
DF

Virtual Commissioning of a drone assem-
bly cell

Master’s thesis in Production Engineering

VIVEK KOPPAL
CHETHAN SHIVARAJU

Department of Industrial and Materials Science
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020

Virtual Commissioning of a drone assembly cell

Performance testing of the KUKA iiwa robot and a comparative
study of Virtual Commissioning process with Visual Components

and Tecnomatix Process Simulate.

VIVEK KOPPAL
CHETHAN SHIVARAJU

DF

Department of Industrial and Materials Science
Division of Production Systems

Chalmers University of Technology
Gothenburg, Sweden 2020

Virtual Commissioning of a drone assembly cell
Performance testing of the KUKA iiwa robot and a comparative study of Virtual
Commissioning process with Visual Components and Tecnomatix Process Simulate
VIVEK KOPPAL, CHETHAN SHIVARAJU

© VIVEK KOPPAL, CHETHAN SHIVARAJU, 2020.

Supervisor: Per Nyqvist, Department of Industrial and Materials Science
Examiner: Björn Johansson, Department of Industrial and Materials Science

Master’s Thesis 2020
Department of Industrial and Materials Science
Division of Production Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Virtual model of the drone assembly cell created on Visual Components.

Typeset in LATEX, template by David Frisk
Printed by Chalmers Reproservice
Gothenburg, Sweden 2020

iv

Virtual Commissioning of a drone assembly cell
Performance testing of the KUKA iiwa robot and a comparative study of Virtual
Commissioning process with Visual Components and Tecnomatix Process Simulate
VIVEK KOPPAL
CHETHAN SHIVARAJU
Department of Industrial and Materials Science
Chalmers University of Technology

Abstract
Stena industry innovation lab (SII-Lab) at Lindholmen, Göteborg is a research lab-
oratory that houses a testbed within Production 2030 for sustainable production. A
drone factory is one of the projects undertaken at SII-Lab. This master thesis project
aimed at automating the assembly operation of drone frame chassis with drone mo-
tors using a 7-axis KUKA LBR iiwa robot adopting the Virtual Commissioning
method. Virtual Commissioning method is used to evaluate the functionality, per-
formance and safety of a production system. This method was used to simulate the
assembly operation and link the programmable logic to validate the behaviour.

The project followed a methodology drafted from an earnest literature research on
Virtual Commissioning process, that includes stages such as, data analysis, process
planning, 3D modelling, simulation and logical control programming. An addi-
tional stage of physical implementation and verification aided in scrutinizing the
process. The assembly operation was simulated using Visual Components and Tec-
nomatix Process Simulate. Further, physical station was setup by calibrating and
programming the KUKA robot and testing for accuracy with reference to simula-
tion applications. PLC programming for the system was prepared and tested to
achieve Virtual Commissioning. Along with the process followed, the project aimed
at answering research questions that are presented in the report. An additional
research on force/torque analysis using the sensors available on the KUKA robot
were conducted, to present possibilities in the drone assembly operation. The re-
sults of the project are presented and concluded that, Virtual Commissioning is an
efficient method that can be adopted by manufacturing organizations for improved
performance and cost saving solutions, without production stoppage or during setup
of brownfield factories, involving process and technology improvements in the exist-
ing facility and greenfield factories, while establishing new production solutions and
processes.

Keywords: Virtual Commissioning (VCom), KUKA iiwa robot, Tecnomatix Pro-
cess Simulate (TPS), Visual Components (VC), KUKA Sunrise Workbench, Force/-
Torque control, TIA Portal, PLCSIM.

v

Acknowledgements
We would like that thank Åsa Fast-Berglund, Professor at the division of Production
Systems, Department of Industrial and Materials Science, for providing us with the
opportunity to conduct our experiments at Stena industry innovation lab. We also
thank Sven Ekered, Research Engineer at the division of Productions Systems, De-
partment of Industrial and Materials Science, for providing us with all the support
during our project by sharing CAD files and 3D printing the parts numerous times
and arranging to work on the SII-Lab laptop. We would like to express our gratitude
to Björn Johansson, Professor at the division of Production Systems, Department
of Industrial and Materials Science and the examiner of this Master thesis project,
for supporting and encouraging us throughout the project duration.

Further, We would like to extend our deepest gratitude to our project supervisor,
Per Nyqvist, Research Engineer at the division of Production Systems, Department
Industrial and Materials Science, for his generous support, constant motivation and
patience during the whole duration. We are in-debt of his support during our project
cancellation at GKN Aerospace and helping us in setting up a new project at Stena
industry innovation lab. We appreciate his swift response in providing us with a
computer room and all required software applications immediately after information.

Lastly, We would like to express our deepest gratitude and love to our parents for
their constant support during our graduate studies at Chalmers University and, for
believing and guiding us throughout. The pandemic has taken us on an emotional
roller-coaster and our family has helped us cope in these difficult times from 4000
miles apart. We would like dedicate this report to our families.

Vivek Koppal & Chethan Shivaraju, Gothenburg, August 2020

vii

Contents

List of Figures xiii

List of Tables xv

Acronyms xvii

1 Introduction 1
1.1 Background . 1
1.2 Project purpose and aim . 2
1.3 Project limitations . 2
1.4 Research questions . 2
1.5 Report structure . 2

2 Theory 5
2.1 Industry 4.0 . 5
2.2 Automation . 6

2.2.1 Flexible automation . 7
2.3 Process planning . 7
2.4 Robotics . 9

2.4.1 Robot anatomy . 9
2.4.2 Robot classification . 10
2.4.3 Coordinate systems . 10
2.4.4 Calibration . 11
2.4.5 Robot programming . 13
2.4.6 KUKA LBR iiwa . 13
2.4.7 Force and Toque control . 15

2.5 Programmable logic controller (PLC) 18
2.5.1 PLC Configuration . 18
2.5.2 PLC Programming . 18

2.6 Virtual commissioning . 19
2.6.1 Virtual commissioning process 19
2.6.2 Virtual commissioning methods 21
2.6.3 Benefits of virtual commissioning 22
2.6.4 Drawbacks of virtual commissioning 23

3 Methodology 25
3.1 Data collection . 25

ix

Contents

3.1.1 Literature research . 25
3.1.2 Technical data . 25
3.1.3 Software selection . 26

3.2 Process planning . 26
3.3 3D Modelling . 26
3.4 Simulation . 27

3.4.1 Visual components . 27
3.4.2 Tecnomatix process simulate 28

3.5 Physical implementation and verification 29
3.5.1 Robot calibration . 29
3.5.2 Robot programming . 33
3.5.3 Force torque analysis . 35

3.6 Logical control programming . 36
3.6.1 PLC programming . 36

3.7 Virtual commissioning with SiL method 37
3.7.1 Visual components . 37

4 Results 39
4.1 Data collection . 39

4.1.1 Literature research . 39
4.1.2 Technical data . 40
4.1.3 Software selection . 40

4.2 Process planning . 41
4.2.1 Component placement on pallet 41
4.2.2 Robot and fixture placement 41
4.2.3 Assembly operation sequence 43

4.3 3D Modelling . 43
4.4 Simulation . 44

4.4.1 Visual components . 44
4.4.2 Tecnomatix process simulate 46

4.5 Physical implementation and verification 49
4.5.1 Robot calibration . 49
4.5.2 Robot programming . 52
4.5.3 Force torque analysis . 52

4.6 Logical control programming . 55
4.6.1 PLC programming . 55

4.7 Virtual commissioning with SiL method 57
4.7.1 Visual components . 57

5 Discussion 59

6 Conclusion 63
6.1 Future work . 63

Bibliography 65

A Appendix I

x

Contents

A.1 Procedure for modelling a gripper on Visual Components I
A.2 Procedure for building simulation model and robot programming on

Visual Components . II

B Appendix III
B.1 Procedure for setting kinematics on Tecnomatix process simulate . . . III
B.2 Procedure for assembly process simulation on Tecnomatix process

simulate . IV

C Appendix VII
C.1 Procedure for tool calibration . VII

C.1.1 XYZ 4-point method [14] . VII
C.1.2 ABC 2-point method [14] . VIII

C.2 Procedure for base calibration . VIII
C.2.1 3-point method [14] . VIII

C.3 Variation analysis results . IX

D Appendix XI
D.1 Coordinate points . XI

E Appendix XIII
E.1 Technical data . XIII

E.1.1 CAD model renderings . XIII
E.2 Modeling . XIV

E.2.1 CAD assembly renderings . XIV

F Appendix XV
F.1 Robot programming . XV

F.1.1 Source code - robot assembly XV
F.1.2 Source code - MFIO flange . XVIII

F.2 Robot drone assembly . XXV

G Appendix XXIX
G.1 Force Torque analysis . XXIX
G.2 Source code for Force torque analysis XXXIII
G.3 Sensitivity analysis . XLII

G.3.1 Cartesian forces and torque values XLII
G.3.2 Plots of continuous recording XLIII

H Appendix LIII
H.1 Virtual commissioning with SiL method LIII

H.1.1 Visual Components : Siemens S7 connection procedure [41] . . LIII

xi

Contents

xii

List of Figures

2.1 Theoretical framework of Industry 4.0 technologies [5] 5
2.2 Task allocation [7] . 7
2.3 Planning strategies [11] . 8
2.4 Process planning activities and data flow [11] 8
2.5 Robot Coordinate Systems [16] . 11
2.6 Robot calibration steps [19] . 12
2.7 Overview of robot components [23] 14
2.8 Transmission nonlinearity [26] . 17
2.9 PLC System [28] . 19
2.10 Virtual commissioning work flow [30] 20
2.11 Virtual commissioning process . 21
2.12 Virtual commissioning methods [1] 22

3.1 Start sunrise application . 29
3.2 Sunrise application data . 30
3.3 Sunrise template data . 30
3.4 Tool calibration methods . 31
3.5 3-point method [14] . 32
3.6 Hand-guiding method . 34
3.7 Media flange connection information [34] 36

4.1 Layout arrangement at SII-Lab . 40
4.2 Component placement . 41
4.3 Robot and fixture placement . 42
4.4 Assembly operation sequence . 43
4.5 Design improvements . 44
4.6 Schunk gripper modeling on Visual components 45
4.7 Layout model on Visual Components 45
4.8 Assembly simulation on Visual Components 46
4.9 Kinematics results . 47
4.10 Mount tool option . 47
4.11 Layout model on Tecnomatix Process Simulate 48
4.12 Assembly simulation on Tecnomatix Process Simulate 49
4.13 Scatter plot of Base coordinates . 52
4.14 Matching calibration in Simulation 53
4.15 Gripper TCP orientation . 54
4.16 PLC ladder logic . 56

xiii

List of Figures

4.17 SiL with Visual Components . 58

E.1 Drone components . XIII
E.2 station components . XIII
E.3 Schunk gripper CAD parts . XIV
E.4 Schunk gripper CAD assembly . XIV

F.1 Drone frame assembly at SII-Lab . XXVI
F.2 Motor 4 assembly at SII-Lab . XXVII

G.1 External cartesian forces/torques for Motor 1 XXIX
G.2 Force and torque during drone frame picking XXX
G.3 Force and torque during motor 2 assembly XXXI
G.4 Force and torque during motor 3 assembly XXXII
G.5 Cartesian forces along X . XLIII
G.6 Cartesian forces along Y . XLIV
G.7 Cartesian forces along Z . XLV
G.8 External joint torque at Joint 1 . XLVI
G.9 External joint torque at Joint 2 . XLVII
G.10 External joint torque at Joint 3 . XLVIII
G.11 External joint torque at Joint 4 . XLIX
G.12 External joint torque at Joint 5 . L
G.13 External joint torque at Joint 6 . LI
G.14 External joint torque at Joint 7 . LII

xiv

List of Tables

2.1 Smart manufacturing technologies . 6
2.2 Position and orientation [14] . 15
2.3 Basic data and Axis data for LBR iiwa 14 R820 [23] 16

4.1 Tool calibration results . 50
4.2 Base calibration results . 50
4.3 Hand-guiding experiment results . 51
4.4 Standard deviation of absolute difference 51
4.5 PLC Tags . 55

C.1 Variation analysis results . IX

D.1 Coordinate points retrieved from Tecnomatix Process Simulate XI

G.1 Cartesian force and torque values recorded at coordinate points . . . XLII

xv

List of Tables

xvi

Acronyms

DES Discrete event simulation.
DOF Degrees of freedom.

FBD Function block diagram.

HiL Hardware in loop.
HRC human robot collaboration.

iiwa intelligent industrial work assistant.
IL Instruction list.

LAD Ladder diagrams.
LBR Leichtbauroboter (german for lightweight robot).
LIN Linear.

PLC Programmable logic controller.
PnP Plug n Play.
PTP Point to Point.

RATE Robotic Assembly Time Estimator.
ROBEX RObot Based Expert system.

SFC Sequential function chart.
SII-Lab Stena industry innovation lab.
SiL Software in loop.
ST Structured text.

TCP Tool centre point.
TIA totally integrated automation.
TPS Tecnomatix Process Simulate.

VC Visual Components.
VCom Virtual Commissioning.

xvii

Acronyms

xviii

1
Introduction

This chapter provides a brief introduction to the thesis project. The chapter sheds
light on the background, aim and limitations of the thesis project. Research ques-
tions to be answered through the thesis project are also provided.

1.1 Background
Manufacturers strive to achieve the ability to design and produce good quality prod-
ucts for sustenance and profits [1]. As the marketplace demands are rapidly chang-
ing, manufacturers need to remain competitive by continuously improving the pro-
duction systems. Efficient prototyping of production systems seem important as
improvement seeks high investments. Thus, a computer based environment to sim-
ulate and verify individual manufacturing processes is deemed essential and can be
accomplished through virtual commissioning [1].

According to Metzner [2], Virtual Commissioning is an evaluation method of pro-
duction system’s functionality, performance and safety in the digital environment
prior to physical implementation. The process involves using a digital twin of the
production system. The simulated model is linked with programmable logic con-
trollers to validate the behaviour [2]. This master thesis project aims to perform
Virtual Commissioning of a drone assembly cell at the Stena industry innovation
lab (SII-Lab) at Lindholmen, Gothenburg, Sweden.

Stena industry innovation lab (SII-Lab) is a research laboratory located in Sweden’s
largest science park at Lindholmen. SII-Lab is a testbed within Production 2030
- Sweden’s innovation program for sustainable production. It is focusing on fast
communication systems with 5G and collaborative robots, virtual and augmented
reality techniques for final assembly [3]. Chalmers University is conducting various
research projects in SII-Lab to test digitalized production of the future. A drone
factory using collaborative robots is one of the projects under development. The
drone factory is a realistic production system which includes products from various
suppliers. The aim of this factory is to produce a drone assembly in order to illus-
trate the required hardware and software within SII-Lab [3]. The factory operates
through material received from storage on conveyors and then are assembled by col-
laborative robots.

This master thesis primarily focuses on the assembly of motors on to drone chassis

1

1. Introduction

with the KUKA iiwa 14kg robot. KUKA LBR iiwa 14kg is a light weight, sen-
sitive and human robot collaboration (HRC) compatible robot with a payload of
14 kilograms capable of working on sensitive tasks [4]. Test drone components are
considered in the execution of this master thesis project.

1.2 Project purpose and aim
The purpose of the master thesis project is,

• To investigate and automate the drone assembly operation using Virtual Com-
missioning method.

• To test the performance of KUKA LBR iiwa 14 robot for force/snap fit as-
semblies.

The aim of this master thesis is,
• To create a virtual model of the drone assembly cell to perform Virtual Com-

missioning by integrating the virtual PLC loaded with a programmable logic.
• To verify and validate the behaviour of the virtual model on the physical cell.

1.3 Project limitations
• The thesis covers only a part of the drone production line. To include the

whole production line would be a too complex task for this project scope.
• The scope of the project will be adjusted to complete within the time frame.
• The project includes only SiL virtual commissioning method and will not con-

sider any hardware to perform the virtual commissioning process.

1.4 Research questions
The master thesis project aims to find results for the following research questions
provided below.

• What are the methods and components required to perform Virtual Commis-
sioning process and the best applicable area?

• Which software platforms and tools are feasible to perform Virtual Commis-
sioning during drone assembly application?

• How will the designed automation for drone assembly cell serve the purpose
of the project?

• How flexible is the designed system to changes?
• How effective is the KUKA iiwa robot in applications involving snap/force fit

assemblies?

1.5 Report structure
The report is divided into the following chapters as documented below.

2

1. Introduction

• Chapter 2, presents detailed explanation of the concepts, terms and method-
ologies adopted in this thesis project.

• Chapter 3, discusses the methodology and steps followed for the Virtual Com-
missioning process of the drone assembly cell.

• Chapter 4, provides the results of the methods adopted during the process.
• Chapter 5, contains the discussion and findings during the course of the

project. The Chapter also attempts to answer the research questions.
• Chapter 6, contains the conclusions from this master thesis and presents the

future work possibilities.

3

1. Introduction

4

2
Theory

This chapter provides a detailed explanation of the concepts or terms used or
adopted in the thesis project. The chapter provides in-depth explanation of au-
tomation concepts, robot anatomy, KUKA iiwa robot anatomy, PLC and Virtual
Commissioning.

2.1 Industry 4.0
The fourth industrial revolution also called as Industry 4.0 is an initiative coined
by the German federal government in partnership with universities and companies
in 2011 [5]. Industry 4.0 was a strategic initiative to develop advanced production
systems to increase industrial production efficiency by integrating emerging tech-
nologies [5].

According to Frank [5], Industry 4.0 technologies can be divided into 2 layers: front
end and base technologies as shown in figure 2.1. Front end technologies of Industry
4.0 transforms manufacturing activities such as Production, Supply Chain, Logistics
and working methods using the latest technologies. Whereas back end technologies
support the other with connectivity and intelligence [5].

Figure 2.1: Theoretical framework of Industry 4.0 technologies [5]

Smart manufacturing is the beginning of Industry 4.0 and according to Frank [5],
the related technologies are grouped into six different purposes.

5

2. Theory

1. Vertical integration
2. Virtualization
3. Automation
4. Traceability
5. Flexibility
6. Energy management

This master thesis includes the study of Virtual Commissioning, that is a part of
smart manufacturing and is categorized under different purposes as shown in Table
2.1.

Table 2.1: Smart manufacturing technologies

Category Technologies
Vertical integration Sensors, Actuators and PLC’s
Virtualization Simulation and Virtual commissioning
Automation Robots

2.2 Automation
Assembly systems are slightly complex because of a high degree of product variety
and strategy to produce mass customized products [6]. Complex assembly systems
can cause quality issues, poor ergonomics, and uncertainties [6]. So it is important
to investigate how complexity can be addressed to solve these issues using the right
level of automation.

A high level of automation for product realization is an important means to meet the
increasing customer demands and to compete against low-cost production countries
[7]. According to Mattson [8], automation is mainly used in three areas.

• To ensure precise execution of tasks
• To eliminate human repetitive and monotonous tasks to increase the stability

of the output.
• To increase speed, efficiency, and security.

Automation according to Frohm is defined as "automatic control of the manufacture
of a product through several successive stages; the application of automatic control to
any branch of industry or science; by extension, the use of electronic or mechanical
devices to replace the human labor" [7].

The designed automation should be adapted to the operator so that the human will
perform tasks that are best suited to the human. Figure 2.2 differentiates a list of
tasks that are better performed by humans and machines.

6

2. Theory

Figure 2.2: Task allocation [7]

2.2.1 Flexible automation
In common industrial applications, a customized automation process or equipment
is designed to perform a specific task or to produce a specific product. These equip-
ment are scrapped once the product’s life cycle is completed. This automation
approach requires more custom tools, more floor space, and more change over time
to produce each new product [9]. The manufacturing industries require a more agile
and flexible automation approach to face future challenges like manufacturing of low
volume and high variety of products.

According to [9], flexible automation is defined as "the ability for a robot or system
to be quickly and easily re-tasked to change product design for both low and high
mix-manufacturing".

The design and integration of a flexible automation system requires three main
components; sense, think, and act [9]. The sense component gathers information
about surroundings through for example, vision systems, force sensors, and lasers.
Think component uses the known and sensed information through PC and software
to interpret, and the Act component completes the task using a robot, gantry,
gripper, and actuators [9].

2.3 Process planning
Process planning scores an important link in the manufacturing cycle. The aim is
to transform raw material into finished products [10]. Browne discusses the philoso-
phies that can be adopted for process planning in their paper [11], and this project
adopted simultaneous/parallel engineering. A major requirement in this philosophy
is the availability of tools, machines and technical data. The gap between design
and planning cycles are reduced in simultaneous/parallel engineering whereas, tra-
ditional planning philosophy conducts design and planning cycles in a sequence [11].
Figure 2.3, represents the timeline of sequential and parallel engineering processes.

According to Browne, robotic based assembly systems are complex and presents a

7

2. Theory

(a) Sequential engineering (b) Parallel engineering

Figure 2.3: Planning strategies [11]

(a) Process planning procedure (b) Flow of data

Figure 2.4: Process planning activities and data flow [11]

8

2. Theory

methodological planning procedure using two systems, RObot Based Expert system
(ROBEX) and Robotic Assembly Time Estimator (RATE) as represented in figure
2.4a [11]. The aforementioned systems are used in determination of basic data that
is needed for layout planning. Figure 2.4b, represents the data flow and steps fol-
lowed in ROBEX and RATE.

