in combination with the e↵ective tyre radius and wheel speed can be used to completely specify the linear
part (low amount of slip) of the force-slip curves referred to as ”the Magic formula” [5].

[6] present an enabling multi-sensor fusion-based estimation of longitudinal speed for a four wheel drive EV. The
sensors used are GPS in tandem with Beidou Navigation Positioning (GPS-BD) module, and a low-cost IMU.
The consequence of gravity/road inclination in the acceleration signal is compensated for by combing the wheel
speed sensor and the GPS-BD information. A multi-sensor fusion-based estimation method is implemented “by
employing three virtual sensors which generate three longitudinal vehicle speed tracks based on multiple sensor
signals”. The results show promising estimations of vehicle speed under low friction surfaces, sloped roads, hard
acceleration and braking conditions. The method shows good robustness and real-time performance.

[7] proposed a solution that uses a single band antenna that measure the carrier phase outputs tightly integrated
with IMU and wheel speed sensors. Real world testing indicated that the technique could make the error
growth slow enough for accurate position estimation for about 10 seconds.

These solutions require accurate GPS measurements of position and velocity from real world driving which are
not available in the data logs received during the previous work. However, some data logs from highway driving
on asphalt roads on the E6 route which included a few tunnels were later provided for this work. The GPS
speed measurement was logged for these files, which provided the basis to model a similar GPS speed signal
with added noise and update frequency from reference velocity measured by the OxTS for all the excessive slip
data logs supplied for development. This modelled GPS speed is used as a secondary speed measurement to
the kinematic based Extended Kalman Filter(EKF) for vehicle speed estimation when all wheels are detected
to be slipping. These studies below give an idea of how the GPS speed standard deviations and mean errors
should behave and help in assessing the errors in the GPS speed measurements provided.

Error di↵erences between a tracking point GNSS and a doppler shift GNSS module are explained in [8]. A
GNSS module tracking satellites that uses doppler shift phenomenon to estimate the moving speed of a target
satellite has an error of 0.238 km/h for speeds upto 1800 km/h. An increase in Position Dilution of Precision
values as it loses connection to satellites that help to estimate velocity due to weather leads to marginal increase
in average errors (0.254 km/h for speeds upto 1800 km/h).

The errors of a GPS speeds based on doppler shift is also shown to be significantly low for vehicles driven on
vegetative and uneven lands in [9]. Their study shows that the errors in speed output from a GPS module
mounted on a vehicle driven at steady state speeds between 3 and 9 mph have a maximum error of only
0.08 mph over di↵erent surfaces. However, the GPS module su↵ers from speed errors in dynamic driving
conditions such as acceleration and deceleration mainly due to it’s update frequency being too slow at 4 Hz. In
acceleration, the maximum speed error in acceleration at 1 m/s2 was 2.7 mph. The peak error was higher for
deceleration of 1 m/s2 at 4 mph.

[10] compared five di↵erent GPS devices attached to a vehicle driven on highway roads. It was found that a
GPS module calculating speed using doppler e↵ect at an update frequency of 1 Hz has fairly low errors at
constant speeds of 50 to 70 km/h. The peak error at very low speed of 3 km/h was 1 km/h. During rapid
acceleration, the standard deviation of error was roughly 5 km/h at 50 km/h, while during rapid decelerations
from 50 to 0 km/h, the standard deviation was upto 10 km/h.
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[11] compared 4 GPS modules based on costs. The cheapest GPS module was a 1 Hz receiver costing $ 75.
This was attached to a hatchback car and driven around the roads of Melbourne including city driving amidst
high rise buildings, tunnels, highway driving, under passes and over passes. At relatively good Horizontal
Dilution of Precision (HDOP) <= 1, the standard deviation of speed error was 0.7 km/h ranging up to 4.4
km/h at higher HDOPs. It also states that HDOP is an industry standard value to determine if the GPS data
is accurate or not.

[12] compared GPS modules with frequencies of 1 Hz, 5 Hz and 7 Hz. It was found that at extremely low
constant speeds of 2 mph for 1 Hz GPS, the mean error was 0.08mph while it increased in acceleration and
deceleration cases. In acceleration, it was found that the GPS speed was always slower than the reference and
in braking, faster than the reference due to latency and low update frequency.

Estimation of longitudinal velocity of the vehicle is based on two fuzzy logic controllers in [13]. Wheel speed
sensors are used with one fuzzy logic control to estimate the speed. The wheel speed sensor output is translated
and a dynamic tyre radius change factor is introduced. This is used to calculate the slip ratio based on the
slowest wheel speed sensor data and the speed estimate. The fuzzy logic controller then decides the confidence
given to each wheel speed measurement like a slip detection system and estimates the speed. The accelerometer
data is integrated to gain a second speed estimate. The second fuzzy logic controller takes both these speed
estimates as input and using a weight factor, decides which estimate to trust.

[14] develops a slip detection and slip ratio estimator for a small single-seat, fully electric vehicle with motors
in each wheel. This is used to estimate velocity and for slip control. They estimate wheel slip ratio based on
di↵erentiating the slip ratio equation. Then, this estimated slip ratio is used as an input to the wheel slip
indicator that detects whether the wheels are slipping using a recursive least squares method. Along with this,
torque thresholds and acceleration thresholds are set as another indicator of slip. [15] uses a similar technique
to estimate the slip ratio. Their work estimates slip ratio based on a di↵erentiating the equation of slip ratio,
utilizing di↵erent tyre parameters, torque inputs and wheel speeds for an autonomous 4 Wheel Drive electric
race car. Instead of using other indicators of slip, they use this slip ratio as a state in a kalman filter. The
equation for slip ratio estimation studied in this paper and the torque thresholds and acceleration thresholds
from thesis and [14] create the foundation for the developed method in this work.

1.2 Objective and Purpose

The primary objective of this work is to improve upon the previously developed vehicle speed estimation
methods in excessive all - wheel slip conditions via di↵erent approaches and analyze it’s performance gains.[1].
The focus is on utilizing two di↵erent strategies. The first strategy is to introduce a modelled GPS speed signal
to be used as a secondary speed measurement in all wheel slip conditions. This is used in combination with slip
detection Concept 2 with a modified kinematics-based VxRP filter (which is the best performing combination,
[1]) for vehicle speed estimation. The second strategy is to develop a new slip detection system with braking
logic, only by using the available on-board sensors - IMU, wheel speeds, steering angle, powertrain and brake
torque sensors. The new system is more dynamic and capable of estimating slip at each time-step. This system
is used with the VxRP filter. The development and testing of these approaches will be done on real-world
driving data provided by Volvo for the large AWD hybrid vehicle.

The vision set during the thesis work is the same for this complementary work as well. The vision of this work
is to develop longitudinal velocity estimation methods that can estimate the speed of the vehicle in extreme,
all-wheel slip conditions especially. The goal is to achieve estimation errors that are less than ±4% of the
ground truth for 99% of the time, avoiding extreme outliers. The speed estimation method should also be
feasible enough in the real-world to use on-board with low latency / lag estimates. The speed should also be
estimated without considerable time-delay to provide an online speed estimate.

The two methods developed in this work are based on the analysis carried out during the precursor thesis
work and the future work suggestions to improve the estimation method. The purpose of this work is now
to develop the two methods. Since these methods were expected to make the speed estimation better, an
acceptable outcome would be that the two new methods perform better than the previous methods overall in
all conditions ranging from nominal to extreme slip, even though it might not work for some data logs or cases
at all times.

3



1.3 Scope and limitations

The scope and limitations of this work rests majorly upon the same limitations set during the thesis work apart
from a few limitations in the new methods developed.

This continued development to the precursor thesis work focuses on developing vehicle speed estimation
method/s that is accurate and better than the ones developed in [1]. The vehicle speed is only considered in
the longitudinal direction while lateral dynamics are ignored, along with data logs containing scenarios with
high lateral motion of the vehicle. The speed estimation is done for speeds ranging between 10 and 120 km/h.
Reversing scenarios are also omitted. Online estimations of tyre radius, tyre sti↵ness and bias/o↵sets of the
IMU are not considered. Data logs that contain all-wheel slip for greater than 20 seconds are also ignored.
The hybrid vehicle data logs had multiple IMUs, however it is assumed that just one IMU is enough to give
accurate data about the vehicle’s accelerations and orientation rates. GPS speed signal is modelled based on
literature review and the data available. New data has not been collected for extreme slip cases with a GPS
module. Comparison of the new methods is done only with VxRP filter with Concept 2 among the previously
developed methods since it was the best performing filter-concept combination.

4



2 Theory

In this chapter, the background knowledge and theory applied in the vehicle speed estimation is very briefly
listed and explained. This includes an explanation of Bayesian filtering, kalman filters, sensors and tyre
dynamics. For in depth knowledge about the theory of these topics, the reader is referred to the previous thesis
work Chapter 2 [1].

2.1 Bayesian Filtering and Kalman Filters

Bayesian Filtering is a fundamental technique used for estimating the states of time-varying system where the
true quantity of the state at time k is denoted as xk. The true quantity however is unknown to an outside
observer, who can only measure these states via noisy outputs from the sensors in the system denoted as
{y1,y2...,yk}. The end goal is to filter out this noise in the measurements and arrive at the true state quantity
at time k, given the previous measurements and the evolution of the system defined via a dynamic state space
model. Thus the main goal of any filtering algorithm, including Bayesian filtering is to model the believed state
quantity on the previous state, noisy observations, and any control input to the system. Bayesian filtering does
this using a mathematical approach for conditional probability or a statistical inversion problem [16].

2.1.1 Probabilistic State Space Models

In Bayesian filtering, the time-varying system of interest is described using a probabilistic state space model
[16]. The goal is here to estimate the distributions of the states given the measurements from the sensors. The
estimation of the state is divided into two parts. One is the process model, equation (2.1) that predicts the
next state via a dynamic equation, based on the actions done upon the system and the previous state. The
measurement model, equation (2.2) defines how the observation or sensor output a↵ects the next state.

xk = fk�1(xk�1,uk, qk�1) ⇠ p(xk|xk�1;uk) (2.1)

yk = hk(xk,uk, rk) ⇠ p(yk|xk;uk) (2.2)

To understand how these equations work together for recursive state estimation, how a Hidden Markovian
Model describes the filtering process and the final set of equations for Bayesian filtering with a flow model, the
reader is directed to the precursor thesis work [1].

2.1.2 Kalman Filter

Bayesian Filtering is fundamental tool for recursive state estimation and filtering solutions. Kalman Filter is
special case of Bayesian filtering where the process or dynamic model and the measurement or sensor model
are linear Gaussian. A Kalman filter in a way works by making the predictions and the observations linear
about their mean values and all distributions are Gaussian. The Kalman filter [17] can also be defined as a
closed form solution to the bayesian filtering equations where the process and measurement models are linear
Gaussian [16]. The Kalman filter’s ability to provide optimal solutions using the fundamentals of Bayesian
filtering makes it a popular choice in state estimation problems [18]. Below are the equations that constitute a
Kalman filter. It’s derivations can be found in [16] and [18].

A linear Gaussian state space model can be depicted as (2.3).

xk = Ak�1xk�1 +Bk�1uk + qk�1

yk = Hkxk + rk
(2.3)

Where, A is the state transition matrix that defines the dynamic evolution of the states, B is the control input
matrix while H is the measurement matrix that describes how the sensor outputs relate to the states. The
noise in both models is designed to be zero-mean Gaussian distributed.

To understand these equations and how they constitute a Kalman Filter’s prediction and update steps, as well
as an explanation excerpt from the precursor thesis work [1] explains how these equations are utilized together
to form a linear kalman filter.
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2.1.3 Extended Kalman Filter

The Kalman filter described above is mainly used for linear systems (process and measurement models). To
estimate the states of a non-linear system, some changes need to made. The extended Kalman filter (EKF)
is a modified version of the linear Kalman filter that works for non-linear models [16]. The fundamental
principles remain the same, however the non-linear system is linearized to an ”approximately” linear system.
This however only works if the system as a whole is non-linear but is still locally linear, allowing the system to
be approximated via a Taylor expansion series of order 1. Also, unlike a linear kalman filter, the output of an
EKF is not the true value but a Taylor Series approximation of the value.

A time varying system (process and measurement model), defined by non linear functions f and h is first
linearized about it’s mean amd given by the equation (2.4) where F and H are the Jacobian transformations
of the functions non-linear functions. .

xk = f(xk�1,uk) + qk�1 ⇡ f(x̂k�1|k�1,uk) + F (x̂k�1|k�1,uk)(xk�1 � x̂k�1|k�1) + qk�1

yk = h(xk) + rk ⇡ h(x̂k|k�1) +H(x̂k|k�1)(xk � x̂k|k�1) + rk
(2.4)

To understand more about the process model and measurement update steps that combine to form the EKF,
the reader is guided to the previous thesis work [1].

2.2 Sensors

A short overview of the sensors that were used to log the data used in this work is presented below. For further
details about the sensor’s working and errors, the reader is referred to the previous thesis work [1].

2.2.1 Inertial Measurement Unit

An Inertial Measurement Unit or IMU for short, is a module that is used to measure the accelerations and
angular rates of a body. IMU in itself contains accelerometers, gyroscopes and in some cases, a magnetometer.
An accelerometer is a sensor that measures accelerations. Each accelerometer measures acceleration along
one direction, so three accelerometers aligned in X,Y and Z direction can be used together to measure the
body’s longitudinal, lateral and vertical accelerations. A gyroscope is device that measures rate of orientation
of a body i.e. for a car, it’s yaw, roll and pitch rate. The device is mounted around a rotation axis which
when changes it’s orientation, induces a moment in the opposite direction which allows it to maintain it’s own
orientation. This counter moment can be used to gives angular rates of a body.

2.2.2 Wheel Speed Sensors

A wheel speed sensor is in essence a tachometer. The working principle is based a rotary encoder. The sensor
is attached to the drive axle connecting the wheels which has a disc with cutouts or ”teeth”. The number of
teeth it passes through are recorded. This number when divided by a unit time quantity gives the angular
speed of the wheel. The advantage of these sensors is that it the measurements are not biased or a↵ected by
road surface, banks or inclinations. The wheels speeds however can give erroneous readings while turning as
the the speed is measured for wheels spinning in the plane parallel to the ground, or at low speeds when the
distance between the ”teeth” is too much (or it’s resolution is too less). [19].

2.2.3 Steering Wheel Angle Sensor

A steering wheel angle sensor outputs the wheel angle. This angle is the direction in which the front wheels
(usually steered) are pointing. The sensor is based on hall e↵ect for eg: optical sensors mounted on the steering
axis. Since these sensors are safety critical to know the motion and dynamics of the car at each time, there are
usually multiple steering wheel angle sensors for redundancy and accuracy.

