
LiDAR Clustering and Shape Extraction
for Automotive Applications
Master’s thesis in Systems, Control and Mechatronics

TOBIAS NYSTRÖM JOHANSSON

OSCAR WELLENSTAM

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Master’s thesis 2017:EX 107

LiDAR Clustering and Shape Extraction
for Automotive Applications

TOBIAS NYSTRÖM JOHANSSON
OSCAR WELLENSTAM

Department of Electrical Engineering
Division of Signal Processing and Biomedical Engineering

Chalmers University of Technology
Gothenburg, Sweden 2017

LiDAR Clustering and Shape Extraction for Automotive Applications
TOBIAS NYSTRÖM JOHANSSON
OSCAR WELLENSTAM

© TOBIAS NYSTRÖM JOHANSSON, OSCAR WELLENSTAM, 2017.

Supervisors: Abu Sajana Rahmathullah and Daniel Svensson, Zenuity AB
Examiner: Fredrik Kahl, Department of Electrical Engineering

Master’s Thesis 2017:EX 107
Department of Electrical Engineering
Division of Signal Processing and Biomedical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2017

iv

LiDAR Clustering and Shape Extraction for Automotive Applications
TOBIAS NYSTRÖM JOHANSSON
OSCAR WELLENSTAM
Department of Electrical Engineering
Chalmers University of Technology

Abstract
In research related to autonomous vehicles, interest has recently fallen on the use of
multi-layer laser scanners, also known as lidars. They are used with the intention to
better detect and track vehicles, pedestrians and other objects on the road. A lidar
receives reflections from objects in the field of view of the sensor and these detections
are usually represented as a point cloud in 3D coordinates. One major challenge
associated with the use of this data in real time applications is the need to reduce the
complexity of the data in an efficient way. In this thesis, an algorithm is proposed
to process the data obtained by the lidar by reducing the point cloud to geometric
descriptors, or shapes. The proposed algorithm clusters data from each vertical
scan layer of the lidar individually. Each cluster is then assigned and fitted with
one of four possible shapes, namely L-shapes, lines, polygons or points. Clusters are
subsequently merged based on their proximity, but with restrictions depending on
their shapes to avoid undersegmentation. The proposed algorithm then fits a new
shape to each merged cluster, which ideally represents a single object. Quantitative
evaluation using a reference vehicle and manual assessments show promising results
when compared with a reference algorithm. The proposed algorithm is proficient
in distinguishing between vehicles and ground points, as well as providing accurate
shape descriptors. On the other hand, both algorithms show decreased performance
at certain orientations of an object relative to the lidar. The execution time of the
proposed algorithm is considerably higher than the reference algorithm, but several
optimisations are suggested which would greatly improve run time.

Keywords: multi-layer lidar, laser scanner, segmentation, clustering, feature extrac-
tion, shape extraction, preprocessing, object tracking, real-time, perception

v

Acknowledgements
We would like to thank Zenuity for making this thesis possible. Special gratitude
is extended to our supervisors Abu Sajana Rahmathullah and Daniel Svensson, for
providing helpful guidance and assistance throughout the project. We would also
like to acknowledge the rest of the Target Tracking team at Zenuity for being helpful
and welcoming in every situation.

Finally we would like to thank Prof. Kahl at the Department of Electrical Engi-
neering for his support and advice.

Tobias Nyström Johansson and Oscar Wellenstam, Gothenburg, November 2017

vii

Contents

List of Figures xi

List of Tables xvii

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 3
1.3 Related Work . 3
1.4 Scope and Limitations . 4
1.5 Contribution . 5
1.6 Thesis Outline . 5

2 System Overview 7
2.1 Coordinate System . 7
2.2 Multi-layer Lidar . 7

3 Theory 11
3.1 Clustering . 11

3.1.1 Breakpoint Detection . 12
3.1.2 Hierarchical Clustering . 15

3.2 Shape Extraction . 16
3.2.1 Line . 17
3.2.2 L-shape . 17
3.2.3 Convex Hull . 19
3.2.4 Concave Hull . 21

4 Methods 23
4.1 Lidar Data . 23
4.2 Algorithm Implementation . 23

4.2.1 Overview . 23
4.2.2 Clustering . 25
4.2.3 Shape Extraction . 30
4.2.4 Cluster Merging . 37
4.2.5 Overlap factor . 43

4.3 Evaluation . 43
4.3.1 Manual Evaluation . 44
4.3.2 Reference Target Evaluation 48

ix

Contents

4.3.3 Execution time . 51

5 Results 53
5.1 Manual Evaluation . 53

5.1.1 Scenario 1 . 53
5.1.2 Scenarios 2, 3 and 4 . 55

5.2 Reference Target . 58
5.2.1 Ego Overtaking . 58
5.2.2 Target Overtaking . 60

5.3 Execution time . 63

6 Discussion and Future Work 67
6.1 Clustering . 67
6.2 Shape Extraction . 68
6.3 Execution Time . 70
6.4 Future Work . 71

7 Conclusions 73

Bibliography 75

x

List of Figures

2.1 The (x, y) plane and (x, z) plane with origin at the location where
the sensor is mounted. Images are derivative work of [1] and [2]. . . . 7

2.2 Top-view of a lidar mounted in the front bumper. A) Ego vehicle.
B) Lidar detections of oncoming vehicle. C) Lidar field of view α,
typically between 120° and 150°. The image is a derivative work of [1]. 8

2.3 The horizontal field of view is divided into N azimuth directions
A0, A1, ..., AN−1 of equal spacing. Here N is sufficiently large and
the angular resolution is < 1° giving a total field of view of α in
Figure 2.2. The image is derivative work of [1]. 8

2.4 N elevation angles (L1, L2, L3, . . . , LN−1, LN) of equal spacing divide
the vertical field of view in slices of width, δ, giving a total vertical
field of view of Nδ°. For a 2D+ lidar, N ∈ [2, 8] and typically δ < 1.
The image is a derivative work of [2]. 9

3.1 A sequence of points, pn−4 through pn+2 constitute detections on two
objects. The first four points, pn−4 to pn−1 are clustered since the
distance between each consecutive point is smaller than the threshold
Dmax. However, the distance between the next point on the box object
pn and pn−1 on the line object is larger than Dmax, implying that pn is
a breakpoint and thus the start of a new cluster which contain points
pn to pn+2. 12

3.2 The ABD threshold Dmax as described by Borges et al. [3] is the
distance between the previous scan point pn−1 and the hypothetical
scan point phn. The distance is calculated by using the law of sines
with respect to the sides of triangle created by the origin, pn−1 and
phn, and the inner angles ∆φ and λ−∆φ. Any current scan point pn,
outside the threshold circle will be considered a breakpoint. 13

3.3 Incidence angles θ1 and θ2 corresponding to the two detections p1
and p2. The points are more sparsely scattered on the side with the
smaller incidence angle θ2 than the one with the larger angle θ1. . . . 15