ROBEX is initiated with operation sequence planner, that uses a series of rules to
define the sequence of the operation. Robot selection module considers technical
parameters like repeatability, reachability (robot envelope), programming method
etc [11]. Similar tests are also carried other methods like gripper selection, feeder
selection and precedence analysis. Similar strategy is applied in the process planning
stage of this master thesis.

2.4 Robotics
An industrial robot according to ISO 8373:2012 is an "automatically controlled, re-
programmable, multipurpose manipulator programmable in three or more axes, which
can be either fixed in place or mobile for use in industrial automation applications"
[12].

• Re-programmable : Programmed motions can be changed without physical
alterations.

• Multipurpose : Capable of adapting to different applications.
• Axis : Direction of motion (Rotary/linear)

2.4.1 Robot anatomy
According to Kihlman [13], a Robot consists of a manipulator which is divided into
two sections: Body & arm and Wrist. The body & arm section is used to position
the objects in the robot work volume and the robot wrist is used to orient the objects
[13]. The wrist is attached to the robot arm end and an end effector is attached to
the wrist. The robot manipulator consists of joints and links. Joints provide relative
motion and links are the rigid members between joints.

End effectors are the special tools attached to the robot wrist to perform specific
tasks. There are two types of end effectors: grippers and tools. Grippers are used to
grasp and manipulate objects during the work cycle and tools are used to perform
a process [13]. Tool centre point (TCP) is a working point of a tool in cartesian
coordinate system and multiple TCP’s can be created for a tool.

There are two types of robot motion: translational and rotary. Translational motion
can be achieved through a linear or orthogonal joint, and rotary motion can be
achieved through a rotational or twisting, or revolving joint [13]. Each joint has one
degree of freedom and most robot possesses five or six degrees of freedom.

9

2. Theory

2.4.2 Robot classification
According to International Federation of Robotics [12], industrial robots can be clas-
sified based on their mechanical structure.

• Cartesian robot: A robot that has 3 prismatic joints and whose axes coincide
with a cartesian coordinate system.

• SCARA robot: A robot that has 2 parallel axes to provide compliance in a
plane.

• Articulated robot: A robot that has at least 3 rotary joints.
• Parallel robot: A robot that has concurrent prismatic or rotary joints.
• Cylindrical robot: A robot whose axes form a cylindrical coordinate system.

2.4.3 Coordinate systems
The coordinate system defines the position and orientation of an object in space.
The coordinate systems relevant to an industrial robot are: world, robot base, user,
object, flange and tool, and is shown in fig 2.5.

• World coordinate system: The world coordinate system is a permanently
defined Cartesian coordinate system and it is the base for all other coordinate
systems. By default the world coordinate system for KUKA LBR iiwa robot
is located at the base of the robot [14].

• Robot base coordinate system: Robot base coordinate system is the
Cartesian coordinate system which is located at the base of the robot and
it defines the position of the robot relative to the world coordinate system
[14].

• User coordinate system: User coordinate system is a reference coordinate
system used to define motions in Cartesian space. By default the world co-
ordinate system is used as User coordinate system, but it is also possible to
define additional User coordinate system relative to world coordinate system.
[14].

• Object coordinate system: Object coordinate system defines the position
and orientation of the object relative to user coordinate system. The com-
bination of user coordinate system and object coordinate system is used to
calibrate the robot coordinates to programmed paths [15].

• Flange coordinate system: Flange coordinate system defines the position
and orientation of the robot flange and it is always moving with the robot
[14]. Flange coordinate system acts as a base for the coordinate systems which
describe the tool mounted on the flange.

• Tool coordinate system: Tool coordinate system defines the position and
orientation of the tool. The origin of the tool coordinate system is called Tool
centre point (TCP). It is possible to define any number of frames for a tool
and can be selected as Tool centre point (TCP).

10

2. Theory

Figure 2.5: Robot Coordinate Systems [16]

2.4.4 Calibration
When calibrating an industrial robot, the previously generated offline programs from
a simulation model are compared with the physical condition of the production sys-
tem [17]. Robot calibration is used to identify the variations which can disrupt or
stop the production system. Industrial robot actions are generally repeatable but
not accurate and the accuracy errors may be systematic (deviation in robot com-
ponent dimensions or their base positions) or fluctuating (thermal drift or variation
in ambient temperature) [13]. The accuracy of an industrial robot depends on the
robot model and brand. But using robot calibration, the accuracy of a robot can
be improved by a factor of 2 to 10 [18].

The drone assembly process using the KUKA iiwa robot involves 2 types of calibra-
tion: Base calibration and Tool calibration, to eliminate any variations which can
cause accuracy errors. Per suggests that, it is ideal to use terms like robot cell or
robot task calibration [19]. The procedure to perform these calibration process are
explained in chapter 3. Figure 2.6, represents the different calibration steps that are
to be performed during robot cell calibration [19].

Base calibration

Several calibration methods are available to locate an object in the robot coordinate
system. Zhang, has presented a quick 3 point calibration method that is used in
this master thesis project [20]. The method adopts the internal encoder data of
the KUKA robot. This method involves moving the robot to a reference point
defining the work object. A sharp tapered tool is attached to the robot flange and is

11

2. Theory

Figure 2.6: Robot calibration steps [19]

moved to touch another sharp tool or corner to determine the position of an object.
The homogeneous transformation matrix, RTU of the base coordinate or workpiece
coordinate system in defined by Zhang, in the Roll-pitch-yaw style presented in the
equation 2.1 below [20].

RTU =


cφcθ cφsθsψ − sφcψ cφsθcψ + sφsψ P x
sφcθ sφsθsψ + cφcψ sφsθcψ − cφsψ P y
−sθ cθsψ cθcψ P z

0 0 0 1

 (2.1)

Where, c represents cos and s represents sin. The six variables are Px, Py, Pz, φ, θ, ψ

Tool calibration

Specific tools like grippers or weld guns are mounted on the robots to perform de-
sired operations [19]. The position and orientation of the cartesian space becomes
important along with the exact position of the tool. This is achieved by the tool
calibration process. In order to locate the toolframe origin, the robot needs to ro-
tate around it [19]. A pointer tool is placed in the environment. With the flange
system activated, the tip of the pointer tool is positioned as close as possible to
the attached tool using at least four different orientations. Thus X, Y and Z coor-
dinates of the toolframe origin is obtained. The direction of the toolframe axes is
further determined by moving the robot along directions of two toolframe axes [19].
The detailed methodology of the tool calibration process is presented in section 3.5.1.

Calibration process is an operator-dependent method, the results from this method
are individual and can vary for each individual person. The manual calibration

12

2. Theory

method is not efficient when high accuracy is required. However, this may still be
used as a suitable calibration method when high robot accuracy is not required, and
if there is a cost constraint [15].

2.4.5 Robot programming
Programming time and quality are important factors to make the robot work effi-
ciently. The time and quality of the program depends on the robot programming
methods and their supporting systems. According to bolmsjö [21], the robot pro-
gramming methods are classified based on where the programming takes place and
how it is done. Programming can either be performed online or offline and how the
program is done depends on the abstraction level defined [21].

Online programming

Online programming is a robot programming method where the robot system is
used to program the robot. Online programming is frequently used for simple and
less complex tasks, but it is hard to follow and maintain during complex tasks that
require frequent reprogramming or setup [21]. One major disadvantage of using an
online programming method is the programmer occupies the robot while program-
ming and this makes the robot system or the production system to which that robot
is connected to stop [21]. Thus robot programming time plays an important role in
improving production efficiency.

Offline programming

Offline programming is another robot programming method where external software
is used to program the robot. This method requires pre-knowledge about computers
and computer programming languages to program the robot. Offline programming
is done while the robot is in operation and this saves a significant amount of produc-
tion time while performing complex tasks. Offline programming needs to be checked
for its correctness against geometric tolerances during deployment and sometimes it
might require some final touch up and checks to make it correct [21]. Even though
the deployment process takes some time to correct the robot program, it is much
shorter compared to the online programming method.

Offline programs can be much more complex than online programs due to added
instruction sets, data types, and decisions, this results in small deviations in the
robot program when deployed to a real robot. Modern programming platforms
provide necessary supports to compensate these issues by providing specific macros
for certain sub-tasks, optimizing paths for a specific purpose, assist in writing and
editing, simulation, and checking program [21].

2.4.6 KUKA LBR iiwa
KUKA LBR iiwa is a lightweight, sensitive and human robot collaboration compat-
ible robot. The basic components of the robot includes: manipulator, controller,

13

2. Theory

smartPAD and connecting cables [22]. An overview of the robot system is shown in
figure 2.7.

LBR iiwa robot comes in two variants with different payload capacities: 7 kilo-
grams and 14 kilograms. Robots with an integrated sensor system are fundamen-
tally changing the production processes of the future and laying foundations for
innovative and sustainable production systems. This enables humans and robots to
cooperate and work together on sensitive tasks. LBR iiwa robot is equipped with
position sensor, torque sensor and temperature sensor in all its 7 axes and all joints
can be programmed individually [22]. This enables the automation of delicate as-
sembly operations with force-controlled joining operations and process monitoring,
and thereby avoiding costly rejections and collisions.

Figure 2.7: Overview of robot components [23]

Position and Orientation

The position of an object in Cartesian space is defined by specifying translation and
rotation relative to reference coordinate system [14]. Six coordinates are used to
define the position of an object in Cartesian space and are shown in table 2.2. The
basic data and axis data of KUKA LBR iiwa robot is shown in table 2.3a and 2.3b.

14

2. Theory

Table 2.2: Position and orientation [14]

Coordinate Description
Translation
Distance X Translation along the X axis of the reference system
Distance Y Translation along the Y axis of the reference system
Distance Z Translation along the Z axis of the reference system
Rotation
Angle A Rotation about the Z axis of the reference system
Angle B Rotation about the Y axis of the reference system
Angle C Rotation about the X axis of the reference system

2.4.7 Force and Toque control
Compliance control in a robot is required for robot applications like grinding, as-
sembling, polishing and human-robot interaction, which requires both position and
torque control [24]. Compliance in an industrial robot indicates flexibility and sup-
pleness, on the other hand, non-compliant robots are rigid and have predetermined
positions and trajectories. Even though most robots require rigidity to achieve the
necessary precision, a rigid robot cannot adapt its motions in case of disturbances
or unplanned situations [25]. Due to increased complexity in assembly lines, robots
are required to feel if anything goes wrong and this is why force-torque sensors are
necessary for the robotic industry [25].

A force-torque sensor in a robot detects the different forces/torques acting on the
robot joints, wrist, or tool in 3 geometric axes [25]. The force-torque sensor provides
a sense of feeling to the robot to sense its surrounding. Torque controlled robots
are essential for safe human-robot interaction and to support smooth detection of
delicate external events. For this purpose, good control to hide inertial forces is
required [26]. KUKA iiwa robot is equipped with position and joint torque sensors
in all its 7 axes to measure and react to external forces and torques [14] and it is
also possible to measure force/torque on a specific axis for a specific application.
This feature enables the automation of delicate assembly tasks for force-controlled
joining operations and process monitoring [22].

The F/T sensors of the KUKA iiwa robot are used to measure external torques. The
sensor is capable of measuring both force and torque acting along the 3 axes, and
they are defined by the components Fx-Fy-Fz and Mx-My-Mz. Bélanger suggests
that, there are various ways to measure force and torque values, generally most sen-
sor manufacturers use strain gauges with a specific orientation [25]. However, there
are some sensors that use gauges that digitize the measurements from the start [25].
The force-torque sensor produces output as either analog or digital signal, and the
signal is the communication method used to input the robot through a field bus [25].
Analog signals are not ideal for industrial robotic applications due to their high level
of electromagnetic noise [25]. Most robot manufacturers also provide software pack-
ages to use the information received from sensors and allow the user to program the

15

2. Theory

Table 2.3: Basic data and Axis data for LBR iiwa 14 R820 [23]

(a) Basic data
LBR iiwa 14 R820

Number of axes 7
Number of controlled axes 7
Volume of working envelope 1.8 m3
Pose repeatability (ISO 9283) ± 0.15 mm
Weight approx. 29.9 kg
Rated payload 14 kg
Maximum reach 820 mm
Protection rating IP 54
Protection rating, in-line wrist IP 54
Sound level < 75 dB (A)
Mounting position Floor
Controller KUKA Sunrise Cabinet

(b) Axis data
Range of motion

A1 ±170 °
A2 ±120 °
A3 ±170 °
A4 ±120 °
A5 ±170 °
A6 ±120 °
A7 ±175 °

Speed with rated payload
A1 85 °/s
A2 85 °/s
A3 100 °/s
A4 75 °/s
A5 130 °/s
A6 135 °/s
A7 135 °/s

16

2. Theory

robot with high-level commands.

The different terms used for force and torque analysis of the KUKA iiwa robot as
explained in [14] are listed below.

• External axis torques: The external axis torques are generated from the
forces and torques occurring due to robot interaction with its environment.
External axis torques are not directly measured but are calculated using the
dynamic robot model. The accuracy of these torques depends on the dynamics
of the robot motion and the interactive forces of the robot with its environment.

• Internal axis torque: These are the measured axis torque of a robot.
• Cartesian Forces: These are the forces acting along the X, Y, and Z axes of

a defined frame (Ex: TCP).
• Cartesian Torque: These are the torques acting about the X, Y, and Z axes

of a defined frame (Ex: TCP).

Even with all the advantages of having compliance control in the robot, the robot
torque controller is not consistent with its performance and shows variations in their
results, Vinay [26] mentions some of the factors which could affect the performance
of the torque controller and are listed below.

• Transmission nonlinearity in the motor to joint gearing (as shown in figure
2.8) injects vibrations and limits the performance of the torque controller.
A fluctuating gear reduction between the motor and joint could be a reason
for this nonlinearity which causes periodic deflection between joint and motor
positions.

Figure 2.8: Transmission nonlinearity [26]

• External torque estimation shows large velocity-dependent fluctuations and
velocities themselves show significant vibrations.

17

2. Theory

• KUKA provides Fast Robot interface (FRI) which allows real-time control of
robot up to 1 kHz control loop rates. The FRI accepts commands for the
motor position or joint torque and these torque commands are passed through
a feasibility filter which imposes a maximum slew rate and torque control is
suppressed when starting from zero velocity at torque levels below 1Nm.

2.5 Programmable logic controller (PLC)
Today’s automation requires machines and equipment to run automatically and want
machines to do everything. Earlier the industrial equipment was operated manually,
later through traditional relays, and now using programmable relays PLC takes the
automation to its highest level.

According to [27], PLC is a special form of microprocessor-based controller that uses
the programming instructions to perform functions like sequencing, timing, counting
and arithmetic to control machines and processes.

PLC’s are designed uniquely to control the industrial equipment under harsh condi-
tions and they do not use computers to control the equipment due to their instability
and prone to crashes and power surges [28]. PLC’s are designed not to fail under
harsh conditions and even if they failed they are made to fail in the safest way
possible [28].

2.5.1 PLC Configuration
The basic components of the PLC system are CPU, power supply unit, programming
device, and memory unit. The schematic representation of the PLC system is shown
in figure 2.9. The CPU consists of a microprocessor which interprets the input
signal based on the program memory to perform control action and then send these
actions as output signals [28]. The power supply unit’s function is to convert the
main AC voltage into low DC voltage as required by the controlling devices[28]. The
memory unit stores the program containing control actions to be performed by the
microprocessor and also the data from the input and output signals are stored [28].

2.5.2 PLC Programming
IEC 61131 defines the standards for PLC and IEC 61131-3 defines the PLC pro-
gramming languages [28]. IEC 61131-3 standard provides five PLC programming
languages [28].

1. Ladder diagrams (LAD)
2. Instruction list (IL)
3. Sequential function chart (SFC)
4. Structured text (ST)
5. Function block diagram (FBD)

18

2. Theory

Figure 2.9: PLC System [28]

This master thesis follows Ladder diagrams (LAD) programming language to write
the PLC program.

PLC’s can be programmed in handheld devices, desktop consoles, and personal
computers. PLC manufactures have programming platforms to program their PLCs
like RSLogix for Allen-Bradley, TIA portal V15.1 for Siemens, MELSOFT for Mit-
subishi, CX-One for OMRON, and ProWorx 32 for Telemecanique [28]. TIA portal
V15.1 platform has been used in this master thesis to program Siemens PLC.

TIA portal V15.1 is a standard software package developed by Siemens to configure
and program Siemens PLC’s. The software supports all programming languages
defined by IEC 61131-3 [28].

2.6 Virtual commissioning
Real commissioning of a production system involves a real plant and real controller
whereas, Virtual Commissioning is an industry 4.0 technology that uses a virtual
model and real controller to enable full emulation of production systems for verifi-
cation [29]. A graphical comparison of real and Virtual Commissioning is shown in
figure 2.10. A virtual model is an imitation of physical and logical behaviors of a
real production system and will work exactly like the real station.

2.6.1 Virtual commissioning process
The procedure to perform Virtual Commissioning (VCom) process involves the fol-
lowing steps and the schematic representation of this procedure is shown in figure
2.11.

1. Data collection
• Literature research
• Technical data

19

2. Theory

Figure 2.10: Virtual commissioning work flow [30]

• Software selection
2. Process planning
3. 3D Modelling
4. Simulation

• Visual Components
• Tecnomatix Process Simulate

5. Physical implementation and verification
• Robot calibration
• Robot programming
• Force/torque analysis

6. Logical control programming
• PLC programming

7. Virtual commissioning
• SiL Method

The process is initiated with the data collection stage, that involves literature re-
search, collection of technical data and selection of software for modelling and sim-
ulation. The next stage is process planning, that involves, preparation and decision
making of robot placement, assembly operation sequence. This stage is succeeded
by 3D modelling. In this stage, CAD model design and assembly workbenches are
used in preparation of components. This thesis required assembly of schunk gripper
components to be used in the simulation environment. Simulation stage involved in
setting kinematics, layout preparation and simulation of assembly process. Physical
implementation and verification stage involves setup of the robot cell through robot
calibration and programming. Logical control programming involves PLC program-
ming that is loaded on to the virtual controller and prepared for the final stage,
i.e. Virtual commissioning. The processes represented in figure 2.11 are iterative,
as modifications/improvements are performed.

20

2. Theory

Figure 2.11: Virtual commissioning process

2.6.2 Virtual commissioning methods
With all the latest technologies, it is now possible to test everything in software; the
virtual model with virtual PLC can be simulated using different software packages.
On the other hand, it is also possible to simulate a virtual model using real PLC.
Based on these principles Virtual Commissioning methods can be distinguished as
Software in loop, Hardware in loop and Hybrid simulation [32].

• Software in loop (SiL): All components used in this method are a digital
representation of the real station. The virtual model is controlled by a virtual
PLC as shown in fig 2.12. This method is relatively cheap compared to other
methods and also fast to deploy. Since this method doesn’t include any real
equipment, several safety-related issues can be avoided.

• Hardware in loop (HiL): This method tries to use maximum number of
hardware components as possible along with virtual model to commission
a production system as shown in figure 2.12. The setup created using this
method is more identical to the real system and the PLC code is tested using
a real controller. Due to these facts, the implementation cost of this method
is relatively high. The involvement of real industrial equipment can result in
several safety-related problems. An additional downside to this method is low
flexibility when changes occur.

• Hybrid simulation: This method uses the 3D model with a virtual robot
controller (developed by robot manufacturers)[32]. In this way, it is possible
to run the code on the real PLC with the exact hardware configurations that

21

2. Theory

are going to be used [32]. This method is more flexible and any changes made
to the plant design can be adapted into the 3D model.

Figure 2.12: Virtual commissioning methods [1]

2.6.3 Benefits of virtual commissioning
Some of the advantages of using Virtual Commissioning before implementation of
production systems are,

• Since, Virtual Commissioning is performed before physical implementation of
the station, deviations from the requirements can be fixed at an earlier stage
which results in decreased start-up time of the plant. According to Mortensen
[29], Virtual Commissioning can lower the commissioning time by up to 63%.

• Virtual Commissioning allows us to perform programming and debugging si-
multaneously which results in reduced debugging and correction efforts during
real commissioning [1].

• Using Virtual Commissioning, companies will have the ability to test more
complex scenarios with robots and mechatronic systems [32].

• Virtual Commissioning reduces the product’s time to market which provides
faster feedback to recognize probable issues. [32].

• Since, possible errors are fixed at the Virtual Commissioning stage, the quality
of the real commissioning is increased.[32].

• Virtual Commissioning increases the predictability of process lead times which
makes the lead-time estimation accurate [33].

• Shorter lead time and increased predictability makes the system more flexible
and helps to make decisions faster [33].

• Several safety-related issues can be avoided using virtual commissioning method.

22

2. Theory

2.6.4 Drawbacks of virtual commissioning
The success of Virtual Commissioning project depends on many factors and some
of the current problems with implementing Virtual Commissioning in industries are

• Lack of competences and integration experience. There might also be resis-
tance among investors to start the Virtual Commissioning project because of
this.

• The creation of a virtual model requires significant time and effort since most
of the parts are need to be modeled individually and also due to lack of access
to CAD libraries.

• The success of Virtual Commissioning implementation depends on the quality
of the virtual model. Failure to do so will result in inaccurate commissioning.
Also, it is important to update the virtual models according to specification
of the plant to avoid gaps between the real plant and virtual model.