2.2.4 Powertrain Torque

Torque sensors measure the torque that is applied from the driveline to the wheel used to the drive the vehicle.
The sensors could either use angular displacements or transducers that work as a strain gauge, use Software
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Acoustic Waves or a few other techniques. However, using these sensors is tricky due to packaging constraints
in the complex powertrain design. Torque is also often estimated using other sensors such as fuel and air flow
rate sensor, engaged gears and others. The accuracy however may vary due to the subjected temperature
and vibrations and large relative motions in the powertrain. This may induce a lot of errors and noise in the
outputs.

2.2.5 Brake Friction Torque

Brake torque can be measured at the brake disc as a friction torque using piezoelectric sensors. These sensors
are attached in brake calipers. The output of the sensor is not the actual braking torque, but the estimated
torque since the friction of the disc is a dynamic quantity that changes with temperature and other things on
it’s surface like oil, water and snow. Another way is to mount pressure sensors in the brake lines to measure the
hydraulic pressure and use it along with a wheel and powertrain model to estimate the brake torque applied at
the wheels.
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2.3 Tyres

Tyres of a vehicle are responsible to generate the forces to propel the car in the desired direction. Understanding
how the tyres behave and influence the vehicle’s dynamic motions and interpreting the sensor outputs is highly
important since the tyre is like a black box with a large number of hidden variables. To understand the thesis
work, such in-depth analysis and study is not required. A simple explanation of tyre dynamics is presented
below. For more detailed explanations, the reader is directed to [20].

The wheels that are actively provided driving torque from the powertrain are called driven wheels. The wheels
not connected to any active drive axle are non-driven wheels. For eg. on a Front-Wheel-Drive car, the driven
wheels are the front wheels. An overview of how grip is produces, a brush tyre model to explain how a tyre
generates forces, the longitudinal force and the e↵ective rolling radius is presented in the precursor thesis work
[1].

2.3.1 The Longitudinal Tyre Slip

The di↵erence between the tyre’s longitudinal and tangential velocity is produced as the tyre stretches and
compresses when in contact with the road surfaces and produces grip. This induces a phenomenon called
”slipping”. Slip velocity is defined as the di↵erence between the longitudinal velocity of the tyre and the
tangential velocity of the tyre. This velocity when normalized by the longitudinal velocity gives the slip ratio
[21].

The equation below describes the slip ratio as [20].

Sx =
(Re · ! � Vx)

Re · !
in Acceleration Sx =

(Re · ! � Vx)

Vx
in Braking (2.5)

The following excerpt from thesis work [1] defines the slip ratio for di↵erent driving conditions.

This forms an important physical relation that tyres produce slip when the tyres have grip to stick to the road
surface, which then generates the tractive or braking forces.

Free Rolling

In free-rolling conditions, there is no relative motion or velocity between the tread head and the tail. Thus the
slip ratio Sx = 0 and no force is generated, Fx = 0.

Acceleration

The slip ratio Sx is positive and a propulsion force Fx is generated.

Braking

In extreme braking when the wheels lock, the tangential velocity of the wheel is zero since it is not rotating.
This means that the slip ratio Sx = �1 and braking force �Fx is generated.

2.4 Parameters that a↵ect Grip and Slip

Two very important factors that a↵ect how slip and grip is produced are the vertical load on the tyre and the
road-tyre friction coe�cient. To explain briefly, as vertical load increases, the maximum possible longitudinal
tyre force increases, but the increase is however marginal as the load is increased further. This can be observed
in figure 2.1a made using a non-linear magic tyre formula model from [22]. Peak longitudinal force produced
increases as well as the vertical load on the tyre increases. Once the peak force is reached, then any additional
torque applied leads to a decrease in longitudinal force and thus grip. The longitudinal force drops down to the
kinetic friction force that makes the wheel spin without contributing to vehicle propulsion. It is important
to note that this decrease does not instantly make the tyre visibly spin or lock up. However, the tyre visibly
spinning or locking up is an indication that the torque applied to the tyre way too high for it to catch any grip
on the road [1].

Next, as road-tyre friction, the maximum generated longitudinal force increases, keeping the grip between the
tyre and the road. As it crosses it’s maximum longitudinal force value, the grip reduces and the tyre starts
slipping and eventually free-spinning, producing no grip. For eg: a tyre rolling on asphalt will be able to
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generate more longitudinal force before losing grip than a tyre rolling on ice. For in depth explanation, the
reader is guided to previous thesis work [1]. This phenomenon can be observed in figure 2.1b where the tyre is
subjected to a load of 3000 N. The coe�cient of friction for dry asphalt is 0.8, for wet asphalt is 0.3 and for
ice is 0.15. The curves are governed by the same magic tyre formula used in the previous explanation from
[22].

When a tyre rolls on an icy surface with coe�cient of friction of approximately 0.15, the longitudinal forces the
tyre is able to generate are very low when compared to dry asphalt (friction coe�cient of 0.8). This is because
under low friction conditions, the grip produced by the sliding of the tyre contact patch. Thus even a small
engine applied torque can be enough to make the wheel roll freely or start spinning in-placed.

The longitudinal force peaks out at 250 N and at a slip ratio of 0.03 or 3%. When compared to dry asphalt, the
longitudinal peaks out at 3000 N and achieves a higher slip ratio at 0.2 or 20% before losing grip and inducing
wheel spin. Given such a low threshold for inducing spinning condition on ice means that the tyres are bound
to spin under acceleration or braking in normal as well as extreme driving maneuvers. [1]
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Figure 2.1: Parameters that a↵ect longitudinal slip

2.5 Load Transfer or Vertical Load on the Tyre

Load transfer is something that must occur during dynamic vehicle motion guided by the law of physics. The
car’s weight shifts under longitudinal and lateral accelerations. This leads to load transfer via two di↵erent ways
- geometric and elastic. Geometric load transfer about the centre of gravity can be calculated in a very simple
way by considering rigid axles. Calculating elastic load transfer requires suspension, damper and anti-roll bar
data which was not available during this work. Thus only the geometric load transfer was considered using the
equation:

Fz,FL =
m · g · b

2l
� m · ax · h

l
� m · ay · h

tw

Fz,FR =
m · g · b

2l
� m · ax · h

l
+

m · ay · h
tw

Fz,RL =
m · g · a

2l
+

m · ax · h
l

� m · ay · h
tw

Fz,RR =
m · g · a

2l
+

m · ax · h
l

+
m · ay · h

tw

(2.6)
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where,
m = mass of the vehicle
g = acceleration due to gravity
a = distance from front axle to centre of gravity
b = distance from rear axle to centre of gravity
l = wheel base
tw = track width
ax = longitudinal acceleration
ay = lateral acceleration
h = distance of centre gravity from the ground

A dynamic vertical loading plays a major role in determining the amount of peak longitudinal force and thus slip
ratio without spinning that can be produced by the tyre driven on a given road-surface. Thus it is important to
know the weight on each wheel while the car is in motion to understand how much the tyre might slip.
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3 Previous Work

This chapter lists down and explains briefly, the developments done during the precursor thesis work that
are good to know to understand the work done in this continued development. This includes wheel speeds
translation to centre of gravity, overview of pre-processing of data, filter base, VxRP filter, slip detection
concepts along with the strategy in braking. For in-depth detail about these parts, as well as information
on sensor characteristics, kinematics modelling, filter tuning and slip indicators, the reader is referred to the
precursor thesis work [1]

3.1 Pre-Processing

Parameters such as torque rates, wheel speeds, o↵set biases in the gyroscopes and wheel accelerations are
computed during pre-preocessing. Since the data required to compute these parameters is pre-recorded,
calculating them before entering the main estimation process helps to reduce complexity and time for each
iteration in the for-loop. The wheel acceleration and torque rate is calculated by first low pass filtering the
wheel speed and torque to reduce noise errors that arise when a numerical di↵erential is taken to compute the
required parameters. Online gyroscope bias computation is not included in the thesis work, thus while the car
is at stand still at the beginning of the data log, the gyroscope o↵set is computed.

In almost data logs, the vehicle starts from a stand-still, allowing for gyroscope o↵set bias to be calculated.
Then, the initial values of the states , the inputs to the filter and the tuning parameters of the filter are set.
For more details on calculating these parameters and setting initial values for the filters, the reader is directed
to the precursor thesis work chapter 3 [1].

3.1.1 Translating wheel speeds to CoG

The wheel speed sensor outputs the rotational or angular speed of the wheel, however the wheel’s longitudinal
velocity is needed to be used as a measurement of vehicle speed. To do this, the angular speed is multiplied by
the radius of the wheel (which is assumed to be constant) to get the tangential speed of the wheel, and then
translated to the centre of gravity (CoG). The equation used to translate the tangential speed of the wheel is
from [23] and is given by equation 3.1.

VFL = (V!,FL +  ̇(
bf

2
� lf�)) cos(�W � �)

VFR = (V!,FR �  ̇(
bf

2
+ lf�)) cos(�W � �)

VRL = (V!,RL +  ̇(
br

2
+ lr�)) cos(�)

VRR = (V!,RR �  ̇(
br

2
� lr�)) cos(�)

(3.1)

where, V!,FL is the tangential speed of the wheel,  ̇ is the yaw rate of the vehicle, bf and br are the front and
rear track-width of the vehicle respectively, lf and lr are the distance from the front and rear axle respectively
to the CoG, � is the body slip angle and �W is the steering angle at the wheel or wheel angle. Since lateral
dynamics are not within the scope of the thesis, the body side slip is neglected. The steering angle is also
capped at 11 degrees to avoid noisy and over-estimated wheel speeds at CoG with high steering angles.

3.2 Setting up a kinematics-based filter

A kalman filter is a tool used for estimation of vehicle speed using a process model that defines how the speed
evolves dynamically at each time step, as well as a measurement model that uses the sensor output to update
the prediction made by the process model. An Extended Kalman Filter (EKF) is set up for this purpose. Since
lateral and vertical dynamics of the vehicle are not considered, they are ignored from state equations. The most
important states considered are - the longitudinal speed Vx since it needs to be estimated, and the Euler pitch
of the vehicle ✓ used for compensation of gravity in accelerometer output. Also, from Euler angle translations,
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Euler pitch and Euler roll are inter-dependent on each other, requiring Euler roll to also be a state. To read
more about the equations and the acceleration and Euler models, the reader is directed to [1].

The kinematic equations of the vehicle are shown in equation 3.2.

v̇x = ax + g sin(✓)

'̇ = !x + sin(') tan(✓)!y + cos(') tan(✓)!z

✓̇ = cos(')!y � sin(')!z

(3.2)

where !x,y,z are the angular rates measured by the gyroscope in the vehicle co-ordinate frame, ✓ is the vehicle
Euler pitch angle, ' is the Euler roll angle, Vx is the speed of the vehicle and g is the acceleration due to
gravity.

3.2.1 Filter VxRP

This filter has three states which are Vx longitudinal velocity, ' roll and ✓ pitch. The process model is presented
in equation 4.3 and the Jacobian is given in equation 4.4.

vxk+1 = vxk + Ts (axk+1 + g sin(✓k))

'k+1 = 'k + Ts

⇣
!xk+1 + sin('k) tan(✓k)!yk+1 + cos('k) tan(✓k)!zk+1

⌘

✓k+1 = ✓k + Ts

⇣
cos('k)!yk+1 � sin(')!zk+1

⌘
(3.3)

F =

2

664

1 0 Tsg cos(✓k)

0 Ts

⇣
!yk+1 cos('k) tan(✓k)� !zk+1 tan(✓k) sin('k)

⌘
+ 1 Ts

(!zk+1 cos('k)+!yk+1 sin('k))
cos(✓k)2

0 �Ts

⇣
!zk+1 cos('k) + !yk+1 sin('k)

⌘
1

3

775 (3.4)

The measurement model is linear i.e. it has a direct speed measurement which are the wheel speeds. Thus the
matrix for each wheel speed measurement is given in equation 4.5.

H =
⇥
1 0 0

⇤
(3.5)

3.3 Slip Detection

3.3.1 Concept 1

This concept uses slip indicators such as torque rate and di↵erence between wheel acceleration and vehicle
acceleration to determine if a wheel is slipping or not. It determines this based on when these slip indicators
are active. A torque rate indicator along with an indicator to look at di↵erence between wheel and vehicle
acceleration makes it possible to identify slip on each individual wheel. A wheel is said to slip if both indicators
have crossed a set threshold within 0.2s or if the traction control system (TCS) in the vehicle is on. Upon
this condition being true, a slip flag is activated. It is held active until the indicators cross a threshold that
indicates that the wheels have stopped slipping or when the TCS on-board turns o↵.

The slip flag deactivates if:

• High decrease in powertrain torque rate
AND

• Low di↵erence between wheel-car acceleration and wheel acceleration for a specified amount of time
AND

• Engine TCS is OFF
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• Or if hard braking begins. This is to avoid activating slip flags during braking since they are not as
accurate as expected.

The slip flag activates if :

• High increase in powertrain torque rate
AND

• High wheel-car acceleration di↵erence and wheel acceleration for a specified amount of time
OR

• Engine TCS is ON OR

• During initial acceleration motion from stand still in the beginning.

The slip flag activation torque rate threshold is 650 Nm/s for the front and 950 Nm/s for the rear. For slip flag
deactivation, the torque rates are -950 Nm/s and -750 Nm/s for the front and rear respectively. The wheel and
car acceleration di↵erence threshold is 0.8m/s

2. A torque of 150 Nm for 0.5 seconds as well as a wheel-car
acceleration di↵erence of less than 0.8 m/s2 is set to deactivate the flag.

Using torque rates as thresholds, especially when static poses some problems because they for one a rate of
increase and thus sensitive at lower torques since a small increase would lead to a higher torque rate being
computed and triggering slip the slip flag. To avoid this, the second slip indicator that monitors wheel-car
acceleration di↵erence is used.

3.3.2 Concept 2

This concept is not based purely on slip indicators and detects slip at each time step rather than triggering
based on thresholds This concept does not lock the slip flag between two events but rather checks for slip at
each time step. If no wheels are slipping, all of them are fed to the filter as measurement, however the wheels
are slipping, then the filter is fed only the speed of the slowest wheel out of the non-slipping ones. The three
indicators used for slip detection in this concept are :

• Variance of di↵erence of estimated speed and wheel speeds

• Wheel acceleration compared to vehicle acceleration

• Slip ratio

The variance threshold for error activation of slip flag is 0.005 calculated over 0.25s. The threshold for wheel-car
acceleration di↵erence is 0.8m/s

2. The threshold for the slip-ratio indicator calculated between the estimated
speed and wheel speed activates slip if the wheel speeds di↵er by 0.5 m/s or more from the current estimated
speed or 4% from the estimated speed. The threshold for the variance between the wheel speed measurements
when below 0.01 for continuous 0.2 seconds deactivates the slip flag. The slip flag would also drop if the wheel
speeds are faster than the estimated speed by 1 m/s for 0.1 seconds.

