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Modelling and Simulation of Heterogeneous Traffic

An investigation of autonomous vehicles impact on heterogeneous traffic in terms of
traffic flow and safety

NICKLAS PETTERSSON

Department of Mechanics and Maritime Sciences

Chalmers University of Technology

Abstract

The development of Autonomous vehicles has intensified during recent years, and
autonomous vehicles is believed to be a common sight on public roads in the near
future. It is safe to say that autonomous vehicles will revolutionize the transporta-
tion field in multiple ways, such as improved transportation comfort and improved
traffic safety. The aim of this study is to investigate how autonomous vehicles will
impact heterogeneous traffic in terms of traffic flow and safety. In the context of
this study, heterogeneous traffic is defined as traffic situations with different vehicle
types, both manually driven and autonomous.

To investigate how autonomous vehicles impacts the flow and safety of heterogeneous
traffic, simulation models of manually driven vehicles and autonomous vehicles was
calibrated. The simulation models, which were calibrated based on a naturalistic
data-set, represent cars and trucks which takes the preceding vehicle type under
consideration. Simulations were executed in SUMO with various penetration rates
of autonomous vehicles with the intention to analyze how the different penetration
rates impact the heterogeneous traffic.

The simulation results showed that the number of traffic conflicts tends to decrease
as the penetration rate of autonomous vehicles increase for the same mean road
speed. Also, the results showed that the mean road speed increase as the pene-
tration rate of autonomous vehicles increase for the same vehicle flow rate. The
difference in mean road speed for the different penetration rates increases as the
vehicle flow rate gets bigger. This leads to the number of conflicts increase as the
penetration rate increase when the vehicle flow rates are high.

These results suggest the autonomous vehicles have the potential to improve the
traffic safety by decreasing the number of conflicts and to improve the traffic flow
by increasing the mean road speed and therefore lessen the travel time. However,
the mean speed needs to be limited, or else the number of conflicts will significantly
increase.

Keywords: SUMO, Autonomous vehicle, Heterogenous traffic, Traffic flow, Traffic
safety, car-following, lane-changes, Traffic simulation, HighD dataset, Model cali-
bration.






Acknowledgements

My three biggest thanks go to my examiner at Chalmers, Prof. Pinar Boyraz-
Baykas, and my two supervisors at VTI, Niklas Strand and Maytheewat Aramrat-
tana. Without your guidance, encouragement and support, the goals of this project
could not have been reached.

I also want to express gratitude to the two other members of the “Heterogeneous
Traffic Team”, namely my friend and classmate Weicheng Xiao and his examiner
Selpi Selpi. Thank you for your invaluable assist and for providing new perspectives
on different issues that arose during this project.

I am also very thankful to the staff at VTI for giving me the opportunity per-
form this work at their office in Gothenburg. Thank you for your hospitality, overall

kindness and, most importantly, free coffee.

Finally, I want to thank my family and friends for your never-ending source of
inspiration and support during this tough but fun time.

Be bitter, stay angry and blame everyone.

Nicklas Pettersson, Gothenburg, August 2020

vii






Abbreviations
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1

Introduction

1.1 Background

Autonomous, or driverless vehicles have seen a rapid development during recent
years and are predicted to be on the market in the near future. In fact, vehicles
that are at level 3 of autonomy, also known as conditional autonomy, are already on
the market. According to an article published by SAE International [1], a vehicle at
level 3 of driving automation are able to drive without the driver intervening under
certain condition, but the driver is required to be ready to take over the control of
the vehicle at any moment. Autonomous vehicles will not only make travelling more
convenient, they are expected to make improvements within the transportation field
in terms of traffic flow and safety [2]. According to National Highway Traffic Safety
Administration (NHTSA), 94% of all serious car crashes are caused by human error
[2]. These crashes could potentially be prevented, which would significantly reduce
the number of traffic fatalities and injuries, if autonomous vehicles were used instead
of manually driven vehicles. NHTSA also states that a smoother traffic flow will
lead to less time spent in traffic, a decrease in fuel costs and a decrease in vehicle
emissions [2].

Autonomous vehicles are expected to make the traffic safer and smoother and reduce
the traffic congestion under the condition that the other vehicles are driverless, or
in other words, the road is only occupied by autonomous vehicles [2]. However, at
the time when autonomous vehicles are introduced to public roads, they will at first
share the road with the current road actors, such as manually driven cars, trucks,
pedestrians and cyclists. Autonomous vehicles’ impact on traffic situations with
different road actors must therefore be investigated. Traffic situations with different
road actors will in this study be referred to as “heterogeneous traffic”.

Two of the most fundamental driving maneuvers that occurs on traffic, and should
therefore be considered when investigating heterogeneous traffic, are car-following
and lane-changing maneuvers. The driving behavior during car-following and as-
sociated vehicle dynamic variables such as acceleration, speed and position largely
depend on the preceding vehicle [3]. These vehicle dynamic variables affect both
traffic flow and traffic safety. A small distance gap between vehicles and a higher
vehicle speed means a shorter reaction time in case of an emergency and is there-
fore bad from a safety perspective. From a traffic flow perspective however, a small
distance between vehicles and a high vehicle speed is good. This is because a higher
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vehicle speed leads to a shorter travel time and a small gap between vehicles mini-
mize the usage of road space. The driving behavior during a lane-change maneuver
depends not only on the preceding vehicle but also on the vehicles in the adjacent
lane [4]. The driver tends to decide if a lane-change is appropriate based on the
front gap to the preceding vehicle and the lead gap to the vehicle in the adjacent
lane [4]. These two vehicle gaps are visualized in figure 2.4. NHTSA states that
crashes during a lane-changing maneuver results in around 60,000 injuries annually

in the USA alone [5].

In this study, the impact of autonomous vehicles on heterogeneous traffic in terms
of traffic flow and safety will be investigated. This project is carried out at Swedish
National Road and Transport Research Institute as part of their research on au-
tonomous vehicles impact on mixed traffic. The project’s aim and objectives are
descried in section 1.2 and the limitations of the project are described in section 1.3.

1.2 Aim and Objectives

This study aims to investigate how autonomous vehicles impact heterogeneous traf-
fic in terms of traffic flow and safety. More specifically, the goal is to tune existing
car-following and lane-changing models in SUMO so the models take preceding ve-
hicle’s type, namely car and truck, under consideration. The models, which will
represent manually driven cars and trucks, will be used to simulate different het-
erogeneous traffic scenarios. The simulations will be run in SUMO (Simulation of
Urban Mobility), which is an open source simulation program [6]. The models will
be calibrated and validated with a Natural Driving Study (NDS) data-set called
HighD (Highway Drone) data-set, which is a data-set primary used for safety vali-
dation of autonomous vehicles [7]. The result from the simulation will be analyzed in
terms of traffic flow and safety measurements, such as headway, spacing and number
of conflicts, in order to investigate how the integration of autonomous vehicles and
manually driven vehicles works in theory.

The expected outcome of this project is microscopic traffic simulation models for
heterogeneous traffic and an analysis on how traffic flow and safety in heteroge-
neous traffic are affected by autonomous vehicles. The models and the simulation
result are intended to be used by VTI (Swedish National Road and Transport Re-
search Institute) in their future research on integration of autonomous vehicles in
heterogeneous traffic.

1.3 Limitations and Assumptions

A full representation of heterogeneous traffic includes multiple road actors, such as
cars, trucks, motorcycles, pedestrians and bicycles, and multiple different traffic sit-
uations, such as city driving, highway, road maintenance and parking lots. It also
includes different traffic scenarios, such as car-following, roundabout, left-turns and
lane-changing. It is also safe to say that driver behavior and traffic flow depends on
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the weather and road conditions. In order to fully investigate autonomous vehicles’
impact on heterogeneous traffic, all these aspects need to be considered.

This study is limited to car-following and lane-changing models of manually driven
cars and trucks. The preceding vehicle types that will be considered are cars and
trucks. Also, normal road conditions are assumed, hence no heavy rain or snow, fog,
icy road etc. There is no publicly available dataset on autonomous vehicles, so the
autonomous vehicles will be represented by existing models in SUMO.

1.4 Thesis Outline

The remaining part of this report is divided into 4 chapters, namely “Theory”,
“Methodology”, “Results” and “Conclusion and Future work”. Chapter 2, “The-
ory”, provides the necessary background in order for the reader to understand the
reasoning, results and conclusions of the study. The theory chapter contains stan-
dardized definitions of driving performance measurements along with literature re-
views of car-following and lane-changing models, the simulation program SUMO and
the NDS data-set HighD. Chapter 3, “Methodology”, describes the working process
of calibrating and validating the simulation models and conducting the simulation
studies. In chapter 4, “Results”, the results of the conducted simulation studies are
visualized and analyzed. The final chapter of the report, chapter 5, “Conclusion and
Future work”, summarize the findings of the study and the possibilities of further
research in the subject is being discussed.
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Theory

Heterogeneous traffic flow can be defined as the number of vehicles passing a certain
point during a certain time on a road with multiple road actors [8]. A desired, or
smooth, traffic flow would therefore have a high rate of vehicles passing a point
without so-called stop-and-go driving and vehicle queues. These kinds of temporary
stops lead to environmental, economic and emotional drawbacks, such as increased
vehicle emissions, increased fuel consumption, lost time and road rage [2], [9]. In
fact, road rage is a big traffic safety problem since rage can lead to irrational behavior
and unnecessary risk-taking [9]. Also, a lot of acceleration and braking, which is a
consequence of poor traffic flow, leads to increased fuel consumption [10].