23

2. Theory

24

3
Methodology

This chapter presents the methodology adopted for conducting Virtual Commis-
sioning of the drone assembly cell. The stages involved in this process are presented
in section 2.6.1 of chapter 2. These stages were devised from literature research of
various technical papers on Virtual Commissioning and the same are presented in
the below sections.

3.1 Data collection
This stage involved collection of data required to perform the project such as lit-
erature research, software selection etc. The input from this stage primarily aided
in establishing and execution of other stages involved. The methods followed are
explained in this section

3.1.1 Literature research
Data collection included a literature research on the topics related to theory of Vir-
tual Commissioning, methods and stages followed in the process. This stage also
included research on simulation software available along with PLC programming
methods and possibilities of mapping the signals with the virtual model. Technical
papers with the aforementioned topics were found through Chalmers library website
and google scholar. Keywords such as Virtual Commissioning, KUKA iiwa, Tecno-
matix Process Simulate, Visual Components, KUKA Sunrise Workbench, Force/-
Torque control, TIA Portal, and PLCSIM were used to find technical papers relevant
to the thesis project topic. Data on robot anatomy of the KUKA iiwa robot, force/-
torque controls and topics relating to industry 4.0 where, Virtual Commissioning
could play a vital role were researched with aid of technical papers and manuals.

3.1.2 Technical data
In addition to literature research, the drone factory layout information including
conveyor, pallet and station dimensions were collected physically at SII-Lab, Lind-
holmen. CAD models of the drone frame, drone motor, fixture setup for assembly
and Schunk gripper were collected from personnel in-charge at SII-Lab. Standard
components such as assembly table, assembly rails were downloaded from online
CAD libraries. The access to Visual Components libraries were used for conveyors
and KUKA iiwa robot.

25

3. Methodology

3.1.3 Software selection
This stage included the process of shortlisting and finalizing simulation software
available in the market that cater to the project requirements. Various simulation
software available in the market were researched for features and examined for cross
platform compatibility. A major requirement for the project was the access to in-
ternal libraries that could improve efficiency of simulation process.

In addition to the online research of software applications, a brief interview of our
thesis supervisor was conducted. The interview was aimed at understanding virtual
commissioning possibilities in the Swedish automotive industry. It was also possi-
ble to get suggestions on software for Virtual Commissioning used at automotive
industries like Volvo cars and information on software available with Chalmers uni-
versity. Similarly, modeling software required for the project to access CAD files
and assembly were selected.

3.2 Process planning
This stage involved planning of the drone assembly process. Technical data collected,
were used in the analysis. The sequence of assembly operation was determined
using planning activities from figure 2.4. This included activities like placement of
the KUKA robot, fixture location, drone component placement on pallet etc. Ideal
placement of the robot deemed necessary to prevent collisions and reach test to
confirm reachability of the robot during assembly and while picking components
from pallet. Section 2.3 in chapter 2 presents the planning process activities and
philosophy that are generally adopted in these projects. The results obtained from
this stage are discussed in the further chapters. The process was iterated to test
several alternatives to the assembly process that assisted in proposing the ideal
solution.

3.3 3D Modelling
3D modelling stage primarily involved development and assembly of CAD parts
to be used in simulation platforms. CAD Part files of the Schunk Co-act gripper
were downloaded to Catia V5 and assembled using constraints on the assembly
workbench. The CAD product was further exported with .stp file format to be used
in simulation applications. CAD model of the gripper fingers were procured from the
official Schunk catalogue and 3D printed, to be installed on the real gripper. CAD
parts of drone components, i.e. drone frame, motors and assembly fixture were
obtained from SII-Lab personnel and exported to simulation software for assembly
process simulation. Access to online library on Visual Components, provided us
with a possibility of exporting standard components such as the KUKA iiwa robot,
conveyors, table along with assembly fixture in .jt format to be used on Tecnomatix
Process Simulate as well. Several iterative improvements were made to the fixture
in this stage that aided in improving the assembly process and reduce cycle time.

26

3. Methodology

3.4 Simulation
In this stage, with the use of simulation platforms, a layout with robot and assembly
fixtures were prepared. The layout also included the conveyor system as established
at SII-Lab. The process of assembling drone frame with drone motors using snap/-
force fitting was created with the KUKA iiwa robot. Simulation of the process was
performed with two software applications discussed in sections below.

3.4.1 Visual components
Model a component

The process for modelling the Schunk gripper is explained in this section. Since,
Schunk Co-act gripper that was installed on the KUKA iiwa robot at SII-Lab was not
available on Visual Components library, CAD product was imported and modelled
on the simulation platform. Similar process was followed for modelling the KUKA
robot positioner. The CAD model of the Schunk gripper parts that include gripper
fingers, adapters, connection hubs were assembled in CATIA V5 on assembly design
workbench and imported. The procedure for modelling the gripper is explained in
Appendix A, section A.1.

Layout preparation

The layout of the Drone factory as established at SII-Lab was created. The lay-
out included only the KUKA iiwa robot station where assembly of the drone frame
with the drone motors was planned. The layout was created by drag and drop
option available on Visual Components. Conveyors available in the library were
dragged onto the main window and dimensions were altered as available at SII-Lab.
The conveyors were attached using the PnP option available on Visual Components.

A robot station consisting of an assembly table and fixture was created through the
drag and drop option. KUKA iiwa 14kg model that was used in the project was also
available in the online library under robots category. The robot was dragged onto the
main window. However, CAD model of the drone assembly fixture was imported, as
it was not a standard component. Further, robot positioner and Schunk gripper used
in SII-Lab was not readily available in the library. CAD models were imported to
Visual Components and modelled to activate the PnP option as explained previously.

Assembly process simulation

The robots were programmed after modeling the gripper to simulate the assembly
process of drone frame with motors. The process involved flow of drone components
on a 250 × 250mm pallet through the conveyors, that are placed by a Motoman
robot. The assembly was carried out with the KUKA iiwa robot. The KUKA iiwa
robot was attached with the modeled Schunk gripper using PnP option. Program tab
in Visual Components was used to program the robots. The sequence was created in
the program editor tab by selecting the robot. Snap function was used to choose the

27

3. Methodology

pick location. Further, Linear (LIN) or Point to Point (PTP) function were chosen
as robot movements to the pick location. Signals to start or stop the conveyors or
grasp or release of gripper were called at required program steps. Similar steps were
carried out to complete the drone assembly process. The procedure for programming
robot for assembly process is explained in Appendix A, section A.2.

3.4.2 Tecnomatix process simulate
Setting kinematics

Since there was no library access on standalone Tecnomatix Process Simulate, com-
ponents such as gripper, KUKA robot, conveyors along with the fixtures etc. were
exported with .jt file format from Visual Components and imported on Tecnomatix
Process Simulate with .cojt format. The KUKA iiwa robot was imported from
Visual Components, and kinematics was set for the same. The process involved,
setting the number of joints, links, joint motions, joint movement limits, baseframe
coordinate origin and flange coordinate origin for the robot. Similar process was also
followed for the schunk gripper, the base coordinate origin and Tool centre point
(TCP) were set. The joint type and translational distance for gripper fingers were
set in the kinematics editor. The detailed procedure for setting kinematics of KUKA
iiwa robot followed on Tecnomatix Process Simulate is explained in Appendix B,
section B.1.

Layout preparation

The components that are required to build the layout including robot, gripper, con-
veyors, drone parts etc were imported to Tecnomatix Process Simulate and arranged
according to the layout available at the SII-Lab. The parts were moved using the ma-
nipulate option available on the main window and dragged along the axes or moved
from one axis to another. The schunk gripper was mounted on the robot using
mount tool option in the robot tab. Pose editor option was chosen to set the release
and grasp positions for the schunk gripper and home position for the KUKA robot.
The layout model created in this step is presented in the next chapter. Frames were
created according to coordinates obtained from calibration procedures and Robot,
conveyors and other parts were arranged accordingly to match the layout accurately
as in SII-Lab.

Assembly process simulation

The assembly process of drone components was performed by assembling drone mo-
tors with drone frame. The processes for the assembly were created in the process
tab of Tecnomatix Process Simulate. The process was designed in a way that the
components are transported through pallets. The pallet stops at the sensor placed
on the conveyor. Object flow operation was chosen by providing start and end coor-
dinate points for drone components. Robot operations were prepared using generic
robotic operation. This feature provided coordinate points for the robot movement.
Gripper operations of grasp and release were performed using new gripper operation

28

3. Methodology

function. The procedure for simulation is explained in Appendix B section B.2.

3.5 Physical implementation and verification
The stage involved setting up the physical components of drone assembly station.
The robot used in the project was calibrated and fixture was assembled onto the
station. Robot programming of KUKA iiwa was performed in this stage simultane-
ously with calibration and then synchronized. Additionally, Force/torque analysis
with the KUKA robot was conducted. The process is explained in this section.

3.5.1 Robot calibration
The KUKA iiwa robot available at SII-Lab was positioned at the allocated station
physically. The controller and sunrise workbench application were started. A new
sunrise project was created as shown in figure 3.1 and the robot program was written
in a java source file. The file path was /Sii_Lab_LBR_iiwa_01/src/application/
KUKAIMSX30.java and is displayed under the package explorer window in the left
corner as shown in figure 3.2. The application data window at the right corner of
the window as shown in figure 3.2 consists of frame information, where, coordinates
(via points) were added with respect to the base coordinates that were obtained
from base calibration. Similarly template data tab as shown in figure 3.3 consists of
templates for tools and workpieces. Tool data for schunk gripper; and pointer tool
used for base calibration, were added here along with TCP frames. The values for
TCP were obtained through tool calibration and synchronised with sunrise work-
bench.

Figure 3.1: Start sunrise application

29

/Sii_Lab_LBR_iiwa_01/src/application/KUKAIMSX30.java
/Sii_Lab_LBR_iiwa_01/src/application/KUKAIMSX30.java

3. Methodology

Figure 3.2: Sunrise application data

Figure 3.3: Sunrise template data

30

3. Methodology

The robot calibration procedure includes calibration of the base and tool coordinates
that are performed using the manual calibration method as mentioned in section
2.4.4.

Tool calibration

Tool calibration is a process of assigning a Cartesian coordinate system i.e. tool
coordinate system to a tool mounted on the robot mounting flange [14]. The tool
coordinates i.e. Tool centre point (TCP) was defined with the calibration procedure
and synchronized to sunrise workbench. The defined point or TCP will interact with
objects in the environment. Consequently, not only the flange coordinate frame is
important but also the location of interacting parts with respect to the flange coor-
dinate frame. Tool calibration was performed for the schunk gripper and a pointer
tool. The pointer tool was used in base calibration procedure. The procedure for
tool calibration as followed consisted of the following 2 steps, XYZ 4-point method
and ABC 2 point method.

(a) XYZ 4-point method [14] (b) ABC 2-point method [14]

Figure 3.4: Tool calibration methods

• XYZ 4-point method : This method was used to define the origin of the
tool coordinate system. The TCP of the tool to be calibrated was moved to a
reference point from different directions [14]. A pointer was placed at a corner
of the table and chosen as the reference point for the procedure. Figure 3.4a
refers to the possible movement of the tool in four different directions. Step
by step procedure is explained in Appendix C section C.1.1.

• ABC 2-point method : This method was used to define the orientation of
the tool coordinate system. The method is used for tools with edges and cor-
ners like schunk gripper that can be used for orientation purposes by defining

31

3. Methodology

a point on the X axis and another on the XY plane. This method is neces-
sary to define the axis directions with precision [14]. Figure 3.4b refers to the
possible movement of the tool during the procedure. Step by step procedure
is explained in Appendix C section C.1.2.

Base calibration : 3-point method

The base calibration process assigns a cartesian coordinate system i.e. base coor-
dinate system to a frame selected as base [14]. 3-point method was followed as the
procedure, provided in the KUKA sunrise manual. The origin of base was defined at
a user defined point i.e. edge of the table with fixture. Further, positive direction of
the x axis and a point on the xy plane were recorded to obtain the base coordinate
system. Pointer tool was used in the procedure to define the points accurately. The
advantages of base calibration led to jogging of TCP along the edges of the work
surface of workpiece. Additionally, via points were taught relative to the base [14].
The procedure also aided in calibrating the simulation environment for increased ac-
curacy of coordinate points. Figure 3.5 refers to the possible movement of the tool
during the procedure. Step by step procedure is explained in Appendix C section
C.2.1. The procedure was repeated by moving the robot to a different position and
record the base coordinates.

Figure 3.5: 3-point method [14]

Hand-guiding method

As mentioned previously, the KUKA iiwa robot can be used extensively in human
robot collaboration. The handguiding feature of the robot offers extensive benefits

32

3. Methodology

during motion guidance and programming. This feature was employed in conduct-
ing experiments to test the robustness and accuracy of the robot. The experiment
conducted aided in locating the origin of the base coordinate system post 3-point
calibration methods explained above and demonstrate that the hand-guiding feature
can be used as an alternative to base calibration process.

The experimental setup consisted of a 3D printed holder with a tool adaptor hub,
that was placed at a defined distance from the table. The tool mounted on the robot
was detached. The handguiding device was activated and moved towards the tool
adapter hub for assembly. The robot was stopped at this position and cartesian
coordinates of the flange were recorded. Flange coordinate position with respect
to base coordinates provided the deviation of the flange coordinate origin from the
base origin. Since, the base origin on the simulation platform was set at the bottom
left corner of the table, this method aided in realizing the accurate position and the
necessary deviation of the base origin to be maintained on simulation platform for
increased accuracy. Figure 3.6 shows the procedure followed for the method.

Variation analysis

An additional experiment was conducted on the KUKA iiwa robot to determine
the variation in the base coordinates from the 3-point and hand-guiding calibration
method.

The robot was positioned near the station and base calibration was conducted us-
ing both 3-point and hand-guiding method. The procedure for the methods are
explained in the above sections. The results from the method was tabulated as
3-point and hand-guiding calibration values. The flange coordinate position with
respect to world coordinates are noted during the hand-guiding method (robot base
coordinate system is identical to the world coordinate system by default [14]). The
robot position was changed and the base calibration procedure was repeated. The
results from the experiment is presented in the following chapter.

3.5.2 Robot programming
The KUKA iiwa robot used in the project was programmed using offline program-
ming method as explained in chapter 2, section 2.4.5. KUKA sunrise workbench
was the external software application that was used to write the robot program in
java coding. The tool coordinate points for robot movement were retrieved from
simulation platforms and added in application data tab of Sunrise workbench. The
coordinate points for the robot movements are provided in Appendix D, table D.1.
These points were obtained after matching the base and tool calibration values in
simulation platforms to increase accuracy of the assembly process. The process fol-
lowed is provided below.

• The base calibration values were obtained from the KUKA smartPAD post
calibration procedure.

33

3. Methodology

(a) Hand-guiding movement of KUKA
robot

(b) Placement on tool adaptor

(c) Check for orientation (d) Record cartesian coordinates

Figure 3.6: Hand-guiding method

34

3. Methodology

• Since the left bottom corner of the table was used as reference in 3-point base
calibration procedure, the working frame on the simulation platform was also
set as the same.

• Once the working frame is set on the simulation platform, yet another frame
was created.

• The relative position of the new frame with respect to working frame was set
with the base calibration values adhering to the direction and orientation.

• The robot with gripper and base were moved by choosing the robot baseframe
and selecting the relocate option.

• The selection was moved to the new frame created.
• The distance between the working frame and new position of the robot base-

frame was measured.
• This measurement was equal to the base calibration values.
• Thus, the calibration values were matched in the simulation platform.
• The coordinate points were updated in the simulation values with respect to

the working frame.
• The coordinate values in physical setup are considered with respect to the base

coordinates.

The media flange used in this KUKA iiwa robot is a touch pneumatic media flange.
Touch pneumatic media flange is a universal interface to enable users to connect
pneumatic and electrical components to robot flange [34]. The media flange signals
were connected to Schunk gripper and the connection diagrams are shown in fig-
ure 3.7. The media flange signals were used for gripper actions like open/release,
close/grasp, setting LED lights and switching voltage. Finally, the robot program
was synchronized with robot controller and executed on the KUKA smartPAD.

3.5.3 Force torque analysis
The KUKA iiwa robot is equipped with position and joint torque sensors and was
earlier mentioned in section 2.4.7. The sensors were used to record force and torques
generated at the Tool centre point (TCP) of schunk gripper along with joint external
torques at various instances. The sensors were triggered at certain coordinate points
during assembly of motor with drone frame or during picking of materials from pal-
lets. The values recorded at the events were used in analyzing the variation of forces
or torques acting on the robot during the following instances provided below.

• Assembly of motors with correct/incorrect orientation.
• Availability/unavailability of drone components on the pallet during pickup.

Changes in the robot algorithm were made to implement alternate operations in the
case of discrepancies.

Sensitivity analysis

An additional experiment was conducted on the KUKA robot to test the accu-
racy and sensitivity of the sensors. The schunk gripper was dismantled and known

35

3. Methodology

(a) MFIO wire info (b) MFIO pin info

Figure 3.7: Media flange connection information [34]

weights were attached to the robot flange. The robot was moved to predefined coor-
dinate points. The force/torque acting at the flange were recorded at a rate 100 ms
for comparison. The cartesian forces and torques were also recorded and displayed
on the smartPAD when the robot reached the coordinate points. The orientation
of the flange coordinate axis was also considered during experimentation. Several
trials were conducted with various weights at the robot flange.

Results from the experiment were tabulated and plotted. The results and observa-
tions will be presented in the subsequent chapter.

3.6 Logical control programming
This stage involved designing of logical device behaviours and system control models.
Logical device modeling included the simulation application interfaces that were
linked to the control logic models. The control logic models involved programming of
PLCs. The methodology followed is explained in this section. This stage could also
be performed in parallel with the simulation stage to improve the process timeline.

3.6.1 PLC programming
PLC programming was performed on Siemens TIA portal V15.1 application for
this thesis project. The application was launched with a new project filename
IMSX30_VirtualCommissioning.ap15_1. The choice of controller was CPU 1211C
AC/DC/Rly configuration from SIMATIC S7-1200 family. The PLC program was

36

IMSX30_VirtualCommissioning.ap15_1

3. Methodology

created in ladder logic within Main [OB1] at the program block tab using different
operators such as bit logic and timer operators.

PLC tags tab was opened to provide data types, address with names that were used
on the ladder logic. The logic consisted of a normally closed contact that activates
the output initially. The normally open contact connected in parallel when true,
deactivates the output. During this period, the KUKA iiwa robot performs the
assembly operation and sends a signal once the process is complete. This ladder logic
was compiled to check for errors and prepared for Software in loop (SiL) testing along
with simulation applications by loading the programmable logic on to the virtual
controller. The process for the same is mentioned in the section below.

3.7 Virtual commissioning with SiL method
After all stages were successfully completed, Virtual Commissioning process was per-
formed. Software in loop (SiL) method was followed in this thesis project. Chapter
2, section 2.6.2 provides a brief explanation of the process. Digital representation
of the real station was prepared on the simulation software and programmable logic
was tested and mapped to the simulation environment. The procedure followed
using Visual Components software is explained in the below section.

3.7.1 Visual components
Virtual Commissioning with SiL method was conducted using Visual Components
application by connecting to a virtual PLC controller. This was performed by con-
necting TIA portal V15.1 with S7-PLCSIM V15.1 application. Since PLC SIM can
not be directly connected to Visual Components, NettoPLCsim application was used
to connect Visual Components with S7-PLCSIM V15.1. The complete procedure
for the same is provided in Appendix H, section H.1.1 and the same was obtained
from Visual Components academy [35].

37

3. Methodology

38

4
Results

The results achieved during the project work are provided in this chapter. The
results are presented in sections, similar to the process followed in chapter 3.

4.1 Data collection
The results from this stage are presented in the section. The process involved is
explained chapter 3, section 3.1.

4.1.1 Literature research
The application of Virtual Commissioning in a manufacturing system with mass
customization and oscillating demands is clearly presented by Mortensen et al. [29].
The paper motivates the use of novel technologies like Virtual Commissioning, that
are being tested at learning factories. SII-Lab is also one such setup. The paper
also discusses the design procedure for Virtual Commissioning. A concurrent de-
sign methodology is proposed by Ko et al., in their article for Virtual Commissioning
projects [31]. The article discusses the shortcomings faced in the conventional design
procedure of a production system with DES software like AutoMod® or ARENA®,
where the control logic cannot be tested. Thus, motivating the importance of test-
ing virtual models with PLC, a concurrent methodology is proposed. Dumitrascu’s
article also discusses the importance of Virtual Commissioning and presents various
configurations for implementation like Software in loop (SiL) and Hardware in loop
(HiL) [32]. The article further discusses the prerequisites and sheds light on Tecno-
matix Process Simulate as a probable software application. The benefit in workflow
with Virtual Commissioning is presented in an article on the Visual Components
website [30]. A similar motivation in Lechler’s article is presented that exhibits the
benefit of Virtual Commissioning in an engineering process [36]. The economical
justifications provided by Shahim in their article proves the value of Virtual Com-
missioning in the industrial setup [33]. Master thesis projects [37, 38, 39] presented
at the university were also investigated. Thus, the methodology for Virtual Com-
missioning project is drafted as presented in figure 2.11.

The KUKA sunrise manual provides us with details regarding the KUKA LBR iiwa
robot and advantages of 7-axis joints that improves the reachability and maneuver-
ability of the robot. The presence of sensors at the joints motivated us to conduct
the force/torque analysis.

