
Solving Problems, One Role at a Time
A Semantic Role Labeling Approach to Issue Resolution

Master’s thesis in Data Science and AI

ERIC JOHANSSON, FELIX DUNÉR

Department of Mathematical Sciences

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2023
www.chalmers.se

www.chalmers.se

Master’s thesis 2023

Solving Problems, One Role at a Time

A Semantic Role Labeling Approach to Issue Resolution

ERIC JOHANSSON, FELIX DUNÉR

Department of Mathematical Sciences
Chalmers University of Technology

Gothenburg, Sweden 2023

Solving Problems, One Role at a Time
A Semantic Role Labeling Approach to Issue Resolution
ERIC JOHANSSON, FELIX DUNÉR

© ERIC JOHANSSON, FELIX DUNÉR, 2023.

Supervisor at GU: Dana Dannélls
Supervisor at Ericsson: Mariusz Musial
Examiner: Marina Axelson-Fisk, Department of Applied Mathematics and Statistics

Master’s Thesis 2023
Department of Mathematical Sciences
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Image generated by OpenAI’s Dall-E model after being given the prompt:
A transformer reading a book, cubism style.

Typeset in LATEX
Gothenburg, Sweden 2023

iv

Solving Problems, One Role at a Time:
A Semantic Role Labeling Approach to Issue Resolution
Eric Johansson, Felix Dunér ©
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
For large companies, leveraging internal knowledge and existing information within
the organization has proved to be difficult for several reasons. In this thesis, which
is conducted in collaboration with Ericsson, an attempt to facilitate the extraction
of internal knowledge is made, more specifically by matching new issues that em-
ployees face with pre-existing, solved ones. The issues are represented by so-called
‘support tickets’ and partly consist of manually entered text where the user describes
the problem. The support process could be optimized by automatically identifying
what kind of issue the user experience.

This study aims to investigate if it is possible to extract semantic information from
the text contained in support tickets through semantic role labeling (SRL), and lever-
age that information to match similar issues related to Ericsson’s cloud infrastructure
branch. SRL is often used for information extraction and question-answering, but
not in a technical domain. Two pre-trained SRL models were tested: one based on
FrameNet and the other based on PropBank. Eventually, the FrameNet model was
used throughout the thesis.

After initial preprocessing and standardization of technical jargon, pre-trained state-
of-the-art (SOTA) models were used to extract semantic information, and visual
analysis and overall statistics supported the idea that they could identify relevant
targets in sentences and populate frames with roles accordingly. The information
yielded through SRL allowed for new ways of representing the support tickets. How-
ever, further experiments with topic modeling and classification indicated that the
information produced by the FrameNet SRL model was not useful for grouping sup-
port tickets according to the categorizations provided by Ericsson. It is suggested
that the FrameNet model may be too general for the specific context and that cus-
tomization of the semantic framework may be a possible solution. It is also noted
that the categorizations used as similarity proxies for the support tickets may be
based on information outside of the text used to represent the support tickets.

Even though the semantic information yielded through SRL did not improve the
ability to match similar support tickets in this case, we firmly believe that these
features can be helpful. Since the semantic frames provide information otherwise
not present in the text, they should be able to enrich the representation.

Keywords: Semantic Role Labeling, Machine Learning, Transformers, Information
Extraction, Issue Resolution, Sentence Analysis, Natural Language Processing

v

Acknowledgements
We would like to express our gratitude towards our academic supervisor, Dana
Dannélls, who has supported us throughout the process with valuable and honest
feedback as well as encouragement. Furthermore, we would like to thank Mariusz
Musial. Thank you, Mariusz, for helping us with everything from scoping over-
all approaches to fine-grain details about what libraries to use and challenging us
whenever necessary. This project would not have been possible without you.

Eric Johansson and Felix Dunér,
Gothenburg, December 2022

vii

List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

AI Artificial Intelligence
BERT Bidirectional Encoder Representations from Transformers
BoW Bag-of-Words
HLP Human-Like Performance
LDA Latent Dirichlet Allocation
MLM Masked Language Model
NLP Natural Language Processing
RoBERTa Robustly Optimized BERT
SOTA State of the Art
SMOTE Synthetic Minority Oversampling Technique
SRL Semantic Role Labeling
SVM Support Vector Machine
TF-IDF Term Frequency-Inverse Document Frequency
XGBoost Extreme Gradient Boosting

ix

Contents

List of Acronyms ix

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Problem . 1
1.2 Aim . 2
1.3 Limitations . 3
1.4 Delimitations . 3
1.5 Ethical considerations and risks . 3
1.6 Contributions . 3

2 Theory 5
2.1 Neural Networks and Deep Learning 5

2.1.1 Transfer learning . 7
2.1.2 Attention . 7
2.1.3 Transformer models . 8

2.1.3.1 BERT . 10
2.1.3.2 DistilRoBERTa . 11
2.1.3.3 T5 . 11

2.2 Term Frequency Inverse-Document Frequency 11
2.3 Natural Language Understanding . 12

2.3.1 Semantic Roles . 12
2.3.2 Semantic Role Labeling . 13

2.3.2.1 The Proposition Bank 13
2.3.2.2 FrameNet . 16
2.3.2.3 Differences between PropBank and FrameNet 18

2.4 Topic modeling . 18
2.4.1 Latent Dirichlet Allocation . 19
2.4.2 Topic coherence . 21

2.5 Other machine learning models . 22
2.5.1 Logistic regression classifier 22
2.5.2 Random Forest classifier . 23
2.5.3 XGBoost . 24
2.5.4 Support vector machines . 24

xi

Contents

2.6 Dealing with imbalanced datasets . 24
2.7 F1 score . 25

3 Methods 26
3.1 Data collection . 26

3.1.1 Support ticket . 27
3.2 Preprocessing for Semantic Role Labeling 27

3.2.1 Initial filtering with DistilRoBERTa 28
3.2.2 Cleaning text with regular expressions 30
3.2.3 Sentence splitting . 30

3.3 Semantic Role Labeling . 31
3.3.1 Model selection . 31

3.3.1.1 PropBank model . 31
3.3.1.2 FrameNet model . 32

3.3.2 Results of Semantic Role Labeling 32
3.4 Matching support tickets . 33

3.4.1 Preprocessing for topic modeling and classification 34
3.4.2 Topic modeling . 36

3.4.2.1 Evaluation of topic modeling 36
3.4.3 Classification . 37

3.4.3.1 Data sampling for classification 37
3.4.3.2 Model selection for classification 38
3.4.3.3 Evaluation of classification 39

3.5 Used hardware and software . 39

4 Results 40
4.1 Topic modeling . 40

4.1.1 Baseline . 41
4.1.2 Topic modeling of frames . 43
4.1.3 Combining frames with technical terms 45
4.1.4 Enriching text with frames . 47

4.2 Classification . 49
4.2.1 Multi-class classification . 49
4.2.2 Binary classification . 53

5 Discussion 55
5.1 Effects of preprocessing . 55
5.2 Quality of the class labels . 57
5.3 The impact of SRL for classification and LDA 58

6 Conclusion and future work 60

Bibliography 63

A Appendix I
A.1 Original distribution of Faulty Product I

B Appendix III

xii

Contents

B.1 Latent Dirichlet Allocation Algorithm III
B.1.1 Implement LDA with Gibbs sampling IV
B.1.2 How to use the model . V

C Appendix VI
C.1 Topic modeling with Faulty Product VI

D Appendix XVI
D.1 Categorical value plots . XVI

xiii

Contents

xiv

List of Figures

1 A Venn diagram that presents the relationship between AI, machine
learning, and deep learning . 5

2 Feedback loop for neural networks. 6
3 An example of a learned data representation by a neural network,

used for handwritten digit classification. 6
4 An example of self-attention. 8
5 The transformer architecture with encoder and decoder. 9
6 The difference in pretraining model architectures. BERT uses a bidi-

rectional transformer, whereas GPT uses a left-to-right transformer. . 10
7 Example of masked next sentence prediction. 10
8 A diagram of the T5 framework. 11
9 The architecture of the SRL model developed by Shi and Lin 15
10 Matrix decomposition in topic modeling. 19
11 Overview over the topic coherence pipeline 21
12 An example of a decision tree. 23
13 An example of how the data looks before and after a kernel function

has been applied to the data. 24

14 Bar plot of support ticket creation time, aggregated by quarter. . . . 26
15 Example of the Description field in a support ticket, before and after

preprocessing. 28
16 Annotated and inferred class distribution of Description text chunks. 29
17 Difference between SRL output from FrameNet and Propbank 33
18 Distributions of Faulty Product, excluding empty entries. 34
19 Different data sampling approaches. 38

20 Topics produced by LDA using feature alternative 10. 41
21 Topic coherence by class using feature alternative 10. 42
22 Topic counts by class using feature alternative 10. 43
23 Topics produced by LDA using feature alternative 1. 44
24 Topic coherence by class using feature alternative 1. 44
25 Topic counts by class using feature alternative 1. 45
26 Topics produced by LDA using feature alternative 9. 46
27 Topic coherence by class using feature alternative 9. 46
28 Topic counts by class using feature alternative 9. 47
29 Topics produced by LDA using feature alternative 12. 47
30 Topic coherence by class using feature alternative 12. 48

xv

List of Figures

31 Topic counts by class using feature alternative 12. 48
32 Box plot of multi-class classification results. 49
33 Box plot of F1 score on binary class classification. 53

34 Distribution of Faulty Product, excluding empty entries. I

35 Topics produced by LDA using feature alternative 2. VII
36 Topic coherence by class using feature alternative 2. VII
37 Topic counts by class using feature alternative 2. VII
38 Topics produced by LDA using feature alternative 3. VIII
39 Topic coherence by class using feature alternative 3. VIII
40 Topic counts by class using feature alternative 3. VIII
41 Topics produced by LDA using feature alternative 4. IX
42 Topic coherence by class using feature alternative 4. IX
43 Topic counts by class using feature alternative 4. IX
44 Topics produced by LDA using feature alternative 5. X
45 Topic coherence by class using feature alternative 5. X
46 Topic counts by class using feature alternative 5. X
47 Topics produced by LDA using feature alternative 6. XI
48 Topic coherence by class using feature alternative 6. XI
49 Topic counts by class using feature alternative 6. XI
50 Topics produced by LDA using feature alternative 7. XII
51 Topic coherence by class using feature alternative 7. XII
52 Topic counts by class using feature alternative 7. XII
53 Topics produced by LDA using feature alternative 8. XIII
54 Topic coherence by class using feature alternative 8. XIII
55 Topic counts by class using feature alternative 8. XIII
56 Topics produced by LDA using feature alternative 11. XIV
57 Topic coherence by class using feature alternative 11. XIV
58 Topic counts by class using feature alternative 11. XIV
59 Topics produced by LDA using feature alternative 13. XV
60 Topic coherence by class using feature alternative 13. XV
61 Topic counts by class using feature alternative 13. XV

62 Categorical plot of all scores that resulted in Figure 32. XVI
63 Categorical plot of all scores that resulted in Figure 33. XVI

xvi

List of Tables

1 Distribution of OntoNotes 5.0 data. 14
2 Example of PropBank annotations. 14
3 Results on PropBank models evaluated on CoNLL05 16
4 Example of FrameNet annotations. 17
5 SOTA FrameNet SRL performance on the target disambiguation task. 17
6 SOTA FrameNet SRL performance on the argument identification task. 18

7 Performance metrics for text filter on validation and test set. 29
8 Example of modifications of text using RegEx. 30
9 Summary and Description stats before and after preprocessing. 31
10 F1 score on FrameNet 1.7 test set. 32
11 Overall statistics of the SRL results. 32
12 Percentage of missing values and the number of classes for each cat-

egorical field. 33
13 Different feature combinations used to represent support tickets for

topic modeling and classification. 35

14 Feature alternatives of support tickets used for topic modeling and
classification. 40

15 Results of multi-class classification after random search, all sampling
approaches allowed. 51

16 Results of multi-class classification after random search, upsampling
not allowed. 52

17 Classification report for using feature alternative 11, a logistic regres-
sion classifier, and sampling approach D. 52

18 Results of binary classification after random search. 54

19 Feature alternatives of support tickets used for topic modeling and
classification. VI

xvii

List of Tables

xviii

1
Introduction

For large corporations with employees located all over the world, utilizing internal
knowledge is vital for developing and sustaining efficient problem-solving capabilities
on an organizational level. Still, leveraging information present within the company
may be difficult for several reasons, such as department silos or a lack of effective
knowledge-sharing processes. Therefore, systems for automatically providing accu-
rate company know-how upon requests serve a vital function. A common approach
for internal support systems is for the user to describe their problem using predefined
categories and plain text. These requests are coded as issues and then forwarded
to a suitable company function tasked with solving the issue. Taking advantage of
historical, related data is an effective and accessible measure to optimize this process.

This thesis is conducted with Ericsson, one of the world’s largest telecommunica-
tions companies, a company facing the very challenges described. With over 100,000
employees scattered across six continents and an almost 150-year-old history, Eric-
sson holds a significant amount of information that can be difficult to coordinate
[14]. For internal problem-solving, users create ‘support tickets’ which contain man-
ually entered information regarding the problem. Support tickets are processed and
stored in a support software system. Thus, support engineers assigned to solving
these issues have access to a plethora of previously solved support tickets, which
are highly likely to contain helpful information for future reported problems. Tak-
ing advantage of such knowledge requires efficient processes for information retrieval.

This introductory section aims to introduce the problem further while also describ-
ing the thesis’ aim, limitations, and delimitations. Finally, ethical considerations
and risks are discussed.

1.1 Problem
Support tickets at Ericsson contain natural language to a large extent, paving the
way for framing the problem in a Natural Language Processing (NLP) context, ei-
ther as a document-matching problem or a question-answering (QA) one. Either
way, representing the support tickets with manually entered information about the
problem risks introducing high variance and thus posing a problem for NLP ap-
proaches such as term-frequency inverse-document-frequency (TF-IDF) [38]. As
stated by Narayanan and Harabagiu [40], current QA systems usually extract an-
swers by similar methods like keyword matching or pattern recognition. While this

1

has proved to be an effective approach, this does not cover cases where an answer
requires more refined processing. The authors state that one possible solution to
this could be to utilize rich semantic structures that come from domain models and
previous question-answer pairs [40]. Li and Ji [36] further emphasize the issues of
current approaches and state that neglecting the semantic structure of a query of-
ten leads to noisy answers. Semantic roles can be used to capture such semantics,
which describes how different parts of a sentence are related [24]. Semantic Role
Labeling (SRL) is the task of automatically assigning semantics roles, yet another
area within NLP where significant progress has been made since the breakthrough
of transformers in 2017 [62].

At Ericsson’s cloud infrastructure branch, an existing solution for automatically
pairing unresolved support tickets with similar, previously solved ones has been de-
veloped to provide quick and accurate guidance to support engineers. This pairing is
based on text added to the support ticket upon creation. The current approach uses
TF-IDF, producing a vectorized version of the support ticket. This approach enables
the use of similarity measures such as cosine similarity [38], which is currently used
by Ericsson. Such methodologies do not pay any attention to semantics, which has
resulted in similarity often being based on phrasing or choice of words while paying
no attention to the meaning of words and phrases, resulting in irrelevant informa-
tion being retrieved. This master thesis explores how recent NLP advancements
can leverage underlying semantics to benefit information extraction and document
matching in a technical context.

1.2 Aim
This thesis aims to use recent advancements within semantic role labeling (SRL) for
information retrieval to accurately match unresolved support tickets with similar,
solved ones for guidance. More specifically, the purpose of this thesis is to address
the following questions:

1. Can current state-of-the-art semantic role labeling models provide useful se-
mantic information in a highly technical context?

2. Can such semantic information facilitate the matching of similar support tick-
ets?

2

1.3 Limitations
A limitation of this project was the lack of access to information regarding what
makes two support tickets similar. Acquiring accurate information required feed-
back on predictions from subject matter experts, which was neither possible nor
feasible. Since this project aims to solve a very specific issue, it is hard to access
data from elsewhere than the company itself. Moreover, the fact that the data is
not publicly available limits the reproducibility of this project. A third limitation
related to the data is that it contains domain-specific jargon, which further hinders
the generalization of the proposed solution.

1.4 Delimitations
Since one of the objectives was to successfully perform SRL in a specific domain,
a deliberate decision was made to utilize general language models that have been
fine-tuned on the SRL task. Referring to the thesis’ objective once again, manually
entered natural language in the form of sentences was the only information in the
support tickets considered for this task. Furthermore, since the dataset consisted
of text in English, the provided solution is monolingual. Thus, features that could
prove helpful for the general informational retrieval and document matching task
were neglected.

1.5 Ethical considerations and risks
The data used for this thesis occasionally contained sensitive information, such as
the names of the user reporting a problem and support engineers working to solve
it. Since the data did not leave Ericsson’s digital ecosystem, and neither the data
nor the solution will be made publicly available, such information was used as is.

Further, the environmental impacts of training deep neural networks were consid-
ered. Hardware improvements have fueled recent advancements in NLP, enabling
billion-parameter models trained on terabyte datasets. Increasing the size of mod-
els and datasets, and thus computational requirements and environmental impact,
often lead to enhanced performance. Training and hyperparameter optimization are
the most computationally demanding steps of the machine learning pipeline [56].
These steps were not reproduced in this thesis; only fine-tuning on small datasets
was done. Still, models with substantial environmental impact were leveraged. We
consider it ethical to use such pretrained models but join the call for transparency
and quantification of environmental impact within the machine learning community.

1.6 Contributions
In this work, the following contributions to the field of natural language processing
have been made:

3

• The potential of semantic role labeling for enriching text and improving the
accuracy of document similarity matching in a technical domain has been
demonstrated.

• An investigation about how the output from an SRL model, such as the names
of the evoked frames, arguments, and triggers, can be used in isolation and in
combination with each other to represent support tickets has been made.