2.1 Standardized Definitions

In order to be able to compare this study with other studies in terms of test pro-
cedures, simulation results and conclusions, it is important to have common and
consistent definitions of relevant driving performance measurements. This is done
by using the definitions stated by SAE International in their report called Opera-
tional Definitions of Driving Performance Measures and Statistics [11]. The micro-
scopic traffic parameters that are used in this study to investigate the traffic flow
are described below together with the safety surrogate measures that will be used to
determine how critical a situation is in terms of safety. Different traffic situations,
in this case lane-change and traffic conflict, are also described below.

Time Headway and Distance Headway

The Transport Research Board (TRB) define Vehicle Time Headway (THW) as
“the time interval between two vehicles passing a point as measured from the front
bumper of a vehicle to the front bumper of the next successive vehicle” [12], [13].
Vehicle Distance Headway (DHW) is defined in the same manner as the distance
between a vehicles’ front bumper and the preceding vehicles front bumper [14].
Vehicle Time Headway and Distance Headway, which are visualized in figure 2.1,
are measured in seconds and meters respectively.
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Headway

Figure 2.1: A visualization of vehicle headway

Vehicle Speed and Travel Time

The speeds of the individual vehicles are together with headway the most funda-
mental parameters in microscopic uninterrupted traffic flow [15]. Vehicle speed is
inversely proportional to travel time, or in other words, an increased average vehicle
speed is directly proportional to a decrease in travel time [15]. Travel time, which is
the time it takes for a certain vehicle to travel from location A to location B, is an
important measurement of traffic flow. Travel time loss is the difference between the
desired travel time, that is the time required to travel a certain distance with the
posted speed limit for the particular road without any interruption, and the travel
time [16]. Examples of interruptions on that cause time loss are queue forming and
departure delay, which is defined as the delay of the vehicle departure due to no
available road space [16].

Traffic Conflict

A traffic conflict can be defined as a traffic situation where a collision will occur
unless one of the road actors involved in the situation or an ADAS makes an evasive
maneuver, such as braking or steering [17]. The severity of the conflict depends on
two factors, namely the conflict speed (CS) and Time-to-Accident (TA) [17]. The
Swedish Traffic Conflict Technique [17] defines TA as “time remaining to a collision
when the evasive action is taken by the relevant road user” and they define CS
as “speed of the relevant road user when he/she takes the evasive action”. As the
definition indicates, a lower TA and a higher CS leads to a more severe conflict.
Traffic conflict analysis is an effective method for comparing the safety of different
road situation [17], and could therefore be used to investigate the safety impact of
autonomous vehicles in heterogeneous traffic.

6
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Time-to-Collision and Vehicle Clearance

TTC, which is short for Time-to-Collision, is defined as “The time required for two
vehicles to collide if they continue at their present speed and on the same path” [18].
TTC is an effective safety assessment measurement and often used to identify and
determine the severity of a traffic conflict [18]. Research suggest that the desired
TTC on Highways are 3 seconds [19], and a TTC below this value can be considered
a critical situation. TTC is calculated by dividing the distance between the vehicle
in question and the preceding vehicle with the relative speed of the two vehicles.
The distance between the two vehicles is often referred to as the vehicle clearance
and is visualized in figure 2.2. The equations needed to compute TTC is shown in
equation 2.1

Vehicle Clearance, D

(| Jul ‘.E..
Wt

Ve

Figure 2.2: A visualization of Time-To-Collision

TTC =D/(Ve - Vt) (2.1)

Post Encroachment Time

Post Encroachment Time, or PET, is defined as "the difference between times that
a vehicle enters a conflict point until another vehicle arrives to this point'[20]. The
conflict zone in car-following scenarios is usually the position of the preceding vehi-
cles rear-end at a certain time, and PET is the time required for the EGO vehicle
to reach the conflict zone. PET is used as a safety surrogate measurement where a
lower PET means a higher risk of a collision [20]. Figure 2.3 shows a car-following
scenario where the conflict zone is visualized with a latitudinal red line. The upper
part of figure 2.3 shows the starting point at time ¢; and the lower part of figure 2.3
show when the EGO car reaches the conflict zone at time t. PET is defined as the
difference between t, and t; according to equation 2.2.
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Figure 2.3: A visualization of Post Encroachment Time. The upper part of the
figure shows the vehicle positions at time t; and the lower part of the figure shows
the vehicle positions at time t,

PET =1, — 1 (2.2)

Lane-change

SAE International [11] defines lane-changes as “Movement of a vehicle from one
vehicle lane to another lane with continuing travel in the same direction in the new
lane”. According to SAE, the lane-change starts when “any part of the tire contact
patch of a front tire touches the inside edge of the lane marking to either side of
vehicle” and the lane-change is complete when “the vehicle is stably positioned and
traveling in the new lane” [11]. The lane-change duration, which SAE defines as
“Time interval, usually in seconds, over which a vehicle is moving from one travel
lane to another” [11], is an important measurement of both traffic safety and traffic
flow.

Gap definitions in traffic

Two of the most fundamental measurements that is used in order to determine if a
lane-change can safely be performed are lag gap and lead gap. As the measurements
in figure 2.4 indicates, the lag gap is the distance between the subject vehicle (SV)
and the trailing vehicle (T'V) in the target lane [11]. The lead gap is the distance
between the SV and leading vehicle (LV) in the target lane [11]. The vehicle gaps
of importance are shown in figure 2.4.

8
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Adjacent lane gap

Lag gap Lead gap

Rear gap Front gap

Figure 2.4: A visualization of the vehicle gaps used in traffic analysis. The green
vehicle is the subject vehicle.

As the description of the parameters above indicates, there is a strong connection
between traffic safety and traffic flow, and therefore, safety need to be taken into
consideration when investigating traffic flow. A small vehicle time headway, for
example, can be good in terms of macroscopic traffic flow since the flow rate is
higher, but it also makes the potential TA smaller and therefore increase the severity
of a potential conflict.

2.2 Simulation of Heterogeneous Traffic

The main part of this thesis work is to calibrate and validate simulation models and
use them in simulation studies. The theory behind these tasks are described in this
subsection. The simulation software used in this project is introduced in section
2.2.1. Lane-changing and car-following simulation models are described in general
terms in section 2.2.2 and section 2.2.3 respectively. How the preceding vehicle type
impacts the driving behaviour is discussed in section 2.2.4. Also, NDS is described
in general terms in section 2.3 and the specific NDS data-set used in this project to
calibrate and validate the models is described more detailed in section 2.3.1.

2.2.1 Simulation of Urban Mobility (SUMO)

As previously mentioned in section 1.2, the simulations in this study will be con-
ducted in the open source simulation program SUMO. SUMO was developed by the
German Aerospace Center (DLR) at the institute of transportation system with the
intention to be used as a helping tool when investigating different traffic matters,
such as route choice and vehicular communication. The development process started
in 2001 and the program became publicly available in 2002. An informative article
about the program written by parts of the development team [21] describes SUMO
as a “full featured suite of traffic modeling utilities” with a road network included
that can generate maps from many different sources. The road network can either
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be generated manually with the application “netgen” or by importing a real road
network digitally from example Open Street Map [21].

SUMO is used for preparing and performing different types of microscopic simu-
lations, such as car-following, lane-changing and intersections [16]. Figure 2.5 shows
a road network generated in netgen with different vehicle models. Every vehicles
route and department time is individually defined, more in dept vehicle parame-
ters, such as velocity, physical properties and gap to the other vehicles, can also
be defined [16]. The simulation is time-discrete and space-continues and simulation
outputs can be generated after each time step. Many different types of outputs can
be generated after a simulation run depending on the topic that is being investigated,
for example emissions values and different kinds of surrogate safety measurements,
such as TTC, DHW and THW. A snapshot of a conducted simulation in SUMO is
shown in figure 2.5. The snapshot shows a manually built road with a pedestrian
crossing and three vehicle models.

e o

Figure 2.5: A example of a simulation conducted in SUMO

SUMO has a wide range of applications within the field of traffic simulation. The
most popular research topic to investigate with SUMO is vehicle communication,
that is vehicle-to-vehicle or vehicle-to-infrastructure communication [21]. The goal
with simulating vehicle communication is to evaluate the benefits of vehicle commu-
nication in terms of safety and traffic low. Development and evaluation of traffic
light programs are also some of the main applications of SUMO. It can also be used
to investigate how road actors choose their route based on their desired destination.

2.2.2 Lane-changing models

As previous stated, a lane change is defined by SAE International [11] as a “Move-
ment of a vehicle from one vehicle lane to another vehicle’s lane with continuing

10



2. Theory

travel in the same direction in the new lane”. Since lane-changing is one of the most
fundamental maneuvers, they should be considered when investing the traffic flow
and safety [22], [23]. Lane-changing models usually make a distinction between two
types of lane-changes, namely mandatory and discretionary [22]. Mandatory lane-
change (MLC) are lane-changes that needs to be executed in order for the driver to
follow the desired route or that the current lane becomes unavailable. Discretionary
lane-changes (DLC) in the other hand are lane-changes that leads to better traffic
condition, such as higher vehicle speed, but is not necessary for the driver to suc-
cessfully complete travel route [22]. Some models integrate MLC and DLC into one
utility model, where MLC is the priority [22].