39

4. Results

4.1.2 Technical data
The drone factory layout information was obtained from SII-Lab and is provided
in the below figure 4.1. The CAD parts of the drone components, fixture, robot
and pedestal etc obtained are provided in Appendix E, section E.1.1. The collected
data aided in developing the layout on simulation platforms post software selection
stage, presented in the below section. This stage is of extreme importance, as
latest revisions of the CAD models need to be obtained. Several improvements are
conducted throughout the processes. Thus, updating CAD data and documenting
the revision numbers becomes an important requirement.

Figure 4.1: Layout arrangement at SII-Lab

4.1.3 Software selection
With due consideration to all the features offered, the following simulation software
applications were shortlisted.

1. Visual Components premium 4.2 by Visual Components®
2. Tecnomatix Process Simulate by Siemens®

Considering the features offered by both Visual Components and Siemens, sim-
ulation of drone assembly process is decided to be carried out on both software
applications. Utilization of both the software applications in the project assisted
in gauging the functionality and robustness across platforms and in-turn aid in an-
swering the research question of best software platform for Virtual Commissioning.

The modeling software chosen to access the CAD files and perform assemblies is
Catia V5 2019.

40

4. Results

The modelling software is used to assemble parts of the gripper and export to the
simulation software. Since Tecnomatix Process Simulate was not linked to online
libraries, required models were exported from Visual Components to the required
format before importing on Tecnomatix Process Simulate.

4.2 Process planning
The steps followed in this stage are explained in chapter 3, section 3.2. Process
planning in robotic based assembly systems, presented by Browne is discussed pre-
viously. The procedure is effective and proved to be ideal in our situation. However,
the economic feasibility factor is not considered. The methodology adopted clearly
exhibits the iterative process among the stages and improvements in every iteration
to achieve an ideal condition. The results from the stage are presented below.

4.2.1 Component placement on pallet
The drone components placed on the pallet is shown in figure 4.2. The drone frame
is placed at a height of approximately 25mm from the pallet to avoid collision
of gripper with pallet. This is managed by placing the drone frame on holding
fixture as displayed in figure 4.2a. The same is managed on the simulation platform
through frame management by increasing coordinate value in the z direction during
simulation process.

(a) Physical station (b) Simulation platform

Figure 4.2: Component placement

4.2.2 Robot and fixture placement
Robot is decided to be placed in front of the station as per the factory layout
available at SII-Lab. The reachability of the robot is briefly tested by conducting
a reach test on Tecnomatix Process Simulate. Similarly, on Visual Components, it
is performed by selecting 3D envelope option as shown in figure 4.3a. However, the

41

4. Results

layout is prepared accurately in the layout preparation stage as discussed in section
4.4. Additionally, the KUKA iiwa robot has a maximum reach of 820mm as provided
in table 2.3a. Several positions for placement of fixture were tested and checked for
reachability and prevention of redundancy of the KUKA robot on the simulation
platforms. The fixture is finally decided to be placed on the table horizontally at the
top left corner as displayed in figure 4.3b. Further, the exact location is calibrated
during the simulation process.

(a) Robot 3D workspace

(b) Fixture placement

Figure 4.3: Robot and fixture placement

42

4. Results

4.2.3 Assembly operation sequence

The assembly operation sequence for the drone is presented in figure 4.4. The fixture
is designed to hold the drone frame. Hence, the first operation in the assembly
process after arrival of components, is the frame assembly on to the fixture. Further,
the motors are assembled. The order of motor assembly is designed in the simulation
stage considering the robot reach and joint angles at the fixing positions.

Figure 4.4: Assembly operation sequence

4.3 3D Modelling

The results obtained from the stage are provided in this section. This stage involved
modeling of components for defining kinematics during simulation of the drone as-
sembly process. The methodology followed is explained in section 3.3.

The CAD model part files were launched on CATIA V5 and assembled with con-
straints on the assembly workbench. Schunk CAD parts and resulting CAD product
is provided in Appendix E, section E.2.1. The process also aided in designing new
fixture for drone assembly and testing gripper finger modifications. The parts were
3D printed and assembled on the physical gripper for testing the solutions. Emphasis
is to given to the design improvements of the components in this stage. Document-
ing the revision numbers are deemed of utmost importance and several trials are
conducted in tandem with process planning and simulation stage. The components
designed on Catia V5 should be incorporated with a structured specification list and
geometrical sets for each part. Additionally, The CAD models are to be designed in
due consideration of the coordinate axis. These features aid in the simulation stage
while defining the kinematics of the components.

Figure 4.5 depicts the design improvement on the drone fixture. This process aided
in improving the cycle time of the assembly process through reduction in robot
coordinate points. The resuts from the simulation stage are presented in the below
section.

43

4. Results

(a) New fixture design (b) Fixture with drone frame

Figure 4.5: Design improvements

4.4 Simulation
The results obtained are explained in the section. The results are categorized as
individual sections for each software application used in the process i.e., Visual
Components (VC) and Tecnomatix Process Simulate (TPS). The process followed
in this stage is provided in chapter 3, section 3.4.

4.4.1 Visual components
Model a component

The process was a requirement as the gripper used for the project was not available
in Visual Components library. The method adopted for modeling the gripper is
explained in the previous chapter. Figure 4.6, shows the results of the process.
Signals are set for grasp and release actions of the gripper in this stage. The modeling
process aids in defining the kinematics of the components and further, activates the
PnP option. The Schunk gripper is assembled on the robot as shown in figure 4.6b.
The KUKA iiwa robot is further assembled on the robot positioner, that is modeled
similarly and prepared for layout setup.

Layout preparation

The layout as available at SII-Lab, is prepared with operative modifications. The
availability of parameterization aids in altering the dimensions of the components
according to the requirements. Drag and drop along with PnP option shortens the
layout preparation time. Additional options like align and snap could also be used.
Thus, improvements in the layout can be performed easily with the aforementioned
features. The figure 4.7 below, depicts the layout created on Visual Components.
The next step involved simulating the assembly process whose results are provided
below.

44

4. Results

(a) Gripper model (b) Robot with grip-
per

Figure 4.6: Schunk gripper modeling on Visual components

Figure 4.7: Layout model on Visual Components

45

4. Results

Assembly process simulation

The robots are programmed to conduct the assembly of drone frame with motors.
Motoman robot is used to pick and place drone components onto pallets and further,
KUKA iiwa robot is used in the drone assembly process. Coordinate points are de-
fined for the robot using Linear and Point to Point motions. The coordinate points
with respect to world or parent object can be found on the properties window. The
robot joint angles are also displayed during the process that aids in determining the
range and turn. Figure 4.8 below is a snapshot of the assembly process simulated
on Visual Components. The simulation process aided in defining the robot motions
by avoiding collisions and determining the cycle time of the process. Iterative im-
provements are made to reduce the cycle time and perceive the safety requirements
of the cell ahead of physical commissioning.

Figure 4.8: Assembly simulation on Visual Components

4.4.2 Tecnomatix process simulate

Setting kinematics

Kinematics for components like robot and gripper are established and the process
is explained in the previous chapter. Figure 4.9 shows kinematics editor results of
KUKA iiwa robot and Schunk gripper. After setting the base coordinates and tool
coordinates for both components, the gripper is mounted on the robot by choosing
Mount Tool option as shown in figure 4.10. The next step is setting the layout and
the same is discussed below.

46

4. Results

(a) KUKA kinematics (b) Schunk gripper kinematics

Figure 4.9: Kinematics results

Figure 4.10: Mount tool option

47

4. Results

Layout preparation

Layout preparation procedure is briefly explained in chapter 3 and the results of the
same are presented here. The components imported as parts/resources are arranged
according to the layout at SII-Lab adhering to calibration values obtained during the
physical setup stage. A major disadvantage with the unavailability of online library
is parameterization of the components. Dimensional changes to the components
are performed on Visual Components, and imported. Setting of kinematics can be
complicated as individual parts of the imported models cannot be separated. Any
improvements to CAD models were to be converted on Visual Components and
imported as well. This made the process time consuming and complicated. Figure
4.11 shows the layout arrangement created in Tecnomatix Process Simulate.

Figure 4.11: Layout model on Tecnomatix Process Simulate

Assembly process simulation

Simulation of drone assembly is performed as per the procedure explained in the
previous chapter. The process aided in ideal placement of the robot and test its
reach as well. Robot movements are planned to reduce cycle time without col-
lisions. The inputs from these tests are used in process planning and modeling
stages, thus demonstrating the iterative and continual information sharing within
the processes. The frame management feature aids in calibrating the base and tool
coordinates as per physical setup, thus improving the accuracy and resemblance in
the simulated environment. The path editor panel in the main window furnishes the
coordinate points. These coordinate values from the simulation process are used in

48

4. Results

robot programming. Figure 4.12, provides a clipping from the simulated assembly
process on Tecnomatix Process Simulate.

Figure 4.12: Assembly simulation on Tecnomatix Process Simulate

4.5 Physical implementation and verification
This section presents the results obtained from physical verification and implemen-
tation stage. The methodology followed in this stage is explained in the previous
chapter.

4.5.1 Robot calibration
The results obtained from calibration procedures performed on the KUKA iiwa robot
are discussed in this section. The methods followed in calibrating the robot base
and tool are explained in section 3.5.1. The calibration values were synced from the
robot smartPAD to KUKA sunrise workbench after completion.

Tool calibration

Tool calibration results are presented in this section. The methods followed to define
the origin and orientation of tool coordinate system are explained in chapter 3. The
procedure was carried on both Schunk gripper and pointer tool. The pointer tool was
used in the base calibration process. The results from the procedure are provided
in table 4.1.

49

4. Results

Table 4.1: Tool calibration results

(a) Schunk gripper
Origin values (in mm)
X -1.41
Y -1.13
Z 282.08
Orientation (in degrees)
A 89.08 °
B 1.84 °
C 1.27 °
Calculation error (mm)

0.51

(b) Pointer tool
Origin values (in mm)
X -0.32
Y -1.27
Z 165.19
Orientation (in degrees)
A 178.08 °
B 0.11 °
C -2.32 °
Calculation error (mm)

0.37

Base calibration

The results from base calibration procedure of KUKA iiwa robot are presented in
this section. The procedure followed was explained in section 3.5.1. The robot
is mounted with a pointer tool during the base calibration method for increased
accuracy of the results. The calibration values are then conformed on the simulation
applications to improve coordinate point accuracy during robot programming. The
procedure for the same is provided in section 3.5.2. The base calibration values
obtained, are synced to KUKA sunrise workbench from the KUKA smartPAD after
the procedure. The results from the 3-point base calibration method are presented
in table 4.2.

Table 4.2: Base calibration results

Origin values (in mm)
X 124.1
Y 612.8
Z -107.7
Orientation (in degrees)
A -0.5 °
B 0.6 °
C 179.9 °

Hand-guiding method

The results obtained from handguiding method are presented in this section. The
procedure and aim of this method are explained in the previous chapter. The ex-
periment proved that hand-guiding method, if performed without base calibration
would provide the cartesian coordinates with respect to the world coordinate sys-
tem and can be directly added as base coordinates in the application data of Sunrise

50

4. Results

workbench. Table 4.3, provides the flange position from base origin obtained during
the test. The base coordinates are obtained previously using the 3-point method.
The deviation obtained is matched in the simulation platform to further increase the
accuracy of the robot coordinates. Thus, the hand-guiding feature on the KUKA
iiwa robot is effective and can be used in locating the accurate position of the base
origin.

Table 4.3: Hand-guiding experiment results

Flange position from base origin (mm)
X 0.62
Y 2.13
Z 2.08

Variation analysis

The results from the variation analysis experiment is presented in this section.

Base calibration of the KUKA iiwa robot is conducted using the 3-point method
initially and the results are tabulated. Additionally, the flange coordinates with re-
spect to the world coordinate system is determined using the hand-guiding method.
The values of the same are tabulated as hand-guiding coordinates. Further, the
position of the robot is altered and the calibration procedures are repeated. Table
C.1 in Appendix C, presents the tabulated base calibration results from 13 different
positions. Figure 4.13, represents a scatter plot of the base coordinates obtained at
13 positions. Table 4.4, provides the standard deviation of the absolute difference
of base coordinate values, obtained from the variation analysis experiment.

Table 4.4: Standard deviation of absolute difference

Standard deviation (s)
X 0.829
Y 0.889
Z 0.561

The results of this experiment can further be analyzed by the following method. A
physical point in the station is chosen, eg. centre of the drone fixture. The robot can
be moved to the chosen point after 3-point calibration procedure and the pointer
tool TCP coordinates with respect to the base coordinate system can be recorded.
Further, the above mentioned process is repeated after the hand-guiding calibration
method. The variation in the coordinate values after both the methods can be
tabulated to evaluate the standard deviation, thus, determining the robustness of
the KUKA iiwa robot.

51

4. Results

Figure 4.13: Scatter plot of Base coordinates

4.5.2 Robot programming
The coordinates for robot programming are obtained from simulation applications.
The values obtained from the simulation models are entered manually into KUKA
sunrise workbench in application data. Media flange signals to the Schunk gripper
were injected into the robot program for grasp and release operations. The base and
tool calibration values obtained from KUKA smartPAD were matched in simulation
applications to increase the accuracy of the assembly process. Figure 4.14, provides
the result of the same in the simulation platform. A statement from the source code
is provided below that executes the robot movement towards position via3 with
respect to the defined base.
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via3")));

Finally, the robot program was synchronized with the robot controller and executed
on KUKA smartPAD. The complete source code for the robot assembly process and
media flange is provided in F, section F.1. Additionally, the pictures of the assembly
process executed at SII-Lab, is provided in section F.2.

4.5.3 Force torque analysis
Real-time force and torque values for the KUKA iiwa robot can be obtained from
the smartPAD during robot motion. These values can be used as conditions while
writing the robot program to trigger certain actions or to identify any variations in
the process. For this drone assembly process, force and torque values are measured
for 2 instances as explained in section 3.5.3. External cartesian forces at TCP and

52

4. Results

Figure 4.14: Matching calibration in Simulation

external joint torques at each joint are measured during picking of drone frame to
check the availability and during assembly of motor on to the frame to check the
orientation.

The data recording option is initialized and activated to record the external joint
torques and cartesian forces acting on the gripper TCP for a duration of 150 seconds
with a recording rate of 50 ms [14].
DataRecorder rec1 = new DataRecorder("Recording_16June.log", 150, TimeUnit.SECONDS, 50);
rec1.addExternalJointTorque(lBR_iiwa_14_R820_1);
rec1.addCartesianForce(Gripper.getFrame("/GripperTCP"), null);
rec1.enable();

The data displayed on smartPAD using ’logger.info’ option as shown is used to
establish the conditions and set of operations.
//Force and Torque data is displayed
ForceSensorData data = lBR_iiwa_14_R820_1.getExternalForceTorque(Gripper.getFrame
("/GripperTCP"));
TorqueSensorData measuredata = lBR_iiwa_14_R820_1.getMeasuredTorque();
logger.info("Force & Torque :" +data);
logger.info("Measured Torques :" +measuredata);

The force and torque component conditions were initialized and inverted to set
the range. Motion command is temporarily stored using the IMotionContainer
command. Motion termination is performed using a breakWhen() command when
the conditions initialized are met. Information of terminated motions are stored in
IFiredCondtionInfo. The condition which caused the termination of a motion can
be requested via the method getFiredCondition(). If the requested information
is not equal to null, the motion will be terminated. The system only requests the

53

IMotionContainer
breakWhen()
IFiredCondtionInfo
getFiredCondition()

4. Results

triggered break condition in our case. Specific operations are provided in the source
code for the robot to perform. The orientation of the gripper TCP, while the sensors
are trigger is given in figure 4.15, where ‘ˇ’ is z axis, ‘F’ is y axis and ‘•’ is x axis.
The source code with conditions and triggers for different scenarios is provided in
Appendix G, section G.2. A graphical comparison of the measured values for tried
instances is shown in Appendix G.

Figure 4.15: Gripper TCP orientation

The KUKA iiwa robot is capable of measuring small variations in force and torque
values, the measured force and torque values obtained during the aforementioned
test scenarios, shows that the values do not vary significantly to observe any change.
Also, the measured values have significant overlap with every trial, thus resulting
in difficulty to differentiate between correct and wrong processes. The probable
reasons for these variations are explained in section 2.4.7. Since the values were
inconsistent, the sensitivity analysis of the robot sensors are performed. The results
are presented below.

Sensitivity analysis

The external joint torque and cartesian forces acting on the flange TCP are recorded
at a rate of 100ms and also at coordinate points. A sample source code is provided
in the previous section. The recorded values are tabulated and shown in Appendix
G.3, table G.1. The presented values also include the weight of the gripper and
pointer tool. The values are also plotted to observe the variation. Appendix G.3,
provides the results of the plots. The coordinate points for the robot movement are
programmed in the following conditions.

1. X axis of the flange pointing down (Coordinate point 1)
2. Y axis of the flange pointing down (Coordinate point 2)
3. Z axis of the flange pointing down (Coordinate point 3)

From table G.1, the average value of Fx with no weight (0 grams), excluding the
gripper and pointer tool weights recorded is Fx = 4.64 N. Similarly, the average

54

4. Results

with 1350 grams weight recorded, is Fx = 17.09 N. To verify the value, following
calculations are performed.

F x (1760) = F x (0) + (g ×m)

(g x m as force is acting in downward direction)

F x (1760) = 4.64 + (9.81 × 1.350)

F x (1760) = 17.8N

Similar calculations can be performed to test other values of cartesian force and
torques. The weight of the adaptor hubs are approximately 480 grams and they
contribute to the force/torque acting on the flange. Hence, Fx (0g) = 4.64 N is
obtained. The values tend to change upon addition of weights as shown above. Thus,
it can be proved that KUKA iiwa robot is capable to detecting even small variations
of forces and torques acting externally. The graphs plotted through continuous
recording also prove the same. Further results can be obtained by continuously
recording cartesian torques acting at the TCP using rec.addCartesianTorque();
feature.

4.6 Logical control programming
This stage involves the design of programmable logic. PLC programming was per-
formed on TIA portal V15 by Siemens. The programming logic is loaded on to
a virtual control S7PLCSIM application. This setup is then verified by Virtual
Commissioning (VCom) method as explained in section 3.7. The results from the
electrical stage is provided in the sections below.

4.6.1 PLC programming
The logic on TIA portal is prepared in a way that conveyor motor is active until
pallet with drone components activates the conveyor sensor, in-turn stopping the
conveyor motor. The KUKA iiwa robot now performs the drone assembly operation.
A pneumatic compressor is activated when the gripper grasps the drone components
and is deactivated otherwise. After the assembly operation is complete, the robot
sends a signal and the conveyor motor is reactivated. The CPU controller informa-
tion is provided in section 3.6.1. PLC ladder logic along with tags allocated on TIA
portal are provided in figure 4.16 and table 4.5.

Table 4.5: PLC Tags

Name Path Data Type Logical Address Hmi Visible Hmi Accessible Hmi Writeable
Conveyor_Sensor Default tag table Bool %I0.0 True True True
Conveyor_Motor Default tag table Bool %Q0.1 True True True
Gripper_OPEN Default tag table Bool %I0.2 True True True

Pneumatic_System Default tag table Bool %Q0.4 True True True
Gripper_CLOSE Default tag table Bool %I0.3 True True True
Robot_Input Default tag table Bool %I0.6 True True True

55

rec.addCartesianTorque();

4. Results

Figure 4.16: PLC ladder logic

56

4. Results

4.7 Virtual commissioning with SiL method
Virtual Commissioning with SiL method is conducted and the results are presented
in this section. The process was performed with Visual Components application
used in the project. The methodology followed is presented in chapter 3, section
3.7.

4.7.1 Visual components
The result obtained from Virtual Commissioning process is presented in figure 4.17.
The figure 4.17a represents the first instance when the conveyor motor near KUKA
robot station is active. The status is displayed as True in the connected variables
tab of Visual Components. However, in the second instance, drone parts are sensed
by the sensor and the conveyor motor is stopped as displayed in figure 4.17b. In
this stage, sensor is active and displayed as True, whereas conveyor is stopped and
displayed as False. The above process aids in testing the programmable logic with
simulated environment of drone assembly station.

57

4. Results

(a) Conveyor motor - active, sensor - inactive

(b) Sensor - active, conveyor motor - inactive for 80 sec

Figure 4.17: SiL with Visual Components

58

5
Discussion

This section discusses the designed methodology to perform Virtual commissioning
and the obtained results, to achieve the objectives and purposes of this master thesis
by answering the intended research questions.

With an increase in product variety, manufacturers must be more flexible to pro-
duce new products, thus requiring new manufacturing processes to meet the market
demands [32]. Hence, the companies adopt new technologies that improve their
commissioning processes, to identify bottlenecks and defects before physical imple-
mentation. It is possible today to perform commissioning virtually by creating a
replica of the real model. Thus, Virtual Commissioning is an approach that creates
the replica of a real-world with a real controller to enable complete verification of
the manufacturing system [1].

To perform Virtual Commissioning, everything in the real world requires an equiv-
alent in the virtual world. Real-world consists of a real controller, HMI, sensors,
actuators, and a machine to perform the tasks [40]. In the same way, a virtual
world consists of a virtual controller, HMI Simulation and a virtual station to emu-
late the real world [40]. The documented procedures, benefits, methods are studied
to draft the adopted process methodology. The aforementioned are presented in de-
tail in section 2.6. Virtual Commissioning is widely used in areas like manufacturing,
food & beverage and packaging. A unique opportunity of working remotely was ex-
plored with this project. All the stages in the adopted methodology can be executed
remotely except physical implementation. The importance of data and information
exchange within the stages for iterative improvements are realised through this the-
sis project. This presents a setback in the industrial scenario while implementing
Virtual Commissioning, as it demands excessive collaboration between various de-
partments and suppliers.