3.4 The fitted rectangle forms a bounding box for all the points in a
cluster and the rotation of said rectangle around the points, from
θ = 0° with an increment δ. The rectangle is re-calculated in each
pose θ to always include all the points. 18

3.5 Example of a convex hull generated for an arbitrary set of data points. 19

xi

List of Figures

3.6 Convex hulls C1 and C2 are tested for overlap. A separating axis l2
can be found such that the perpendicular projections C ′1 and C ′2 of
the two convex hulls C1 and C2 do not overlap, so C1 and C2 do not
overlap. Line l2 is found by taking a perpendicular line to the line l1
which corresponds to a side of one of the convex hulls. [4] 20

3.7 Example of a concave hull generated for the same data points as used
in Figure 3.5. 21

3.8 Illustration of the concave hull algorithm in [5]. For a convex hull with
interior points P1, P2 and P3. The first iteration of the algorithm will
select the longest edge E1 and check if it can be split by making one
of the interior points a new edge point. In the sequence above the
result is the creation of two new edges E11 and E12. 22

4.1 Detections within the range specified by rmin,noise, are removed in a
prelimnary processing step. The red lines indicate the sensor’s field
of view and the blue crosses are noisy detections close to the sensor
that will not be considered for further processing. 24

4.2 Example of modified dual breakpoint clustering for a sequence of
points interrupted by an occlusion. 28

4.3 Angle criterion calculation for three points p1, p2 and p3. Vectors
v1, v2 and u, whose directions are unimportant, connect the three
points. The longest vector is u, while v1 and v2 are the two shorter
vectors. δ is the angle between the shorter vectors v1 and v2, and
must be smaller than δ0 on line 12 in Algorithm 2 for the criteria to
be satisfied. pmean is the mean of the three points p1, p2 and p3, and
w is the vector from the sensor to pmean. The incidence angle φ is
approximated by calculating the angle between the two vectors u and
w, and must be smaller than φ0 on line 12 for the criteria to be satisfied. 29

4.4 Example of the first criterion in Equation 4.3 for modified dual break-
point clustering for a sequence of points detected around a corner. . . 30

4.5 The figures above illustrate possible cluster formations and their ide-
ally assigned shape in the respective caption. The different shapes
considered for shape extraction are points (a), polygons (b), lines (c)
and L-shapes (d). 31

4.6 An example encountered from detections on a guardrail. The initial
line fitting of all the points yields the red line. The point indicated
in green is an outlier with respect to red line and is excluded in re-
estimation of a line without outliers. However, the new line marked
in black, is significantly shorter than the actual object as indicated
by the points so the red line would in this case be retained. 33

4.7 The process of generating an L-shape from the four lines obtained
by SBRF. In (a) the intersection points are found. Next, in (b) the
point furthest from the sensor, p2 is identified and finally in (c) it is
removed creating an L-shape consisting of the three points p1, p3 and
p4. 34

xii

List of Figures

4.8 Three examples of line clusters that could be classified using the vari-
ance σ2

x, σ2
y or the principal components λ1 and λ2. 35

4.9 A cluster bounded by a rectangle, where the assumed L-shape is the
two sides closest to the sensor. The proportion p = nL/ntot, where
ntot, is the total number of points contained in the rectangle and nL,
the number of points on the shaded side. 36

4.10 The above figures illustrates two examples of DBD clustering and
shape extraction, (a) and (c) which motivate merging with single
linkage in order to generate one cluster and one shape for each object,
(b) and (d). 38

4.11 The L-shaped data, mainly constituting of the yellow cluster is sur-
rounded by clusters which include predominantly ground points. The
dashed ellipse indicate a possible grouping that a single linkage clus-
tering algorithm might give on the scenario depicted. 40

4.12 Different examples of shape combinations that are assessed by Algo-
rithm 4. 42

4.13 The angles,θ1,max, θ1,min, θ2,max and θ2,min for an example with two
merged clusters, represented by the black and white dots respectively. 43

4.14 Resulting shape extraction for detections on the vehicle above should
ideally be the L-shape shown in (b), but could for instance be over-
segmented into four shapes as illustrated in (a). In (a), the vehicle’s
side represented by s1, is the most important side to obtain for track-
ing due to it containing the most information about distance from
the sensor to the vehicle as well as the vehicle’s direction. The over-
lap factor is aimed assist in distinguishing which of the shapes that
represent this side. 45

4.15 Scenario 1, where a preceding vehicle in the left lane with respect to
the ego vehicle initiates a lane change. The ego vehicle is represented
by the sensor in the figure. The shape of the detections on the vehicle
change from an initial L-shape to a final vertical line. 45

4.16 In scenario 2 the ego vehicle is stationary, waiting to turn left while
facing a small incline road. A vehicle in the right lane passes through
an area where a large set of ground detections are obtained. 46

4.17 In scenario 3, the ego vehicle is moving forward, rightward in the fig-
ure. On its right side a vehicle is passing between traffic islands which
cause several detections. Additionally ground detections close to the
vehicle occur. This combination of detections close to the vehicle is
challenging to handle and could possibly lead to undersegmentation.
Note that detections on the vehicle have not been included in the
illustration. 47

4.18 The ego vehicle is making a left turn at an intersection, while the
sensor sweeps over a stationary vehicle waiting on the opposite side
of the intersection. The vehicle is standing in a rising slope, which
causes ground detections near the vehicle. 47

xiii

List of Figures

4.19 The reference car designated target vehicle is at a known location in
relation to the ego vehicle. Detected points, and subsequently shapes,
can be compared to the true location and heading of the target vehicle. 49

4.20 The side of the target vehicle which is visible to the sensor and has
the largest (primary) incidence angle max{θ1, θ2} is considered the
primary side. If more than one side of the target vehicle is visible to
the sensor, the side with the smaller (secondary) incidence angle θ2
is called the secondary side. 49

4.21 The mean square errors MSEprim and MSEsec are calculated using
the distances from the endpoints of the fitted line or L to the reference
line. The angular fitting error Eang is the angular difference between
the fitted line or L and the primary reference line. 51

4.22 Two scenarios were evaluated using a reference target vehicle with
a known location relative to the ego vehicle. The distances in the
figures are approximations. 52

5.1 Resulting shape extraction for a specific frame for the proposed al-
gorithm and the reference algorithm. In (a) the proposed algorithm
fit a the wrong shape and for the same case the reference algorithm
with GPR suffer from oversegmentation as seen in (b). 54

5.2 Detections on the vehicle in scenario 1 in a sample where the detec-
tions are noticeably sparser on the secondary side resulting in over-
segmentation for the proposed algorithm. 55

5.3 The figures illustrate the resulting shape extraction for a specific
frame for the proposed algorithm and the reference algorithm with
GPR. In (a) and (b) both algorithms cluster ground detections and
vehicle detections together. 56

5.4 The figures illustrate the resulting shape extraction for a specific
frame for the proposed algorithm and the reference algorithm. In
(a) the proposed algorithm manages to extract the desired shape,
namely a line, while in the (b) the reference algorithm fails to do so
and extracts an L-shape. 56