• Semantic role labeling has been applied to a real-world use case, helping a
company to conduct experiments and test its hypothesis for improving its
issue resolution process.

4

2
Theory

The following chapter presents the theory related to the thesis to give the reader a
brief background of the concepts and techniques used. The chapter begins with a
brief overview of deep learning and neural networks, followed by a more in-depth
review of the concepts and model architectures that have revolutionized the NLP
field in recent years, such as transfer learning and transformers. Term-Frequency
Inverse-Document Frequency (TF-IDF) is also explained, before presenting a review
of frame semantics and semantic role labeling (SRL). Further, topic modeling is
introduced, emphasizing Latent Dirichlet Allocation (LDA) before explaining the F1
score and its constituents. Finally, a short introduction of other machine learning
classifiers is introduced.

2.1 Neural Networks and Deep Learning
Neural networks, or specifically artificial neural networks (ANNs), are the backbone
of deep learning, a subfield of machine learning (see Figure 1). The word ‘deep’ in
deep learning comes from using multiple layers to learn a data representation.

Figure 1: A Venn diagram that presents the relationship between AI, machine
learning, and deep learning. Collected from Labs [35].

A modern deep learning model can consist of several hundreds of layers. These layers
are ‘learned’ by applying deep learning methods. Even though the name originates
from the similarities with neurobiology, it does not work in the same way as the

5

human brain work. Instead, neural networks are built on layers, each consisting of
weights. These layers can be described as stages, where the output is fed into the
first layer. The layer distills information through parameterization by its weights,
which is an extensive collection of values, and then feeds the input into the next
layer. The information from the original output is increasingly purified through the
network and is eventually fed to an output layer, which represents an answer or
prediction. The way a model learns is that it iteratively tweaks the values of the
weights such that the network generates correct predictions given a particular input.
In order to know how to tweak the weights, a loss function is used to calculate a
loss score. The loss score is fed into an optimizer, which uses the backpropagation
algorithm to update the weights [13]. This loop can be seen in Figure 2.

Figure 2: Feedback loop for neural networks. Collected from Chollet [13].

Further, an example of a neural network is shown in Figure 3, where a picture of
a handwritten digit is used as input and where the output is a prediction of which
digit it represents.

Figure 3: An example of a learned data representation by a neural network, used
for handwritten digit classification. Collected from Chollet [13].

6

In the following subsections, a brief background of the techniques used in SOTA
neural networks within the NLP field will be introduced, such as transfer learning
and transformer models, as well as a description of how they work and are connected.

2.1.1 Transfer learning

Classic supervised machine learning is based on learning a specific task in isolation,
using a predefined dataset built with the specific task in mind. This approach works
well with clearly defined and narrow tasks but cannot be used for more general
problems. Transfer learning refers to a set of methods that solves this issue by using
data from multiple domains to make the model more generalized. Models with better
generalization properties, wide availability, and simple integration have led to an
expansive adaptation of transfer learning, mainly within NLP and computer vision.
There exist multiple subfields within transfer learning, and the most popular of them
is called sequential transfer learning. Sequential transfer learning is done by training
a model on different tasks sequentially. It consists of two parts, a pretraining phase,
where general representations are learned as well as an adaptation phase, also known
as fine-tuning, where the general knowledge acquired in the first phase is applied to
a specific task. In the second stage, the model starts with the weight acquired from
pretraining and iteratively tweaks them in order to decrease the loss related to the
specific task. Moreover, as the model is pretrained, it is more efficient in terms of
how much labeled data it needs and how much time it takes to fine-tune the model
[51].

2.1.2 Attention

Attention, in a machine learning and NLP context, was first introduced by Bah-
danau, Cho, and Bengio in 2014 [2]. The basic idea of attention is that some words
in a sentence are more important than others for the sentence to be correctly inter-
preted. For example, in sentiment analysis, words such as ‘bad’ or ‘good’ are highly
relevant, but when doing other tasks, they might not be as important [25]. Atten-
tion has deeply affected the performance of deep learning models within the NLP
field, especially a special kind of attention called self-attention [25]. Self-attention,
also known as intra-attention, is an attention mechanism that relates different po-
sitions of a single sequence to compute a holistic representation of the sequence. In
other words, a representation of a sentence is made solely by relating different words
within that sentence to each other [58]. It answers the question “How relevant is a
specific word in a sentence to the other words in that sentence?”. In Figure 4 an
example is shown with the sentence, “He took the hat and examined it carefully”.
The attention yields an understanding complex enough to relate ‘Hat’ with the word
‘it’.

7

Figure 4: An example of self-attention. The thicker the line is, the more impor-
tant the relationship of the word with ‘it’. Collected from Panda [43].

Self-attention is calculated by using four matrices:

• The input matrix: X = [x1, x2, · · · , xn] ∈ Rd×n,
• The query matrix Q = [q1, q2, · · · , qn] ∈ Rd×n,
• The key matrix K = [k1, k2, · · · , km] ∈ Rd×m,
• The value matrix V = [v1, v2, · · · , vm] ∈ Rd×m

The matrix X is a tokenized version of the sentence (e.g., the sentence is split up into
separate words) and the three matrices Q, K, and V are calculated by multiplying
their initial weights (denoted W q, W k, and W v respectively) with the input matrix
X. By using the same example as earlier, each vector in X is a word from the
sentence, “He took the hat and examined it carefully”. The words are represented
through word embeddings with dimensions d . Scaled attention scores are then
calculated through the Scaled Attention Scores Formula:

Zi = softmax
(

QiK
⊤
i√

d

)
Vi

The first part of the right-hand side of the equation, softmax
(

QiK
⊤
i√

d

)
, results in a

matrix that consists of intermediate attention scores and represents how much the
words in the sentence relate to each other. The final vector Z reveals how much
each word relates to other words in the sentence [59].

2.1.3 Transformer models
Before transformer models (or simply transformers) existed, SOTA machine learning
models within the NLP field were based on an architecture called recurrent neural
networks (RNNs), which execute a task by doing calculations sequentially. It takes
a sequence of data as input, for example, a sentence, and returns another sequence
as output. Each word is dealt with sequentially by the model. This has prevented
researchers from utilizing the power of parallel processing, which can be done on a

8

GPU [58]. In 2017, Vaswani et al. [58] introduced the transformer, a deep learn-
ing architecture that does not use sequential processing and hence enables parallel
processing of input data. Today, transformers are used in multiple areas, such as
the NLP and computer vision fields. Since this thesis only uses transformers in an
NLP context, the following concepts are described with an NLP application in mind.

A transformer model consists of two modules, called the encoder and the decoder,
shown in Figure 5. The encoder takes text as input and takes both the word as well as
its position into account when creating vector representations of the words, known as
word embeddings. The main objective of the encoder is to acquire an understanding
of the input. That output is passed on to the decoder, which uses it to generate
output probabilities. What the output probabilities represent depends on the task
it performs. For translation, it would be the word probabilities in the translated
sentence, and for sentiment analysis, it would be the probability of the sentence
being positive. Both the encoder and decoder can take an entire sentence as input
simultaneously, which makes it possible to take advantage of parallel processing. The
main feature of transformer models is that they utilize self-attention to understand
how words relate. This improves the performance of its predictions and enables the
model to take more data as input [58]. Ever since the introduction of transformer
models in 2017, new variants of the initial model have been released by researchers
in the quest to increase performance on predetermined tasks, such as translation or
summarizing. Some examples include BERT [16] and T5 [47].

Figure 5: The transformer architecture with encoder (left) and decoder (right).
Collected from Vaswani et al. [58].

9

2.1.3.1 BERT

BERT, short for Bidirectional Encoder Representation from Transformers, was intro-
duced in 2018 by Devlin et al. [16] at Google AI Language. It is a pretrained model
that uses a bidirectional transformer. Before BERT was released, SOTA transformer
models, such as OpenAI’s GPT, used a left-to-right transformer, known as being
unidirectional (see Figure 6). Left-to-right transformer interprets the tokens from
left to right, which means that whenever a particular token is interpreted, the con-
text considered is what is to the left of that token. BERT, however, looks at the
entire context at each attention layer. The model is trained by a masked language
model (MLM), which randomly masks one or more tokens from the input and the
goal for the model is to predict these words (an example of masking can be seen in
Figure 7) [16].

Figure 6: The difference in pretraining model architectures. BERT uses a bidi-
rectional transformer, whereas GPT uses a left-to-right transformer. Collected
from Devlin et al. [16].

For a model to perform well on tasks such as QA, it must understand the relationship
between multiple sentences. Therefore, a task such as next sentence prediction (see
Figure 7) increases BERT’s capability to understand how two sentences do or do
not relate. Further, the model performs exceptionally well on other tasks and was in
2020 the ubiquitous baseline in NLP experiment [50]. BERT exists in two versions,
called BERTBASE and BERTLARGE, where the larger model consists of more encoders
and self-attentions heads [16].

Figure 7: Example of masked next sentence prediction. Collected from Devlin et
al. [16].

10

2.1.3.2 DistilRoBERTa

DistilRoBERTa originates from RoBERTa, short for Robustly optimized BERT ap-
proach, which was introduced by Liu et al. [37] in 2019. RoBERTa is based on
BERT, but was trained with a slightly different approach and with modified key
hyperparameters as a result of the finding that the original BERT model was sig-
nificantly undertrained. RoBERTa has managed to match, and even exceed the
performance of all post-BERT models [37].
As the name suggests, DistilRoBERTa is a distilled version of the original RoBERTa
model. Knowledge distillation is a technique used to compress large models. A small,
compact model, known as the student, is trained to emulate the behavior of one or
many larger models, known as the teacher. Distilling a model leads to a significant
size reduction, combined with increased inference speed for the cost of slightly worse
performance [29]. DistilRoBERTa was developed in 2019 by Sanh et al. [52] and has
82M parameters compared to the 125M of RoBERTa [45].

2.1.3.3 T5

T5, short for Text-to-Text Transfer Transformer, is a transformer-based architecture
that takes text as input and generates text as output. This architecture allows the
model to take on several tasks in a standardized manner, using the same model,
loss function, and hyperparameters independent of the task. The main difference
between the T5 architecture and BERT is that T5 adds a causal decoder to the
bidirectional architecture, i.e., using both the decoder and the encoder, and replaces
the fill-in-the-blank MLM, where one token is used for each word, with one single
mask keyword for multiple consecutive tokens [47].

Figure 8: A diagram of the T5 framework. Every task considered is cast as feed-
ing text as input and generating text as output. Collected from Raffel et al. [47].

2.2 Term Frequency Inverse-Document Frequency
Term Frequency Inverse-Document Frequency (TF-IDF) is an algorithm that refines
Bag-of-Words (BoW), which pays less attention to common words (such as ‘a’, and
‘the’) in order to better focus on more informative features [38]. It vectorizes a
text document (e.g., a sentence) by representing each token with a numerical statis-
tic. Tokens are retrieved by identifying distinguishable, meaningful parts of a text

11

document, such as words separated by whitespace [38]. The result is a numerical
representation of a text document, enabling various forms of transformations and
computations, such as calculating similarity scores. However, the method does not
account for semantics, which has resulted in similarity more as a measure of how
similar two sentences are in terms of phrasing or choice of words, rather than in
terms of meaning.

Most machine learning models require raw text data to be converted into some
numerical representation. This can be done in multiple ways, with the previously
mentioned BoW as a simple but powerful model. Much information can be retrieved
by representing a document by the words it consists of, together with their respective
number of occurrences. One major drawback with BoW is that every word in the
vocabulary is given equal weight, resulting in enhancements aiming to remedy this,
such as TF-IDF weighting. TF-IDF assigns a weight to each token (pieces of or
entire words) on a document basis, calculated as follows:

TF-IDFt,d = Tft,d × Idft
Where Tft,d (term frequency) equals the number of occurrences of term t in document
d. Inverse document frequency (Idf) assigns higher weights to rare words following
the formula below:

Idft = log N

dft

Where N is the total number of documents, and dft is the number of documents con-
taining the term t, decreasing the weights of common words. Even though TF-IDF
increases the sophistication of BoW, it still ignores the underlying relationships
between words, relationships that may contain crucial information for successful
information extraction [38].

2.3 Natural Language Understanding
Natural Language Understanding is a subfield of NLP and involves natural lan-
guage tasks that require an understanding of the text, such as QA systems [27].
One significant contribution that led to the improvement of such a system was the
incorporation of semantics in the systems, more specifically semantic roles, which
was partly possible thanks to semantic databases such as WordNet and the progres-
sion of machine learning algorithms [27]. Semantic roles have further increased the
ability of a system to understand the meaning of a sentence or document.

2.3.1 Semantic Roles
Assigning semantic roles in a sentence requires an understanding of how different
participants in an event are related to one another. A common question that is
asked when a role should be defined is: “Who did what to whom” (and perhaps also
“when and where”) [30]. For example, take the sentence:

12

John broke the window with a rock

Using semantic roles, one could answer questions like “who broke the window?”
or “with what did John break the window?”. In this example, the semantic roles
Agent, Theme, and Instrument are assigned.

John broke the window with a rock
AGENT THEME INSTRUMENT

Early versions of semantic roles have proved problematic in real use cases where it
has been hard to define what semantic roles to use formally. It has led to the birth of
different semantic roles frameworks that approach this task in different ways, where
the two most commonly used are The Proposition Bank (PropBank) and FrameNet
[30]. Research shows that the concept of semantic roles can successfully be applied
in tasks like information extraction, summarization, and question-answering [33].

2.3.2 Semantic Role Labeling
Semantic role labeling (SRL) is the task of automatically assigning semantic roles
given a sentence [33]. SRL is used to assign labels to words or phrases that indicate
their semantic role in a sentence. The purpose of SRL is to extract the underlying
meaning of a sentence. It is most commonly based on supervised machine learning
models, trained on predefined corpora from PropBank and FrameNet [30].

SRL is generally split up into three subtasks:

1. Target identification
2. Target disambiguation
3. Argument identification

The definition of these tasks differs slightly depending on which framework is used
for SRL (PropBank or FrameNet) and will be further described in Sections 2.3.2.1
and 2.3.2.2. Current SOTA SRLs are built by training a neural network on a large
annotated dataset [24]. There exist a plethora of research about how to yield the
highest accuracy with regard to both PropBank as well as FrameNet labeling con-
ventions. By looking at globally accepted datasets that are used to benchmark
the performance of an SRL model, it is evident that the top performing models,
such as the ones built by Kalyanpur et al. [31] and Zhang et al. [61], are based on
the same deep learning architecture, namely transformers which was described in
Section 2.1.3.

2.3.2.1 The Proposition Bank

The Proposition Bank, more commonly known as PropBank is a collection of sen-
tences, already labeled with semantic roles and was developed by Palmer, Gildea,
and Kingsbury [42] in 2005 at the University of Pennsylvania and provides predicate-
argument for the entire Penn Treebank, which is a large dataset, also developed at

13

the University of Pennsylvania. It is verb-oriented in the sense that each verb has
a predefined set of roles. The latest version of the annotated PropBank corpus is
called OntoNotes 5.0. It consists of more than 2.9 million words, collected from
different sources, which can be seen in Table 1. The data originates from newswire
(News), broadcast news (BN), broadcast conversation (BC), telephone conversation
(Tele), web data (Web) in English and Chinese, English pivot text (Old Testament
and New Testament text) and newswire data in Arabic [60].

Table 1: Distribution of OntoNotes 5.0 data.

Arabic English Chinese
News 300k 625k 250k
BN - 200k 250k
BC - 200k 150k
Web - 300k 150k
Tele - 120k 100k
Pivot - - 300k

The roles are generalized over all verbs and are called ARG0, ARG1, ARG2, to
ARG5. The basic rules are that ARG0 represents the so-called PROTO-AGENT and
ARG1 represents the PROTO-PATIENT [30]. Contributing properties for PROTO-
AGENT are that it is involved in the event or state, it is causing an event or change
of state in another participant, and exists independently of the event named by
the verb. The contributing properties for PROTO-PATIENT are that it undergoes
a change of state and is causally affected by another participant and it does not
exist independently of the event [18]. Moreover, ARG2 is often the benefactive
instrument, attribute, or end state, whereas ARG3 and ARG4 are usually the start
and end points, respectively [30]. The latter roles are less consistent and can thus
represent different things, depending on the verb [30]. Further, there exists modifier
roles, ARGM-*, such as ARGM-TMP (temporal) and ARGM-DIR (directional).
Given an example sentence, “Mr. Obama met him privately in the White House on
Thursday”, PropBank would yield the annotations shown in Table 2:

Table 2: Example of PropBank annotations.

Argument Text
ARG0 Mr. Obama
ARG1 him
ARGM-MNR privately
ARGM-LOC in the white house
ARGM-TMP on Thursday

The pretrained SRL model based on PropBank that is used in this thesis is a BERT
model that is based on the work made by Shi and Lin [54]. The authors leveraged
the power of transformer models and applied the theory to the SRL problem. Look-
ing at most SRL benchmarks for PropBank, it is evident that the first subtask of

14

SRL is not included in the evaluation, neither during training nor testing. There-
fore, Shi and Lin [54] do not include the first subtask, namely target identification,
which is the task of identifying all predicates in a sentence. The second task, target
disambiguation, is identifying the correct meaning of a predicate in a given context.
Shi and Lin [54] solve this by feeding the input sentence into a tokenizer called
WordPiece, which splits the words into tokens where the predicate is tagged with
a special label. These sequences are then processed by a BERT encoder which ob-
tains contextual representation. The third and final part, argument identification, is
predicting a sequence given a sentence-predicate pair. This sentence-predicate pair
is once again fed into the BERT encoder. Then, the contextual representation of
the sentence is appended to the predicate indicator embedding. These embeddings
are finally processed by a one-hidden-layer Multi-Layered Perceptron (MLP) which
results in the output displayed in Figure 9 [54].

Figure 9: The architecture of the SRL model developed by Shi and Lin [54].
[CLS] is short for classification, which indicates that this example is a classifi-
cation task. Here, the token [S-PER] relates to ‘Obama’ and [O-LOC] relates to
‘Honolulu’.