3.3.3 Braking Logic

ABS braking does not help concept 1 or concept 2 to detect slip and the only strategy is to use pure dead-
reckoning as soon as braking begins except for some side cases. The vehicle is said to be actively braking if
three or more wheels are actively supplied brake torque. When this condition is detected, dead-reckoning is
done for 0.25s. Then, a checks is made to see if any wheel is faster than the predicted speed. If that is true
then the measurement is fed to the filter with low covariance or higher trust. If the fastest wheel speed is slower
than the predicted speed, they are not trusted or given a high covariance.
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4 Method

This chapter delves into the newly developed vehicle speed estimation methods in the continued work to support
the precursor thesis. The reader is advised to read through chapter 3 in the precursor thesis [1] as some work
such as the filter design, the slip detection concepts, sensor characteristics and sensor o↵set compensation are
adopted from there.

4.1 Logged Data

The data is supplied by Volvo Cars from real world driving on icy and snowy roads. The data logs from the
large all-wheel drive (AWD) vehicle is used for this work and development. The data logs from a second,
mid-sized all electric AWD vehicle are not used. The large vehicle is a hybrid, with it’s front axle driven by an
Internal Combustion Engine (ICE) and it’s rear axle driven by one electric motor. The data logs consist of
data from a 6 Degree of Freedom (DOF) IMU, wheel speeds, steering wheel angle, powertrain and brake torque
sensors, system flags like Anti-Lock Braking (ABS) and Traction Control System (TCS). As for ground truth
measurements, Oxford Technical Solutions’ (OxTS) RT3000 is used. This sensor records the vehicle position,
longitudinal and lateral velocity, longitudinal, lateral and vertical acceleration, the orientation - roll, pitch, yaw
as well as it’s rate(velocity) at an update frequency of 100 Hz. As for the driving maneuvers, the vehicle is
driven aggressively on straight roads, banks, uphill and downhill slopes with high accelerations. In some data
logs, small lateral motions are also induced while driving on a test track. Harsh braking scenarios are also
included with ABS braking and ESC disabled to induce longer and sustained all-wheel slip situations. For
more detailed information on the driving maneuvers, conditions, and sensors used to log the data, the reader is
guided to the precursor thesis work.[1]

In addition to this data, Volvo Cars also provided real world driving data from the AWD large hybrid that
logged speed and Position Dilution of Precision (PDOP) values from on-board GPS module and a ground
truth measurement of speed. The GPS module. The vehicle was driven on the E6 highway route, including two
tunnels. The vehicle speed peaked at 130 km/h and the GPS PDOP values ranged from 0 to 22. The vehicle
was driven relatively straight forward on the highway without any excessive slip or extreme maneuvers.

4.2 Approach 1 : Using GPS Speed

A standard sensor suite contains only wheel speeds as a direct measurement of vehicle speed. When the wheels
slip excessively, mostly in snowy and icy road conditions, these speeds are far away from the true speed of the
vehicle. In such situations , the previous speed estimation methods relied purely on dead-reckoning which in
turn, relied on the slip detection concepts to accurately detect slip and start dead-reckoning from a position
where the wheel speeds were accurate. This was done to avoid an early onset of integral drift errors in the
speed estimation. However, the slip detection concepts had limitations, inducing errors in velocity estimation
due to dead-reckoning.

From the related research done during the precursor thesis as well as analysing the limitations of the developed
methods, it was found that having a secondary measurement of speed would avoid the reliance on pure dead
reckoning when all wheels are detected to slip. Even if the slip detection concept falsely detects all-wheel
slip, a secondary speed measurement would avoid the early onset of integral drift errors as the dead-reckoning
process would begin at a point where wheel speeds are truly indicative of the vehicle’s speed. A second speed
measurement would also help correct the dead-reckoned estimate if it drifts away between two secondary
measurement updates. Most modern vehicles come with a standard GPS module which outputs the velocity
of the vehicle. This can be used a secondary measurement only when all wheels are detected to slip. This is
because, when the wheels are not slipping, the wheel speed sensor measurements accurately represent the true
speed of the vehicle.
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4.2.1 Error Characteristics of GPS Speed Signal

GPS speed was not logged in the excessive slip data received from real world driving. So, a speed signal with
characteristics similar to an actual GPS speed signal is modelled from the ground truth (OxTS) speed signal
for the excessive wheel slip data. To understand the GPS signal and it’s errors characteristics, two new data
logs were provided with GPS speed and the ground truth measurement for speed. To model any signal, it is
important to understand it’s error and noise characteristics along with the parameters that a↵ect it. This is
needed to model the noise that will be added to the ground truth signal.

From the data received, it was observed that the errors in GPS speed are normally distributed with high density
peaks at mean error as seen in figure 4.1b. The errors were normally distributed but were not zero-mean,
mostly due to a constant o↵set error between the GPS speed and the ground truth measurement. The error is
calculated as Vxgps�Vxref . The skewed concentration of errors towards the negative side in figure 4.1b suggests
that the GPS speed is slower than the ground truth. It was also found that there were a few parameters that
a↵ected the GPS speed errors, especially the mean and standard deviation of errors. The observations are
explained in the following sections.

Constant O↵set Between GPS and ground truth measurement

From the data provided, it was first observed that there is a constant o↵set between the two speed signals. The
GPS speed signal indicates a slower velocity than the ground truth which could be due to the dynamic radius
estimation used in the ground truth signal. This o↵set would not likely occur when compared to the OxTS,
thus constant is first corrected and then the study of the parameters is done. The constant o↵set in this case
was found to be very small, approximately 0.88 m/s at a constant speed of 34 m/s and can be observed in
figure 4.1a.

The constant o↵set is uncharacteristic of a GPS module and occurs due to the ground truth signal bias towards
a faster speed. Thus constant error is eliminated before studying the error characteristics. It is eliminated by
computing the mean error from the data log and adding it to the GPS speed measurement. The final speed
signals are shown in figures 4.2a and 4.2b.
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Figure 4.2: Without Constant O↵set

Update Frequency

The most significant factor that causes the GPS speed error is the GPS module’s update frequency. GPS
update frequency lies between 1 and 100 Hz. The GPS module from the data log had on average, a 1 Hz
update frequency. The GPS receiver gets a new speed update at a frequency of 1 Hz or every 1 second via
communications from di↵erent satellites. However, the other signals in the vehicle such as the wheel speed
sensors, IMU, torque sensors, steering angle sensor and the OxTS update at 100 Hz or every 0.01 second. This
discrepancy leads to an error in the speed measurement received from the GPS. This is because while the speed
measurement is updating continuously every 0.01 second, The GPS speed measurement is held constant at the
previously logged speed until a new measurement is received. This results in a signal that looks like a staircase
function with an update every 1 second. Figures 4.3a and 4.3b shows how the signal looks in constant speed
and acceleration cases.
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Figure 4.3: GPS speed signal updates at 1 Hz or every 1 second and follows a staircase curve

The update frequency discrepancy does not have a huge e↵ect when the speeds are relatively constant. However,
it’s e↵ect is pronounced when the vehicle is subjected to any acceleration or braking, even as low as 0.5 m/s2.
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Once a speed measurement is received, the GPS updates the speed signal. This measurement received at that
instant might be fairly accurate. Then, that speed measurement is held constant until a new measurement
arrives i.e. for 1 second. If the vehicle is accelerating or decelerating, then in the 1 second gap between the
two GPS speed updates, the GPS speed signal will deviate from the true vehicle speed largely, generating big
errors. The higher the acceleration or deceleration, the larger the error.

Position Dilution Of Precision

Position Dilution of Precision (PDOP) value is an output generated by the GPS module. The value indicates
the positional accuracy of the GPS. This is based on how many satellites the GPS is connected to while
estimating position.

PDOP Significance

0 No Satellites Connected
1 to 5 Excellent Accuracy
6 to 10 Good Accuracy
Above 10 Bad Accuracy

The given data contains PDOP values ranging from 0 to 22. It is easy to think that a higher PDOP value
would indicate bad GPS accuracy however, that is only in the case of position and not the speed signal. The
speed of the vehicle is computed using Doppler E↵ect phenomenon that is seldom a↵ected by the PDOP values.
It was observed for the given data that the PDOP values had no e↵ect on the errors of the GPS speed. This
was verified using the Pearson Correlation Coe�cient, which came to -0.0058, indicating that any relation
between an increase in GPS speed error due to increased PDOP value is insignificant. The p-value was 0.0011
(which is < 0.005), suggesting that the above hypothesis is true.

Speed

The GPS speed has a linear relation with the speed of the vehicle. The GPS speed error is observed to reduce
as the speed increases. This can be observed in figure 4.4, which plots mean speed errors against the speed
recorded by the GPS. However, this decrease in error at higher speeds is because of the way the vehicle is
driven in the data log. The vehicle is accelerated up to a high speed and then kept constant at these high
speeds. Thus a condition where large accelerations are produced at high speeds is unavailable in the data. Also,
the constant speed sections appear only at higher speeds in the provided data logs. Thus even if 4.4 shows a
linear correlation between speed and GPS speed error, this parameter is not used solely to model the error
characteristics of the GPS signal.
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Acceleration and Deceleration

The GPS speed error caused due to it’s low update frequency is not the same in acceleration and deceleration
scenarios, and it varies with speed as well. This means that acceleration and deceleration influences the errors
seen in 4.4. It was observed that the errors increase in the negative direction with vehicle acceleration. The
increase is in the negative direction because the GPS update lags behind the ground truth due to it’s lower
update frequency and the error gets larger as the acceleration increases. While the GPS holds the previous
speed measurement, the true speed of the car increases, increasing the errors generated between the GPS signal
and ground truth. This can be observed in 4.5a. IT can also be seen that the GPS speed signal always shows
slower speed measurement in acceleration conditions since it lags behind due to it’s low update frequency. The
mean speed errors for di↵erent acceleration levels are shown in figure 4.5b.

The braking case can be explained similarly. As the braking or deceleration of the vehicle increases, the lower
update frequency of the GPS leads to increasing errors. Figure 4.6a shows the e↵ect of low update frequency
during braking. As the speed of the vehicle drops rapidly with increasing deceleration, the GPS update lags
behind and outputs a measurement faster than the speed of the vehicle. From figure 4.6b it can be observed
that as the vehicle decelerates more, the GPS speed error increases linearly.
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Figure 4.5: GPS speed signal and speed error during acceleration
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Figure 4.6: GPS speed signal and speed error during braking
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To understand the how acceleration, deceleration and speed a↵ect the GPS speed errors, a contour plot is
generated as seen in figure 4.7. It is observed that the errors due to acceleration do not depend on speed while
the errors during braking do. The errors are fairly constant throughout accelerations, with similar means and
standard deviations. The errors in braking however are di↵erent such that at lower speeds, the mean errors
and standard deviations are much larger, and then taper o↵ to smaller errors and narrower standard deviations
as speed increases.
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Figure 4.7: E↵ect of accelerations, deceleration and speed on GPS speed error

4.2.2 Limitations

The error characteristics found are based on vary scarce data available. The data is for the same vehicle
however, but driven on asphalt roads without excessive slip. Any e↵ects of the environment such as cities
and dense trees, weather and cloud cover and numerous tunnels, underpasses, overpasses were not included
since the data log did not contain such driving scenarios. New, more recent GPS modules generate a Velocity
Dilution of Precision (VDOP) number indicating how accurate the speed signal is at each time. This data was
not available in the data logs. The data logs provided are also limited; 2 runs of 45 to 60 minutes of highway
driving passing through only 2 short tunnels.

4.2.3 Modelling GPS Speed

The process of modelling GPS speed is in general adding noise based on how the GPS speed errors vary as
defined in the table for standard deviations and mean of errors. Here is a step-by-step approach of how the
speed is modelled.

Adding Gaussian Noise

The errors in GPS speed are normally distributed as observed in 4.1b and after the constant o↵set elimination
in figure 4.2b with high peaks. Since the modelled GPS speed will be based on the OxTS measurement, the
OxTS speed signal is contaminated with this noise based on the speed and accelerations of the vehicle. The
noise is added as in the equation 4.1.

VxGPS = Vxref + µerror + �error · Z0,1 (4.1)

Noise = µerror + �error · Z0,1 (4.2)

where µerror and �error is the mean and standard deviation of the GPS speed error respectively while Z0,1 is a
random number vector that carries values between 0 and 1 and has a length equal to the that of the Vxref

array. In this way, a normally distributed noise about mean µerror and standard deviation �error is added to
the OxTS speed signal.
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Scenario
Acceleration / Deceleration

[m/s2]

Speed

[m/s]

Mean Error

[m/s]

Standard Deviation

[m/s]

Constant Speed 0 - 0 0.02

Acceleration
0 to 1.5 - -0.01 0.30

greater than 1.5 - -0.8 0.32

Braking

0 to 1.5 0 to 15 0.9 0.65
greater than 1.5 0 to 15 2 0.58

0 to 1.5 greater than 15 0.6 0.3
greater than 1.5 greater than 15 1.6 0.4

Table 4.1: Mean and Standard Deviations of the noise added for di↵erent scenarios in the data log

This noise is modelled and added based on di↵erent categories or scenarios such as acceleration and braking
with speed thresholds since these parameters a↵ect the errors generated in GPS signal as discussed in section
4.2.1. The table 4.1 below shows the di↵erent scenarios and the mean and standard deviation of errors in them,
which are used in equation 4.1 for modelling GPS speed signal.

As seen in figure 4.7, the errors generated in acceleration cases are on dependent on the level of acceleration
and not the speed of the vehicle. Thus, in acceleration scenarios, the noise is added based on the level of
acceleration. However, for braking cases, the errors depend on both level of deceleration and the vehicle speed,
which is why noise added in braking depends on both these parameters. For constant speeds, the error very
small and thus the standard deviation is very small, almost negligible. It is important to note that these
values have been extracted from the two data logs provided with GPS signals. More GPS data, especially in
di↵erent environments and extreme driving maneuvers is necessary to do a thorough analysis of GPS speed
signal errors.