The selection of a software platform to perform Virtual Commissioning depends on
many factors like the cost of the software, availability of an online library, ability
to support different Virtual Commissioning methods and expected outcomes of the
project. The current major Virtual Commissioning software providers are Siemens,
ABB, KUKA, Dassault Systems and Visual Components. Each software applica-
tion has its own benefits and drawbacks. Hence, it is important to choose the right
software based on project requirements. Each software package takes a significant
amount of learning time for execution, so it is also important to consider the avail-
able time frame for the project.

59

5. Discussion

Modeling of components to build simulation models, occupies a major part of the
Virtual Commissioning process. Hence, availability of an online CAD library is an
important requirement. Additionally, the drone assembly station is developed to test
the performance of the KUKA iiwa robot for drone assembly application using Vir-
tual Commissioning method. The complex electrical system of the drone factory at
SII-Lab, proved difficult to separate the already established electrical connections
for the assembly station. This urged us to adopt Software in loop (SiL) Virtual
Commissioning method to verify the logic behaviour. Most of the available software
applications are capable of performing Virtual Commissioning process. However,
software applications licensed by Chalmers University are used in this project. Thus,
above factors motivated the utilization of Visual Components (VC) and Tecnomatix
Process Simulate (TPS) for the project.

The drone assembly process is automated using the KUKA iiwa robot in the virtual
world, and the designed automation is verified on the physical station. The project
is motivated to test the performance of KUKA iiwa robot for force/snap-fit assem-
blies. Further, the KUKA robot has not been used on aforementioned applications
at SII-Lab. Thus, the project results proved the capability of KUKA iiwa robot
on force/snap-fit assemblies, to motivate its deployment on several other applica-
tions. The hand-guiding feature on the robot can be utilized excessively in teaching
coordinate positions and base calibration for a quicker setup time during physical
implementation. The project also describes the detailed procedures of developing
simulation models, offline programming, robot calibration and Virtual Commission-
ing methods. Thus, SII-Lab can be encouraged to implement Virtual Commissioning
on the ongoing or subsequent projects using the defined procedures to verify ahead
of physical implementation.

The Virtual Commissioning method designed for drone assembly process on Vi-
sual Components is very flexible to changes due to the availability of an extensive
CAD library. The CAD models in Visual Components are also parametrized, which
makes it easier to modify them based on the requirements. The signal connection
feature on Visual Components is easy and flexible since the signals for robot, gripper
and conveyor are pre-established and only need to be mapped appropriately before
testing. Several features, such as drag and drop, Plug n Play feature to move the
components, aids in expediting the process.

In case of standalone Tecnomatix Process Simulate, the absence of an online CAD
library, leads to investing more time on modeling of components. CAD models
of components used are to be imported while building the virtual station. Also,
modification of CAD models need to performed externally before updating on Tec-
nomatix Process Simulate (TPS). However, the main advantage of using TPS, is the
availability of frame management option. The feature helps in easy manipulation
of objects on the main window, by allowing users to manipulate from one frame to
another. The frame management system on TPS, also aids in calibrating the simu-
lation model according to values obtained from physical calibration procedure. The

60

5. Discussion

modification of position and orientation of objects in working space is also easier on
TPS due to the availability of path editor panel. The operation sequence can be
modified on the sequence editor panel providing flexibility during simulation. Line
simulation mode is a robust feature used during Virtual Commissioning.

Force and torque analysis results explained in section 4.5.3, shows that the obtained
force/torque values do not vary significantly for both correct and wrong processes.
The measured force/torque values also fluctuate with every trial due to low mass
of the 3D printed components. Thus, resulting in difficulty to differentiate between
the correct and wrong processes. Another factor influencing the minor variation in
force/torque values is the gripper orientation during the assembly process. How-
ever, considering the involved factors and inconsistencies, it was possible to achieve
more than 50% success in identifying correct and wrong processes using measured
force/torque values. Modification of gripper fingers, orientation during assembly,
increased weight of drone components might lead to improved results. However,
the force/torque sensors on KUKA iiwa robot have proven to be beneficial during
assembly operations.

61

5. Discussion

62

6
Conclusion

The aim of the master thesis project is to automate the drone assembly process at
Stena industry innovation lab. The assembly process involves snap/force fit assem-
bly of drone frame chassis with drone motors using KUKA LBR iiwa robot. Virtual
Commissioning method proved to be ideal to achieve the results by creating a virtual
model of the assembly cell and integrating with a virtual PLC. The project is also
successful in answering the research questions pertaining to Virtual Commission-
ing. Both Visual Components (VC) and Tecnomatix Process Simulate (TPS), have
proved to be efficient and robust software applications that can be used in Virtual
Commissioning.

Virtual Commissioning process has proved to be an important method that can be
explored by manufacturing organizations through this project. The process can also
aid in better planning and cost saving solutions thus improving the manufacturing
capabilities without production stoppage. An interesting opportunity of working
remotely that could lead to developments in remotely operated factories and add
another dimension to the Industry 4.0 technologies was explored with the thesis
project. The project successfully implemented the drone assembly process using the
7-axis KUKA iiwa robot at Stena industry innovation lab.

6.1 Future work
The master thesis project also presents topics that can be further explored as future
work.

The possibility of adding product weight and physics to the CAD models on simu-
lation platforms can further improve the accuracy and solve practical issues during
physical implementation. The possibility of using plugins with simulation appli-
cations to incorporate force/torque measurements at the robot TCP could aid in
analysis and incorporate ideal solutions to physical models. A possibility of au-
tomating the process of manual updation of coordinate points in Sunrise workbench
from simulation platforms could be explored. Finally, to link the drone assembly
process with the Thingworx system established at Stena industry innovation lab for
analysis of data.

63

6. Conclusion

64

Bibliography

[1] Lee, C. G., & Park, S. C. (2014). Survey on the virtual commissioning of
manufacturing systems.Journal of Computational Design and Engineering,
1(3), 213–222. https://doi.org/10.7315/jcde.2014.021

[2] Metzner, M., Krieg, L., Merhof, J., Ködel, T., & Franke, J. (2019). Intuitive
Interaction with Virtual Commissioning of Production Systems for Design
Validation. , 892–895. https://doi.org/10.1016/j.procir.2019.08.004

[3] Stena Industry Innovation Lab. (2019, March 22). The
Drone factory in SIILab [Video file]. Retrieved from
https://www.youtube.com/watch?v=86zvGSZfIPM

[4] LBR iiwa. (n.d.). Retrieved February 27, 2020, from
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-
iiwa

[5] Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Indus-
try 4.0 technologies: Implementation patterns in manufacturing com-
panies. International Journal of Production Economics, 210, 15–26.
https://doi.org/10.1016/j.ijpe.2019.01.004

[6] Mattsson, S. (2018a). Towards increasing operator wellbe-
ing and performance in complex assembly. Retrieved from
https://www.researchgate.net/publication/322504726_Towards_increasing_o
perator_wellbeing_and_performance_in_complex_assembly

[7] Frohm & Lindström & Winroth & Stahre, J. & V. and M. & J. (2008).
Ergonomia - International Journal of Ergonomics and Human Factors.
Levels of Automation in Manufacturing, 30, 181–207. Retrieved from
http://publications.lib.chalmers.se/records/fulltext/76667/local_76667.pdf

[8] Mattsson, S. (2018, September). Level of Automation (LoA)
in a production system 14 / 71 [Slides]. Retrieved from
https://pingpong.chalmers.se/courseId/9778/node.do?id=4848679&ts=153622
8072443&u=341219787

65

Bibliography

[9] Improve Efficiency With Flexible Automation. (n.d.). Retrieved May 21, 2020,
from https://www.crossco.com/resources/technical-bulletins-guides/fixed-
versus-flexible-automation/

[10] Halevi, G. (2013). Process and Operation Planning: Revised Edition of The
Principles of Process Planning: A Logical Approach (Revised ed.). Springer.
https://doi.org/10.1007/978-94-017-0259-1

[11] BROWNE, J., TIERNEY, K., & WALSH, M. (1991). A two-stage as-
sembly process planning tooJ for robot-based flexible assembly sys-
tems. International Journal of Production Research, 29(2), 247–266.
https://doi.org/10.1080/00207549108930068

[12] International Federation of Robotics. (n.d.). Retrieved May 3, 2020, from
https://www.ifr.org/industrial-robots/

[13] Kihlman, H. (2019, March 26). Introduction to industrial robotics [Slides].
Retrieved from https://pingpong.chalmers.se/courseId/10677/node.do?
id=5255102&ts=1553769449810&u=341219787

[14] KUKA Deutschland GmbH. (2018). KUKA Sunrise.OS 1.16, KUKA
Sunrise.Workbench 1.16 (1.16) [Operating and Programming Instruc-
tions for System Integrators]. Pub KUKA Sunrise.OS 1.16 SI (PDF) en.
https://www.kuka.com

[15] GUSTAV BERGSTRÖM. (2011). Method for calibration of off-line generated
robot program. Gothenburg, Sweden: Chalmers University of Technology.

[16] Per Nyqvist. (2019, April). Offline programming of an ABB industrial robot.
Gothenburg, Sweden: Chalmers University of Technology.

[17] LEONI Americas. (n.d.). Robot & tool calibration. Retrieved July 1, 2020, from
https://www.leoni-americas.com/us/products-services/factory-automation-
robotics/robot-tool-calibration/

[18] Robot Calibration. (n.d.). Retrieved July 1, 2020, from
https://robodk.com/doc/en/Robot-Calibration-Creaform.html

[19] Schröer, K. (1998). Handbook on Robot Performance Testing and Calibration.
Fraunhofer-IRB-Verlag. https://books.google.se/books?id=hNxTtwAACAAJ

[20] Zhang, W., Ma, X., Cui, L., & Chen, Q. (2008). 3 Points Calibration Method of
Part Coordinates for Arc Welding Robot. Intelligent Robotics and Applications,
216–224. https://doi.org/10.1007/978-3-540-88513-9_24

66

Bibliography

[21] Bolmsjö, G. (2014). Programming and simulation of robots. Retrieved from
https://chalmers.instructure.com/courses/9395/files/445917?module_item_id=69837

[22] KUKA Roboter GmbH. (2017). KUKA Sensitive robotics LBR
iiwa. Retrieved from https://www.kuka.com/-/media/kuka-
downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/kuka_lbr_iiwa
_brochure_en.pdf?rev=5a25f7eac825492e92af6343dbf5bc6b

[23] KUKA Roboter GmbH. (2015). LBR iiwa Specification. Retrieved from
http://www.oir.caltech.edu/twiki_oir/pub/Palomar/ZTF/KUKARoboticArm
Material/Spez_LBR_iiwa_en.pdf

[24] Dong, Y., Ren, T., Wu, D., & Chen, K. (2020). Compliance Control for Robot
Manipulation in Contact with a Varied Environment Based on a New Joint
Torque Controller. Journal of Intelligent & Robotic Systems, 99(1), 79–90.
https://doi.org/10.1007/s10846-019-01109-8

[25] Bélanger-Barrette, M. (n.d.). Robot Force Torque Sensor - An Introduction. Re-
trieved September 13, 2020, from https://blog.robotiq.com/bid/72422/Robot-
Force-Torque-Sensor-An-Introduction

[26] Vinay Chawda and Gunter Niemeyer. (2017, September). Toward Torque Con-
trol of a KUKA LBR IIWA for Physical Human-Robot Interaction. Vancouver,
BC, Canada: International Conference on Intelligent Robots and Systems.

[27] Bolton, W., & Bolton, W. (2009). Programmable logic controllers. Retrieved
from https://ebookcentral.proquest.com

[28] Lynn, P. [Udemy]. (2020, April 1). Learn PLC Programming From Scratch
(PLC I) [Video file]. Retrieved from https://www.udemy.com/course/plc-
programming-from-scratch/

[29] Mortensen, S. T., & Madsen, O. (2018). A Virtual Commis-
sioning Learning Platform. Procedia Manufacturing, 23, 93–98.
https://doi.org/10.1016/j.promfg.2018.03.167

[30] Visual Components. (2016, March 18). Engineering project with and with-
out virtual commissioning [Timeline]. What Is Virtual Commissioning?
https://www.visualcomponents.com/insights/articles/increasing-control-
software-quality-with-virtual-commissioning/

[31] Ko, M., Ahn, E., & Park, S. C. (2013). A concurrent design methodology of a
production system for virtual commissioning. Concurrent Engineering, 21(2),
129–140. https://doi.org/10.1177/1063293x13476070

67

Bibliography

[32] Dumitrascu, N.A., Dinca, A., & Predincea, N. (2017). Virtual commissioning
of a robotic cell using Tecnomatix process simulate. Annals – Series on Engi-
neering, 9(1), 45–60. Retrieved from http://aos.ro/editura/analeleaosr/annals-
on-engineering/archive/vol-9-no-1-2017-annals-series-on-engineering-sciences

[33] Shahim, N., & Møller, C. (2016). Economic justification of Virtual Commis-
sioning in automation industry. https://doi.org/10.1109/WSC.2016.7822282

[34] KUKA Roboter GmbH. (2016). Media Flange. Retrieved from
https://schunk.com/se_en/services/tools-downloads/operating-
manuals/list/series/Co-act%20EGP-C/co-act-egp-c

[35] Visual Components. (n.d.). Connect to a Siemens S7 PLC. Vi-
sual Components Academy. Retrieved July 22, 2020, from
https://academy.visualcomponents.com/lessons/connect-to-a-siemens-s7-
plc/

[36] Lechler, T., Fischer, E., Metzner, M., Mayr, A., & Franke, J. (2019).
Virtual Commissioning – Scientific review and exploratory use cases
in advanced production systems. Procedia CIRP, 81, 1125–1130.
https://doi.org/10.1016/j.procir.2019.03.278

[37] Winther, S. (2017). Virtual commissioning of production pro-
cess (Master Thesis). Chalmers University of Technology.
https://odr.chalmers.se/bitstream/20.500.12380/250446/1/250446.pdf

[38] YAO, C., & DZINIC, J. (2013). Simulation-based verification of
PLC programs (Master Thesis). Chalmers University of Technology.
https://odr.chalmers.se/bitstream/20.500.12380/195493/1/195493.pdf

[39] Älegård, S., & Knutsson, S. (2017). Virtual Commissioning of
Smart Factory (Master Thesis). Chalmers University of Technology.
https://odr.chalmers.se/bitstream/20.500.12380/250419/1/250419.pdf

[40] RFID behavior library for SIMIT. (n.d.). Retrieved August 6, 2020, from
https://support.industry.siemens.com/cs/document/109766710/rfid-behavior-
library-for-simit?dti=&lc=en-WW

[41] Visual Components. (2020, May). Siemens S7 connection plugin tutorial
https://academy.visualcomponents.com/lessons/connect-to-a-siemens-s7-plc/

68

A
Appendix

A.1 Procedure for modelling a gripper on Visual
Components

1. Import CAD file or add the source of the geometry file into the e-catalogue
panel.

2. The source addition option displays all the CAD files in the e-catalogue after
importing. However, it is easier to use the import option.

3. The part file of the component is dragged to the 3D world and moved to the
world coordinate origin.

4. The component graph is accessed through the modeling tab.
5. The components could be at an offset from the world coordinate origin if the

up-axis defined in CATIA V5 could vary from Visual Components.
6. This is fixed by creating a box at the world reference coordinates. Modeling

tab -> Geometry -> Features -> Box.
7. The offset distance is measured using the measure option. Modeling tab ->

Tools -> Measure
8. The measured values are entered in the component properties tab to remove

the offset.
9. The box feature is deleted and gripper parts are selected. Further, right click

the mouse button and Collapse features in tools tab is selected. This removes
the offset and places the gripper in the world coordinate origin.

10. The features in gripper geometry are extracted and selected features of the
component are converted into nodes. This step is performed to create the
translational movement of gripper fingers without moving other parts of the
gripper.

11. The feature is selected in the component graph panel and extracted into nodes
by selecting the explode option.

12. The required geometries selected by holding down ctrl button and right click
to select extract -> extract link option. This helps in moving the selected
features into a new node and create a link in the component graph panel.
This step is repeated for the other gripper finger features.

13. The next step involves defining the DOF and joints of the links.
14. The link properties are selected and joint type is defined as translational. The

linear motion is chosen to be along the negative Y axis.
15. For the Schunk Co-act gripper used in the thesis project, following joint prop-

erties were defined.

I

A. Appendix

16. Similar process was followed for Link 2, where the joint type was defined as
translational follower. The joints are tested by clicking interact button in
manipulation group and moving the joints of schunk gripper.

17. To control the actions of gripper during simulation, a servo controller is added
in the link properties.

18. Further, the gripper is defined as an end effector for robots by choosing ’end
effector’ option from wizards tab and selecting IO controls.

19. This option provides a mount frame, tcp and signal options for grasp and
release.

20. Tool container option is added to choose the tcp of the gripper
21. Finally, the component is saved and used as a gripper with robots using the

pnp option.

A.2 Procedure for building simulation model and
robot programming on Visual Components

1. The layout for the assembly process is built by dragging and dropping the
required components onto the main screen.

2. Initially, Work process from works library was dragged on to the main screen.
The work process was used to create drone frame and motor components and
are transported.

3. The work process was attached to conveyors and a layout was built with a
Yaskawa HC10 and KUKA iiwa robot.

4. Yaskawa HC10 robot was used to pick and place the drone components and
KUKA iiwa robot was used to conduct the assembly operation.

5. The KUKA robot was selected and opened the programming tab. The se-
quence file is created and robot programming steps are created.

6. Robot coordinates are created easily on Visual components by choosing the
snap function and selecting the product to be picked.

7. This option displays the gripper and robot position at the product.
8. A coordinate point is created by choosing the PTP or LIN movement at the

snapped position and thus the robot movement is programmed.
9. The gripper operation of grasping and releasing is set by setting input and

output signals to true or false.
10. The signal numbers for the Schunk gripper used in the project are 101 and

102 for grasp and release operations.

II

B
Appendix

B.1 Procedure for setting kinematics on Tecno-
matix process simulate

1. The .jt file extension is imported into the software application.
2. Resource or part option is chosen during importing of .jt files to .cojt format.
3. KUKA iiwa robot and Schunk gripper are imported as resources. Drone frame,

motors, pallet are imported as parts.
4. KUKA iiwa robot is selected from the object tree in resources tab and mod-

elling tab is opened.
5. Set modeling scope option is chosen.
6. Kinematics editor is opened. Links are created by choosing, Create link option.
7. KUKA iiwa robot consists of eight links. Each link is associated to part in the

link properties panel.
8. Joints between the links are created by choosing create joints option or by

connecting the links with an arrow head.
9. Joint properties including joint name, axis points, joint type i.e. revolute, joint

axis limits, joint speed and acceleration details are filled.
10. similar process is followed for the remaining links and joints.
11. Baseframe for the robot is set by choosing ’set baseframe’ option in the kine-

matics editor and the frame coordinates are chosen on link 1.
12. The details mentioned above are extracted from the KUKA iiwa robot manual

that are explained in the chapter 2, table 2.3b.
13. Similar process is followed for setting toolframe of the robot. The toolframe

of the robot is also known as flange coordinates.
14. Inverse kinematics for more than six degrees of freedom are automatically set

while exiting the kinematics editor.
15. End modeling scope option is chosen to save the work.
16. Similar process is followed for Schunk gripper model, where baseframe and

TCP are set along with joint types as translational and translation follower
instead of revolute joint as set for KUKA robot.

III

B. Appendix

B.2 Procedure for assembly process simulation
on Tecnomatix process simulate

1. Operation tab at the top of the window is selected to simulate the assembly
process.

2. The processes created are displayed in the operation tree at the bottom left
corner of the window.

3. The first operation was the flow of drone components on the pallet.
4. The pallet along with drone components flows on the conveyor and stops at

the defined point.
5. New object flow operation is created and name of the operation is filled eg.

Drone frame flow.
6. Object is selected as drone frame either from the simulation window or from

the object tree.
7. start and end point coordinated are chosen on the simulation window.
8. Similar process is followed for drone motors and pallet.
9. The operations are added within a compounded operation and named are

drone comp flow.
10. The robot coordinates for movement are provided through generic robotic

operation.
11. The robot is chosen that automatically chooses the tool mounted in the robot

for the operation.
12. Add current location is selected that provides the first coordinate point of the

robot.
13. Further points for robot movement are added by selecting ’add location after’

option.
14. The window with coordinate points, joint angles are displayed that can be

used to set the next location.
15. TCP coordinates can also be dragged or manipulated that moves the robot

with respect to defined kinematics to the desired location.
16. Teach location option is selected after the desired point is chosen.
17. The process is repeated to define coordinate points that are to be followed by

the robot.
18. After reaching the required location, Gripper operation is created.
19. The gripper in use is selected in the gripper operation window. The action

required to be performed by the gripper is chosen along with the frame i.e.
TCP.

20. Thus the robotic operation steps are repeated for the assembly operation.
21. A compounded operation is created for the tasks such as drone frame assembly,

motor assembly are created and the respective tasks or points are dragged and
dropped in the compounded operation.

