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Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Active Safety (AS) is an important feature to protect drivers and passengers in vehi-
cles, however, the growing complexity of AS functions increases the CPU workload
of the AS processor. This thesis attempts to 1) identify the signals that cause more
CPU workload than others and 2) predict this CPU workload. In order to achieve
the purpose, regression models of CPU workload in real-time contexts are proposed.
Based on these models, different feature selection techniques are used to rank the
contributions of signals. As a result, given the sampled input signals to all the soft-
ware modules that are embedded running on the CPU, a model for predicting CPU
workload in a real-time context is proposed. Signals and the associated contribution
coefficients are listed using different feature selection methods and criteria. Volvo
Car Corporation will be able to trace back to the functions that generate signals
with high contribution coefficients according to the list of signals, and improve the
corresponding AS functions to decrease the CPU workload.

Keywords: real-time system, feature selection, linear regression, autonomous driv-
ing.
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1
Introduction

1.1 Background
Active Safety (AS) is an important system in the field of vehicular safety. It is
designed to activate protection measures in order to forestall accidents if possible
or at least mitigate the effects. Autonomous driving (AD) has been stimulated by
improvement of sensor technology and machine learning. National Highway Traffic
Safety Administration (NHTSA) in US defined 6 levels of driver assistance technol-
ogy advancements merging AS and AD [1].

Level 0. No Automation: Driver handles all driving tasks.
Level 1. Driver Assistance: Driver takes control of vehicle under limited driving

assist.
Level 2. Partial Automation: Some automated functions are included under

some certain circumstances, such as auto braking and steering, but the
driver needs to keep monitoring the environment.

Level 3. Conditional Automation: Based on the previous level, the driver do
not need to monitor the environment, but the driver should be ready to
control the vehicle all the time.

Level 4. High Automation: The vehicle is able to perform all the driving tasks
under some certain circumstances. The driver has options to control the
vehicle.

Level 5. Full Automation: The vehicle is able to perform all the driving tasks
under all circumstances. The driver has options to control the vehicle.

There is no clear boundary between AS and AD. Roughly, low levels of automation
are in the scope of AS and high levels of automation are associated with AD concept.
Starting from level 3, vehicles are able to monitor and detect driving environment,
which means more powerful sensors are going to be integrated into cars, which means
an increasing computational capacity is required.

1.2 ECU CPU load
Electronic Control Unit (ECU) is an embedded system for controlling electrical sys-
tems and vehicle behavior. Different ECUs perform different functions in a car.
Generally speaking, an ECU consists of CPU, RAM, ROM, I/O extender, A/D con-
verter, sensors, etc.

1



1. Introduction

In Volvo Car Corporation (VCC), AS is realized by several ECUs, which are re-
sponsible for different functions in a vehicle and drive actuators. AS functions like
collision warning with full auto brake, lane keeping assist, animal detection, etc, are
pre-programmed and running embedded on the ECU called Host Processor (HP),
connected to sensor systems and actuators. During driving, CPU processes sensor
data such as ultrasonic and radar data, and analyzes the data in real time to detect
traffic scenario and decide whether to activate protection measures or not. When
a dangerous situation is detected, AS will send command to electrical controller to
take actions, like applying brake and auto steering.

In the trend of AD, VCC promised in 2016 a zero fatality rate in its vehicle by
2020 [2]. Among many ECUs, the CPU in HP ECU is responsible for executing AS
functions in a real-time embedded system. As more and more functions associated
with AD are introduced to AS system, the CPU in HP that is responsible for AS
functions is facing growing pressures of computing load. The aim of this project is
to find which signals in ECU have most impact on CPU load and use those features
in predictive models.

The HP ECU is a real-time system, and in this section, the basics of real-time sys-
tems and CPU scheduling are introduced. From a hardware perspective, a task is
finished before a time limit, which is called deadline. We assume that the effect
of a sample on the CPU load is valid over the length of deadline corresponding to
the signal related task. Thus, in our model, the current CPU load is regarded as a
function of several past samples.

1.2.1 Tasks scheduling

The HP we are working on is a real-time system (RTS), which is based on Auto-
motive Open System Architecture (AUTOSAR). AUTOSAR provides standardized
software architecture for automotive ECU [3]. In a real-time system, generally speak-
ing, tasks are scheduled by the CPU according to their priorities. Figure 1.1 is an
example of scheduling tasks.

2
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Figure 1.1: An example of scheduling tasks on single-core RTS: 3 tasks are sched-
uled by the CPU, and they consume different amount of CPU time represented by
different color. For the CPU, the white block represents CPU is idle, otherwise the
CPU is running.

1.2.2 CPU load calculation on AUTOSAR

According to AUTOSAR official documents [4], the CPU load is calculated by a
averaging sliding window. The CPU usage is the average of CPU time over a period
of time (Tw) :

L =
∑
Tb
Tw

= 1−
∑
Ti

Tw

where L is the CPU load measured over a sliding window, ∑Tb is the total time
when the CPU is busy, ∑Ti is the total time when the CPU is idle, and Tw is the
size of time window. Figure 1.2 is an example of calculating CPU usage.

�������� ���� ���� ����

	�
 	�� 	��	�
 	��

	


Figure 1.2: For the given case, the CPU load is Tb1+Tb2+Tb3
Tw

When the window is moving, the current CPU load Lt at time t is the ratio of the
total busy time of CPU to the length of measuring window, so the CPU load is a
continuous curve as a function of time t, which agrees with the sampled CPU load
plotted in Figure 4.1. Figure 1.3 illustrates the way of measuring CPU load.
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Figure 1.3: CPU usage curve calculated by the sliding window. White blocks
indicate the length of CPU idle time, and yellow blocks indicate the CPU busy
time.

The CPU usage is directly dependent on the size of busy time of the CPU. The
models we are trying to build actually map the values of external and internal
signals to the required CPU busy time in one Tw.

1.2.3 Dynamic model assumption
The sampled data are the CPU usage and the input signals of the functions that
are executed by the CPU. Figure 1.4 illustrates how the data are sampled.

��

��

������

�	
�

��
�

�������	
��


��

����
��

��

��

��

��

……

Figure 1.4: The blue bar represents the 1400 sampled signals. CPU load is updated
by the sliding window with the length of Tw. Red arrows show the sampling time
with sampling interval (Ts). Green arrows show that CPU load curve is plotted by
calculating the average of CPU busy time over the past interval Tw.

Figure 1.5 illustrates the current CPU load only depends on the samples in the
past effect window (250 ms). We assume the effects of the previous signals on CPU
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load are not earlier than 250 ms, which means some of the samples inside the effect
window may have contributions to the current CPU load and some may not. Among
those samples, some are excluded by calculating their correlation with the current
CPU load.

����

����������	
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Figure 1.5: The CPU load calculated at time t+Tw (green arrow) may depend on
some of the sampled values of the 1400 signals at time t, t+Ts, t+2Ts, ..., t+nTs,
where Ts is the sampling interval.

Denote the values sampled at time t asX t and the CPU load sampled at time t+Tw
as Y t+Tw , the hypothesis model is:

Y t+Tw = X tβ0 +X t+Tsβ1 +X t+2Tsβ2 + ...+X t+nTsβn

Y (t+ Tw) = X(t)β0 +X(t+ Ts)β1 +X(t+ 2Ts)β2 + ...+X(t+ nTs)βn

Y (t+ Tw) =
n∑
i=0
X(t+ iTs)βi

where Ts is the sampling interval, X t+nTs is sampled signals right before the CPU
load (Y (t+ Tw)) is updated at time t+ Tw, Tw is the CPU calculation interval, and
β0,β1, ...,βn are the coefficients vectors associated with X t,X t+Ts, ...,XnTs. Each
sample, X(t+ iTs), and the associated coefficient βi has 1400 elements correspond-
ing to each signal in the dataset.

1.3 Context

1.3.1 Problem description
In this thesis, the database is a 475835-by-1400 matrix taken from test vehicles driven
in real traffic. There are 1400 types of signals in total and each signal has 475835
samples, corresponding to 198 minutes of driving. Based on this database, we want
to build mathematical models which are able to identify which input signals cause
more CPU load than others and predict CPU usage. The predictors in the models
are selected subset of 1400 kinds of signal including sensor signals like ultrasonic [5],

5



1. Introduction

radar [6], lidar [7] signal, etc and output signals of internal SWCs. The response
variable in the model is the CPU usage in percent of full load.

1.3.2 Proposed model
All the AS functions are running embedded on HP ECU, connected to sensor systems
and actuators [8], so the CPU usage is directly affected by what is executed in HP
and CPU usage in turn can be deduced from the internal signals in HP. In order
to explain the CPU usage, we need a mathematical model that should be able to
represent the relationship between CPU usage and internal signals. The actual
relationship can be extremely complicated: different values of internal signal might
trigger different functions that cause different CPU usage; CPU usage is very likely
a non-linear function of input signals. We want to know which signals cause more
CPU load than others in a interpretive way and predict CPU usage using signals, as
input features, contained in the HP ECU, so interpretability of the model that we
try to build to represent the relationship between CPU usage and internal signals is
the first priority. Therefore our fundamental model is:

y = β0 + β1x1 + β2x2 + β3x3 + ...+ βnxn + ε (1.1)

where y is the CPU usage we try to predict, x1, x0, ..., xn are input signals, β0, β1, ..., βn
are model coefficients corresponding to input signals, and ε is stochastic term. Based
on this linear regression model, polynomial regression model can be used to improve
the quality of fit:

y = β0 + β1x1 + β′1x
2
1 + β′2x2 + β2x

2
2 + ...+ βnxn + β′nx

2
n + ε (1.2)

As mentioned, the actual relationship between CPU usage and internal signals is
unknown and can be extremely complicated, so it is necessary to evaluate the quality
of the model before trusting its results.

