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Consistency Regularization for Semantic Segmentation

Segmentation-based mixed sample data augmentation for semi-supervised learning
and unsupervised domain adaptation

WILHELM TRANHEDEN

VIKTOR OLSSON

Department of Electrical Engineering
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Abstract

The idea of using unlabeled- or synthetic data for training deep learning models is
becoming increasingly important as the need for more data grows and computational
resources improve. This master’s thesis deals with the case of semantic segmentation,
a field in which the cost of annotations are particularly high, thereby rendering the
need for data-efficient solutions paramount.

In order to exploit unlabeled data, a frequently used class of algorithms is
semi-supervised learning, where in addition to a supervised signal the model also
learns from unlabeled data. A common strategy to this is consistency regulariza-
tion, where the model is encouraged to make consistent predictions over different
perturbations of unlabelled data points. A key challenge is that common augmen-
tations used in semi-supervised classification have proven less effective for semantic
segmentation. In some scenarios, the labeled and unlabeled data originates from
different distributions, such as when learning from synthetic data. When no ground
truth labels are accessible for the actual domain of interest, this problem is called
unsupervised domain adaptation. This domain shift can cause methods to require
adjustments, as they behave differently compared to application on semi-supervised
learning tasks.

We propose a novel data augmentation scheme, that we call ClassMix, which
leverages on the fact that, in semantic segmentation, we can find accurate silhouettes
of objects in an image. Using this, objects can be cut out of one image and pasted
onto another, forming new, strongly augmented, samples. We use the ClassMix aug-
mentation strategy in semi-supervised semantic segmentation based on consistency
regularization, obtaining, to the best of our knowledge, state-of-the-art results, with
a margin of up to 3%.

We also use the ClassMix augmentation for unsupervised domain adaptation
by, in a modified pipeline, mixing samples across domains. To the best of our
knowledge, we outperform all existing methods on two common synthetic-to-real
semantic segmentation benchmarks, obtaining the state of the art with a margin of
up to 2%.

Keywords: semantic segmentation, consistency regularization, mixed sample data
augmentation, semi-supervised learning, unsupervised domain adaptation
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1

Introduction

Computer algorithms are great at handling problems such as sorting huge lists or
solving difficult numerical calculations, which are near impossible for humans to
solve. More complex problems, however, quickly become very difficult for tradi-
tional algorithms. Such is the case for, for instance, natural language processing
and computer vision, where computers have struggled with tasks that are trivial for
humans. However, with the rapid progress of machine learning, this is no longer the
case, and computers now outperform humans in a quickly growing number of new
tasks. The reason for this progress is, largely, because of the success of deep learning;
the process of providing a deep neural network with data, such that the algorithm
itself learns to perform the task at hand. Deep learning is the foundation for recent
technical progress such as smart Al assistants, self-driving cars and computers beat-
ing humans in games that have previously been seen as needing inherently human
capabilities.

A major bottleneck in machine learning research and application is the need for
large amounts of annotated data. This requires humans to spend a lot of time looking
at and labeling data, a process which is both time consuming and expensive. The
need for more data-efficient solutions in machine learning is therefore paramount.
This problem can be approached in many different ways, such as carefully picking the
most informative data samples possible to label, augmenting the annotation process
such that the human effort is smaller, or using unlabeled data to assist training. In
this thesis we regard the latter scenario. Specifically, we investigate two different
classes of techniques, namely Semi-Supervised Learning (SSL) and unsupervised
Domain Adaptation (UDA).

The most common type of machine learning is called supervised learning, in
which all data samples have one or many labels, and a model is trained to predict
these labels for all samples. In semi-supervised learning, on the other hand, one also
includes data that has not been labeled. The purpose of this is to increase the per-
formance of the model without having to provide more annotations, or equivalently,
to obtain a certain performance with as few labels as possible. Since unlabeled data
is often considerably easier to get than labeled data, semi-supervised learning can
be a powerful way to train successful models at a lower cost.

Another approach to solving the problem with expensive annotations is unsu-
pervised domain adaptation. Here, one deals with the case where the target dataset
has no labels available whatsoever. Instead, the training of the model is aided by
a second source dataset, often similar to the first, which is labelled. This idea is
suitable if the target dataset does not have any labels and if these would be hard to
get by, whereas there is another dataset available that shares features with the first,
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and that is already labeled. Unsupervised domain adaptation is often a more chal-
lenging problem than semi-supervised learning. However, the possible gain might
be larger as no labels at all are required from the target dataset.

The field that we are handling in this thesis is the computer vision task seman-
tic segmentation. It is the task of assigning each pixel in an image one of several
predetermined classes, such as for instance car, person or tree. Because of the high
level of accuracy, semantic segmentation is useful in applications where detailed
understanding of images is important, such as autonomous driving, robotics and
analysis of medical images. The high level of detail, however, also comes with the
downside that images are very time consuming to label. One example is the com-
monly used Cityscapes dataset [2], where each image required on average 1.5 hours
to label, or medical image segmentation, where images have to be labeled by highly
trained medical practitioners. For this reason the study of data efficient solutions,
such as semi-supervised learning and unsupervised domain adaptation, is especially
important for semantic segmentation.

In this thesis we use an approach called consistency regularization in order
to take advantage of unlabeled data in semi-supervised learning and unsupervised
domain adaptation. We propose a novel data augmentation strategy, ClassMix,
in which new samples are created by mixing two images, such that some semantic
classes are cut from one image and pasted onto the other image. For semi-supervised
learning, we mix unlabeled images by basing the mixing on the predictions of the
network, exploiting the fact that the network learns to predict a pixel-level semantic
map of the images. For unsupervised domain adaptation, we introduce the notion of
mixing images across domains and instead base the cut on labeled images from the
source dataset. In both settings, the predictions on mixed images are subsequently
trained to be consistent with predictions made on the images before mixing. Our
proposed method is evaluated on established benchmarks, and an ablation study is
included to further analyze the solutions.

1.1 Problem statement

This thesis aims to investigate how unlabeled samples can be used in the computer
vision task semantic segmentation. This is relevant because semantic segmentation is
necessary in many fields where a highly detailed understanding of an image is crucial,
such that image classification or object detection is not sufficient. Because of the
highly detailed output, it is also necessary that the data annotations are detailed,
which means that labeling becomes a costly process, motivating the investigation of
data efficiency in particular. Specifically, two classes of techniques are considered,
namely semi-supervised learning and unsupervised domain adaptation. Both being
highly active research fields with promising results. Potential application areas are
many, with one of the most prominent ones being autonomous vehicles.

Given certain amounts of labeled data from several commonly used public
datasets, we have developed methods with the purpose of obtaining as high per-
formance as possible using deep neural networks. In particular, our focus has been
on a class of techniques called consistency regularization, and more specifically on
utilizing augmentation strategies known as mixing, where two samples are combined
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to create new, highly perturbed, samples.

1.2 Scope

This thesis builds on consistency regularization developed for semi-supervised learn-
ing and unsupervised domain adaptation in the last few years. An extensive study
of related works in this field has been performed and ideas from many different
sources have been explored and adjusted to our domain. In addition to this, several
novel ideas have been developed and evaluated during the project and compared
to state-of-the-art methods for common benchmarks. In order to give fair compar-
isons with existing works, we kept our settings as close to these works as possible
in terms of parameters and models. Therefore, no optimization has been performed
on any aspects that are not directly connected to our own developed methods (e.g.
network architecture). This implies that we did not aim at obtaining the absolute
strongest possible results for the tasks that we are considering, but rather to obtain
the best results possible relative to the existing works that we consider to be the
most relevant comparisons.

Our developed methods are applicable to any semantic segmentation data,
however, we have confined ourselves to a a few datasets. The investigated datasets
are however the most common benchmarks in research, which is why we do not
consider this limitation to be problematic.

1.3 Contributions

The main contributions from this master thesis project are:

o We introduce a novel augmentation strategy for semantic segmentation, which
we call ClassMix. In this technique two images are mixed intelligently by
basing the mixing on the semantics of the images.

o We develop a unified framework for semantic segmentation, combining consis-
tency regularization and pseudo-labeling.

o We introduce the notion of mixing samples from two different domains in
unsupervised domain adaptation.

o We analyze the relation between similarity within a dataset and the perfor-
mance of mixing augmentations.

Using our developed techniques we contribute to the scientific community by obtain-
ing new state-of-the-art results for several datasets, in both semi-supervised learning
and unsupervised domain adaptation. These results have resulted in two papers, one
about using ClassMix for semi-supervised semantic segmentation [7], and one about
the mixing of images across domains, for unsupervised domain adaptation [§].

1.4 Related work

Since the output in semantic segmentation is a semantic map where positional in-
formation is paramount, fully convolutional neural networks are generally most suc-
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cessful, since there is a close correspondence between pixels in input and output
space. Network architectures such as DeepLab [9] and PSPNet [10] have obtained
strong results on important benchmarks, and are frequently used in research.

A common way of using unlabeled samples in semi-supervised learning is by
training a model to make the same prediction for different perturbations of a sample.
This is what is known as consistency regularization, and it has proven to be very
successful in image classification [11, 12]. Sohn et al. showed that training benefits
from using very strong image augmentations [13]. One class of strong augmentation
techniques is mixed sample data augmentation, where new samples are created by
combining two or more existing images, either by interpolation or by having some
pixels of the new image coming from one sample and some pixels coming from
another image. One such technique is CutMix [14], where a rectangular region
is copied from one image and pasted on top of another, forming a new, strongly
perturbed sample.

Consistency regularization has, until recently, not been applied to semantic seg-
mentation of natural images, when French et al. trained for consistency over images
augmented using CutMix [15]. This resulted in state-of-the-art results for several im-
portant semi-supervised learning semantic segmentation benchmarks, showing that
consistency regularization indeed can be a successful method for semantic segmen-
tation.

The solutions used in unsupervised domain adaptation for semantic segmen-
tation are often similar to those used in semi-supervised learning, as both domains
handle training using a combination labeled and unlabeled data. Approaches based
on consistency have been used with some success [16, 17], however only very recently.
Another technique common in both semi-supervised learning and domain adapta-
tion is entropy minimization. The idea there is to train a model to give predictions
with high confidence, i.e. low entropy. One such method is pseudo-labeling [18],
where the network’s own predictions are used as targets. Pseudo-labeling has been
used in combination with consistency regularization with positive result for image
classification [13]. However, to the best of our knowledge, we are among the first to
combine them in the setting of semantic segmentation.
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Theory

This chapter covers the theory necessary for our proposed solution. We give an
explanation of some crucial parts of deep learning. However, some prior knowledge is
assumed, namely what deep neural networks are and how they are trained. Semantic
segmentation is explained in more detail, as well as semi-supervised learning and
unsupervised domain adaptation, along with an account for related work. Lastly,
we walk through the techniques of consistency regularization that we have used.

2.1 Deep Learning

Traditional computer algorithms rely on a set of explicit instructions, such that when
it gets a certain input, it will perform a set of actions. These instructions will have
been given to the program by a human programmer. A different approach to doing
things, however, is using machine learning, in which a model is fed data, and from
that learns to perform a task, without being explicitly told what to do. Machine
learning approaches have proven to be very useful for many tasks that are otherwise
too complex. If this model is an artificial neural network, where several layers of
neurons are connected to make subsequent calculations, we arrive at Deep learning.
We will here briefly explain a few concepts of deep learning that are relevant to this
report, however, some previous knowledge of the field is assumed.

2.1.1 Loss function

The loss function of a deep learning model is the objective function one tries to
minimize during training. Hence, it is the most important component in deciding
in which direction training progresses, and therefore an integral part of any deep
learning model. Most commonly, the loss function is a distance measure between
the output of a network p(z) and the corresponding target label y. This distance
measure could be any differentiable function, often used functions include the sum
of squared error
SSE(p(x),y) = >_(y; — p(2):)%, (2.1)
ieC
and Cross entropy
H(p(2), ) = — 3 slogp(e); 22
ieC

where the sums are over all classes C.
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2.1.2 Optimization

As a deep neural network is a very complex model, optimizing its parameters 6
analytically to minimize the loss function L(6) is not possible. Hence, a numerical
optimization algorithm is required. The most straightforward such algorithm is gra-
dient descent, where one calculates the gradient VoL (6), and update the parameters
according to

9k+1 == Hk - EV@L(ek), (23)

where € is the learning rate and k is the training iteration. Since the training set used
to train a deep learning model can be very large, it often becomes unfeasible to use
the entire dataset to calculate this gradient, however. The most used optimization
algorithm solving this problem is Stochastic Gradient Descent (SGD).

Here, only a small subset of the entire dataset is used, i.e. mini-batches, to
calculate an estimate of the gradient in equation 2.3, and taking many such smaller
steps, instead of fewer large steps based on all the data. It is important to note
that the mini-batches are sampled randomly from the pool of data, with a new
sampling each iteration. This method has the added effect of introducing noise in
the optimization, giving the training a regularizing effect [19].

A further improvement to the optimization can be achieved by introducing
momentum [20]. Using momentum, a weighted average of the gradients from pre-
vious iterations is added to the current gradient update, causing the optimization
process to be more smooth and less sensitive to noise. This effect from previous
gradients is contained in a velocity parameter v, defined by the recursive equation

VUkpt1 = QU — eVZL(@k), (24)

where « is the momentum parameter with a value between 0 and 1, and Vj is the
estimated gradient.

An issue when training deep neural networks is that the size of parameters
sometimes explodes, causing generalization problems. To remedy this issue, a com-
mon solution is to add a regularizing term to the optimization algorithm, called
weight decay. What that does is penalize the model for having parameters with
large values, limiting their size. In practice, the most common way to do this is
to add a weighted Lo norm, %92, to the loss function, where X is the weight decay
parameter. Taking the gradient of the weight decay term yields the term Af.