Data Sampling

As mentioned earlier, a GPS module has an update frequency of 1 Hz. The OxTS speed signal Vxref has an
update frequency of 100 Hz. So, after adding the noise, Vxref is down-sampled to 1 Hz. After down-sampling,
just as in a GPS speed signal, the speed value are connected together or ”up-sampled” back to 100 Hz using a
staircase function which holds the previous speed value constant until the next measurement update is received.
After adding the noise and sampling Vxref signal, the modelled GPS velocity looks like a staircase function
similar to an actual GPS signal with an update frequency of 1 Hz, as seen in figure 4.8.
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Figure 4.8: Modelled GPS Speed signal with the ground truth signal Vxref
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4.2.4 Adding GPS Speed as a Measurement

To incorporate GPS speed as a measurement, some changes are made to the VxRP filter from the previous
thesis work [1]

Filter VxRP,GPS

This filter uses GPS speed as measurement update when all wheels are detected to slip. The states of this filter
are the same as in the VxRP filter and thus the process model of the kinematic based EKF remains the same
[1]. The states in this filter are the vehicle speed vx, vehicle roll 'k and vehicle pitch ✓k. The process model
equations 4.3 and their jacobian are given in equation 4.4.

vxk+1 = vxk + Ts (axk+1 + g sin(✓k))

'k+1 = 'k + Ts

⇣
!xk+1 + sin('k) tan(✓k)!yk+1 + cos('k) tan(✓k)!zk+1

⌘

✓k+1 = ✓k + Ts

⇣
cos('k)!yk+1 � sin(')!zk+1

⌘
(4.3)

F =

2

664

1 0 Tsg cos(✓k)

0 Ts

⇣
!yk+1 cos('k) tan(✓k)� !zk+1 tan(✓k) sin('k)

⌘
+ 1 Ts

(!zk+1 cos('k)+!yk+1 sin('k))
cos(✓k)2

0 �Ts

⇣
!zk+1 cos('k) + !yk+1 sin('k)

⌘
1

3

775 (4.4)

The output or measurement matrix H is given as 4.5. H matrix has three terms, one for each state input.
However ,the only measurement in this model is the speed measurement. Primarily, it comes from the
wheel sensors. Unless all wheels are slipping, the non-slipping wheels are fed to the kalman filter as a speed
measurement.

However, a change happens in the update step while dead-reckoning i.e. when all wheels are detected to slip.
In these situations, wheel speeds can’t be trusted and fed to the system. Since the GPS Speed signal is a speed
measurement i.e. the measurement of the first state Vx, the GPS speed signal replaces the wheel speed sensor
as measurement to the system and updates using this signal.

Since GPS speed is only used in all-wheel slip cases, the GPS speed signal is not permanently added to the
measurement matrix.

H =
⇥
1 0 0

⇤
(4.5)

4.2.5 Speed Estimation

It is important to note that the GPS speed is only used when all wheels are detected to slip. This is done
because the wheel speeds, when not slipping are a very accurate measurement of the true speed of the vehicle.
GPS speed is a secondary measurement that is used to help and guide the dead reckoned velocity such that it
stays within the desired 4% error limit.
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Figure 4.9: Overview of estimation process for approach 1 : GPS Speed

Pre-processing

The pre-processing block in figure 4.9 involves first, the calculation of necessary variables and parameters such
as the translated wheel speeds, wheel acceleration, torque rates and gyroscope bias. Since the data required is
pre-recorded, calculating these variables ahead of the processing step helps to reduce complexity and time for
each iteration in the for-loop. The wheel acceleration and torque rates are calculated using the finite di↵erence
between two time steps and low-pass filtering. The wheel speed corrections and translation to CoG are made
using the equation 3.1. The reader is directed to [23] for detailed explanation of this equation.

The final step in pre-processing is the GPS speeds signal modelling. As explained in section 4.2.3, the GPS
speed is modelled by adding noise and then sampling the ground truth measurement signal. Again. this is
done before hand since the data is pre-recorded and it helps to reduce complexity and time in each iteration of
the estimation process.

Estimation Process

The pre-processed variables and parameters are fed to a for-loop that contains a kinematics based EKF, slip
detection and wheel selection concept along with a braking strategy. The prediction step remains the same as
in previous thesis work [1]. Concept 2 as explained in section 3.3.2 is used to detect which wheels are slipping.
Concept 2 is used since it was the best performing method from the precursor thesis [1].

Acceleration

Then, if during acceleration, the slip detection concept detects slip on 3 or less wheels, the wheel that is not
slipping is fed to the kalman filter as a measurement. The only time GPS speed is used is when all four wheels
are detected to slip. In such cases, the GPS speed is fed as a measurement to the system during the update
step. The GPS speed however, is only fed to the system at the instant it updates i.e. every 1 second a new
measurement of speed is fed to the filter. This is done to avoid the errors caused due to update frequency and
the constant speed that is held until the next measurement is received, as explained in section 4.2.1. This
update helps reduce the drifting of the speed estimate by updating with a speed measurement and avoids the
need to rely on dead-reckoning continuously for longer duration of slip. The GPS speed is also only update if
the PDOP value between 1 and 5. It is important to note that even though it is mentioned that PDOP value
does not a↵ect the performance of the GPS speed error in the given data logs, it is the only measure of GPS
accuracy in the data log. Hence, to avoids any unnecessary errors that could be caused due to loss or drop of
communication with the satellites, a PDOP threshold is used.
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Braking

The precursor braking strategy relied heavily on dead reckoning at all times due to the slip detection concept
not being able to accurately detect slip in braking cases, which made the estimate drift away often, reducing it’s
performance. Having a secondary measurement of speed during braking helps to take o↵ the burden from pure
dead-reckoning. So, when the vehicle begins to brake, irrespective of the number of wheels locking or slipping,
the estimate is updated with a GPS speed measurement every 1 second (again, to avoid the large errors due to
update frequency and constant measurements held between the update). This helps guide the dead-reckoning.
It also helps to start dead reckoning at a more accurate position, thus also reducing chance of drifting.

When a wheel is slower than the predicted speed in acceleration

In such cases, if the predicted speed of the vehicle is greater than or equal to 100 km/h, then a wheel speed
that is slower than the predicted speed by 4 km/h is trusted. For speeds less than 100 km/h, a wheel speed
slower than the predicted speed by 2 km/h is trusted.

About using GPS Speed

The GPS speed in this method is purely used a guide or alternative to dead reckoning. This is done to see the
improvements that could be made in the performance of the previous methods [1]. This is why, the only way
GPS is used is when all wheels are detected to be slipping during acceleration. Since the GPS speed here is
modelled and not a true signal, the use of this to calculate slip ratio and use it to compensate the wheel speed
measurements would not be a well developed solution. So, for slip detection, it was deemed best to make a new
concept using the original sensor setup. This is explained in the subsequent section.

Why Slip Detection Concept 2 Is Used

The modelled GPS Speed signal is a secondary measurement that is fed to the VXRP,GPS EKF when all
wheels are detected to slip. This is done to only use the speeds when the wheels cannot be trusted. This is
because when the wheels are not slipping and can be trusted, they give a very accurate measurement of the
vehicle speed. Hence, to know when all wheels are slipping and thus feed the GPS speed measurement, a slip
detection is essential. For this purpose, slip detection concept 2 is used, which was the best performing method
in the precursor thesis work [1]. Another benefit of using a slip detection concept whose performance analysis
and numbers are known is that the performance of Approach 1 will give the possible improvements in the
previously developed method and evaluate the gains possible by adding a secondary measurement of speed. It
keeps the variables for comparison low and makes it better to analyse it’s true potential. However, some place
could be skewed by the slip detection concept’s misjudgment of slip conditions, the overall gain can be clearly
understood and the shortcomings of pure dead reckoning could also be analysed.

4.3 Approach 2 : Slip Detection Concept 3

This section explains the new slip detection concept developed based on calculating the slip ratio at every time
instant. The slip ratio is calculated using data from the standard sensor setup only - wheel speeds, torques,
steering angle sensor and IMU.

4.3.1 Why dynamic slip detection

A dynamic slip detection method is necessary to know exactly and accurately which wheels to trust and at
which time instant. Having a more dynamic slip detection method, that would change with driving conditions
and maneuvers as well as include all dynamic motion generating parameters such as torque, acceleration, load
transfer, that would encompass the vehicle’s predicted behavior based on it’s motion dynamics would help in
understanding slip and even predict the actual slip ratio.

Concept 1 uses certain slip indicators, such as powertrain torque rate and a comparison between wheel and
vehicle acceleration to determine which wheel is slipping. Thresholds are set for these two slip indicators. The
concept assumes slip between events that were triggered by these thresholds being crossed. One limitation
with this concept is the static nature of the thresholds. The thresholds are pre-determined from observing
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the data logs provided and they do not change with any other dynamic parameter. That means, the concept
does not take into account the the velocity, the driving maneuver or the road conditions, which eventually
leads to less robustness and incorrect speed estimates. As for concept 2, even though the slip detection is done
dynamically at each time step, the vehicle dynamics and motion are a missing factor. The concept is also prone
to missing slowly increasing slip events and would lead to incorrect speed estimations. One aspect of concept 2
uses calculated slip ratio from the estimated speed to detect if the wheels are slipping. This sometimes fails to
detect slip if the estimated speed has drifted up slightly and a wheel, that was previously slipping with a higher
slip ratio, drops down to a lower slip ratio, but is still outside the 4% slip limit. An incorrectly deactivated slip
flag would make the estimate trust that wheel and generate errors.

4.3.2 The Slip Ratio Equation

The slip detection concept begins with estimating the slip ratio at each time instant. The equation is based on
the works of [15]. First, the slip ratio is defined from [24] and [15] as equation 4.6 where Re is the e↵ective
rolling radius of the tyre, ! is the rotational speed of the wheel and Vx is the speed of the car in longitudinal
direction.

Sx =
Re · ! � Vx

Re · !
in Acceleration Sx =

Re · ! � Vx

Vx
in Braking (4.6)

Di↵erentiating equation 4.6 for acceleration with respect to time gives the non-linear wheel dynamics equation
for slip at every time instance. The time di↵erential is given by equation 4.7.

Ṡx =
Re!̇Vx

R2
e!

2
� Re!V̇x

R2
e!

2
(4.7)

Next, the torque applied to the vehicle is computed as the sum of the torque that overcomes the rotational
inertia of the vehicle and propels the wheels. This is given by equation 4.8

Iw · !̇ = Tq �Re · Fx (4.8)

Also in the linear range, the driving force Fx is given as

Fx = Cx · Sx (4.9)

Re-arranging the terms and substituting the value of !̇ in the first term of the equation 4.7, and the value of
Fx in the second term gives the equation

Ṡx =
Tq ·Re

Vx · Iw
� Cx · Sx ·R2

e

Vx · Iw
� Re!V̇x

R2
e!

2
(4.10)

Vx is the vehicle speed given by the translational wheel speed which for this equation, since only longitudinal
dynamics are needed, is assumed to be simply

Vx = Re · ! (4.11)

Also, another constituent relation to note is that the acceleration of the vehicle is simply the time derivative of
the velocity Vx

ax = V̇x (4.12)

Now, substituting equations 4.11 and 4.12 in equation 4.10, the time derivative of slip ratio can be written as

Ṡx =
Tq ·Re

Vx · Iw
� Fx ·R2

e

Vx · Iw
� ax

Vx
(4.13)
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The last term in equation 4.13 can also be re-written by using the slip equation 4.6 thus giving the wheel
dynamics equation

Ṡx =

✓
Cx ·R2

e

Vx · Iw
� ax

Vx

◆
· Sx +

✓
Tq ·Re

Vx · Iw
� ax

Vx

◆
(4.14)

The equation can be cut split into two di↵erent elements based on the dynamic parameters as seen in equation
4.16.

ESx =

✓
Cx ·R2

e

Vx · Iw
� ax

Vx

◆
(4.15)

ETq =

✓
Tq ·Re

Vx · Iw
� ax

Vx

◆
(4.16)

The slip ratio estimation equation in continuous time is given by equation 4.17.

Ṡx = W · [·ESx · Sx + ·Etq] (4.17)

Converting equation 4.17 to discrete where k is the time instant and Ts is the sampling time is given by equation
4.18.

Sx,k+1 = W · [(ESx,k + 1) · Sx,k + ETq,k] · Ts (4.18)

where, k is the time instant, Sx is the slip ratio,Cx is the longitudinal sti↵ness of the tyre, Iw is the rotational
inertia of the wheel assembly, ax is the acceleration of the vehicle, Vx is the tangential velocity of the wheels,
Tq is the torque applied to the wheels, W is the constant gain parameter or linear factor and ESx and ETq

are the terms of the equation divided based on the parameter that a↵ects it; slip and torque based elements
respectively.

This equation is used to estimate the slip ratio for each wheel without using the speed of the car which we
need to estimate but rather with the wheel speed translated to CoG. This eliminates the circular dependency
between the slip ratio calculation and speed estimation. The equation contains dynamic, static and tuning
terms that not only make the slip detection dynamic, but also tune it based on the vehicle being driven and
tyres used. We now look at each component and understand how it a↵ects slip.

4.3.3 Dynamic Parameters

The equation contains some parameters that change in every time step, making the slip ratio calculation more
dynamic. Here we discuss the parameters.

Acceleration

Acceleration of the vehicle plays an important role to determine if the wheels will slip or not. The relation
between slip and acceleration is positive, which means that as acceleration increases due to the torque applied
at the wheels, the wheels will slip more and the slip ratio increases. This phenomenon occurs to produce grip
and thus propelling force, irrespective of the road-tyre friction coe�cient. It will only a↵ect what peak force
and grip is and at what slip ratio it occurs as seen in figure 2.1b. The friction coe�cient in this case is assumed
to be constant in this case.

Torque

Similar to acceleration, torque also has a positive relation to slip. As the torque applied to the wheels increases,
more propelling force is produced at the contact patch and the slip ratio increases.
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Velocity

The slip ratio equation has a velocity term which a↵ects slip and makes the equation non-linear. In this case,
the slip ratio calculation evolves with the velocity of the wheels translated to the centre of gravity Vx. This
velocity is used to take in to consideration even the small steering angles in the data log, as well as the yaw
rate from the equation 3.1. Using wheel speed instead of the vehicle speed eliminates any circular dependency
that could have occurred if the estimated velocity itself would have been used.

4.3.4 Static Parameters

The static parameters, mainly of the tyres, also play an important role in slip ratio calculation. These parameters
are based on the size and construction of the tyre and wheel assembly. In reality, these parameters will also
change dynamically, but for the scope of thesis and the data available, they are considered to be static.

Tyre longitudinal sti↵ness

The longitudinal sti↵ness of the tyre is defined as the slope of the the tyre force-slip curve from 2.1a. A sti↵er
tyre produces peak propelling force as well as lose grip beyond the peak at relatively lower slip ratio. So,
the longitudinal tyre sti↵ness guides how the new slip ratio will depend on the previous slip ratio as seen in
equation 4.16. This parameters also varies with what the tyre is subjected to in terms of temperature, pressure
and load as well as where the slope is being computed based on which side of the peak the tyre lies in 2.1a. For
this work, this parameter is considered to be constant throughout.

Tyre Radius

The radius here is the static loaded radius of the wheel and remains constant throughout. The radius however,
changes dynamically based on temperature pressure, load and other parameters however for the scope of the
thesis, this radius is considered to be constant.