1.3.3 Methodology context
In the field of statistics, statistical modeling, linear regression, can be used for rank-
ing the inputs by the extent of correlation between each input and the output. Many
statistical algorithms are available and well developed. For example, Hastie et al.
have summarized comprehensive statistical techniques [9] that can be used in this
thesis. The problem of selecting those of a set of inputs that are most significant
for the output is known as the feature selection problem and different input signals
are treated as different features in feature selection algorithms. One key aspect is to
avoid over-fitting to the training data [10]. The project described here aims to in-
vestigate several alternative models generated by different algorithms and compare
their performance.

Besides statistical methods, machine learning can also be used to build a regression
model. Especially, it is good at mapping deep non-linearity between input and
output, as discussed by Achim Zielesny [11]. Rogers et al introduced the ability of
machine learning to handle regression problems in Chapter 1 of [12], but there are
two drawbacks of machine learning methods:

6
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1. Although feature selection is exploited well in [13], [14] and [15], the algorithm
that directly selects features at the input layer is not well-studied. Inputs in
this topic are samples of 1400 kinds of signals.

2. Compared with linear models, machine learning methods are good at model-
ing non-linearity of complex systems [11], but the model trained by machine
learning algorithms can not quantitatively relate each input with output in
the manner of a linear regression.

Because of these two drawbacks, general machine learning algorithms based on neu-
ral network are not suitable for this practical problem. But recent studies on sparse
coding [16] and regularization [17] give us an inspiration that it is possible to over-
come the drawbacks and select only the inputs that are relevant to the output right
at the input layer: If it is a N -dimension input Neural network, we can weight the
input by a N dimensional array (weight array) before the first hidden layer, then we
add a Least Absolute Shrinkage and Selection Operator (LASSO) term [18] of the
weight array to the loss function and train the neural network to minimize the loss
to approximate to target value in the conventional way. As a result of training, ide-
ally, not only the output approximate to the target value, but also the weight array
becomes sparse because of the LASSO term. Each element of the weight array can
be regarded as the importance of the corresponding input, therefore an important
input is associated with an element that has a high value, and an element of zero
value means the corresponding input is irrelevant to the output.

So the future research focus is to come up a machine learning algorithm that achieves
building model and keeping interpretable. Because of the ability of selecting impor-
tant input, such algorithm not only is able to handle the problem at hand, but also
can be used in general feature selection problem, data compression, auto encoding
[19], etc.

1.3.4 Current status
Given the subset of the 1400 kinds of signal selected by previous work, a linear
prediction model exists [20], which ranks the most important signals that corre-
late strongly with CPU load and achieves 0.17 mean squared error (MSE, defined
in Equation 2.24) predicting CPU load. This model employs two methods: elas-
tic net and principal components regression (PCR) [13], and one evaluation factor:
mean squared error (MSE) that is used to estimate the accuracy of prediction model.

For elastic net method, 250 selected features resulted in an MSE of around 0.18
after data re-scaling. Elastic net regularization [21] is one kind of penalty terms in
regularization technique. Regularization can avoid over-fitting in linear and logistic
regression by introducing penalty term to the loss function. Detailed explanation of
regularization and elastic net can be found in [21]. For PCR method, 350 principal
components resulted in around 0.17 MSE; input feature quantification was left as
future work. PCR is a method for reducing data dimension by applying principal
components analysis (PCA) [22] to regression problem. More introduction about
PCR and partial least squares regression (PLSR) is presented in Section 2.

7



1. Introduction

Although the main purpose of the existing model is to capture the main contributors
to the CPU load in an interpretable way, there is room to increase complexity if
accuracy could also be improved, and such statistical modeling methods are worth
a comprehensive coverage so that we can draw more convincing conclusion of which
inputs cause more CPU load than others.

1.4 Goal
For the sake of efficient usage of CPU in realistic driving conditions, we want to
know which input signals are irrelevant to CPU usage and which signal cause more
CPU load than others. Under the assumption of that 250 ms window can cover the
effects of all the signals on the CPU load, the industry goals include:
Goal 1 Evaluate the effect of each signal on CPU load.
Goal 2 Based on the different feature selection algorithms and evaluation crite-

ria, building regression models to quantitatively predict CPU usage given
input signals.

Goal 3 Validate above results in hardware-in-the-loop (HIL [23]) virtual envi-
ronment.

Goal 4 The best mean squared error (MSE) of the existing models achieved is
0.17. The aimed MSE is below 0.15.

Linear model is under the assumption that CPU usage is a linear summation of
impact of signals that are executed in CPU. In practice, some signals are highly cor-
related with each other, so a high degree of multicollinearity (discussed in Section
2.1.4) exists in the dataset. As discussed in Section 2.1.4, we use variance inflation
factor (VIF) to measure the degree of multicollinearity of a feature. We care about
not only prediction accuracy, but also the impact of each feature on CPU usage, but
high degree of multicollinearity prevent us from getting accurate estimation of coeffi-
cients of every signals, so we need to find a method to overcome the multicollinearity
problem.

1.5 Chapter overview
After literature study, multiple linear regression, Ordinary least squares (OLS), mul-
ticollinearity problem, criteria for feature selection, Principal component regression
(PCR), Partial least squares regression (PLSR) and Ridge regression (RR) are dis-
cussed in Chapter 2. Criteria that can be used for feature selection are derived
in Section 2.1.5. Chapter 3 mainly proposes backward elimination and forward se-
lection strategies for feature selection on principal components. By using different
feature selection methods and criteria, MSEs and contribution coefficients are shown
in Chapter 4. To sum up, Chapter 5 mainly summarizes 3 weaknesses of the model,
and forecasts future work.

8



2
Theory

In this chapter, theories behind feature selection methods and regression algorithms
will be discussed. Ordinary least squares (OLS) is the most popular method for
building regression models and the underlying method for feature selection algo-
rithms. OLS will be discussed first. Shrinkage methods[9], PCR[24] and PLSR[25]
will also be explained.

2.1 Ordinary least squares
Maximum likelihood estimation (MLE) is a method for estimating coefficients in
statistical models. Between 1912 and 1922, MLE was popularized by Ronald Fisher
and became fundamental basis of OLS [26]. Below, the connection between MLE
and OLS is discussed first. Before explaining multicollinearity, some properties of
OLS will be derived. Some criteria to evaluate regression model is mentioned in
Section 2.1.5.

2.1.1 Model assumptions and MLE
The proposed model of Equation 1.1 can be rewritten in matrix format:


Y1
Y2
...
Yn

 =


1 X11 X21 ... Xp1
1 X12 X22 ... Xp2
1 X13 X23 ... Xp3
... ... ... ... ...
1 X1n X2n ... Xpn



β0
β1
...
βp

+


ε0
ε1
...
εp



Y = β0 + β1X
1 + β2X

2 + β3X
3 + ...+ βnX

n + ε

= Xβ + ε (2.1)
=
[
1 D

]
β + ε (2.2)

s.t. X ∈ Rn×(p+1), β ∈ Rp+1, ε ∈ Rp+1

where D and Y are data samples matrices, β is the model coefficients column
vector that we are going to estimate and ε is a stochastic term. We assume ε is
independent and identically distributed (IID) and has Gaussian distribution with
zero mean. Therefore Y follows Gaussian distribution with mean of Xβ:

ε ∼ N (0, σ2)

9



2. Theory

⇒ P (ε) = 1
σ
√

2π
e−(ε−0)2/2σ2

Y ∼ N (Xβ, σ2) .

⇒ P (Y ) = 1
σ
√

2π
e−(Y−Xβ)2/2σ2

where P (ε) and P (Y ) are probability distribution function (PDF) of ε and Y re-
spectively, and σ is the standard deviation of distribution.

Based on the model and assumption, we can deduce the β that maximizes the
probability that the model reproduces sampled data that we have. Let P (Yn|β)
represents the probability that the model with β as coefficients gives rise to Yn and
joint probability density function P (Y |β) represents the probability that the model
with β as coefficients reproduces our sample matrix Y , where Y =

[
Y1 Y2 ... Yn

]
.

Because Y is IID, P (Y |β) is the product of P (Yn|β):

l(β) = P (Y |β) =
n∏
i=1

P (Yi|β) (2.3)

l(β) is the likelihood function [27] and we are going to find the β̂ that maximizes
l(β):

β̂ = argmax
β

l(β) = argmax
β

n∏
i=1

P (Yi|β)

= argmax
β

( 1
σ
√

2π
)2e−

1
2σ2
∑n

i=1(Yi−Xiβ)2 (2.4)

For equation 2.4, it is obvious that l(β) reach its maximum value, ( 1
σ
√

2π )2, if there

is such a β̂ =
[
β̂0, β̂1, ..., β̂p

]T
that ∑n

i=1(Yi−Xiβ̂)2 is zero, so β̂ can be deduced by
solving the following optimization problem,

β̂ = argmin
β

n∑
i=1

(Yi −Xiβ)2, (2.5)

which is exactly the key idea of ordinary least squares (OLS).