Combining the stochastic updates from using mini-batches, momentum and
weight decay we arrive at the parameter update rule

‘9k+1 = Gk - GVEL((Qk) + AVg41 — 6/\9k (25)

When using SGD, or another optimizer based on the gradient from a subset of
all data samples, it is often important to gradually decrease the learning rate as
training progresses [21]. The reason for this is that when using a subset of samples
to calculate the gradient, like in SGD, we introduce noise that does not vanish when
a minimum in the loss function is reached, meaning we never reach convergence.
As a contrast, the true gradient of the loss function will be zero in a minimum.
However, when calculating the gradient from only a few samples, it might not be
zZero.
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Learning rate schedules used in practice often take into account a maximum
number of iterations, after which the learning rate is constant, possibly zero (i.e.
training stops). For semantic segmentation, it has been shown that a polynomial
learning rate schedule,

k \p
oy (2.6)

€ — 60(1 — kmax
with the power p set to 0.9, works well [22, 23]. € is the base learning rate and k;,q4.
is set to the number of iterations the model is trained for. This schedule has been

applied in previous semi-supervised semantic segmentation research [24, 25].

2.1.3 Architecture: ResNet

To increase the capacity of a deep neural network, a powerful alteration is to increase
the number of layers in the network, making it deeper. This greatly increases the
representative capability of the network, but at the same time makes the training
process more difficult. This is largely because of the vanishing/exploding gradient
problem, where gradients for parameters early in the network disappear/explode as
they are a product of gradients from all later layers in the network. This problem
was in part solved by He et al., with the introduction of ResNet [1]. They noted
that representing a function H(z) is equivalent to representing the residual function
F(z) := H(x)—z, and to that adding the identity function x, getting F'(x)+x. The
authors hypothesised that a residual mapping is easier to optimise than the original
function, which they also proved empirically to be the case. In the extreme, one
can consider the case of mapping the identity function, it would be easier to push
parameters to zero such that F'(z) = 0 than to fit the identity function H(z) = z.
This type of mapping is performed by utilising skip connections, as is shown in
figure 2.1. These skip connections can skip any number of layers, in the original
paper they skip two or three layers [1].

| weight layer |
]—“(x) l relu
| weight layer |

X

identity

Figure 2.1: The main building block of ResNet. Skip connections are added on top
of layers in a normal feedforward neural network to help the optimization process,
making it possible to train deeper neural networks. Image taken from [1].

2.2 Semantic segmentation

The most well known, and most studied, task in computer vision is image classifi-
cation, where the objective is to determine which of several predetermined classes

7
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Figure 2.2: An example of an image and its corresponding semantic map. Each
pixel is given a classification. This particular frame is from the Cityscapes dataset

[2].

an image belongs to. These classes could be, for example, person, car, or dog. A
related task, which is more detailed than image classification, is semantic segmenta-
tion, which is what this Master thesis is about. It is a task in which the objective is
to classify every pixel in an image. So in contrast to image classification, a semantic
segmentation model will have as many outputs as there are input pixels, whereas
image classification only gives one output. Hence, the result is a lot more detailed.
Figure 3.5 shows an example of what semantic segmentation looks like, to the left
is the image, and to the right is the corresponding semantic map, or label. The
semantic map is the same size as the image, and each pixel contains information
about which of a number of predetermined classes this pixel belongs to.

2.2.1 DeepLab

There are many different network architectures specialised for semantic segmenta-
tion, one of which is the DeepLab framework [9, 23]. It is a fully convolutional
network architecture with a backbone such as ResNet [1] or VGG [26], but with
some alterations to make the network better suited for semantic segmentation. In
some layers, normal convolutions are exchanged for Atrous convolutions, and in
DeepLabv2 the last layer is made into an Atrous Spatial Pyramid Pooling module.
These two methods are described below. After classification by the network, the
output in DeepLab is also run a few iterations through a conditional random field.
This has not been used in our work, however, and will therefore not be further ex-
plored here. The authors also propose multi-scale processing of images, which they
show improve results. However, this is computationally intensive and is therefore
also not used or explored further in this thesis.

Discrete convolutions are a frequently used component in neural networks,
especially for image analysis tasks where they have played a huge part in recent
success. Convolutional layers in a neural network stand in contrast to fully connected
layers, where each output neuron is connected to each input neuron, which yields
a large number of parameters and does not take spatial dependence into account.
In a convolutional layer, on the other hand, each output neuron is the result of an
element-wise multiplication between a kernel and only a few neurons in a limited
spatial area in the previous feature map. This kernel is moved across the input
feature map, reusing the same weights, meaning that the layer is shift invariant. An
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T

Figure 2.3: Illustration of a standard convolution. The blue map is the input
and the cyan map is the output. A kernel, here of size 3 x 3, is moved over and
element-wise multiplied with the input to create the output. Image taken from [3].

R

Figure 2.4: Illustration of an atrous, or dilated, convolution. The blue map is the
input and the cyan map is the output. Here, there is a hole with size 1 between
each element in the convolution kernel. In this example, K = 3 and » = 2. Image
taken from [3].

illustration of a convolution is shown in figure 2.3. Using convolutional layers allows
the network to better localise and identify spatial features.

Atrous, or dilated, convolutions are a type of convolutions where the kernel
is not dense. Instead, holes (trous in french), or zeros, are introduced between the
different kernel elements. The idea of atrous convolutions was originally developed
for the Algorithme & trous for the undecimated wavelet transform [27], and later
applied to neural networks [28]. The 2-D atrous convolution is mathematically

described by

Wi )= S alitr k=S 1= ) wk ) +h (@27)

k=11=1

Here, y(i,j) is the output and x(i,7) is the input at index (i,7), K is the size of
the kernel, r is the rate parameter which decides the size of the holes and w and b
are weights and biases respectively. A standard convolution is obtained by setting
r = 1. This equation is correct for odd K but needs to be adjusted slightly for even
kernel sizes. If the input is two-dimensional, x(i,j) and w(k,[) are scalars, if it is
three-dimensional they are instead vectors. An illustration to show how an atrous
convolution differs from a standard convolution is shown in figure 2.4.

Using atrous convolutions rather than standard convolutions means that the
effective kernel size and the size of the receptive field increases, without increasing
the number of parameters, which would hurt efficiency. Since the filters can be
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made arbitrarily big by introducing holes of different sizes, the method becomes a
powerful way to control spatial resolution.

A difficulty in image analysis is handling objects with different sizes. A model
could be able to identify e.g. a car perfectly if it is a certain size, but making it
a different size could dramatically hinder the model’s ability to identify the same
car. A common solution to this problem in Deep convolutional neural networks
is to present to the model several rescaled versions of the same image and in the
end aggregate the results, also known as multi-scale processing. This method is,
however, computationally intensive, as each rescaled image has to be individually
processed by the model. The authors of DeepLabv2 propose another method to
solve the same problem, which they call Atrous Spatial Pyramid Pooling (ASPP)
[23]. Here, features are sampled in parallel branches at different rates with atrous
convolutions, for one layer of the network. The outputs of the different branches are
then fused to create the final result. A schematic of ASPP is shown in figure 2.5,
with four parallel atrous convolutions with rates 6, 12, 18 and 24, whereafter the
feature maps are added.

D

Conv
rate 6

3x3
Conv
rate 12

3x3
Conv

Input rate 18 Output

4

3x3
Conv
rate 24

Figure 2.5: An illustration of Atrous Pyramid Pooling (ASPP). Four parallel
atrous convolutions with different rates are applied on an input feature map, after
which the maps are summed to create the final output.

2.3 Supervised and semi-supervised learning

Semantic segmentation is commonly done in a supervised learning setting. In super-
vised learning one has access to a joint distribution p(x,y) of images x, and ground
truth semantic maps y to sample from. For classification the analysis is identical but
with y having a scalar value. The objective of supervised learning can be formulated

10
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as maximizing the expectation of the conditional probability

Ex y~xy logp(x,y)]. (2.8)

This is accomplished by sampling points uniformly, comparing the network’s pre-
diction to the ground truth by some loss function as described in section 2.1.1, and
updating the network’s parameters with stochastic gradient descent, section 2.1.2.

For semi-supervised learning we instead have two datasets; one labeled D; =
p(x,y) and one unlabeled D, = p(x). An assumption is made that the distribu-
tion D, is the marginal distribution of D;, i.e. the images x are from the same
underlying distribution, though in practice this can not always be guaranteed. For
urban scene segmentation for instance, the unlabeled data could come from a dif-
ferent geographic location or have different weather conditions. The objective of
semi-supervised learning is identical to that of supervised learning, but the unla-
beled data is now simultaneously being used to constrain decision boundaries and
learning more general representations. In this sense semi-supervised learning is
much closer to supervised than unsupervised learning, where the goal is often more
general representation learning. The motivation for semi-supervised learning comes
from the fact that collecting labeled data is often costly and time-consuming, in
contrast to unlabeled data which is usually cheap.

2.3.1 Related work in semi-supervised learning

Two common classes of methods for SSL are self-training, where a model trains
against its own predictions [18], and consistency regularization, where a model is
trained to make consistent predictions for various perturbations of a sample. These
perturbations can be of various forms, such as adversarial [29], dropout [30], or
augmentations [11, 12]. Berthelot et al. showed the usefulness of combining self-
training and consistency regularization [31, 13], which is also essential for our pro-
posed method. Related to this, Laine and Aila leverage the fact that an ensemble
of models often gives more accurate predictions than a single model. By averaging
the predictions for unlabeled samples over several epochs, and using these as targets
[5], they achieve more stable targets. Tarvainen and Valpola further develop this
idea by instead keeping a second ’teacher’ network with parameters being a moving
average of the standard network’s parameters, which is less memory demanding [4].

Similar to classification, semi-supervised semantic segmentation has gotten a
lot of attention lately, and since the labeling of images for segmentation is very time
consuming, successfully employing SSL can be very useful. Though successfully
applied for medical segmentation [32, 33], consistency regularization for semantic
segmentation of natural images has until recently struggled to compete with other
approaches, such as those based on adversarial learning [24, 25]. In semi-supervised
image classification, however, consistency regularization has shown promising re-
sults, something that researchers have attributed to the cluster assumption [34].
This assumption states that different classes are, in some feature space, clustered
in individual regions, with the boundaries separating classes lying in regions with
a low density of samples. In semantic segmentation, there are no such low-density
regions separating classes, meaning that the cluster assumption is violated. This is

11
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because the receptive fields on the input layer do not change more when moving over
object boundaries, than within objects, which was shown by experimental results
of previous researchers [15, 35]. The violation of the cluster assumption has made
researchers try to either apply perturbations on the encoder’s output [35] where the
cluster assumption was shown to be upheld or to use non-isotropic perturbations
such as image augmentations [15].

Recent success in consistency regularization for classification has shown that
very strong data augmentations are key [13]. This may further exacerbate the
difficulties of semi-supervised semantic segmentation, as information about class-
affiliation on a pixel level is easier to destroy than for the whole image. One
form of augmentation that has proven successful in image classification and re-
cently also in semantic segmentation is so-called mixed-sample data augmentations.
What makes this kind of augmentation especially interesting for this work is its key
role in augmentation-based consistency regularization for semi-supervised learning
[12, 31, 36, 37]. One such technique is CutMix, introduced by Yun et al. [14]. They
mix images using a binary mask, such that a resulting image has a set of pixels com-
ing from one image, and the rest coming from another. For semantic segmentation,
CutMix has recently been used to obtain state-of-the-art results in semi-supervised
learning [15].

Some works also try to exploit the use of weak annotations in a setting called
weakly supervised learning [38, 39, 35]. For this project, we operate strictly in the
semi-supervised setting.

2.4 Unsupervised domain adaptation

Another way to get around the fact that labeled data might be hard to come by is
to train a model using data from a different dataset than the one that the model will
later make predictions for. For semi-supervised learning, we make the assumption
that the distribution of unlabeled data D, is the marginal distribution of the labeled
data D;. Unsupervised domain adaptation covers the case when this assumption is
violated, and the targeted distribution is the unlabeled one. For our thesis, we cover
the challenging case of when the labeled data is synthetic. This is a very powerful
approach, as labels might be easier to obtain for one domain than for another,
with an obvious example being that already labeled datasets can be reused when
training for a new target dataset. When pretraining a model using one dataset and
then fine-tuning the model using the target dataset, this is exactly what is being
done. Normally, it is however still necessary to have at least a few labels for the
target dataset.

When no such labels are available, we arrive at unsupervised domain adapta-
tion. The naive way of doing this would be to train a model on the labeled source
dataset and then use it to make predictions on the target dataset. This, however,
rarely works well, as there is almost always a domain gap between the source and
target datasets, meaning that the model will learn patterns that are not present or
not applicable in the target data. There is, therefore, a need to teach the learning
system to adapt to this domain gap.

A common scenario for domain adaptation is when plenty of labeled synthetic

12
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data is available, which can often be supplied cheaply. The data can come in the
form of an existing labeled dataset, or it could be dynamically generated [40]. This
synthetic data can be used to generate novel and diverse training examples, but it
usually has a severe domain gap relative to natural data as it is not quite realistic
and perfect alignment with real-world statistics is immensely difficult. For a more
comprehensive study of the use of synthetic data in Deep Learning, see [41]. Needless
to say, being able to effectively transfer knowledge from synthetic data to natural
data would be a huge help in training deep learning models.

2.4.1 Related work in unsupervised domain adaptation

Previous work in unsupervised domain adaptation for semantic segmentation can
be categorised similarly to in semi-supervised learning, though the methods differ in
their details. Predominant approaches include adversarial, self-training and consis-
tency based approaches. Adversarial learning focuses on aligning the distributions
of the two domains at different levels such as at the pixel level [42, 43, 44], feature
level [45, 46, 47] or semantic level [48, 49]. Self-training methods instead try to train
directly on the target data by the use of pseudo-labels, further explained in section
[18]. Variants have focused on creating more useful pseudo-labels by specialised
sampling procedures [50], or accounting for uncertainty [51, 52]. Recently, consis-
tency based approaches have been used as well [16, 17]. These have been based on
consistency criteria in regards to aligning distributions on a pixel-level in contrast
to semi-supervised learning, where consistency over traditional augmentations, as
mentioned earlier, are common.

2.5 Consistency regularization

When training a neural network in a supervised manner one usually minimizes a loss
function L; on labeled samples using an optimization procedure such as stochastic
gradient descent, sections 2.1.1 and 2.1.2. Consistency regularization adds an aux-
iliary loss L, = d(fa(Z1), fo(Z2)), where d is some distance measure such as Cross
entropy or Mean squared error, fy is the function of the neural network parameter-
ized by its weights 6 and 2, and 5 are two different perturbations of the same data
point . Meaning that the objective is to minimize the difference in output from
and Z5. This requires no ground truth label and allows unlabeled data samples to
be used to constrain the decision boundary of the network by enforcing consistency
over various perturbations.