Wheel Inertia

The wheel inertia is based on the mass of the whole wheel assembly and loaded tyre radius. The rotational
inertia basically defines how much the wheel can be accelerated based on the torque applied to it.

4.3.5 Constant Gain Parameter

The term varying with slip ratio ESx from the equation 4.16 is derived from the previous slip and tyre parameters
while the term varying with torque ETq is derived from the torque applied on the tyre along with the tyre
radius and wheel inertia. Both the components play a role in calculating slip ratio, however, they are not very
accurate in the high slip slip region since the tyre radius and the longitudinal sti↵ness will vary at every time
instant. Also, the torque estimations are not accurate, giving high values of slip, especially when the velocity is
really low. This, however is very di�cult to pinpoint and determine as well as lies outside the scope of this
work. Hence a constant linear factor is used to make the estimate follow the true slip ratio of the tyre.

The linear factor W decides how much to trust the dynamic evolution of previous slip with tyre parameters
and torque applied to the wheels.

4.3.6 What The Equation Is Doing

Each elemental term in this equation i.e. ESx and ETq is e↵ectively comparing the wheel accelerations with
car accelerations.

From the first term in ESx,
Cx·R2

e
Iw

part gives the rotational acceleration of the wheel and compares it with the
vehicle acceleration ax. This di↵erence between wheel acceleration and vehicle acceleration evolves non-linearly
with the tangential speed of the vehicle Vx and the previous slip ratio. So the term ESx gives how the evolution
of the di↵erence between wheel and vehicle acceleration determines the slip ratio.

The second element of the equation Etq, begins with the term Tq,k·Re

Vx,k·Iw where Tq,k·Re

Iw
is the wheel acceleration

based on the torque applied, while ax is the car’s acceleration. These accelerations are compared again, this
time evolving with Vx as well as the torque applied Tq.
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The di↵erence between wheel acceleration and car acceleration is one of the slip indicator used in concept 1 [1].
However, concept 1 uses a static deterministic threshold. A triggering of this threshold would tell if the wheels
are slipping or not without considering how the wheel slip probability evolves around dynamic parameters like
torque, speed, accelerations as well as tyre parameters. It would lock the slip flag between two events. Here,
the actual value of slip is calculated at each time instant using dynamic relations.

4.3.7 The Speed Estimation Process

The overview of the estimation process using a standard sensor suite and the dynamic slip detection concept 3
is shown in figure 4.10.
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Figure 4.10: E↵ect of accelerations, deceleration and speed on GPS speed error

Pre-Processing

This step is similar to the pre-processing of di↵erent variable and parameters as explained in 4.2.5 except that
the GPS speed signal is not modelled.

Estimation Process

The prediction step is the same as seen in the GPS approach as well as the precursor thesis. The process model
is a kinematic vehicle model input to an EKF. In this case, the VxRP filter from the precursor thesis work is
used because it was the best performing filter among the ones developed. The next steps are what define this
new approach.

Computing Slip Ratio

Slip Ratio calculated by the equation 4.18 is based on dynamics and static parameters. The way the equation
estimates slip ratio introduces noisy estimates at lower speeds, especially when the vehicle is just starting,
due to the high torque applied, as well as the extremely low speed of the vehicle. To tackle this, the slip
ratio equation 4.18 is adopted based on the speed of the vehicle. This speed is the predicted speed of the
vehicle. Since it is only used as a threshold to decide how the equation is adapted, it’s accuracy is of little
importance.

If the vehicle is moving at speeds greater than 15 km/h, equation 4.18 is used to calculate slip. If the vehicle
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speed is between 5 km/h and 15 km/h, the slip ratio is calculated using the equation

Sx,k+1 = (ESx + 1) · Sx · Ts (4.19)

At speeds below 5 km/h, the new slip ratio is given by

Sx,k+1 = Sx,k (4.20)

This is to avoid high peaks and exponentially rising estimates due to low velocity in the denominator. This
also avoids any noisy slip ratio calculations due to noisy torque data in the early stages of the data log when
the car just starts moving. This can be observed in figure 4.11.
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(a) Slip Equation output based on velocity thresholds
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(b) Slip Equation output without adapting to velocity

Figure 4.11: Slip Equation Outputs with and without speed thresholds plotted against reference slip ratio,
calculated from the OxTS ground truth speed

Compensated Wheel Speeds

Since the equation gives a slip ratio estimate for each wheel, the wheel speeds from the sensors can be
compensated with this slip ratio to use as measurements that are more closer to the true speed of the car and
can aid the speed estimate. A comparison between compensated and true wheel speeds can be seen in 4.12.
The compensated wheel speeds are closer to the reference speed in yellow when the wheels are slipping more
than 4% or are outside the 4% error limit. This helps the slip detection to not only trigger the slip flag, but
also use these wheel speed measurements to aid dead-reckoning, especially in braking.

Slip Activation

Since this equation estimates the actual value of slip ratio rather than just triggering a flag based on events,
the slip flag is activated if the slip ratio calculated is greater than 4% or if concept 1 detects slip or the engine
Traction Control System (TCS) flag is active. A slip ratio of 4% is set as the threshold for slip flag activation
due to the error limit set during this work. The error limit for the speed estimate is set at 4% of the reference
speed signal from the OxTS. Thus 4% is taken as an acceptable amount of slip since the wheels within this slip
ratio, once can argue that it those wheels could be trusted since they are still within the error limit.

Slip Deactivation

Similarly, the slip flag is deactivated if the slip ratio calculated is less than or equal to 4%, the Engine TCS flag
is o↵ and there is no other active slip indicator flag from concept 1.
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(a) Compensated wheel speeds during acceleration
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(b) Compensated wheel speeds during braking

Figure 4.12: Compensated wheel speeds compared with the true wheel speeds and reference speed signal from
OxTS

A Side Case

In cases where there is a wheel speed that is slower than the predicted speed of the vehicle, then that wheel
speed is fed to the EKF as a measurement. The wheel speed threshold is defined by the predicted speed at
which the vehicle is moving. If the speed of the vehicle is greater than or equal to 100 km/h, then a wheel
speed that is slower than the predicted speed by 4 km/h is trusted. For speeds less than 100 km/h, a wheel
speed slower than the predicted speed by 2 km/h is trusted.

Why Concept 1 Is Combined

This concept uses the previously developed Concept 1 for slip flag activation to determine whether the torque
thresholds and acceleration thresholds can be trusted to detect slip. Trusting an estimated slip ratio can
back-fire due to the static parameters, the equation’s low pass filtering nature that could lead to wheel slip
being missed completely. The thresholds in concept 1 also make up for activation of slip flags at lower speeds
when the slip ratio equation may not be accurate because of using limited parameters to avoid noisy estimates.
Thus, the ”OR” condition is used to help to detect slip in case the slip equation fails to trigger the slip flag
correctly during initial slip at slow speed.

This can be seen in figure 4.13. The slip ratio estimate in acceleration is late to rise due to the speed thresholds.
At speeds lower than 5 km/h, just when the vehicle begins to move, the slip estimation is noisy and rises
exponentially as seen in figure 4.11b. Thus the slip ratio is held constant at the previous value, which in the
initial case is 1e-3. It is almost as if the slip ratio equation only works beyond 5 km/h which then leads to a
slower slip ratio rise.

In deactivation, it is used to make sure that there is no slip flag active due to the torque thresholds or
acceleration thresholds. As for braking, the slip ratio estimate is closer to the reference, more so than in
acceleration. This could be because of the accurate brake torque measurements. This allows for using these
speeds in the kalman filter as a measurement in braking and remove the burden from pure-dead reckoning,
which was the case previously. This is used in the braking strategy explained next.

Braking Strategy

The braking logic for this concept includes strategically trusting appropriate wheel speeds, whether they be the
true wheel speeds or the compensated wheel speeds, to aid dead-reckoning. This helps to trust a wheel speed
that is closer to the true speed of the car and reduce reliance on pure dead-reckoning. The braking strategy
has a 0.25s delay to trust that the vehicle is braking is similar to the earlier strategy [1]. Then, depending on if

29



0 500 1000 1500 2000 2500 3000 3500 4000
timestep

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sl
ip

Slip Equation
Slip ref
+4% slip
-4% slip

(a) Late rise of slip ratio estimation
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(b) Fairly accurate slip ratio estimate during braking

Figure 4.13: Slip Ratio estimations during braking and acceleration

any wheel is faster than the speed estimate or no, the compensated wheel speeds are fed as a measurement
based on the predicted speed.

The decision between which wheel speed to trust is based on the predicted speed of the vehicle or if any wheels
are faster than the predicted speed. If the predicted speed is between 25 km/h and 50 km/h, then the fastest
true wheel speed from the sensor is trusted. At speeds faster than 50 km/h, the slowest compensated front
wheel speed is trusted while, at speeds slower than 25 km/h, the slowest compensated rear wheel speed is
trusted. The reason why the slowest compensated wheel is trusted is to avoid some of the over-estimated slip
ratios calculated in braking conditions due to static parameters of the tyres as well as errors in the torque
values in the data log. The over-estimation can be observed in figure 4.13b where at the end, the slip ratios are
higher and which will lead to the compensated wheel speeds being higher than the reference.

Limitations

The tyre parameters are limitation of this method as the equation fails to detect slip early enough due to
the low pass nature of the equation, missing pronounced peaks in the beginning of slip increase. At higher
speeds, once the torque is introduced in the equation, it becomes susceptible to torque sensor measurements.
The torque sensor is a↵ected by a lot of parameters that could lead to errors which in turn could lead to an
incorrect slip ratio calculation in some cases. Another limitation is the unknown road-tyre friction coe�cient,
which is assumed to be constant throughout all data logs which in reality, is not the case.

This 4% limit on slip ratio is decided based on the error limit set in the vision of the thesis [1] and section 1.2.
This means that if the wheels are slipping more that 4%, they shouldn’t be trusted to estimate the speed of the
vehicle.
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5 Results

This chapters talks about the results of the two new methods for speed estimation in excessive wheel slip
conditions. The chapter begins with listing the evaluation parameters and numbers. Next, the results of the
three segments of data logs are shown and some examples are used to compare GPS speed and concept 3 against
concept 2. A few examples for the two methods and how they perform are listed next. A short explanation of
how the methods perform better or or worse as compared to the previous work is then given at the end of the
chapter. For ease of reference, the approaches will now be referred to as GPS and C3 for GPS speed and slip
detection concept 3 respectively. The brake manufacturer and Volvo’s simple estimate will be referred to as
OEM methods.

5.1 Process of Evaluation

Here is a brief overview of the evaluation process that is followed for the methods developed in this thesis work.
The evaluation is divided into three major sections i.e. one for each segment in which the data log is divided -
Complete data, slipping during acceleration, braking. This segmentation of data into three sections is explained
in precursor thesis work [1]. Then, for each segment, the performance numbers and statistical parameters are
tabulated for overview.

Performance evaluation is divided into two parts. First, the GPS method is compared with concept 2. Then, it
is compared to Volvo’s simple estimate as well as the brake manufacturer’s estimate. Similarly, C3 is compared
in two parts. All this is done for each segment of data log. Basically, both approaches are compared to VxRP

with concept 2, Volvo’s simple estimate and the brake manufacturer’s estimate. Then some examples are picked
out to showcase the good and limitations of the these two approaches along with an explanation.

The evaluation is done for 15 data logs from the AWD large hybrid vehicle, thus named HY-1 to HY-15. These
data logs contain various di↵erent maneuvers, speeds, environment conditions and wheel slip scenarios with
long and short durations. These log files are described in 4.1.

Filter VxRP with Concept 2 is the only method from previous work against which the new methods are
compared because this was found to be the best performing from precursor thesis work. The objective of this
work is to improve upon the previous methods, trying to make better estimation methods than the previously
developed best one.

5.1.1 Data segmentation

Data logs are segmented into three di↵erent sections to analyse the performance of the estimation methods in
specific cases. The sections are made on a high level. The first section is the complete data. The second section
is the cases where the wheels are slipping over 4% while the car is accelerating. The third section contains
cases where the vehicle is braking, irrespective of whether the wheels lock or no. In depth explanations of they
are defined in each data log on a low-level is explained in the precursor thesis work section 4.2.2 [1]

5.1.2 Statistical Parameters for Evaluation

The parameters used for evaluation of the thesis work are the same as used in the precursor thesis work. They
are percentage of data solved (i.e. the amount of time the estimate is within the 4% throughout the whole
data log / section), RMSE, Peak minimum and maximum errors and the standard deviation. To understand
the theory and the significance of these parameters in detail, the reader is guided towards it’s explanation in
precursor thesis work Section 4.3 [1].

It is important to note that the performance of these methods the consolidated table under the parameter
”solved” is based on if the estimated speed is within ±4%. Even the smallest deviation from that limit tells the
diagnostic script that the method has failed. This check is done at each time step.
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5.2 Performance : Complete Data

The table here shows a performance overview for the two methods over complete data logs. The column ”Solved
[%]” indicates the share (in %) of log data for which the estimated speed of the vehicle is within ±4% of the
reference speed; an error limit set during the thesis work. This can also be seen as the amount of data for which
the method accurately estimates speed i.e. the amount of time the speed estimate is within the aforementioned
error limit. The cell colours indicate how good or bad the method performs for each data log. The green
regions are where the method solves more share of data logs, while the red region means that it solves a lesser
share of the data logs. This on its own does not represent how good the estimate is, but it gives an idea of how
well the method performs on average.