2.1.2 Formula for estimating model coefficients
Ordinary least squares (OLS) is a method for solving linear regression problem
based on maximum likelihood estimation and the assumption of stochastic term is
Gaussian distribution. In this section, formula for estimating model coefficients,β
will be derived. First we define the estimated response value Ŷ as

Ŷ =
[
Ŷ1, Ŷ2, ..., Ŷn

]T
(2.6)

10
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where Ŷn is the predicted value based on the n-th observed data Xn

Ŷn = β̂0 +X1
nβ̂1 +X2

nβ̂2 +X3
nβ̂3 + ...+Xp

nβ̂p

= Xnβ̂ (2.7)

where β̂ is estimated model coefficients vector, Xj is a column vector representing
the j-th predictor, and X =

[
 X1 X2 ... Xp

]
. The error of the trained model

is defined as:

ε = Y − Ŷ (2.8)

OLS calculates the coefficients by minimizing the sum of the squares of the error
terms. The sum of squares of error term is called loss function (L) and it is written
as:

L =
n∑
i=1

(Yi − Ŷi)2 =
n∑
i=1

ε2
i (2.9)

= (Y −Xβ̂T )(Y −Xβ̂)

= Y TY + β̂TXTXβ̂ − 2β̂TXTY

where n is the number of data samples, yi is the i-th actual value of response variable
and ŷi is the i-th estimated value of response variable. So OLS is actually a process
of solving a minimization problem:

β̂0, β̂1, ...β̂n = argmin
β0,β1,...βn

L = argmin
β0,β1,...βn

n∑
i=1

(Yi − Ŷi)2 = argmin
β0,β1,...βn

n∑
i=1

ε2
i (2.10)

This minimization problem can be solved by setting the partial derivative of L with
respect to β̂ to zero:

∂L

∂β̂
= 2XTXβ̂ − 2XTY = 0

⇒XTXβ̂ = XTY (2.11)
⇒(XTX)−XTXβ̂ = (XTX)−XTY

⇒β̂ = (XTX)−1XTY (2.12)

Equation 2.12 can be used to estimate model coefficients.

Table 2.1 summarizes the notations and its corresponding meanings

2.1.3 Properties of OLS
In order to explain the effect of multicollinearity of dataset on coefficients, in this
section, some properties of OLS will be discussed and corresponding proof will be
presented.

11
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Table 2.1: Symbols meanings

i index of observed data points, i ∈ Z+

j index of observed predictor variables, j ∈ N
p number of observed predictor variables. p is 1400 for the problem at hand
n number of observed data points. n is 475878 for the problem at hand
Y observed response variable in matrix; sampled CPU load for this problem
X observed predictor matrix
Xj the j-th predictor variable values in a column vector with length of n
Xi the i-th observed data point in a row vector with length of p+1
Xj
i the the value of j-th predictor in i-th observed data point Xi

Ŷi the i-th predicted value based on the i-th observed data point Xi

Ŷ predicted value in matrix, Ŷ =
[
Ŷ1, Ŷ2, ..., Ŷn

]T
βj the coefficient corresponding to the j-th predictor Xj

β0 intercept of regression model
β̂j estimator of βj
β̂0 estimator of β0

β β =
[
β0 β1 ... βj

]T
; coefficients column vector with lengtn of p+ 1

β̂ estimator of β
ε stochastic term of regression model
ε ε = Y − Ŷ error of trained model

Equation 2.12 calculates model coefficients by setting partial derivative of Loss with
respect to βn to zero. Particularly,

∂Loss

∂β0
=

n∑
i=1

2(Yi − Ŷi)(−1) = 0⇒
n∑
i=1

εi = 0 (2.13)

shows that the sum of error term εi is zero and εi is also called residual representing
the information that can not be explained by our model.

Equation 2.13 gives rise to property 1: The sum and mean of residuals is zero.
Rewrite Equation 2.11 and replace Y by Xβ + ε:

XTXβ̂ = X
T
Y

⇒XTXβ̂ = X
T (Xβ̂ + ε)

⇒XTXβ̂ = X
T
Xβ̂ +XT

ε

⇒XTε = 0 (2.14)

⇒
[
 X1 X2 ... Xp

]T
ε = 0

Equation 2.14 gives us property 2: Each predictor Xj is purely uncorrelated with

12
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residual (cov(Xj, ε) = 0, j ∈ Z+).

cov(Xp
i , ε) = 1

n

n∑
i=1

(Xp
i −Xp)(εi − ε)

= 1
n

(
n∑
i=1

Xp
i εi −Xp

n∑
i=1

εi − ε
n∑
i=1

Xp
i +Xpε)

Equation 2.13 shows that the ∑n
i=1 εi = 0 and therefore ε = 0,

cov(Xp
i , ε) = 1

n

n∑
i=1

Xp
i εi = (Xp)T ε = 0 (2.15)

which mean each predictor Xp is purely uncorrelated with the residuals. Predicted
values of response variable Ŷ is also purely uncorrelated with residuals:

cov(Ŷ , ε) = 1
n

n∑
i=1

(Ŷi − Ŷi)(εi − ε)

= 1
n

(
n∑
i=1

Ŷiεi − Ŷi
n∑
i=1

εi − ε
n∑
i=1

Ŷi + Ŷiε)

= 1
n

n∑
i=1

Ŷiεi = Ŷ Tε

= (Xβ̂)Tε = β̂TXTε (2.16)

Equation 2.14 shows that XTε = 0, so cov(Ŷ , ε) = 0, which gives us Property 3:
Predicted value Ŷ is purely uncorrelated with residuals.

Recall that Equation 2.13 shows that the ∑n
i=1 εi = 0 and definition (Equation 2.8)

shows ε = Y −Xβ̂, calculate expectation value of two sides:

ε = Y −
[
X

0
X

1
X

2
... X

p
]
β̂ = 0

⇒Y =
[
 X

1
X

2
... X

p
]
β̂ (2.17)

which gives us Property 4: The trained model goes through the means of observed
data, (X,Y ), without error: Y = Xβ̂.

Most of linear regression tools are using Equation 2.12 to estimate model coefficients.
Combining Equation 2.12 and Equation 2.1, we have

β̂ = (XTX)−1XTY

= (XTX)−1XT (Xβ + ε)
= (XTX)−1XTXβ + (XTX)−1XTε

= β + (XTX)−1XTε

which gives us Property 5: Estimated model coefficients β̂ is a linear function of
assumption model coefficients β:

β̂ = β +Bε

B = (XTX)−1XT (2.18)
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Since dataset X is determined, E[(XTX)−1XTε] = (XTX)−1XTE[ε], where E[]
is averaging operation, so

E[β̂] = E[β] + (XTX)−1XTE[ε] (2.19)

By the assumption that stochastic term has Gaussian distribution with zero mean,
we have

E[ε] = 0⇒ E[β̂] = E[β] (2.20)

Property 6: Estimated model coefficients β̂ is an unbiased estimator of assumption
model coefficients β

2.1.4 Multicollinearity
Based on the proposed model (2.1) and assuming ε is independent and identically
distributed (IID) and has Gaussian distribution with zero mean, we have shown the
relationship between MLE and OLS in 2.1.1 and proved 6 useful properties of OLS
in 2.1.3. In this section, a common problem in regression model will be discussed.

Under Gauss-Markov assumptions and the mentioned properties, chapter 3 of [28]
showed that

V ar[β̂j] = σ2

SSTj(1−R2
j )

(2.21)

where SSTj = ∑i=1
n (Xj

i − Xj)2(j ∈ N) is the summation of squares of deviation
of the j-th predictors, R2

j is the R-squared value of predictor Xj regressing on the
other predictors, and V ar[] is variance operator. R-squared value will be discussed
in Section 2.1.5.

In estimation, the large variance of estimated coefficient is unwanted. Equation
2.21 shows that V ar[β̂j] depends on σ2, SSTj and 1−R2

j , so we take these 3 factors
into account when reducing V ar[β̂j].

σ2 is the variance of distribution of stochastic term ε. Intuitively, large uncer-
tainty (large σ2) in our database means it is difficult to estimate the effect (β̂j) of
predictors on the CPU load. σ2 is a characteristic of our sampled data and a quality
of our proposed model, so there is no way to decrease σ2 under the linear model
assumption.

Obviously, we can increase SSTj to decrease V ar[β̂j]. Under the same popula-
tion, larger number of samples will give rise to larger SSTj and therefore smaller
V ar[β̂j]. Technically, the quality of our estimation benefits from the large sam-
ple size. However, large database will cause more computing effort, especially
when feature selection algorithms are applied where matrix operations are heav-
ily used. Table 2.2 shows computational complexity of matrix operation [29] and
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β̂ = (XTX)−1XTY (Equation 2.12) is used to estimate coefficients. So the com-
putational complexity of Equation 2.12 is O(p2(n + 1) + p3 + pn), where p is the
number of predictors and n is the number of samples.