5.5 Samples collected with target distance evenly spread between 10m
and 120m, with a peak at 100-110m. The θ2 is below 5° for nearly all
frames. 58

5.6 Proportion of frames with different numbers of shapes in the vicinity
of the target vehicle at varying distances for the designed algorithm
in (a) and (c), and the reference algorithm in (b) and (d). (e) and (f)
show the proportion of L-shapes versus lines among the valid shapes,
at varying distances to the target vehicle. The proposed algorithm
and the reference algorithm provide largely identical results. 59

5.7 Fitting errors for the proposed algorithm in Figures (a), (b) and (c),
and for the reference algorithm in Figures (d), (e) and (f). MSEprim
in (a) and (d), are similar for both algorithms, but with more stable
results in the proposed algorithm. The same fact can be observed for
MSEsec in Figures (b) and (e), and Eang in Figures (c) and (f). . . . 60

xiv

List of Figures

5.8 The collected data samples for different sensor to target distancesDST

are evenly spread when 10m < DST < 50m, and diminish with when
DST > 50m. The amount of sampled data per secondary incidence
angle θ2 follows an exponential decay with the number of samples N
decreasing as θ2 increases. 61

5.9 Proportion of frames with different numbers of shapes in the vicinity
of the target vehicle at varying distances for the designed algorithm
in (a) and (c), and the reference algorithm in (b) and (d). Subfigures
(e) and (f) show the proportion of L-shapes versus lines among the
valid shapes, at varying distances to the target vehicle. The proposed
algorithm and the reference algorithm provide largely identical results. 62

5.10 Fitting errors for the proposed algorithm in Figures (a), (b) and (c),
and for the reference algorithm in Figures (d), (e) and (f). The pro-
posed algorithm outperform the reference algorithm with regards to
primary side fitting error MSEprim in (a) and (d) and angular fitting
error Eang in (c) and (f). At shorter distances DST < 30, and perform
similarly for longer distances. The algorithms also appear equivalent
with regards to secondary side fitting error MSEsec in (b) and (e). . . 63

5.11 Proportion of total execution time on average spent in each step of
the proposed algorithm, preprocessing fpre (< 0.1%), clustering fclus
(12.8%), initial shape extraction fSE1 (12.0%), cluster merging fmrg
(39.9%) and final shape extraction fSE2 (35.2%) 64

5.12 Average execution time Tavg for different numbers of scan points
Nscan points (a), clusters before merging Nclusters (b) and final number
of shapes Nshapes (c). The execution times of the different subfunc-
tions of the proposed algorithm ftot include clustering fclus, primary
shape extraction fSE1 , cluster merging fmrg and secondary shape ex-
traction fSE2 . ftot is the sum of the subfunctions. Nclusters, as seen in
(b) appears to have the strongest correlation with Tavg for the total
execution time ftot. 65

xv

List of Figures

xvi

List of Tables

4.1 Shape identification number for the different shapes. The number
also corresponds to the priority of the shapes, where a higher number
indicates higher priority. 31

4.2 Line coordinates for a horizontal or a vertical line 33
4.3 Approximate distance to observed vehicle in scenario 1-4. 47
4.4 Number of frames assessed in each scenario. 48

5.1 Results for scenario 1, showing the percentage of frames, in which the
extracted shapes were wrong and what the reason was. P alg. refers
to the ’Proposed algorithm’ and Ref. alg refers to the ’Reference
algorithm’. 54

5.2 Results for manual assessment of scenario 2, 3 and 4, with the pro-
posed algorithm and the reference algorithm with GPR. 55

5.3 The result of the manual assessment for scenario 2, 3, and 4 combined. 57
5.4 The average execution time Tavg and the standard deviation σ for the

proposed algorithm and the reference algorithm. 64

xvii

List of Tables

xviii

1
Introduction

Research on autonomous vehicles is a topic of significant interest worldwide. The
prospect of being able to spend commuting time reading the news, sending emails
or even sleeping is appealing compared to actively controlling a vehicle, but the
advantages that autonomous driving could offer exceeds that of human comfort.
According to data published by the World Health Organization, about 1.25 million
people worldwide are killed in traffic accidents each year [6]. Human errors are esti-
mated by the National Highway Traffic Safety Administration (NHTSA) to account
for 94% of all traffic deaths in the US [7], and by allowing cars to navigate and
maneuver autonomously this effect can be mitigated. There is also speculation on
other ways the introduction of autonomous cars can benefit society, for example
by changing the ownership model of cars to allow for cheaper transportation, and
saving space in cities where less parking spots will be required if the degree of car
ownership decreases.

1.1 Background
In order for an autonomous vehicle to make correct decisions, it is critical that it is
able to accurately assess surrounding traffic, roads and obstacles. This assessment is
obtained by analysing data from a large number of sensors mounted on the vehicle.
Some of the most commonly used include radar, lidar and camera. A fully au-
tonomous vehicle would include different types of sensors to supplement each other
and through sensor fusion a more reliable picture of the surroundings of the vehicle
is possible than using a single type of sensor. The different sensors generally have
unique strengths and weaknesses. A radar uses microwaves to determine distance
and speed of an object as well as the angle to the object. It is typically accurate at
determining the distance and speed, however the angular accuracy is proportional to
the angular resolution of the radar which often is rather poor. A camera sensor takes
pictures which are then processed using several image processing algorithms.These
are exceptional at classifying and distinguishing between different objects in images,
but uses large amounts of processing power. Furthermore, camera sensors are typi-
cally good at measuring the angle to an object, but are poor at distance measuring.
Using a camera sensor in poor lighting conditions will also reduce its performance.
A lidar uses laser to measure distances, and can depending on the type of sensor
generate a precise 2D or 3D map of a vehicle’s surroundings. A lidar tends to gener-
ate large amounts of data which is typically computationally expensive to process.
The handling and processing of lidar data is investigated in this thesis.

1

1. Introduction

The simplest version of a lidar sends out a laser pulse in one known direction,
and then detects reflections from objects in its path. The reflected signals are used
to measure distances to objects in those known directions, but for it to be useful
in autonomous driving it needs to be able to detect objects in more than one di-
rection. The solution that is implemented in automotive lidars is to have one or
more actuated sensors in a single lidar system. A 2D lidar is a system in which
the scanners sweeps over different angles, allowing objects in many directions to be
covered by the sensor. There are also even more complicated lidar systems, the most
well known that are suitable for use in automotive applications are the so called 3D
lidars [8, 9, 10]. They have a large number of scanners placed in a vertical line,
where each sensor is also referred to as a scanning layer. Each sensor is mounted
with slightly different elevation angles and work in unison to obtain a point cloud
of reflections so dense that it approximates a 3D image of the covered area. The
system is commonly used in autonomous driving research and experiments, with the
sensor mounted on the roof of the car. A well known manufacturer of such systems
is Velodyne, which in its portfolio of sensors have a high resolution 3D lidar with
64 layers [9]. Due to significant costs in acquiring such systems, other automotive
lidars are used that contain considerably fewer scanning layers. In this thesis, such
lidars with up to eight scanning layers are considered. Such lidars are herein referred
to as 2D+ lidars.