There are many different types of microscopic lane-changing models used for com-
puter simulation available, the most common ones are so-called discrete-choice-based
model and Rule-based models [23]. The discrete-choice-based model are easier to cal-
ibrate compared with the Rule-based model [23] and lane-change models in SUMO
are based on this type of model, and therefore, this model is of interest in this study.
Most lane-changing models, including discrete-choice models, determine if a lane-
change is possible based on the available vehicle gaps [22]. As described in section
2.1, the lag gap is the distance or time gap between the subject vehicle and vehicle
behind it in the desired lane, see figure 2.4. The lead gap, on the other hand, is the
gap between the subject vehicle and the vehicle in front of it in the desired lane, see
figure 2.4. Both available lag gap and lead gap must be bigger than the critical lag
gap and lead gap respectively [22]. The discrete-choice-based lane-changing model
execute the lane-change maneuver based on these three steps [23]:

1. Checking lane-change necessity,
2. Choice of target lane,
3. Gap acceptance.

2.2.3 Car-following models

Car-following models are the most fundamental part of traffic simulations and are
characterized by the fact that they are only influenced by the preceding vehicle
[3]. The driver behavior during car-following scenarios is also one of the key fac-
tors when developing intelligent transportation systems (ITS) and advanced driving
assistant systems (ADAS) [24]. There are different methods to model the behav-
ior of the driver during car-following depending on the purpose of the model [3].
The two most common car-following model types are the safety-distance model and
the desired-measured model [3]. The safety-distance model assume that the driver
adjusts the speed and distance to the preceding vehicle so it can avoid a rear-end
crash in case of an emergency brake [24]. The desired-measure model on the other
hand adjust driving measurements, such as vehicle speed and the distance to the
preceding vehicle, based on the difference between the desired measurements and
the actual measurements [24]. Other models assume that all drivers have an optimal
velocity based on the preceding vehicle’s driving state or that the driver behavior
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depends on the traffic state [24].

Car-following models used to investigate driver behavior needs to be adjusted based
on the conditions of the simulation. For example, the driver behavior during car-
following in a developing country differs from the driver behavior in an industrialized
country due to different driving environments, driving culture, road quality and pro-
portion of different road actors [24]. Therefore, a model might be representative in
developing countries but not in developed countries. The models are calibrated us-
ing microscopic data, usually naturalist driving data [24]. The purpose with the
calibration is to minimize the gap between the simulation values and the values
found in the naturalistic data [24]. The calibration process consists of three parts,
and these parts are described below.

1. Measure of Performance (MoP): MoP is a driving parameter that is used to
describe the driver behavior during car-following. The performance of the
model is measured by comparing the value of the MoP measured in an NDS
and the value of the same MoP measured when using the model in a simulation
[24].

2. Goodness of Fit (GoF): GoF measure the difference between the MoP mea-
sured in an NDS and the simulated MoP and is therefore a measurement of
the model performance [24]. The most common measurement method of GoF
is Root Mean Square Error (RMSE), see equation 2.3.

3. Optimization algorithm: An algorithm used to minimize the GoF and therefore
optimizing the model.

RMSE = J ) S - wi)? (2.3

noi3

2.2.4 The impact of vehicle types

Multiple studies have shown that the preceding vehicle type affects the driver behav-
ior and therefore also the traffic flow in car-following and lane-changing situations [4].
A study conducted at the University of Science and Technology of China (USTC)
shows that drivers tend to keep a longer distance to the preceding vehicle if they
follow a truck compared to a passenger car [25]. A study on lane-changing behavior
shows that the lane-changing maneuver is in general shorter if the preceding vehicle
is a truck compared to a car [26]. The driver’s behavior is not only dependent on the
preceding vehicle type, but also dependent on the vehicle that he or she is operating
[27]. Therefore, the car-following type should also be considered. In this study, the
effect of four car-following cases will be investigated, namely car-following-car (CC),
car-following-truck (CT), truck-following-car (TC) and truck-following-truck (TT)
will be investigated. Studies presented in an article about stability analysis of mixed
traffic flow [27] shows that the car-following cases differs when it comes to reaction
time, response sensibility and maximum velocity. The differences between the cases
in regards of these parameters are ranked from highest (4) to lowest (1) and are
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shown in table 2.1 below. In other words, car-following case with the ranking 1 for
respective parameter has the lowest reaction time, lowest maximum velocity and the
lowest response sensibility.

Parameters cCc|CT | TC|TT
Reaction time 1
Maximum velocity | 3
Response sensibility | 4

4
1
1

| W N
DO —| W

Table 2.1: The impact of vehicle types in terms if different driving attributes.

2.3 Naturalistic Driving Studies

European Naturalistic Driving and Riding for Infrastructure and Vehicle Safety and
Environment (Udrive) defines Naturalistic Driving Study (NDS) as “A study un-
dertaken to provide insight into driver behavior during every day trips by recording
details of the driver, the vehicle and the surroundings through unobtrusive data gath-
ering equipment and without experimental control” [28]. More simply, Naturalistic
driving studies consist of recorded data of drivers performing their everyday activ-
ities in real-world traffic [29]. Different data-set contains different traffic scenarios
and different information about the driver behavior dependent on its intended use.
For example, the data-set SHRP2 (the second Strategic Highway Research Project)
contains information about critical situations, such as near-crashes, crashes and in-
formation about the driver behavior that resulted in these situations [30]. This kind
of data-set is often used to develop and evaluate ADAS. The Highway Drone Data-
set, however, contains so-called normal driving. In other words, the data do not
necessarily need to be of a critical event [7].

Generally, NDS can be conducted in two different way, either by recording indi-
vidual vehicles or by recording specific locations on a road. SHRP2 is an example of
an NDS that follows specific road users during a longer time in order to gain knowl-
edge about the driver’s performance and behavior in terms of safety [30]. The DAS
(Data Acquisition System) that was used to record the individual driver’s behavior
consist of, among other things, cameras, both inside and outside of the vehicle, and
sensors, such as radars and accelerometer [30]. An example of an NDS conducted
by recording a specific location on a road is HighD data-set, which is the data-set
that will be used in this study and is further discussed in section 2.3.1 below.

2.3.1 Highway Drone Data-set

As stated in the introduction chapter, the HighD data set will be used in this study
in order to modify the simulation models. According to [7], the data-set consists of
16.5 hours’ worth of recording with 110,000 vehicles, 5,600 lane-changes and a total
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of 45,000 driven km distributed on 6 different locations on German highways. The
recording sessions was limited to sunny and windless days (from 8am to 5pm) dur-
ing the winter seasons of 2017 and 2018. The vehicle types that are included in the
data-set are almost limited to cars and trucks, since the recording took place dur-
ing wintertime, the number of motorcycles are negligible. Also, since the recording
was done on clear days without any strong winds, the quality of the data-set is great.

As the name of the data-set indicates, the data are collected with a drone equipped
with a single 4k camera that hovers over highways. Using a single camera avoids
errors caused be transitions between cameras. The camera covers a longitudinal dis-
tance of 450 meters and 2-3 lanes in each direction depending on the location. The
drone provides an aerial perspective, also known as Bird’s-eye view, of the highway,
which gives a high accuracy of the vehicles longitudinal and lateral positions and
movements.

The data was collected with the intention to be used for safety validation and safety
assessment for highly autonomous vehicles, but the creators emphasize that the
data-set can be used for simulation model research and traffic analysis. Since the
amount of data are rather large, the vehicle trajectories in terms of position and
movement are extracted through automatic annotation with a computer vision al-
gorithm. Also, the safety assessment parameters TTC, DHW and THW are given
for all vehicles. The data-set can be visualized in either MATLAB or Python. With
these extracted parameters and trajectories, a script which is provided with the
data-set can detect four maneuvers, namely:

o Free driving: Longitudinal driving without being affected by the preceding

vehicle.

o Vehicle following: Longitudinal driving while being affected by the preceding

vehicle.

o Lane-changing: Change lane and keep driving in the new lane.

e Critical maneuver: Situation with low TTC or THW to the preceding vehicle.
The creators of the data-set derived some requirements that need to be fulfilled for
the data-set to be appropriate to use for safety validation and traffic analysis. The
behavior of the road users must not be affected by the fact that they are being
recorded, hence the behavior must be naturalistic. Relevant information about the
road, such as the number of lanes, speed limit and lane width, needs to be available.
Also, all the road users position, speed and acceleration needs to be measured with
high accuracy. Using an aerial perspective has many advantages when it comes to
fulfilling these requirements. Since the drone is hovering over 100 meters over the
highway, the road users are not aware that they are being recorded and therefore,
naturalistic behavior is granted. Viewing the road from above prevents that a vehicle
is blocked by another vehicle for example and therefore, all road users’ position and
movement can be observed all the time. Finally, since the recording locations are
fixed, the speed limit, lane width and other road characteristics can easily be noted.
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With all this considered, the HighD data-set seems to be the best alternative for
this project.
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Methodology