Consistency regularization is used frequently in research, in the setting of image
classification it has several times pushed the state-of-the-art [12, 11, 31, 13], and for
semantic segmentation, it has recently also seen success [15, 53]. In this section,
we describe some of the techniques used in existing works that are relevant to our
proposed method.

13
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2.5.1 Augmentation Anchoring

Recent success in consistency based semi-supervised learning owes in large part
to the application of more diverse, and especially stronger, augmentation policies
[13, 11]. A key technique that has emerged, augmentation anchoring [31], requires
two different sets of augmentation policies. One policy of weak augmentations,
and one policy of stronger (more difficult) augmentations. The weak augmentation
policy is applied to labeled samples in the supervised part of the training, as well as
to the unlabeled samples. The strong augmentation policy is applied to the same
unlabeled images. Both variants of the unlabeled images are then passed through
the network. The predictions from the weakly augmented samples are then treated
as labels, and the gradient is only allowed to flow backwards from the predictions
on the strongly augmented samples. This encourages the network to make the same
predictions on the strongly augmented samples as on the weakly augmented samples,
which is intuitively reasonable, as the predictions on the weakly augmented samples
are more likely to be correct. This has previously been combined with some form of
temperature sharpening [12, 11| and pseudo-labeling [13] (explained below) of the
prediction from the weakly augmented sample, which has been motivated to enforce
entropy minimization.

2.5.2 Mixed Sample Data Augmentations

To achieve more robust results, especially despite of violation of the cluster assump-
tion present in semantic segmentation, section 2.3.1, French et al. [15] argues that
strong, varied perturbations are required.

One can also observe that the risk of altering semantic information is higher
for dense prediction tasks. For classification, it is enough simply to be able to
identify the class of an object in an image, even if information of its position is
lost by strong augmentations. For semantic segmentation, this is not true, as each
pixel has to be able to be classified, and strongly augmenting an image might alter
the classes of pixels, whereas the semantic information of the entire image is not
likely to change as drastically. This fact limits the strength of augmentations and
thus the potential use of augmentation anchoring in this setting. Augmentation
techniques such as cropping also come with difficulties, unlike classification where
this augmentation has played an important role for semi-supervised learning [13]
and contrastive learning [54], consistency for predictions over crops can only be
measured on the union of the two cropped images, decreasing the training signal
from samples, requiring more training.

Mixed sample data augmentations are augmentations that mix two or more
samples, and in that way extends the dataset. In the case of the samples being
images, as in semantic segmentation, this means creating new images where not all
pixel values are from the original image, but are mixed with pixel values from other
images. This could, for example, be done by having a set of the pixels in the mixed
image coming from one original image, and the rest of the pixels coming from another
image. For classification, class-labels have to be interpolated in accordance with the
original images, while for semantic segmentation the corresponding semantic maps
can simply be identically mixed. Mixed sample data augmentation strategies that
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have seen success in recent consistency-based semi-supervised learning algorithms
for classification [12, 13, 31, 11, 14], offer a promising approach for semantic segmen-
tation, as they strongly alter the contents of the receptive fields in a varied way [15].
Another potential benefit is that unlike for classification tasks, mixed sample data
augmentations for semantic segmentation not only offer more reasonable interpola-
tion of labels for supervised learning, but the interpolations in the output space also
become more varied (especially with more complex masks) allowing for consistency
to be enforced across images with drastically different semantics. In contrast to this,
traditional augmentation techniques such as translation, rotation and simple color
distortions, while creating variation in the input space, provides considerably less
variation in the output space for semantic segmentation.

In this project, we have experimented with two previously used mixed sample
data augmentations, or mixing algorithms, namely CutMix [14] and CowMix [36],
as well as our own, novel approach, which we call ClassMix. Below, we go through
CutMix and CowMix, and ClassMix is explained in section 3.1. All three of these
techniques are examples of what can be described as mask-based mixing. This type
of mixing stems from regional dropout strategies, which is a form of regularization
in which parts of the input are being left out, meaning that a subset of all pixels
is made black (or removed in some other way). This technique can be called mask-
based erasure, since the operation can be quantified by multiplying the image with
a binary mask of the same size as the image,

r=MOou. (2.9)

Here, M is the binary mask, x is the original image, and ©® is the element-wise
product. This will produce an image 2z’ that is identical to x for the pixels where
M is one, and zero for the pixels where M is zero. Removing patches in this way
creates a varied perturbation, but since many pixels are set to zero, and hence not
useful for training, each image contains less information, which leads to less efficient
training.

A solution to this is to, instead of setting the masked out pixels to zero, replace
them with the corresponding pixels from a second image, forming a mixed image,
which was proposed by Yun et al. in the CutMix algorithm [14]. This technique can
be called Mask-based mixing and has been a core part in achieving state-of-the-art
results in semi-supervised semantic segmentation [15, 53]. It can be formalized by

=Mz +(1—-M)O ,, (2.10)

where x; and x5 are two different images. The mixing algorithm can be used on
both images and semantic maps. In the CutMix algorithm, rectangular regions are
cut out of one image and pasted onto another, thus forming a strongly augmented
image. An example is shown in figure 2.6.

A downside to the CutMix approach is that regions are always rectangular and
perpendicular to the image, restricting the variability of the perturbations that can
be produced. French et al. [36] propose a mixing algorithm similar to CutMix, but
generated using Gaussian noise, which makes the resulting mask more complex and
with more degrees of freedom, a method they call CowMix because of the look of
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(a) Image 1.

(c) CutMask. (d) Mixed image, using CutMix.

)

(e) CowMask. (f) Mixed image, using CowMix.

Figure 2.6: Examples of the CutMix and CowMix mixed sample data augmen-
tations. The two images are mixed using the binary masks, CutMask in (c) and
CowMask in (e).
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the patterns it forms. A similar mask was proposed by Harris et al. [55], formed
using Fourier transforms instead of Gaussian noise.

In CowMix, a mask, CowMask, is created by generating a Gaussian field N
the size of the input image and convolving it with a Gaussian smoothing kernel
with strength o, and lastly thresholding the values at a prespecified value such that
a boolean mask is created. See [36] for a more detailed description. The scale of
features in this mask can vary a lot depending on the choice of ¢, as shown in figure
2.7. Figure 2.6 shows an example of CowMix.

o =32

Figure 2.7: Examples of CowMasks generated with different o, on images with
size 512x512. Details are more fine grained the smaller o is.

2.5.3 Pseudo-labeling

As we use augmentation anchoring, section 2.5.1, where we train the model to make
the output from a strongly augmented sample to be similar to the output from a
weakly augmented sample, we have the opportunity to use pseudo-labeling (also
known as self-training). Pseudo-labeling is the process of sharpening the output
distribution of a model maximally. Given an output distribution vector p(x) from
for example a neural network, which will typically contain values corresponding to
the predicted probabilities of each option being the correct one, all values are set to
zero except the maximum value which is set to one, forming a one-hot-encoding e,,,

—

p(z) =e,, n=argmaxp(z). (2.11)

n can take integer values between one and the number of possible classes. Figure 2.8
shows an illustration of pseudo-labeling. Using pseudo labeling has proven useful
for semi-supervised learning tasks [18, 13, 56] as well as for domain adaptation
[50, 51, 52]. The use of pseudo-labels differ between research; sometimes models are
iteratively trained with more and more pseudo-labels included from evaluating on
all unlabeled images selectively chosen for retraining [50, 51|, while others generate
them dynamically during the training process in each mini-batch [13].

The entropy of an output distribution is a measure of its uncertainty, where a
more uncertain output has higher entropy, like the left one in figure 2.8, and an out-
put with high certainty has low entropy, like the right one in figure 2.8. The use of
pseudo-labels implies enforcing entropy minimization which has been shown to im-
prove the generalization ability by creating low-density regions in the encoded state
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Figure 2.8: A schematic of how pseudo-labeling works. Given the output from a
model in the form of a probability distribution, left, all values are set to zero except
the largest value which is set to one, forming a one-hot-encoding, right. The entropy
is higher on the left than on the right.

of the network [18]. The presence of low-density regions within the encoder’s output
was shown by Ouali et al. and exploited for semi-supervised semantic segmenta-
tion [35]. The usefulness of pseudo-labels for semi-supervised learning has been
shown previously for classification [13]. This motivates the use of pseudo-labels for
semi-supervised segmentation.

With infinite capacity, the model would be able to simply assign all unanno-
tated samples with zero-entropy labels to minimize its objective function, though
in practice this is rarely an issue for semi-supervised learning as the network is also
guided by the supervisory signal from the labeled data. For unsupervised domain
adaptation, however, the network might be able to discriminate between the two
domains based on the different statistics of the datasets, and simply correlate the
target domain with minimal entropy pseudo-labels. This is a special case of confir-
mation bias for self-training [37]. For this reason, when using mixed sample data
augmentations in this setting it may be beneficial to combine images between do-
mains to ensure that all classes are represented in the targets of the network. This
means that the network can not learn to discriminate on global statistics of the
images alone, and would have to learn to fit around the pasted objects, which is a
considerably more difficult task, thus working against the minimal entropy collapse
just described.

2.5.4 Loss weighting

When the total loss function for training a model is comprised of more than one
component it is important to weigh these components appropriately relative to each
other with weight factors A, so that the training signal is balanced. This is the case
for semi-supervised learning where there is one supervised and one unsupervised
component, and for unsupervised domain adaptation where there can be one com-
ponent from the labeled source domain data and one component from the unlabeled
target domain data. The total loss then becomes

L =L+ AL, (2.12)

where L; and L, are the losses from the labeled and unlabeled samples respectively
and )\, is the weight factor. When using consistency regularization one often wants
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the loss from the unsupervised components to be small at the beginning of training,
as to not train too much on incorrect predictions, and have it gradually grow as the
network improves during the training process [12, 15]. The most straight forward
way of doing this is by having the unsupervised weight being a function of the
training iteration, A,(k), for example in the form of a sigmoidal ramp-up

Au(k) = >‘u0 : exp(_c(kmax - k)Q)a (213)

used in [5, 4]. Here, A\, and ¢ determine scale and slope of the ramp-up respectively,
and k., is the iteration at which the ramp-up should reach its maximum, after
which the weight is kept constant.

More sophisticated methods can use the predictions of the network to deter-
mine the weight \,. When using pseudo-labeling, a threshold is often set, such that
only samples that have output predictions with a probability assigned to any class
above this threshold are used for training. This reduces the risk that the model
is trained to give the wrong predictions, as the samples on which it yields a high
output prediction are more likely to be correct. The weights become

N = A {1, if max(p(x)) > T | (2.14)
0, otherwise

where p(x) is the output distribution for sample z, and 7 is a threshold value. This

method was employed by [6] for image classification, with 7 = 0.968. This threshold

has to be tuned. If it is set too low, samples that the model is insecure on will be

included, but if the threshold is too high a lot of information will be lost, as many

samples will not be used for training.

This issue is straightforward in image classification, where there is only one
output distribution per sample. In semantic segmentation, however, we have an
output distribution, and hence a separate weight A, (k), for each pixel in the image.
This makes the problem more complex, as some types of pixels will always be more
certain than others. In particular, pixels close to the boundary between two differ-
ent classes are especially hard for the model to predict, and the certainty of these
predictions will hence be lower. In practice, we have seen that this yields pseudo-
labels that miss most boundaries, meaning that no unsupervised training will ever
be performed on these parts, see figure 5.5d. This means a large loss of important
training data. Figure 2.9 shows the proportion of pixels that have a certainty above
a threshold of 0.968, as used in [6], as a function of training iteration. From this
we can see that almost 15% of pixels are below this threshold, meaning that not
training on these pixels would mean a loss of 15% of the training data.

Another way to weigh the loss without having the problem that pixels near
class boundaries are completely masked is to weigh the loss uniformly for all pixels
by the proportion of pixels for which the certainty of the network is above a given
threshold. This method was used by French et al. [15]. The unsupervised weight
factor will then be

VXA X T(max(p(x) > 7)

(2.15)
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Figure 2.9: The proportion of pixels in images where the model’s predicted confi-
dence is above the threshold 7 = 0.968, as a function of the training iteration. The
dots mark the proportion for individual batches, while the values of the solid line
are averages of the proportions for 100 batches. It is compared to the sigmoid ramp
up from equation 2.13, with ¢ = 5 as in [4, 5], and k4, = 10000. The confidence
rises as training progresses, and seems to settle at a value slightly above 85%. Each
value in the curve is an average of 100 iterations. These particular values were gen-
erated during training of a semi-supervised model with 372 labeled samples from
the Cityscapes dataset.

where A is the weight factor in equation 2.14 for pixel 7. The weight factor in
equation 2.15 is exactly the one shown in figure 2.9. Its value will grow during
training, giving a ramp up of the unsupervised loss similar to that of a sigmoidal
function. This is the method used in our results, however, the other weighting
methods described are also examined in the ablation study in section 5.2.

2.5.5 Mean Teacher

In school, humans learn by being instructed by a teacher, who is assumed to be more
knowledgeable than the student. Inspired by this, one can imagine an approach to
machine learning where a teacher model is used as a guide for a student model.
Especially for unsupervised consistency regularization, this can be a very useful
method, as the teacher model can be used to make a more stable prediction, and
the student network can then be trained to be consistent with this.

Model ensembling is a method often used when trying to achieve high-performance
results using machine learning models. The idea is that one trains several models to
perform the same task, and in the inference stage, the outputs of all these models
are averaged, which will give a more stable and reliable result. Laine and Aila intro-
duced self-ensembling [5], where the ensemble is formed by averaging over several
outputs from consecutive training epochs for each sample, under different perturba-
tions of the data. This method can be used to create a teacher model, which has
proven successful when used for semi-supervised image classification tasks.