A commonly mentioned drawback of PropBank is that it can be hard to make in-
ferences to find similarities between sentences that use different verbs. For example,
the following three sentences are similar in meaning but use different verbs. Thus,
PropBank treats these verbs (‘increased’, ‘rose’, and ‘rise’) as unrelated entities even
though they refer to the same change in price.

The price of bananas increased 5%.
The price of bananas rose 5%.
There has been a 5% rise in the price of bananas.

15

This is also an example where the approach known as FrameNet is advantageous
compared to PropBank, which will be further explained in the next section. Table
3 shows how well different SOTA models performed on the CoNLL05 shared task,
which is a set of standardized tasks that are used to evaluate SRL models. The scores
are based on an end-to-end task, i.e., predicting all predicates and their respective
arguments. The model used for this thesis (Shi and Lin, 2019) had an F1 score of
88.8, which is amongst the top scores out of all PropBank models [61].

Table 3: Results on PropBank models evaluated on CoNLL05, averaged over four
runs with different random seeds. Collected from Zhang et al. [61].

P R F1
He et al. (2017) 83.1 83.0 83.1
Ouchi et al. (2018) 84.7 82.3 83.5
Strubell et al. (2018) 84.7 84.2 84.5
Tan et al. (2018) 84.5 85.2 84.8
Zhang et al. (2021b) 85.3 85.2 85.2
CRF 85.4 85.6 85.5
CRF20 85.5 86.4 85.9
Strubell et al. (2018)ELMo 86.2 86.0 86.1
Jindal et al. (2020)BERT 88.7 88.0 87.9
Zhang et al. (2021b)BERT 87.7 88.2 87.9
Shi and Lin (2019)BERT 88.6 89.0 88.8
Zhou et al. (2022)BERT 89.0 88.5 88.8
Zhang et al. (2022)CRF 2OBERT 89.0 89.0 89.0
Zhang et al. (2022)CRF RoBERT a 89.3 89.0 89.2
Zhang et al. (2022)CRF 2ORaBERT a 89.5 89.6 89.5

2.3.2.2 FrameNet

FrameNet uses another approach to capture semantics from a sentence. The con-
cept of frame semantics originates from the work of Fillmore and Baker [23] where
the idea is that to understand a word’s meaning, one also needs access to relevant
knowledge that relates to that word. For example, the word ‘buy’ may not be of any
value without its associated words ‘buyer’, ‘seller’, ‘goods’, and ‘money’. FrameNet
utilizes this theory through so-called lexical units, which are predefined sets of words
that are related to each other that is used as triggers. Each of these sets of words
are then related to a specific frame which is evoked once a lexical unit is found in the
sentence. A frame is a “script-like conceptual structure that describes a particular
type of situation, object, or event and the participants involved in it” [23]. Each
frame specifies predefined semantic roles that relate to the frame. The roles can be
either core roles or non-core roles, where the core roles are directly linked with the
specific frame, and the non-core roles are more similar to ARGM-* arguments from
Propbank, which were described in the previous section [23].

16

Like PropBank, the three subtasks explained in Section 2.3.2 are also done for
FrameNet. The first part, target identification, involves deciding what words should
evoke frames in the sentence. While PropBank only defines predicates as targets,
FrameNet can define verbs, nouns, adjectives, and prepositions as targets. The
second subtask, target disambiguation, consists of deciding what frames should be
evoked. Finally, the third step argument identification is the task of defining which
of the evoked frames’ roles should be filled by what targets. The FrameNet lexical
database consists of more than 1,200 different frames, 13,000 lexical units as well as
202,000 example sentences. There have been multiple versions of the dataset; the
latest is the FrameNet 1.7 version [3]. In Table 4, FrameNet output, given the same
sentence used in the previous section, is displayed [30].

Table 4: Example of FrameNet annotations.

The model used to perform FrameNet SRL in this thesis is built based on a com-
bination of two SOTA models, namely the Open Sesame project [57] as well as the
model built by Kalyanpur et al. [31]. Their performance is displayed in the two
tables below. Table 5 shows their results on the target disambiguation task, tested
on FrameNet 1.7, and Table 6 shows their performance regarding argument identi-
fication, also tested on FrameNet 1.7 [31]. Similar to the evaluation of PropBank,
there exist no scores for the first subtask, target identification.

Table 5: SOTA FrameNet SRL performance on the target disambiguation task.
Collected from Kalyanpur et al. [31].

Model Accuracy
Swayamdipta et al (2017) 0.87
Kalyanpur et alF ull−Gen 0.87
Kalyanpur et alMulti−T ask 0.88

17

Table 6: SOTA FrameNet SRL performance on the argument identification task.
Collected from Kalyanpur et al. [31].

Metric Model P R F1
Swayamdipta et al (2017) 0.62 0.55 0.58

Exact Match Kalyanpur et alF ull−Gen 0.71 0.73 0.72
Kalyanpur et alMulti−T ask 0.75 0.76 0.76

2.3.2.3 Differences between PropBank and FrameNet

As previously mentioned, one drawback of PropBank compared to FrameNet is
that it is hard to use for finding similar sentences that use different verbs [42].
PropBank uses a smaller number of arguments that constitute verb-specific labels
in a standardized fashion. In this way, PropBank has more predefined words that act
as targets (i.e., all verbs in Penn Treebank) and can, therefore, often generate more
SRL output. While it often generates more output, it is often less informative than
FrameNet since the predefined labels for PropBank might not provide enough detail
to extract the underlying meaning of a sentence. FrameNet, however, yields more
informative output once a frame is evoked thanks to its predefined set of frames.
Even though the goal often is to get as informative output as possible, one drawback
of FrameNet is that it could sometime yield too much information, which introduces
unnecessary complexity [15].

2.4 Topic modeling

Topic modeling is a technique based on machine learning that automatically ana-
lyzes text to generate suitable subclasses or topics based on some cluster words for a
set of documents. Through statistical algorithms, it can extract concealed semantic
structures of textual information and as a result, facilitate the understanding and
analysis of vast accumulations of unstructured text data [41]. Topic modeling is
an unsupervised learning algorithm, similar to other clustering algorithms such as
the K-means algorithm. Topic modeling can be seen as a matrix factorization of a
dataset with dimensions M × V , topics with dimensions K × V , and topic assign-
ments with dimensions M × K where:

K = Number of topics
M = Number of documents
V = Size of vocabulary

In this way, the entire dataset can be approximated by two smaller matrices, one
which encodes the affinity of each word in a topic and one matrix that encodes how
much each document ‘likes’ those topics (Figure 10).

18

Figure 10: Matrix decomposition in topic modeling.

One of the first models used for topic modeling was Latent Semantic Analysis (LSA),
which uses the principle of matrix decomposition to extract topics from documents.
It was introduced in 1988 by Dumais et al. [19] and has since been the foundation
on which new approaches have been developed, one of them being Latent Dirichlet
Allocation.

2.4.1 Latent Dirichlet Allocation
Latent Dirichlet allocation (LDA), proposed by Blei, Ng, and Jordan [7] is a gener-
ative probabilistic model of a corpus, where the underlying idea is to represent each
text document as a random mixture over latent topics and where the topic’s word
distribution defines its characteristics. LDA assumes the following:

1. Words carry strong semantic information.
2. Documents discussing similar topics will use a similar group of words.
3. Therefore, identifying words that frequently occur together in documents in

the corpus can reveal latent topics.

For each document w in corpus D, LDA assumes that the document is created
through a generative process with a few steps. Some notations will also be de-
scribed to facilitate the description of the process.

• A document is a sequence of N words denoted by w = (w1, w2, . . . , wN), where
wn is the nth word in the sequence.

• A corpus is a collection of M documents denoted by D = {w1, w2, . . . , wM}.
• α is the parameter of the Dirichlet prior on the per-document topic distribu-

tions, β is the parameter of the Dirichlet prior on the per-topic word distribu-
tion, θm is the topic distribution for document m,

• zmn is the topic for the n-th word in document m, and wmn is the specific
word.

19

The generative process goes as follows:

1. Choose N ∼ Poisson (ξ), i.e., the number of words in the document.
2. Choose θ ∼ Dir(α), i.e., a topic mixture for the document over a predetermined

set of topics.
3. For each of the N words wn, generate the document by:

(a) Choosing a topic, based on the document’s distribution zn ∼ Multinomial(θ).
(b) Choosing a word wn from p (wn | zn, β), a multinomial probability condi-

tioned on the topic zn.

How the number of words N is decided is not critical for the model, thus neither the
Poisson assumption nor the variable (ξ) requires any further explanation. Through
these assumptions, topics can be extracted by doing the process mentioned above
backward. In order to decide what topics to assign to each document, one must
compute, or at least estimate, the posterior of the hidden variables θ and z.

p(θ, z | w, α, β) = p(θ, z, w | α, β)
p(w | α, β)

However, this posterior is intractable for exact inference, which is why it is often
approximated through other inference algorithms such as Laplace approximation,
Markov chain Monte Carlo, or convexity-based variational algorithm [17]. In the
example provided by Blei, Ng, and Jordan [7], a convexity-based variational ap-
proach is used for inference, which yields a fast and well-performing model.

1. Give each word in the document a randomly selected topic. The total number
of topics, K, is decided by the user.

2. For each document d:
- Assume that the topics assigned in previous steps are correct for all words
except the current one.
- Calculate two shares:
(a) Share of words in document d that are currently assigned to topic

t = p(topic t | document d)
(b) Share of assignments to the topic over all documents that come from this

word w = p(word w | topic t)
- Multiply those shares and assign w a new topic based on that probability.
p(topic t | document d) × p(word w | topic t)

3. Eventually, a steady state is reached where assignments make sense.

Compared with its predecessor LSA, LDA performs better concerning word disam-
biguation and assignment of topics. It is also less prone to overfitting. The main
difference between the LDA approach and a simple Dirichlet-multinomial clustering
model is that the simple model is restricted to only one topic associated with every
cluster. LDA, however, can have multiple topics associated with the documents [7].

20

2.4.2 Topic coherence
Topic coherence is a metric for evaluating a topic given a specific corpus proposed by
Röder, Both, and Hinneburg [49] in 2015. The authors present a four-stage pipeline
for calculating topic coherence: segmentation, probability calculation, confirmation
measure, and aggregation (see Figure 11). Each part can be conducted in various
ways, and the parts can be combined freely [49].

Figure 11: Overview over the topic coherence pipeline from Röder, Both, and
Hinneburg [49].

To evaluate a topic t, a set W = {w1, w2, ..., wN} is constructed from the N top
words of the topic. This word set is then segmented into a subset pairs S, such that:

S = {(W ′, W ∗)|W ′, W ∗ ⊆ W} (2.1)

One group of segmentation approaches forces each subset W ′, W ∗ to contain only
one word. In such cases, the segmentation S contains only word pairs. The base
case of this group is called one-one, which pairs all the words in W with each other
as follows:

Sone
one = {(W ′, W ∗)|W ′ = {wi}; W ∗ = {wj}; wi, wj ∈ W ; i ̸= j} (2.2)

After constructing the pairs S, confirmations measures are calculated to evaluate
how well W ∗ supports W ′. This can be done either directly or indirectly. Direct
methods compute the confirmation directly over a pair Si, for example, the log-
conditional-probability measure [49].

mlc(Si) = log P (W ′, W ∗) + ϵ

P (W ∗) (2.3)

Instead, indirect methods compute a direct confirmation measure between W ′ and
all words in W , a repeated process for W ∗. This results in two vectors represent-
ing the relationship between W ′ (or W ∗) and all other words in W . The indirect
confirmation measure is then calculated as the vector similarity [49].

21

As can be seen in Equation 2.3, confirmation measures are based on probability
calculations. These subset probabilities, e.g., P (W ∗), is derived from a reference
corpus and can be calculated in various ways. In general, the number of occurrences
provides the basis for these calculations, but the scope of what part of a document
to consider when counting differs. Boolean document (Pbd) estimates the proba-
bility of a word or word-pair as the number of documents it is present in, divided
by the total number of documents. Other methods consider paragraphs, sentences,
or sliding windows when calculating these occurrences compared to the complete
document [49].

After deciding how to calculate the probabilities for the confirmation measures, all
the confirmation measures of the subset pairs S are aggregated to a final coherence
score. Although the pipeline can be constructed in many ways, some combinations
have gained particular traction. One of these is CUMASS, which creates word pairs
using Sone

pre , a variation of Sone
one that takes order into account.

Sone
pre = {(W ′, W ∗)|W ′ = {wi}; W ∗ = {wj}; wi, wj ∈ W ; i > j} (2.4)

Further, CUMASS uses Pbd and mlc, both explained above. Final aggregation is done
by taking the arithmetic mean of confirmation measures [49].

2.5 Other machine learning models
This section briefly describes four different machine learning classifiers to give the
reader a short introduction to how they work. These are later used for the classifi-
cation of support tickets.

2.5.1 Logistic regression classifier
Despite its name, logistic regression is in fact, a linear model that is used for classi-
fication. It can take continuous as well as discrete data as input. The name stems
from the logistic function used to model probabilities for possible outcomes of a
single trial. It is called the logistical sigmoid function and maps the whole real axis
to a finite interval between 0 and 1. It is defined as:

σ(x) = 1
1 + e−x

The model classifies samples by multiplying the feature vector (x1, x2..., xp) with
pretrained weights (β0, β1...., βp) into a logistic function that returns continuous
values between 0 and 1, similar to standard regression models. However, it is a
classification model because a threshold (often at 0.5) is set, resulting in values
being mapped to either 0 or 1, depending on if the initial value was above or under
the threshold. Thus, the formula for the probability of a variable being equal to 1
is:

P
(
y(i) = 1

)
= 1

1 + exp
(
−
(
β0 + β1x

(i)
1 + . . . + βpx

(i)
p

))

22

The function classifies it as 1 if P
(
y(i) = 1

)
> 0.5. Logistic regression can be used

to classify different types of classes, namely:

1. Binomial: Cases where the target variable has possible values (e.g., 0 or 1).
2. Multinomial: Target variables have three or more possible values.
3. Ordinal: Where target variables can be any value from a predetermined range

(e.g., 1 to 5). This is often used when continuous values are mapped into
groups.

2.5.2 Random Forest classifier
Random forest is an ensemble of multiple decision tree classifiers trained on various
subsamples of a dataset [8]. Thus, to understand the basics of a random forest,
one must first be aware of the fundamentals of a decision tree. A decision tree
is a classifier that splits data into subtrees according to a certain parameter. It
consists of three components: root, nodes, and leaves. The root and each node
represent conjunctions of features that, when combined, split up the data. They are
all connected to other nodes or leaves, where leaves represent class labels (e.g., fit or
not fit) [46]. An example can be seen in Figure 12. Decision trees are seldom used
on their own due to them being prone to overfitting. However, they are more useful
when being part of an ensemble, which is exactly what a random forest classifier is.
It is implemented by training multiple decision trees in isolation with its subsample
of the data, which is called bootstrap-aggregation (also known as bagging). At
inference, the outputs from the trees are combined, and the final class is deduced
through voting among the decision tree where the majority class wins [8].

Figure 12: An example of a decision tree.

23

2.5.3 XGBoost
XGBoost (from Extreme Gradient Boosting) is a widespread and easy-to-use im-
plementation of the gradient-boosted trees algorithm and is widely used within the
machine learning field. The idea behind boosted trees is to use boosting instead of
bagging, creating an ensemble of submodels that are trained sequentially. The mis-
takes made by the first model are passed on to the second, such that these mistakes
are accounted for, which leads to a gradually improving model. XGBoost imple-
ments this idea using a specific type of boosting called gradient boosting, which
utilizes a gradient descent algorithm to minimize loss when new models are sequen-
tially added [12].

2.5.4 Support vector machines
A support vector machine (SVM) is a classifier that, like all linear classifiers, creates
a hyperplane that best separates the data into classes but in a more sophisticated
manner. As it creates the hyperplane, it defines a maximum margin as a region with
no objects. The bigger these regions are, the better separated the classes are. It is
possible to generate a hyperplane if the classes are linearly separable, but in reality,
this is seldom the case. SVM, however, enables non-linear classification by applying
a kernel function to the data, which adds another dimension to the data. In this
way, data that is linearly inseparable in one dimension can be linearly separable
when another dimension is added (see Figure 13)[4].

Figure 13: An example of how the data looks before and after a kernel function
has been applied to the data. Collected from Starmer [55].

2.6 Dealing with imbalanced datasets
A dataset is considered imbalanced if the different categories in which the data is
split are not of equal size. For example, fraudulent emails can be identified through
a filter that classifies some emails as fraudulent, and some as okay. When a classifier
is trained on an imbalanced set, it often favors the majority class and has proved

24

to be a problem for both binary and multi-class problems [6]. This issue can be
attenuated through undersampling or oversampling, which leads to more balanced
datasets. Undersampling (i.e., delete samples) is done on the majority class to re-
duce the imbalance. Using the same logic, oversampling is done by generating new
samples [11]. While undersampling is generally helpful when samples is randomly
deleted from the majority class, oversample in a random fashion is not. However,
this oversampling could be done through Synthetic Minority Oversampling Tech-
nique (SMOTE) [6]. SMOTE generates synthetic samples from the minority class
to improve the class balance. It is done by linearly combining two similar samples
from the minority class, denoted s1 and s2, as follows:

snew = s1 + u × (s1 − s2), where 0 ≤ u ≤ 1

The neighbor s2 is randomly selected from the five closest neighbors to s1 [6].

2.7 F1 score
When dealing with information retrieval, a common way to evaluate how well the
model performs is by using two metrics, precision and recall [34]. Precision could
be viewed as a fraction of the documents retrieved that are relevant to the user. In
order to get high precision, the system should reject any document that might be
irrelevant. Precision can be defined as:

Precision = true positives
true positives + false positives

where true positive is the intersection of relevant documents and retrieved docu-
ments, and false positives are the retrieved documents that were not relevant.
Recall is the fraction of the relevant documents that are retrieved by the system.
Here, comprehensiveness is valued, leading to a model that emphasizes recall in-
cludes documents that it is unsure about rather than discarding them. Recall is
defined as:

Recall = true positives
true positives + false negatives

where false negatives are the irrelevant samples that were defined as relevant by the
system.