The major difference between the 2D+ and 3D LiDAR sensors is in the amount of
data they produce and consequently, in the computational complexity associated
with analysing them. A high resolution 3D lidar produces over two million points
per second whereas a typical 2D+ lidar produce around a hundred thousand points
per second. One car maker has to date announced an autonomous driving function
in a new car model which utilises a 2D+ lidar among other sensors [11]. It is be-
lieved that lidar will play an important role in the sensor set of future autonomous
vehicles, as most autonomous driving projects utilise 2D+ or 3D lidars as part of
their sensor set [12].

As mentioned before, besides the lidar, the autonomous vehicle will also use other
sensors to have an accurate and reliable perception of the environment. A popu-
lar way to achieve this is to combine information from multiple sensors sampled
over time in an inference or estimation algorithm, commonly known as tracking
filters. The algorithms typically provide prediction estimates of the current state
variables using some motion model. Thereafter, the estimate is updated using mea-
surements from sensors in some measurement model. Bayesian filters are based
on Bayesian statistics and include Kalman filtering and variations thereof such as
extended Kalman filtering, unscented Kalman filtering and particle filtering. Here
data from different types of sensors can be analysed together resulting in an overall
improved estimation. [13]

Radar data is very different from that of camera vision systems, which in turn
looks different to the data obtained from lidar. An approach to combining the data

2

1. Introduction

from these sensors in a filter is to first preprocess the data. For both radar and
lidar, preprocessing brings down the computational complexity dramatically since
a single object can cause many detections. In the case of 2D+ lidars, trying to
perform filtering on an unprocessed data point cloud would result in a very high
computational cost.

1.2 Purpose

The purpose of this work is to design an algorithm to efficiently and accurately
preprocess 2D+ point cloud data from a multi-layer LiDAR, and produce simplified
geometric descriptors, or shapes, that can be used in Bayesian target tracking algo-
rithms.

There are two fundamental challenges that the algorithm thus needs to solve. First,
it should provide some clustering of the lidar detections that reliably distinguish
detections from different objects, such that each cluster represents one object. Sec-
ondly, it should classify each cluster to assign it a representative shape which should
subsequently be fitted to the cluster.

The algorithm shall be designed to suit a lidar mounted in the front bumper of a
car, and real-time processing should be kept in mind when designing the algorithm.
The geometrical descriptors which the algorithm shall produce is limited to the
primitive, but for vehicles descriptive, shapes of lines, L-shapes, points and polygons.
Information about the quality of the descriptors should be retained in order to allow
for estimation of an uncertainty measure that could be used in a target tracking
algorithm, which will have to weigh the inputs from the lidar against other sensor
data.

1.3 Related Work

Research related to lidar data processing is extensive and quickly growing, which
makes it challenging to provide a comprehensive overview of the area. In this sec-
tion some related research will be presented which ranges from complete Detection
and Tracking of Moving Objects (DATMO) algorithms to work aimed at improving
underlying algorithms for clustering, shape extraction and tracking.

Several papers propose algorithms for shape extraction of 2D and 2D+ lidar data.
In [14], Wender et al. distinguish different types of shapes for each layer of the
multi-layer lidar, after which the orientation and shape of each layer is combined
using some weighting to form a best estimate. It is later expanded upon in [15],
where they use a support vector machine (SVM) and a Kalman filter to subsequently
classify and track the detected objects. However, the shapes that are calculated, are
designed for speed, and the algorithm does not always give accurate results.

3

1. Introduction

A subproblem in DATMO with a lidar is how to perform segmentation on the data
provided by the sensor. For 2D and 2D+ lidars, a multitude of different methods
exist. The method most often recurring in previous research is implementation of
some version of breakpoint detection in order to partition data [16, 3, 17, 18]. In
addition, approaches involving density-based spatial clustering of applications with
noise (DBSCAN) include [19, 20].

In [20], DBSCAN is used to cluster points from several lidars, after which each
cluster is classified as one of several shape types. Additionally, a Kalman Filter is
implemented to track the detected objects. However the algorithm is slow and not
suited for real time implementation.

In [17], Kim et al propose methods for robust clustering of multi-layer lidar data.
They formulate and use an adaptive breakpoint algorithm which clusters multiple
layers of data simultaneously, and attempt to avoid ground detections using some
heuristics. This clustering method however risks causing undersegmentation when
different objects are observed on the different scan layers, for example ground points
detected under a vehicle. The authors later designed a method for classifying car and
pedestrian data point clusters using an SVM [21], trained on manually labelled data.

Certain research specifically focus on pedestrian detection and tracking [22, 23]. In
[23], Gidel et al. present a method of real-time detection and tracking of pedestrians
by means of a four-layer lidar. To fuse the data from several layers they propose
a Parzen Window kernel method. In [22], Gate et al. suggests a method to recur-
sively estimate the true outline of pedestrians to improve their classification from
lidar data and subsequently their tracking as well.

Several line extraction algorithms for use on 2D lidar data in SLAM applications are
presented in a comparison by Nguyen et al. [24], of which the split-and-merge algo-
rithm was singled out as having favourable performance with respect to speed and
accuracy. The algorithm fits a line to a set of points and perform successive splits of
the line at points which have a maximum normal distance to the line segment. The
method however suffers from sensitivity to noise when choosing a splitting point. An
algorithm inspired by split-and-merge, which aims at mitigating the aforementioned
sensitivity to noise, was suggested by Magnier et al. [25]. The algorithm, called, the
recursive best segment split (RBSS), selects the splitting point that minimises the
sum of variances instead of the one with a maximum normal distance.

In [16] and [3], methods for extracting lines from data obtained from 2D and 2D+

lidars are proposed for SLAM-applications, but contains clustering and shape ex-
traction algorithms which are relevant for automotive applications.

1.4 Scope and Limitations
The algorithm developed in this work is constrained to implementation in MATLAB
on a PC. Even though real-time performance is essential for the application of the

4

1. Introduction

algorithm, there are no thorough evaluations on performance in an optimised coding
language and on specialised hardware.

The preprocessing must be performed frame by frame and may not have time de-
pendencies.

Extracting shapes which provide accurate representation of dynamic objects de-
tected on the road is considered most important, with representations of vehicles
and pedestrians having priority over barriers and lane markings. The shapes will be
extracted in 2D, representing a view of the environment as seen from directly above
in the xy-plane using the coordinate frame presented in Chapter 2.

The algorithm is tested in a limited number of selected scenarios encountered in
log-data, and is not evaluated for a large number of generic traffic situations. Even
though care is taken to select relevant and challenging scenarios for evaluation of
the algorithm, performance in a real world setting with diverse situations are not
thoroughly assessed. Focus is on situations that occur on delimited highway roads
in good weather conditions.