An issue with the method developed by Laine and Aila is that predictions have
to be saved for all samples in the data set. This is not a problem for small data sets,
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but as the amount of data grows it becomes infeasible. With this motivation, the
approach was further developed by Tarvainen and Valpola, with the introduction
of the Mean Teacher framework [4]. Here, the teacher model is not achieved by
averaging over predictions of each data point, but instead by averaging over model
parameters for many training iterations of the network. The average is an exponen-
tial moving average (EMA), meaning that the parameters of the teacher model for
each training step are given by

L=l + (1— )b (2.16)

Here, 6 is the model parameters for the teacher network in iteration k, 6 is the
model parameters for the student network in iteration k£ and « is the smoothing
coefficient of the EMA. Using an EMA results in a teacher model that is an average
of the student model from all previous training steps, with the most weight given to
the most recent versions of the student, without having to store more than one set
of parameters. This averaging will make the teacher model a more stable version
of the student model, experiencing smaller fluctuations, while still being improved
continuously, as shown for image classification by Tarvainen and Valpola [4]. The
same seems to be the case for semantic segmentation, as stated by French et al. [15].

2.5.6 Distribution alignment

An issue when deploying consistency based semi-supervised learning for classification
tasks is that the model can be biased to predict some classes proportionally more
than others in regards to the underlying distribution. This will often hurt the
model’s ability to predict classes with lower frequency, in favor of classes with high
frequency. To remedy this, one can introduce Distribution alignment, which pushes
the model to give higher predictions to certain classes and lower to others. The
idea was first introduced by Bridle et al., who encouraged their classifier to equally
predict all classes with what they called a fair objective [57]. This was accomplished
by maximising mutual information between a model’s input and output. An issue
with this, however, is that the underlying distribution might not be uniform, in
which case it is not desirable to enforce just that.

An alternative way of performing distribution alignment was introduced by
Berthelot et al. in their ReMixMatch algorithm for semi-supervised image classifi-
cation [31]. They calculate the marginal class distribution p(y), i.e. the proportion
of labels belonging to each class, of all the labeled training data. They then encour-
age the model to make the aggregate of its predictions on unlabeled samples follow
this distribution. They do this by maintaining a running average of the model’s
predictions, which they refer to as p(y). This can be seen as a representation of the
current bias of the model. Outputs ¢ from the model when fed a weakly augmented
image are scaled using the ratio p(y)/p(y), and then normalized such that they rep-
resent a proper probability distribution ¢. The idea is that this modified output § is
pushed to give higher predicted probabilities for classes that have recently not been
predicted as much as they occur in the marginal distribution p(y), and the opposite
for classes given too high probabilities. Berthelot et al. compute the running aver-
age over the output from the latest 128 unlabeled samples. Using this method they
see a substantial decrease in loss when training on the CIFAR-10 data set [58].
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We have used Distribution alignment as a proposed method for Unsupervised
domain adaptation. It is, however, not a part of the method used to obtain our
results, but is examined in our ablation study in section 5.2.
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Methods

In this chapter, we provide a detailed description of our proposed algorithm for
semi-supervised learning and unsupervised domain adaptation. We also present
the datasets that have been used, and which augmentations that have been used
apart from the mixed sample data augmentations described in the previous chapter.
Lastly, the employed network architecture is described.

3.1 ClassMix

We here introduce a novel way of mixing multi-class images, based on semantic
maps, which we call ClassMix. It is similar to the mixed sample data augmentations
CutMix and CowMix presented in section 2.5.2. ClassMix has been an integral part
for us achieving state-of-the-art results.

ClassMix builds on the principle of augmentation anchoring, where the output
from a weak augmentation of an input is used as a label for a strong augmentation
of the same input. From the output of the weakly augmented image, we obtain
a pseudo-label, such that every pixel is predicted to belong to a class. We then
randomly select n classes to keep, where n is between zero and the number of
classes present in the pseudo-label, we have used n such that half of the present
classes are included. From this a mask is created, such that the mask is one for all
pixels belonging to one of the n classes we randomly selected, and zero for all other
pixels. This mask is referred to as ClassMask. The mask is then used in the same
way as described in section 2.5.2, i.e. it is pixel-wise multiplied with one image and
added to the inverse of the mask multiplied with another image. The algorithm to
create a new, mixed, batch, is described in Algorithm 1. Apart from the creation of
the masks, this algorithm is the same for CutMix and CowMix. Figure 3.1 shows
an example of ClassMix.

The motivation for this mixing strategy is that mask borders will, to a high
degree, follow the semantic boundaries between objects of different classes in the
image. This will minimize the occurrence of only a very small part of an object
being present in a mixed image, which can be nonsensical. It also reduces the
number of unnatural borders in the resulting mixed image, as the borders will be
aligned with the actual boundaries of objects. This creates mixed images that better
respect the semantic boundaries of the original images. They are consequently more
realistic looking than images created using CutMix and CowMix, and also lie close
to the underlying data distribution, meaning they are more useful for training,
compare figures 2.6 and 3.1. In a setting with rich semantics such as urban scene
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segmentation, we further note that the mask will be very varied, owing to the variety
of possible classes being transferred.

Algorithm 1: ClassMix

Input : Batch of samples X = {(zp,pp) : b € (1,..., B)}, where x; are images
and p, the corresponding labels or predictions made by the model,
B > 1, proportion p of classes being selected for the mask.

for b=1to B do
cytot = set of classes present in the semantic map py

cp = choose [p - |cprot|] values from ¢y gor
M, = (pp == ¢) // Create boolean mask
xp =My, ®xp+ (1 — M) ® xpy1 // New sample is mix of two samples
Py =M, ®pp+ (1 — M) ©ppy1 // New label is mix of two labels
end
X' ={(z},p}) :be(1,..,B)}
return X’

(a) Image 1.

(c) ClassMask based on image 1. (d) Mixed image.

Figure 3.1: An example of how ClassMix works. Based on an image, (a), a mask
is created such that half of the classes occurring in the image are present, (c). These
classes are then pasted on top of a second image, (b), forming a strongly augmented
image, (d).

When using ClassMix it is also especially beneficial to use pseudo-labeling,
introduced in section 2.5.3. This is because the boundaries between classes are
usually the areas where the network is the most uncertain. The outputs close to
the class boundaries will, in general, mostly be an interpolation between the two
classes on the two sides of the boundary. The uncertainty between these classes
is warranted and reasonable. However, when mixing samples it is probable that
the resulting images will not have these classes next to each other, but rather that
they will border completely different classes, see figure 3.2. This means that the
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uncertainty will now be between two classes where one of the classes is not present
in that area of the image, which is unreasonable. If one were to not use pseudo-
labels this would mean that the network would be trained towards this unreasonable
uncertainty. Therefore we believe that pseudo-labeling is especially useful when
using mixed sample data augmentations in general, and even more so when using
ClassMix in particular, as mixing boundaries will always lie along class boundaries
where this issue is the most eminent.

Figure 3.2: An illustration of how the context in an image changes when using
ClassMix. The left and middle images are two original images and the right one
is mixed using ClassMix. Consider classes sky (a), building (b) and tree (c). The
output distributions of pixels close to the boundary between classes a and b when
running the left image through a model will have some weight on both classes. After
mixing and when using the corresponding mixed predictions as a target these two
classes are no longer adjacent. Instead classes a and c are next to each other. The
uncertainty in the target for class a is however still between classes a and b. It
does not make sense to train a model against this uncertainty as class b is no longer
there. Using pseudo-labels will alleviate this problem since the model is then only
trained against the single, highest predicted, class.

Though formulated here as a generalisation of CutMix using a binary mask to
mix two images, this augmentation also shares similarities to strategies where objects
are pasted onto background scenes [59, 60, 61]. Our way of combining two images
conditioned on the predicted or ground-truth semantic mask exploits the same idea
of compositing images. However, it is different from these existing strategies in that
we mix images based on predictions or across domains. And rather than selecting
individual instances of objects and only training on these, we transfer entire classes
and also train on the background image. Segmenting the background image as well
means that objects recognized by the network do not only have to be invariant to
their context, but invariant to a diverse set of occlusions as well. In summary, our
goal is not to use ClassMix to synthesise new data for supervised-learning similar
to several previous works, but rather to exploit it to enforce consistency, or in the
case of domain adaptation; force entropy into the pseudo-labels.

25



3. Methods

3.2 Training algorithm

Our training algorithm is based on the concept of augmentation anchoring, where
the model is trained to make the same prediction on a strong augmentation as on a
weak augmentation of the same sample. One batch of samples contains 2B samples,
where B is referred to as the batch size. B samples are labeled and B samples are
unlabeled. The labeled samples are treated as in standard supervised training, i.e.
run through the student network and a softmax function, and after that compared
to the corresponding ground truth label, using a loss function L;. In our solution,
this loss function is the cross-entropy loss, as described in section 2.1.1. We are not
using any augmentations for the labeled samples.

After the processing of the supervised component, the B unlabeled samples
are handled. The handling of these are here explained in text and summarised in a
schematic in Figure 3.3. Each image x is treated in two separate ways x,, and x,, one
weak and one strong augmentation scheme. The images x,, are then passed through
the teacher network and after that a softmax function, creating output predictions
p(2y). These predictions are used to determine the loss weighting factors A, for
each sample, where we use the threshold-proportional Weigﬁi\n section 2.5.4. After

this, the outputs p(x,,) are transformed into pseudo-labels p(z,,) so that we obtain a
proper semantic map where each pixel is assigned one class. These pseudo-labels are
used to create the ClassMasks. We randomly select half of the classes present in the
pseudo-label to create a binary mask M, details are explained in algorithm 1. One
mask is created for each unlabeled image in the batch, and after that used to mix the
images x, giving the strongly augmented samples xs. The same masks are applied
on the corresponding pse%abels7 to give the correct training target, resulting in

the mixed pseudo-labels p(z,),. The augmented samples can be modified further,
however, in our default solution no further augmentations are used. The mixed
samples z, are then passed through the student network and a softmax function,
forming the predictions p(z,). The unsupervised part of the loss is calculated using
a cross-entropy loss L, between the predictions p(z,) and the mixed pseudo-labels

—

p(Iw)s .
The training objective for the batch is then the combination of the supervised
loss L; and the unsupervised loss L,

L =L+ ALy, (3.1)

which is minimized by the stochastic gradient descent algorithm, section 2.1.2. This
whole process is then repeated for a new batch of samples for a set number of
iterations.

For unsupervised domain adaptation, the algorithm changes slightly, where
instead of mixing two unlabeled images we mix one unlabeled image from the target
domain and one labeled image from the source domain, see figure 3.4. This is done
to avoid entropy collapse, see section 2.5.3, where larger classes would otherwise
dominate the transfer, merging with smaller classes. This approach is motivated by
the fact that the network can no longer learn to correlate structure specific to the
target domain with minimal entropy, as objects of all classes will be present. While
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Teacher network

Mix Mix

Loss
Student network

Teacher network

Figure 3.3: A schematic showing the unsupervised part of our SSL algorithm. Two
images, a), are passed through the teacher network, yielding two predicted semantic
maps, b). From these, two masks, c¢), are created (however in this image only one
mask and mix is shown). These masks are used to create two mixed images, d),
and two corresponding mixed semantic maps e). The mixed images are then passed
through the student network, giving predictions f), after which the loss is computed
against the semantic maps.

it is still possible for the network to learn to fit to the pasted objects from the source
domain and output everything else with minimal entropy, this would be considerably
more difficult, and hence it is more likely that the network instead learns to provide
a correct segmentation. The mask is always created conditioned on the ground
truth of the source domain image (which is provided in abundance in contrast to
the data-sparse semi-supervised learning setting), rather than the pseudo-label of
the target image. This means that the objects from the source domain will always
have perfect boundaries.

Note that our method does not require retraining by iterative extracting of
pseudo-labels, unlike other common self-training methods [50, 51, 62]. We also
handle uncertainty by a simple weight for our unsupervised loss, which does not
require the network to be converted into a Bayesian one with multiple forward
passes for each pseudo-label generation [52].

3.3 Data

We have considered four different datasets in this thesis, all of which are com-
mon benchmarks for semantic segmentation. The Cityscapes and Pascal VOC 2012
datasets are both common datasets used for semantic segmentation, both supervised
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Teacher network

Mix

Student network

Ground truth

Figure 3.4: A schematic showing our unsupervised domain adaptation algorithm.
A source image is passed through the teacher network to create a pseudo-label. A
ClassMask is created based on the source image ground truth semantic map. Using
this mask the source- and target images are mixed, as well as the source ground
truth label and the target image pseudo-label. The mixed image is then passed
through the student network after which the loss is computed against the mixed
label.

and semi-supervised. The GTAS5 and SYNTHIA datasets are collections of synthetic
images commonly used for unsupervised domain adaptation, with Cityscapes being
the target domain.

3.3.1 Cityscapes

The public Cityscapes data set is a freely available data set that consists of images
taken of the front view of cars in urban environments, with pixel-level annotations
[2]. The set consists of 5000 finely annotated frames, which are divided into training,
validation and test sets with 2975, 500, 1525 frames respectively, as well as an addi-
tional approximately 20 000 coarsely annotated frames. The fine annotation of the
images take on average more than 1.5 hours per image to produce, demonstrating
the need for data-efficient solutions for semantic segmentation. The test set annota-
tions are not publicly available, and that part of the data is therefore not used, the
coarsely annotated frames are also not used because of the less detailed labels. Im-
ages are taken from 50 videos in 50 different cities, mostly in Germany. The images
contain 19 different classes, such as road, cars and pedestrians, all classes are shown
along with their relative frequency of occurrence in figure 3.9. The image resolution
is 1024x2048. The Cityscapes dataset has been our primary dataset and the one
that has been used for evaluation of methods as well as ablation studies. Figure 3.5
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Figure 3.5: An example of a frame from the Cityscapes data set, to the left is the
image and to the right is the corresponding semantic map.

Figure 3.6: Example of images and corresponding semantic maps from the Pascal
VOC 2012 dataset. Each image consists of one or more objects from 20 classes in
front of a 21st background class. Images are cropped to be square.

shows an example image along with its corresponding ground truth semantic map.