A complementary consolidated table of averaged statistic parameters for each estimation method can be seen
in 4.2. Here, the five estimation methods are compared among each other with green being the best and red
being the worst performing. The main purpose of these parameters is to give some insight on the accuracy of
each method. It is important to note that this are average errors over fifteen data logs which might be skewed
by some outliers in the estimate in some data log. [1]

Table 5.1: Performance of di↵erent estimation methods over Complete data logs

Vx-R-P with 
CONCEPT 3

BRAKE 
MANUFACTURER 

Data Logs Solved [%] Solved [%] Solved [%] Solved [%] Solved [%]
HY - 1 89.58 95.65 96.62 60.84 74.63
HY - 2 92.77 93.93 99.81 74.45 71.78
HY - 3 97.13 98.86 98.89 86.57 84.42
HY - 4 97.99 99.83 97.95 71.99 75.58
HY - 5 97.13 96.77 100.00 51.79 43.01
HY - 6 66.16 60.42 64.82 14.53 19.50
HY - 7 95.91 96.12 96.33 95.54 94.75
HY - 8 94.16 96.52 99.70 19.26 46.26
HY - 9 87.59 96.87 91.49 35.21 66.95
HY - 10 84.45 89.81 92.32 40.82 60.92
HY - 11 87.80 88.84 96.31 47.59 65.15
HY - 12 99.08 99.80 98.39 54.21 77.10
HY - 13 99.79 99.94 99.46 94.24 98.05
HY - 14 100.00 100.00 100.00 81.49 99.63
HY - 15 99.94 99.86 99.93 95.89 99.79

Average 92.63 94.22 95.47 61.63 71.83

COMPLETE DATA

VOLVO'S SIMPLE 
ESTMATE

Vx-R-P GPS with 
CONCEPT 2

Vx-R-P with 
CONCEPT 2 

Table 5.2: Average statistic parameters : Complete Data

Stat Parameters Unit Vx-R-P with 
CONCEPT 2 

Vx-R-P GPS with 
CONCEPT 2  

Vx-R-P  with 
CONCEPT 3  

VOLVO'S SIMPLE 
ESTMATE

BRAKE 
MANUFACTURER 

Solved [%] 92.63 94.22 95.47 61.63 71.83

Absolute RMSE [m/s] 0.28 0.28 0.26 1.15 0.86
Max Absolute Error [m/s] 0.44 0.40 0.51 2.82 2.46
Min Absolute Error [m/s] -1.11 -3.03 -2.23 -3.97 -1.73
Relative RMSE [%] 2.06 2.14 2.04 14.87 9.80
Max Relative Error [%] 4.02 4.37 4.39 79.57 36.92
Min Relative Error [%] -6.67 -24.51 -18.71 -21.15 -10.78
Standard Deviation [m/s] 0.25 0.26 0.25 1.08 0.74

COMPLETE DATA  : Average of each statistic parameter
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5.2.1 GPS vs Concept 2

Looking at table 5.1, it is clear that on average, over 15 data logs, GPS approach is better than Concept 2.
VxRP,GPS is also better than concept 2 over each data log as well bar a few exceptions. Data log HY-6 for
example trusts the GPS speed update while the wheels are coming back to rolling from a locking state. This is
happening at very low speed, less than 5 m/s during braking and the GPS speed signal has higher errors in
that driving scenario.

From the statistical parameters table 5.2, it is observed that the GPS method on average is not as accurate as
concept 2. The staircase type signal of the GPS accounts much of the higher errors, especially in the Minimum
Relative Error parameter where it is the worst performing out of all methods. This result however as mentioned
before, could be skewed by extreme outliers in one data log. Also, since it is relative, it is highly sensitive
at lower speeds, meaning that a small absolute error at lower speed could correspond to an extremely large
relative error.

GPS method however has the lowest average peak absolute error at 0.40 m/s.

5.2.2 GPS vs OEMs

From table 5.1 it is clear that GPS method performs better than both the OEM methods - Volvo’s simple
estimate and brake manufacturer both on average as well as individually over 15 data logs. The GPS method
is also more accurate than OEM methods except in Minimum Absolute and Relative Error. The explanation
for reduced accuracy in these cases is that the estimation trusts the GPS speed that lags behind and outputs a
much slower speed measurement, especially in acceleration. In such cases , a trust on the GPS speed in all
wheel slip cases is not ideal. Also, relative errors can be sensitive at lower speeds

5.2.3 Concept 3 vs Concept 2

From table 5.1, it can be seen that on average over 15 logs, C3 is the best performing method than C2. It
is also better than C2 individually over each log except for HY-6 which in this case performs slightly worse
during the braking case, where the compensated wheel speeds are not as accurate as expected.

As for statistical parameters in table 5.2, C3 shows the lowest average RMSE, relative RMSE and standard
deviation among all methods making it slightly better than C2. Lower RMSE is credited to accurate slip
detection dynamically at each time step, allowing dead-reckoning to be done without the onset of drift in most
cases. However, the peak and relative errors when the estimate is slower than the true speed is very large,
pointing towards extreme outliers during braking conditions. This can be attributed to incorrect wheel speeds
being trusted in braking.

5.2.4 Concept 3 vs OEM

As compared to OEM estimations, C3 outperforms them on average as well as individually over 15 data logs. It
is important to note that the OEM methods are simple and based on wheel speeds as mentioned earlier.

A similar trend can be observed in statistical parameters where C3 has better accuracy except in cases when
the estimate is slower than the true speed, which could be attributed to trusting inaccurate wheel speeds either
true or compensated, in braking strategy or an estimation with large outliers.

5.3 Performance : Slipping while Accelerating

In the tables 5.3 and 5.4, the performance of the two methods compared to previous methods during scenarios
of slipping during acceleration are presented.
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Table 5.3: Performance of di↵erent estimation methods over parts of the logged data where wheels are slipping
during acceleration

BRAKE 
MANUFACTURER 

Data Logs Solved [%] Solved [%] Solved [%] Solved [%] Solved [%]
HY - 1 100.00 100.00 100.00 86.79 76.32
HY - 2 87.54 89.22 99.66 56.14 48.26
HY - 3 93.26 99.59 97.16 68.69 59.63
HY - 4 100.00 100.00 100.00 80.79 65.75
HY - 5 96.57 95.35 100.00 30.49 26.15
HY - 6 99.20 99.17 100.00 27.39 13.43
HY - 7 91.35 91.35 89.81 89.88 85.41
HY - 8 100.00 100.00 100.00 21.51 31.88
HY - 9 79.29 98.26 87.05 14.37 34.93
HY - 10 94.43 95.09 100.00 59.34 65.66
HY - 11 100.00 100.00 100.00 64.22 72.86
HY - 12 100.00 100.00 100.00 68.73 71.35
HY - 13 100.00 100.00 100.00 81.25 93.34
HY - 14 100.00 100.00 100.00 78.31 95.33
HY - 15 100.00 100.00 100.00 81.85 96.34

Average 96.11 97.87 98.25 60.65 62.44

 SLIPPING IN ACCELERATION SCENARIOS

VOLVO'S SIMPLE 
ESTMATE

Vx-R-P GPS with 
CONCEPT 2

Vx-R-P with 
CONCEPT 3

Vx-R-P with 
CONCEPT 2 

Table 5.4: Average statistic parameters : Slipping in Acceleration Data

Stat Parameters Unit Vx-R-P with 
CONCEPT 2 

Vx-R-P GPS with 
CONCEPT 2  

Vx-R-P  with 
CONCEPT 3  

VOLVO'S SIMPLE 
ESTMATE

BRAKE 
MANUFACTURER 

Solved [%] 96.11 97.87 98.25 60.65 62.44

Absolute RMSE [m/s] 0.19 0.16 0.19 1.24 0.91
Max Absolute Error [m/s] 0.44 0.39 0.46 0.42 2.50
Min Absolute Error [m/s] -0.47 -0.33 -0.35 -3.92 -0.14
Relative RMSE [%] 1.50 1.41 1.36 17.32 11.03
Max Relative Error [%] 3.23 2.86 3.48 72.50 35.80
Min Relative Error [%] -3.90 -3.43 -2.49 -3.82 -0.48
Standard Deviation [m/s] 0.16 0.13 0.16 0.87 0.61

ACCELERATION DATA  : Average of each statistic parameter

5.3.1 GPS vs Concept 2

GPS method in segments of the data logs where wheels are slipping during acceleration outperforms C2 on
average as well as individually over all 15 data logs. Higher solved % can be seen especially in HY-9 where the
GPS speed update really helps to guide dead-reckoned speed estimate and keep it within ±4% of the reference
speed. The performance numbers can be observed in table 5.3.

For all the average statistical performance parameters from table 5.4, the GPS method outperforms C2. The
GPS method has the lower RMSE, lower maximum and minimum absolute errors, relative errors and standard
deviation. It has also has the lowest RMSE, min and max absolute errors as well as standard deviation, showing
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good accuracy as compared to other methods. The errors are lower for the GPS speed in acceleration as it
stops the drift error onset from occurring too early, reducing the chances of the speed estimate drifting away,
beyond the 4% error limit. This is especially prominent in the acceleration and slip cases where, when all
wheels are detected to slip, the GPS speed signal pulls the estimate ”down” towards the true speed of the
vehicle in case, the estimate starts to drift.

5.3.2 GPS vs OEMs

As seen in table 5.3, GPS method performs better on average as well as individually over 15 data logs than the
OEM methods based on wheel speeds.

In terms of accuracy, the GPS method is better than the OEM methods except in two cases - peak error when
the estimated speed is lower than the true speed of the car. From table 5.4 it is observed that the minimum
absolute error for GPS method is -0.33 m/s which is very small, however the relative error at that point is
3.43%, because the relative error is sensitive at lower speeds. Since the speed estimate updated from the
GPS has a higher average peak error at lower speeds suggests that the error occurs when the vehicle starts
accelerating from a standstill while the GPS update lags behind the true speed in such cases.

5.3.3 Concept 3 vs Concept 2

It is clear from table 5.3 that C3 is better that C2 on average as well as individually over 15 log files in segments
of the data logs where wheels are slipping during acceleration. The only file where the performance numbers
suggest otherwise is HY-7, due to the tuning parameters set for the VxRP filter used along with C3.

The RMSE, maximum absolute error and standard deviation of errors are very similar for both C3 and C2. C3
has the best average relative RMSE, suggesting that the average RMSE close to 0.19 m/s have occurred at
slightly higher speeds.

5.3.4 Concept 3 vs OEMs

C3 outperforms the OEMs simple wheel speed based methods of estimation over all data logs as seen in table 5.3.
HY-7 is where C3 every so slightly keeps the speed estimate within the error limit for a lesser time than Volvo’s
simple estimate, which is because of the tuning parameters set for the filter and speed measurements.

C3 has an average peak absolute error of only 0.04 m/s higher than Volvo’s simple estimate and 0.21 m/s
higher average absolute error than the brake manufacturer when the speed estimate is slower than the true
speed. In these situations, C3 also has a higher relative error, suggesting that the peak minimum absolute
error occurs at low speeds.

5.4 Braking Scenarios

In the tables 5.3 and 5.4, the performance of the two methods compared to previous methods during braking
scenarios are presented.
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Table 5.5: Performance of di↵erent estimation methods over parts of the logged data where the vehicle is
braking

BRAKE 
MANUFACTURER 

Data Logs Solved [%] Solved [%] Solved [%] Solved [%] Solved [%]
HY - 1 73.47 88.92 91.39 20.28 62.15
HY - 2 97.83 100.00 100.00 96.66 100.00
HY - 3 96.97 94.08 100.00 92.60 99.04
HY - 4 92.31 99.35 92.14 21.44 46.97
HY - 5 100.00 100.00 100.00 100.00 82.50
HY - 6 39.24 28.82 36.11 5.56 24.31
HY - 7 94.23 95.48 100.00 94.07 100.00
HY - 8 84.55 90.80 99.20 15.98 68.48
HY - 9 95.38 95.11 95.44 46.82 97.08
HY - 10 63.99 78.98 76.51 2.95 44.04
HY - 11 65.90 69.68 92.07 19.63 58.16
HY - 12 96.85 99.32 94.47 17.53 84.34
HY - 13 97.79 99.37 94.33 52.06 80.12
HY - 14 100.00 100.00 100.00 62.70 97.92
HY - 15 99.36 98.45 99.21 78.19 99.56

Average 86.52 89.22 91.39 48.43 76.31

ALL BRAKING SCENARIOS WITH AND WITHOUT LOCKING

VOLVO'S SIMPLE 
ESTMATE

Vx-R-P GPS with 
CONCEPT 2

Vx-R-P with 
CONCEPT 2 

Vx-R-P with 
CONCEPT 3

Table 5.6: Average statistic parameters : Braking Data

Stat Parameters Unit Vx-R-P with 
CONCEPT 2 

Vx-R-P GPS with 
CONCEPT 2  

Vx-R-P  with 
CONCEPT 3  

VOLVO'S SIMPLE 
ESTMATE

BRAKE 
MANUFACTURER 

Solved [%] 86.52 89.22 91.39 48.43 76.31

Absolute RMSE [m/s] 0.38 0.34 0.32 1.03 0.58
Max Absolute Error [m/s] 0.08 0.10 0.24 2.82 0.48
Min Absolute Error [m/s] -1.02 -2.15 -2.22 -0.04 -1.73
Relative RMSE [%] 2.65 2.58 2.59 7.32 4.34
Max Relative Error [%] 2.75 3.41 2.90 0.72 4.24
Min Relative Error [%] -6.18 -17.85 -18.57 -21.14 -10.78
Standard Deviation [m/s] 0.25 0.23 0.24 0.59 0.43

BRAKE DATA  : Average of each statistic parameter

5.4.1 GPS vs Concept 2

Segments of the data log where the vehicle is braking is a challenging scenario given that the wheel speeds are
noisy and wheels almost always lock up, resulting in dead-reckoning to be relied upon, introducing drift errors.
The performance of the GPS method over C2 as seen in 5.5 is better on average over 15 data logs. However,
the method struggles in HY-6 at low speeds close to 4 m/s where the GPS update fails to set an accurate start
point close to the true speed for dead-reckoning. This results in the dead-reckoned speed estimate to drift
almost as soon as it starts and goes outside the 4% error limit.

The errors generated on average over 15 data logs by the GPS method are on the higher side, with the minimum

36



absolute error on average being 2.15 m/s and minimum relative error being 17.85%. This also hints at some
extreme outliers that bias these averages.

5.4.2 GPS vs OEMs

GPS method performs better than OEM methods on average over 15 logs however, it doesn’t match up to the
solved % for logs HY-3, HY-7 especially. This is because the GPS method during braking is using the GPS
speed rather than the wheel speeds which are not slipping, to update the estimate. The wheel speed based
methods perform better for these data logs.

As for accuracy, the GPS method is better than the OEM methods except when it comes to minimum absolute
error, minimum relative error and max relative error (suggesting that the error occurs at a low speed that
significantly skews the relative error measurement). Most errors in the GPS method in braking are due to the
trust put in the GPS speed during braking while the wheel speeds might have been accurate, especially at
lower speeds as seen in HY-6.

5.4.3 Concept 3 vs Concept 2

Concept 3 is the best performing method on average over 15 data logs as seen in table 5.5, solving 91.39% on
average. It is also individually better for each data log compared to C2 except in data logs HY-6, HY-12 and
HY-13. In all these files, the fastest compensated wheel speeds are highly accurate and would boost the solved
% for these files if trusted. However, while developing this method, it was observed that during braking, there
were cases of over-estimation of slip ratios, thus leading to a brake strategy that trusted slowest compensated
wheel speed.

As for accuracy, C3 has the lowest RMSE and low relative RMSE along with fairly low standard deviation. This
method as mentioned above, struggles as it tries to avoid the over-estimation issue, generating large average
minimum absolute and relative errors, biased by a couple of extreme outlier data logs. This also shows that the
errors in the estimate are lowest on average but have spikes of high errors.

5.4.4 Concept 3 vs OEMs

When compared to OEMs estimation methods, C3 outperforms the OEMs simple wheel speed based methods
on average as well as individually, barring HY-9 data log, where the di↵erence in solved % is barely 1.6%.