Since the two metrics premiums different things, only using one of them could make
a model prone to either selecting too few documents (to yield high precision) or
too many documents (to yield better recall). Thus, the metrics are of little use for
telling the whole story when used in isolation. Therefore, these two metrics are
often weighed together to get one metric that simultaneously premiums precision
and recall. This is called F1 score and is the harmonic mean of the two metrics:

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

25

3
Methods

This chapter describes the approach used for fulfilling the aim of this thesis. It
includes a thorough review of how data was collected and preprocessed to yield the
best possible semantic roles from the SRL. Further, topic modeling and support
ticket classification are reviewed as these were the two main approaches to match
relevant support tickets with each other.

3.1 Data collection
The data was collected by querying Ericsson’s internal support software system,
which contained unresolved and solved issues. In coordination with Ericsson, the
scope of issues was determined to those relating to the company’s internal cloud
infrastructure branch. Thus, both the person reporting an issue (i.e., the user) and
the person(s) tasked with solving it (i.e., the support engineers) were at the time of
reporting Ericsson employees. Only solved support tickets were collected to ensure
the information present was relevant and static. The dataset consisted of 2,287
solved issues, each represented as a separate support ticket. The creation date of
these support tickets ranged from 2018-04-19 to 2022-09-23, with the vast majority
(96%) created after Q2 2020, as shown in Figure 14.

Figure 14: Bar plot of support ticket creation time, aggregated by quarter.

26

3.1.1 Support ticket
A support ticket consists of information structured into predefined fields manually
entered by the employee experiencing a problem. The raw dataset consisted of 297
non-empty such fields, out of which eight were selected to represent each support
ticket after consultation with subject matter experts at Ericsson. Fields of particular
interests had one of the following characteristics: (1) natural language describing
the issue, entered upon creation by the user, or (2) meaningful categorization of
the issue made by support engineers. The former characteristic is motivated by
the fact that SRL requires natural language structured into sentences to identify
relationships between words and phrases and that the final solution aims to match
unresolved issues with similar, solved ones. Therefore, the information for such sim-
ilarity matching must be present upon creation. The latter category of fields had the
potential to act as a proxy for relevancy or similarity, thus allowing for a supervised
approach to the problem.

Thus, the main focus was on the following fields:

• Summary: Mandatory text field acting as the header of the support ticket,
generally one sentence describing the issue. Entered by the user.

• Description: Mandatory text field where the user can describe the issue in
more detail. It may contain machine-written logs, error messages, and hyper-
links. Entered by the user.

• Issue Class: Optional categorical field with 3 different values. Entered by the
support engineer. Used as similarity proxy.

• Fault Area: Optional categorical field with 4 different values. Entered by the
support engineer. Used as similarity proxy.

• Faulty Product: Optional categorical field with 16 different values. Entered by
the support engineer. Used as similarity proxy.

Together with the fields mentioned above, the field Issue Key was used as identifi-
cation for each support ticket, consisting of a unique combination of characters for
each support ticket. Further, the Status field was kept to ensure all support tickets
were solved, while Created allowed for analysis of creation date.

3.2 Preprocessing for Semantic Role Labeling
The datasets used for training the models used for SRL, presented in Section 3.3.1,
were FrameNet 1.7, CoNLL 2005, and CoNLL 2012. Although the datasets differ
concerning which semantic framework they are designed for, they share the char-
acteristic that each training sample consists of one sentence in English, generally
correctly written with proper syntax. Various forms of preprocessing were required
to convert the dataset provided by Ericsson to such a form. First, non-natural lan-
guage such as logs, error messages, and hyperlinks had to be removed. Second, the
technical jargon was standardized, and third, phrase substitution based on model
performance was applied. The preprocessing steps’ main aim was to provide the best

27

possible conditions for performing SRL, conditions similar to each model’s training
data.

3.2.1 Initial filtering with DistilRoBERTa
The first preprocessing step aimed to remove as much irrelevant content in the De-
scription field as possible. In this case, irrelevant implies text chunks not containing
human written natural language structured in sentences, which may not be suitable
for SRL. Such an approach implies that data relevant to the overall problem-solving
task may be discarded, for example, logs and machine-produced error messages.
Support tickets were visually inspected to identify patterns that separated relevant
from irrelevant text chunks. When retrieved from the support software system, their
original structure indicated that such separations existed, a hypothesis confirmed
when representing the Description as a string. The user generally structured its
input in chunks separated by a blank line, which was used to split the Description
into smaller text chunks. A typical structure was a greeting phrase, a description
of the issue at hand, some log output, and a closing goodbye phrase, all four parts
separated by a blank line as seen in Figure 15.

Before preprocessing
Hi all,

Due to storage issue Container99 had some volume issues, currently
we can see that some network and storage issues still exist on
this container as health check is failing.

Summary:Total: 143Passed: 763Failed: 2Warnings: 1Skipped:
192Execution Time: 0:01:12:19232List of Failed Checks:
DISK USAGE (on: instance-3).

Best regards,
Bert

After preprocesing
Due to storage issue container had some volume issues, currently
we can see that some network and storage issues still exist on
this container as health check is failing.

Figure 15: Example of the Description field in a support ticket, before and af-
ter preprocessing. The description fields do often contain more text than what is
shown in this Figure.

This structure was used to create a dataset of Description text chunks from 253
support tickets, each annotated as either relevant or irrelevant. The annotated text
chunks provided the basis for a binary classification problem aiming to clean the
dataset, much like the classical spam detection problem where the task is to sepa-
rate relevant and irrelevant texts. The complete dataset contained 4,621 manually

28

annotated text chunks, with a vast majority labeled as irrelevant, as presented in
Figure 16.

Table 7: Performance metrics for text filter on validation and test set.

Dataset Precision Recall F1 score
Validation 87.6 90.9 89.2
Test 84.5 90.9 87.6

Transfer learning was leveraged by fine-tuning a pretrained DistilRoBERTa model
[52] on the filtering task, using 70% of the annotated data. During fine-tuning, a
validation dataset of 20% was used to track various performance metrics over epochs
before testing the best-performing model checkpoint on a held-out test dataset of
10% (see Table 7). Precision, recall, and F1 score were the metrics used, with an
emphasis on recall so as not to exclude any potentially useful information. Finally,
the model was retrained on all annotated samples before making predictions on the
complete dataset of 38,624 Description text chunks (see Figure 16).

Figure 16: Annotated and inferred class distribution of Description text chunks.

29

3.2.2 Cleaning text with regular expressions

After the initial filtering of Description, cleaning and standardization of both text
fields (i.e., Summary and Description) were needed to prepare the data for SRL.
This was done using regular expressions (RegEx). Reoccurring patterns disrupt-
ing the natural language were removed, such as HTML tags, accidentally repeated
characters, unwanted characters (e.g., asterisks, backslashes), and hyperlinks.

Table 8: Example of modifications of text using RegEx.

Original Modified Scope
pwd password Both
VM987 virtual machine Both
dead not working PropBank
offline dead FrameNet

Further modifications were done after analyzing the results from SRL, further modi-
fications were done, as the two different models used (based on FrameNet and Prop-
Bank, respectively) responded differently to specific potential targets, such as words
or phrases evoking a frame. These included standardization of technical terms, re-
placing negations, and using modifications. Thus, the dataset diverged into two very
similar but distinct versions, one for the PropBank model and one for the FrameNet
model. Examples of text replacements that were carried out to facilitate SRL are
presented in Table 8.

3.2.3 Sentence splitting

Finally, the filtered and cleaned text chunks from Summary and Description were
split into sentences using a rule-based tool from spaCy called sentencizer. The sen-
tencizer used an exhaustive list of characters as separators for sentences, such as
punctuation, exclamation mark, and question mark [53]. Feeding the SRL models
multiple sentences at a time, say the entire Description field for a specific support
ticket, resulted in less accurate output. Thus, the text fields for each support ticket
were split into sentences, which were then manually modified (if necessary) such that
they started with a capitalized word and ended with punctuation, as correct syn-
tax also affected SRL performance. The 2,287 support tickets were split into 12,187
sentences prepared for SRL, with 81% of them originating from the Description field.

As seen in Table 9, Description was significantly affected by the preprocessing
pipeline in terms of length and share of letters. The effect on Summary was more
modest, with the average number of characters increasing due to some technical
abbreviations being expanded.

30

Table 9: Summary and Description stats before and after preprocessing. Share of
letters is the share of all characters in a text consisting of letters.

Text type Metric (average) Original FrameNet PropBank

Summary Number of characters 47 49 53
Share of letters 0.76 0.80 0.80

Description Number of characters 1218 313 303
Share of letters 0.64 0.79 0.79

3.3 Semantic Role Labeling
SRL was performed on the preprocessed dataset to build the foundation for a more
meaningful representation of each support ticket. This task was carried out using
two models that utilized the different semantic frameworks presented in Section
2.3.2, PropBank, and FrameNet.

3.3.1 Model selection
The choice of models was mainly based on three factors: (1) performance on known
benchmarks, (2) architectural similarity to current SOTA models, and (3) avail-
ability of code and its ease of use. Both chosen models belong to the category of
transformer models introduced in Section 2.1.3, and thus share architectural char-
acteristics of today’s SOTA models within SRL [32][62]. Further, both models con-
sisted of a pretrained language model that had been fine-tuned on the SRL task. As
presented in Section 2.3.2, the complete SRL task consists of three subtasks. Since
the dataset lacked any semantic annotations, such as pre-identified targets, the SRL
model had to perform all three subtasks in order to be considered relevant.

The motivation behind using two SRL models in parallel was the uncertainty regard-
ing the feasibility of the task with respect to the dataset. By using two models with
different approaches to the problem, a comparison could be made before choosing
which SRL result to continue with. Moreover, predictions on newly created support
tickets were not deemed time-sensitive enough to promote smaller, faster models if
larger ones offered enhanced performance. Performing SRL in a technical context
with a noisy dataset such as this, model performance was prioritized over inference
speed.

3.3.1.1 PropBank model

For PropBank, a model was implemented in Python using the AllenNLP library.
AllenNLP is an open-source NLP platform built on PyTorch provided by the Allen
Institute for AI (AI2) [26]. AI2 is a non-profit research institute founded by the late
Microsoft co-founder Paul G. Allen [1]. The specific model used in this project is
their pretrained semantic role labeler, an implementation of the BERT-based model
described in Section 2.3.2.1.

31

3.3.1.2 FrameNet model

The python library Frame Semantic Transformer [10] provided an easy-to-use model
based on Google’s Text-To-Text Transfer Transformer (T5) described in Section
2.1.3.3. The model was pretrained on the Colossal Clean Crawled Corpus (C4) [48],
before being fine-tuned on the FrameNet 1.7 dataset [10]. The Frame Semantic
Transformer library provided two such pretrained models, the T5-small with 60M
parameters and the T5-base with 220M parameters, which was later used due to
its superior performance on FrameNet 1.7 test set, as can be seen in Table 10. In
the table, Open Sesame refers to the model developed by [57], introduced in Section
2.3.2.2. This benchmark is provided by the author of the models.

Table 10: F1 score on FrameNet 1.7 test set. Collected from Chanin [10].

Task Open Sesame T5-small T5-base
Target identification 0.73 0.70 0.71
Frame classification 0.87 0.81 0.87
Argument extraction 0.61 0.70 0.72

3.3.2 Results of Semantic Role Labeling
Both models executed the SRL task well. As seen in Table 11, very few support
tickets lacked any SRL result. Differences in coverage between Summary and De-
scription were mainly due to Description containing approximately six times more
text than the Summary field after preprocessing. The PropBank model identified,
on average, 39% more frames than the FrameNet model, which in turn populated
each frame with 39% more roles on average (see Table 11). These numbers support
the notion that the FrameNet annotation task is more complex than its PropBank
counterpart, but the resulting annotations are more informative [21].

Table 11: Overall statistics of the SRL results, where (S) stands for Summary
and (D) for Description. For PropBank, frames are equivalent to verbs.

Statistic FrameNet PropBank
Support tickets without SRL result (%) 1.4 1.5
Support tickets with SRL result (S) (%) 65.5 66.0
Support tickets with SRL result (D) (%) 96.8 98.5
Average number of frames per support ticket 9.6 13.3
Average number of arguments per support ticket 25.8 21.9

Since both models performed well on their respective datasets, the suitability of each
framework for the task at hand decided which result to use as representation for the
support tickets going forward. As previously mentioned, an advantage FrameNet
has over PropBank is that the frames are more detailed and informative, as seen in
Figure 17.

32

Figure 17: Difference between SRL output from FrameNet (upper example) and
Propbank (lower example). In the first example, triggers (i.e., the lexical units)
are marked in bold. In the PropBank example, the triggers are bold and colored
the same as their respective arguments.

Naturally, an increased level of detail is also a known disadvantage of FrameNet,
as it makes it less generalizable and would thus have a harder time identifying
and populating frames. Even though the results highlighted this disadvantage to
some extent, the lack of coverage was not deemed significant enough to prefer the
PropBank annotation results. Thus, the FrameNet SRL results were selected to
proceed with.

3.4 Matching support tickets
To evaluate if the use of frame semantics could provide an informative representation
of the data, the focus shifted toward matching similar support tickets for decision
support. As feedback on predictions could not be provided on-demand, the selected
categorical fields described in Section 3.1.1 acted as proxies for similarity by being
treated as class labels. The task could thus be treated as a supervised classification
problem while also allowing for evaluating the results of unsupervised approaches
with respect to these predefined groups.

Table 12: Percentage of missing values and the number of classes for each cate-
gorical field.

Field Missing (%) Classes
Issue Class 90.7 3
Fault Area 74.7 4
Faulty Product 36.0 16

All three categorical fields suffered from class imbalance, but Faulty Product differed
in the number of classes (see Table 12). By keeping the three largest classes: Alpha,
Beta, and Gamma, and merging the remaining ones to one class named Other, the
imbalance was somewhat countered while reducing the complexity of the problem

33

Figure 18: Distributions of Faulty Product, excluding empty entries.

by grouping classes with very few samples. These classes were further merged for
classification by grouping all but the largest class (Alpha). Thus, the categorization
based on Faulty Product was altered to a multi-class setting with four classes and a
binary setting (see Figure 18). The original distribution av Faulty Product can be
seen in Appendix A. Note that class names of Faulty Product have been anonymized.
Due to high shares of missing values for Issue Class and Fault Area, 81% and 75%,
respectively, these class labels were only used for evaluating topic modeling with
LDA. Present in 1,463 of the 2,287 support tickets, Faulty Product was used both
for topic modeling and classification.

In general, a data-centric approach was applied, with emphasis on varying how
the support tickets were represented (i.e., the set of features used) rather than a
model-centric approach, where the data is static, and the focus is to optimize the
model.

3.4.1 Preprocessing for topic modeling and classification
Before performing topic modeling and classification, the dataset required further
preprocessing. The result from the FrameNet model’s SRL was structured into
specific fields to facilitate the use of different representations of the support tickets,
as previously mentioned. The SRL output was broken down into the following fields:

• Frames: Name of frames found in a support ticket. If the frame name consisted
of multiple words, they were separated by an underscore.

• Triggers: The part of a sentence evoking a particular frame. They are also
described as targets.

• Element types: The name of all roles (arguments) found in a support ticket.
Excluding the role trigger.

• Element contents: The content associated with each identified role.

34

The cleaned sentences used for SRL were merged into their field of origin, result-
ing in cleaned versions of Summary and Description for each support ticket. Both
text and SRL features from Summary and Description were combined into single
features. Therefore, no distinction between Summary and Description is made in
the list above since, for example, Frames consists of frames from both Summary
and Description. This was mainly due to the text in the Summary field being very
short in general, not resulting in many identified targets for SRL, therefore, not very
informative on its own.

Such structuring of the SRL results allowed for different combinations of features,
with a complete list presented in Table 13. The features Original text and Cleaned
text acted as baselines, where the former was the completely unmodified version of
the merged Summary and Description fields, and the latter was the same text after
the preprocessing steps preceding SRL.

Table 13: Different feature combinations used to represent support tickets for
topic modeling and classification.

Features used
Frames
Triggers
Element types (excl. triggers)
Element contents
Frames and triggers
Frames and element types (excl. triggers)
Frames and element contents
Frames, element types, and element contents
Frames and technical terms
Cleaned text
Original text
Cleaned text and frames
Original text and frames

All features were tokenized using RegEx, separating a sequence of frames or sen-
tences into distinct tokens. Features containing human written text: Original text,
Cleaned text, Triggers, and Element contents, were lemmatized to standardize the
spelling of words. The lemmatization was done with a tool from NLTK based on
WordNet, an extensive lexical database provided by Princeton University [22].

Finally, the dataset was vectorized to create a numerical representation of the fea-
tures. In contrast to the preprocessing steps described above, this step differed
between topic modeling and classification. Latent Dirichlet Allocation (LDA), used
for topic modeling, was designed for discrete data and does not gain anything from
weighting terms. Thus, the dataset used for topic modeling was represented as a

35

Bag-of-Words (BoW) as the shortcomings of BoW compared to TF-IDF do not ap-
ply to LDA [7]. This is not the case for other algorithms, so TF-IDF was used to
vectorize the dataset for classification.

The feature Technical terms was an attempt to deal with and capture critical in-
formation from the technical jargon in the support ticket. Such terminology often
took the form of abbreviations with minor modifications from case to case. Thus,
117 support tickets were analyzed to standardize these abbreviations, resulting in a
vocabulary of 107 technical terms. This vocabulary was then fed into a vectorizer,
which then only paid attention to these terms. Thus, SRL features could be com-
plemented with only the technical terms found in Summary and Description, such
as for the feature alternative Frames and technical terms.