1.5 Contribution
The main contributions of this thesis are:

• An extended dual breakpoint detection clustering method which allows for
clustering of sequential scan points depending on a distance or an angle-based
criterion, as described in Section 4.2.2.

• A collection of criteria for classifying polygons, lines and L-shapes from clus-
tered data, presented in Section 4.2.3.

• A group of criteria for selectively merging clusters in close proximity depending
on the shape associated with them, which is elaborated on in Section 4.2.4.

1.6 Thesis Outline
The outline of the thesis is as follows: Chapter 2 provides an overview with re-
spect to how data from a multi-layer lidar is obtained. In Chapter 3, a theoretical
background to clustering and shape extraction is presented. Next, the design of the
algorithm and methods for evaluation are given in Chapter 4. In the subsequent
Chapter 5 the results of the evaluation are presented. Afterwards, a discussion on
the performance of the proposed algorithm compared to the reference algorithm
is provided in Chapter 6. Finally in Chapter 7 conclusions and future work are
presented.

5

1. Introduction

6

2
System Overview

The experimental setup is described in this chapter. First, in Section 2.1, the co-
ordinate system is presented. Secondly, in Section 2.2, a detailed description of
multi-layer lidar data is provided.

2.1 Coordinate System

The system consists of a vehicle with a lidar mounted approximately in the center of
the front bumper. The coordinate system used is placed with the sensor in the origin,
as can be seen in Figure 2.1, where the x-axis represents longitudinal coordinates,
the y-axis represents lateral coordinates and the z-axis represents the heights.

(a) (x, y) (b) (x, z)

Figure 2.1: The (x, y) plane and (x, z) plane with origin at the location where the
sensor is mounted. Images are derivative work of [1] and [2].

2.2 Multi-layer Lidar

A lidar works by emitting a sequence of laser pulses in different azimuth and elevation
angles, and detecting the reflections of these pulses from different objects on the
road and from the road itself. Time of flight is then used to determine the distance
to each point, which combined with the azimuth information provides a Cartesian
coordinate representation of each point. In this case the lidar is mounted on the
front bumper of a car as illustrated in Figure 2.2.

7

2. System Overview

Figure 2.2: Top-view of a lidar mounted in the front bumper. A) Ego vehicle. B)
Lidar detections of oncoming vehicle. C) Lidar field of view α, typically between
120° and 150°. The image is a derivative work of [1].

The laser pulses are emitted sequentially over the different azimuths, see Figure 2.3,
and elevation angles, see Figure 2.4, which combined with the distance to the target
gives information on the 3D position of a detected point.

Figure 2.3: The horizontal field of view is divided into N azimuth directions
A0, A1, ..., AN−1 of equal spacing. Here N is sufficiently large and the angular reso-
lution is < 1° giving a total field of view of α in Figure 2.2. The image is derivative
work of [1].

8

2. System Overview

Figure 2.4: N elevation angles (L1, L2, L3, . . . , LN−1, LN) of equal spacing divide
the vertical field of view in slices of width, δ, giving a total vertical field of view of
Nδ°. For a 2D+ lidar, N ∈ [2, 8] and typically δ < 1. The image is a derivative
work of [2].

The data is presented as a 3D point cloud in the (x, y, z) coordinate system pre-
sented in Figure 2.1, and consists of reflections from static surroundings such as
the road and traffic signs as well as dynamic objects such as cars and pedestrians.
Points are ordered sequentially according to the azimuth and elevation scanning
order. The data is sampled at a frequency between 20Hz and 100Hz, each sample
containing data from every azimuth over all active elevation angles. The active
elevation angles can in some cases alternate between the different frames, but is
known and predictable so that the resulting 3D point cloud can still be accurately
determined. Some lidars can detect multiple echoes originating from the same laser
beam. For example multiple echoes can occur, when there are multiple reflective
surfaces contained in a single azimuth and elevation angle, but at different ranges.
Multiple echoes can also be caused by a laser beam scattering over multiple objects
or in poor weather conditions. The lidar used here is able to detect several echoes.

9

2. System Overview

10

3
Theory

In this chapter the theoretical backgrounds of the clustering and the shape extraction
methods are presented in Section 3.1 and Section 3.2, respectively. Section 3.1
focuses on clustering for automotive applications with lidar. Section 3.2 is focused
on methods to generate the geometric shape descriptors that are considered in the
thesis, namely lines, L-shapes and polygons. For polygon extraction, the first step
can be the formation of convex or concave hulls. Therefore, methods to extract
those hulls are also described.

3.1 Clustering
Clustering of data is an extensive area of research and covers many disciplines. The
underlying purpose is to separate a finite set of unlabelled data points into sets of
discrete data structures [26]. Cluster analysis in broad terms, as defined by Jain et
al. [27], is the organisation of a set of data points into clusters, with respect to some
similarity. An interpretation of this is that the data points generated by a cluster-
ing algorithm are more similar to each other than to points in any other cluster.
Measuring similarity is not a trivial task and depends partially on the features of
the data and how easy these features are to identify and extract.On a high level,
clustering methods can be divided into hierarchical and partitional approaches [27].
a hierarchical clustering method, each data point is organised in a tree structure
according to similarity between all data points. When the tree structure is created,
clusters are formed by determining the maximum dissimilarity allowed between two
data points of the same cluster and dividing the tree accordingly. A partitional
method, on the other hand assigns each data point to a cluster without retaining
information on similarity to every other point. This saves the computational effort
of creating the similarity tree used in hierarchical methods, but retains less knowl-
edge about the clusters formed. For lidar data represented as points in Cartesian
coordinates, two features that could be used for similarity are the distances between
the points, and the local distribution of points. Furthermore, in 2D and 2D+ lidar
data, the sequential nature of data is usually available, which provides an additional
aspect to consider for clustering.

To process raw lidar data for automotive applications, a distinct difference between
the approaches found in previous research is whether the sequential information is
used in the clustering, or whether the data is treated as a set of unordered points.
For the first case of using ordered points, the most prevalent methods of clustering

11

3. Theory

are based on breakpoint detection [16, 3, 17, 18], which mainly utilises the similarity
in-between consecutive points to construct the clusters.

For the second case of treating the points as unordered, clustering methods such as
DBSCAN [28] can be used as is done in [19, 20]. The main advantage of treating
the data as unordered is that one can combine data from different sensors before
any clustering is performed, which simplifies the method and diminishes the need
for post-clustering data association.

3.1.1 Breakpoint Detection
In breakpoint detection the points are clustered together automatically if they are
neighbours in the sequence , unless the distance between consecutive points pn−1
and pn surpass a certain threshold Dmax,

‖pn − pn−1‖ > Dmax. (3.1)

If the distance between the points exceeds the threshold Dmax, a new cluster will
be started using the current point pn. That current point will be considered the
breakpoint between two clusters. This principle is illustrated in Figure 3.1.

x

y

pn

pn−1

Sensor

‖pn − pn−1‖ > Dmax

pn−2pn−3pn−4

pn+1

pn+2

E F

Figure 3.1: A sequence of points, pn−4 through pn+2 constitute detections on two
objects. The first four points, pn−4 to pn−1 are clustered since the distance between
each consecutive point is smaller than the threshold Dmax. However, the distance
between the next point on the box object pn and pn−1 on the line object is larger
than Dmax, implying that pn is a breakpoint and thus the start of a new cluster
which contain points pn to pn+2.