The process of calibrating the car-following models and lane-changing models of cars
and trucks is summarized in the workflow shown in figure 3.1. The first step is to
analyze the HighD data-set and extract all relevant parameters using MATLAB. The
extracted parameters will be used as initial states for the current simulation models
in SUMO and used for comparison between the HighD data and the simulation
output from SUMO. The process of extracting the parameters is described in section
3.1. The next step, which is described in section 3.2, is to build the simulation
environment in SUMO. The biggest part of this project is the actual calibration of
the models in SUMO so they represent the vehicles recorded in the HighD data-set.
During this process, the current models available in SUMO are simulated with the
initial states from the HighD data-set. The output from this simulation is compared
with the HighD data-set. The models in SUMO are then calibrated by changing
some of their parameters in order to minimize the difference between the HighD data
the simulation output from SUMO. This part is described more in-depth in section
3.3. The final step is to conduct simulation experiments with the calibrated models
in order to investigate how autonomous vehicles impact the heterogeneous traffic
in terms of traffic flow and safety. The method of conducting these experiments is
described in section 3.5.
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Build sim. Analyse HighD
environment dataset

Execute sim. in Exiract initial Extract

SUMO states parameters

Lane-change Car-following

Compare results

Calibrate the
models

Execute sim. in
SUMO

Figure 3.1: An overview of the projects work process

3.1 Analysis on HighD data-set

The HighD data-set consist of 60 recording session distributed on 180 comma sep-
arated values-files (CSV-files). That is three CSV-files that consist of different
information per recording session. These CSV-files are analyzed with MATLAB.
The analysis includes extracting relevant parameters, visualize the trajectory dur-
ing lane-change and examine the extracted parameters in terms of mean values and
distribution. Different parameters were extracted depending on the intended use,
that is if the extracted parameters are used as initial state for the SUMO models,
calibrating lane-changing models or calibrating car-following models.
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3.1.1 Extraction of initial states

In order to reproduce the traffic scenarios from the HighD data-set in SUMO, the
initial values for some parameters needs to be extracted for each vehicle. The initial
values for a certain vehicle are extracted from the first frame for which the vehicle
in question is included. The parameters that defines the initial state for a vehicle
are described below.

o Vehicle ID: The name of the vehicle.
o Class: The vehicle type, hence car or truck.

e Departure time: The time in seconds when the vehicle enters the simulation.
The department time is calculated by dividing the start frame number of the
vehicle with the frame rate.

e Departure lane: The vehicles starting lane.

e Departure position: The distance in meter from the start of the department
lane.

o Initial speed: The vehicles initial speed in m/s.

e Route: The simulation road has two direction, the route defines which direc-
tion the vehicle is driving in.

3.1.2 Data extraction for Car-Following

The traffic flow and traffic safety parameters that will be considered, and therefore
extracted from the HighD data-set, for car-following scenarios are Distance Head-
way (DHW) and Time Headway (THW). As previously stated in the introduction
to this chapter, the purpose of extracting parameters from the HighD data-set is to
calibrate simulation models in SUMO. Since the models will be calibrated with the
intention to represent cars and trucks with either a car or a truck as the preceding
vehicle type, these car-following cases need to be separated when extracting the
parameters in question.

The results of the parameter extraction are show in figure 3.2 — 3.5. The distri-
bution of the DHW for each car and truck are shown in figure 3.2 and figure 3.3
respectively, and the distribution of the THW for each car and truck are shown in
figure 3.4 and 3.5 respectively. As the figures show, the distributions tend to be
right-skewed and the mean of the full distribution would not be a good representa-
tion of the data-set. Therefore, the mean of the cluster for each car-following case
will be considered when calibrating the models.
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Figure 3.2: The Distance Headway distribution during car-following for cars ex-
tracted from the HighD data-set.
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Figure 3.3: The Distance Headway distribution during car-following for trucks
extracted from the HighD data-set.
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Figure 3.4: The Time Headway distribution during car-following for cars extracted
from the HighD data-set.
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Figure 3.5: The Time Headway distribution during car-following for trucks ex-
tracted from the HighD data-set

The results of the car-following analysis are presented in table 3.1. In addition to
the mean DHW and THW for each car-following case, the table also shows the
minimum of the DHW and THW for each vehicle.

Type | Nr. Avg. DHW | AVG. THW | Min. DHW | Min. THW
CC | 98862 | 73.73 m 2.28 s 51.97 m 1.58 s
CT | 10759 | 73.81 m 2.61s 50.95 m 1.82's
TC | 12350 | 94.77 m 3.80 s 62.37 m 249 s
TT | 14352 | 83.88 m 3.35's 64.89 m 2.71s

Table 3.1: The result of the car-following analyse.
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3.1.3 Data extraction for Lane-changing

The traffic flow and traffic safety parameters that will be considered, and therefore
extracted from the HighD data-set, for lane-change scenarios are Distance Headway
(DHW) and Adjacent Lane Gap (ALG). The DHW and ALG are extracted when
the lane-change maneuver starts. Besides of these two parameters, the lane-change

duration will also be taken under account when calibrating the lane-change models
in SUMO.

The results of the parameter extraction are shown in figure 3.6 — 3.9. The distribu-
tion of the DHW during a lane-change for each car and truck are shown in figure 3.6
and 3.7 respectively, and the distribution of the ALG during a lane-change for each
car and truck are shown in figure 3.8 and 3.9 respectively. As the figures shows, the
distributions tend to be right skewed and the mean of the full distribution would
not be a good representation of the data-set. Therefore, the mean of the cluster for
each car-following case will be considered when calibrating the models.
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Figure 3.6: The Distance Headway distribution during lane-changing for cars ex-
tracted from the HighD data-set.
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Figure 3.9: The adjacent lane gap distribution during lane-changing for truck
extracted from the HighD data-set.

The lane-change duration was extracted by identifying the frame when the lane-
change starts and the frame when the lane-change ends. The start and end of
the lane-change were identified by looking at the lateral movement of the vehicle.
When the vehicle started to move in the lateral direction, the lane-change was
assumed to start, and when the movement in the lateral direction stopped, the lane-
change was assumed to be completed. Since the identifying of the lane-changes was
done automatically, some of the lane-changes was poorly identified. By plotting
and manually inspecting the vehicle trajectory, the poorly identified lane-changes
was detected and disregarded. Figure 3.10 shows the vehicle trajectory of a well
identified lane-change.
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Figure 3.10: A example of the vehicle trajectory during a lane-change

The results of the lane-change analysis are presented in table 3.2. The table shows
the average distance headway (DHW) and the average adjacent lane gap (ALG) for
each car-following case during a lane-change. The table also show the average time

needed for each car-following case to perform a lane-change.

Type | Nr. | DHW ALG Duration
CC 2621 | 42.04 m | 157.8 m | 6.99 s
CcT 693 | 42.64 m | 164.6 m | 7.09 s
TC 329 |39.03m | 164.8 m | 7.98 s
TT 90 40.45 m | 169.6 m | 8.00 s

Table 3.2: The result of the lane-changing analysis.

3.2 Simulation environment

The structure of the roads that was used when recording the data for the HighD
data-set was rebuild in SUMO in order to reproduce the data from the HighD
data-set in SUMO. Since the recording of the HighD data-set occurred at different
locations, the road structures differ in terms of number of lanes. The roads have
either two or three lanes in each direction. To simplify the simulations, a road with
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three lanes in each direction will be used during this project.

The built road in SUMO, which is shown in figure 3.11, is a freeway that consists
of three lanes in each direction. The total length of the road is 420 meters. The
figure also shows car-following simulation models of cars, which are represented by
the smaller yellow symbols, and car-following model of a truck, which is represented
by the bigger yellow symbol.

0 10m

Figure 3.11: A snapshot of the built road during a simulation run

3.3 Calibrating Models

As stated earlier, Car-following and Lane-changing models in SUMO will be tuned
based on the HighD data-set. The models will represent manually driven vehicles of
the type’s car and truck. Also, the preceding vehicle type will be taken into account.
In total, 8 models will be tuned, and their characteristics are presented in table 3.3.

Model | Ego Vehicle Type | Prec. Vehicle Type | Driver intention
1 Car Car Lane-Change
2 Car Truck Lane-Change
3 Truck Car Lane-Change
4 Truck Truck Lane-Change
5 Car Car Car-Following
6 Car Truck Car-Following
7 Truck Car Car-Following
8 Truck Truck Car-Following

Table 3.3: List of the models that will be tuned in SUMO based on the HighD
data-set

The models in SUMO is calibrated by adjusting driving behavior parameters, but
the vehicle attributes will remain constant during the calibration process. In order
to make a distinction between cars and trucks, the values of the vehicle attributes
for the two vehicle types are different. The vehicle attributes that will be used for
the car and truck models are presented in table 3.4 below.
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Parameter | Description Value Car | Value Truck

Length The vehicles length 4.0 m 8.0 m

Max speed | The vehicles max speed | 210 km/h | 140 km/h
The acceleration abilit

Acc. of the vehicle Y29 m/s? | 1.2 m/s?

The deceleration ability

of the vehicle

Decel.

75m/s? | 4.0 m/s?

Table 3.4: Car and truck attributes used in SUMO

3.3.1 Calibration of Lane-changing Models

The lane-change models will be tuned by matching the DHW and the number of
lane-changes archived from simulations in SUMO with the DHW and the number
of lane-changes extracted from the HighD data-set. Also, the number of conflicts in
the SUMO simulation should be as low as possible. TTC is used as the surrogate
safety measure, and a traffic encounter is considered to be a conflict when TTC is
3 seconds or below. The DHW and the number of lane-changes extracted from the
HighD data-set is presented in figure 3.6 - 3.7 and table 3.2 respectively.