3.3.2 Pascal VOC 2012

The Pascal VOC 2012 dataset is another publicly available semantic segmentation
dataset commonly used for benchmarking [63], going forward we will refer to it as
Pascal VOC. It contains images of everyday objects such as bicycles, birds, people
and tables, totalling 21 classes, including a background class. There are originally
2914 labeled images, but including the labels from the Semantic Boundaries dataset
[64], the total number of labeled images becomes 12 032, divided into 10 582 training
images and 1 449 test images. The size of the images varies, but they are a maximum
of 500 pixels in both x and y directions. Figure 3.6 shows five example images along
with their corresponding ground truth semantic maps.

3.3.3 GTA5

The GTAS5 dataset is a synthetic dataset comprised of images from the open world
computer game GTAb together with ground truth labels for semantic segmentation
compatible with Cityscapes [65]. All images are taken as first person views from a
car, in the same way as Cityscapes. The set consists of 24966 densely labeled frames.
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Figure 3.7: An example of a frame from the GTAb5 data set, to the left is the
image and to the right is the corresponding semantic map.

Figure 3.8: An example of a frame from the SYNTHIA data set, to the left is
the image and to the right is the corresponding semantic map. In this particular
visualisation the map is instance-aware, meaning the semantic map has a separate
label for each person etc.

The image resolution is 1052x1914. Images in the GTAS dataset were labeled in,
on average, 7 seconds per image, a stark contrast to the 1.5 hours per image for the
Cityscapes images, underlining the point of using domain adaptation from synthetic
data. Figure 3.7 shows an example image along with its corresponding ground truth
semantic map.

3.3.4 SYNTHIA

The SYNTHIA dataset is a collection of synthetic images for semantic segmentation
of urban scenes [66], a subset of which contains 9000 images with labels consistent
with Cityscapes. Three of the classes in Cityscapes are however not represented.
The image resolution is 760 x 1280. Images are taken from different views, including
close-to-ground views as in figure 3.8, as well as bird’s eye views.

3.4 Augmentations used
Computer vision tasks heavily depend on the use of suitable augmentations, i.e.
transforming the data for a regularizing effect. Apart from ClassMix described in

section 3.1, we have also used several other, more common, augmentations.
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Figure 3.9: The proportion of all pixels belonging to all different classes in the
Cityscapes, GTA5 and SYNTHIA datasets. Note that the vertical axis is logarith-
mically scaled.

Crop Instead of working with the full images, random cropping is
performed each time an image is loaded. A random rectangle
with given side lengths is cropped out of the image, discard-
ing the rest. If the crop is larger than the image, the image
is padded with zeros for the remaining pixels, and the label
is ignored for the corresponding area, meaning no supervised
training is performed on these pixels. Cropping has the benefit
of, besides the regularizing effect, making the images smaller
and hence speeding up propagation.

Horizontal flip Images are mirrored with respect to the vertical center-line of
the image.

Gaussian blur Images are convolved with a Gaussian kernel, producing the
effect of a more blurry image. The power of the blurring is
decided by a parameter ¢ drawn from a uniform distribution
U(0.15,1.15). The size of the blurring kernel is set to one tenth
of the image size in both the vertical and horizontal directions.

Color jitter Adjusting the colors of images. We weakly adjust brightness,
contrast, hue and saturation of the images.

3.5 Network Architecture

The network architecture is arguably the most important factor in achieving good
results in any deep learning task, including semantic segmentation. We have used
the DeepLabv2 framework developed by Chen et al. 2017 [23], as it has previously
been used in several papers about both semi-supervised learning and unsupervised
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domain adaptation for semantic segmentation, making for easier comparison with
those works.

DeepLabv2 is a somewhat outdated framework, and there are several newer
architectures which perform better. However, these newer models in general require
more computational power, not allowing us to try as many different methods. Sec-
ondly, our focus is on the training algorithm, rather than on achieving the best
possible results for the specific task and dataset. Therefore we feel that it is not a
downside to not have used the best possible network.

Table 3.1: The architecture of our DeepLabv2 implementation. The architecture
can be divided into 6 blocks, the first block is a standard 7 x 7 convolution followed
by a max pooling layer, after this block the input has changed from 3 RGB channels
to 64 channels, with a downsampling of 1/4. Layers 2 through 5 consist of a number
of residual units, as described in section 2.1.3, each unit consisting of three convo-
lutional layers, each followed by a batch normalization layer and a ReLLU function.
The number of residual units in each block is specified in the table. Blocks 4 and
5 are comprised of atrous convolutions with rates 2 and 4 respectively. The last
block is the Atrous Spatial Pyramid Pooling, which consists of four parallel atrous
convolutions with rates 6, 12, 18 and 24 respectively.

Block Convolutions Output size
7x 7,64
L 3 x 3 Max Pool 64, 1/4
(1 x 1, 64]
2 3x 3,64 | x3 256, 1/4
|1 x 1, 256
[1x 1, 128]
3 3 x 3,128 x4 512, 1/8
1x1,512]
1x 1,256
4 3 x 3,256 | x23 1024, 1/8
1x 1,1024)
1x 1,512
5 3x 3,512 | x3 2048, 1/8
1 x 1, 2048
6 ASPP Module | num__classes, 1/8

Our model has a ResNet-101 backbone (meaning a ResNet with 101 layers)|[1],
adjusted to the DeepLabv2 framework, such that it downsamples the images eight
times. The outputs from the network are bilinearly upsampled to be the same size
as the inputs. The architecture can be divided into six separate blocks, each with
several layers, see table 3.1. Blocks 4 and 5 use atrous convolutions instead of
standard convolutions, as described in section 2.2.1, with rate parameters r set to 2
and 4 respectively. The last block is the atrous spatial pyramid pooling, described
in section 2.2.1, it consists of four parallel atrous convolutions with rates 6, 12, 18
and 24 respectively.
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Results

In this chapter, we present the results for our proposed method for consistency
regularization on both semi-supervised learning and unsupervised domain adapta-
tion and compare these against the current state of the art for public benchmarks.
Before that, we explain the practical details of the experiments and present the hy-
perparameter values used during training, as well as describe the evaluation metric
used.

4.1 Implementation details

4.1.1 Practical details

All code for this thesis is written in Python, as it is the go-to language for machine
learning development. As for the deep learning framework, PyTorch is used as it
offers a lot of flexibility and at the same time high performance. The code for the
semi-supervised part of the thesis can be found at https://github.com/WilhelmT/
ClassMix, and the code for unsupervised domain adaptation can be found at https:
//github.com/vikolss/DACS.

We have had access to a cluster of four NVIDIA GeForce GTX 1080 Ti GPUs,
each with 11 GB of memory, on which training and testing have been performed.
We have also used cloud computing instances from Amazon Web Services, in the
form of NVIDIA V100 Tensor Core GPUs, each with either 16 GB or 32 GB of
memory. On top of this, we have also had two smaller NVIDIA Quadro M2000M
GPUs with 4 GB memory, used primarily for small scale experiments.

4.1.2 Experimental setup for semi-supervised learning

In this section, we list what hyperparameter values we use for training models using
semi-supervised learning, for those that have been the same for all experiments. The
search space is way too large for us to optimize every parameter, so a lot of choices
have been made solely based on what previous researchers have used. In particular,
we have a similar setup as Hung et al. for semi-supervised learning [24].

As optimizer, we use standard Stochastic Gradient Descent, with a learning
rate of 2.5 x 107*. We use a momentum of 0.9 and a weight decay of 5 x 107*. We
use the polynomial learning rate schedule presented in equation 2.6, with power 0.9,
and k4. set to the number of iterations the model is trained for. The loss function
for the supervised part of training is Cross-entropy loss. The weight factor for the
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unsupervised loss, Ao is set to one, as in [13]. Along with a few parameters that
change for different datasets, such as image size, augmentations, and normalization,
this forms our baseline hyperparameters.

For the Cityscapes dataset, the results are obtained from runs with images
rescaled from the original 1024 x2048 to half that size, 512x1024. It is done this way
because having full-sized images requires too much memory on the GPUs. Images of
this size are also used in previous research [24], making for easier comparison between
methods. We are using a batch size of two, for both labeled and unlabeled images,
and train for 40 000 batch iterations. Ground truth labels are only publicly available
for the training set and the validation set in the Cityscapes data, therefore we use
the validation set as a test set. This is common practice for the Cityscapes dataset
and in particular for previous work on semi-supervised learning [24, 25, 15, 62] and
unsupervised domain adaptation [67, 46, 68, 69, 48, 70, 71, 50, 51, 72, 73, 74, 52].
Because of this, it is important to not optimize hyperparameters or to deploy early
stopping based on the performance on the validation set since a high result on the
validation set not necessarily means that the model generalizes well to all data, but
could just mean that the model is performing well on those exact images. Hence no
early stopping is used and all results are from after the last training iteration.

For the Pascal VOC dataset, images have different sizes and hence have to be
cropped to become the same size, described in section 3.4. We crop the images to
321 x 321 pixels and use a batch size of 10 in line with previous work [24, 25, 15].
We train for 40k iterations here as well. In the same way as for the Cityscapes
dataset, common practice is to divide the data into only a training set and a test
set, therefore all results are from the last training iteration.

As for augmentations other than mixing, we do not use any for the Cityscapes
dataset. For the Pascal VOC dataset, we scale all images, both for weak and strong
augmentations, between 0.5 and 1.5 times. We also flip these images horizontally
with a 50% chance, as described in section 3.4. The reason we are using augmen-
tations for Pascal VOC and not Cityscapes is that that is the way previous works
have done it, making for better comparisons.

4.1.3 Experimental setup for unsupervised domain adapta-
tion

The settings for unsupervised domain adaptation training are almost identical to
those for semi-supervised learning, in particular for the Cityscapes dataset. The
size of images differs in that SYNTHIA images are kept at their original 760 x 1280
size, and GTA5 images are resized from their original size to 760 x 1280 pixels. To
save memory (and since ClassMix requires identical image sizes between images to
be mixed), we crop all images randomly with 512 x 512 crops, in the way described
in section 3.4. The remaining differences to the hyperparameters for semi-supervised
learning for Cityscapes are in the number of training iterations; going from 40k to
250k, and in the normalization of data; now being done with respect to the mean of
the pretraining dataset (ImageNet), as we want to keep it constant over domains,
rather than the Cityscapes dataset. In contrast to Tsai et al. we refrain from early
stopping [67], for the reason stated above.
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For domain adaptation, we apply Color jitter and Gaussian blur on mixed
images after applying ClassMix, as explained in section 3.4.

4.2 Evaluation Metric - Mean Intersection over
Union

To measure the performance of the semantic segmentation of an image the most com-
mon metric to use is the mean Intersection over Union (mIoU). It is the between-class
mean of the quotients of the number of intersecting pixels between the prediction and
the ground truth, and the number of pixels either predicted by the model or present
in the ground truth, or both. Synonymously it is the number of true positives (TP)
divided by the sum of true positives, false positives (FP) and false negatives (FN)
for each class. The IoU, for each class, is given by

B TP
~ TP+ FP +FN’

IoU (4.1)
This yields values between zero and one, where one is perfect. Figure 4.1 shows an
illustration of how the mloU is calculated. In the figure, only one class is demon-
strated. In reality, one would calculate the IoU for every class present in the image
separately and after that take the mean over all classes. Using mloU instead of the
more simple pixel accuracy measure, where one only calculates the proportion of
correctly predicted pixels, has the effect that missing a class entirely is penalised
heavily. For example, if all ground truth pixels except one belong to the same class
and the prediction is that all pixels belong to the majority class, pixel accuracy
would yield a score very close to one. In the same example, mloU would instead
yield a score very close to 0.5. This means that pixels from small classes, such as
signs or traffic lights in the Cityscapes dataset, become more important to correctly
classify than pixels from larger classes, such as road. This intuitively makes sense
as missing a few pixels of road will not change the overall shape of the road, but
missing a few pixels of a much smaller sign might seriously alter its size and shape.

4.3 Results for semi-supervised learning

4.3.1 Cityscapes dataset

Table 4.1 shows the results from using our method to train models on the Cityscapes
dataset. In the same table, the results from four previous papers regarding semi-
supervised semantic segmentation are also shown, all using the same DeepLabv2
network with ResNet101 backbone. Hung et al. have the same hyperparameters as
us [24]. Mittal et al. crop their images to 256 x512 before processing [25], and French
et al. also crop their images as well as using a different optimizer [15], both papers
also used a larger batch-size of five and four respectively. Unlike Mittal et al. and
French et al. we use weights pretrained on MSCOCO similar to Hung et al. Hung et
al. have not made their code for Cityscapes publicly available, therefore we process
our data in the same way as Mittal et al. who do have a public implementation.
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Figure 4.1: An illustration of how the mean intersection over union metric works.
This example shows only the car class. Green pixels are pixels that both the ground
truth label and the model’s prediction agree belong to the car, true positives. Blue
pixels are pixels that according to the ground truth belong to the car class, but the
model did not predict them as such, false negatives. Red pixels are predicted to
be car by the model but are not in fact car according to the ground truth. The
intersection over union for the car class will be the number of green pixels divided
by the sum of numbers of green, blue and red pixels. Often there is more than one
class in an image. In that case, the IoU is calculated like here for every class, after
which the mean is taken.

We, therefore, normalize the data using the mean from Cityscapes rather than the
statistics from the data used for pretraining, which is otherwise a common way of
doing it. We believe that this is the main reason for our baseline, i.e. the results from
a model trained only on the given amount of labeled data, being slightly different
from Hung et al.

The columns in table 4.1 correspond to different amounts of labeled data sam-
ples, the remaining samples are used for unsupervised training. For all five works,
the results are presented with a baseline for each labeled data amount. The SSL
rows show the results using the respective proposed methods. The Delta rows show
the difference between the baseline and the SSL results. This is arguably the most
important measure, as the absolute results are not only affected by the proposed
method but also by the underlying baseline. Our results are presented as the mean
of three independent trainings of a model, and the standard deviation of the three
values is also displayed. All numbers are mean intersection over union scores. For
three out of four data amounts our method achieves the best results, marked by
bold font. For 744 labeled data samples our result is lower than that of Feng et al.
and French et al. but our Delta is higher, as it is for all amounts of data.