Thus, the support tickets were represented using 13 different feature combinations.
Two acted as baselines, utilizing no semantic information at all. Further, all the
features from SRL: frames, triggers, element types, and element contents were tried
out independently. The semantic frames were then combined with the other SRL
features to investigate if they could complement each other. The support tickets
were also represented using all available features from the SRL analysis. Finally,
some feature combinations aimed to enrich the semantic information, both with
technical terms and with the original and cleaned text versions.

3.4.2 Topic modeling
To investigate if the data could be modeled into topics in a useful way, LDA was
performed on the different feature combinations listed in Table 14. Three and four
topics were used, corresponding to the number of classes of the similarity proxies
Issue Class, Fault Area, and Faulty Product. Thus, it could be investigated if the
topics found corresponded to the known groupings in the dataset and, in extension,
used for identifying similar support tickets. Priors for document-topic (α) and topic-
word (β) distributions were automatically derived from the data by the model. The
number of passes and iterations was set by analyzing the convergence rate in training
logs.

3.4.2.1 Evaluation of topic modeling

The LDA model was fitted using all support tickets with any SRL results, but the
evaluation was done by category (e.g., Faulty Product) and by class (e.g., Beta).
First, the main components of each topic were manually analyzed to understand
if the topics found made sense based on human perception. Second, a reference
corpus consisting only of the support tickets of a specific class was used to calculate
topic coherence scores for each topic-class pair. This was done to investigate if each
topic was especially coherent with a specific class and if so, to see if these coherent
topic-class pairs overlapped. Topic coherence can be calculated in various ways (as
discussed in Section 2.4.2). The measurement used was CUMASS, due to being robust
against noisy topics [9]. Third, since the LDA model assigned a topic distribution
to every seen document, each support ticket was assigned the topic with the highest

36

probability. This allowed for analysis of the topic distribution of support tickets of
a specific class. Thus, for the evaluation steps based on class labels, only a subset
of the support tickets were used due to varying numbers of unlabeled data.

3.4.3 Classification
The main goal of the classification task was to investigate whether the additional se-
mantic information yielded through SRL could be beneficial for separating support
tickets into useful sub-classes. The classification task was done using the modified
class labels from Faulty Product seen in Figure 18. The classes were well balanced
in the binary setting, which was not the case when using four distinct classes. Un-
balanced classes can create a bias in the model, as it may be more accurate for the
majority class and less accurate for the minority class, as mentioned in Section 2.6.

Two separate classification experiments were made with these different annotations
of Faulty Product, with very similar approaches. The general approach will be ex-
plained for both cases simultaneously, and any differences will be clearly highlighted
throughout the following sections.

3.4.3.1 Data sampling for classification

To create the best possible conditions for the classifier, several permutations of the
dataset and classification model were used. The dataset was varied in two ways.
Firstly, all of the 13 datasets mentioned in Section 3.4.1 were used. Furthermore,
for each set, four types of sampling approaches were applied, namely:

A. No upsampling (i.e., keep the dataset untouched).
B. Upsampling up to the majority class (i.e., upsample all classes except the

majority class).
C. Downsample to the second largest class and then upsample the smaller classes

to that size.
D. Downsample to the minority class.

Upsampling was done using scikit-learn’s implementation of SMOTE and downsam-
pling was done by, for each class, randomly deleting a subset of the data. Figure 19
shows a graphical explanation of each sampling approach. The different sampling
approaches were only applied to the multi-class classification problem, as the binary
was well-balanced from the start.

By combining different types of datasets with different types of sampling approaches,
a total number of 56 permutations was acquired. This collection of data became
the foundation on which different models were evaluated to find the model that
performed the best on this classification task.

37

Figure 19: Four ways of sampling data. The darker blue represents the original
data, and the lighter parts represent synthetic data generated through upsampling
with SMOTE.

3.4.3.2 Model selection for classification

As classifiers, four different models were selected, namely:

1. Logistic regression classifier. The idea was to use this model as a baseline that
could be compared with other, more advanced models. Since logistic regression
is initially made as a binary classifier, the one-vs-rest method was applied to
enable multi-class classification. The remaining hyperparameters were kept at
default.

2. Random forest classifier. This model was selected as it is prevalent within the
machine learning industry, thanks to its ease of use and good performance.

3. XGBoost classifier. XGB was selected as a candidate since it often performs
better than a regular random forest and since it is extensively used by the win-
ners of Kaggle (an online community platform for data scientists and machine
learning enthusiasts) competitions [28].

4. Support Vector Machine. SVM was chosen due to its good performance on
unstructured data, such as text. It was also considered to complement the
other models since both random forest and XGB are tree-based classifiers,
and logistic regression uses a statistical approach, while SVM is based on the
geometrical properties of the data [4].

38

In total, this accumulated to 208 runs (13 feature alternatives, four sampling ap-
proaches, and four classifiers). Moreover, five-fold cross-validation was applied to
reduce the impact of the train-test data split. The cross-validation method used
was stratified K-fold, ensuring that the train and validation split is stratified in
class distributions. Further models could have been evaluated, such as a simple
neural network implemented with Keras or a more advanced transformer model.
However, due to the large number of runs needed to compare different data sets and
models, computational power limited what models could be used. Thus, a deliberate
decision was made to exclude computationally demanding models.

3.4.3.3 Evaluation of classification

After defining classifiers, datasets, and sampling techniques, a series of runs were
performed, and the results were sorted based on a weighted F1 score. After sorting,
each feature alternative’s best combination of sampling technique and classification
model was kept. A random search with these combinations was then performed to
improve the performance of these combinations further. Random search is a method
for hyperparameter optimization, where a range of values for each hyperparameter
is specified and the algorithm randomly samples from these ranges to generate a set
of candidate models [5]. By performing a random search, combinations of hyperpa-
rameters that resulted in improved performance on the classification task could be
identified. Overall, this approach allowed for identifying the most effective combi-
nations of sampling techniques and classification models for each feature alternative
and further improving the performance of these combinations through the use of
random search for hyperparameter optimization. The search was done using the
package RandomizedSearchCV, distributed by scikit-learn. For each random search,
a five-fold cross-validation was done, and the number of iterations was set to 30.
The search evaluated the scores based on a weighted F1 score. After the random
search, the optimized models were tested on a held-out test set.

3.5 Used hardware and software
Ericsson provided computational resources in two parts:

• Laptop equipped with a quad-core Intel Core i5 @ 2.4GHz and 16GB DDR4
SDRAM.

• Access to NVIDIA T4 GPUs through the cloud platform Amazon Web Services
(AWS).

The software was written in Python 3.10, and the main libraries used were: Pandas,
spaCy, NLTK, Hugging Face, AllenNLP, Frame Semantic Transformer, Gensim, and
scikit-learn.

39

4
Results

The following chapter will present the results of the experiments conducted during
this thesis. First, the results from the topic modeling will be presented in Section
4.1 before presenting the results from both the multi-class and binary classification
in Section 4.2. To compress the tables and thus facilitate reading, each feature al-
ternative used for topic modeling and classification have been mapped to a specific
number. These mappings, displayed in Table 14, will be used as aliases for the
various ways of representing the support tickets throughout the thesis. It is impor-
tant to note that even though the data representations used for topic modeling and
classification were identical in their textual form, they differed in how they were
converted to numerical form (i.e., vectorized). For topic modeling, BoW was used,
while for classification, TF-IDF was used, as explained in Section 3.4.

Table 14: Feature alternatives of support tickets used for topic modeling and
classification.

Features used Feature alternative
Frames 1
Triggers 2
Element types (excl. triggers) 3
Element contents 4
Frames and triggers 5
Frames and element types (excl. triggers) 6
Frames and element contents 7
Frames, element types, and element contents 8
Frames and technical terms 9
Cleaned text 10
Original text 11
Cleaned text and frames 12
Original text and frames 13

4.1 Topic modeling
The results from topic modeling with LDA were separated into three parts due to
the results being evaluated with respect to three different categorizations (i.e., class
labels), namely Issue Class, Fault Area, and Faulty Product. In this thesis, only the

40

result from the evaluation of Faulty Product will be presented for two reasons. First,
the results are similar across categorizations. Thus, it was considered superfluous to
present them all. Second, it will facilitate comparison and discussion regarding the
classification results, which were evaluated exclusively with labels from the Faulty
Product field due to few support tickets annotated with Issue Class and Fault Area.

Despite performing LDA with all feature alternatives listed in Table 14, only a
subset of these results will be presented. The results from feature alternatives not
presented in this section can be seen in Appendix C. As explained in Section 3.4.2.1,
each LDA run was evaluated in three steps, each visualized differently, producing
three figures for each feature alternative. Many feature alternatives produced simi-
lar results, reducing the need for displaying them all. First, the baseline results will
be presented, accompanied by an explanation of the different figures. These expla-
nations will be relevant throughout the section since the visualizations will follow
the same structure independent of the feature alternative used to produce them.

4.1.1 Baseline
The topics produced by the LDA model with a dataset based solely on text from
Summary and Description, not using any SRL features, acted as the baseline results
for topic modeling. This was done on the original data and the cleaned version,
having gone through all the preprocessing steps. Using the cleaned dataset produced
results that better supported the Faulty Product labels; thus, only these results
(feature alternative 10, see Table 14) are presented here.

Figure 20: Topics produced by LDA using feature alternative 10.

41

In Figure 20, the topics are represented as respective topics’ top ten terms together
with their probabilities. Since the dataset produced by feature alternative 10 only
consisted of text (i.e., no SRL features), the top terms are exclusively words. Terms
represented as a single capitalized letter (e.g., X in topic 2) are anonymized terms.
The anonymization is consistent, such that X in for feature alternative 10 is equiva-
lent to X for feature alternative 9, and so on. The technical jargon and the somewhat
subtle differences make a subjective evaluation of topics difficult. Still, some pat-
terns can be identified. Topic 1 seems to consist of general terms considered in the
context of cloud infrastructure, while in topic 2, both power and dead are important,
related terms. In topic 3, several related terms can be found, such as ip, address, and
network. Significant overlap regarding the topics’ top terms can be seen: compute is
present in all four, different conjugations of fail can be found in three, and a number
of terms can be found in half of the topics. For topics 1 and 4, the probabilities of
the terms are quite evenly distributed. Further, topic 4 has two terms referring to
virtual machines, vm and vms, with relatively high probabilities. It should be noted
that virtual machines are one of the core pillars of cloud computing.

Figure 21: Topic coherence by class using feature alternative 10.

In Figure 21, the topic coherence scores for each class are presented. As described in
Section 3.4.2.1, calculating the topic coherence for a specific topic requires a corpus,
described as a reference corpus in Section 3.4.2.1. The topic coherence scores pre-
sented for Alpha, therefore, used a reference corpus consisting only of the support
tickets labeled as Alpha. Since topic coherence is calculated using CUMASS, log prob-
abilities are used for visualization, where a higher value (but a smaller bar due to
negative values) indicates higher coherence. A significantly higher topic coherence
value for a specific topic indicates that support tickets of the class in question (e.g.,
Alpha) are best represented by this topic.

Figure 22 presents topic counts by class. The support tickets are assigned a topic
based on their topic distribution inferred by the LDA model, such that they are
assigned the topic with the highest probability. Thus, the topic counts presented

42

Figure 22: Topic counts by class using feature alternative 10.

in this chapter are based on the topic distributions of the support tickets. How-
ever, they are not identical, as the topic distribution likely would be more evenly
distributed.

Both topic coherence scores and topic counts support the groupings based on the
merged Faulty Product annotations. All classes but Other exhibit a strong relation-
ship with a specific topic: Alpha with topic 4, Beta with topic 3, and Gamma with
topic 2. Interestingly, the difference in topic coherence between the most coherent
topic, and least coherent topic, is significantly greater for Beta and Gamma, compared
to Alpha and Other.

4.1.2 Topic modeling of frames
In Figure 23, we present the results of the topics that were generated by using a
dataset of only identified frames (feature alternative 1 in Table 14). Frame names
are written in upper case to be distinguishable from tokens directly retrieved from
text features, such as the word network (found in element contents or cleaned text,
for example) and the frame NETWORK. This will be important for feature alter-
natives combining frames with other features, such as feature alternatives 9 and 12.
The top term in topic 1, the frame SUCCESSFUL_ACTION, is the term with the
highest probability among all topics and terms while also being present in topic 2.
Similar to the baseline case, the topics’ top terms overlap. The frames INTEN-
TIONALLY_CREATE and INSPECTING are present in three out of four topics,
and a number of frames are among the top terms in two topics.

As seen in Figure 23, topic 4 appears insignificant, with low probabilities for even its
top terms. This is emphasized by the topic coherence presented in Figure 24, where
topic 4 is not particularly coherent with any class. Identifying connections between
terms is intricate, with a few exceptions. For example, in topic 3, the frames NET-
WORK and HAVING_OR_LACKING_ACCESS are among the most prominent

43

terms. Similar to the baseline, the range of topic coherence values is two to three
times greater for Beta and Gamma compared to the other two classes.

Figure 23: Topics produced by LDA using feature alternative 1.

Figure 24: Topic coherence by class using feature alternative 1.

When we examine the results further by looking at topic counts in Figure 25, we
find that neither topic coherence nor topic counts imply a clear distinction between
classes compared to the baseline case. Only Gamma exhibits a clear relationship to a
specific topic, which is topic 2, a topic that is present in every class, being the most
assigned topic in both Beta and Other in addition to Gamma.

44

Figure 25: Topic counts by class using feature alternative 1.

The results that were generated using feature alternative 1 are representative of the
results based on feature alternatives that rely only on SRL features. Naturally, the
topics differed due to being derived from datasets with different features. In general,
none of the feature alternatives 1 to 8 produced topics that supported the groupings
based on Faulty Product.

4.1.3 Combining frames with technical terms

Paying attention to technical terms in the support tickets was thought to comple-
ment features that were derived from SRL analysis. Thus, feature alternative 9
combined terms from the technical vocabulary described in Section 3.4.1 with se-
mantic frames. In Figure 26, it can be seen that the top terms of each topic are a
mix of technical terms and FrameNet frames (written in upper case). Topic 3 stands
out with only four frames among the top ten terms compared to six for topic 1, and
seven for topics 2 and 3. In topic 4, the three top terms are from the technical vocab-
ulary, and all have significantly higher probabilities than the rest of the topic’s top
terms, which are all frames but one. Topics overlap, especially in terms of frames, as
both SUCCESSFUL_ACTION and INSPECTING are among the top ten terms for
three topics. Regarding overlapping technical terms, compute is found in three top-
ics. Additionally, multiple frames and technical terms are found in two of four topics.

The topic coherence for each class and every topic are presented in Figure 27. Beta
and Other appear particularly coherent with topic 4. The same goes for Alpha,
although the topic coherence score for topic 2 is not very far off. For Gamma, topic
coherence scores are both low and similar between topics, with topic 1 scoring slightly
worse than the rest. Similar to previous results, the range of topic coherence scores
is significantly greater for Beta and Gamma.

45

Figure 26: Topics produced by LDA using feature alternative 9.

Figure 27: Topic coherence by class using feature alternative 9.

Regarding topic counts in Figure 28, it is increasingly clear that the groupings based
on Faulty Product are not supported by the topics. No class has a strongly preferred
topic, except Alpha (topic 4) to some extent. Support tickets of the Beta class are
rather evenly distributed between topics 3 and 4, while support tickets from Other
and Gamma are spread across topics, except topic 1 for the latter. A sizable share
of support tickets from each class was assigned topic 4, the topic with the highest
probability terms across all topics: ip, compute, and stack.

46

Figure 28: Topic counts by class using feature alternative 9.

4.1.4 Enriching text with frames
Feature alternative 12 produced a dataset consisting of both the cleaned text (from
Summary and Description) and the semantic frames found in the exact text. Com-
pared to feature alternatives 1 to 8, where the features were solely based on output
from the SRL, this feature alternative aimed to explore if frames could enrich the
textual representation of the support tickets rather than replacing it. As previously
mentioned, frames are distinguished by using upper case.

Figure 29: Topics produced by LDA using feature alternative 12.

47

Figure 29 visualizes the topics and their top components. Features from the BoW
representation of the text are significantly more prevalent than semantic frames, with
only eight frames found among the 40 terms (four topics, top ten terms for each).
Of these eight frames, only five are unique, as the frames SUCCESSFUL_ACTION,
INTENTIONALLY_CREATE, and INSPECTING, all are included in two of four
topics’ top ten terms.

Figure 30: Topic coherence by class using feature alternative 12.

Topic coherence scores show some similarity between Alpha and Gamma, not in terms
of actual values but rather the distribution of coherence scores (see Figure 30). The
same is partly true for the other two classes, Beta and Other, especially regarding
topics 3 and 4. Analyzing the topic counts in Figure 31, Beta, and Gamma has a
strongly favored topic to which respective support tickets are assigned based on
their topic probabilities. Similarly to Gamma, Alpha assigns most support tickets to
topic 1, although topic 3 is quite common too. Regarding Other, the distribution of
topic assignments is spread out, with topic 3 being the least common. There seems
to be some overlap due to topic 1 being so common for three out of four classes.

Figure 31: Topic counts by class using feature alternative 12.

48

4.2 Classification
In this section, the results of the two classification tasks will be presented. The
best scores from trying all possible alternatives, mentioned in Section 3.4.3, will be
compared and displayed in box plots. Further, the final scores of each model yielded
after hyperparameter optimization through random search will be displayed in two
separate tables. Similar to topic modeling, the cleaned text (feature alternative 10)
will be used as the baseline. The metric used to evaluate the classification models
is the weighted F1 score. F1 scores for each label in a dataset are calculated. An
overall average is then found by weighting by the number of true instances for each
label. This means that larger classes will have a more significant impact on the final
F1 score [44].