Table 2.2: Computational complexity of matrix operations

operation complexity
a p× n matrix multiply by a n×m matrix O(pnm)
a p× p matrix inversion O(p3)

R2
j in Equation 2.21 measures quality of fit of predictor Xj regressing on the other

predictors. By definition, R2
j is between 0 to 1, and the larger R2

j is, the more of the
variance of Xj is explained by the other predictors. R2

j = 1 means Xj is a linear
function of the rest of predictors, and leads to V ar[β̂j] being infinite, which is called
multicollinearity problem and should be avoided. Equation 2.21 can be rewriten as

V ar[β̂j] = σ2

SSTj
· V IFj (2.22)

V IFj = 1
1−R2

j

The degree of multicollinearity linearly increases the V ar[β̂j], and therefore we mea-
sure multicollinearity by variance inflation factor (VIF) in Equation 2.22. Because
multicollinearity always exists, it is hard to define multicollinearity problem, but
[28] considers multicollinearity as a severe problem when VIF is larger than 10. For
our problem at hand, because we are interested in the effect of each predictor on
the CPU load, and if V IFj is high (>10), it will inflate the variance of β̂j and other
estimated coefficients to some extent, which means we cannot precisely estimate
β̂j: β̂j is sensitive to new data and changes a lot. In Section 4.2, we show high
degree of multicollinearity exists in dataset. Two ways to deal with this problem:
a) recursively excluding the predictors associated with the VIF that is larger than a
critical value; b) using alternative methods: ridge regression estimators[9], PCR[24]
or PLSR[25].

2.1.5 Model evaluation
In this section, some factors for evaluating trained model will be discussed. Feature
selection methods are based on these factors as criteria. For the problem at hand,
after performing PCA, there are 1400 potential predictors, and including all of them
may introduce overfitting [10] to our model, so feature selection is for finding the
“best model”. In this section, we will discuss what “best” means for a model.

Pearson value

Pearson value (Pearson correlation coefficient) is developed by Carl Pearson [30] in
1880s to measure the direction and degree of linearity of two variables. It is also

15



2. Theory

known as linear correlation coefficient or quantity r and the fundamental of the most
criteria in this thesis. Pearson value of two variables, x and y, is defined as

r =
∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.23)

where x̄ and ȳ are means of variable x and y respectively. The higher |r| is, the
stronger linear relationship x and y have. r is always between -1 and 1, and r < 0
means x and y are negative related; r > 0 means x and y are positive related; r = 0
means x and y do not have linear relationship at all.

R-squared and adjusted R-squared value

R-squared (R2) value is one of the most fundamental factor to evaluate the quality
of fit of trained model. It is defined as the ratio of explained variance, regression
sum of squares (RSS), to the total variance, total sum of squares (TSS).

R2 = RSS

TSS

RSS =
n∑
i=1

(Ŷi − Ȳi)2

TSS =
n∑
i=1

(Yi − Ȳi)2

Alternatively, since error sum of squares (ESS) is the difference between TSS and
RSS,

ESS =
n∑
i=1

(Yi − Ŷi)2

R2 = RSS

TSS
= TSS − ESS

TSS
= 1− ESS

TSS

Mean squared error (MSE) is defined as the mean of ESS and for measuring the
quality of fit

MSE = n−1
n∑
i=1

(Yi − Ŷi)2 (2.24)

The larger R2 is, the better the model matches the observed data, but R2 is mis-
leading, because more the predictors are included, the smaller ESS is, so R2 cannot
be used as a criterion for evaluating the quality of subset predictors.

Adjusted R-squared value (R2
adj) introduces penalty term to R2.

R2
adj = 1− (1−R2)(n− 1)

n− p− 1 (2.25)

where n is the number of data points and p is the number of predictors. R2
adj can

be a criterion for feature selection: if the increment of quality of fit by introducing
a new predictor cannot cover the penalty, the new predictor should be eliminated.
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Mallows’s Cp

Because ESS always decreases when adding more predictors, even when the new pre-
dictor is just noise, it is possible to perfectly match the observed data, R-squared
value = 1 (RSS=0), when the number of predictors are large enough. Some predic-
tors in model are "unuseful" and our model matches the noise of the training data,
which is call overfitting [10]. it is necessary to introduce criteria to eliminate dummy
predictors.

Recall our model defined in Equation 2.1, Y = Xβ + ε. Ideally, our trained
model should be able to predict Y without memorizing noise, which means the
MSE when predicting Y should be as same as or close to the MSE when predicting
Y ′, where Y ′ = Xβ+ε′ and ε and ε′ are IDD. Y is our in-sample data, Y ′ is imagi-
nary data (out-of-sample data), and the only difference is stochastic term (ε and ε′):

εn×1, ε
′
n×1 ∼ N (0, σ2In×n)

Yn×1,Y
′
n×1 ∼ N (Xβ, σ2In×n)

so the adequate sub-set predictors can minimize the expected in-sample MSE and
the difference between expected in-sample MSE (E[MSEin]) and expected out-of-
sample MSE (E[MSEout]).

E[MSEin] = E[n−1
n∑
i=1

(Yi −Xiβ̂)2]

E[MSEout] = E[n−1
n∑
i=1

(Y ′i −Xiβ̂)2]

where (Yi −Xiβ̂)2 is squared error of one single point and its expected value is

E[(Yi −Xiβ̂)2] = V ar[Yi −Xiβ̂] + E[Yi −Xiβ̂]2

= V ar[Yi] + V ar[Xiβ̂]− 2cov(Yi,Xiβ̂) + (E[Yi]− E[Xiβ̂])2

E[(Y ′i −Xiβ̂)2] = V ar[Y ′i −Xiβ̂] + E[Y ′i −Xiβ̂]2

= V ar[Y ′i ] + V ar[Xiβ̂]− 2cov(Y ′i ,Xiβ̂) + (E[Y ′i ]− E[Xiβ̂])2

Because Y and Y ′ ard IDD, so cov(Y ′i ,Xiβ̂) = 0 and we have

E[(Y ′i −Xiβ̂)2] = V ar[Yi] + V ar[Xiβ̂] + (E[Yi]− E[Xiβ̂])2

= E[(Yi −Xiβ̂)2] + 2cov(Yi,Xiβ̂)

⇒ E[n−1
n∑
i=1

(Y ′i −Xiβ̂)2] = E[n−1
n∑
i=1

(Yi −Xiβ̂)2] + 2n−1
n∑
i=1

cov(Yi,Xiβ̂) (2.26)

Because Ŷ = Xβ̂ and β̂ = (XTX)−1XTY , so Ŷ = X(XTX)−1XTY = HY ,
where H = X(XTX)−1XT

cov(Y ,Xβ̂) = cov(Y , Ŷ ) = cov(Y ,HY ) = Hcov(Y,Y ) = HV ar[Y ]
⇒cov(Yi,Xiβ̂) = HiiV ar[Y ] (2.27)
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Combine Equation 2.26 and 2.27:

E[n−1
n∑
i=1

(Y ′i −Xiβ̂)2] = E[n−1
n∑
i=1

(Yi −Xiβ̂)2] + 2n−1
n∑
i=1
HiiV ar[Y ]

= E[n−1
n∑
i=1

(Yi −Xiβ̂)2] + 2n−1
n∑
i=1
trHiiV ar[Y ]

= E[n−1
n∑
i=1

(Yi −Xiβ̂)2] + 2n−1
n∑
i=1

(p+ 1)σ2 (2.28)

Ideally, adequate subset of predictors should not only has low MSE of in-sample date,
but also minimize the difference between E[MSEin] and E[MSEout], so Mallows’s
Cp is defined as

Cp = E[n−1
n∑
i=1

(YiXiβ̂)2] + 2n−1
n∑
i=1

(p+ 1)σ̂2

= MSE + 2n−1σ̂2(p+ 1)

where MSE is mean squared error of current training data, n is the number of data
point, p is the number of predictors and σ̂2 is the estimated variance of stochastic
term ε using full model (with all predictors).

σ ≈ σ̂ = RSSfull
n− P − 1 (2.29)

where RSSfull is residual sum of squares of full model, n is the number of data point,
P is the total number of predictors. The corresponding derivation can be found in
Chapter 3 of [9].

The best adequate subset model can minimize Cp.

Leave-one-out Cross-Validation (LOOCV)

Ideally, the trained model can predict new data. In order to test the ability to
predict new data, we leave one data point out of the dataset to train model and use
trained model to predict the missing data point. The sum of error of prediction is
referred to a new criterion: LOOCV, denoted by Λ.

Λ = 1
n

n∑
i=1

(Yi − λi)2 (2.30)

where n is the number of data points, Yi is the true value of missing data and λi
is the predicted value of missing data. Based on LOOCV, we want to find the
subset model that minimize the Λ. Formula 2.30 requires to train model n times to
calculate Λ once, which is extremely time-consuming. Section 5.5 of [31] shows a
fast way to calculate Λ:

Λ = 1
n

n∑
i=1

( ei
1−Hii

)2 (2.31)
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where ei is the residual when predicting the i-th data point using the model trained
by all data points. Hii is the i-th diagonal value ofH , whereH = X(XTX)−1XT .

k-Fold Cross-Validation

Similar to LOOCV, this method equally divide total dataset into k folds, where k-1
folds are training data and 1 fold is test data. LOOCV is a special case of k-Fold
Cross-Validation when k is equal to n. Each fold of test data has a MSE and this
method goes though k-fold test data to calculate averaged MSE as a select criterion.
The goal is selecting adequate subset model that minimize the averaged MSE.