The tuning is done by experimenting with different parameters in SUMO and
analysing the simulation result. Parameters related to the driver’s eagerness to
perform a lane-change are being investigated in section 3.3.1.1. Parameters related
to vehicle speed and desired vehicle gap are being investigated in section 3.3.1.2 and
section 3.3.1.3 respectively.

3.3.1.1 Lane-change Eagerness and Willingness

The parameters in SUMO related to the drivers eagerness and willingness to perform
a lane-change that is investigated are “lcStrategic”, “lcCooperative”, “lcSpeedGain”
and "lcAssertive” [16]. These parameters are described in table 3.5 below. During
the simulation process, the value of the parameters related to Lane-Change eager-
ness, that is “lcStrategic”, “lcCooperative” and “lcSpeedGain”, was simultaneously
increased with a value 2 after each simulation run. This process was repeated with
three different values for “lcAssertive”, namely 1, 3 and 5. The result of this simu-
lation process is shown in figure 3.12-3.25.
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Parameter Description Value
leStrategic "The eagerness for perf?rming "Higher values reS}llt'|in
strategic lane-changing earlier lane-changing
: "The willingness for performing | "Lower values result in
lcCooperative . o .
cooperative lane-changing reduced cooperation
leSpeedGain "The eagerness for performi?g i’Higher values resu.lt i? result
lane-changing to gain speed in more lane-changing
"Willingness to accept lower Higher value result in acceptance
lcAssertive front and rear gaps on the target | of lower front and rear gap on the
lane" target lane

Table 3.5: Description of the SUMO parameters related to lane-changes that was
used during the calibration process.

Number of Lane-Changes

As figure 3.12 —3.14 shows, the number of lane-changes increase when the driver
has a higher eagerness to perform a lane-change. Also, when the driver is willing to
perform a lane-change at a lower available rear and front gap on the target lane, the
number of lane-changes increase further. However, a higher lane-change eagerness
and the acceptance to perform a lane-change at lower gaps on the target lane leads
to a higher amount of conflicts. Figure 3.21 shows the relation between the number
of conflicts and the values of the parameters presented in table 3.5. Also, the result
shows that TT performs significantly more lane-changes compared with the other
car-following cases when the parameter "lcAssertive" is set to 1. This result might
be hard to believe, especially since there are by far less TT cases compared with
CC and CT cases. However, the adjacent lane gap tends to bigger when the SV is a
truck compared with a car, see figure 3.18 - 3.20, which leads that trucks are more
willing to perform a lane-change. When the value on the parameter "lcAssertive"
increase, the willingness to accept lower adjacent lane gaps also increases, and more
cars are willing to perform a lane-change.
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Figure 3.12: The number of lane-changes against the eagerness to perform a lane-
change when the parameter lcAssertive is set to 1.

28



3. Methodology
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Figure 3.13: The number of lane-changes against the eagerness to perform a lane-
change when the parameter lcAssertive is set to 3.
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Figure 3.14: The number of lane-changes against the eagerness to perform a lane-
change when the parameter lcAssertive is set to 5.

Distance Headway

The mean Distance Headway to the preceding vehicle at the start of the lane-change
is shown in figure 3.15-3.17. The mean DHW strictly increases for higher value on
the parameter Lane-Change Assertive. Higher values on the parameters related to
Lane-change eagerness tends to lead to a higher mean DHW but there is no strict
correlation.
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Figure 3.15: The mean DHW during a lane-change against the eagerness to per-
form a lane-change when the parameter lcAssertive is set to 1.
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Figure 3.16: The mean DHW during a lane-change against the eagerness to per-
form a lane-change when the parameter lcAssertive is set to 3.
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Figure 3.17: The mean DHW during a lane-change against the eagerness to per-
form a lane-change when the parameter lcAssertive is set to 5.
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Adjacent Front Gap

Figure 3.18 - 3.20 shows the mean front gap at the target lane at the start of the
lane-change maneuver for the different car-following cases. Since a higher value on
the parameter Lane-Change Assertive leads to an acceptance of a lower adjacent gap
when performing a lane-change, the mean front gap at the target lane decrease when
the Lane-change Assertive increase. The result also shows that cars perform lane-
changes with a significant lower adjacent front gap compared with trucks, which is
in line with real life traffic. The result is also suggests that the target lane lead gap
tends to be bigger for trucks than cars, which causes the truck models to perform
more lane-changes than cars for lower values on the parameter "lcAssertive', see
figure 3.12.
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Figure 3.18: The mean adjacent front gap during a lane-change against the eager-
ness to perform a lane-change when the parameter lcAssertive is set to 1.
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Figure 3.19: The mean adjacent front gap during a lane-change against the eager-
ness to perform a lane-change when the parameter lcAssertive is set to 3.
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Target lane lead gap vs Eagerness, LCA=5
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Figure 3.20: The mean adjacent front gap during a lane-change against the eager-
ness to perform a lane-change when the parameter lcAssertive is set to 5.

Number of Conflicts

The number of conflicts for different values the SUMO parameters lcAssertive and
lane-change eagerness is shown in figure 3.21. TTC is used as the safety surrogate
measure, and when TTC is less than 3 seconds, the traffic encounter is considered a
conflict [19]. Observe that the total number of vehicles in the simulation is around
110,000. As the figure shows, the number of conflict significantly increase when the
parameters lcAssertive and lane-change eagerness increase. Based on these result,
the parameter lcAssertive should not be set to a value higher than 3 in order to keep
the number of conflicts at a reasonable value.
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Figure 3.21: The number of conflicts against the lane-change eagerness and
lcAssertive.
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3.3.1.2 Speed factor

According to an investigation done by European Road Safety Observatory [31],
around 40% to 60% of all car drivers exceed the speed limit. The investigation also
shows that the most common road type where drivers exceeds the speed limit is
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motorway. The SUMO parameter “SpeedFactor” allows the vehicle to exceed the
speed limit with a factor according to the equation 3.1 below.

Max Speed = Speed Limit x SpeedFactor (3.1)

The car models were equipped with a speed factor between 1 and 1.6 to see how
it affects the simulation result. The mean Distance Headway for trucks during
lane-changes significantly decrease when the speed factor increases from 1 to 1.2,
see figure 3.22. Also, figure 3.23 shows that there is noticeable fewer lane-changes

performed by trucks when the speed factor is 1.2 compared with a speed factor of
1.
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Figure 3.22: The mean DHW during a lane-change against the speed factor.
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Figure 3.23: The number of lane-changes against the speed factor.

3.3.1.3 Desired Time Headway

The parameter “tau” models the drivers’ desired Time Headway. The driver will
aim to maintain a Time Headway as close to the value of “tau” as possible without
going below it [16]. As figure 3.24 shows, the desired Time Headway has a direct
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impact on the Distance Headway during a Lane-Change, which makes sense since
THW relates to DHW according to equation 3.2 below. Figure 3.25 shows that a
higher desired Time Headway tends to lead to more lane-changes, car models in
particular.

DHW = THW % Vehicle Speed (3.2)
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Figure 3.24: The mean DHW during a lane-change against the desired minimum
THW.
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Figure 3.25: The number of lane-changes against the desired minimum THW.

3.3.2 Calibration of Car-following Models

The tuning of the car-following models is accomplished in a similar fashion as the
tuning of the Lane-changing models described in section 3.3.1. The car-following
models will be tuned by matching the DHW and the THW archived from simula-
tions in SUMO with the DHW and the THW extracted from the HighD data-set.
Also, the number of conflicts in the SUMO simulation should be as low as possible.
TTC is used as the surrogate safety measure, and a traffic encounter is considered
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to be a conflict when TTC is 3 seconds or below [19]. The DHW and THW distri-
bution extracted from the HighD data-set is presented in figure 3.2 - 3.5, and table
3.1 summarize the result from the HighD extraction during car-following.

The tuning is done by experimenting with different parameters in SUMO and
analysing the simulation result. In section 3.3.2.1, the parameter that models the
desired Time Headway is investigated and the parameter that models the driving
imperfection is investigated in section 3.3.2.2.

3.3.2.1 Desired Time Headway

The SUMO parameter tau, which models the desired Time Headway and is further
described in section 3.3.1.3, have a clear influence on the resulting Distance Headway
and the actual Time Headway. Figure 3.26 and figure 3.27 illustrates how the
Distance Headway and the actual Time Headway strictly increase when the desired
Time Headway increase. However, figure 3.27 shows that there is a rather big
difference between the Desired Time Headway and the actual Time Headway. The
reason for this is partly because the parameter tau models the minimum desired
Time Headway, and not the average desired Time Headway. Also, the actual Time
Headway is not solely depended on the value of tau, it is also depended on how the
model is implemented in general. In other words, multiple parameters influence the
resulting Time Headway.
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Figure 3.26: The mean DHW during car-following against the desired minimum
THW.
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Actual Time Headway vs Desired Time Headway
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Figure 3.27: The mean of the actual THW during car-following against the desired
minimum THW.