Figure 4.2 shows qualitative results for a baseline model and a model trained
with our SSL method, both models are trained with 1/8 of all labeled samples.
Predictions are shown for a few images along with the corresponding images and

'Same Deeplabv2 network but with Image-Net pretraining instead of MSCOCO

36



4. Results

Table 4.1: Results from applying our semi-supervised learning method on the
Cityscapes dataset. The columns correspond to different amounts of labeled samples.
Our results are compared to four previous articles solving the same task. For each
data amount and article, including ours, a supervised baseline is presented along
with the result, as well as the difference between the two. All numbers are mean
intersection over union. Our results are the mean result from three runs, with the
standard deviation also presented.

Labeled samples  1/30 (100)  1/8 (372) 1/4 (744) 1/2 (1488)  Full (2975)
Hung et al.[24]

Baseline - 55.5% 59.9% 64.1% 66.4%
SSL - 58.8% 62.3% 65.7% -

Delta - 3.3 2.4 1.6 -
Mittal et al.[25]"

Baseline - 56.2% 60.2% - 66.0%
SSL - 59.3% 61.9% - 65.8%
Delta - 3.1 1.7 - -0.2
French et al.[15]!

Baseline 44.41% 55.25% 60.57% - 67.53%
SSL 51.20% 60.34% 63.87% - -

Delta 6.79 5.09 3.3 - -

Feng et al.[62]

Baseline 455 % 56.7% 61.1% - 66.9%
SSL 48.7 % 60.5% 64.4% - -

Delta 3.2 3.8 3.3 - -

Ours

Baseline 43.84%+0m1  54.84%=+114  60.08%+062 63.02%=x014  66.19%=+0.11
SSL 54.07%+161 61.35%=+062 63.63%=+033 66.29%=+047 -

Delta 10.23 6.51 3.72 3.27 -

ground truth semantic maps. There are quite clearly less artifacts in the predictions
made by the SSL model than those made by the SL model.

4.3.2 Pascal VOC dataset

The results for the Pascal VOC dataset are shown in table 4.2, along with results
from four previous papers. The table is structured in the same way as table 4.1.
Each figure in our results is taken from only one run because we did not have time
for more experiments. We have the same hyperparameters as Hung et al., apart from
the number of training iterations, which we increased from 20k to 40k. We note that
French et al. have a baseline significantly lower than all others [15]. This is partly
because they use a network pretrained on ImageNet [75], rather than on MSCOCO
[76], like we are, and MSCOCO is more similar to Pascal VOC than ImageNet is.
This means that they have a lot higher potential performance gain, which we believe
is a big part of the reason why they obtain such high Deltas. Other differences in
experimental setups relative to the other works in table 4.2 include the use of Adam
optimizer instead of SGD in the case of French et al., and Feng et al. and Mittal et
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Image Ground truth Baseline SSL

Figure 4.2: Predictions made on three Cityscapes frames using a baseline model
trained on 1/8 labeled data and a semi-supervised model trained on the same 1/8
labeled data as well as unlabeled data.

al. use a batch size of 4 and 8 respectively instead of 10.

4.4 Results for unsupervised domain adaptation

Tables 4.3 and 4.4 show the results from using our method to train models on the
GTA5 and SYNTHIA datasets as source domains and the Cityscapes dataset as
the target domain. In the same tables the results from multiple other papers on
unsupervised domain adaptation are also shown. Tsai et al. have almost the same
baseline hyperparameters as us [67], with the differences being that we do not employ
early stopping and that we crop the images to limit memory usage.

The columns in the tables correspond to the different classes. For all works, we
have included their results for DeepLabv2 with ResNet101 backbone. The results
are also presented with a baseline model only trained on the source domain, but
evaluated on the target domain, where each block of rows share baseline. Our results
are presented as the mean of three independent tries. All numbers are intersection
over union scores.

We note that we achieve the highest overall performance as well as the highest
for several individual classes. As can be observed both in tables 4.3 and 4.4 and
figure 4.3, the adapted models from GTAS perform better than those adapted from
SYNTHIA. In figure 4.3 we also observe that the adapted models have significantly
less artifacts present, and in contrast to figure 4.2, the segmentations follow the
labeling convention of GTA5 and SYNTHIA where for example the bicycles are
not fully filled in unlike in the ground truth for Cityscapes. This difference in
ground truth segmentation maps among other factors will reduce the mloU score.
Specifically for SYNTHIA, 3 classes are completely absent, but are not ignored in

2Reported by [25]
3Same Deeplabv2 network but with Image-Net pretraining instead of MSCOCO.
4Results for 100 (1/106) samples.
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GTA5 GTA5-Adapted SYNTHIA SYNTHIA-Adapted

Figure 4.3: Predictions made on the same three Cityscapes frames as in Figure
4.2, using baseline models trained on the GTA5 and SYNTHIA data together with
models trained with unsupervised domain adaptation. All of these models have only
been trained with ground truth semantic maps for synthetic images.

the performance metric in the calculation of the union, further damaging the score.

Though the hyperparameters are different, a rough comparison can be made
with the results in semi-supervised learning, table 4.1. Looking at the results for
Cityscapes as target domain and GTAH as source domain, table 4.3, unsupervised
domain adaptation is almost on par with using 744 labeled samples in a supervised
learning setting (or 100 semi-supervised). As the process of labeling for Cityscapes
reportedly took 1.5 hours per image [2], using our unsupervised domain adaptation
solution would mean a significant cost reduction.

Figure 4.3 shows qualitative results for models trained on only the source
domains compared to unsupervised domain adaptation models. Predictions are
shown for the same images as in Figure 4.2. There are quite clearly less artifacts
in the predictions made by the adapted models, with the models trained on GTA5
data performing better.
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Table 4.2: Results from applying our method on semi-supervised on the Pascal
VOC dataset. The columns correspond to different amounts of labeled samples.
Our results are compared to four previous articles solving the same task. For each
data amount and article, including ours, a supervised baseline is presented along
with the result, as well as the difference between the two. All numbers are mean
intersection over union. Our results are from a single run, as we did not have time
to run more experiments than that.

Labeled samples  1/100  1/50  1/20  1/8  1/4 Full (10582)
Hung et al.[24]

Baseline - 53.2%2%  58.7%* 66.0%  68.3% 73.6%
SSL - 57.2%2%  64.7%* 69.5%  T72.1% -

Delta - 4.0 6.0 3.5 3.8 -
Mittal et al.[25]

Baseline - 53.2%  58.7% 66.0% - 73.6%
SSL - 63.3% 67.2% 71.4% - 75.6%
Delta - 10.1 8.5 5.4 - 2.0
French et al.[15]?

Baseline 33.09% 43.15%  52.05% 60.56% - 72.59%
SSL 53.79% 64.81%  66.48% 67.60% - -

Delta 20.70 21.66 14.48 7.04 - -

Feng et al.[62]

Baseline 45.7%%  55.4% 62.2%  66.2%  68.7% 73.5%
SSL 61.6%" 65.5% 69.3% 70.7% 71.8% -

Delta 15.9 10.1 7.1 4.5 3.1 -

Ours

Baseline 42.47%  55.69%  61.36% 67.14% 70.20%  74.13%
SSL 54.18% 66.15% 67.77% 71.00% 72.45% -

Delta 11.71 10.46 6.41 3.86 2.25 -
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Table 4.3: Results from applying our method on unsupervised domain adaptation
on the GTA5 dataset as the source domain and the Cityscapes dataset as the target
domain. The columns correspond to the different classes. Our results are compared
to previous articles solving the same task with the same network. For each work,
including ours, their baseline only trained on the source domain is presented along
with the result. All numbers are mean intersection over union. Our results are the
average from three runs.

Method Road SW  Build Wall Fence Pole TL TS Veg Terrain ~ Sky Person  Rider Car  Truck Bus  Train MC  Bike | mloU
Source 75.8 16.8 77.2 125 21.0 25.5 30.1  20.1 81.3 24.6 70.3 53.8 264 499 172 259 6.5 253 36.0 |36.6
AdaptSegNet [67] | 86.5 36.0 79.9 234 233 23.9 352 14.8 83.4 33.3 75.6 58.5 276 737 325 354 3.9 30.1 281 | 424
SIBAN [46] 88.5 354 T79.5 26.3  24.3 28.5 325 183 81.2 40.0 76.5 58.1 258 826 303 344 34 216 215 | 426
CLAN [68] 87.0 271 79.6 273 233 28.3 35.5 242 83.6 274 74.2 58.6 280 762 33.1 36.7 6.7 319 314 |432
APODA [69] 85.6 328 T79.0 29.5 255 26.8 346 199 83.7 40.6 779 59.2 28.3 846 346 492 8.0 326  39.6 |45.9
PatchAlign [48] 92.3 519 821 29.2 251 24.5 33.8  33.0 82.4 32.8 82.2 58.6 272 843 334 46.3 2.2 29.5 323 |46.5
AdvEnt [70] 89.4 331 810 26.6  26.8 27.2 33.5 247 83.9 36.7 78.8 58.7 30.5 848 385 445 1.7 316 324 | 455
Source - - - - - - - - - - - - - - - - - - - 29.2
FCAN [71] - - - - - - - - - - - - - - - - - - 46.6
Source 713 192 69.1 18.4  10.0 35.7 273 6.8 79.6 24.8 72.1 57.6 195 555 155 151 117 211 120 |33.8
CBST [50] 91.8 535 80.5 32.7 210 34.0 289 204 83.9 34.2 80.9 53.1 24.0 827 303 359 16.0 259 428 |459
MRKLD [51] 91.0 55.4 80.0 33.7 214 37.3 329 245 85.0 34.1 80.8 57.7 246 841 278 30.1  26.9 260 423 |47.1
BDL [72] 91.0 447 84.2 346 276 30.2 36.0  36.0 85.0 43.6 83.0 58.6 316 833 353 49.7 3.3 28.8  35.6 | 485
CADASS [73] 91.3  46.0 845 344 29.7 32.6 35.8  36.4 84.5 43.2 83.0 60.0 322 832 35.0 46.7 0.0 33.7 422 |49.2
Source 51.1 183 75.8 18.8  16.8 34.7 36.3  27.2 80.0 23.3 64.9 59.2 193 746  26.7 138 0.1 324 340 | 372
MRNet [74] 89.1 239 822 195  20.1 33.5 422 39.1 85.3 33.7 76.4 60.2 33.7  86.0 36.1 433 59 228 308 | 455
R-MRNet [52] 904 312 851 36.9 256 37.5 48.8 485 85.3 34.8 81.1 64.4 36.8 86.3 349 52.2 1.7 29.0 44.6 | 50.3
Source: 63.31 15.65 59.39 856 15.17 1831 26.94 15.00 80.46 15.25 7297  51.04 17.67 59.68 28.19 33.07 3.53 2321 16.73 | 32.85
Ours: 89.90 39.66 87.87 30.71 39.52 38.52 46.43 52.79 87.98 43.96 88.76 67.20 3578 8445 45.73 50.19 0.00 27.25 33.96 | 52.14

Table 4.4: Results from applying our method on unsupervised domain adaptation
on the SYNTHIA dataset as the source domain and the Cityscapes dataset as the
target domain. The columns correspond to the different classes. Our results are
compared to previous articles solving the same task with the same network. For each
work, including ours, their baseline only trained on the source domain is presented
along with the result. All numbers are mean intersection over union. Our results
are the average from three runs. Some earlier works only present their results for
13 of the 16 classes, so for a fair comparison we include results for this as well.

Method Road SW  Build Wall¥ Fence* Pole* TL TS Veg Sky Person Rider Car Bus MC Bike | mIoU* | mloU
Source 55.6 238 746 - - - 6.1 12.1 74.8 79.0 55.3 19.1 39.6 233 137 25.0 | 38.6 -
AdaptSegNet [67] | 84.3 427 775 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 322 189 32.3 | 46.7 -
SIBAN [46] 825 240 794 - - - 16.5 12.7 79.2 82.8 58.3 18.0 79.3 253 176 25.9 |46.3 -
CLAN [68] 81.3 370 80.1 - - - 16.1  13.7 78.2 81.5 53.4 21.2 73.0 329 226 30.7 | 47.8 -
APODA [69] 86.4 413 79.3 - - - 226 173 80.3 81.6 56.9 21.0 84.1 49.1 246 45.7 |53.1 -
PatchAlign [48] 824 38.0 786 87 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 714 326 193 31.7 | 46.5 40.0
AdvEnt [70] 85.6 42.2 79.7 87 0.4 259 54 8.1 80.4 84.1 57.9 23.8 73.3 364 142 33.0 |48.0 41.2
Source 643 213 731 24 1.1 314 7.0 27.7 63.1 67.6 42.2 19.9 73.1 153 10.5 38.9 |40.3 34.9
CBST [50] 68.0 299 763 10.8 1.4 339 228 295 77.6 78.3 60.6 28.3 81.6 235 188 39.8 | 48.9 42.6
MRKLD [51] 67.7 322 739 10.7 1.6 37.4 222 312 80.8 80.5 60.8 29.1 82.8 250 194 45.3 | 50.1 43.8
CADASS [73] 825 42.2 813 - - - 183 159 80.6 83.5 61.4 33.2 729 393 26.6 43.9 |52.4 -
Source 44.0 19.3 709 8.7 0.8 28.2 16.1 16.7 79.8 81.4 57.8 19.2 46.9 17.2 12.0 43.8 | 404 35.2
MRNet [74] 82.0 36,5 804 4.2 0.4 33.7 180 134 81.1 80.8 61.3 21.7 84.4 324 148 45.7 |50.2 43.2
R-MRNet [52] 87.6 419 83.1 14.7 1.7 36.2 31.3 199 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 | 54.9 47.9
Source: 36.30 14.64 68.78 9.17 0.20 2439 559  9.05 68.96 79.38 52.45 11.34  49.77 9.53  11.03  20.66 | 33.65 29.45
Ours: 80.56 25.12 81.90 21.46 2.85 37.20 22.67 23.99 83.69 90.77 67.61 38.33 8292 3890 28.49 47.58 | 54.81 48.34
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Discussion

In this chapter, we discuss the results presented in the previous chapter. We do
this with the help of an ablation study, in which we have tried our method with
different settings than those described in section 3.2. We also go into greater depth
discussing model output confidence and spatial consistency, both relevant aspects of
our solution. Lastly, we also present suggestions for future research related to our
work.