Similar as compared to C2, the C3 method has very low RMSE but high peaks during braking when the
estimate either jumps to trust a slipping / locking wheel, leading to high peak errors.

5.5 Examples

In this section some examples of each method are shown with sections where they are better than the previous
method C2, sections where they struggle and what are the possible reasons for both.

5.5.1 Approach 1 : GPS speed as measurement

Better than C2 in slipping while acceleration scenarios

This approach outperforms each data log in terms of % solved or the amount of time over the logged data that
the estimate is within the error limit. The most notable increase comes in data log HY-9 in segments of the
data log where the wheel is slipping during acceleration seen in table 5.3. Here, the GPS approach keeps the
speed estimate within the ±4% error limit for 98.26%, besting C2’s solved% by 9%.

This improvement comes in a section where the vehicle is accelerated from a speed close to 8 m/s right after
hard braking. On a slippery surface, this sudden increase of acceleration makes all the wheels slip. This can be
observed in figure 5.1. All-wheel slip is correctly detected by the slip detection concept. Now, previous methods
rely on the slip detection concept to accurately detect slip, providing a good starting point for dead-reckoning.
In this case, C2 correctly detects slip and starts dead-reckoning at an accurate point. However, over the 8
seconds that the dead-reckoning goes on for, the speed estimate drifts considerably 5.1a. The problems with
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dead-reckoning for this log can be read in [1]. In this situation, just guiding the dead-reckoning with a new
GPS speed measurement every 1 second such that it starts over at a new and more accurate speed improves
the estimate accuracy and keeps it within the desired error limits. As can be seen in figure 5.1b, the estimate is
pushed ”up” by the trust in the GPS speed, saving it from crossing the error limit. It is important to note that
the GPS speed in this case was accurate and close to the error limit, which pushes the drifted speed estimate
”up” towards the true speed. A GPS speed that was slower than the drifted estimate would not have helped in
this case.
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(a) Speed Estimation using C2 and dead-reckoning
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(b) Speed estimation using C2 and dead-reckoning with GPS
speed signal

Figure 5.1: Estimated speeds, wheel speeds and reference vehicle speed measurements

The errors of the two estimation methods can be seen in 5.2a. The updates with GPS speed a↵ecting the
speed estimate and thus the error can be observed clearly in figure 5.2b at time steps around 300, 400, 500 and
600, saving the estimate from crossing the error threshold. As for C2 and pure dead-reckoning, the drift and
consequent error in the estimate can be seen in figure 5.2a.

0 100 200 300 400 500 600 700 800 900
Timesteps [100Hz]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Sp
ee

d 
Es

tim
at

io
n 

R
el

at
iv

e 
Er

ro
r

Est (rel)
Brk manf (rel)
+4% error
-4% error
Zero-error line

(a) Pure dead-reckoning drifts away, causing errors greater
than 4%
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(b) GPS update every second save the dead-reckoned speed
estimate and keeps it within the 4% error limit

Figure 5.2: Relative error between speed estimations from pure dead-reckoning and GPS against the reference
speed
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Where this method struggles

Data log HY-6 is where the GPS method struggles especially in braking conditions. A closer look at the nature
of wheel speeds and the estimate in this condition is show in figure 5.3. The wheel speed measurements are
extremely noisy due to ABS braking while driving on snowy roads. The wheel speeds drop as they start locking
on low friction surfaces. The wheel speeds are slower than the reference speed of the car for 150 timesteps
or 1.5 seconds. During this time, the GPS speed update is given a lower covariance and thus trusted. The
point where the system trusts the GPS speed can be seen as a ”spike” in the estimated speed at timestep 100.
However, the update in the GPS speed measurement is not trusted enough and the dead-reckoning in this case
starts to drift due to a poor starting point. By the time the GPS speed signal updates again i.e. at timestep
200 or after 1 second, the estimate has already drifted way beyond the error limit. Once it drifts away this far,
the GPS speed update is not able to pull it back up to the true speed of the vehicle. Then, once the estimate
drifts so far away that the wheel speeds rise above it, the faster wheel speeds are trusted more and more that
bring the estimate back up within the error limits. It is however important to not that the speed errors in the
GPS method in this case are lower than the errors in the brake manufacturer’s speed estimate as seen in figure
5.3b.
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(a) Estimated speed from C2, dead-reckoning with GPS speed
updates
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(b) GPS update every second but is not enough to save the
dead-reckoned speed estimate as it drifts

Figure 5.3: GPS method struggles in HY-6 due to trust divided between the wheels and dead-reckoning between
two GPS measurements which are 1 second apart.

However, as mentioned in 4.2 and as seen in figure 4.6a, the GPS speed signal must be faster than the actual
speed of the vehicle due to it’s low update frequency. This is also the case in the modelled GPS speed signal
used the GPS method. This can be seen in figure 5.4.

A good amount of trust in this speed saves the estimate in that it pulls the estimated speed up towards the
true speed, and avoids an early onset of drift errors. Even still, it can’t avoid an early onset of drift errors in
dead-reckoning. This can be seen in figure 5.5. This discrepancy then is based purely on the fact that when the
vehicle is braking, the GPS speed is trusted with a covariance that is tuned for all the files. This is done to
avoid over-trusting the GPS speed and pulling the estimate up and above the error limit. For this particular
file, a lower covariance suitable for the GPS speed signal to trust it helps the estimate pull up towards the true
speed of the vehicle just enough to stay within the error limits. This solves the drift errors upto an extent.
Further research and tuning based on more data can help to understand when to trust the GPS speed.
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Figure 5.4: modelled GPS speed signal with reference speed from OxTS
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(a) Estimated speed from C2, dead-reckoning with GPS speed
updates with lower covariance on GPS speed
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(b) Relative errors in speed estimate when GPS speed signal
is given lower covariance.

Figure 5.5: GPS method struggles in HY-10 due to trust divided between the wheels and dead-reckoning between
two GPS measurements which are 1 second apart.

5.5.2 Approach 2 : Slip Detection Concept 3

Where Concept 3 is better performing than C2

Concept 3 dynamically estimates the slip ratio of each tyre to activate and deactivate the slip flag. It’s
improvement over the estimation method developed previously using C2 is most noticeable in data log HY-2
from table 5.3. It estimates the speed within the error limit for 12% higher share of data log where the wheels
are slipping during accelerations, as compared to C2.

This improvement comes in a part of the data log where the vehicle is accelerating and the wheels slowly start
slipping and then increase the slip ratio gradually. This can be observed in figure 5.6. This case, when wheels
slip slowly is one of the limitations or ”grey zones” of C2 slip detection, mentioned in the precursor thesis work
[1]. In figure 5.6a, the estimation of speed from previous method based on C2 is shown. Here, C2 first detects
slip at correctly on three wheels - Front Left (Fl),Front Right(FR) and Rear Left (RL). Rear Right (RR) wheel
is not slipping at that instant. Thus, RR wheel speed measurement is trusted during the estimation process.
However, the RR wheel is also about to cross the threshold as it is slowly but surely slipping more and more.
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The wheel speed residual variances do not trigger the slip flag immediately and the RR wheel speed is trusted
during majority the acceleration phase. The RR wheel is then detected to slip around time step 150, at which
point dead-reckoning begins. But, since the start point of dead-reckoning is already outside the error limit,
the estimate drifts even further, producing larger errors until all wheels represent true speed at the instant
the brakes are applied on the vehicle. C3 on the other hand maintains that all wheels are slipping throughout
the acceleration phase. It starts dead-reckoning at the beginning of acceleration. Then as the estimate starts
to drift, it trusts the wheel speeds that are slower than the estimate, always trusting the slowest wheel from
there on along with dead-reckoning. This can be seen in figure 5.6b. The accurate detection of wheel slip and
trusting the wheels at the right time proves to be an improved strategy to estimate vehicle speed. The relative
errors in the speed estimate can be observed in figure 5.7.
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(a) Estimated speed from C2
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(b) Estimated speed from C3

Figure 5.6: Estimated speed from concepts 2 and 3 in scenarios where wheel slips during acceleration
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(a) Relative error of estimated speed from C2 and brake
manufacturer

0 50 100 150 200 250 300
Timesteps [100Hz]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Sp
ee

d 
Es

tim
at

io
n 

R
el

at
iv

e 
Er

ro
r

Est (rel)
Brk manf (rel)
+4% error
-4% error
Zero-error line

(b) Relative error of estimated speed from C3 and brake
manufacturer

Figure 5.7: Relative error of estimated speed from concepts 2, 3 and brake manufacturer in scenarios where
wheel slips during acceleration

Another improvement comes during the braking scenario in the data logs, noticeably in log HY-1 and HY-11
from table 5.5. For HY-11, the estimated speed signals for C2 with the old braking strategy and C3 with the
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new braking strategy can be seen in figure 5.8. C3 with the new braking strategy solves almost 26% more
share of braking scenario than C2. This is because during braking, the wheel speeds compensated by the slip
ratio estimate is used as a measurement to aid dead-reckoning. In this case, the slowest of the compensated
front wheel speeds is chosen to be trusted. The slip ratio estimation for the wheels can be seen in figure 5.9a
and the compensated wheel speed can be seen in figure 5.9b. The compensated wheel speeds are closer to the
true speed of the vehicle than the wheel speed sensor measurement. Thus, when predicted speed is updated
with compensated wheel speeds that are accurate, the estimated speed is also accurate within the error limits.
The relative errors of the two methods compared to the brake manufacturer’s estimate can be seen in figure
5.10.

0 50 100 150 200 250 300 350 400 450
Timesteps [100 Hz]

5

10

15

20

25

30

Ve
lo

ci
ty

 [m
/s

]

FL
FR
RL
RR
Est.
Ref.
Ref+-4%

(a) Estimated speed from C2
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(b) Estimated speed from C3

Figure 5.8: Estimated speed from concepts 2 and 3 in braking scenario
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(a) Slip Ratio estimation for the front left wheel
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(b) Compensated wheel speed that is trusted for speed esti-
mation in C3

Figure 5.9: Slip ratio estimate compared to reference slip ratio calculated from OxTS. Figure 5.9b shows the
compensated wheel speed that is used to estimate the speed along with the true wheel speed measurements.
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(a) Relative error of estimated speed from C2 and brake
manufacturer
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(b) Relative error of estimated speed from C3 and brake
manufacturer

Figure 5.10: Relative error of estimated speed from concepts 2, 3 and brake manufacturer during braking
scenarios

Similarly in HY-1, the new braking strategy trusts the slowest compensated front wheel at higher predicted
speeds of the vehicle initially. The spikes coincide with the point where the compensated wheel speed is faster
than the estimate, that helps to drag the estimate ”up” and stops it from crossing the 4% limit. The slip ratio
estimation, compensated wheel speeds can be seen in figure 5.11. The final estimated speed and the relative
speed error can be seen in figure 5.12.
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(a) Slip Ratio estimation for the front left wheel
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(b) Compensated wheel speed that is trusted for speed esti-
mation in C3

Figure 5.11: Slip ratio estimate compared to reference slip ratio calculated from OxTS. Figure 5.11b shows the
compensated wheel speed that is used to estimate the speed along with the true wheel speed measurements.
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(a) Estimated speed from C3
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(b) Relative error of estimated speed from C3 and brake
manufacturer

Figure 5.12: Estimated speed and relative error from concepts 2 and 3 in braking scenario

Where Concept 3 struggles

Concept 3 solves almost all the data files during segments of wheel slip while accelerating. However this method
like all other methods struggles sometimes during braking. This can be noticed in table 5.5 for data log HY-6.
HY-6 is a problematic data log to solve for most methods developed due to aggressive ABS braking and extreme
wheel lock cases. For C3, estimating speed during braking involves deciding whether to trust the compensated
or true wheel speeds as well as decide the correct wheel to trust. The estimated speed using C3 can be seen in
figure 5.13a. the estimated speed drifts away as it dead-reckons while trusting the fastest true wheel speed here.
As mentioned in section 4.3.7, the strategy to decide which wheel speeds to trust is based on the predicted
speed of the vehicle. At speeds between 7.5 and 14 m/s, the fastest true wheel speeds is trusted along with
dead-reckoning. In this case, the fastest true wheel speed is still way for o↵ from the true speed of the vehicle
and thus a huge drift in the estimate.
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(a) Estimated speed from C3 while trusting the true wheel
speeds
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(b) Relative error of estimated speed from C3 and brake
manufacturer while trusting the true wheel speeds

Figure 5.13: C3 braking strategy struggles because it trusts the true wheel speeds

The slip ratio estimates for the front and rear wheel are shown in figure 5.14. The slip ratio estimation looks
good enough to correct the wheels speeds and trust it, which would solve the problem. Also, as discussed in
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section 4.3.7, the slowest of the compensated wheel speed is trusted to avoid the over-estimation errors and
thus over-estimated wheel speed for updating the speed estimate. This can be seen in 5.15a. However here it is
seen that the fastest compensated wheel speed is actually closer to the true speed of the vehicle. The fastest
corrected wheel speed can be seen in figure 5.15b.
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(a) Estimated slip ratio vs ground truth for Front Left wheel
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(b) Estimated slip ratio vs ground truth for Rear Left wheel

Figure 5.14: The slip ratio estimates seem good enough to be used to correct the wheel speed measurements and
use for speed estimation

0 50 100 150 200 250 300 350
Timesteps [100 Hz]

0

2

4

6

8

10

12

Ve
lo

ci
ty

 [m
/s

]

FL
FR
RL
RR
Est.
Ref.
Slowest Comp. Whl Spd
Ref+-4%

(a) Slowest corrected wheel speed
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(b) Fastest corrected wheel speed

Figure 5.15: The slowest corrected wheel speed is very far away from the true speed of the vehicle however the
fastest speed is fairly accurate and could be trusted

The speed estimations if the fastest corrected wheel speed was trusted in the strategy can be seen in figure
5.15b and 5.16a. The result in performance would double, solving almost 70% share of the data log during
braking as compared to 36% previously as seen in table 5.5.
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(a) Estimated speed from C3 while trusting the fastest cor-
rected wheel speed
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(b) Relative error of estimated speed from C3 and brake
manufacturer while trusting the fastest corrected wheel speed

Figure 5.16: Trusting the fastest corrected wheel speeds improves speed estimation during braking in this data log

This file is an exception where the slip ratio estimate is highly accurate most likely due to accurate brake
torque data. The estimation method in braking is developed for a universal approach and thus struggles to
estimate the speed in this exception data log. This data also has extreme lock and ABS braking, where the
wheel speeds are not even close to the true speed of the vehicle. So even though the performance numbers say
the estimate is bad, the fact that the slip ratio estimation is accurate is a big positive.
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6 Discussion

Estimating vehicle speed when wheels slip excessively on low friction surfaces is extremely challenging. It is
especially so with a limited sensors or measurements; just an IMU that can be dead-reckoned, and wheel speed
sensors, which are the only direct measurement of speed but, are not representative of true vehicle speed when
slipping. Previously [1], a kinematics model based EKF with two slip detection systems was developed to
estimate speed, and it’s limitations and possible improvements analyzed. In this work, two approaches that
improve the previous estimation method are developed. First is to model a GPS speed signal and introduce it
as a secondary measurement of speed, when the wheel speeds cannot be used. Second, a new and dynamic
slip detection concept is developed using limited sensors 4.1 to complement the kinematics model and EKF. A
discussion about why these methods are chosen, it’s characteristics, results and limitations follows.