The main challenge with breakpoint detection is to find a suitable distance threshold
Dmax, as there are several factors which can affect the distance between two points

12

3. Theory

‖pn − pn−1‖. Most importantly, the lidar measurements are sparser as the range to
the detections increases, which causes problems when keeping a fixed threshold.

3.1.1.1 Adaptive Breakpoint Detection

A way of adapting the threshold Dmax in Section 3.1.1 to the range of the detection
was suggested by Borges et al. [3] and is known as Adaptive Breakpoint Detection
(ABD). The key to the ABD threshold is a methodology presented in Figure 3.2,
where a virtual line is passing through a scan point pn−1. To determine the virtual
line, a parameter λ is set, corresponding to the angle with respect to the scanning
angle φn−1. Furthermore λ can be interpreted as the worst case incidence angle for
a line on which points can be reliably detected.

x

y

λ

phn
pn

pn−1
rn−1

∆φ

φn−1

λ−∆φ

Dmax

Figure 3.2: The ABD threshold Dmax as described by Borges et al. [3] is the
distance between the previous scan point pn−1 and the hypothetical scan point phn.
The distance is calculated by using the law of sines with respect to the sides of
triangle created by the origin, pn−1 and phn, and the inner angles ∆φ and λ−∆φ. Any
current scan point pn, outside the threshold circle will be considered a breakpoint.

For detections on the surface of an object, the incidence angle θ describes how that
surface is oriented in relation to the sensor. For a rectangular object, each side that
is visible to the sensor has an incidence angle which relates to how densely the scan
points can be expected to lie. The incidence angle is the smallest angle between two
vectors v1 and v2, where v1 is a vector from the sensor to the detected point and
v2 is a vector parallel to the side of the object which the point is detected on. An
illustration of the incidence angle can be seen in Figure 3.3. The ideal case is when
the incidence angle of one side is close to 90°, as the distance between two successive
points will only depend on the distance from the sensor to the point and the hor-
izontal step size of the sensor. The worst case is when the incidence angle is close

13

3. Theory

to 0°, since the distance between two successive points grows without limits [29]. A
result is that the density of points can vary on different sections of a single object, as
can be observed in Figure 3.3 where the side with the smaller incidence angle θ2 has
a sparser distribution of points than that of the side with a larger incidence angle θ1.

The purpose of the worst case incidence angle λ is to extrapolate the largest allowed
distance to a successive point pn for the point to be included in the same cluster as
pn−1. The distance from this hypothetical scan point phn to pn−1 as seen in Figure
3.2 will be the basis for the adaptive threshold, which is represented by a circle
within which any successive point would be included in the current cluster. Using
the law of sines for the triangle formed by the origin, phn and pn−1 yields the following
expression

sin(∆φ)
‖phn − pn−1‖

= sin(λ−∆φ)
rn−1

, (3.2)

where rn−1 is the range from the sensor to the point pn−1. Equation 3.2 can be
rewritten as

‖phn − pn−1‖ = rn−1
sin(∆φ)

sin(λ−∆φ) . (3.3)

Using this value as the threshold directly fails to take into account the noise as-
sociated with the range which means the threshold can become unstable at close
distances to the sensor. In order to mitigate this, Borges et al. [3] further suggests
adding a range measurement noise term 3σr to the threshold, where σr is distance
resolution of the lidar. resulting in the following definition of the adaptive threshold

Dmax = ‖phn − pn−1‖+ 3σr. (3.4)

One limitation with ABD is that it does not directly account for different incidence
angles. The parameter λ which correlates to the incidence angle and determines all
the distance thresholds using Equation 3.2 is predefined and unchanged regardless of
the actual incidence angle of the measured surface. This makes tuning the parameter
λ critical, as a large value will cause oversegmentation, and a small value will cause
undersegmentation.

3.1.1.2 Dual Breakpoint Detector

A dual breakpoint detector (DBD) was proposed by An et al. in 2012 [16] for an
application in simultaneous localisation and mapping (SLAM). The DBD is an ex-
tension of the ABD, which under certain circumstances allow clustering of points
despite the distance-based criterion in Equation 3.1 being violated. If a cluster only
contains one point, and the next point does not satisfy the distance-based crite-
rion, the point is tested for an angle-based criterion. In the angle-based criterion,
collinearity between the lines formed by three successive points pi−2, pi−1 and pi is
considered. The need for this extension is illustrated in Figure 3.3 where one can
observe that the distance between two successive points are larger on the side with
a small incidence angle.

14

3. Theory

x

y

Sensor

θ1

θ2

p1

p2

Figure 3.3: Incidence angles θ1 and θ2 corresponding to the two detections p1 and
p2. The points are more sparsely scattered on the side with the smaller incidence
angle θ2 than the one with the larger angle θ1.

The DBD classifies clusters of two types: distance-based clusters (DC) and angle-
based clusters (AC). As is the case in ABD, any unclustered measurement is assigned
to a new cluster and consecutive measurements are added if they satisfy the criterion
in Equation 3.1 using the threshold obtained from Equation 3.4. A cluster may only
be assigned one of the labels DC or AC, where the DC label has priority. If any
point is added to the cluster using the distance-based criterion, it will be marked
as a DC cluster and only the distance-based criterion will be considered for adding
additional points to this cluster. If no points are added using this criterion, the
angle-based criterion will be considered. The angle based criterion is written as

|δi − δi−1| < θo (3.5)

where δi is the angle formed by the consecutive points pi−1 and pi and θo is a
threshold. If the angle-based criterion in Equation 3.5 is satisfied, the cluster will
be labelled an AC cluster and only the angle-based criterion will be considered for
adding additional points to this cluster. If a cluster is labelled either a DC or an
AC cluster and a consecutive point violates the respective criterion, the cluster is
considered completed and a new cluster will be initialised with the next point in
question. The process repeats until all points are assigned to a cluster.

3.1.2 Hierarchical Clustering
Hierarchical clustering is a family of clustering methods where the elements of a
set are considered to be related up to a certain degree. A hierarchy of similarity
is usually established for all points, and is subsequently used to form clusters. An
advantage with hierarchical clustering over other popular clustering methods is that

15

3. Theory

the number of clusters does not have to be known before initialising the algorithm.
One drawback with hierarchical clustering is that it can be computationally expen-
sive when the number of elements in a set is large, since the distance between every
pair of elements must be calculated and stored. [26]

Single-Linkage Clustering

Single-linkage clustering is a hierarchical clustering method based on grouping el-
ements and clusters together in an agglomerative fashion. Initially, every element
has its own cluster and the distance between every cluster is computed. Starting
with the clusters with the shortest distance between them, they are merged to form
new clusters. The term ’single-linkage’ refers to how the distance between clusters
are updated after they have been merged. In this case the shortest distance be-
tween the elements of two clusters is considered. One way to perform the clustering
is then to build up a complete dendrogram and cut it at an appropriate place to
create clusters. One characteristic for single-linkage clustering is the presence of a
chaining effect [30], which tends to create clusters that are elongated [27].