Akaike information criterion (AIC):
Akaike information criterion (AIC) is proposed by Hirotugu Akaike in 1973 [32].
AIC is a criterion for balancing complexity and quality of fit of a model. AIC is
based on information theory and derivation is complicated. AIC is defined as

AIC = n logMSE + 2p

where n is the number of training data points, MSE is mean squared error and p is
the number of predictors. This equation has the same form as the form of Mallows’s
Cp: “evaluation + penalty”, adding a new predictor to the model increases the
quality of fit and penalty at the same time. The goal of feature selection is finding
the subset model that minimize AIC value.

Bayesian information criterion (BIC)

Another similar criterion is called Bayesian information criterion (BIC) proposed by
[33]. BIC is defined as

BIC = n logMSE + p log n.

BIC has the same form as the form of AIC and the model selected by BIC criterion
tends to minimize BIC. Because BIC has stricter penalty term than AIC (log n > 2),
the number of predictors selected by BIC is less than the number of predictors
selected by AIC.

2.2 Principal component regression (PCR)
Principal component regression (PCR) is based on Principal component analysis
(PCA). PCR regresses response variable on the principal components (PCs) gener-
ated by PCA rather than the original data. Because our original database has high
degree of multicollinearity, so directly training the model by original data will result
in large variance of estimated β and therefore we cannot precisely estimate model
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coefficients (the reason is shown in Section 2.1.4). We can eliminate the predictors
with high VIF to overcome high-degree multicollinearity problem, but this does not
fulfill the Goal 1. By using PCR, the solution is

1. Applying PCA to original data to get the same number of PCs as the number
of predictors in original data

2. perform feature selection on these PCs to get an adequate subset model
3. train selected model to estimate model coefficients
4. map the estimated coefficients associated with the selected PCs back to the

original data
In this section, we are going to explain the theory behind PCA.

Intuitively, PCA maps the original data to the new coordinate that maximizes the
variance of projection of the data and uses the value of projection instead of the
original data as independent variables in the regression model. Figure 2.1 is a sim-
ple example of PCA, which shows the original data (white circle) and its projection
(blue dot) on its principal direction (green line) in the case of two-dimensional data.
In practice, the new coordinates are derived by calculating the eigenvector corre-
sponding to the biggest eigenvalue of original data matrix.

-1 -0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

1

1.5
PCA example

Figure 2.1: This a PCA example in the case of 2-dimension data. The white
circles are the original data points, the blue dots are the projections of original data
to the green line, and the green line represents the direction of the primary principal
component, in which the lengths between point (0, 0) and blue dots have the largest
variance.
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Mathematically, like Equation 2.1, define our standardized original dataset asDn×p:

Dn×p =


X1

1 X2
1 ... Xp

1
X1

2 X2
2 ... Xp

2
X1

3 X2
3 ... Xp

3
... ... ... ...
X1
n X2

n ... Xp
n

 (2.32)

where n is the number of observed data points, p is the number predictors and Xp
n

represents the n-th observed value of p-th predictors with zero mean. The projection
of D to a direction dp×1 is

Pn×1 = Dn×p · dp×1 (2.33)

where Dn×p represents original data, Pn is the n-th element in Pn×1, representing
the length of projection of n-th data point Dn on direction dp×1, and dp×1 is the
a direction of a p-dimension space with ‖d‖2 = 1. Because of E[D] = 0p×1, P has
zero mean. The first principal component is defined as the direction that maximizes
the variance of corresponding projection, and we can find such direction by solving
following optimization problem.

dprime = argmax
d

V ar[P ] = argmax
d

n−1
n∑
i=1

P 2
i

= argmax
d

n−1(P T · P ) = argmax
d

dT
DTD

n
d (2.34)

Because each column in Dn×p has zero mean, so DT
n×p·Dn×p

n
is variance-covariance

matrix ofDn×p (one benefit of centering the data to zero mean, discussed in Section
3.1.2). Let σ denotes variance-covariance matrix of Dn×p, and we have: V ar[P ] =
dTσd, which means variance of projections are the eigenvalues of variance-covariance
matrix of Dn×p. So projection matrix with top k largest variance, Pn×k is a linear
transform of original data, Dn×p, and k eigenvectors with top k largest eigenvalues
as k directions, dp×k:

Pn×k = Dn×p · dp×k

We can get the largest variance by calculating the eigenvector with the largest eigen-
value. n-dimension database will give us n PC and direction pairs, and these PCs
are orthogonal to each other, so we can apply feature selection algorithms on them
without worrying about multicollinearity problem.

After selecting subset of PCs and training the selected subset model, we can map
the coefficients back to the original data to get the full coefficients. Let PCk denote
selected k PCs, ˆβPC denote corresponding estimated coefficients, and dk denote
corresponding directions:

Ŷ = PCk · β̂PC
PCk=Dn×p·dp×k−−−−−−−−−−→ Ŷ = Dn×p · dp×k · β̂PC︸ ︷︷ ︸

β̂ (full coefficients)

(2.35)
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Equation 2.35 has the same form as Equation 2.7 and β̂ = dp×k ·β̂PC is the estimated
coefficients of full model.

2.3 Partial least squares regression (PLSR)
Partial least squares regression (PLSR) builds a linear regression model by project-
ing predictors and response variables to a new direction. PLSR can be traced back
to Herman Ole Andreas Wold in 1966 and is introduced for removing multicollinear-
ity problem at the beginning [34].

Recall Equation 2.34, the first principal component in the perspective of PCA is
defined as the projection to the direction that maximizes the variance of projections
of original data to a sub direction. However the most principal component in the
perspective of PLSR is defined as the projection to the direction that maximizes
the absolute value of covariance of projections of original data and the response
variable. Because “principal component” has different definitions for PLSR and
PCR, PLSR_PC refers to principal component of PLSR and PCA_PC refers to
principal component of PCA. Let P represents a projection of the original data.
The covariance of P and response variable Y can be calculated as:

cov(P ,Y ) = n−1
n∑
i=1

(Pi − P )(Yi − Y )

Y =0,P=0−−−−−→ cov(P ,Y ) = n−1
n∑
i=1

PiYi = n−1P T · Y

Because cov(P ,Y ) can be positive and negative, the prime direction is intended to
maximize the |cov(P ,Y )| or cov2(P ,Y ).

cov2(P ,Y ) = n−2P TY Y TP (2.36)

Combining with Equation 2.33, Equation 2.36 can be rewritten as:

cov2(P ,Y ) = n−2dTDTY Y TDd (2.37)

Therefore cov2(P ,Y ) is maximized when d is the eigenvector corresponding to the
largest eigenvalue of matrix DTY Y TD, where D is defined in 2.32 and Y is the
samples of CPU load in matrix form. Let d1 denotes the most principal direction,
d2 denotes the second most principal direction, and dn denotes the n-th most prin-
cipal direction, dn is the eigenvector corresponding to the n-th largest eigenvalue of
matrix DTY Y TD.

When d1 is available, the projection, P1, on d1 can be calculated using Equation
2.33:

P1 = D · d1 (2.38)
Pn = D · dn
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Then we regress the response variable Y on P1 and get a coefficient denoted by b1
by using the OLS method that discussed in Section 2.1.2:

Y = b1P1 +E1

where E1 is the error vector that will be minimized by adding more projections:
P2, P3, ..., Pn. Because P1 is just the projection with one dimension and can not
represent the original data with p dimensions, in order to derive the second most
prime project P2, the first step is to calculate the residual matrix in original D that
cannot be linearly represented by P1:

D = P1u1 +R1 (2.39)

where R1 is the residual matrix. Equation 2.39 is the regression problem with
multiply response variables and single predictor, which is in the scope of multivariate
multiply regression and not discussed in the Theory chapter, but it is well discussed
in [35]. u1 is

u1 = (P T
1 P1)−1P T

1 D (2.40)

Then replace D in Equation 2.37 and Equation 2.38 by R1 to get d2 and P2:

P2 = R1 · d2 (2.41)

Regress E1 on P2 to compensate the error E1 and get coefficient b2 associated with
P2:

E1 = b2P2 +E2

ReplaceD and P1 in Equation 2.39 by R1 and P2 respectively to get a new residual
matrix R2:

R1 = P2u2 +R2 (2.42)

Repeat above process recursively to get b3, b4, ... , bn; E3, E4, ..., En and P3, P4,
..., Pn. In total, original data D and Y can be expressed as:

D = u1P1 + u2P2 + ...+ upPp +Rp

Y = b1P1 + b2P2 + ...+ bpPp +Ep

= P ·B( in matrix form) (2.43)

where B =
[
b1, b2, ..., bp

]T
and P =

[
P1,P2, ...,Pp

]
= D ·

[
d1,d2, ...,dp

]
. Equation

2.43 can be rewritten as:

Y = D ·
[
d1,d2, ...,dp

]
·B

= Dβ

Because Pn has weaker covariance with Y than Pn−1 does, the quality of fit increases
slower and slower when more PLSR_PCs are included, which agrees with the result
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in Section 4.5. So in practice, it is feasible to truncate the tail PLSR_PCs with
losing small quality of fit.