5.1 Discussion of results

5.1.1 Discussion of results for semi-supervised learning

Our results for semi-supervised learning sets new state-of-the-art results on the
Cityscapes dataset, table 4.1. We note that this is both in terms of performance
relative to the supervised baseline, as well in absolute terms for all but one data
amount, despite the better baseline of some previous research.

For the Pascal VOC dataset we achieve better results than existing research
for two data amounts, meaning that our method is competitive with the state of the
art, as can be seen in table 4.2. The results are, however, not quite as strong as they
are for Cityscapes. We attribute this mostly to two factors. Firstly, the variability
of ClassMasks will be much smaller for the Pascal VOC images, since each image
contains very few classes, often only the background class and one object. This
means that the masks will be very similar for each image between training epochs.
However, more important is that since there are so few classes it is not at all certain
that approximately half of the pixels are transferred in the mixing, as is the case
for Cityscapes. Instead, it is often the case that almost all pixels are transferred in
the case where one object covers most of the image, or that almost no pixels are
transferred in the case where the object is very small. This will lead to the strongly
augmented image not being much different from the weakly augmented image, which
the pseudo-label is based on, breaking the principle of augmentation anchoring.

Secondly, we believe that one reason for our method performing well on the
Cityscapes dataset is due to images being quite similar within the dataset. This can
be exemplified by spatial consistency, which is discussed further in section 5.1.3.

In our ablation study for semi-supervised learning, section 5.2, we find that
additional improvements to the results can be obtained by cropping images, training
for more iterations, and using additional augmentations. Since we did not include
these in our main results, it is clear that the reported performance increase relative
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to previous research comes from our new mixed sample data augmentation strategy
ClassMix paired with pseudo-labeling. It also means that we could have obtained
even stronger results, had we further optimized the algorithm.

5.1.2 Discussion of results for unsupervised domain adap-
tation

Our unsupervised domain adaptation solution sets new state-of-the-art results in
terms of mean intersection over union for both GTAS5 to Cityscapes and SYNTHIA
to Cityscapes, Tables 4.3 and 4.4. We note that for some classes our method is
consistently performing worse than previous methods, though for most classes it is
better. Among all comparisons only the methods CBST [50] and MRKLD [51] and
their corresponding baseline (coming from the same authors), consistently predicted
the "train” class. For these results, the training time was kept longer than for SSL,
which is in line with previous work [67]. We note that our baseline (the same network
only trained on the source domain without adaptation) performs worse than in most
other research, making our improvement from the baseline even larger.

Some earlier reported state-of-the-art results in domain adaptation employ
early stopping based on the validation set of Cityscapes, while simultaneously using
it as test set. This is in our opinion bad practice, as noted in section 4.1.2, which
is why we do not use it. When training, we did, however, evaluate our models
regularly, even though these results were never used for model selection. Therefore
we can, for reference, report that for GTAb5 to Cityscapes we would have achieved
an (average over 3 runs) mloU of 53.84% instead of 52.14% had early stopping been
used, and for SYNTHIA 49.10% instead of 48.34%. The baseline from GTA5 would
go from 32.85% to 35.68%, and for SYNTHIA from 29.45% to 32.85%. The reason
for this considerable increase in performance from early stopping is that performance
varies a lot over the course of training, rather than that the model was overfitting
the training data. Despite us not using early stopping we achieve the best overall
performance compared to all other methods known to us. It is also worth noting
that several works have altered the baselines considerably relative to Tsai et al.; and
tuned the hyperparameters based on the testing data. This was also something we
wanted to avoid, as there is otherwise a risk of overfitting the test data. We have
thus tried to keep hyperparameters in line with the original authors.

It is also interesting to note that where a lot of recent solutions have focused on
offline self-training with multiple rounds of re-training, adding complicated modules
for handling uncertainty and class-balanced sampling, our solution is by comparison
much simpler and more general; we simply load batches of labeled synthetic data
in parallel with unlabeled data in the target domain, and for each iteration process
them together with ClassMix. This simplicity makes our state-of-the-art results
particularly notable.

5.1.3 Spatial consistency

We hypothesise that mask-based mixed sample data augmentations, like the ones
we have investigated in this thesis, owe a part of their success in urban scene seg-
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Figure 5.1: Spatial distribution of all classes in the Cityscapes training dataset.
Dark pixels correspond to more frequent appearance. It is clear that most, if not
all, classes are limited to appear in only a specific part of the images.

mentation to the spatial consistency of images. By this we mean that objects of a
certain class are usually found in the same place in different images, road is always
down and sky is always up and so on. This has as an effect that when pasting a
part of one image over to another image, it is likely that the formed image is not
too far from the original data distribution. This is likely true for all mixed sample
data augmentations, but especially so for ClassMix because single objects are often
pasted over, meaning that the context of the background image is very important
to the realism of the resulting image.

Figure 5.1 shows the spatial distribution of classes in the Cityscapes dataset,
which is what one can expect. It can be compared to the distributions in the GTA5
and SYNTHIA datasets shown in figure 5.2 and 5.3 respectively. It is easy to see
that the spatial distributions of Cityscapes and GTA5 are very similar, whereas
SYNTHIA differs more. This is not unexpected, as both Cityscapes and GTA5
images are first person views from a car, while SYNTHIA images have a variety of
angles including bird’s eye views which naturally have a different spatial distribution.
Part of the reason why the results are higher for training using GTA5 data as
opposed to SYNTHIA data is therefore likely the higher spatial consistency between
Cityscapes and GTAB. For example, models trained using SYNTHIA struggle with
discerning sidewalk from road, as can be seen in figure 4.3 and table 4.4. For
example, in figure 4.3 the adapted SYNTHIA model mistakes a large piece of road
for sidewalk for one example image, and completely misses a sidewalk in another.
This could be because road and sidewalk can be very similar in texture, and whether
it is one or the other has to be inferred from the surroundings. Since the spatial
distribution of SYNTHIA deviates from Cityscapes, ClassMix will often mix road
or sidewalk independently to Cityscapes causing its semantic meaning to change.

The spatial distributions can be compared to figure 3.9 showing the relative
frequency of occurrence of classes. For example, as can be seen in that figure, there
are very few bicycles in the GTA5 dataset, which can also be seen in the spatial
distribution as the bicycle distribution is almost not visible.

The spatial distribution of the Pascal VOC dataset is not nearly as consistent
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Figure 5.2: Spatial distribution of all classes in the GTA5 dataset. The classes are
mostly confined to specific regions of the images, although not quite as much so as
for the Cityscapes data.
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Figure 5.3: Spatial distribution of all classes in the SYNTHIA dataset. Dark
pixels correspond to more frequent appearance. The classes Terrain, Truck and
Train are not present in the SYNTHIA dataset, and their corresponding spatial
distributions are therefore empty, but they are included here for easier comparison
to Cityscapes and GTAS. The classes are not as confined to specific regions here as
in the Cityscapes and GTAb datasets.
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Figure 5.4: Spatial distribution of all classes in the Pascal VOC training dataset.
Dark pixels correspond to more frequent appearance. All classes are very homoge-
neously spread out spatially.

as for the Cityscapes dataset. Figure 5.4 clearly shows that the classes are almost
homogeneously spread out. This means that when using ClassMix it is not likely
that pasted objects will end up in reasonable contexts, which was one of the original
motivations for ClassMix as a method. Therefore, we believe that the mixed images
are further from the real data distribution for Pascal VOC than for Cityscapes.

5.2 Ablation study

Here, we present ablation studies for SSL and UDA, meaning that we investigate
our methods further to find what contribution the different aspects of the algorithm
give to the results. The studies are performed such that for each setting that is
tried, only that aspect of the algorithm changes, the rest is identical to our default
algorithm described in section 3.2. All results are mean values from three runs. For
SSL we use the Cityscapes dataset, and for UDA we use the GTA5 and Cityscapes
datasets.

5.2.1 Ablation for semi-supervised learning

Apart from the supervised baseline and our default SSL solution, 11 different settings
have been tried, results are shown in table 5.1. We have tried two additional mixing
algorithms, CutMix [14] and CowMix [15]. The unsupervised loss weighting has
been experimented with, trying a sigmoid ramp up and pixel-wise threshold, as well
as keeping the weight constant, see section 2.5.4. We have tried using squared error
as our unsupervised loss function L,, instead of cross-entropy. Pseudo-labels have
been replaced with using the unprocessed output distributions as targets. We have
tried applying random cropping to images. The extra augmentations color jitter
and Gaussian blurring have been applied in the strong augmentation scheme, and
we tried training models for 80k iterations instead of 40k. A detailed analysis of the
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Table 5.1: Ablation study for SSL on the Cityscapes dataset. Apart from the SL
baseline and our default SSL solution, we try two different mixed sample data aug-
mentations, three different weight functions for the unsupervised loss, sum of squared
errors as unsupervised loss function, not using pseudo-labels, random cropping of
images, applying extra augmentations for the unsupervised images and training for
80k iterations instead of 40k.

Settings mloU

Baseline 54.84%
Default SSL 61.35%
CowMix 60.37%
CutMix 59.12%
Sigmoid ramp up 60.58%
Pixelwise threshold 58.61%
Constant unsupervised weight 60.58%
Squared error loss 58.74%
No Pseudolabel 60.15%
Random crop Baseline 56.42%
Random crop 62.16%
Extra augmentations 61.85%
80k iterations 62.92%

ablation results now follows, all results are for 1/8 (372) of the labeled samples and
are averaged over three independent runs.

As is evident from table 5.1, ClassMix is the best performing mixed sample
data augmentation, followed by CowMix and lastly CutMix, with approximately
1% gaps. The reason for CutMix performing worst is believed to be because of the
limitations to its variability, as noted in section 2.5.2. It only has four degrees of
freedom, the two side lengths w and h and the two locational coordinates of the
rectangle, giving approximately w? - h? ~ 10" possible combinations for images of
size 512 x 1024. This may seem like a high number, but many mixes will be very
similar to each other. This can be put in contrast with CowMix and ClassMix which
both, in principle, have as much potential variability as the image size allows, each
pixel could vary independently of its neighbours, giving 2% ~ 1079 possible
combinations, which is obviously vastly bigger than that of CutMix. In practice the
variability is not only bounded by the image size however, meaning the number is
not quite this high. For CowMix, the Gaussian field is generated using a o that we
draw from a bounded distribution, meaning that the features are within a certain
range of sizes, and for ClassMix the pixels selected for the mask likely belong to the
same classes, meaning that they are clustered together. The variability is still much
higher for these two, however.

Since the boundaries of the mask are always straight and orthogonal to the
image in CutMix, it becomes much easier for the network to discriminate between
the two mixed images. This likely also hurts performance, as strong augmentations
have been shown to be beneficial for consistency regularization [13, 11, 15]. The fact
that ClassMix performs this much better than CutMix seems likely to be the main
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reason for our results being stronger than those of French et al., as they are using
CutMix [15].

That ClassMix performs better than CowMix, we attribute to the fact that
ClassMasks will, to a high degree, follow the boundaries of objects in the images.
Like we argued in section 3.1, this means that mixed images will look more like real
images, and will therefore provide a more useful training signal.

Another important parameter is the weight factor determining the relative size
between the supervised and unsupervised loss components as a function of training
time, with results varying a lot between different variants. Table 5.1 shows results
from using a sigmoid ramp up, pixel-wise threshold, and no loss weight function at
all, see section 2.5.4. All options use a scaling factor \,o = 1.

The sigmoid is defined in equation 2.13, with slope parameter ¢ = 5 as in [4, 5],
and k.. = 10000 iterations, this forms the curve shown in figure 2.9. This gives
an mloU score slightly below that of using a threshold-proportional weight. The
reason for this could be the general shape of the curve, the weight is lower for the
sigmoid in the beginning of training, and higher from approximately 10k iterations
and on, why this would be better or worse is not clear though. If this is indeed
why the results are better, it is quite likely that they could be improved further by
fine-tuning the weight, since the scaling of the weight has not been experimented
with at all, and the relatively small difference between the two curves in figure 2.9
gives such a large change in performance.

More likely is that the reason for the sigmoid’s inferior performance is that the
threshold-proportional weight is self-adjusting, meaning that each batch is weighted
differently depending on the network’s certainty on that particular batch. The vari-
ance between batches is relatively large, as can be seen in figure 2.9, with weight
values varying between approximately 0.7 and 0.9 after the first few thousand it-
erations. This means that hard samples give a smaller training signal than easier
samples, yielding something similar to curriculum learning, where a model first is
trained on easy samples and then on harder samples as training progresses, which
has proven useful in other tasks [77, 78]. If this is the prime reason for the bet-
ter performance of threshold-proportional weight relative to sigmoid ramp up, it is
possible that the results would improve further by basing the weights on individual
samples rather than on whole batches, like we are doing now, since the batch size
is only two for the Cityscapes experiments this would most likely not make a huge
difference, however.

The pixel-wise thresholded loss in table 5.1 is the one described in section 2.5.4.
It is performing significantly worse than the default threshold-proportional weight.
This is likely because many pixels, around 15% according to figure 2.9, are not used
for training at all. These pixels are mainly the ones close to class boundaries, as
argued in section 2.5.4. This fact is illustrated in figure 5.5, where the certainties
of a prediction are illustrated, as well as which pixels are above a threshold 7. We
can clearly see that the boundary pixels are indeed mainly the ones with certainties
below this threshold, meaning they are getting more or less entirely excluded from
the unsupervised loss. In addition to losing signal at boundaries, small or difficult
classes can be masked out as well, which could potentially be alleviated by setting
different thresholds depending on classes which would also lead to more balanced
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Figure 5.5: An illustration of the certainty of the output of the network. (a)
shows the image, and (b) shows the corresponding semantic map. In (c) the max
probabilities in the output for each pixel is shown. It is clear that the network gives
less certain predictions close to class boundaries. In (d) a binary mask is shown,
where white pixels are pixels where the certainty of the output of the network is
above a threshold 7 = 0.968 (as used in [6]), and black pixels are below the threshold.
We can see that if thresholding the loss like this, boundary pixels would to a high
degree be left out.

sampling [50], [62]. This was not further investigated in our thesis, however.