22. Finally, the complete operation is dragged onto the sequence editor where, a
gantt chart of the tasks is created.

23. The order of the tasks to be performed are set in the gantt chart by connecting
subsequent task through arrow heads.

IV

B. Appendix

24. The operation is dragged and dropped onto the Path editor for obtaining
the coordinates with respect to the working frame and also setting of OLP
commands.

25. OLP commands are set at coordinate points for providing simulation com-
mands such as Attach components, detach components, check and release
grippers etc.

V

B. Appendix

VI

C
Appendix

C.1 Procedure for tool calibration

C.1.1 XYZ 4-point method [14]
Precondition

1. The tool to be calibrated is mounted on the mounting flange.
2. The tool to be calibrated and the frame used as the TCP have been created

in the object templates of the project and transferred to the robot controller
by means of synchronization.

3. T1 mode.
Procedure

1. Select Calibration > Tool calibration at the Robot level. The Tool calibration
view opens.

2. Select the tool to be calibrated and the corresponding TCP.
3. Select the TCP calibration (XYZ 4-point) method. The measuring points of

the method are displayed as buttons: Measurement point 1 ... Measurement
point 4. In order to be able to record a measuring point, it must be selected
(button is orange).

4. Move the TCP to any reference point. Press Record calibration point. The
position data are applied and displayed for the selected measuring point.

5. Move the TCP to the reference point from a different direction. Press Record
calibration point. The position data are applied and displayed for the selected
measuring point.

6. Repeat step 5 two more times.
7. Press Determine tool data. The calibration data and the calculation error are

displayed in the Apply tool data dialog.
8. If the calculation error exceeds the maximum permissible value, a warning is

displayed. Press Cancel and recalibrate the TCP.
9. If the calculation error is below the configured limit, press Apply to save the

calibration data.
10. Close the Calibration view or define the orientation of the tool coordinate

system with the ABC 2-point.
11. Synchronize the project in order to save the calibration data in Sunrise Work-

bench.

VII

C. Appendix

C.1.2 ABC 2-point method [14]
Precondition

1. The tool to be calibrated is not a safety-oriented tool.
2. The tool to be calibrated is mounted on the mounting flange.
3. The TCP of the tool has already been measured.
4. T1 mode.

Procedure
1. Only if the Calibration view was closed following TCP calibration: Select

Calibration > Tool calibration at the Robot level. The Tool calibration view
opens.

2. Only if the Calibration view was closed following TCP calibration: Select the
mounted tool and the corresponding TCP of the tool.

3. Select the Defining the orientation(ABC 2-point) method. The measuring
points of the method are displayed as buttons: • TCP • Negative X axis •
Positive Y value on XY plane. In order to be able to record a measuring point,
it must be selected (button is orange).

4. Move the TCP to any reference point. Press Record calibration point. The
position data are applied and displayed for the selected measuring point.

5. Move the tool so that the reference point on the X axis has a negative X value
(i.e. move against the tool direction). Press Record calibration point. The
position data are applied and displayed for the selected measuring point.

6. Move the tool so that the reference point in the XY plane has a positive Y
value. Press Record calibration point. The position data are applied and
displayed for the selected measuring point.

7. Press Determine tool data. The calibration data are displayed in the Apply
tool data dialog.

8. Press Apply to save the calibration data.
9. Synchronize the project in order to save the calibration data in Sunrise Work-

bench.

C.2 Procedure for base calibration

C.2.1 3-point method [14]
Precondition

1. A previously calibrated tool is mounted on the mounting flange.
2. The frame to be calibrated has been selected as the base in the application

data of the project and transferred to the robot controller by means of syn-
chronization.

3. T1 mode.
Procedure

1. Select Calibration > Base calibration at the Robot level. The Base calibration
view opens.

2. Select the base to be calibrated.

VIII

C. Appendix

3. Select the mounted tool and the TCP of the tool with which the measuring
points of the base are addressed. The measuring points of the 3-point method
are displayed as buttons: • Origin • Positive X axis • Positive Y value on
XY plane. In order to be able to record a measuring point, it must be selected
(button is orange).

4. Move the TCP to the origin of the base. Press Record calibration point. The
position data are applied and displayed for the selected measuring point.

5. Move the TCP to a point on the positive X axis of the base. Press Record
calibration point. The position data are applied and displayed for the selected
measuring point.

6. Move the TCP to a point in the XY plane with a positive Y value. Press
Record calibration point. The position data are applied and displayed for the
selected measuring point.

7. Press Determine base data. The calibration data are displayed in the Apply
base data dialog.

8. Press Apply to save the calibration data.
9. Synchronize the project in order to save the calibration data in Sunrise Work-

bench.

C.3 Variation analysis results

Table C.1: Variation analysis results

Base Calibration Results from Variation Analysis Experiment

Positions
Hand-Guiding Method (HM) 3-Point Method (3PM) Difference = (3PM - HM)

Coordinate Points
X Y Z X Y Z X Y Z

1 125.54 612.87 -102.91 127.75 611.1 -101.4 2.21 -1.77 1.51
2 139.54 612.35 -103.29 140.71 613.14 -102.27 1.17 0.79 1.02
3 170.18 559.91 -98.99 171.68 560.91 -97.88 1.5 1 1.11
4 231.27 579.94 -101.06 230.36 578.3 -99.24 -0.91 -1.64 1.82
5 263.65 508.98 -101.19 264.03 508.74 -100.58 0.38 -0.24 0.61
6 237.52 623.69 -103.53 236.86 622.57 -103.29 -0.66 -1.12 0.24
7 118.87 558.42 -106.57 118.84 557.53 -106.38 -0.03 -0.89 0.19
8 150.57 519.1 -102.6 150.97 517.53 -102.38 0.4 -1.57 0.22
9 248.07 514.92 -103.15 250.84 515.04 -102.8 2.77 0.12 0.35
10 120.04 601.87 -100.51 122.35 602.87 -100.67 2.31 1 -0.16
11 237.07 546.6 -103.47 235.89 543.97 -102.3 -1.18 -2.63 1.17
12 230.62 590.44 -105.19 231.52 589.91 -104.44 0.9 -0.53 0.75
13 213.05 519.39 -107.01 211.27 516.2 -107.2 -1.78 -3.19 -0.19

IX

C. Appendix

X

D
Appendix

D.1 Coordinate points

Table D.1: Coordinate points retrieved from Tecnomatix Process Simulate
Paths & Locations Type X Y Z RX RY RZ Duration
Drone Assembly Operation CompoundOperation 109.531
Generate Drone Parts Task 0
Drone Comp Flow CompoundOperation 5
Pallet Flow PmObjectFlowOperation 5
loc2 PmObjectFlowLocationOperation 618.5 1343.9 -43.2 180 0 0 0
loc3 PmObjectFlowLocationOperation 624.1 540.7 -43.2 180 0 0 5
Drone Frame Flow PmObjectFlowOperation 5
loc4 PmObjectFlowLocationOperation 618.5 1343.9 -80.5 180 0 45 0
loc5 PmObjectFlowLocationOperation 624.1 540.8 -80.5 180 0 45 5
Motor 3 Flow PmObjectFlowOperation 5
loc6 PmObjectFlowLocationOperation 540.4 1420.9 -180.3 -180 0 180 0
loc7 PmObjectFlowLocationOperation 540.4 618.1 -180.3 -180 0 180 5
Motor 1 Flow PmObjectFlowOperation 5
loc8 PmObjectFlowLocationOperation 695.7 1420.9 -180.3 -180 0 180 0
loc9 PmObjectFlowLocationOperation 695.7 618.1 -180.3 -180 0 180 5
Motor 2 Flow PmObjectFlowOperation 5
loc10 PmObjectFlowLocationOperation 540.4 1265.4 -180.3 -180 0 180 0
loc11 PmObjectFlowLocationOperation 540.4 462.6 -180.3 -180 0 180 5
Motor 4 Flow PmObjectFlowOperation 5
loc12 PmObjectFlowLocationOperation 695.3 1265.3 -180.3 -180 0 180 0
loc13 PmObjectFlowLocationOperation 695.3 462.6 -180.3 -180 0 180 5
Drone Frame Assembly CompoundOperation 21.985
Gripper Open Task 0.126
Move to Pt PmGenericRoboticOperation 2.39
via1 PmViaLocationOperation 540 541 -186.5 0 0 -90 1.749
via2 PmViaLocationOperation 540 541 -84 0 0 -90 0.64
Grasp Drone Frame Task 0.126
Assemble Drone Frame PmGenericRoboticOperation 16.43
via3 PmViaLocationOperation 540 541 -84 0 0 -90 0
via4 PmViaLocationOperation 540 541 -234 0 0 -90 0.775
via5 PmViaLocationOperation 337.9 548.3 -380.7 0 0 -90 1.206
via6 PmViaLocationOperation 325 258.8 -176 0 0 135.1 1.996
via8 PmViaLocationOperation 325 258.8 -98.5 0 0 135.1 12.454
Release Drone Frame Task 0.126
Motor Assembly CompoundOperation 59.734
Motor 1 Assembly PmGenericRoboticOperation 6.284
via9 PmViaLocationOperation 325.9 259.2 -98.5 0 0 134.6 0.149
via10 PmViaLocationOperation 326 260.6 -308 0 0 134.6 2.195
via11 PmViaLocationOperation 695.9 617.5 -339.2 -30 0 -90 1.948
via12 PmViaLocationOperation 695.9 617.5 -150 -30 0 -90 1.992
Grasp Motor 1 Task 0.126
Assemble Motor 1 PmGenericRoboticOperation 6.75
via13 PmViaLocationOperation 695.9 617.5 -150 -30 0 -90 0.028
via14 PmViaLocationOperation 695.9 617.5 -340 -30 0 -90 2
via15 PmViaLocationOperation 166.4 99.9 -246.7 -30 0 -72.9 2.24
via16 PmViaLocationOperation 165.1 99.9 -123.6 -30 0 -72.9 1.331
via17 PmViaLocationOperation 186.3 120.7 -123.6 -30 0 -72.9 0.398
via18 PmViaLocationOperation 195.5 130.1 -123.6 -30 0 -41.1 0.753
Release Motor 1 Task 0.126
Motor 2 Assembly PmGenericRoboticOperation 6.1
via19 PmViaLocationOperation 195.5 130.1 -123.6 -30 0 -41.1 0
via20 PmViaLocationOperation 195.5 130.1 -327.1 -0.7 0 -36.5 2.135
via44 PmViaLocationOperation 190.9 130.5 -327.1 0 0 -90 1.501
via21 PmViaLocationOperation 540.3 462.3 -244.6 0 0 -90 1.418
via22 PmViaLocationOperation 540.3 462.3 -150 0 0 -90 1.046
Grasp Motor 2 Task 0.126
Assemble Motor 2 PmGenericRoboticOperation 4.037
via23 PmViaLocationOperation 540.3 462.3 -150 0 0 -90 0
via24 PmViaLocationOperation 540.3 462.3 -244.6 0 0 -90 1.046
via74 PmViaLocationOperation 361.5 99.5 -211.3 0 0 -90 1.236
via25 PmViaLocationOperation 361.5 99.5 -123.6 0 0 -90 0.976
via26 PmViaLocationOperation 347.4 116.2 -123.6 0 0 -90 0.319

XI

D. Appendix

Table D.1 continued from previous page
Paths & Locations Type X Y Z RX RY RZ Duration
via7 PmViaLocationOperation 344.4 120.2 -123.6 0 0 -90 0.235
via27 PmViaLocationOperation 336.7 128.7 -123.6 0 0 -135 0.225
Release Motor 2 Task 0.126
Motor 3 Assembly PmGenericRoboticOperation 4.392
via45 PmViaLocationOperation 336.7 128.7 -123.6 0 0 -135 0
via46 PmViaLocationOperation 336.7 128.7 -280 0 0 -135 1.664
via47 PmViaLocationOperation 539.7 616.9 -280.1 0 0 -90 1.327
via48 PmViaLocationOperation 539.7 616.9 -150 0 0 -90 1.401
Grasp Motor 3 Task 0.126
Assemble Motor 3 PmGenericRoboticOperation 6.082
via49 PmViaLocationOperation 539.7 616.9 -150 0 0 -90 0.027
via50 PmViaLocationOperation 539.7 616.9 -252.1 0 0 -90 1.121
via PmViaLocationOperation 326.4 456 -252.1 0 0 -140 1.275
via53 PmViaLocationOperation 172.9 299.7 -162.2 0 0 -140 2.468
via54 PmViaLocationOperation 173.4 295.4 -123.6 0 0 -170 0.489
via55 PmViaLocationOperation 181 284.4 -123.6 0 0 -170 0.234
via41 PmViaLocationOperation 186.3 278 -123.6 0 0 -170 0.246
via56 PmViaLocationOperation 193.9 269.8 -123.6 0 0 -135 0.222
Release Motor 3 Task 0.126
Motor 4 Assembly PmGenericRoboticOperation 3.418
via57 PmViaLocationOperation 193.9 269.8 -123.6 0 0 -135 0
via58 PmViaLocationOperation 193.9 269.8 -310.1 0 0 -135 1.066
via59 PmViaLocationOperation 694.8 463 -252.1 -30 0 -90 1.231
via60 PmViaLocationOperation 694.8 463 -150 -30 0 -90 1.121
Grasp Motor 4 Task 0.126
ReOrient Motor 4 PmGenericRoboticOperation 3.364
via61 PmViaLocationOperation 694.8 463 -150 -30 0 -90 0.032
via62 PmViaLocationOperation 694.8 463 -252.1 -30 0 -90 1.121
via29 PmViaLocationOperation 548.7 463 -252.1 -30 0 -90 1.091
via30 PmViaLocationOperation 548.7 463 -150 -30 0 -90 1.121
Release Motor 4 Task 0.126
RePick Motor 4 PmGenericRoboticOperation 2.321
via28 PmViaLocationOperation 548.7 463 -150 -30 0 -90 0.047
via32 PmViaLocationOperation 548.7 463 -252.1 -30 0 -90 1.121
via31 PmViaLocationOperation 548.4 462.9 -252.1 0 0 -90 0.033
via33 PmViaLocationOperation 548.4 462.9 -150 0 0 -90 1.121
Grasp Motor 4Of2 Task 0.126
Assemble Motor 4 PmGenericRoboticOperation 6.879
via34 PmViaLocationOperation 548.4 462.9 -150 0 0 -90 0
via35 PmViaLocationOperation 548.4 462.9 -337.1 0 0 -90 1.971
via36 PmViaLocationOperation 387.9 319.9 -337.8 0 0 174 1.802
via38 PmViaLocationOperation 387.9 313.9 -123.6 0 0 174 2.243
via39 PmViaLocationOperation 351.5 282.8 -123.6 0 0 174 0.579
via37 PmViaLocationOperation 338.7 271 -123.6 0 0 135 0.285
Release Motor 4Of2 Task 0.126
Pick Place Assembled Drone CompoundOperation 22.76
Pick Assembled Drone PmGenericRoboticOperation 0.185
via67 PmViaLocationOperation 338.7 271 -123.6 0 0 135 0
via70 PmViaLocationOperation 338.7 271 -115 0 0 135 0.185
Grasp Assembled Drone Task 0.126
Place Assembled Drone PmGenericRoboticOperation 7.89
via71 PmViaLocationOperation 338.7 271 -115 0 0 135 0
via73 PmViaLocationOperation 338.7 271 -413.7 0 0 135 3.087
via75 PmViaLocationOperation -102 1242.7 -407.2 0 0 -59.7 2.042
via76 PmViaLocationOperation -99.7 1242.7 -141 0 0 0 2.762
Release Assembled Drone Task 0.126
Robot Home Task 5
Robot Home PmGenericRoboticOperation 4.433
via77 PmViaLocationOperation -99.7 1242.7 -141 0 0 0 0
via78 PmViaLocationOperation -101.7 1242.7 -379.2 0 0 0 2.482
via40 PmViaLocationOperation 302.7 273.9 -413.7 0 0 150 1.95

XII

E
Appendix

E.1 Technical data

E.1.1 CAD model renderings

(a) Drone motor (b) Drone frame

Figure E.1: Drone components

(a) Robot pedestal (b) Fixture

Figure E.2: station components

XIII

E. Appendix

E.2 Modeling

E.2.1 CAD assembly renderings

(a) Schunk gripper part (b) Gripper fingers

Figure E.3: Schunk gripper CAD parts

Figure E.4: Schunk gripper CAD assembly

XIV

F
Appendix

F.1 Robot programming

F.1.1 Source code - robot assembly
package application;

import javax.inject.Inject;
import javax.inject.Named;

import com.kuka.generated.ioAccess.MediaFlangeIOGroup;
import com.kuka.roboticsAPI.applicationModel.RoboticsAPIApplication;
import static com.kuka.roboticsAPI.motionModel.BasicMotions.*;

import com.kuka.roboticsAPI.deviceModel.LBR;
import com.kuka.roboticsAPI.geometricModel.Tool;

/**
* Implementation of a robot application.
* <p>
* The application provides a {@link RoboticsAPITask\#initialize()} and a
* {@link RoboticsAPITask\#run()} method, which will be called successively in
* the application lifecycle. The application will terminate automatically after
* the {@link RoboticsAPITask\#run()} method has finished or after stopping the
* task. The {@link RoboticsAPITask\#dispose()} method will be called, even if an
* exception is thrown during initialization or run.
* <p>
* It is imperative to call <code>super.dispose()</code> when overriding the
* {@link RoboticsAPITask#dispose()} method.
*
* @see UseRoboticsAPIContext
* @see \#initialize()
* @see \#run()
* @see \#dispose()
*/

public class KUKAIMSX30 extends RoboticsAPIApplication {
@Inject
private LBR lBR_iiwa_14_R820_1;
private MediaFlangeIOGroup MFIO = null;

@Inject
@Named("Gripper")
private Tool Gripper;

@Override
public void initialize() {

// initialize your application here
Gripper.attachTo(lBR_iiwa_14_R820_1.getFlange());

if(MFIO == null) {
MFIO = new MediaFlangeIOGroup(lBR_iiwa_14_R820_1.getController());

}

XV

F. Appendix

}

@Override
public void run() {

// your application execution starts here
lBR_iiwa_14_R820_1.move(ptpHome());

droneFrameAssembly();
motorOneAssembly();
motorTwoAssembly();
motorThreeAssembly();
motorFourAssembly();
pkplAssembledDrone();

lBR_iiwa_14_R820_1.move(ptpHome());
MFIO.setLEDRed(false);

}

private void droneFrameAssembly() {

//gripper open
MFIO.setGripperClose(false);
MFIO.setGripperOpen(true);

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via1")));
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/via2")));

//gripper grasp frame
MFIO.setGripperOpen(false);
MFIO.setGripperClose(true);

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via3")));
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/via4")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via5")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via6")));
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/via7")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via8")));

//gripper release frame
MFIO.setGripperClose(false);
MFIO.setGripperOpen(true);

}

private void motorOneAssembly() {
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via9")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via10")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via11")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via12")));

//gripper grasp motor1
MFIO.setGripperOpen(false);
MFIO.setGripperClose(true);

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via13")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via14")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via15")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via16")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via17")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via18")));

//gripper release motor1
MFIO.setGripperClose(false);
MFIO.setGripperOpen(true);

}

private void motorTwoAssembly() {
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via19")));

XVI

F. Appendix

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via20")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via44")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via21")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via22")));

//gripper grasp motor2
MFIO.setGripperOpen(false);
MFIO.setGripperClose(true);

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via23")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via24")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via74")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via25")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via26")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via27")));

//gripper release motor2
MFIO.setGripperClose(false);
MFIO.setGripperOpen(true);

}

private void motorThreeAssembly() {
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via45")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via46")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via47")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via48")));

//gripper grasp motor3
MFIO.setGripperOpen(false);
MFIO.setGripperClose(true);

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via49")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via50")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via51")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via52")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via53")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via54")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via55")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via56")));

//gripper release motor3
MFIO.setGripperClose(false);
MFIO.setGripperOpen(true);

}

private void motorFourAssembly() {
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via57")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via58")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via59")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via60")));

//gripper grasp motor4
MFIO.setGripperOpen(false);
MFIO.setGripperClose(true);

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via61")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via62")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via63")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via66")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via64")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via65")));

//gripper release motor4
MFIO.setGripperClose(false);
MFIO.setGripperOpen(true);

}

private void pkplAssembledDrone() {

XVII

F. Appendix

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via67")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via68")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via69")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via70")));

//gripper grasp drone
MFIO.setGripperOpen(false);
MFIO.setGripperClose(true);

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via71")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via72")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via73")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via75")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via76")));

//gripper release drone
MFIO.setGripperClose(false);
MFIO.setGripperOpen(true);

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via77")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/via78")));

}

}

F.1.2 Source code - MFIO flange
package com.kuka.generated.ioAccess;

import javax.inject.Inject;
import javax.inject.Singleton;

import com.kuka.roboticsAPI.controllerModel.Controller;
import com.kuka.roboticsAPI.ioModel.AbstractIOGroup;
import com.kuka.roboticsAPI.ioModel.IOTypes;

/**
* Automatically generated class to abstract I/O access to I/O group MediaFlange.

* <i>Please, do not modify!</i>
* <p>
* I/O group description:

* This I/O Group contains the In-/Outputs for the Media-Flange Touch.
*/

@Singleton
public class MediaFlangeIOGroup extends AbstractIOGroup
{

/**
* Constructor to create an instance of class 'MediaFlange'.