4.2.1 Multi-class classification
Figure 32 displays a box plot of the multi-class classification results before any hy-
perparameter optimization. For each feature alternative, the best combination of
classification model and data sampling techniques has been chosen to present their
optimal ability to classify support tickets. Thus, each feature alternative has its own
combination of model and sampling approach, which can be found in Table 15.

Figure 32: Box plot of multi-class classification results.

The box plot consists of three main components. The box represents the middle
50% of the data, or the interquartile range (IQR), and is bounded by the first and
third quartiles (Q1 and Q3). The median of the data is also indicated by a line
within the box. The whiskers extend from the box to the minimum and maximum

49

values of the data, excluding outliers. The outliers are plotted as individual points
outside the whiskers and are defined as data points more than 1.5 times the IQR
away from the first and third quartiles [20]. Table 15 presents of the specific pa-
rameters used for each plot. Each box plot represents F1 scores from the five-fold
cross-validation. Therefore, it is important to note that only five samples are used
to calculate the features of the box plot. As a result, the plot for feature alternative
10 implies that this setting has low variance. This resides in the fact that only three
samples are used to calculate the IQR, which in this case has led to the remaining
samples being classified as outliers, and thus ignored when the quartiles are calcu-
lated. The individual samples can be seen in a categorical value plot in Appendix D.

Looking at Figure 32, it is possible to discern three clusters of feature alternatives
concerning their performance on a held-out validation set. The first cluster con-
sists of feature alternatives 10 to 13, which are the alternatives with the highest
median F1 scores. These are also the alternatives that contain the largest amount
of raw text. Feature alternatives 10 (i.e., the baseline) and 11 consist of the original
and cleaned text, respectively, without any additional semantic information yielded
through SRL. Feature alternatives 12 and 13 also contain original and cleaned text,
respectively, together with the names of the frames evoked during SRL. Thus, it is
evident that plain text written by the user (which is kept after preprocessing) is the
common denominator for these feature alternatives.

A second cluster can be made of feature alternatives 4, 7, and 8. Alternative 4
uses only element content, while alternative 7 uses element content combined with
frames. Alternative 8 uses element content, element types, and frames. Thus, the
element content connects the feature alternatives in this cluster. As described in
Section 3.4.1, element content is defined as the content associated with each identi-
fied role. In other words, element content also consists of natural language written
by the user but is slightly distilled compared to alternative 10 (cleaned text). This
further highlights that natural language is present in all top-performing models.

The third and final cluster consists of the remaining feature alternatives (1,2,3,5,6
and 9). These are all the feature alternatives that contain most information ex-
tracted through SRL, such as names of frames, words that triggered a certain frame,
as well as the name of the arguments found in support tickets (frame types). More-
over, they are also the alternatives that contain the least amount of natural text.

50

Table 15: Results of multi-class classification after random search, all sampling
approaches allowed.

Feature alternative F1 validation F1 test Model Sampling approach
13 0.88 ± 0.04 0.61 LR B
11 0.88 ± 0.04 0.60 LR B
10 0.86 ± 0.04 0.57 LR B
12 0.86 ± 0.03 0.57 LR B
7 0.83 ± 0.05 0.53 LR B
4 0.83 ± 0.03 0.52 LR B
8 0.84 ± 0.05 0.52 LR B
9 0.79 ± 0.08 0.52 XGB B
5 0.77 ± 0.06 0.46 LR B
1 0.44 ± 0.01 0.45 XGB A
6 0.77 ± 0.10 0.44 XGB B
2 0.69 ± 0.03 0.41 LR B
3 0.43 ± 0.01 0.41 XGB A

Table 15 shows a more detailed view of the results of the top-performing model-
sampling combinations for each feature alternative after hyperparameter optimiza-
tion. The table presents validation and test scores yielded through the random
search with five-fold cross-validation. As mentioned in the caption, these model-
sampling combinations were selected without any restriction on the sampling ap-
proach. Regarding models, it can be seen that logistic regression (LR) and XGBoost
(XGB) are the highest-performing models for all feature alternatives. The sample
size column indicates that downsampling has not yielded any better scores compared
with keeping the data as is before upsampling while upsampling the data to the ma-
jority class (see alternative B in Figure 19) proved to be a successful approach in
terms of increasing scores on the held-out test set. However, it is essential to note
that upsampling the data leads to a final training set that largely consists of syn-
thetic samples (which is represented as lighter-hued blue in the bar plot presented
in Figure 19).

When upsampling to the majority class, around 1,130 additional samples are made,
which constitutes 50% of the total samples in the training set. This can be seen
in Table 15 when comparing the validation score with the final test score for the
feature alternatives that were upsampled. In these cases, upsampling the data has
increased the validation score due to information leakage, while the performance on
the test set has barely improved (since these samples are not taken into account
when upsampling is performed). This is known as oversampling leakage and is com-
mon in situations where the dataset is upsampled before being split into train and
validation sets [39]. Unfortunately, the library used for random search does not offer
any possibility to apply changes to the data during cross-validation, which hinders
any prevention of this leakage. To address this issue, another random search was ex-
ecuted that used the top-performing combinations of model and sampling technique,

51

excluding combinations utilizing upsampling, with results visible in Figure 16. By
doing this, information leakage that affected the validation score was prevented.

Comparing the results from the two random searches, one can see that while up-
sampling the data leads to inflated validation scores, the resulting test scores are
practically unchanged. Looking at the model column, logistic regression was found
to be the best model for this case overall, with XGBoost coming in as a close second.

Table 16: Results of multi-class classification after random search, upsampling
not allowed.

Feature alternative F1 validation F1 test Model Sampling approach
11 0.59 ± 0.01 0.61 LR D
13 0.59 ± 0.03 0.61 LR D
8 0.55 ± 0.07 0.58 LR D
10 0.61 ± 0.04 0.57 LR A
12 0.59 ± 0.05 0.56 LR D
7 0.55 ± 0.04 0.51 XGB A
4 0.55 ± 0.03 0.50 XGB A
9 0.50 ± 0.02 0.47 XGB A
2 0.49 ± 0.03 0.44 LR A
1 0.46 ± 0.04 0.43 XGB A
6 0.46 ± 0.03 0.43 XGB A
5 0.41 ± 0.08 0.40 LR D
3 0.43 ± 0.02 0.38 XGB A

Finally, a classification report for the top-performing model was created to investi-
gate whether some classes were more complex to distinguish than others. It is visible
in Table 17. The report reveals that the classifier performed best on Alpha, with F1
score of 73%, while performing worse on the remaining classes, Gamma, Other, and
Beta with F1 scores of 50%, 56% and 43% respectively.

Table 17: Classification report for using feature alternative 11, a logistic regres-
sion classifier, and sampling approach D.

Precision Recall F1 score Support
Alpha 0.64 0.67 0.65 24
Beta 0.60 0.88 0.71 24
Gamma 0.90 0.75 0.82 24
Other 0.31 0.21 0.25 24
Accuracy 0.62 96
Macro average 0.61 0.62 0.61 96
Weighted average 0.61 0.62 0.61 96

52

4.2.2 Binary classification

Figure 33: Box plot of F1 score on binary class classification.

Figure 33 displays a box plot of the binary classification results before any hyper-
parameter optimization. Comparing this plot with the box plot displayed in the
multi-class case (Figure 32), there is a clear resemblance between them. The main
difference is that the scores are generally higher, most likely because the number of
classes is reduced from four to two. It is still possible to discern the three clusters
discussed in the previous section. Similar to the multi-class case, the small number
of samples has led to two being classified as outliers, even though they constitute
40% of all samples. This happens for feature alternative 1 and can be seen in Fig-
ure 33.

Furthermore, all feature alternatives in the binary case performed the best using
a logistic regression model. Thus, a logistic regression model was tuned through
random search for each feature alternative. Since the initial class distribution was
well-balanced in the binary case, no downsampling nor upsampling was done.

53

Table 18: Results of binary classification after random search.

Feature alternative F1 validation F1 test
13 0.76 ± 0.03 0.76
11 0.75 ± 0.04 0.76
10 0.73 ± 0.03 0.74
12 0.73 ± 0.02 0.73
4 0.70 ± 0.03 0.70
7 0.71 ± 0.02 0.69
8 0.71 ± 0.01 0.68
9 0.67 ± 0.01 0.64
2 0.65 ± 0.03 0.62
1 0.65 ± 0.02 0.61
5 0.64 ± 0.03 0.60
6 0.62 ± 0.03 0.58
3 0.59 ± 0.02 0.56

The performance on the validation sets during random search and a held-out test
set are presented in Table 18. Since all feature alternatives performed best with the
same kind of model (logistic regression), the model column is left out. By comparing
the validation and test scores, no signs of overfitting are shown. This is most likely
due to the fact that no upsampling nor downsampling is done in the binary case.
Finally, the order of the feature alternatives is similar to the order in Table 16, with
the exception that feature alternative 8 has relatively lower scores in Table 18.

54

5
Discussion

The following chapter presents a summary and a detailed analysis of the results.
This analysis aims to provide insight into the research questions posed in the thesis.
The chapter is divided into three sections highlighting separate issues or results
related to the research questions.

5.1 Effects of preprocessing
To enhance performance, a major part of the project was preprocessing, which was
necessary to make the data as similar to the data used to train the SRL models as
possible. Further, the hope was that the text distilled through preprocessing would
still contain the relevant information needed to perform classification while remov-
ing superfluous content, such as error messages and common courtesy phrases. If
that were the case, it would create a more informative representation of the support
tickets in combination with semantic frames. However, when looking at the result
of both topic modeling and classification, the cleaned text does not yield any signif-
icant increase in performance compared with the original text. There are multiple
possibilities for why this is the case. First, it is possible that a large chunk of rel-
evant information can be found within the error messages or the machine-written
logs. Thus, removing them potentially restrained performance. However, since the
aim of the thesis was to investigate whether additional semantic information could
facilitate the matching of support tickets, removing text not explicitly written by
humans, such as machine-written logs, was required. With that said, the preprocess-
ing was done with SRL in mind. Thus, there could have been other ways to perform
preprocessing since the optimal data for SRL and support ticket classification, as
well as topic modeling, is not necessarily the same.

Second, there is a possibility that this approach enabled categorization of the infras-
tructure in a way that separates problems containing words such as ‘Node’ or ‘Pod’
from problems related to ‘virtual machine’ but fails to understand the underlying
issues that cause these problems to occur. For example, the technical terms ‘Node’
and ‘Pod’ seem related, but some support tickets containing these terms have to do
with a request problem, while others have to do with some hardware malfunction.
Thus, separating these support tickets based on certain technical terms can be sub-
optimal; therefore, standardizing them through regular expression does not improve
performance.

55

These possible issues with the preprocessing step could potentially hinder increased
performance. Nevertheless, while the cleaned text does not increase performance, it
neither impairs it significantly. That said, there is a pattern of unprocessed, original
text resulting in slightly better scores than the cleaned text. This implies that the
most vital information resides within the 20% of the text that is kept and puri-
fied during preprocessing (see Figure 16), but some are lost during preprocessing.
Thus, a reason for the similar performance for feature alternatives using cleaned
and original text could be that the loss of useful information contained in the re-
moved machine-written logs and error messages is compensated by the fact that the
remaining text is less noisy.

As described in Section 3.4.1, features based on text written by Ericsson personnel
were lemmatized to standardize terms. Looking at the topics produced with LDA
in Figure 20, based on a dataset with cleaned, preprocessed text, it could be ques-
tioned whether lemmatization standardized the text enough. Multiple conjugations
of ‘fail’ are among the topics’ top ten terms, which could have been avoided with
more strict approaches, such as stemming. Still, such approaches were disregarded
in favor of lemmatization due to interpretability and to avoid stripping the text of
potentially essential distinctions between similar terms. In retrospect, the level of
noise and technical jargon perhaps could suggest that different types of problems
are not characterized by minor syntactic differences, which would argue for a less
sophisticated, more strict way of standardizing terms.

Another unexpected behavior surfaced as a result of processing the data. The result-
ing classification scores after trying all possible alternatives (Figure 32) indicated
that upsampling the data resulted in higher test scores since all models performed
better when they were trained on an upsampled dataset for the multi-class classi-
fication task (see Table 15). Moreover, according to the results, it is beneficial to
upsample the data to the majority class (sampling approach A in Figure 19), leading
to a final training set where 50% of the samples were synthetic. Even though up-
sampling initially led to better performance on a test set, it also contributed to the
model being overfitted due to oversampling leakage, resulting in inflated validation
scores. In an ideal scenario, we would have first divided the data into five folds for
cross-validation and then upsampled the four folds used for training while leaving
the fifth fold used for validation untouched. However, as discussed in Section 4.2.1,
it was impossible to modify the data during cross-validation without implementing
a custom random search method, which was deemed excessive for our purposes.

Comparing the resulting scores with and without upsampling (Table 15 and Table
16), there is no clear difference in performance. It is, therefore, interesting that
upsampling is the best alternative for the initial test but does not lead to increased
performance after the random search. One reason could be that the initial hyper-
parameters set when first comparing models with each other were suboptimal for
the downsampled dataset, which is then handled during the random search. Also,
given that hyperparameters were initially tuned with a share of synthetic samples,
they may be closer to being arbitrary than truly optimized for the entire dataset.

56

In an optimal scenario, a random search would have been performed on all possible
alternatives, but this was deemed too time-consuming with the available resources
and time frame in mind.

5.2 Quality of the class labels
Results from the topic modeling and the multi-class classification revealed that some
classes were more challenging to distinguish than others. For topic modeling with
LDA, the baseline case (feature alternative 10) produced topics best supporting the
Faulty Product classes. Both in terms of topic coherence (see Figure 21) and topic
counts (see Figure 22), Beta and Gamma exhibited the most apparent relationship
with a specific topic. To some extent, this applied to Alpha too, while support tickets
belonging to Other appeared to consist of an even mix of all topics. Although less
obvious, the same pattern repeated across different feature alternatives, specifically
for Other. Further, it proved more difficult to classify support tickets from Alpha
and Other, in comparison to Beta and Gamma. Looking at the classification report
presented in Table 17, where a logistic regression model was trained and tuned us-
ing a completely balanced dataset with no synthetic samples before being evaluated
on a held-out test set, the performance also varied between classes. This is most
evident for Other, with an F1 score of 0.25, far off the second lowest scoring class
Alpha. Although Alpha is not much worse than Beta, F1 score of 0.65 compared to
0.71, it still follows the same patterns as topic modeling.

The differences in topic coherence scores between classes could further suggest that
both Alpha and Other are more heterogenous than the other classes. For all feature
alternatives presented in the results, both classes had relatively high topic coherence
scores for all topics compared to Beta and Gamma. This difference in the range of
topic coherence scores can be seen in Figure 21, a pattern replicated across feature
alternatives. Nevertheless, this is more likely due to differences in class sizes. Both
Alpha and Other are significantly larger classes than Beta and Gamma, and thus
provide larger reference corpora for calculating topic coherence scores. As explained
in Section 3.4.2.1, word probabilities based on frequency counts are the foundation
of topic coherence.

A potential problem is using similarity proxies instead of a truthful way of mea-
suring the similarity between support tickets. The solution developed for this thesis
aimed to assist support engineers at Ericsson by providing similar, historical (e.g.,
solved) support tickets as guidance for an encountered problem. Thus, similarity
should be based on the solution rather than the problem. All similarity proxies used
for this thesis (Issue Class, Fault Area, Faulty Product) categorize the support tick-
ets based on the problem. The assumption motivating this was that similar support
tickets have similar solutions. This is not necessarily the case. Either way, using
proxies introduces uncertainty in what is regarded as ground truth. Although not
possible for this thesis, as explained in the limitations section (1.3), a truthful way
of measuring similarity in terms of how the problem described in a support ticket
was solved should be developed by subject matter experts for future work.

57

5.3 The impact of SRL for classification and LDA

For the classification of Faulty Product classes, we employed an SRL model, which
already existed for English. We tried to optimize the model performance by ex-
perimenting with several feature alternatives. In all classification results, binary or
multi-class, the best-performing feature alternatives contained the text from Sum-
mary and Description. The only exception was the multi-class case without up-
sampling, where feature alternative 8 performed better than feature alternatives 10
and 12 (see Table 16). Nonetheless, feature alternatives 10 to 13 performed con-
sistently better than other feature alternatives. It is difficult to say which of these
was the best, but feature alternatives 11 and 13 outperformed feature alternatives
10 and 12 after hyperparameter optimization in all three cases: binary, multi-class
with upsampling, and multi-class without upsampling. Although not identical, the
common denominator among these feature alternatives was that the data used for
classification was based on manually written text (see Table 14). Further, of the fea-
ture alternatives using only SRL features, those including element contents generally
performed better than those without. As previously mentioned, element contents
consist of manually entered text, but only those parts related to an identified ar-
gument. Thus, the element contents acted as a filter, keeping only the parts of the
text related to the evoked frames from SRL. These results further strengthen the
assumption that the information relevant to the classification of support tickets with
respect to Faulty Product annotations was better represented by the text than the
features yielded from SRL.

From the LDA results, it can be seen that the topics derived from the dataset, which
was generated by using feature alternative 10, consisting only of cleaned text, best
supported the groupings based on the (multi-class) Faulty Product labels (see Fig-
ure 22). Feature alternative 12, adding frames to the cleaned text, supported these
groupings to a lesser extent, but still more so than other feature alternatives solely
based on SRL features. Hence, the classification and LDA results suggest that the
SRL features do not capture information critical to distinguish these classes. Rep-
resenting the support tickets with frame semantic information from the SRL model
trained on the English FrameNet was not as advantageous as expected, neither on
its own nor combined with the text the model was applied on.