Having no ramp up of the unsupervised loss weight at all has also been inves-
tigated. We set the weight to be a constant one. The performance is here the same
as it is for using sigmoid ramp up, see table 5.1. The conclusion from this is that it
does not seem to matter much that the weight is incrementally increasing over the
course of training. The sigmoid ramp up is identical to the constant weight after
10k iterations, having a sigmoid that converges later might give a different result.

We have also tried changing our default cross-entropy unsupervised loss func-
tion with the sum of squared error from equation 2.1. This resulted in approximately
2.5% lower performance, as can be seen in table 5.1. This is expected, as cross en-
tropy, in general, is better suited for classification tasks than squared loss, which is
also why cross entropy is more widely used. It is worth noting that the unsuper-
vised weight \,o was kept at one, the same as when using cross-entropy loss, and no
additional tuning of it was made. This caused the unsupervised loss to be roughly
half as large when using squared error loss as when using cross-entropy, which might
have had a large impact on the results. It is also worth mentioning that French et
al. use squared error loss with an unsupervised weight of one [15].

Not using pseudo-labeling, but instead training the model against the softmax
output distribution from the weakly augmented unlabeled samples, produced results
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approximately one percent lower than when using pseudo-labels. This strengthens
the point made in section 2.5.3, that it is advantageous to minimize entropy in the
targets. We hypothesise that it is especially useful when using mixed sample data
augmentations in general, and ClassMix in particular. The reason for this is that the
context of classes changes, and hence the uncertainty between classes close to class
boundaries can become unwarranted, see section 3.1 for a more detailed description
of the issue.

For our experiments with semi-supervised learning on the Cityscapes dataset,
we did not do any random cropping. We did, however, try performing random crops
of 512 x 512 on the 512 x 1024 images, as described in section 3.4, for both a super-
vised baseline as well as for semi-supervised. This did not only speed up training
considerably but also improved upon the baseline as well as the SSL performance,
as can be seen in Table 5.1. The delta, however, is lower. The reason for the smaller
delta could be that the cropped images do not respect spatial consistency as well
as full images, see section 5.1.3, yielding a smaller relative improvement from the
mixing. The reason could also simply be that the stronger supervised baseline leaves
less room for improvement by semi-supervised learning.

It is worth noting that we also experimented with cropped images for other
amounts of labeled data amounts, and the performance of models relative to not
cropping the images decreased as the amount of labeled data increased. The reason
that we are not using cropped images in our main results is that we want to stay as
close as possible to the hyperparameters used by Hung et al. [24].

In our default SSL solution, we are not using any augmentations other than the
mixing of images using ClassMix. Here, we have tried adding Gaussian blurring and
Color jittering, as described in section 3.4. Both augmentations have a 50% chance
of being applied for each unsupervised batch and are applied after the mixing.

The performance is increased by 0.5% when extra augmentations are applied,
compared to the default solution, as can be seen in table 5.1. The reason for this
could stem from the fact that after mixing images the boundaries between the mixed
images will look more or less unnatural, even in the case of ClassMix where the
resulting images look more realistic. This is unwanted because more realistic images
lie closer to the underlying data distribution, which helps the training of models,
further discussed in section 3.1. However, when blurring and color jittering is applied
after the mix, the image will be less clear and boundaries will hence be less visible.

Another reason for this could just be the fact that the strong augmentation
scheme when using blurring and color jittering is stronger than when using just
mixing. This would provide the network with more varied data, which in general
is positive, so long as the variations are not too large. This part of the ablation
study was performed after the main results had been generated, if not, this would
have been included in the default solution, hopefully granting stronger results for
all amounts of labeled data. We point out however that these augmentations were
used in our experiments on unsupervised domain adaptation.

We also tried training models for more iterations, when training a model for
80k iterations instead of the default 40k iterations, all other things being identical,
performance climbs approximately 1.5%. This is expected, as overfitting has not
seemed to be an issue in our method, possibly because of the large variation in
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the mixed images. It is likely that training for an even longer time would yield
even stronger results, however with diminishing return. The reason that we did
not train for longer than 40k iterations for the main results is that most previous
works on semi-supervised semantic segmentation have trained for 40k iterations for
the Cityscapes dataset [24, 25, 15]. It would also have increased the requirement of
computational resources, something we could not meet. If we had been training for
longer it is likely that both our results and our Delta in table 4.1 would be larger,
further increasing the improvement from previous research. The fact that semi-
supervised learning benefits from longer training times is consistent with state-of-
the-art semi-supervised learning [13] as well as the related task of contrastive learning
[54]. This also makes sense for ClassMix as it artificially expands the dataset. It
is worth noting that larger batch sizes of the unlabeled data have also been shown
to be important, which makes sense as pseudo-labels are noisy, but their average
is likely more correct. We were, however, unable to try this due to computational-
and time constraints.

5.2.2 Ablation for unsupervised domain adaptation

For unsupervised domain adaptation, our ablation study concerns the effect of mix-
ing images across domains, InterMix, in contrast to using the same pipeline as for
SSL, where only the target domain is mixed, IntraMix. We also attempt using
distribution alignment for the case of IntraMix. The GTA5 dataset is the source
domain and the Cityscapes dataset is the target domain.

Table 5.2: Ablation study for unsupervised domain adaptation on the GTA5
dataset as source domain and Cityscapes as target domain. Apart from the model
only trained on the source domain and our default solution which we here call In-
terMix, we illustrate the effects of not mixing across domains (just within the target
domain) which we call IntraMix. We also include the results of deploying distribu-
tion alignment on IntraMix with the target class distribution based on the ground
truth labels of the target domain.

Method Road SW  Build Wall Fence Pole TL TS Veg  Terrain Sky  Person Rider Car  Truck Bus Train MC  Bike | mloU
Source: 63.31 15.65 59.39 856 1517 1831 26.94 15.00 80.46 15.25 72,97 51.04 17.67 59.68 28.19 33.07 3.53 23.21 16.73 | 32.85
InterMix: 89.90 39.66 87.87 30.71 39.52 38.52 46.43 52.79 87.98 4396  88.76 67.20 3578 84.45 4573 50.19 0.00 2725 33.96 | 52.14
IntraMix: 84.78 0.00 8281 0.34 0.05 10.56 47.96 58.86 86.87 8.08 90.99 56.09 0.00 86.92 4045 11.38 0.00 045 0.00 |35.08
Distribution Aligned IntraMix: | 85.05 28.88 86.79 16.92 36.89 30.38 49.73 53.91 85.61 32.20 92.78  66.61 23.53 84.00 34.81 27.70 0.20 16.65 60.08 | 48.04

As described in section 3.2 we mix images from the source and target domains,
what we call InterMix, rather than mixing images only from the target domain which
is what we do in our SSL solution. The reason that we mix in a different way here
is to avoid entropy collapse, section 2.5.3, where larger classes would otherwise
dominate the transfer, merging with smaller classes. We here present results mixing
only within the target domain, meaning the unsupervised pipeline is identical to
that in figure 3.3. We call this method IntraMix.

The results are shown in table 5.2, where the performance of IntraMix is seen
to be considerably reduced relative to InterMix, due to several classes not being
predicted at all. We hypothesise that the domain difference causes the network to
discriminate between labeled and unlabeled samples. Pseudo-labeling, section 2.5.3,
is a way to enforce entropy-minimization [18]. This is done indirectly in our case,
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since the gradient does not pass through the teacher network and the pseudo-labels
are generated on unperturbed samples and enforced on mixed samples. With that
said we hypothesise that since the network only sees pseudo-labels in the target-
domain it possibly learns to assign itself easy to predict pseudo-labels to minimize
its objective. The lower the entropy in the pseudo-label, the lower the loss, thus
instead of learning to adapt to the target domain by being consistent, the network
learns to adapt by collapsing the entropy in the pseudo-labels. The predictions in
the source-domain for IntraMix was observed to not collapse into low-entropy, giving
credence to the idea that the network learns to assign itself low-entropy pseudo-
labels in the target domain by discriminating between domains. This idea is also
strengthened by the fact that IntraMix is identical to our semi-supervised solution,
with the labeled data representing the source domain and the unlabeled data the
target domain (though with no domain difference), and in those experiments no
minimal entropy-collapse in the pseudo-labels was observed.

To test this hypothesis further, and make sure that the superior performance
of InterMix comes from the fact that entropy is injected into the pseudo-labels
rather than some other factor, we investigated whether similar results could be
achieved with IntraMix but with entropy forced into the labels in another way. We
accomplished this by assuming that we know the class distribution of the target
domain, and use it as the target distribution in distribution alignment, described in
section 2.5.6. In our implementation of distribution alignment, we use an exponential
moving average (with parameter o = 0.99) of the predictions (pseudo-labels) as the
current distribution. The target distribution is calculated prior to training using
the labels of the target domain. Since in a real scenario these labels do not exist,
the distribution would have to be estimated in some way for it to be a practical
solution. It is worth noting that basing the target distribution on the source domain
is often not a viable solution considering the differences in class distribution can vary
substantially, see figure 3.9. Here the ground-truth labels were used to calculate the
target distribution in order to showcase that the issues of IntraMix can be alleviated
by distribution alignment. We note that the performance of Distribution Aligned
IntraMix is similar to that of InterMix, showing that alternative ways of forcing
entropy into the pseudo-labels are possible.

5.3 Future work

We here give a few suggestions for future areas of research related to ours, that we
did not have the opportunity to pursue.

5.3.1 Improved mixing

For the ClassMix algorithm, a mask is generated by selecting half of the classes
belonging to one of the images. There are a lot of possible variations of this that
could be experimented with, such as combining more than two images, oversampling
more difficult classes to be pasted, mix correlated classes such as rider (distinct from
the person class in Cityscapes) together with their respective vehicles, or not to base
it on entire classes but on instances of classes instead. One thing that stands out is
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that no consideration is taken to the image pasted upon. This could be important
to do to produce more realistic images, as well as handling context in a better way.
For example, the difference between what is a sidewalk and what is a road in the
case of urban scene segmentation can often be impossible to tell in isolation based
purely on texture, but instead needs to be inferred from its surroundings.

Specifically for unsupervised domain adaptation, the mix happens across do-
mains, so an interesting direction could be to attempt style transfer from the source-
to the target domain prior to pasting.

5.3.2 Offline self-training

In our solution, mini-batches of labeled and unlabeled data are processed in parallel
during training. This is similar to many previous works in semi-supervised learning
(13,12, 24, 25, 15] and domain adaptation [67]. For us, the pseudo-labels are assigned
by the teacher network. A different way to do it is to use offline training; where
pseudo-labels are generated for the entire unlabeled dataset multiple times and the
network is retrained with these generated pseudo-labels included. This has been
done for both semi-supervised learning [62, 56] and domain adaptation [50, 51, 52].
The main advantage of this is that pseudo-labels can then use more sophisticated
sampling techniques. For example, as semantic segmentation tasks often have a large
class imbalance, there can be benefit found in oversampling less frequent classes.
For ClassMix this could also have the additional benefit of allowing selection of
which images to mix conditioned on the semantic maps predicted. Context could be
better respected if images with similar semantics are combined. As by the previous
example of road and sidewalk; images could be combined such that a sidewalk from
one image is pasted appropriately with respect to the road of the other image. A
simple heuristic could be that images where the predicted semantic maps are similar
should primarily be combined. This issue could be especially important to address
for other segmentation tasks not included in this thesis where semantic objects are
unable to move independently, no longer invariant to their backgrounds.

5.3.3 Supervised Learning

For this thesis, we limited ourselves to two applications; semi-supervised learning
and unsupervised domain adaptation. It would be interesting to investigate if ideas
from this thesis could lead to performance gains in a purely supervised setting as
well. Existing mixed sample data augmentation strategies were originally introduced
for supervised learning [14, 79]. Though, in our opinion, it seems as if they are
especially helpful for consistency based semi-supervised learning. The reasons for
this were outside the scope of this thesis. We also note that strategies similar to
ClassMix have been used to synthesize new data for supervised learning [59, 60, 61].

5.3.4 Active learning

Perturbing unlabeled images can be used in other settings than for enforcing con-
sistency, for example to determine what samples to label in a setting called active
learning [80]. As consistency regularization for semi-supervised learning forces the
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model to be invariant to perturbations, the images where the network fails to be-
come invariant could be those where labels are most efficient for learning. This
combination of active learning and semi-supervised learning has been explored in
prior research [81, 82]. It could therefore be an interesting research direction to in-
vestigate whether similar solutions can be adapted to semantic segmentation, and in
particular in combination with ClassMix, where inconsistent predictions of objects
can be interpreted as those not recognised in different contexts or occlusions.
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Conclusion

The need for data-efficient solutions is becoming increasingly important as the
amount of available data grows and computational resources improve. This is es-
pecially true for semantic segmentation, where labels are expensive to procure. In
this thesis, we have investigated semi-supervised learning and unsupervised domain
adaptation, two approaches to training machine learning models with fewer labeled
samples. We have found that using appropriate techniques, one can obtain results
much higher than if only using labeled samples. In particular, we have introduced
a novel mixed sample data augmentation, which we call ClassMix, that is based on
the semantic maps of the images it is mixing. It selects some of the classes present
in one image and transfers these to a second image, hence creating a mixed image
that takes semantic information into consideration, forming a more realistic-looking
sample than if mixing images with randomly generated masks. Another contribution
of ours is the combination of entropy minimization and consistency regularization
for semantic segmentation.

Using the ClassMix augmentation scheme, we achieve state-of-the-art results
for semi-supervised semantic segmentation. Our results are higher than those of
previous research with a margin of up to 3% for the Cityscapes dataset, and numbers
are competitive for the Pascal VOC 2012 dataset.

We also apply a version of the ClassMix augmentation on unsupervised domain
adaptation from the GTA5/SYNTHIA datasets to Cityscapes. Instead of mixing
two unlabeled samples based on the network’s predictions, we paste objects based
on the ground truth segmentation from source domain data on top of target domain
data, thereby injecting entropy into samples, as well as creating new, varied, samples.
For this task we obtain state-of-the-art results for both datasets, with an increase
from previous results with up to 2%.
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