As mentioned, PLSR can overcome the multicollinearity problem. In the follow-
ing, the relationship between the k-th PLSR_PC (Pk) and the k+m-th PLSR_PC
(Pk+m) will be derived. Combing Equation 2.42 and 2.41, Pk can be written as a
function of Pk−1, where k ≥ 2:

Pk = Rk−1 · dk
Rk−1=Rk−2−Pk−1uk−1−−−−−−−−−−−−−−→ = (Rk−2 − Pk−1uk−1) · dk

Rk−2=Pk−1·d−1
k−1−−−−−−−−−−→ = (Pk−1 · d−1

k−1 − Pk−1uk−1) · dk
= Pk−1 · (d−1

k−1 − uk−1) · dk

So the dot product of P T
k and Pk+m can be recursively written as a function of

P T
k Pk+1, where k ≥ 2 and m ≥ 1:

P T
k Pk+m = P T

k Pk+m−1(d−1
k+m−1 − uk+m−1)dk+m

= P T
k Pk+m−2(d−1

k+m−2 − uk+m−2)dk+m−1(d−1
k+m−1 − uk+m−1)dk+m

.........

= P T
k Pk+1

m−1∏
i=1

(d−1
k+m−i − uk+m−i)dk+m−i+1 (2.44)

The product of P T
k and Pk+1 is:

P T
k Pk+1 = P T

k (Rk−1 − Pkuk)
uk=(PTk Pk)−1PTk Rk−1−−−−−−−−−−−−−→ = P T

k Rk−1 − P T
k Pk(P T

k Pk)−1P T
k Rk−1

= P T
k Rk−1 − P T

k Rk−1 = 0 (2.45)

Equation 2.45 means that any two contiguous PLSR_PCs (Pk and Pk+1) are or-
thogonal. Combining with Equation 2.44, the dot product of P T

k and Pk+m is zero
for k ≥ 2 and m ≥ 1, which means all the PLSR_PCs are orthogonal to each other.
So the multicollinearity does not exist in Equation 2.43.

2.4 Ridge regression

As mentioned in Section 2.1.4, when the degree of multicollinearity is high in the
dataset, the variance of estimated coefficients increases dramatically. The error of
estimates can be decomposed to the error caused by bias and the error caused by
variance. For OLS, although the estimated coefficients, β̂, is unbiased estimates of
model coefficients (Property 6), β, the large variance of β̂ caused by high degree
of multicollinearity still results in large deviation away from the true values. Figure
2.2 is an intuitive example of relationship between error and variance-bias.
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Figure 2.2: The green dots in the figures represent the true value we try to estimate.
The red dots represent the distribution of the estimates. Figure a) has the lowest
error than the errors in the other 3 figures, because it has low bias and low variance.
Figure b) and c) have higher error than the error in Figure a), because either bias
or variance increases. Figure d) has the highest error than the errors in the other 3
figures, because it has large bias and variance.

Ridge regression overcomes the multicollinearity problem by introducing penalty
term to the loss function (Equation 2.9) used in OLS [36]:

Lridge =
n∑
i=1

(Yi −Xiβ̂)2

︸ ︷︷ ︸
error term

+ λ
∥∥∥β̂∥∥∥2

︸ ︷︷ ︸
penalty term

(2.46)

where the error term is exactly the same as the OLS loss function (Equation 2.9),
λ in penalty term controls the degree of the penalty. By tuning the λ, the variance
and bias is balanced, and therefore the error is improved. Similar to the derivation
of Equation 2.12, the coefficients can be derived by minimizing the loss function
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Lridge:

β̂ridge = argmin
β̂

Lridge

= argmin
β̂

n∑
i=1

(Yi −Xiβ̂)2 + λ
∥∥∥β̂∥∥∥2

subject to λ ≥ 0 (2.47)

This minimization problem can be solved by setting the partial derivative of Lridge
with respect to β̂ to zero:

∂L

∂β̂ridge
2XTXβ̂

ridge
− 2XTY + 2λβ̂ridge = 0

⇒(XTX + λI)β̂ridge == XTY

⇒β̂ridge == (XTX + λI)−1XTY (2.48)

Skip tedious mathematical derivation [37], the expectation (E[β̂ridge]) and variance
(V ar[β̂ridge]) of β̂ridge are:

E[β̂ridge] = (XTX + λI)−1XTXβ (2.49)
V ar[β̂ridge] = σ2[XTX + λI]−1XTX{[XTX + λI]−1}T (2.50)

Obviously, for λ > 0, E[β̂ridge] is not equal to β, so the ridge regression is unbiased
estimate. Furthermore, when the λ increases, E[β̂ridge] deviates further away from
β̂ridge, and V ar[β̂ridge] decreases. Hence, tuning the λ can balance the bias-variance
trade-off to minimize the error. Figure 2.3 intuitively illustrates how λ balances the
bias-variance trade-off and decreases the error.
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Figure 2.3: When λ is zero, the bias is zero, which is the case of OLS estimation.
Equation 2.49 and 2.50 shows that when λ increases, bias increases and variance
decreases. Hence, the λopt that minimizes the error is aimed.
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2. Theory

K-fold cross validation mentioned in Section 2.1.5 is widely used for choosing λ [37],
which chooses the λ that minimizes the overall MSE.

But because 1) the contribution of each signal to the CPU load are required in this
project; 2) the training data set is huge - a 237912×14000 matrix, instead of original
data, principal components is processed by ridge regression method.
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3
Methods

Section 4.2 shows high degree of multicollinearity exists in our data, and precise
estimates of the effect of each signal on CPU load (interpretability) is key, not only
predictive power, eliminating signal with high VIF can solve multicollinearity prob-
lem, but we are not be able to estimate the effect of each signal on CPU. In this
chapter we present methods that overcome multicollinearity problem without losing
interpretability.

3.1 Data pre-processing

3.1.1 Data construction

The original sampled at time t is consist of 1400 signals (denoted as X t) and the
CPU load signal (denoted as Y t). As mentioned in Section 1.2.3,X t is not causal to
Y t, butX t−1,X t−2,X t−3...X t−10 are causal to Y (t), so it is necessary to construct
new data before training the model. Because the length of effect window is assumed
to be 250 ms, the current CPU load depends on the previous 10 periods samples.
Table 3.1 illustrates the structure of the sampled original data. Table 3.2 illustrates
the structure of the newly constructed data. Each X t has 1400 signals/predictors,
and the past 10 samples are included into the model, so the size of the reconstructed
data is 10 times increased: 475826×14000. In order to verify the trained model, the
data is randomly divided into training set (50%) and test set (50%): each sample
has 50% probability of being test data and 50% probability of being training data.

Table 3.1: Sampled original data

sampled signals CPU load
X0 Y 0

X1 Y 1

... ...
Xn−1 Y n−1
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3. Methods

Table 3.2: Newly constructed data (n-PPS represents the n-periods previous sam-
ples)

Current Samples 1-PPS 2-PPS ... 9-PPS CPU load
X9 X8 X7 ... X0 Y 10

X10 X9 X8 ... X1 Y 11

... ... ... ...
Xn−2 Xn−3 Xn−4 ... Xn−11 Y n−1

3.1.2 Data Standardization
Because signals have different units and are measured at different scales, estimated
coefficients expand or shrink at the same rate as signal units change. Evaluating all
the signals in the same scale is a straightforward way to determine the importance
of each signal by comparing their associated coefficients, and it avoids the situation
where some coefficients are extremely large whereas some are extremely small. So
before performing further operation on data, we standardize the data to center the
data to zero mean and rescale them to have unit variance. The other reason we need
to center the data is that when derive PCA equation in Section 2.2, if each column
in Dn×p has zero mean, then variance-covariance matrix of Dn×p is Dn×p·DT

n×p
n

:

V ar[Dn×p] =


V ar[Dn×1,Dn×1] V ar[Dn×1,Dn×2] ... V ar[Dn×1,Dn×p]
V ar[Dn×2,Dn×1] V ar[Dn×2,Dn×2] ... V ar[Dn×2,Dn×p]

... ... ... ...
V ar[Dn×p,Dn×1] V ar[Dn×p,Dn×2] ... V ar[Dn×p,Dn×p]


p×p

because of

V ar[Dn×p,Dn×k] = 1
n

n∑
i=1

(Di×p − E[Dn×p])(Di×k − E[Dn×k])

E[Dn×p]=E[Dn×k]=0−−−−−−−−−−−−→ = 1
n

n∑
i=1

Di×pDi×k =
n∑
i=1
Dn×p ·Dn×k

therefore

V ar[Dn×p] = 1
n


Dn×1 ·Dn×1 Dn×1 ·Dn×2 ... Dn×1 ·Dn×p
Dn×2 ·Dn×1 Dn×2 ·Dn×2 ... Dn×2 ·Dn×p

... ... ... ...
Dn×p ·Dn×1 Dn×p ·Dn×2 ... Dn×p ·Dn×p


p×p

= 1
n
Dn×p ·DT

n×p

After standardization, the new value we have is

D̃p
n = Dp

n − E[Dp]
std[Dp]

where E[Dp] and std[Dp] are the mean and standard deviation of the p-th signal,
Dp, respectively. Another benefit of standardization is that the intercept of model
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will disappear. Recall Property 4 mentioned in Section 2.1.3, trained model goes
through the means of dataset, (X,Y ). Because X and Y are zero after stan-
dardization, the intercept term, β0, is zero. We can also convert the standardized
coefficients (β̃p) back to the coefficients that are associate with original data (βp):

βj = β̃j
std[Y ]
std[Dj] β0 = Ȳ −

j=p∑
i=1

βjDj

where:

β̃j : the coefficients associated with standardized signal, D̃p.