As highlighted in Section 2.3.2.2, Fillmore and Baker [23] define a frame as a “script-
like conceptual structure that describes a particular type of situation, object, or
event and the participants involved in it”. Such broad conceptual structures do
not capture the information distinguishing the Faulty Product classes. Human-level
performance (HLP) often acts as a baseline for tasks concerning unstructured data,
such as text. In this case, HLP can be divided into two categories, HLP by subject-
matter experts and HLP by someone with basic knowledge of the context. We, the
authors, consider ourselves a good representation of the latter category. Trying to
determine which Faulty Product label to assign to a support ticket based on the
cleaned text prepared for SRL was seldom trivial. The support engineers at Eric-
sson, representing the expert HLP, may base their annotations on information not

58

present in the support tickets’ Summary and Description. This common knowledge
information may exist in the support tickets in the form of other fields disregarded
in this thesis or more vague forms such as experience from solving previous support
tickets. Codifying how these categorizations are made may be helpful in under-
standing if SRL can catch the correct information and, if so, how to utilize it in the
best possible way.

According to the results of our experiments, the poor LDA and classification per-
formance is not because of the FrameNet SRL model but rather because of the
nature of the data. In Section 3.3.2, we showed that both the FrameNet and the
PropBank models performed well on the dataset regarding frames and arguments
found. Thus, the high level of granularity of the frame elements in FrameNet did
not restrain the extent of semantic annotations significantly and is not the cause
for the low performance of the models on the examined data. Despite FrameNet’s
semantic information extraction properties, the framework in its current form did
not manage to capture enough information in the examined context. Constructing
context-specific frames or mapping specific frames to specific problems in collabo-
ration with subject matter experts could be a possible solution to aid FrameNet in
extracting relevant information for the specific task. Moreover, choosing to proceed
with the output from the PropBank model is not thought to have produced better
final results. PropBank offered slightly better coverage by identifying more targets
but less detail in terms of fewer arguments per target (i.e., frame). Moreover, al-
though FrameNet frames are more informative than PropBank’s counterparts, they
still need to capture more information to distinguish between the different classes.

59

6
Conclusion and future work

The aim of this thesis was to explore whether it was possible to apply generalized
state-of-the-art (SOTA) models trained on well-structured corpora to utilize seman-
tics to facilitate information retrieval in a technical context. The following research
questions encapsulated this aim:

1. Can current state-of-the-art semantic role labeling (SRL) models provide
useful semantic information in a highly technical context?

2. Can such semantic information facilitate the matching of similar support
tickets?

Despite the technical context, the SRL models used in this thesis both success-
fully extracted semantic information, regardless of their differences in their semantic
frameworks. The visual analysis and overall statistics supported that both models
identified relevant targets in sentences and populated frames with roles accordingly.
As for the usefulness of this semantic information, the topic modeling and classifica-
tion results unanimously indicate that the information yielded from the FrameNet
SRL model does not represent the support tickets advantageously, at least not in the
context of grouping the support tickets according to the categorizations provided by
Ericsson. The hypothesis that the semantic information obtained from SRL could
enrich the original textual representation (preprocessed or not) rather than replace
it was neither proved nor disproved, as it barely affected the results. Nevertheless,
it can be concluded that although semantic information was extracted, this was
neither useful nor could facilitate matching similar support tickets in the context of
cloud infrastructure at Ericsson.

Since semantic features were extracted successfully, these did not capture the critical
information characterizing the different groupings. This may be due to FrameNet
being too general for the specific context, suggesting customization of the semantic
framework as a possible solution. The categorizations used as similarity proxies for
support tickets may be at fault. These annotations may be based on information
outside the text chosen to represent the support tickets, i.e., the Summary and De-
scription fields.

However, although not the case for the approach in this thesis, we firmly believe
that semantic information yielded through SRL can be helpful in matching similar
support tickets. Semantic frames provide information otherwise not present in the
text and should thus be able to enrich the representation. Even though not possi-

60

ble for this thesis, we encourage future approaches utilizing FrameNet to include a
human-in-the-loop. This would enable the codification of how the support engineers’
decisions are made and the development of a truthful way of measuring similarity
rather than similarity proxies. Further, we encourage experimenting with the devel-
opment of context-specific frames based on the original FrameNet frames. During
our work, the frames were often found to be too broad a representation. Selecting
a subset of frames and modifying the roles for a specific context could allow a more
structured approach to leverage SRL for information extraction. This would likely
require subject matter experts to be executed successfully, once again highlighting
the possible advantages of utilizing a human-in-the-loop. Moreover, we encourage
future work to use semantic annotations based on other semantic frameworks, such
as PropBank. Although we hypothesized that FrameNet annotations would be more
beneficial for the task, different characteristics allow for different approaches. For
example, the standardization of PropBank roles allows for more sophisticated ways
to combine targets and specific arguments, such as a feature alternative of target
and ARG0. We encourage future experiments to take advantage of the relations be-
tween FrameNet frames, such as subframes or inherited frames, to further enrich the
semantic information from SRL. Lastly, our experiments have also suggested that
studying how language develops over time by analyzing changes in frame semantics
may provide novel and interesting insights.

61

62

Bibliography

[1] About - Allen Institute for AI. 2022. url: https://allenai.org/about.
[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine

translation by jointly learning to align and translate”. In: arXiv preprint
arXiv:1409.0473 (2014).

[3] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. “The Berkeley FrameNet
project”. In: COLING-ACL ’98: Proceedings of the Conference. Montreal,
Canada, 1998, pp. 86–90.

[4] Jason Bell. Machine Learning: Hands-On for Developers and Technical Profes-
sionals. Indianapolis, IN: Wiley, 2014. isbn: 978-1-118-88906-0. url: https:
//ebookcentral.proquest.com/lib/chalmers/reader.action?docID=
1818248.

[5] James Bergstra and Yoshua Bengio. “Random Search for Hyper-Parameter
Optimization”. In: J. Mach. Learn. Res. 13.null (Feb. 2012), pp. 281–305.
issn: 1532-4435.

[6] Rok Blagus and Lara Lusa. “SMOTE for High-Dimensional Class-Imbalanced
Data”. In: BMC bioinformatics 14 (Mar. 2013), p. 106. doi: 10.1186/1471-
2105-14-106.

[7] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent dirichlet al-
location”. In: J. Mach. Learn. Res. 3 (2003), pp. 993–1022. issn: 1532-4435.
doi: http://dx.doi.org/10.1162/jmlr.2003.3.4-5.993. url: http:
//portal.acm.org/citation.cfm?id=944937.

[8] Leo Breiman. “Random Forests”. English. In: Machine Learning 45.1 (2001),
pp. 5–32. issn: 0885-6125. doi: 10 . 1023 / A : 1010933404324. url: http :
//dx.doi.org/10.1023/A%3A1010933404324.

[9] João Marcos Campagnolo, Denio Duarte, and Guillherme Dal Bianco. “Topic
Coherence Metrics: How Sensitive Are They?” In: Journal of Information and
Data Management 13.4 (Oct. 2022). doi: 10.5753/jidm.2022.2181. url:
https://sol.sbc.org.br/journals/index.php/jidm/article/view/
2181.

[10] David Chanin. Frame-semantic-transformer. May 2022. url: https://pypi.
org/project/frame-semantic-transformer/.

[11] Nitesh V Chawla et al. “SMOTE: synthetic minority over-sampling technique”.
In: Journal of artificial intelligence research 16 (2002), pp. 321–357.

[12] Tianqi Chen and Carlos Guestrin. “XGBoost”. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, Aug. 2016. doi: 10.1145/2939672.2939785. url: https:
//doi.org/10.1145%2F2939672.2939785.

63

https://allenai.org/about
https://ebookcentral.proquest.com/lib/chalmers/reader.action?docID=1818248
https://ebookcentral.proquest.com/lib/chalmers/reader.action?docID=1818248
https://ebookcentral.proquest.com/lib/chalmers/reader.action?docID=1818248
https://doi.org/10.1186/1471-2105-14-106
https://doi.org/10.1186/1471-2105-14-106
https://doi.org/http://dx.doi.org/10.1162/jmlr.2003.3.4-5.993
http://portal.acm.org/citation.cfm?id=944937
http://portal.acm.org/citation.cfm?id=944937
https://doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A%3A1010933404324
http://dx.doi.org/10.1023/A%3A1010933404324
https://doi.org/10.5753/jidm.2022.2181
https://sol.sbc.org.br/journals/index.php/jidm/article/view/2181
https://sol.sbc.org.br/journals/index.php/jidm/article/view/2181
https://pypi.org/project/frame-semantic-transformer/
https://pypi.org/project/frame-semantic-transformer/
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145%2F2939672.2939785
https://doi.org/10.1145%2F2939672.2939785

[13] François Chollet. Deep Learning with Python. Manning, Nov. 2017. isbn:
9781617294433.

[14] Company facts - Ericsson. 2022. url: https://www.ericsson.com/en/
about-us/company-facts.

[15] Dipanjan Das et al. “Frame-Semantic Parsing”. In: Computational Linguistics
40.1 (Mar. 2014), pp. 9–56. doi: 10 . 1162 / COLI _ a _ 00163. url: https :
//aclanthology.org/J14-1002.

[16] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. 2018. doi: 10.48550/ARXIV.1810.04805. url:
https://arxiv.org/abs/1810.04805.

[17] James M. Dickey. “Multiple Hypergeometric Functions: Probabilistic Inter-
pretations and Statistical Uses”. In: Journal of the American Statistical Asso-
ciation 78.383 (1983), pp. 628–637. doi: 10.1080/01621459.1983.10478022.
eprint: https://www.tandfonline.com/doi/pdf/10.1080/01621459.
1983.10478022. url: https://www.tandfonline.com/doi/abs/10.1080/
01621459.1983.10478022.

[18] David Dowty. “Thematic Proto-Roles and Argument Selection”. In: Language
67.3 (1991), pp. 547–619. issn: 00978507, 15350665. url: http://www.jstor.
org/stable/415037 (visited on 10/27/2022).

[19] S. T. Dumais et al. “Using Latent Semantic Analysis to Improve Access to
Textual Information”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’88. Washington, D.C., USA: Association
for Computing Machinery, 1988, pp. 281–285. isbn: 0201142376. doi: 10.
1145/57167.57214. url: https://doi.org/10.1145/57167.57214.

[20] S. H. C. DuToit, A. G. W. Steyn, and R. H. Stumpf. Graphical Exploratory
Data Analysis. [electronic resource]. Springer Texts in Statistics. Springer New
York, 1986. isbn: 9781461249504. url: https://search.ebscohost.com/
login.aspx?direct=true&db=cat07472a&AN=clec.SPRINGERLINK9781461%
20249504&site=eds-live%5C&scope=site%5C&authtype=guest&custid=
s3911979%5C&groupid=main%5C&profile=eds.

[21] Michael Ellsworth et al. “PropBank, SALSA and FrameNet: How Design
Determines Product”. In: Proceedings of the Workshop on Building Lexical
Resources From Semantically Annotated Corpora, LREC-2004. 2004. url:
https://www.nlpado.de/~sebastian/pub/papers/lrec04_ellsworth.
pdf.

[22] Christiane Fellbaum, ed. WordNet: An Electronic Lexical Database. Language,
Speech, and Communication. Cambridge, MA: MIT Press, 1998. isbn: 978-0-
262-06197-1.

[23] Charles J. Fillmore and Collin F. Baker. “Frame Semantics for Text Under-
standing”. In: In Proceedings of WordNet and Other Lexical Resources Work-
shop. 2001.

[24] Nicholas FitzGerald et al. “Semantic Role Labeling with Neural Network Fac-
tors”. In: Proceedings of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing. Lisbon, Portugal: Association for Computational
Linguistics, Sept. 2015, pp. 960–970. doi: 10.18653/v1/D15- 1112. url:
https://aclanthology.org/D15-1112.

64

https://www.ericsson.com/en/about-us/company-facts
https://www.ericsson.com/en/about-us/company-facts
https://doi.org/10.1162/COLI_a_00163
https://aclanthology.org/J14-1002
https://aclanthology.org/J14-1002
https://doi.org/10.48550/ARXIV.1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1080/01621459.1983.10478022
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1983.10478022
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1983.10478022
https://www.tandfonline.com/doi/abs/10.1080/01621459.1983.10478022
https://www.tandfonline.com/doi/abs/10.1080/01621459.1983.10478022
http://www.jstor.org/stable/415037
http://www.jstor.org/stable/415037
https://doi.org/10.1145/57167.57214
https://doi.org/10.1145/57167.57214
https://doi.org/10.1145/57167.57214
https://search.ebscohost.com/login.aspx?direct=true&db=cat07472a&AN=clec.SPRINGERLINK9781461%20249504&site=eds-live%5C&scope=site%5C&authtype=guest&custid=s3911979%5C&groupid=main%5C&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&db=cat07472a&AN=clec.SPRINGERLINK9781461%20249504&site=eds-live%5C&scope=site%5C&authtype=guest&custid=s3911979%5C&groupid=main%5C&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&db=cat07472a&AN=clec.SPRINGERLINK9781461%20249504&site=eds-live%5C&scope=site%5C&authtype=guest&custid=s3911979%5C&groupid=main%5C&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&db=cat07472a&AN=clec.SPRINGERLINK9781461%20249504&site=eds-live%5C&scope=site%5C&authtype=guest&custid=s3911979%5C&groupid=main%5C&profile=eds
https://www.nlpado.de/~sebastian/pub/papers/lrec04_ellsworth.pdf
https://www.nlpado.de/~sebastian/pub/papers/lrec04_ellsworth.pdf
https://doi.org/10.18653/v1/D15-1112
https://aclanthology.org/D15-1112

[25] Andrea Galassi, Marco Lippi, and Paolo Torroni. “Attention in Natural Lan-
guage Processing”. In: IEEE Transactions on Neural Networks and Learn-
ing Systems 32.10 (Oct. 2021), pp. 4291–4308. doi: 10.1109/tnnls.2020.
3019893. url: https://doi.org/10.1109%2Ftnnls.2020.3019893.

[26] Matt Gardner et al. AllenNLP: A Deep Semantic Natural Language Processing
Platform. 2018. doi: 10.48550/ARXIV.1803.07640. url: https://arxiv.
org/abs/1803.07640.

[27] Daniel Gildea and Daniel Jurafsky. “Automatic Labeling of Semantic Roles.”
In: Computational Linguistics 28.3 (2002), pp. 245–288. url: http://dblp.
uni-trier.de/db/journals/coling/coling28.html#GildeaJ02.

[28] MSJ Griffiths. What algorithms are most successful on Kaggle? Accessed: 2022-
12-20. 2022. url: https://www.kaggle.com/code/msjgriffiths/r-what-
algorithms-are-most-successful-on-kaggle/report?scriptVersionId=
0.

[29] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in
a Neural Network. 2015. doi: 10.48550/ARXIV.1503.02531. url: https:
//arxiv.org/abs/1503.02531.

[30] Dan Jurafsky and James H. Martin. Speech and language processing : an
introduction to natural language processing, computational linguistics, and
speech recognition. Upper Saddle River, N.J.: Pearson Prentice Hall, 2009.
isbn: 978013 1873216 0131873210. url: http://www.amazon.com/Speech-
Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_
y.

[31] Aditya Kalyanpur et al. Open-Domain Frame Semantic Parsing Using Trans-
formers. 2020. doi: 10.48550/ARXIV.2010.10998. url: https://arxiv.
org/abs/2010.10998.

[32] Aditya Kalyanpur et al. Open-Domain Frame Semantic Parsing Using Trans-
formers. 2020. doi: 10.48550/ARXIV.2010.10998. url: https://arxiv.
org/abs/2010.10998.

[33] Anne Kao and Steve R. Poteet. Natural Language Processing and Text Mining.
Springer Publishing Company, Incorporated, 2006. isbn: 184628175X.

[34] Allen Kent et al. “Machine literature searching VIII. Operational criteria
for designing information retrieval systems”. In: American Documentation 6
(1955), pp. 93–101.

[35] Lotus Labs. Clarifying AI, Machine Learning, deep learning, data science
with Venn diagrams. July 2020. url: https://lotuslabs.medium.com/
clarifying-ai-machine-learning-deep-learning-data-science-with-
venn-diagrams-c94198faa063.

[36] Mingchen Li and Shihao Ji. Semantic Structure based Query Graph Prediction
for Question Answering over Knowledge Graph. 2022. doi: 10.48550/ARXIV.
2204.10194. url: https://arxiv.org/abs/2204.10194.

[37] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Ap-
proach. 2019. doi: 10.48550/ARXIV.1907.11692. url: https://arxiv.org/
abs/1907.11692.

65

https://doi.org/10.1109/tnnls.2020.3019893
https://doi.org/10.1109/tnnls.2020.3019893
https://doi.org/10.1109%2Ftnnls.2020.3019893
https://doi.org/10.48550/ARXIV.1803.07640
https://arxiv.org/abs/1803.07640
https://arxiv.org/abs/1803.07640
http://dblp.uni-trier.de/db/journals/coling/coling28.html#GildeaJ02
http://dblp.uni-trier.de/db/journals/coling/coling28.html#GildeaJ02
https://www.kaggle.com/code/msjgriffiths/r-what-algorithms-are-most-successful-on-kaggle/report?scriptVersionId=0
https://www.kaggle.com/code/msjgriffiths/r-what-algorithms-are-most-successful-on-kaggle/report?scriptVersionId=0
https://www.kaggle.com/code/msjgriffiths/r-what-algorithms-are-most-successful-on-kaggle/report?scriptVersionId=0
https://doi.org/10.48550/ARXIV.1503.02531
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
https://doi.org/10.48550/ARXIV.2010.10998
https://arxiv.org/abs/2010.10998
https://arxiv.org/abs/2010.10998
https://doi.org/10.48550/ARXIV.2010.10998
https://arxiv.org/abs/2010.10998
https://arxiv.org/abs/2010.10998
https://lotuslabs.medium.com/clarifying-ai-machine-learning-deep-learning-data-science-with-venn-diagrams-c94198faa063
https://lotuslabs.medium.com/clarifying-ai-machine-learning-deep-learning-data-science-with-venn-diagrams-c94198faa063
https://lotuslabs.medium.com/clarifying-ai-machine-learning-deep-learning-data-science-with-venn-diagrams-c94198faa063
https://doi.org/10.48550/ARXIV.2204.10194
https://doi.org/10.48550/ARXIV.2204.10194
https://arxiv.org/abs/2204.10194
https://doi.org/10.48550/ARXIV.1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692

[38] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to Information Retrieval. New York, The United States of America:
Cambridge University Press, 2008.