6.1 Why these approaches are chosen

In the methods developed previously, a lot of burden was put on dead-reckoning to be accurate when all
wheels are slipping since the only other sensor that could measure the speed - the wheel speed sensor, could
not be trusted. Dead-reckoning of the accelerometer su↵ers from integration drift errors which lead to bad
speed estimates. If the wheel speeds can’t be trusted during excessive slip and dead-reckoning is prone to
drift, an obvious solution is to introduce a secondary measurement of speed that is not a↵ected by wheel slip.
During research study in previous work [1], it was also found that a secondary speed measurements from GPS,
cameras, Radar and others can be used with dead-reckoning the accelerometer and wheel speeds. The GPS
module outputs a direct speed measurement while the other sensors need to be calibrated and speed needs to
be estimated from their output, which brings in further challenges and complexity. Thus, a GPS speed signal
is an ideal secondary measurement of speed. It also helps that most modern cars now come equipped with
GPS modules, which makes it even more applicable to the speed estimation methods. So, the first approach
introduces a GPS speed signal as a secondary measurement to aid speed estimation during excessive all-wheel
slip conditions.

To address early onset of drift errors and unnecessary reliance on dead-reckoning, two slip detection concepts
were developed previously. The task of these concepts was to identify which wheels were slipping, so the
non-slipping wheel speeds could be fed to the EKF in the measurement update. This would help provide
accurate measurements of speed from the wheel speed sensors, meaning that dead-reckoning would only begin
if all-wheels are detected to be slipping. Also, if the concepts detected all-wheel slip at the right time, the
dead-reckoning process would also start at a speed that is accurate, thus avoiding an early onset of drift errors.
The challenge was to develop these concepts with the limited sensors available. One concept was based on
static thresholds of torque rate and accelerations, while the other was based on wheel speed residual variances.
However, both had limitations since the thresholds set to detect slip were static and did not rely on the speed
of the vehicle, yaw, road-tyre friction and other dynamic parameters that a↵ect vehicle motion. Also, the slip
detection would only identify if a wheel is slipping but not by how much i.e. the slip ratio. A more dynamic
slip detection strategy that could not just detect slip, but do so by estimating the slip ratio itself would be an
ideal solution to this problem. This reduces the reliance on dead-reckoning since the slip detection would be
even more accurate and in some cases, the slip ratio estimate can compensate the wheel speed measurements
meaning that even during all-wheel slip, corrected wheel speeds can be fed to the EKF.

Even though other methods can be used to improve the estimation methods, given the time constraints as well
as background of the author, these two approaches are found to be suitable to develop methods to improve
speed estimation in excessive wheel slip conditions. These approaches also solve the most obvious limitations of
the previous methods while also helping to understand how much they improve upon the previous methods. It
also does so via two completely di↵erent ideas where one adds an absolutely new measurement of speed, while
the other utilizes a new slip detection concept. The reason to do this is also provide substantial examples and
possible routes of development in vehicle speed estimation.
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6.2 The idea behind developing these approaches

Adding a secondary measurement of speed serves two purposes. One is improving the estimation of speed
itself, providing another direct measurement of speed when the wheel speeds cannot be trusted during all-wheel
slip. The second purpose it to help analyze how much of an impact just adding a secondary measurement
of speed makes to an already developed, limited sensor based approach from previous work [1]. This also
makes for validation of the analysis and limitations discussed in the previous methods, as well as justify further
development of the approach of adding a secondary measurement. Thus, the best speed estimation developed in
the previous work - EKF with slip detection Concept 2 is used as the base. A GPS speed signal is then added as
a measurement when the slip detection concept detects all-wheel slip. Keeping the previous method untouched
but rather just adding a secondary measurement helps to understand performance gain in a controlled way.
The GPS speed signal is used only when all-wheel slip is detected so that, the wheel speed measurements which
are very accurate when wheels are not slipping, are trusted to estimate vehicle speed without a lagging and
slow update frequency speed signal from the GPS in the mix.

A new dynamic slip detection system helps to estimate vehicle speed using the limited sensor suite and an
EKF, while also avoiding any other secondary measurement requirements. The kinematics based model used in
the EKF has limitations as mentioned in the previous work, however for the purpose of this work, using the
same EKF makes it easy to compare the improvements and performance of the new slip detection system. The
VxRP filter is chosen to evaluate the performance of this new slip detection concept. The idea of this concept
is to make it more dynamic and such that a slip ratio for each wheel can be estimated. The previous concepts
set up static thresholds for slip indicators to detect slip. However, the idea here is to use the estimated slip
ratio itself to decide if the wheels should be trusted or no. Since the error limit in the speed estimate is set as
±4%, a wheel slipping less than 4% can ideally be trusted. So, a wheel is detected to slip if the slip ratio is
higher than 4%. The slip ratio estimation encompasses dynamic, static and tuning parameters, solving the
static threshold only problem. The slip detection concept based on this slip ratio estimation now depends on
velocity of the wheels, tyre parameters and applied torque at each time instant. This detection concept uses slip
indicators such as torque rate and di↵erence for wheel-car acceleration with static thresholds to complement
the slip ratio estimate. Estimated slip ratio is also used to correct the wheel speeds to represent the true speed
of the vehicle.

The common idea for both these methods is simple - improve the previous estimation method with two
approaches suggested by analysis in the previous work while keeping the base similar to previous method which
makes comparison of the performance gains much easier.

6.3 Some challenges and limitations

The data logs from real-world driving with excessive wheel slip are described in 4.1. In these logs, GPS speed
signal is not recorded. Thus an artificial GPS signal is modelled from the reference / ground truth speed
measurement signal from the OxTS. To make the modelled GPS signal representative of true GPS signal, it’s
signal and error characteristics are studied from two additional data logs 4.1 that include true GPS speed
measurement for a vehicle drive on a highway, passing through two tunnels. This poses the first limitation -
the signal and error characteristics that are used to model GPS speed signal are based on very less data, data
that does not include excessive wheel slip conditions, does not include variations in environmental factors like
weather, road, surrounding trees, cities and high rise buildings and overpasses as well as very high acceleration
and braking scenarios. This makes the study of signal and error characteristics very limited and thus the
modelled GPS speed signal highly biased by this specific data log and the driving maneuvers performed while
logging it. The second limitation is the modelled GPS speed signal itself. Since the GPS speed signal is
modelled and not the true signal, there is always bound to be some discrepancy had there been a comparison
between the two.

For the slip detection concept approach the main limitations arise from how the equation is used to estimate
slip ratio. The equation currently has a low-pass filter characteristic using a gain factor / tuning factor. This
causes the slip ratio estimate to be too low pass filtered sometimes, causing it to sometimes miss the threshold
or even estimate an extremely low slip ratio. Another limitation of this concept is that the parameters used in
the equation are one too many and their lumped errors could cause outliers in the slip ratio estimate. The
higher the number of variables that slip detection depends on, the higher the chances that one wrong value in
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any one variable would lead to incorrect slip ratio and thus incorrect speed estimate. From the variables used
in the equation for slip estimation, the powertrain torque data is an estimated quantity with high errors, the
tyre radius is considered to be static and so is the longitudinal sti↵ness of the tyre which in reality are dynamic
and dependent on a lot of external and internal factors.

6.4 The performance of these approaches

A consolidated table of performance numbers of these approaches compared to previous method and OEMs
simple estimation methods can be seen in chapter 5. From the results, it is clear that the two new approaches
developed in this work are better than the previous methods and OEMs’ estimation. This is on average over 15
logs files. The approaches outperform the other methods in all three segments of the data logs i.e. complete
data, slipping in acceleration and braking scenarios. The approaches keep the speed estimate within the ±4%
error limit for larger share of data logs than other methods. The RMSE as well as standard deviation of errors
is also very low for the two approaches on average.

On average for complete data, the GPS approach keeps the estimated speed within the error limit for 94% of
the time over the data logs. The new slip detection concept keeps the estimate within the desired error limit for
95% of the time over the data logs. This is a 2 and 3 % improvement respectively from the previous method.
The improvements for slipping in acceleration segment is 1% and 2 % respectively. The major improvements
come in the braking section of the data, where the GPS approaches keeps the speed estimate within error limits
3% higher share of data while the slip detection concept improves over the previous method by 5%. The new
approaches improve over the previous for all individual files barring a one or two which are explained in the
results chapter 5. The new slip detection method also has the lowest RMSE and standard deviation of all the
methods on average. From this, it is also found that from the two approaches, the new slip detection concept
helps to get a better speed estimate.

The bigger picture however is that the two approaches make for viable options for speed estimation and also
improve upon the previous methods. The results also show the performance gained by adding a secondary
measurement of speed, as well as a dynamic slip detection strategy.

However, it is important to note that the statistical parameters might not be indicative of the true performance
of the methods. This is specially in low speeds where the error limit is too narrow and relative error gets
too high. It is also prone to extreme outliers such that even one outlier could skew the statistical parameter.
Similar explanation can be applied to the solved% numbers in the results table, where an extreme outlier could
sway the average solved% of the method.

6.5 Future Work

In this section, future work than can be done to improve the proposed methods is discussed.

6.5.1 More GPS data in di↵erent conditions

The improvements gained from utilizing GPS speed signals showcase a way in which speed estimation can
benefit with a secondary measurement. A modern car equipped with a GPS module can surely take advantage
of the speed signal from the GPS. Data logs from real-world driving on icy and snowy roads similar to the
logs received during this work that have the true GPS speed signals would be a great starting point to test
out this method. GPS data in di↵erent weather conditions, environment and maneuvers would help create a
stronger argument on if the GPS speed signal can benefit the speed estimation process in excessive wheel slip
conditions.

6.5.2 GPS speed to estimate radius and slip ratio

Having a measurement that does not get a↵ected by wheel slip is advantageous for speed estimation. A logic to
utilize GPS speed to estimate wheel slip and compensate it, a logic to utilize the vehicle speed from the GPS
and estimated wheel slip to estimate the tyre radius would help in providing another measurement upon which
a strategy to trust either the wheel speeds or GPS speed can be put together.
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6.5.3 Slip ratio as a state

The slip ratio estimation equation can be used as a state in an EKF similar to the one developed during the
thesis work. However, the non-linearity of the equation might require an Unscented or Cubature kalman filter.
These filters will also need better measurement models that have accurate torque data. The current torque
data is estimated, which is prone to high errors. The process and measurement model from [15] is a good
starting point if the torque data can be accurate.

6.5.4 Dynamic tyre parameters

Currently, all tyre parameters used in the slip ratio equation are static. The tyre radius is the static loaded
radius, the longitudinal sti↵ness is from the linear region of the force-slip curve and the inertia is assumed
constant throughout. However, these parameters change constantly and utilizing dynamic values of these
parameters would make the slip ratio equation even more accurate.

6.5.5 Estimating road-tyre friction

An online estimation of road-tyre friction would help calculate the maximum torque that can be applied to
each wheel. This can be used as a threshold to determine if the wheels are likely to slip when this max torque
limit is crossed.

6.5.6 Testing the methods on IPG Carmaker

It is a good idea to test these methods in a virtual environment since it is easy to create di↵erent scenarios of
wheel slip and also understand if the estimation method works online without delays. Testing the methods
on di↵erent road conditions would also facilitate studying di↵erent slip indicators, and the limitations of the
current method in terms of robustness.

6.5.7 Machine Learning to further understand slip detection criteria

Currently the slip detection equation is based on the predicted speed of the vehicle. Machine learning is a
technique that can be used to find more of these dynamic parameters that a↵ect the slip ratio estimation.
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7 Conclusion

Speed estimation with a limited amount of sensors and excessive all-wheel slip is a challenging task. The two
approaches developed in this work present di↵erent ways of improving a kinematics based speed estimation
process. One approach being to add a secondary measurement altogether to aid with the dead-reckoning of
IMU, while the other method being a slip detection system to accurately detect speed and estimate the slip
ratio of each wheel. Both these approaches showed improvements in speed estimation over the 15 log files from
real-world driving. Both approaches were able to improve upon the previous methods over all three segments
of the data logs - complete data log, slipping while accelerating and braking scenarios.

The GPS approach, using a secondary speed signal improved upon the previous method. The advantages of
using a secondary measurement are big especially when all wheels are slipping since they are not a↵ected
by the wheels speeds. This helps reduce the burden on dead reckoning when all-wheel slip is detected. The
GPS approach outperforms the simple OEM estimations as well on average as well as individually over 15
files. Performance gained by just adding a secondary speed signal validates further development into this
method, gathering of more data and incorporating if not GPS, then any other sensor like a camera or radar.
Even though it doesn’t solve all files over 99% of the time as was the vision, it makes a solid case for using
a secondary measurement of speed. One of the biggest challenges especially while using a GPS is that it is
sensitive to the environment meaning that it’s accuracy is dependent on the environment such as the weather,
surrounding buildings, tree density, tunnels , over and underpasses and the likes. the GPS speed is also prone
to errors during acceleration and braking, which is when majority of the slipping occurs. Even though an
improvement is made in this work on speed estimation, further development and testing could validate it’s use
even more.

The new slip detection concept on average outperformed even the GPS approach, over all three segments of
data. It also had the highest share of the speed estimate kept within the error limit with the lowest RMSE.
The benefit of having a dynamic slip detection and estimation as well proved to be vital in the braking cases
especially, when correct wheel speeds from slip ratio estimate are used as measurements. The performance of
this method also warrants further study and development, especially using dynamic tyre parameters rather
than static. It also validates the use of a stand-alone slip detection system with limited sensors and without
secondary measurement to estimate the vehicle speed in excessive all wheel conditions. This approach also
leaves some scope for improvement where more dynamic parameters that have and e↵ect on slip could be
combined, the slip ratio can be made a state in a non-linear filter such as UKF or CKF. Even testing this
method for robustness on di↵erent surfaces on IPG carmaker could help.

Overall, these methods achieve the purpose of this project work, develop methods to improve the kinematics
based speed estimation and analyse it’s performance gains to validate it’s use in the future. The methods
developed have been kept as un-tuned for the data logs as possible for robustness checks or further testing on
di↵erent data.
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