* <i>This constructor is automatically generated. Please, do not modify!</i>
*
* @param controller
* the controller, which has access to the I/O group 'MediaFlange'
*/

@Inject
public MediaFlangeIOGroup(Controller controller)
{

super(controller, "MediaFlange");

addInput("InputX3Pin3", IOTypes.BOOLEAN, 1);
addInput("InputX3Pin4", IOTypes.BOOLEAN, 1);
addInput("InputX3Pin10", IOTypes.BOOLEAN, 1);
addInput("InputX3Pin13", IOTypes.BOOLEAN, 1);
addInput("InputX3Pin16", IOTypes.BOOLEAN, 1);
addInput("UserButton", IOTypes.BOOLEAN, 1);
addDigitalOutput("LEDBlue", IOTypes.BOOLEAN, 1);
addDigitalOutput("SwitchOffX3Voltage", IOTypes.BOOLEAN, 1);
addDigitalOutput("ChangerOpen", IOTypes.BOOLEAN, 1);

XVIII

F. Appendix

addDigitalOutput("ChangerClose", IOTypes.BOOLEAN, 1);
addDigitalOutput("LEDGreen", IOTypes.BOOLEAN, 1);
addDigitalOutput("LEDRed", IOTypes.BOOLEAN, 1);
addDigitalOutput("GripperClose", IOTypes.BOOLEAN, 1);
addDigitalOutput("GripperOpen", IOTypes.BOOLEAN, 1);

}

/**
* Gets the value of the digital input '<i>InputX3Pin3</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital input
* <p>
* User description of the I/O:

* ./.
* <p>
* Range of the I/O value:

* [false; true]
*
* @return current value of the digital input 'InputX3Pin3'
*/

public boolean getInputX3Pin3()
{

return getBooleanIOValue("InputX3Pin3", false);
}

/**
* Gets the value of the digital input '<i>InputX3Pin4</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital input
* <p>
* User description of the I/O:

* ./.
* <p>
* Range of the I/O value:

* [false; true]
*
* @return current value of the digital input 'InputX3Pin4'
*/

public boolean getInputX3Pin4()
{

return getBooleanIOValue("InputX3Pin4", false);
}

/**
* Gets the value of the digital input '<i>InputX3Pin10</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital input
* <p>
* User description of the I/O:

* ./.
* <p>
* Range of the I/O value:

* [false; true]
*
* @return current value of the digital input 'InputX3Pin10'
*/

public boolean getInputX3Pin10()
{

return getBooleanIOValue("InputX3Pin10", false);
}

/**
* Gets the value of the digital input '<i>InputX3Pin13</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>

XIX

F. Appendix

* <p>
* I/O direction and type:

* digital input
* <p>
* User description of the I/O:

* ./.
* <p>
* Range of the I/O value:

* [false; true]
*
* @return current value of the digital input 'InputX3Pin13'
*/

public boolean getInputX3Pin13()
{

return getBooleanIOValue("InputX3Pin13", false);
}

/**
* Gets the value of the digital input '<i>InputX3Pin16</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital input
* <p>
* User description of the I/O:

* ./.
* <p>
* Range of the I/O value:

* [false; true]
*
* @return current value of the digital input 'InputX3Pin16'
*/

public boolean getInputX3Pin16()
{

return getBooleanIOValue("InputX3Pin16", false);
}

/**
* Gets the value of the digital input '<i>UserButton</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital input
* <p>
* User description of the I/O:

* ./.
* <p>
* Range of the I/O value:

* [false; true]
*
* @return current value of the digital input 'UserButton'
*/

public boolean getUserButton()
{

return getBooleanIOValue("UserButton", false);
}

/**
* Gets the value of the digital output '<i>LEDBlue</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital output
* <p>
* User description of the I/O:

* ./.
* <p>
* Range of the I/O value:

* [false; true]
*

XX

F. Appendix

* @return current value of the digital output 'LEDBlue'
*/

public boolean getLEDBlue()
{

return getBooleanIOValue("LEDBlue", true);
}

/**
* Sets the value of the digital output '<i>LEDBlue</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital output
* <p>
* User description of the I/O:

* ./.
* <p>
* Range of the I/O value:

* [false; true]
*
* @param value
* the value, which has to be written to the digital output 'LEDBlue'
*/

public void setLEDBlue(java.lang.Boolean value)
{

setDigitalOutput("LEDBlue", value);
}

/**
* Gets the value of the digital output '<i>SwitchOffX3Voltage</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital output
* <p>
* User description of the I/O:

* ./.
* <p>
* Range of the I/O value:

* [false; true]
*
* @return current value of the digital output 'SwitchOffX3Voltage'
*/

public boolean getSwitchOffX3Voltage()
{

return getBooleanIOValue("SwitchOffX3Voltage", true);
}

/**
* Sets the value of the digital output '<i>SwitchOffX3Voltage</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital output
* <p>
* User description of the I/O:

* ./.
* <p>
* Range of the I/O value:

* [false; true]
*
* @param value
* the value, which has to be written to the digital output 'SwitchOffX3Voltage'
*/

public void setSwitchOffX3Voltage(java.lang.Boolean value)
{

setDigitalOutput("SwitchOffX3Voltage", value);
}

/**

XXI

F. Appendix

* Gets the value of the digital output '<i>ChangerOpen</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital output
* <p>
* User description of the I/O:

* ./.
* <p>
* Range of the I/O value:

* [false; true]
*
* @return current value of the digital output 'ChangerOpen'
*/

public boolean getChangerOpen()
{

return getBooleanIOValue("ChangerOpen", true);
}

/**
* Sets the value of the digital output '<i>ChangerOpen</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital output
* <p>
* User description of the I/O:

* ./.
* <p>
* Range of the I/O value:

* [false; true]
*
* @param value
* the value, which has to be written to the digital output 'ChangerOpen'
*/

public void setChangerOpen(java.lang.Boolean value)
{

setDigitalOutput("ChangerOpen", value);
}

/**
* Gets the value of the digital output '<i>ChangerClose</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital output
* <p>
* User description of the I/O:

* ./.
* <p>
* Range of the I/O value:

* [false; true]
*
* @return current value of the digital output 'ChangerClose'
*/

public boolean getChangerClose()
{

return getBooleanIOValue("ChangerClose", true);
}

/**
* Sets the value of the digital output '<i>ChangerClose</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital output
* <p>
* User description of the I/O:

* ./.
* <p>

XXII

F. Appendix

* Range of the I/O value:

* [false; true]
*
* @param value
* the value, which has to be written to the digital output 'ChangerClose'
*/

public void setChangerClose(java.lang.Boolean value)
{

setDigitalOutput("ChangerClose", value);
}

/**
* Gets the value of the digital output '<i>LEDGreen</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital output
* <p>
* User description of the I/O:

* ./.
* <p>
* Range of the I/O value:

* [false; true]
*
* @return current value of the digital output 'LEDGreen'
*/

public boolean getLEDGreen()
{

return getBooleanIOValue("LEDGreen", true);
}

/**
* Sets the value of the digital output '<i>LEDGreen</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital output
* <p>
* User description of the I/O:

* ./.
* <p>
* Range of the I/O value:

* [false; true]
*
* @param value
* the value, which has to be written to the digital output 'LEDGreen'
*/

public void setLEDGreen(java.lang.Boolean value)
{

setDigitalOutput("LEDGreen", value);
}

/**
* Gets the value of the digital output '<i>LEDRed</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital output
* <p>
* User description of the I/O:

* ./.
* <p>
* Range of the I/O value:

* [false; true]
*
* @return current value of the digital output 'LEDRed'
*/

public boolean getLEDRed()
{

return getBooleanIOValue("LEDRed", true);

XXIII

F. Appendix

}

/**
* Sets the value of the digital output '<i>LEDRed</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital output
* <p>
* User description of the I/O:

* ./.
* <p>
* Range of the I/O value:

* [false; true]
*
* @param value
* the value, which has to be written to the digital output 'LEDRed'
*/

public void setLEDRed(java.lang.Boolean value)
{

setDigitalOutput("LEDRed", value);
}

/**
* Gets the value of the digital output '<i>GripperClose</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital output
* <p>
* User description of the I/O:

* OutputX3Pin12
* <p>
* Range of the I/O value:

* [false; true]
*
* @return current value of the digital output 'GripperClose'
*/

public boolean getGripperClose()
{

return getBooleanIOValue("GripperClose", true);
}

/**
* Sets the value of the digital output '<i>GripperClose</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital output
* <p>
* User description of the I/O:

* OutputX3Pin12
* <p>
* Range of the I/O value:

* [false; true]
*
* @param value
* the value, which has to be written to the digital output 'GripperClose'
*/

public void setGripperClose(java.lang.Boolean value)
{

setDigitalOutput("GripperClose", value);
}

/**
* Gets the value of the digital output '<i>GripperOpen</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital output

XXIV

F. Appendix

* <p>
* User description of the I/O:

* OutputX3Pin2
* <p>
* Range of the I/O value:

* [false; true]
*
* @return current value of the digital output 'GripperOpen'
*/

public boolean getGripperOpen()
{

return getBooleanIOValue("GripperOpen", true);
}

/**
* Sets the value of the digital output '<i>GripperOpen</i>'.

* <i>This method is automatically generated. Please, do not modify!</i>
* <p>
* I/O direction and type:

* digital output
* <p>
* User description of the I/O:

* OutputX3Pin2
* <p>
* Range of the I/O value:

* [false; true]
*
* @param value
* the value, which has to be written to the digital output 'GripperOpen'
*/

public void setGripperOpen(java.lang.Boolean value)
{

setDigitalOutput("GripperOpen", value);
}

}

F.2 Robot drone assembly

XXV

F. Appendix

Figure F.1: Drone frame assembly at SII-Lab

XXVI

F. Appendix

Figure F.2: Motor 4 assembly at SII-Lab

XXVII

F. Appendix

XXVIII

G
Appendix

G.1 Force Torque analysis

Figure G.1: External cartesian forces/torques for Motor 1

XXIX

G. Appendix

(a) External cartesian forces/torques for frame picking

(b) External joint torques for frame picking

Figure G.2: Force and torque during drone frame picking

XXX

G. Appendix

(a) External cartesian forces/torques for Motor 2

(b) External joint torques for Motor 2

Figure G.3: Force and torque during motor 2 assembly

XXXI

G. Appendix

(a) External cartesian forces/torques for Motor 3

(b) External joint torques for Motor 3

Figure G.4: Force and torque during motor 3 assembly

XXXII

G. Appendix

G.2 Source code for Force torque analysis

package application;

import java.util.concurrent.TimeUnit;

import javax.inject.Inject;
import javax.inject.Named;

import com.kuka.generated.ioAccess.MediaFlangeIOGroup;
import com.kuka.roboticsAPI.applicationModel.RoboticsAPIApplication;
import static com.kuka.roboticsAPI.motionModel.BasicMotions.*;

import com.kuka.roboticsAPI.conditionModel.BooleanIOCondition;
import com.kuka.roboticsAPI.conditionModel.ForceComponentCondition;
import com.kuka.roboticsAPI.conditionModel.ForceCondition;
import com.kuka.roboticsAPI.conditionModel.FrameDistanceCondition;
import com.kuka.roboticsAPI.conditionModel.ICallbackAction;
import com.kuka.roboticsAPI.conditionModel.ICondition;
import com.kuka.roboticsAPI.conditionModel.IORangeCondition;
import com.kuka.roboticsAPI.conditionModel.JointTorqueCondition;
import com.kuka.roboticsAPI.conditionModel.TorqueComponentCondition;
import com.kuka.roboticsAPI.deviceModel.JointEnum;
import com.kuka.roboticsAPI.deviceModel.LBR;
import com.kuka.roboticsAPI.executionModel.IFiredConditionInfo;
import com.kuka.roboticsAPI.executionModel.IFiredTriggerInfo;
import com.kuka.roboticsAPI.geometricModel.CartDOF;
import com.kuka.roboticsAPI.geometricModel.Frame;
import com.kuka.roboticsAPI.geometricModel.Tool;
import com.kuka.roboticsAPI.geometricModel.Workpiece;
import com.kuka.roboticsAPI.geometricModel.math.CoordinateAxis;
import com.kuka.roboticsAPI.geometricModel.math.Vector;
import com.kuka.roboticsAPI.ioModel.AbstractIO;
import com.kuka.roboticsAPI.motionModel.IMotionContainer;
import com.kuka.roboticsAPI.motionModel.controlModeModel.CartesianImpedanceControlMode;
import com.kuka.roboticsAPI.motionModel.controlModeModel.CartesianSineImpedanceControlMode;
import com.kuka.roboticsAPI.sensorModel.DataRecorder;
import com.kuka.roboticsAPI.sensorModel.ForceSensorData;
import com.kuka.roboticsAPI.sensorModel.TorqueEvaluator;
import com.kuka.roboticsAPI.sensorModel.TorqueSensorData;
import com.kuka.roboticsAPI.sensorModel.TorqueStatistic;
import com.kuka.task.ITaskLogger;

/*
* Implementation of a robot application.
* <p>
* The application provides a {@link RoboticsAPITask#initialize()} and a
* {@link RoboticsAPITask#run()} method, which will be called successively in
* the application lifecycle. The application will terminate automatically after
* the {@link RoboticsAPITask#run()} method has finished or after stopping the
* task. The {@link RoboticsAPITask#dispose()} method will be called, even if an
* exception is thrown during initialization or run.
* <p>
* It is imperative to call <code>super.dispose()</code> when overriding the
* {@link RoboticsAPITask#dispose()} method.
* @param <SensorIOGroup>
*
* @see UseRoboticsAPIContext
* @see #initialize()
* @see #run()
* @see #dispose()
*/

public class KukaIIWADrine_NewFixture extends RoboticsAPIApplication {
@Inject

XXXIII

G. Appendix

private LBR lBR_iiwa_14_R820_1;
private MediaFlangeIOGroup MFIO = null;

@Inject
@Named("Gripper")
private Tool Gripper;

@Inject
@Named("PointerTool")
private Tool PointerTool;

@Inject
@Named("DroneFrame")
private Workpiece DroneFrame;

@Inject
private ITaskLogger logger;

@Override
public void initialize() {
// initialize your application here
Gripper.attachTo(lBR_iiwa_14_R820_1.getFlange());
//PointerTool.attachTo(lBR_iiwa_14_R820_1.getFlange());

if(MFIO == null) {
MFIO = new MediaFlangeIOGroup(lBR_iiwa_14_R820_1.getController());

}
}

@Override
public void run() {

// your application execution starts here
lightsOff();

DataRecorder rec1 = new DataRecorder("Recording_16June.log", 150, TimeUnit.SECONDS, 50);
rec1.addExternalJointTorque(lBR_iiwa_14_R820_1);
rec1.addCartesianForce(Gripper.getFrame("/GripperTCP"), null);
rec1.enable();

lBR_iiwa_14_R820_1.move(ptpHome());
MFIO.setLEDRed(true);

//rec.startRecording();
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via40")));
MFIO.setLEDRed(false);

//PointerTool.getFrame("/PointerToolTCP").move(ptp(getApplicationData().getFrame("/Base/fixture")));
droneFrameAssembly();
motorOneAssembly();
motorTwoAssembly();
motorThreeAssembly();
motorFourAssembly();
pkplAssembledDrone();
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via40")));
lBR_iiwa_14_R820_1.move(ptpHome());

//rec.stopRecording();

if (rec1.awaitFileAvailable(5, TimeUnit.SECONDS)){
}

MFIO.setLEDRed(false);
lightsOff();

}

private void droneFrameAssembly() {

//gripper open
gripperRelease();

XXXIV

G. Appendix

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via1")));
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via2")).
setJointVelocityRel(0.05));

//gripper grasp frame
gripperGrasp();

//Force and Torque data is displayed
ForceSensorData data = lBR_iiwa_14_R820_1.getExternalForceTorque(Gripper.getFrame("/GripperTCP"));
TorqueSensorData measuredata = lBR_iiwa_14_R820_1.getMeasuredTorque();
logger.info("Force & Torque :" +data);
logger.info("Measured Torques :" +measuredata);

//Force and Torque conditions are initialized
ForceComponentCondition dronegraspForce_X = new
ForceComponentCondition(Gripper.getFrame("/GripperTCP"),CoordinateAxis.X, 2.02, 3);
/*The value is inverted to set range within 2.02N - 3N
This range is obtained from testing the scenario and recording values repeatedly*/
ICondition dronegraspForceX = dronegraspForce_X.invert();
ForceComponentCondition dronegraspForce_Z = new
ForceComponentCondition(Gripper.getFrame("/GripperTCP"),CoordinateAxis.Z,-3.7, -2.5);
ICondition dronegraspForceZ = dronegraspForce_Z.invert();
TorqueComponentCondition dronegrasptorqueForce_Z = new
TorqueComponentCondition(Gripper.getFrame("/GripperTCP"),CoordinateAxis.Z, -0.15, 0.07);
ICondition dronegrasptorqueForceZ = dronegrasptorqueForce_Z.invert();
//ICondtion object for linking 2 or more conditions
ICondition DroneFrameCombi1;
DroneFrameCombi1 = dronegraspForceX.or(dronegraspForceZ.and(dronegrasptorqueForceZ));

/* Motion command is temporarily stored in IMotionContrainer.
Motion termination is performed using breakWhen command.
Information of terminated motions are stored in IFiredCondtionInfo */

IMotionContainer motionCmdDrone =
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via3")).
breakWhen(DroneFrameCombi1));
IFiredConditionInfo DronefiredCondInfo = motionCmdDrone.getFiredBreakConditionInfo();

/* The condition which caused the termination of a motion can be requested via the method getFiredCondition().
If the requested information is not equal to null, the motion has been terminated.
The system only requests the triggered break condition in this case.
Specific operations are provided in the source code */

if(DronefiredCondInfo != null){
ICondition DronefiredCondition = DronefiredCondInfo.getFiredCondition();

if(DronefiredCondition.equals(DroneFrameCombi1)){

logger.info("Drone Frame AVAILABLE - Assembly CONTINUED");
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via4")).
setJointVelocityRel(0.05));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via5")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/newvia6")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/newvia8")).
setJointVelocityRel(0.05));

//gripper release frame
gripperRelease();

}
}

else{
//gripper release frame
gripperRelease();
logger.info("Drone Frame NOT Available - Assembly STOPPED");
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via4")).
setJointVelocityRel(0.05));
lBR_iiwa_14_R820_1.move(ptpHome());

}

XXXV

G. Appendix

}

private void motorOneAssembly() {

MFIO.setLEDBlue(true);
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/newvia9")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via10")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via11")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via12")).
setJointVelocityRel(0.05));
MFIO.setLEDBlue(false);

//gripper grasp motor1
gripperGrasp();

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via13")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via14")).
setJointVelocityRel(0.05));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via15")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via16")));

//rec.startRecording();

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via17")));

//Force and Torque conditions are initialized
JointTorqueCondition Motor1cond_1 = new JointTorqueCondition(JointEnum.J1, -2, 15);
ForceComponentCondition Motor1Force_X = new
ForceComponentCondition(Gripper.getFrame("/GripperTCP"),CoordinateAxis.X, 0, 8);
//Values are inverted to be in range of 0-8
ICondition Motor1ForceX = Motor1Force_X.invert();
ForceComponentCondition Motor1Force_Z = new
ForceComponentCondition(Gripper.getFrame("/GripperTCP"),CoordinateAxis.Z, -0.12, 4.05);
ICondition Motor1ForceZ = Motor1Force_Z.invert();
ForceComponentCondition Motor1Force_Y = new
ForceComponentCondition(Gripper.getFrame("/GripperTCP"),CoordinateAxis.Y, -4.85, 0.2);
ICondition Motor1ForceY = Motor1Force_Y.invert();
TorqueComponentCondition Motor1Torque_Y = new
TorqueComponentCondition(Gripper.getFrame("/GripperTCP"),CoordinateAxis.Y, -2.25, -1.85);
ICondition Motor1TorqueY = Motor1Torque_Y.invert();
//ICondition object for linking 2 or more conditions
ICondition Motor1Combi1;
ICondition Motor1Combi2;
Motor1Combi2 = (Motor1ForceZ.or(Motor1ForceX)).and(Motor1ForceY.or(Motor1TorqueY));
Motor1Combi1 = Motor1ForceX.and(Motor1ForceY);

/* Motion command is stored in IMontionContainer.
breakWhen command is used to terminate the motion.
Motions are terminated when ICondition is met */

IMotionContainer motionCmdMotor1 =
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/newvia18_4")).
breakWhen(Motor1Combi1));
IFiredConditionInfo motor1firedCondInfo = motionCmdMotor1.getFiredBreakConditionInfo();

//ForceData
ForceSensorData Motor1data = lBR_iiwa_14_R820_1.getExternalForceTorque(Gripper.getFrame("/GripperTCP"));
TorqueSensorData Motor1measuredata = lBR_iiwa_14_R820_1.getMeasuredTorque();
logger.info("Force & Torque :" +Motor1data);
logger.info("Measured Torques :" +Motor1measuredata);

//Getting at newvia18_4
TorqueSensorData externalData = lBR_iiwa_14_R820_1.getExternalTorque();
double[] externalTorques = externalData.getTorqueValues();
double torqueA1 = externalData.getSingleTorqueValue(JointEnum.J1);
logger.info("Currently measured torque for joint 1 [Nm]:" +torqueA1);
logger.info("Currently measured torque for joints [Nm]:" +externalTorques);