3.3.2.2 Driving Imperfection

The SUMO parameter “sigma” models the driver imperfection. Sigma can be set
to any decimal number between 0 and 1, where the sigma value 0 represent perfect
driving and the sigma value 1 represent the biggest driving imperfection. According
to [16] the parameter sigma causes random deceleration’s which leads to speed fluc-
tuations and so called "slow-to-start behaviour” Figure 3.28 shows that a higher
driving imperfection leads to a lower Distance Headway while the Time Headway
seems to be unaffected according to figure 3.29.
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Figure 3.28: The mean dHW during car-following against the driving imperfection.
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Time Headway vs Driver Imperfection
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Figure 3.29: The mean THW during car-following against the driving imperfec-
tion.

3.4 Modeling Autonomous Vehicles

The next step is to model the autonomous vehicle that will be used in the hetero-
geneous traffic simulation described in section 3.5. Since SUMO does not provide
specific models of autonomous vehicles, the current models in SUMO needs to be
modified. Just like the calibration of the manually driven vehicles described in sec-
tion 3.3, models that represent both autonomous cars and autonomous trucks will
be tuned. However, the models will not take the preceding vehicle type under con-
sideration.

In order to make a clear distinction between the autonomous models and the models
of the manually driven vehicles, all of the calibration parameters in SUMO that can
be used to model autonomous vehicles needs to be identified and modified. Un-
fortunately, there is little to none public data on autonomous vehicles that can be
used as a guideline in the calibration process. However, there are plenty of studies
on modelling autonomous vehicles in SUMO that will be used as a basis for this
calibration process.

3.4.1 Longitudinal Speed and Acceleration

Autonomous vehicles are assumed to never exceed the speed limit, and their desired
speed are assumed to be equal to the current speed limit. This can be compared
with the driving behaviour of humans which often exceed the speed limit in order
to keep up with the traffic flow [31]. The SUMO parameter speedFactor, which is
described in section 3.3.1.2; adjust the models’ ability to exceed the speed limit with
a certain factor. Since the models of autonomous vehicle are expected to stay within
the speed limit, the parameter speedFactor is set to 1.
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3.4.2 Vehicle Gaps

The SUMO parameter Tau, which is described in section 3.3.1.3, models the mini-
mum desired Time Headway. The driver desired minimum THW is also dependent
on the drivers reaction time [16]. Since autonomous vehicle has a lower reaction
time than human drivers, the parameter Tau should be set to a lower number for
the autonomous models. The SUMO parameter minGap, which is defined as the
“minimum empty space in meters after leader” [16], should also be lower for the
autonomous models due to lower reaction time.

3.4.3 Driving Imperfection

As described in section 3.3.2.2, the SUMO parameters Sigma models the driver
imperfection. Sigma can be set to any decimal number between 0 and 1, where
a lower value on Sigma leads to a higher driving perfection. It is safe to assume
that autonomous vehicles have a significant higher perfection than manually driven
vehicles, and therefore the Sigma should be set to a low number for the autonomous
models.

3.4.4 Result

Based on the discussions presented in section 3.4.1 - 3.4.3, models of autonomous
vehicles was calibrated in SUMO. The resulting models of an autonomous car and
an autonomous truck is presented in table 3.6 below.

Type Model | minGap | Sigma | Tau | speedFactor | Accel | Decel
Auto. Car Krauss | 0.5 m 0.0 02s]1.0 3.5 4.5
Auto. Truck | Krauss | 0.5 m 0.0 02s]1.0 2.7 4.5

Table 3.6: The parameter values of the calibrated autonomous models

3.5 Execution of Simulations

The models of the autonomous vehicles tuned in the previous section will be used
together with the models of the manually driven vehicles calibrated based on the
HighD data-set , see section 3.3, in simulations of heterogeneous traffic in SUMO.
As stated in section 1.2, “Aim and Objectives”, the purpose of the simulations is to
investigate how autonomous vehicles impact heterogeneous traffic in terms of traffic
flow and safety. All the simulations will be conducted on the road presented in
section 3.2.

The simulations will be executed with various penetration rates of autonomous

vehicle, namely 0%, 25%, 50%, 75% and 100%, to investigate how the different
penetration rates impact the heterogenous traffic. These six penetration rates will
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be simulated 5 times each to ensure that the simulation result is reliable and trust-
worthy. The initial states extracted from the HighD data-set, see section 3.1.1, that
was used during the model calibration process will be reused as initial states for
the simulations of heterogenous traffic. In other words, the HighD dataset will be
duplicated in SUMO with the tuned models. Which initial states that is assign
to the autonomous vehicles will be randomly chosen by a MATLAB-code, and the
assigned initial states will be different for every simulation run. However, models of
cars will always get an initial state extracted from a car, and vice versa for mod-
els of trucks. The proportion of cars and trucks for the autonomous models will be
the same as the proportion of cars and trucks in the HighD dataset, namely 77% cars.

The measurements that will be used to investigate how autonomous vehicles im-
pacts the traffic flow and traffic safety is described in section 3.5.1 and section 3.5.2
respectively below. The results of the simulations are presented in chapter 4, “Re-
sult”, in section 4.3 and section 4.4.

3.5.1 Traffic Flow Measurements

The simulation outputs that will be used to analyse the traffic flow is “Travel time”,
“Vehicle delay”, and “Vehicle flow”. The output “Travel time” is defined by SUMO
as “The time the vehicle needed to accomplish the route” [16], hence the time passed
from the vehicle enters the simulation until the vehicle leaves the simulation. The
output “Vehicle delay” is defined by SUMO as “The time the vehicle had to wait
before it could start its journey” [16], hence the time difference between the set
depart time and the actual time the vehicle enters the simulation. The vehicle flow
rate, that is the number of vehicles per hour [veh/h] and the number of vehicles per
kilo meter [veh/km], will also be considered when the traffic flow is analysed.

3.5.2 Traffic Safety Measurements

The number of conflicts and collisions will be used as measurements of the traffic
safety. A traffic encounter is considered a conflict when the surrogate safety measure
reaches a certain critical value. In this case, TTC will be used as the surrogate safety
measure and a TTC value of 3 seconds is considered critical [19].
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Results

The result chapter is divided into four sections. The first two sections cover the
result of the calibration process of the lane-changing models and the car-following
models, see section 4.1 and section 4.2 respectively. The two later sections, namely
section 4.3 and section 4.4, cover the result of the heterogeneous traffic simulation
in SUMO using the lane-changing models and the car-following models.

4.1 Lane-Change Calibration

The result from the calibration process of the lane-changing models is presented in
this section. The values of the simulation parameters and model types for each of
the four calibrated lane-changing model is shown in table 4.1 below. In addition to
these parameters, the models use the car and truck attribute parameters presented
in table 3.4. The simulation parameters that is not presented in table 4.1 or table
3.4 are set to the SUMO standard values.

During the calibration process of the lane-changing models described in section
3.3.1, one SUMO parameter was changed while the other parameters remained the
same. This was done in order to see how each parameter affects the simulation
results. This information was later used as a guideline when the SUMO models was
fine calibrated based on the HighD data-set. During this calibration, parameters
was changes simultaneously with the aim to match the HighD data-set as good as
possible. Since multiple parameters was changed, the result presented in section
3.3.1 differs from the result presented in table 4.1. For example, if the desired min-
imum distance headway is lower, the lane-change eagerness needs to be higher to
archive the same amount of lane-changes, see figure 3.25.

Type | CF Model | LC Model | minGap | tau Eagerness | lcAssertive | speedFactor
CcC Krauss LC2013 1.0 m 1.35s | 25 3 1.2
cT Krauss LC2013 1.5m 1.9s |22 2 1.2
TC Krauss LC2013 1.5m 0.8s |6.0 1 1.0
TT Krauss LC2013 1.5 m 1.0s 0.5 1 1.0

Table 4.1: The parameter values of the calibrated lane-change models

The lane-changing models presented in table 4.1 was calibrated by comparing the
HighD data-set with the simulation result in SUMO in terms of the DHW when a
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lane-change maneuver occur. More specific, the DHW distribution extracted from
the HighD data-set was compared with the resulting DHW distribution from SUMO
simulation with the intention to archive as similar distribution as possible. This was
done with all of the four car-following cases, namely CC, CT, TC and TT, and the
result are shown in figure 4.1 and figure 4.2.

The upper part of figure 4.1 shows the DHW distribution extracted from the HighD
data-set and the SUMO simulation result for cars during a lane-change maneuver
when the preceding vehicle is another car. As the bar diagram shows, the simula-
tion result in SUMO match the HighD data-set very well. The simulation models
in SUMO tends to execute the lane-change maneuver with a slightly smaller DHW
than the cars in the HighD data-set, but over all the calibration is good. The lower
part of the same figure shows the DHW distribution for cars when the preceding
vehicle type is a truck instead of another car. The majority of the lane-changes is
executed when the DHW is in the range 20-45 meters for both the simulation mod-
els in SUMO and the cars in the HighD data-set. Also, both distributions seem to
follow the same pattern. Few cars perform a lane-change with a DHW smaller than
20 meters and a DHW greater than 55 meters. However, around twice as many cars
perform a lane-change at the DHW range 35-45 meters in the SUMO simulation
compared with the HighD data-set.
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Figure 4.1: Comparison of the Distance Headway distribution during lane-
changing for cars.