3.2 Shape Extraction
Shape extraction or feature extraction is used in several fields to generate descriptors
in order to classify and quantify information [31]. Applications range from machine
learning to image processing and pattern recognition, fields which have gained in-
creased interest in the automotive industry as it strides towards developing fully
autonomous vehicles. The immediate use of feature extraction techniques is in pro-
cessing of data from sensors such as cameras, lidars and radars. Feature extraction
concerning 2D+ lidar data mainly refers to extraction of 2D shapes related to objects
on the road, road markings and barriers, which could be used in tracking algorithms
and other perception based functions.

With focus on creating descriptors for objects on the road, Wender et al. [15] dis-
tinguish between shapes for objects that have a clear contour, e.g., L-shapes or
I-shapes, and those that do not, e.g. O-shapes. Objects with a clear contour can
be rectangular objects such as cars and trucks. These are often perceived as L-
shapes by a multi-layer lidar. Barriers and lane markings on the other hand, are
consistently recognised as lines (I-shapes). Objects with an unclear contour, for
instance detections of pedestrians or ground points, can be perceived as singular
points or polygons depending on size of the cluster. In contrast to L-shapes and
lines, a polygon often does not provide information regarding the direction of the
object. To incorporate more variations in the shape of clusters, Lösch [20] uses verti-
cal and horizontal lines, L-shapes, U-shapes and O-shapes to characterise data from
multiple lidars. The U-shape is designed to capture the shape of objects which due
to the presence of multiple lidar have generated detections on three sides of an object.

In the following sections, an overview of methods to extract different geometric
shapes is presented. The shapes considered are lines, L-shapes and polygons created

16

3. Theory

from convex and concave hulls.

3.2.1 Line
Feature extraction of lines corresponds to linear regression in most cases, but the
possibility of outliers necessitates careful consideration of which method that is used.
The most well known method with respect to linear regression is least squares,
which is however sensitive to ouliers. In contrast, a regression method more robust
to outliers is the Theil-Sen estimator [32]. Other methods of extracting lines are
utilising the sequential information about the points provided by a lidar. One such
strategy is called iterative-end-point-fit and is performed by simply selecting the
first and last point in the sequence to create the line representation. This method is
used in some SLAM applications to build maps in real-time, and a related algorithm
which is also used in SLAM is split-and-merge. Both of these methods are explained
together with iterative-end-point-fit in a review by Nguyen et al. in [24].

Least squares regression

Least squares regression is a standard method of fitting a model to some data.
It finds the minimum of the sum S of the square of the residuals S = ∑n

i=1 r
2,

r = yi − f(xi, β), where the residual r is the difference between the estimated value
f(xi, β), for estimated parameters β, and the actual value yi for a data point (xi, yi).
A drawback with this method is its sensitivity to outliers in noisy data.[33]

Theil-Sen Estimator

The Theil-Sen estimator, first published by Theil [34] and expanded upon by Sen
[32], is a regression method that is insensitive outliers. For a set of n points

(x1, y1), (x2, y2) . . . (xn, yn)

the estimator ŷ = k̂x+ m̂ is obtained by first calculating the slope of each possible
pair of points and then taking the median slope to obtain k̂. The corresponding line
can then be calculated by the y intercept

m̂ = ỹ − k̂x̃, (3.6)

where x̃ and ỹ are the medians of the x and y values in the data.

3.2.2 L-shape
The contours of vehicles in lidar data is most often represented by an L-shape, which
can be used to estimate its size as well as the heading of the object. In the literature
there are multiple ways of solving the problem of extracting L-shapes from clusters.
Wender et. al [15] suggested a method where the shape is fitted by selecting the
point closest to the sensor as the corner for the L-shape and connecting it with lines
for the borders of the object. As explained by Jimenez et al. [29] this approach
to differentiate the sides of the L-shape is sensitive to errors in the measurements

17

3. Theory

or cases where vehicles have rounded corners, since the algorithm then could select
the wrong corner point. Alternative methods include employment of a search based
approach where the definitive L-shape is found by iterating and optimising certain
criteria [35], error minimisation [36], and a combination of error minimisation and
iterative re-estimation of the L-shape until certain conditions are met [29].

Search-based Rectangle Fitting

One recently developed method for L-shape fitting was presented by Zhang et al.
[35], where they formulate the fitting problem as an optimisation problem in order
to find an optimal solution. The algorithm is called Search Based Rectangle Fitting
(SBRF). For a cluster of points, a rectangle defined by four lines which encompass
all the associated points is fitted, as presented in Figure 3.4. The rectangle is then
rotated into a set of different directions θ between 0° ≤ θ < 90°. The number of
rotations are determined by a parameter δ, which specifies at what increment the
rectangle rotates. For each new rotation the rectangle is refitted to contain all points.
To determine the best fit, three criteria for an optimal solution are investigated,
namely area minimisation, point-to-edges closeness maximisation and squared error
point-to-edges minimisation. In the algorithm a score is calculated depending on the
each of these criteria, and the rotation θ with the best score is chosen as the optimal
solution. Their findings indicate that the closeness and squared error minimisation
perform best in a vehicle pose estimation sense.

x

y

δ

Figure 3.4: The fitted rectangle forms a bounding box for all the points in a cluster
and the rotation of said rectangle around the points, from θ = 0° with an increment
δ. The rectangle is re-calculated in each pose θ to always include all the points.

18

3. Theory

3.2.3 Convex Hull

For a set of points, a convex hull is the smallest convex region which contains all the
points, meaning that for any two points on the hull a line segment between them
will be part of the region. An example of a group of points and their corresponding
convex hull can be seen in Figure 3.5. To obtain a convex hull, an incremental
algorithm can be used, which was first suggested by Graham [37] and then further
modified by Andrew [38]. The main part of the algorithm is to sort a set of points
in ascending order depending on the x coordinate and iterate through the points
while checking if the points should be added to the hull. Constructing the hull is
done in two parts with one upper and one lower hull. In the upper hull, points are
added if the last point and the next point create a clockwise turn, and in the lower
hull points are added if the last point and the next point create a counter-clockwise
turn. The two hulls are then merged together to create the full convex hull.

Figure 3.5: Example of a convex hull generated for an arbitrary set of data points.