βj : the coefficients associated with j-th original signal,Dj.

β0 : intercept of the model trained by original data
Dj : mean value of j-th original signal,Dj.

3.2 Highly correlated signal pairs
Variance-covariance matrix of standardized data shows that some signal pairs have
Pearson correlation coefficients equal to 1, and some are highly correlated (Pearson
correlation coefficient above 0.9), which the reason that high degree of multicollinear-
ity exists and that we cannot precisely estimate model coefficients by using original
data. There are 434 signal pairs that have Pearson correlation coefficients equal to
1, and these are listed in Table A.1.

3.3 Feature selection strategies

3.3.1 Filter and wrapper method
Filter and wrapper method are two common strategies in feature selection. Filter
method simply scores each input feature by calculating a single associated statistical
factor like hypothesis test (Chapter 18 of [9]) and Pearson correlation coefficient
([38]). Then it sets a threshold value to filter out some features. Figure 3.1 illustrates
the flow of filter method. The advantage of filter method is that it is easy to
implement and does not need heavy calculation, but the result is not guaranteed to
be the best performing sub-set features of our model.

Figure 3.1: Schematic of filter method
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Wrapper method is a recursive strategy that selects features by evaluating and com-
paring different groups of features. Forward selection and backward elimination are
two efficient wrapper methods. They only add or eliminate one input feature each
time to or from the current subset based on a evaluation factors that are discussed in
Section 2.1.5. Forward selection starts from empty subset, whereas backward elim-
ination starts from full features and they usually give us different results although
same evaluation factor is used. In addition, different evaluation factor would also
give us different results. Figure 3.2 illustrates the flow of wrapper method. Wrap-
per method can get more promising result than filter method, but it requires heavy
computing and its algorithms are complicated to implement.

Taylor et al. proposed an approach to select features that highly related to the class
labels from driver monitoring data to determine the level of driver distraction, in
which wrapper method is heavily used [39].

Figure 3.2: Schematic of wrapper method

3.3.2 Applying feature selection method on principal com-
ponents

PCA technique can map n-dimension data to n orthogonal PCs, there are three
advantages:

1. Because all the PCs are orthogonal to each other, covariance of any two PCs
is zero so multicollinearity does not exist.

2. Sort the n PCs by variance, head PCs have most of total variance and tail PCs
have small variance. Therefore we apply feature selection on head PCs that
explain large percent of variance, like 95%, rather than on all PCs to avoid
massive unnecessary computation.

3. After finishing feature selection on PCs, the sub model coefficients can be map
back to the original data to get coefficients of full model.
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3.3.3 Proposed methods
By combining feature selection strategies and PCA, the proposed methods are:

Forward selection method:
1. Standardize the original data, Dn×p, to get standardized data, Xn×p.
2. Divide the data into training data (50%),Xtri×p, and test data (50%),Xtest×p.
3. Apply PCA to Xtri×p to get projection matrix Ptri×k, where k is the number

of PCA_PCs included that covers a large partition of total variance, like 95%.
Python founction for mapping original data to PCA_PCs.

4. Determine a criterion. Refer to Section 2.1.5 the criterion can be the highest
R2
adj, the lowest p-value, Cp, AIC, BIC, LOOCV and MSE under k-Fold Cross-

Validation.
5. Start from empty subset (no PC is selected), then evaluate each potential PC

according to the selected criterion.
6. Add the PC that increases the selected criterion most to subset. Go back to

the previous step unit adding new PC does not improve criterion.
7. Map coefficients of PCs back to the original data to get coefficients of full

model by Equation 2.35.
8. Map standardized coefficients to un-standardized coefficients.

Backward selection method: Backward elimination method is identical to for-
ward selection except for step 5 and step 6:

5. Start from full PCs, then evaluate each PC according to the selected criterion.
6. Remove the PC that increases the selected criterion most from subset. Go

back to the previous step unit removing new PC does not improve criterion.

3.4 Determine the effect window
Because different tasks have different deadline, ideally, the effects of different signals
associated with different functions on the CPU load have different length of effect
window. But for the problem at hand, the deadline of tasks are not available,
instead of assigning different lengths of effect window to different signals, only one
effect window is used. The effect window should be the longest deadline among all
the tasks, and the following feature selection determine the contribution of different
signals at different sampling time to the CPU load. Unfortunately, information
about deadline is not available for the moment, so an effect window of 250 ms is
used in this thesis, which is an assumption on windows that should be long enough
for a practical scenario.

3.5 Result validation
In order to validate the results obtained by using different methods, we divide the
reconstructed data into two different sets: 50% of the data are used for training,
while the remaining 50% are used for test and validation. Training set is for training
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the model by using different methods, and the test data is for evaluating the quality
of fit of the obtained model. MSE on the test data is calculated as

MSEtest = 1
ntest

ntest∑
i=1

(Y i
test − Ŷ i)2

where ntest is the size of test data, Y i
test are the actual value of test data, and Ŷ i are

the predicted values by feeding the signals from the test data to the trained model.
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4
Results

4.1 Continuous CPU load curve

As mentioned in Section 1.2.2, CPU load is calculated by a sliding average window,
so the sampled CPU load is time series data, which agrees with the CPU load plotted
in Figure 4.1.
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Figure 4.1: Plotted CPU load samples. Y-axis values is standardized CPU load.

4.2 Severe multicollinearity problem

Because there are 1400 kinds of signal in our data, there are C
(

1400
2

)
= 979300 signal

pairs. Among these signal pairs, Table A.1 shows the highly correlated signal pairs
and Table 4.1 shows the number of signal pairs that are located in different Pearson
correlation coefficients interval.
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Table 4.1: Number of signal pairs with different Pearson correlation coefficient

Pearson correlation coefficient number of signal pairs
= 1 127
≥ 0.99 1477
≥ 0.98 1797
≥ 0.97 2017
≥ 0.96 2292
≥ 0.95 2508
≥ 0.90 3195

As mentioned, high degree multicollinearity exits in original data, and 434 signal
pairs have correlation coefficients equal to 1. Even when these signals are removed,
the remaining 1227 VIFs associated with each signal are still high and the highest
VIF is infinite. Figure 4.2 shows the lowest 800 VIFs.
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Figure 4.2: Lowest 800 VIFs after removing the signal pairs that have correlation
coefficients equal to 1

4.3 Signal preliminary selection
In the reconstructed data, each signal may have delayed effects on the CPU load.
In the effect window, the effects of previous signal samples may propagate to the
current CPU load. The cross-correlation of signal Xt with CPU load Yt are defined
as:

ρ(τ) = 1
σXσY

E[(Xt−τ − µX)(Yt − µY )]

where σX and µX are mean and standard deviation of Xt, σY and µY are mean
and standard deviation of Yt, and τ ∈ [1, 10]. Including the past 10 samples of all
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the signals, there are 14000 predictors in total. By calculating the cross-correlation
of the original 1400 signal with the CPU load, 9044 predictors with correlation
coefficient below 0.1 are excluded and 4956 predictors are left.

4.4 PCR

Figure 4.3 shows that R2 value benefits from the number of PCA_PCs included into
model, but it stops at where the number of PCA_PCs is around 500. We use the
PCA_PCs that cover 95% of total variance and perform feature selection methods
that are illustrated in Section 3.3 on them. The combinations of 2 feature selection
strategies (backward elimination and forward selection) and 4 criteria (R2

adj, AIC,
BIC and Mallow’s Cp) give rise to 8 results. These results are very similar, so that
the 8 curves corresponding to 8 results are overlapped in Figure 4.6.
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Figure 4.3: R2 increases as more PCA_PCs are included into model

4.5 PLSR

Technically, the more PCs are included into the model, the higher quality-of-fit
(larger R-squared value) is. Figure 4.4 shows that R-squared value increases as
more PLSR_PCs are included into the model. In Figure 4.4 R-squared value stop
increasing at where the number of PLSR_PCs is around 30. So the 30 PLSR_PCs
are selected to our model with MSEtest of 0.099, which fulfills Goal 4. Figure 4.6
shows coefficients in decreasing order by using PLSR method.
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Figure 4.4: R2 increases as more PLSR_PCs are included into model

4.6 Ridge regression

Recall Equation 2.46 and Figure 2.3, cross validation on MSE is used for choosing
the λ that minimizes the MSE. Figure 4.5 shows the trend of MSE when λ changes,
and the optimal λ is 1778.52, which gives rise to MSEtest of 0.11 on test data. The
corresponding result is very similar to the 8 results obtained by using PCR method,
and these 9 results are overlapped in Figure 4.6
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Figure 4.5: Finding the optimal λ by swiping the value of λ
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4.7 Training results and validation
In Figure 4.6, contribution coefficients are plotted in decreasing order. The 8 results
of PCR method overlap with the result obtained by using Ridge regression, and they
have MSEtest of around 0.11. The result obtained by using PLSR has MSEtest of
around 0.099.
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Figure 4.6: Contribution coefficients are plotted in decreasing order.