The two bar diagrams shown in figure 4.2 below shows the DHW distribution ex-
tracted from the HighD data-set and the SUMO simulation result for trucks during
a lane-change maneuver. The upper diagram shows the DHW distribution for trucks
when the preceding vehicle type is a car and the lower diagram shows the DHW
distribution when the preceding vehicle type is another truck. As the upper diagram
shows, the calibrated Truck-Car models in SUMO tends to execute the lane-change
maneuver when the DHW is within the range 5-45 meters. In the HighD data-set,
truck tends to execute the lane-change maneuver when the DHW to the preceding
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car is within the range 10-50 meters, with a clear peak at 15-25 meters. Even though
there is a noticeable difference between the two distributions, they have a similar
pattern.

The number of Trucks that perform a lane-change when the preceding vehicle is
another truck is extremely low in the HighD data-set, and therefore, it is hard
to calibrate Truck-Truck lane-changing models. As the lower diagram in figure 4.2
shows, the calibrated Truck-Truck models in SUMO tends to execute the lane-change
maneuver when the DHW is within the range 15-50 meters. In the HighD data-set,
truck-trucks tends to execute the lane-change maneuver when the DHW is within
the range 15-45 meters, but the DHW distribution is much wider compared to the
models in SUMO.
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Figure 4.2: Comparison of the Distance Headway distribution during lane-
changing for trucks.

For further comparison between the HighD data-set and the simulation result from
SUMO, the difference in adjacent lane front gap during a lane-change maneuver was
also investigated. Figure 4.3 and figure 4.4 shows the adjacent lane front gap dis-
tribution extracted from the HighD data-set together with the adjacent lane front
gap distribution archived from the SUMO simulation. Observe that the model cali-
bration was solely based on the DHW distribution. The comparison of the adjacent
lane front gap distribution is only used to evaluate the calibrated lane-change models.

The two bar diagrams shown in figure 4.3 below shows the adjacent lane front gap
distribution extracted from the HighD data-set and the SUMO simulation result for
cars during a lane-change maneuver. The upper diagram in figure 4.3 shows the
distribution when the preceding vehicle type is another car and the lower diagram
in the same figure show the distribution when the preceding vehicle type is a truck.
As the two diagram shows, the lane-changing models in SUMO tends to execute
the lane-change maneuver when the adjacent lane gap is smaller compared with the
cars in the HighD data-set. The available adjacent lane front gap for cars during
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a lane-change maneuver in the HighD data-set is equally distributed over a wide
range while the models in SUMO tends to execute the lane-change when the front
gap is within the range 5 — 50 meters.

The adjacent lane front gap distribution during CC-following
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Figure 4.3: Comparison of the adjacent lane front gap distribution during lane-
changing for cars.

The distribution of adjacent lane front gap during a lane-change maneuver for trucks
in the HighD data-set and the calibrated truck models in SUMO is shown in figure 4.4
below. The upper diagram in the figure shows the distribution when the preceding
vehicle type is a car and the lower diagram show the distribution when the preceding
vehicle type is a truck. As the diagrams shows, there is significantly less front gap
data available for the SUMO models compared with the data extracted from the
HighD data-set. The reason for that is the truck models in SUMO tends to execute
the lane-change when there is no front vehicle in the adjacent lane.
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The adjacent lane front gap distribution during TC
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Figure 4.4: Comparison of the adjacent lane front gap distribution during lane-
changing for trucks.

The lane-changing models was also calibrated based on the number of lane-changes
that was exectuted in the HighD data-set. The number of lane-changes executed by
the calibrated lane-changing models is presented together with the number of lane-
changes extracted from the HighD data-set in table 4.2 below. As the table shows,
the number of lane-changes executed by the SUMO models match the number of
lane-changes executed by the vehicles in the HighD data-set very well.

Car-following case | Nr. LC HighD | Nr. LC SUMO | Difference.
cC 2621 2789 168

CT 693 745 52

TC 339 322 17

TT 90 123 33

Table 4.2: Number of lane-changes extracted from the HighD data-set and the
SUMO simulation

4.2 Car-following Calibration

The result from the calibration process of the car-following models described in
section 3.3.2 is presented in this section. The values of the simulation parameters
and the models type for each of the four calibrated car-following models is shown
in table 4.3 below. In addition to these parameters, the models use the vehicle
attribute parameters presented in table 3.4. The simulation parameters that is not
presented in table 4.3 or table 3.4 are set to the SUMO standard values.
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Type | LC Model | CF Model | minGap | tau | Sigma | speedFactor
CC | LC2013 ACC 1.5m 0.6s|0.5 1.1
CT LC2013 ACC 1.5m 0.6s]| 0.5 1.1
TC | LC2013 ACC 1.5 m 06s |05 1.0
TT | LC2013 ACC 1.5m 06s |05 1.0

Table 4.3: The parameter values of the calibrated car-following models

The car-following models presented in table 4.3 was calibrated by comparing the
average THW extracted from the HighD data-set with the average THW archived
from the SUMO simulation. More specific, the THW during each timestep was
extracted for each individual vehicle in the HighD data-set and the SUMO simula-
tion. The mean value of the THW was calculated for each vehicle. The resulting
mean THW distribution extracted from the HighD data-set was compared with the
resulting mean THW distribution from the SUMO simulation with the intention
to archive as similar distribution as possible. This was done with all of the four
car-following cases, namely CC, CT, TC and TT, and the result are shown in figure
4.5 and figure 4.6.

The THW distribution for cars with respect to the preceding vehicle type is shown
in figure 4.5. The upper part of the figure shows the THW distribution when the
preceding vehicle is another car and the lower part of the same figure shows the
THW distribution when the preceding vehicle is a truck. As the two bar diagram
shows, the cars in the HighD data-set has a noticeable lower mean THW compared
with the calibrated car-following SUMO models. A big part of the cars in the HighD
data-set has a mean THW less than 1.2 seconds while few of the car models in SUMO
have a mean THW less than 1.2 seconds. Also, the number of cars in the HighD
data-set that have a mean THW bigger than 2 seconds is quite few. This creates a
big difference between the two distributions.
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Figure 4.5: Comparison of the Time Headway distribution during car-following
for cars.
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The two bar diagrams shown in figure 4.6 below shows the mean THW distribution
extracted from the HighD data-set and the SUMO simulation result for trucks with
respect to the preceding vehicle type. The upper diagram shows the THW distri-
bution when the preceding vehicle is a car and the lower diagram shows the THW
distribution when the preceding vehicle is another truck. Just like the case with
the cars in the HighD data-set discussed in the paragraph above, the trucks in the
HighD data-set has a significantly smaller mean THW compared with the SUMO
models of trucks.
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Figure 4.6: Comparison of the Time Headway distribution during car-following
for trucks.

For further comparison between the HighD data-set and the simulation result from
SUMO, the difference in mean DHW was also investigated. Figure 4.7 and figure
4.8 shows the DHW distributions extracted from the Highd data-set and the SUMO
simulation for cars and trucks, respectively. Observe that the car-following models
was solely based in the THW distribution, the comparison of the two DHW distri-
bution is used to evaluate the calibrated models.

The DHW distribution for cars with respect to the preceding vehicle type is shown
in figure 4.7. The upper part of the figure shows the DHW distribution when the
preceding vehicle is another car and the lower part of the same figure shows the
DHW distribution when the preceding vehicle is a truck. As the figure shows, cars
in the HighD data-set tends to have a lower DHW compared with the calibrated car-
following models. Also, the DHW distribution extracted from the HighD data-set
is clearly right skewed, while the calibrated SUMO models have a more uniformed
DHW distribution.
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Figure 4.7: Comparison of the Distance Headway distribution during car-following
for cars.

The distribution of DHW for trucks in the HighD data-set and the calibrated truck
models in SUMO is shown in figure 4.8 below. The upper diagram in the figure shows
the distribution when the preceding vehicle type is a car and the lower diagram show
the distribution when the preceding vehicle type is a truck. As the figure shows,
the distributions follow the same pattern as the distributions presented in figure 4.7
above. Trucks in the HighD data-set tends to have a lower DHW compared with
the calibrated models of trucks. Also, the DHW distribution extracted from the
HighD data-set is clearly right skewed, while the calibrated SUMO models have a
more uniformed DHW distribution.
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Figure 4.8: Comparison of the Distance Headway distribution during car-following
for trucks.
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4.3 Heterogeneous Traffic simulation with Car-
following Models

The calibrated car-following models was used with the models of autonomous ve-
hicles described in section 3.4 in SUMO simulations of heterogeneous traffic. The
result of these simulations is presented in this section. The simulations were exe-
cuted with both the initial states extracted from the HighD data-set, see section
3.1.1, and random initial states. In the random initial states, the depart speed was
set to a random value between 80 km/h and the speed limit. The depart lane was
set to “best”, which is defined as “the lane which allow the vehicle the longest ride
without the need to lane change” [16]. The depart position was set to “base”, which
means that the vehicle starts at the beginning of the lane [16], and the depart time
was set to the value extracted from the HighD data-set [16]. Figure 4.9 —4.11 below
shows the simulation result.

Figure 4.9 below shows how the average time loss changes with the penetration
rate of autonomous vehicles. Time loss is defined as “The time lost due to driving
below the ideal speed” [16], and the ideal speed is the speed limit multiplied with the
individual vehicles’ speed factor. In this case, the speed limit is set to 120 km/h and
the simulation road is 420-meter-long. As the figure shows, the time loss decreases
as the penetration rate of AV increase for both types of initial states.