[39] Nikhil Muralidhar et al. Using AntiPatterns to avoid MLOps Mistakes. 2021.
doi: 10.48550/ARXIV.2107.00079. url: https://arxiv.org/abs/2107.
00079.

[40] Srini Narayanan and Sanda Harabagiu. Question Answering Based on Seman-
tic Structures. Geneva, Switzerland, Aug. 2004. url: https://aclanthology.
org/C04-1100.

[41] Pinaki Prasad Guha Neogi et al. “Topic Modeling for Text Classification”. In:
Emerging Technology in Modelling and Graphics. Ed. by Jyotsna Kumar Man-
dal and Debika Bhattacharya. Singapore: Springer Singapore, 2020, pp. 395–
407. isbn: 978-981-13-7403-6.

[42] Martha Palmer, Daniel Gildea, and Paul Kingsbury. “The Proposition Bank:
An Annotated Corpus of Semantic Roles”. In: Comput. Linguist. 31.1 (Mar.
2005), pp. 71–106. issn: 0891-2017. doi: 10.1162/0891201053630264. url:
https://doi.org/10.1162/0891201053630264.

[43] Ashis Kumar Panda. Intuitive Maths and Code behind Self-Attention Mech-
anism of Transformers. 2021. url: https : / / towardsdatascience . com /
intuitive- maths- and- code- behind- self- attention- mechanism- of-
transformers-for-dummies-7dfc28a30aaa.

[44] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830. url: https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.f1_score.
html.

[45] Pretrained models. 2020. url: https://huggingface.co/transformers/v3.
3.1/pretrained_models.html.

[46] J. R. Quinlan. “Induction of Decision Trees”. In: Machine Learning 1 (1986),
pp. 81–106.

[47] Colin Raffel et al. Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer. 2019. doi: 10.48550/ARXIV.1910.10683. url:
https://arxiv.org/abs/1910.10683.

[48] Colin Raffel et al. Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer. 2019. doi: 10.48550/ARXIV.1910.10683. url:
https://arxiv.org/abs/1910.10683.

[49] Michael Röder, Andreas Both, and Alexander Hinneburg. “Exploring the Space
of Topic Coherence Measures”. In: Proceedings of the Eighth ACM Inter-
national Conference on Web Search and Data Mining. WSDM ’15. Shang-
hai, China: Association for Computing Machinery, 2015, pp. 399–408. isbn:
9781450333177. doi: 10.1145/2684822.2685324. url: https://doi.org/
10.1145/2684822.2685324.

[50] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. “A Primer in BERTology:
What We Know About How BERT Works”. In: Transactions of the Associ-
ation for Computational Linguistics 8 (2020), pp. 842–866. doi: 10.1162/
tacl_a_00349. url: https://aclanthology.org/2020.tacl-1.54.

66

https://doi.org/10.48550/ARXIV.2107.00079
https://arxiv.org/abs/2107.00079
https://arxiv.org/abs/2107.00079
https://aclanthology.org/C04-1100
https://aclanthology.org/C04-1100
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264
https://towardsdatascience.com/intuitive-maths-and-code-behind-self-attention-mechanism-of-transformers-for-dummies-7dfc28a30aaa
https://towardsdatascience.com/intuitive-maths-and-code-behind-self-attention-mechanism-of-transformers-for-dummies-7dfc28a30aaa
https://towardsdatascience.com/intuitive-maths-and-code-behind-self-attention-mechanism-of-transformers-for-dummies-7dfc28a30aaa
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://huggingface.co/transformers/v3.3.1/pretrained_models.html
https://huggingface.co/transformers/v3.3.1/pretrained_models.html
https://doi.org/10.48550/ARXIV.1910.10683
https://arxiv.org/abs/1910.10683
https://doi.org/10.48550/ARXIV.1910.10683
https://arxiv.org/abs/1910.10683
https://doi.org/10.1145/2684822.2685324
https://doi.org/10.1145/2684822.2685324
https://doi.org/10.1145/2684822.2685324
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://aclanthology.org/2020.tacl-1.54

[51] Sebastian Ruder et al. “Transfer Learning in Natural Language Processing”.
In: Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Tutorials. Minneapolis, Minnesota:
Association for Computational Linguistics, June 2019, pp. 15–18. doi: 10.
18653/v1/N19-5004. url: https://aclanthology.org/N19-5004.

[52] Victor Sanh et al. DistilBERT, a distilled version of BERT: smaller, faster,
cheaper and lighter. 2019. doi: 10.48550/ARXIV.1910.01108. url: https:
//arxiv.org/abs/1910.01108.

[53] Sentencizer · spacy API documentation. 2022. url: https://spacy.io/
api/sentencizer.

[54] Peng Shi and Jimmy Lin. Simple BERT Models for Relation Extraction and Se-
mantic Role Labeling. 2019. doi: 10.48550/ARXIV.1904.05255. url: https:
//arxiv.org/abs/1904.05255.

[55] Josh Starmer. Support Vector Machines Part 1 (of 3): Main Ideas!!! Youtube.
2019. url: https://www.youtube.com/watch?v=efR1C6CvhmE.

[56] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and Policy
Considerations for Deep Learning in NLP. 2019. doi: 10.48550/ARXIV.1906.
02243. url: https://arxiv.org/abs/1906.02243.

[57] Swabha Swayamdipta et al. Frame-Semantic Parsing with Softmax-Margin
Segmental RNNs and a Syntactic Scaffold. 2017. doi: 10.48550/ARXIV.1706.
09528. url: https://arxiv.org/abs/1706.09528.

[58] Ashish Vaswani et al. Attention Is All You Need. 2017. doi: 10.48550/ARXIV.
1706.03762. url: https://arxiv.org/abs/1706.03762.

[59] James Vuckovic, Aristide Baratin, and Remi Tachet des Combes. A Mathe-
matical Theory of Attention. 2020. doi: 10.48550/ARXIV.2007.02876. url:
https://arxiv.org/abs/2007.02876.

[60] Ralph Weischedel et al. OntoNotes Release. url: https://catalog.ldc.
upenn.edu/LDC2013T19.

[61] Yu Zhang et al. Semantic Role Labeling as Dependency Parsing: Exploring
Latent Tree Structures Inside Arguments. 2021. doi: 10.48550/ARXIV.2110.
06865. url: https://arxiv.org/abs/2110.06865.

[62] Yu Zhang et al. “Semantic Role Labeling as Dependency Parsing: Explor-
ing Latent Tree Structures inside Arguments”. In: Proceedings of COLING.
Gyeongju, Republic of Korea: International Committee on Computational
Linguistics, 2022, pp. 4212–4227. url: https://aclanthology.org/2022.
coling-1.370.

67

https://doi.org/10.18653/v1/N19-5004
https://doi.org/10.18653/v1/N19-5004
https://aclanthology.org/N19-5004
https://doi.org/10.48550/ARXIV.1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://spacy.io/api/sentencizer
https://spacy.io/api/sentencizer
https://doi.org/10.48550/ARXIV.1904.05255
https://arxiv.org/abs/1904.05255
https://arxiv.org/abs/1904.05255
https://www.youtube.com/watch?v=efR1C6CvhmE
https://doi.org/10.48550/ARXIV.1906.02243
https://doi.org/10.48550/ARXIV.1906.02243
https://arxiv.org/abs/1906.02243
https://doi.org/10.48550/ARXIV.1706.09528
https://doi.org/10.48550/ARXIV.1706.09528
https://arxiv.org/abs/1706.09528
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.48550/ARXIV.2007.02876
https://arxiv.org/abs/2007.02876
https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19
https://doi.org/10.48550/ARXIV.2110.06865
https://doi.org/10.48550/ARXIV.2110.06865
https://arxiv.org/abs/2110.06865
https://aclanthology.org/2022.coling-1.370
https://aclanthology.org/2022.coling-1.370

68

A
Appendix

A.1 Original distribution of Faulty Product

Figure 34: Distribution of Faulty Product, excluding empty entries.

I

B
Appendix

B.1 Latent Dirichlet Allocation Algorithm
Below is a simple example of how to use the LDA class.

• We will use the 20 newsgroups dataset.
• We will use the first 10000 documents to train the model.

[1]: # imports for data manipulation and visualization
import numpy as np
import matplotlib.pyplot as plt
plt.style.use("ggplot")
plt.usetex = True
from tqdm.notebook import tqdm

imports for newsgroups dataset
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer

Select 10000 samples from the dataset.

[2]: n_samples = 10000
data, _ = fetch_20newsgroups(shuffle=True, random_state=1,

remove=('headers', 'footers', 'quotes'),
return_X_y=True,
)

data_samples = data[:n_samples]

Tokenize the data. Tf_vectorizer is then used to create a vocabulary of known words and trans-
form documents to feature vectors.

[3]: tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2,
max_features=10000,
stop_words='english')

tf = tf_vectorizer.fit_transform(data_samples)

[4]: vocabulary = tf_vectorizer.vocabulary_
list(vocabulary.keys())[0:10]

II

B. Appendix

[4]: ['sure',
'story',
'did',
'biased',
'disagree',
'statement',
'media',
'reputation',
'pro',
'israeli']

Create a Bag-of-Words document representation of our corpus to use in our model.

[5]: docs = []
tf.toarray() is a numpy array of shape (n_samples, n_features)
for row in tf.toarray():

present_words = np.where(row != 0)[0].tolist()
present_words_with_count = []
for word_idx in present_words:

for count in range(row[word_idx]):
present_words_with_count.append(word_idx)

docs.append(present_words_with_count)

B.1.1 LDA implemenation using Gibbs sampling

[6]: D = len(docs) # number of documents
V = len(vocabulary) # size of the vocabulary
T = 5 # number of topics

alpha = 1 / T # the parameter of the Dirichlet prior on the␣
↪→per-document topic distributions

beta = 1 / T # the parameter of the Dirichlet prior on the per-topic␣
↪→word distribution

P (zij | zkl with k ̸= i and l ̸= j, w) = θik + α

Ni + αT

ϕkw + β∑
w∈V ϕkw + βV

[7]: z_d_n = [[0 for _ in range(len(d))] for d in docs] # z_i_j
theta_d_z = np.zeros((D, T))
phi_z_w = np.zeros((T, V))
n_d = np.zeros((D))
n_z = np.zeros((T))

Initialize the parameters
m: doc id
for d, doc in enumerate(docs):

n: id of word inside document, w: id of the word globally

III

B. Appendix

for n, w in enumerate(doc):
assign a topic randomly to words
z_d_n[d][n] = n % T
get the topic for word n in document m
z = z_d_n[d][n]
keep track of our counts
theta_d_z[d][z] += 1
phi_z_w[z, w] += 1
n_z[z] += 1
n_d[d] += 1

for iteration in tqdm(range(10)):
for d, doc in enumerate(docs):

for n, w in enumerate(doc):
get the topic for word n in document m
z = z_d_n[d][n]

decrement counts for word w with associated topic z
theta_d_z[d][z] -= 1
phi_z_w[z, w] -= 1
n_z[z] -= 1

sample new topic from a multinomial according to our formula
p_d_t = (theta_d_z[d] + alpha) / (n_d[d] - 1 + T * alpha)
p_t_w = (phi_z_w[:, w] + beta) / (n_z + V * beta)
p_z = p_d_t * p_t_w
p_z /= np.sum(p_z)
new_z = np.random.multinomial(1, p_z).argmax()

set z as the new topic and increment counts
z_d_n[d][n] = new_z
theta_d_z[d][new_z] += 1
phi_z_w[new_z, w] += 1
n_z[new_z] += 1

0%| | 0/10 [00:00<?, ?it/s]

B.1.2 How to use the model
Upon fitting the model, the topic distribution for each document is obtained through the encoding
of θ.

[8]: i = 1
plt.plot(theta_d_z[i]/ sum(theta_d_z[i]));
plt.title("Topic distribution $theta_i$ for document {}".format(i));

IV

B. Appendix

For instance, the most probable words for a particular topic, k, can be identified by examining the
distribution of words represented by φk.

[9]: inv_vocabulary = {v: k for k, v in vocabulary.items()}
n_top_words = 10
for topic_idx, topic in enumerate(phi_z_w):

message = "Topic #%d: " % topic_idx
message += " ".join([inv_vocabulary[i] for i in topic.argsort()[:

↪→-n_top_words - 1:-1]])
print(message)

Topic #0: 10 00 16 20 15 drive 25 new 12 11
Topic #1: use edu file space program like windows using does data
Topic #2: god don people just like think good does time say
Topic #3: people don know said think just like government did time
Topic #4: ax max g9v pl b8f a86 cx 75u 145 34u

As explained by Sterbak (2022), Latent Dirichlet allocation (LDA) is a powerful tool for uncovering
the underlying topics in a collection of documents. In a recent article published on the website
www.depends-on-the-definition.com, the author provides a comprehensive tutorial on implementing
LDA from scratch. This notebook was highly influenced by the article written by Sterbak (2022).

Sterbak, T. (2022). Latent Dirichlet allocation from scratch. Retrieved from www.depends-on-the-
definition.com/lda-from-scratch/

V

C
Appendix

C.1 Topic modeling with Faulty Product
In this appendix, the results from topic modeling with LDA evaluated with the
merged, multi-class Faulty Product annotations, are presented. In Section 4.1, re-
sults from feature alternatives 1, 9, 10, and 12 are presented and will thus be excluded
in this appendix. The result for each feature alternative is presented in three figures,
as explained in Section 3.4.2.1. To facilitate reading, the appendix is structured such
that the results for a feature alternative is presented on the same page. For further
explanation of the feature alternatives, please see the table below (identical to the
one presented in Section 4).

Features used Feature alternative
Frames 1
Triggers 2
Element types (excl. triggers) 3
Element contents 4
Frames and triggers 5
Frames and element types (excl. triggers) 6
Frames and element contents 7
Frames, element types, and element contents 8
Frames and technical terms 9
Cleaned text 10
Original text 11
Cleaned text and frames 12
Original text and frames 13

Table 19: Feature alternatives of support tickets used for topic modeling and
classification.

VI

Figure 35: Topics produced by LDA using feature alternative 2.

Figure 36: Topic coherence by class using feature alternative 2.

Figure 37: Topic counts by class using feature alternative 2.

VII

Figure 38: Topics produced by LDA using feature alternative 3.

Figure 39: Topic coherence by class using feature alternative 3.

Figure 40: Topic counts by class using feature alternative 3.

VIII

Figure 41: Topics produced by LDA using feature alternative 4.

Figure 42: Topic coherence by class using feature alternative 4.

Figure 43: Topic counts by class using feature alternative 4.

IX

Figure 44: Topics produced by LDA using feature alternative 5.

Figure 45: Topic coherence by class using feature alternative 5.

Figure 46: Topic counts by class using feature alternative 5.

X

Figure 47: Topics produced by LDA using feature alternative 6.

Figure 48: Topic coherence by class using feature alternative 6.

Figure 49: Topic counts by class using feature alternative 6.

XI

Figure 50: Topics produced by LDA using feature alternative 7.

Figure 51: Topic coherence by class using feature alternative 7.

Figure 52: Topic counts by class using feature alternative 7.

XII

Figure 53: Topics produced by LDA using feature alternative 8.

Figure 54: Topic coherence by class using feature alternative 8.

Figure 55: Topic counts by class using feature alternative 8.

XIII

Figure 56: Topics produced by LDA using feature alternative 11.

Figure 57: Topic coherence by class using feature alternative 11.

Figure 58: Topic counts by class using feature alternative 11.

XIV

Figure 59: Topics produced by LDA using feature alternative 13.

Figure 60: Topic coherence by class using feature alternative 13.

Figure 61: Topic counts by class using feature alternative 13.

XV

D
Appendix

D.1 Categorical value plots

Figure 62: Categorical plot of all scores that resulted in Figure 32.

Figure 63: Categorical plot of all scores that resulted in Figure 33.

XVI

DEPARTMENT OF MATHEMATICAL SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Problem
	Aim
	Limitations
	Delimitations
	Ethical considerations and risks
	Contributions

	Theory
	Neural Networks and Deep Learning
	Transfer learning
	Attention
	Transformer models
	BERT
	DistilRoBERTa
	T5

	Term Frequency Inverse-Document Frequency
	Natural Language Understanding
	Semantic Roles
	Semantic Role Labeling
	The Proposition Bank
	FrameNet
	Differences between PropBank and FrameNet

	Topic modeling
	Latent Dirichlet Allocation
	Topic coherence

	Other machine learning models
	Logistic regression classifier
	Random Forest classifier
	XGBoost
	Support vector machines

	Dealing with imbalanced datasets
	F1 score

	Methods
	Data collection
	Support ticket

	Preprocessing for Semantic Role Labeling
	Initial filtering with DistilRoBERTa
	Cleaning text with regular expressions
	Sentence splitting

	Semantic Role Labeling
	Model selection
	PropBank model
	FrameNet model

	Results of Semantic Role Labeling

	Matching support tickets
	Preprocessing for topic modeling and classification
	Topic modeling
	Evaluation of topic modeling

	Classification
	Data sampling for classification
	Model selection for classification
	Evaluation of classification

	Used hardware and software

	Results
	Topic modeling
	Baseline
	Topic modeling of frames
	Combining frames with technical terms
	Enriching text with frames

	Classification
	Multi-class classification
	Binary classification

	Discussion
	Effects of preprocessing
	Quality of the class labels
	The impact of SRL for classification and LDA

	Conclusion and future work
	Bibliography
	Appendix
	Original distribution of Faulty Product

	Appendix
	Latent Dirichlet Allocation Algorithm
	Implement LDA with Gibbs sampling
	How to use the model

	Appendix
	Topic modeling with Faulty Product

	Appendix
	Categorical value plots