By feeding the original data to the trained model, the predicted value is obtained.
The predicted CPU load and the measured CPU load are plotted in Figure 4.7. The
predicted CPU load is roughly as same as the measured CPU load with MSE on the
test data of 0.11.
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Figure 4.7: Plotted measured CPU load and predicted CPU load. Y-axis is stan-
dardized CPU load.
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Figure 4.8 shows the scatter plot of predicted CPU load and measured CPU load.
With perfect prediction, the points are scattered on a straight line with slope of 1
(orange line). Actually, caused by prediction error, the blue points deviate from the
orange line, and the degree of deviation depends on the degree of prediction error.
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Figure 4.8: Plotted measured CPU load and predicted CPU load. Y-axis is stan-
dardized measured CPU load values.
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5
Conclusion

In this project, given the sampled input signals to all the software modules that are
embedded running on the CPU, a model for predicting CPU load in the real-time
system is proposed. Considering how the CPU load is calculated in the real-time
system, this model finds relationship between the values of past signals and the CPU
busy time for the current calculation of CPU load. Because the interpretability of
contribution of each signal to the CPU load is required, this model is based on the
following assumptions:

1. Linear relationship between the sampled values of signals and CPU load, which
means the signals associated with larger coefficient has higher contribution to
the CPU load.

2. Causal relationship between the sampled values of signals and CPU load, which
means the current sampled CPU load only depends on the past sampled sig-
nals.

After our analysis, 9044 signals can be excluded from the constructed data shown
in Table 3.2, because their associated absolute values of standardized correlation
coefficients are smaller than 0.1. After the preliminary filtering, 4956 signals are
left, and the size of current dataset is 475825 × 4956. The dataset is standardized
next. In order to train the model and validate the quality of the result, the data set
is divided into training set (50%) and test set (50%).

In general, OLS is the most efficient method for training a linear regression model.
But because high degree of multicollinearity exists in the data, which inflates the
variance of estimates, conventional OLS is not feasible for this problem. In order
to overcome the multicollinearity problem, PCR, PLSR and ridge regression are
used. The ideal model should achieve high quality of fit and meanwhile keep simple
according to Occam’s razor theory [40]. In order to do so, two feature selection
strategies (backward elimination and forward selection) are illustrated in Section
3.3 and some criteria for feature selection are derived in Section 2.1.5.

As the result, PCR method and ridge regression method give rise to the similar
results with MSE of around 0.11. By using PLSR method, result with lower MSE
is achieved: 0.099. Compared with the current status as described in Section 1.3.4,
a new model is proposed: the effects of previous input propagate to the current
CPU load. MSE achieved by new model is 0.11, which is less than the MSE of 0.15
mentioned in Goal 4. Different feature selection methods that can overcome mul-
ticollinearity are proposed, and based on different methods, 10 results are obtained,
which fulfills Goal 1 and Goal 2. Unfortunately, Goal 3 is not fulfilled, but it is
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5. Conclusion

remedied by dividing the data to training set and test set.

All the results show that the signal 1400 has the highest positive contribution to the
CPU load. signal 1400 represents the number of objects on road when cars request
steering and more objects require more computation of the CPU, which agrees with
the existing result in [20]. The signal with second largest contribution is signal 973,
which represents the current distance with low confidence for the road geometry.
Because functions make decision based on the road geometry, it is highly used in
many functions such as auto-breaking and steering, which needs much computational
effort [8].

5.1 Weaknesses of the model
First of all, the model is based on the assumption of that the CPU load can be
predicted by a linear function of values of input signals to the functions that are
running on the CPU. Linearity is assumed because of the requirement of inter-
pretability whereas the actual relationship between the CPU load and the signal
values can be extremely complicated and highly non-linear, which is the most im-
portant weakness of the model. Second, the effects of signals on the CPU load is
assumed a constant in the corresponding effect time. However, the effect can fluctu-
ate because of the CPU scheduling. Third, from real-time systems perspective, the
effect window should be the longest deadline among all the tasks. But because the
deadline is unknown, the effect window is assumed 250 ms. Then feature selection
is performed to select the signals with high contributions to the CPU load further.

5.2 Future work
Using actual effect window instead of 250 ms will improve reliability of the results,
which needs further communication with ECU supplier. Because the interpretabil-
ity of contribution of each signal is required, this model is restricted to the linear
relationship. It is possible to increase the quality of fit by introducing polynomial
terms and then perform the same training work without losing interpretability. For
example, manipulate Table 3.2 to construct quadratic data:

X9 X92
X8 X82

... X0 X02 → Y 10

X8 X82
X7 X72

... X1 X12 → Y 11

... ... ... ... ... ... ... → ...

Xn−2 Xn−22
Xn−3 Xn−32

... Xn−11 Xn−112 → Y n


Other regularization methods such as LASSO regression and elastic net can also be
used for the training.

As mentioned, interpretability is required in this project. So there is not too many
alternatives but to use linear model. Models that can learn the non-linearity between
CPU load and signal values and keep interpretable meanwhile are worth studying,
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which may need to combine the knowledge from hardware level and expertise on
machine learning. Because the current CPU load depends on the previous signal
values, Recurrent neural network (RNN) may also be an option.
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A
Appendix 1

Table A.1: Signal pairs with correlation coefficient equals to 1.

pair index1 index2 pair index1 index2 pair index1 index2

1 4 56 44 442 526 86 668 689
2 5 1289 45 525 526 87 668 690
3 46 52 46 547 639 88 669 670
4 46 82 47 552 565 89 669 687
5 52 82 48 552 581 90 669 688
6 66 67 49 552 643 91 669 689
7 86 292 50 565 581 92 669 690
8 120 121 51 565 643 93 670 687
9 122 123 52 574 578 94 670 688
10 122 124 53 575 579 95 670 689
11 122 137 54 581 643 96 670 690
12 123 124 55 591 593 97 687 688
13 123 127 56 591 667 98 687 689
14 123 137 57 591 668 99 687 690
15 124 127 58 591 669 100 688 689
16 124 137 59 591 670 101 688 690
17 125 127 60 591 687 102 689 690
18 127 137 61 591 688 103 764 777
19 265 297 62 591 689 104 787 788
20 293 1207 63 591 690 105 787 801
21 295 1208 64 592 601 106 788 801
22 301 1246 65 593 667 107 789 802
23 302 1216 66 593 668 108 806 807
24 303 1217 67 593 669 109 923 924
25 304 1218 68 593 670 110 927 928
26 305 1214 69 593 687 111 931 932
27 306 1215 70 593 688 112 1101 1102
28 307 1275 71 593 689 113 1101 1103
29 387 388 72 593 690 114 1102 1103
30 391 392 73 617 626 115 1188 1189
31 393 394 74 663 664 116 1188 1202
32 395 396 75 667 668 117 1188 1203
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Table A.1: Purely correlated signal pairs

pair index1 index2 pair index1 index2 pair index1 index2
33 407 408 76 667 669 118 1188 1212
34 411 412 77 667 670 119 1189 1202
35 415 416 78 667 687 120 1189 1203
36 417 418 79 667 688 121 1189 1212
37 419 420 80 667 689 122 1191 1192
38 421 422 81 667 690 123 1202 1203
39 427 428 82 668 669 124 1202 1212
40 441 442 83 668 670 125 1203 1212
41 441 525 84 668 687 126 1231 1232
42 441 526 85 668 688 127 1281 1282
43 442 525
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Plan review

Figure B.1: Initial weekly plan

Figure B.1 is the initial weekly plan. Because the limited resources, HIL validation
was rescheduled to be performed out of the scope of this thesis project. As remedy,
the data is divided into training set and testing set. There are 14000 signals which
are included in the model as predictors. According to 2.2, increase of the number
of predictors results in cubic growth of the computation time, so feature selection is
very much time-consuming. Polynomial regression multiplies the number of predic-
tors and therefore results in more computational effort, so polynomial regression is
not performed either.
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Figure B.2: Actual time line

Figure B.2 shows the actual time line of the project. Compared with initial time
plan, Figure B.2 is adjusted. literature research 1 did basic studies on the research
environment, problem and background. Meanwhile a planning report was written
and revised. A simple model was implemented and trained using step-wise feature
selection on principal component of the original data between week 8 and 12. Be-
cause the training processing is time consuming, writing report and training the
model are in parallel. After reading AUTOSAR manual in literature research 2, the
model was improved by taking into account of the effects of past samples on the
CPU load. Retrain the model and revise the mid-term report from week 13 to 16.
In the rest 6 weeks, partial least squares method and ridge regression method are
tried. Then all the models trained by different methods are tested by testing data.
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