Time loss vs Penetration rate of AV
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Figure 4.9: The average time loss for different penetration rate of AV.
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Figure 4.10 below shows how the average depart delay changes with the penetration
rate of autonomous vehicles. Depart delay is defined as “The time the vehicle had
to wait before it could start its journey” [16], or in other words, the time needed
for the lane to leave enough space for the vehicle to fit in. As the figure shows, the
depart delay decrease as the penetration rate of AV increase for both initial states.
In fact, when the penetration rate of AV is 75% and 100%, the depart delay is 0 for
random initial states.
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Figure 4.10: The average depart delay for different penetration rate of AV.

The number of conflicts when running the simulation with the initial states extracted
from the HighD data.set is presented in the diagram shown in figure 4.11. As
previously mention, TTC is used as the safety surrogate measure, and when the
TTC is less than 3 seconds and 2 seconds, the traffic encounter is considered a
conflict [19]. Observe that the total number of vehicles in the simulation is around
110,000. The number of conflicts significantly decrease when the penetration rate of
AV is 100%. However, the number of conflicts does not strictly decrease when the
penetration rate of AV increase from 0% to 50%.
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Number of conflicts vs Penetration rate of AV
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Figure 4.11: The number of conflicts for different penetration rate of AV.

To further investigate the impact of autonomous vehicles on heterogeneous traffic,
the heterogeneous traffic simulation was run with different flow rates and traffic den-
sities. Flow rate in SUMO is defined as the number of vehicles that pass a certain
point per hour, and traffic density is defined as the number of vehicles that occupy
a road per km. These simulations represent heterogeneous traffic on autobahn. The
depart speed was set to a random value between 80 km/h and 200 km/h. In the sci-
entific field “Traffic Engineering”, three fundamental diagrams are used to describe
the traffic flow [32]. These three diagrams include the macroscopic traffic variables
density, flow rate and mean speed. The three fundamental diagrams of traffic low
using the car-following models with different penetration rate of AV are presented
in figure 4.12 — 4.14.

Figure 4.12 shows how the average mean network speed varies with the flow rate
for different penetration rates of AV. The mean network speed is defined as the
mean speed of all the vehicles inserted in the simulation at a certain timestep. As
the figure shows, a higher penetration rates of AV leads to a higher average mean
network speed for all flow rates. A high speed is an indication on good traffic flow,
and a higher speed leads to smaller time loss.
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Traffic Flow vs Mean Network Speed
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Figure 4.12: The average mean network speed for different flow rates.

The second fundamental diagram of traffic flow is presented in figure 4.13 below
and show how the average mean network speed varies with the traffic density for
different penetration rate of AV. Observe that traffic density is not a simulation
parameter in SUMO that can be defined. The traffic density was calculated from
the different flow rates, and that is why different penetration rates of AV have a
slightly different traffic density. The result shows that a higher penetration rate of
AV leads to a higher average mean network speed, which is in line with the result
presented in figure 4.12.
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Traffic Density vs Mean Network Speed
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Figure 4.13: The average mean network speed for different traffic densities.

The last of the three fundamental diagrams of traffic flow, which is presented in figure
4.14, show how the traffic density varies with the flow rate for different penetration
rates of AV. A higher penetration rate of AV leads to a smaller traffic density for
the same flow rate.
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Traffic Density vs Traffic Flow
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Figure 4.14: Flow rate vs traffic density for different penetration rate of AV

The number of traffic conflicts was noted for all the simulations with different pen-
etration rate of AV and with different flow notes. As mention before, TTC is used
as the safety surrogate measurement, and a traffic encounter is considered a conflict
when TTC is below 3 seconds [19]. The percentage of vehicles that was involved
in a traffic conflict is presented in figure 4.15. The result of the simulations shows
that the number of conflicts increase as the flow rate increase. For lower flow rates,
homogeneous traffic has the lowest amount of conflicts. However, when the flow rate
is 2000 vehicles per hour or more, the number of conflicts increase with the pene-
tration rate of AV. The reason why a higher penetration rate of AV leads to more
conflicts when the flow rate is high is because the mean network speed significantly
increases when the penetration rate of AV increase.
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Traffic Conflicts vs Traffic Flow
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Figure 4.15: The percentage of vehicles that was involved in a traffic conflict

4.4 Heterogeneous Traffic simulation with Lane-
changing Models

The heterogeneous traffic simulations in SUMO described in the previous section was
repeated with the calibrated lane-changing models. The simulations were executed
with both the initial states from the HighD data-set and with different flow rates.
When the simulations was executed with different flow rates, the SUMO parameter
“depart lane” was set to “best”, the parameter “depart position” was set to “base”
and the parameter “depart speed” was set to 100 km/h. However, the lane-change
simulations were not executed with random states since it gives unrealistic results.
The result of the heterogeneous traffic simulations with the lane-changing models is
presented in figure 4.16 — 4.18 below.

The lane-change models were used together with the models of autonomous ve-
hicles in SUMO using the initial states extracted from the HighD data-set. The
simulations were executed with different penetration rate of AV and the result is
shown in figure 4.16 below. The result of the simulations shows that the penetra-
tion rate of AV has a relatively small impact on the number of lane-changes. The
percentage of vehicles that perform a lane-change tends to increase when the pene-
tration rate of AV increase from 0% to 25%, but the percentage tends to decrease
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when the penetration rate of AV increase further from 25% to 75%.

Lane-changes vs the penetration rate of AV
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Figure 4.16: Percentage of vehicles that perform a lane-change for different pene-
tration rates of AV

Lane-changing simulations were also executed with different flow rates. Figure 4.17
shows how the number of lane-changes varies with the flow rate for different pene-
tration rates of AV. As the figure shows, the percentage of vehicles that execute a
lane-change increase as the flow rate increase. Also, a lower penetration rate leads
the fewer lane-changes for the same flow rate.
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Lane-changes vs Traffic flow
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Figure 4.17: Percentage of vehicles that perform a lane-change for different flow
rates

The number of lane-changes were also plotted against different traffic densities, and
the result is shown in figure 4.18. As the figure shows, the percentage of vehicles
that execute a lane-change increase as the traffic density increase. In other words,
when there is less available free space on the road, vehicles tends to execute more
lane-changes. Also, when the penetration rate of AV is smaller, vehicles tends to
execute less lane-changes for similar traffic densities.
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Conclusion and Future Work

5.1 Conclusion

This master thesis project had two main objectives to fulfill in order to investigate
how autonomous vehicles impact heterogeneous traffic. The first main objective was
to calibrate simulation models of cars and trucks based on the HighD data-set. The
second main objective was using the models to conduct simulations of heterogeneous
traffic with different penetration rate of autonomous vehicles. The last step of the
project was to analyze the simulation result and, based on the result, conclude how
the traffic flow and traffic safety are affected by autonomous vehicles.

The result from the calibration process shows that the calibrated lane-change mod-
els match the HighD data-set very well, both in number of lane-changes and the
distribution of DHW during the lane-change maneuver. However, the car-following
models average THW distribution did not match the average THW distribution of
the vehicles in the HighD data-set as well. The reason for this is SUMO is modelling
the desired minimum THW, and not the desired average THW. This resulted in a
notable higher average THW among the car-following models compared with the
vehicles in the HighD data-set.

The primary focus of the project was to investigate how autonomous vehicles impact
the traffic flow of heterogeneous traffic. The simulation results show that the average
driving time loss decrease as the penetration rate of AV increase. The mean road
speed increased as the penetration rate of AV increase. Also, the result showed that
a higher penetration rate of AV leads to a smaller traffic density. In other words,
the road is less occupied when the penetration rate of AV is higher for the same
vehicle flow rate. All of these results are indications that the traffic flow improves
as the penetration rate of AV increase.

The secondary focus of the project was to investigate how the traffic safety is af-
fected by the penetration rate of AV. The simulation result showed that the number
of traffic conflicts tends to decrease as the penetration rate of AV increase if the
mean road speed is the same. However, the mean road speed increase as the pen-
etration rate of AV increase for the same vehicle flow rate. The difference in mean
road speed for the different penetration rates increases as the vehicle flow rate gets
bigger. This leads to the number of conflicts increase as the penetration rate in-
crease when the vehicle flow rates are high.
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In conclusion, the simulation results suggest that autonomous vehicles have a pos-
itive impact on heterogeneous traffic. The traffic safety is improved due to less
traffic conflicts and the traffic flow is improved due to higher mean road speed and
lower traffic density for the same vehicle flow. However, the mean speed needs to
be limited, or else the number of conflicts will significantly increase.

5.2 Future Work

During the course of this project, new ideas and unexpected issues arose that could
not be addressed due to lack of time. Also, the work had to stay within the work-
frame of the defined aims and limitations. To improve the projects results and to
further investigate autonomous vehicles impact on heterogeneous traffic, the bullet
points presented below could possibly be considered.

» Expand the heterogeneous traffic to include other road users, such as motor-
cycles, buses and emergency vehicles.

o Expand the heterogeneous traffic to include other traffic scenarios and not
just highways. For example, city driving, roundabout driving, intersections
and driving on small crocked roads.

o Improve the calibration of the Car-following models to better match the vehi-
cles on the HighD data-set.

o Improve the modelling of autonomous vehicles. If naturalistic data becomes
publicly available, the SUMO models of autonomous vehicles can be calibrated
based on that data.
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