/* Specific operation are provided for temination
of motion via getFiredCondition */

XXXVI

G. Appendix

if(motor1firedCondInfo != null){
ICondition Motor1firedCondition = motor1firedCondInfo.getFiredCondition();

if(Motor1firedCondition.equals(Motor1Combi1)){

logger.info ("CORRECT orientation");
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/newvia18_4")));
//New Point
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via18")));

logger.info("Assembly COMPLETE");
//gripper release motor1
gripperRelease();
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via19")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via20")));

}
}

else{
logger.info ("WRONG orientation");
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via18")));
gripperRelease();
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/newvia18_1")));
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/newvia18")).
setJointVelocityRel(0.05));

//gripper grasp motor1
gripperGrasp();

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/newvia18_2")).
setJointVelocityRel(0.05));

//gripper release motor1
gripperRelease();

Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/newvia18_3")));
logger.info("Assembly CORRECTED");

}
}

private void motorTwoAssembly() {

gripperRelease();

CartesianImpedanceControlMode cartImpCtrlMode = new CartesianImpedanceControlMode();
cartImpCtrlMode.parametrize(CartDOF.X, CartDOF.Y).setStiffness(5000.0);
//cartImpCtrlMode.parametrize(CartDOF.Z).setStiffness(1.0);
cartImpCtrlMode.parametrize(CartDOF.ROT).setStiffness(300.0);
cartImpCtrlMode.parametrize(CartDOF.ALL).setDamping(0.7);
cartImpCtrlMode.setMaxPathDeviation(8.0, 8.0, 8.0, 2.0, 2.0, 2.0);
cartImpCtrlMode.parametrize(CartDOF.X, CartDOF.Y).setAdditionalControlForce(-35.0);

CartesianSineImpedanceControlMode sineMode = new CartesianSineImpedanceControlMode();
sineMode = CartesianSineImpedanceControlMode.createDesiredForce(CartDOF.X, -20, 3000);

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via19")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via20")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via44")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via21")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via22")).
setJointVelocityRel(0.05));

//gripper grasp motor2
gripperGrasp();

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via23")).
setJointVelocityRel(0.05));

XXXVII

G. Appendix

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via24")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via74")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via25")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via26")));

ForceSensorData Motor2data1 = lBR_iiwa_14_R820_1.getExternalForceTorque(Gripper.getFrame("/GripperTCP"));
TorqueSensorData Motor2measuredata1 = lBR_iiwa_14_R820_1.getExternalTorque();
logger.info("Force & Torque :" +Motor2data1);
logger.info("External Torques :" +Motor2measuredata1);

JointTorqueCondition Motor2cond_1 = new JointTorqueCondition(JointEnum.J2, -8, -4);
ICondition Motor2Joint2 = Motor2cond_1.invert();
JointTorqueCondition Motor2cond_2 = new JointTorqueCondition(JointEnum.J4, 10, 13);
ICondition Motor2Joint4 = Motor2cond_2.invert();
JointTorqueCondition Motor2cond_3 = new JointTorqueCondition(JointEnum.J6, -10, -6);
ICondition Motor2Joint6 = Motor2cond_3.invert();
ForceComponentCondition Motor2Force_X = new
ForceComponentCondition(Gripper.getFrame("/GripperTCP"),CoordinateAxis.X, 9, 14);
ICondition Motor2ForceX = Motor2Force_X.invert();
ForceComponentCondition Motor2Force_Z = new
ForceComponentCondition(Gripper.getFrame("/GripperTCP"),CoordinateAxis.Z, -10, -1);
ICondition Motor2ForceZ = Motor2Force_Z.invert();
ForceComponentCondition Motor2Force_Y = new
ForceComponentCondition(Gripper.getFrame("/GripperTCP"),CoordinateAxis.Y, 8, 12);
ICondition Motor2ForceY = Motor2Force_Y.invert();
TorqueComponentCondition Motor2Torque_Y = new
TorqueComponentCondition(Gripper.getFrame("/GripperTCP),CoordinateAxis.Y, -2.25, -1.85);
ICondition Motor2TorqueY = Motor2Torque_Y.invert();

ICondition Motor2Combi1;
ICondition Motor2Combi2;
//Motor2Combi1 = (Motor1ForceZ.or(Motor1ForceX)).and(Motor1ForceY.or(Motor1TorqueY));
Motor2Combi1 = Motor2ForceX.and(Motor2ForceY);
Motor2Combi2 =Motor2ForceX.and((Motor2ForceY).and(Motor2ForceZ));
IMotionContainer motionCmdMotor2 =
Gripper.getFrame("/GripperTCP").move(lin(getApplicatioData().getFrame("/Base/via26_1")).
setMode(cartImpCtrlMode).breakWhen(Motor2Combi2));
IFiredConditionInfo motor2firedCondInfo = motionCmdMotor2.getFiredBreakConditionInfo();

//Force & Torque Data
ForceSensorData Motor2data = lBR_iiwa_14_R820_1.getExternalForceTorque(Gripper.getFrame("/GripperTCP"));
TorqueSensorData Motor2measuredata = lBR_iiwa_14_R820_1.getExternalTorque();
logger.info("Force & Torque :" +Motor2data);
logger.info("External Torques :" +Motor2measuredata);

if(motor2firedCondInfo != null){
ICondition Motor2firedCondition = motor2firedCondInfo.getFiredCondition();

if(Motor2firedCondition.equals(Motor2Combi2)){

logger.info ("CORRECT orientation");
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via26_1")));
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via27")));
logger.info("Assembly COMPLETE");

//gripper release motor1
gripperRelease();

}
}

else{

logger.info ("WRONG orientation");
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via27")));

//gripper release motor1
gripperRelease();
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via27_1")));

XXXVIII

G. Appendix

Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via27_2")).
setJointVelocityRel(0.05));

//gripper grasp motor1
gripperGrasp();

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via27_3")).
setJointVelocityRel(0.05));

//gripper release motor1
gripperRelease();

Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via27_4")));
logger.info("Assembly CORRECTED");

}
}

private void motorThreeAssembly() {

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via46")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via47")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via48")).
setJointVelocityRel(0.05));

//gripper grasp motor3
gripperGrasp();

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via49")).
setJointVelocityRel(0.05));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via50")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via")));
//Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via52")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via53")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via54")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via55")));

JointTorqueCondition Motor3cond_1 = new JointTorqueCondition(JointEnum.J2, -9, -7);
ICondition Motor3Joint2 = Motor3cond_1.invert();
JointTorqueCondition Motor3cond_2 = new JointTorqueCondition(JointEnum.J4, -7, -5);
ICondition Motor3Joint4 = Motor3cond_2.invert();
JointTorqueCondition Motor3cond_3 = new JointTorqueCondition(JointEnum.J6, 2.8, 3.5);
ICondition Motor3Joint6 = Motor3cond_3.invert();
ForceComponentCondition Motor3Force_X = new
ForceComponentCondition(Gripper.getFrame("/GripperTCP"),CoordinateAxis.X, 5, 10);
ICondition Motor3ForceX = Motor3Force_X.invert();
ForceComponentCondition Motor3Force_Z = new
ForceComponentCondition(Gripper.getFrame("/GripperTCP"),CoordinateAxis.Z, -0.2, 4.05);
ICondition Motor3ForceZ = Motor3Force_Z.invert();
ForceComponentCondition Motor3Force_Y = new
ForceComponentCondition(Gripper.getFrame("/GripperTCP"),CoordinateAxis.Y, -4, 8);
ICondition Motor3ForceY = Motor3Force_Y.invert();
TorqueComponentCondition Motor3Torque_Y = new
TorqueComponentCondition(Gripper.getFrame("/GripperTCP"),CoordinateAxis.Y, -2.25, -1.85);
ICondition Motor3TorqueY = Motor3Torque_Y.invert();

ICondition Motor3Combi1;
ICondition Motor3Combi2;

Motor3Combi1 = Motor3ForceX.and(Motor3ForceY);
Motor3Combi2= Motor3ForceX.and(Motor3ForceZ.and(Motor3ForceY));

IMotionContainer motionCmdMotor3 =
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via55_1")).
breakWhen(Motor3Combi2));
IFiredConditionInfo motor3firedCondInfo = motionCmdMotor3.getFiredBreakConditionInfo();

//Force & Torque Data with Inaccuracies
ForceSensorData Motor3data = lBR_iiwa_14_R820_1.getExternalForceTorque(Gripper.getFrame("/GripperTCP"));

XXXIX

G. Appendix

TorqueSensorData Motor3measuredata = lBR_iiwa_14_R820_1.getExternalTorque();
Vector M3force = Motor3data.getForceInaccuracy();
Vector M3torque = Motor3data.getTorqueInaccuracy();
logger.info("Force & Torque :" +Motor3data);
logger.info("External Torques :" +Motor3measuredata);
logger.info("Force Inaccuracy :" +M3force);
logger.info("Torque Inaccuracy :" +M3torque);

if(motor3firedCondInfo != null){
ICondition Motor3firedCondition = motor3firedCondInfo.getFiredCondition();

if(Motor3firedCondition.equals(Motor3Combi2)){
logger.info ("CORRECT orientation");
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via55_1")));
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via56")));

logger.info("Assembly COMPLETE");

//gripper release motor1
gripperRelease();

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via57")).
setJointVelocityRel(0.05));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via58")));
}

}

else{
logger.info ("WRONG orientation");
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via56")));

gripperRelease();
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via56_1")));
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via56_2")).
setJointVelocityRel(0.05));

//gripper grasp motor1
gripperGrasp();

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via56_3")).
setJointVelocityRel(0.05));

//gripper release motor1
gripperRelease();

Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via56_4")));
logger.info("Assembly CORRECTED");

}

}

private void motorFourAssembly() {

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via58")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via59")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via60")));

//gripper grasp motor4
gripperGrasp();

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via61")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via62")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via29")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via30")));

//gripper release motor4
gripperRelease();

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via28")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via32")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via31")));

XL

G. Appendix

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via33")));

//gripper re-grasp motor4
gripperGrasp();

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via34")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via35")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via36")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via38")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via39")));
Gripper.getFrame("/GripperTCP").move(lin(getApplicationData().getFrame("/Base/via37")));

//gripper re-release motor4
gripperRelease();

}

private void pkplAssembledDrone() {
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via67")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/newvia70")));

//gripper grasp drone
gripperGrasp();

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/newvia71")));
//Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via72")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/newvia73")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via75")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via76")));

//gripper release drone
gripperRelease();

Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via77")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via78")));
Gripper.getFrame("/GripperTCP").move(ptp(getApplicationData().getFrame("/Base/via40")));

}

private void gripperGrasp() {
MFIO.setLEDBlue(false);
MFIO.setLEDGreen(true);
MFIO.setGripperOpen(false);
MFIO.setGripperClose(true);

}

private void gripperRelease() {
MFIO.setGripperClose(false);
MFIO.setGripperOpen(true);
MFIO.setLEDGreen(false);
MFIO.setLEDBlue(true);

}

private void lightsOff(){
MFIO.setLEDGreen(false);
MFIO.setLEDBlue(false);
MFIO.setLEDRed(false);

}

}

XLI

G. Appendix

G.3 Sensitivity analysis

G.3.1 Cartesian forces and torque values

Table G.1: Cartesian force and torque values recorded at coordinate points

Trial No. Weight (g) Flange TCP Position Cartesian Forces (N) Cartesian Torques (Nm)
Fx Fy Fz Mx My Mz

1

0

X axis Downwards 22.65 -2.75 1.64 -0.93 0.27 -0.06
Y axis Downwards 2.62 20.77 -0.22 -0.71 -0.94 -0.85
Z axis Downwards 1.49 -9.32 -20.01 -2.68 -0.85 0.36

2
X axis Downwards 23.27 -3.69 1.93 -1.12 0.16 -0.06
Y axis Downwards 2.25 20.67 -0.71 -0.81 -0.9 -0.9
Z axis Downwards 1.68 -8.71 -20.16 -2.68 -0.92 0.4

3
X axis Downwards 23.12 -2.62 1.95 -0.91 0.18 -0.06
Y axis Downwards 3.08 19.86 0.1 -0.86 -1.21 -0.98
Z axis Downwards 1.84 -8.58 -19.92 -2.57 -0.95 0.45

4

1760

X axis Downwards 5.7 -1.48 2.01 -1.03 -1.81 -0.52
Y axis Downwards 1.15 3.32 -0.54 1.12 -0.92 -0.26
Z axis Downwards 1.54 -8.36 -3.57 -2.8 -0.21 0.38

5
X axis Downwards 5.94 -1.75 2.06 -1.09 -1.8 -0.45
Y axis Downwards 1.5 3.54 0.29 1.48 -0.94 -0.24
Z axis Downwards 1.48 -8.76 -3.42 -2.81 -0.21 0.4

6
X axis Downwards 5.75 -1.65 1.94 -1.06 -1.82 -0.53
Y axis Downwards 1.5 3.66 0.48 1.53 -0.93 -0.25
Z axis Downwards 1.25 -8.12 -3.12 -2.8 -0.14 0.37

7

10

X axis Downwards 22.86 -2.37 1.78 -0.92 0.24 -0.09
Y axis Downwards 1.52 20.72 0.09 -0.66 -0.72 -0.83
Z axis Downwards 1.34 -8.98 -20.03 -2.6 -0.85 0.43

8
X axis Downwards 22.88 -3.19 1.8 -1.03 0.19 -0.08
Y axis Downwards 2.47 20.41 -0.36 0.74 -0.98 -0.89
Z axis Downwards 1.94 -8.57 -19.89 -2.63 -0.95 0.44

9

250

X axis Downwards 20.81 -2.92 1.69 -1.05 0.05 -0.06
Y axis Downwards 1.36 18.49 0.24 -0.41 -0.74 -0.82
Z axis Downwards 1.41 -8.54 -17.54 -2.5 -0.74 0.38

10
X axis Downwards 20.69 -2.36 2.17 -0.91 -0.02 -0.09
Y axis Downwards 3.1 18.23 -0.91 -0.58 -1.27 -0.98
Z axis Downwards 1.43 -8.61 -17.64 -2.55 -0.78 0.4

11

360

X axis Downwards 19.58 -2.22 1.99 -0.97 -0.01 -0.07
Y axis Downwards 2.66 17.7 -0.34 -0.28 -1.09 -0.9
Z axis Downwards 1.22 -9.29 -16.73 -2.74 -0.66 0.4

12
X axis Downwards 19.23 -2.07 1.55 -0.89 0.03 -0.08
Y axis Downwards 2.2 17.76 0.1 -0.32 -1.02 -0.9
Z axis Downwards 1.45 -8.52 -16.42 -2.59 -0.76 0.43

13

90

X axis Downwards 22.21 -2.01 2.02 -0.86 0.12 -0.09
Y axis Downwards 1.46 20.04 0.2 -0.49 -0.77 -0.82
Z axis Downwards 1.88 -9.29 -18.99 -2.68 -0.99 0.49

14
X axis Downwards 21.63 -2.18 1.45 -0.8 0.17 -0.06
Y axis Downwards 2.9 19.93 -0.65 -0.63 -1.29 -0.9
Z axis Downwards 1.48 -8.85 -18.87 -2.59 -0.74 0.42

15

154

X axis Downwards 21.02 -2.72 1.45 -0.78 0.1 -0.12
Y axis Downwards 2.39 19.34 -0.46 -0.59 -1.09 -0.93
Z axis Downwards 1.65 -7.94 -18.2 -2.5 -0.8 0.47

16
X axis Downwards 21.19 -2.77 1.59 -0.86 0.07 -0.1
Y axis Downwards 2.25 19.52 -0.34 -0.47 -1.05 -0.92
Z axis Downwards 1.36 -9.05 -18.5 -2.65 -0.62 0.45

17

560

X axis Downwards 17.39 -2.37 1.46 -0.86 -0.23 -0.07
Y axis Downwards 1.81 15.71 -0.12 -0.15 -0.97 -0.83
Z axis Downwards 1.41 -8.74 -14.87 -2.64 -0.64 0.43

18
X axis Downwards 17.77 -3.18 1.42 -1 -0.28 -0.05
Y axis Downwards 2.12 15.5 0.12 -0.4 -1.02 -0.82
Z axis Downwards 1.81 -8.47 -14.49 -2.62 -0.6 0.45

XLII

G. Appendix

G.3.2 Plots of continuous recording

Figure G.5: Cartesian forces along X

XLIII

G. Appendix

Figure G.6: Cartesian forces along Y

XLIV

G. Appendix

Figure G.7: Cartesian forces along Z

XLV

G. Appendix

Figure G.8: External joint torque at Joint 1

XLVI

G. Appendix

Figure G.9: External joint torque at Joint 2

XLVII

G. Appendix

Figure G.10: External joint torque at Joint 3

XLVIII

G. Appendix

Figure G.11: External joint torque at Joint 4

XLIX

G. Appendix

Figure G.12: External joint torque at Joint 5

L

G. Appendix

Figure G.13: External joint torque at Joint 6

LI

G. Appendix

Figure G.14: External joint torque at Joint 7

LII

H
Appendix

H.1 Virtual commissioning with SiL method

H.1.1 Visual Components : Siemens S7 connection proce-
dure [41]

1. Siemens S7 connection plugin can be configured on the connectivity tab on
Visual Components.

2. The PLC programming is performed on TIA portal V15 and S7-PLCSIM V15
was used as the virtual controller.

3. TIA portal V15 is launched and a new project is created.
4. The PLC device available is chosen and the project screen is launched.
5. The properties tab of the project is opened by clicking right mouse button.
6. The support simulation during clock compilation option is ticked on.
7. The IP address of the project is filled. IP address is 192.168.0.1 and Subnet

mask is 255.255.255.0
8. The process image property is set to none.
9. Protection and security tab is opened and full access option is selected. Permit

access with PUT/GET communication from remote partner is chosen.
10. The PLC program is created on the program blocks tab.
11. The tag table with input and output tags are exported to excel sheet.
12. All the applications are closed and NettoPLCSim application is launched.
13. A new server is created with IPV4 as the network IP address and PLCSIM IP

address as 192.168.0.1.
14. PLC rack and slot is set as 0/1.
15. The server is started and TIA portal is launched and the PLC program is

loaded on to PLCSIM virtual controller.
16. VC is launched and the simulation project is loaded.
17. Connectivity tab is opened and Siemens S7 plugin is selected and a server is

added.
18. The IPV4 address is entered. Rack and slot details are provided and connec-

tion is tested.
19. Once connected, Load PLC symbols option is selected and the excel sheet is

loaded.
20. The input variables are tagged in the simulation to server tab.
21. Output variables are tagged in Server to simulation tab.
22. The server is turned on and connected variables tab is opened.

LIII

H. Appendix

23. All the windows i.e. VC, TIA Portal and PLCSIM is opened and the logic is
tested.

24. This Virtual Commissioning in Software in loop (SiL) method is performed
with Visual Components software.

LIV

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Background
	Project purpose and aim
	Project limitations
	Research questions
	Report structure

	Theory
	Industry 4.0
	Automation
	Flexible automation

	Process planning
	Robotics
	Robot anatomy
	Robot classification
	Coordinate systems
	Calibration
	Robot programming
	KUKA LBR iiwa
	Force and Toque control

	Programmable logic controller (PLC)
	PLC Configuration
	PLC Programming

	Virtual commissioning
	Virtual commissioning process
	Virtual commissioning methods
	Benefits of virtual commissioning
	Drawbacks of virtual commissioning

	Methodology
	Data collection
	Literature research
	Technical data
	Software selection

	Process planning
	3D Modelling
	Simulation
	Visual components
	Tecnomatix process simulate

	Physical implementation and verification
	Robot calibration
	Robot programming
	Force torque analysis

	Logical control programming
	PLC programming

	Virtual commissioning with SiL method
	Visual components

	Results
	Data collection
	Literature research
	Technical data
	Software selection

	Process planning
	Component placement on pallet
	Robot and fixture placement
	Assembly operation sequence

	3D Modelling
	Simulation
	Visual components
	Tecnomatix process simulate

	Physical implementation and verification
	Robot calibration
	Robot programming
	Force torque analysis

	Logical control programming
	PLC programming

	Virtual commissioning with SiL method
	Visual components

	Discussion
	Conclusion
	Future work

	Bibliography
	Appendix
	Procedure for modelling a gripper on Visual Components
	Procedure for building simulation model and robot programming on Visual Components

	Appendix
	Procedure for setting kinematics on Tecnomatix process simulate
	Procedure for assembly process simulation on Tecnomatix process simulate

	Appendix
	Procedure for tool calibration
	XYZ 4-point method KUKASunrisemanual
	ABC 2-point method KUKASunrisemanual

	Procedure for base calibration
	3-point method KUKASunrisemanual

	Variation analysis results

	Appendix
	Coordinate points

	Appendix
	Technical data
	CAD model renderings

	Modeling
	CAD assembly renderings

	Appendix
	Robot programming
	Source code - robot assembly
	Source code - MFIO flange

	Robot drone assembly

	Appendix
	Force Torque analysis
	Source code for Force torque analysis
	Sensitivity analysis
	Cartesian forces and torque values
	Plots of continuous recording

	Appendix
	Virtual commissioning with SiL method
	Visual Components : Siemens S7 connection procedure s7plugin