To check whether two convex hulls overlap, a simple method used in graphics design
called separating axis theorem is used, which is detailed by Boyd and Vandenberghe
[4]. The theorem states that if there exists a line such that you can project the points
of both hulls on it without the intervals of the points of both hulls overlapping, the
convex hulls do not overlap, see Figure 3.6. Candidate lines to project points on
can be found by taking all the lines that form the convex hull, and choosing a line
perpendicular to that. If no such line can be found after testing with all the edges
of both convex hulls, the hulls overlap. [4]

19

3. Theory

l1

l2

C1

C2

C ′1

C ′2

Figure 3.6: Convex hulls C1 and C2 are tested for overlap. A separating axis l2
can be found such that the perpendicular projections C ′1 and C ′2 of the two convex
hulls C1 and C2 do not overlap, so C1 and C2 do not overlap. Line l2 is found by
taking a perpendicular line to the line l1 which corresponds to a side of one of the
convex hulls. [4]

20

3. Theory

3.2.4 Concave Hull
As can be understood from the concept of convex hulls, they have a particular disad-
vantage when it comes to shape extraction as the produced polygons will be unable
to give a satisfactory representation of more advanced shapes such as L-shapes or
curved lines. A better representation of these shapes are thus concave hulls which
will provide a tighter region around the set of points, as can be seen in Figure 3.7.
Concave hulls are non-convex, meaning that a line segment between two points of
the hull may result in a line that is outside of hull’s region.

Figure 3.7: Example of a concave hull generated for the same data points as used
in Figure 3.5.

In order to calculate the concave hull for a point set, an algorithm implementation
by Rosen et al. [5] is available. Their algorithm utilises a convex hull as a starting
point and then iterates through the set of edges.

It begins with the longest edge as an example in Figure 3.8a illustrates. After this,
it calculates the angles of the triangle formed by the two end-points of the edge to
every other point in the cluster, see Figures 3.8b–3.8d. The stated goal is to find
the point which has the smallest maximum angle. When it has been found, it is
chosen as a new potential edge point as is shown in Figure 3.8e. A new edge point
needs to satisfy certain conditions, for the current example these are: a maximum
threshold on θ2

max < 90◦, and secondly, for the new edges E11 and E12 to not intersect
any other edges. If the selected point is accepted the new edges, E11 and E12 will
overwrite the previous edge, E1. On the other hand if the selected point is rejected
as a new edge point the previous edge will be kept and considered a final edge. This
process is iterated until all edges have been tested for a split and a final selection of
edges have been made.

21

3. Theory

x

y

E1

P4

P5

P1
P2

P3

(a) Select the longest edge, E1 of a
convex hull.

x

y

E1

P4

P5

P1
P2

P3
θ1max

(b) For P1, calculate angles ∠P1P4P5
and ∠P1P5P4 and find the maximum
angle, θ1

max.

x

y

E1

P4

P5

P1
P2

P3

θ2max

(c) For P2, calculate angles ∠P2P4P5
and ∠P2P5P4 and find the maximum
angle, θ2

max.

x

y

E1

P4

P5

P1
P2

P3

θ3max

(d) For P3, calculate angles ∠P3P4P5
and ∠P3P5P4 and find the maximum
angle, θ3

max.

x

y

P2

E11

E12

(e) Choose the point P2, a potential
new edge point, if it has the smallest
maximum angle θ2

max < θ1
max < θ3

max,
and create the new edges E11 and E12.

x

y

P2

P4

P5

E11

E12

(f) In this case θ2
max < 90◦ and the

edges, E11 and E12, do not intersect
any other edges and will thus replace
the previous edge E1.

Figure 3.8: Illustration of the concave hull algorithm in [5]. For a convex hull with
interior points P1, P2 and P3. The first iteration of the algorithm will select the
longest edge E1 and check if it can be split by making one of the interior points a
new edge point. In the sequence above the result is the creation of two new edges
E11 and E12.

22

4
Methods

In this chapter, the development and implementation of an algorithm that aims to
produce accurate geometric descriptors is described. The theory described in the
previous chapter is used when applicable, where it has either been used as part
of the algorithm or modified for this cause. The chapter begins in Section 4.1,
by establishing how lidar data have been acquired and used. In Section 4.2, the
design of the algorithm is described and lastly in Section 4.3, the methods used for
evaluation are outlined.

4.1 Lidar Data
The lidar data has been recorded by vehicles travelling on a test track and on or-
dinary roads, traffic conditions mainly include highways but also some urban areas
with dense traffic and pedestrian crossings.

Before the lidar data reaches the designed algorithm, preliminary processing is per-
formed on the data. This preliminary preprocessing consists of removing obvious
disturbances, and transforming the data to points in Cartesian coordinates. The
obvious disturbances consist of detections very close to the sensor as illustrated in
Figure 4.1. Only points with a range r to the sensor that satisfy

r > rmin,noise, (4.1)

where rmin,noise is the minimum range threshold, are considered for further processing.
The preprocessing step is not part of this algorithm and is therefore not part of any
evaluation.

4.2 Algorithm Implementation
This section aims to provide a comprehensive understanding of the algorithm im-
plementation, including how previous research in the field has been adapted for this
work as well as novel ideas that have been implemented.

4.2.1 Overview
The ideal functionality of the algorithm can be envisioned as consisting of two parts:
clustering and shape extraction. The ideal clustering method would assign every

23

4. Methods

x

y

Sensor

rmin,noise

Figure 4.1: Detections within the range specified by rmin,noise, are removed in a
prelimnary processing step. The red lines indicate the sensor’s field of view and the
blue crosses are noisy detections close to the sensor that will not be considered for
further processing.

data point to a cluster such that each object in the sensor’s field of view has exactly
one cluster corresponding to it. Additionally, each cluster should only correspond
to one object. Once these clusters are formed, they would all be handled separately
in the shape extraction step, where each cluster of points would be replaced with a
geometric 2D-shape in the xy-plane that approximates the points by describing the
shape of the cluster. The method proposed in this chapter however splits these two
ideal steps into four steps as seen in Algorithm 1, to accommodate for the fact that
the data is collected from several vertical layers which need to be combined before
a shape can be extracted in 2D.

The four main steps of the algorithm are:

• Clustering on line 1 to 4, presented in Section 4.2.2 uses a modified dual break-
point algorithm, inspired by the algorithm that is described in Section3.1.1.2.

• Shape Extraction on line 5, presented in Section 4.2.3, is performed on the
layer-separated clusters to obtain initial geometric knowledge about the clus-
ters.

• Cluster merging on line 6, presented in Section 4.2.4 uses single linkage merg-
ing (Section 3.1.2) of the convex hulls (Section 3.2.3) of the clusters, but takes
into account the geometrical information obtained in the previous step to avoid
undersegmentation.

24

4. Methods

• Shape extraction on line 7, presented in Section 4.2.3, is performed to extract
new shapes for all the clusters that were merged or changed in the previous
step.

Algorithm 1: Clustering and Shape Extraction
Data: Set P = {p1, p2, . . . , pNpts} of points pn = [xn, yn, zn], set

L = {l1, l2, . . . , lNpts} of layer identifiers where ln is the identifier
corresponding to pn for ln ∈ {1, 2, . . . , Nlayers}, n ∈ {1, 2, . . . , Npts} where
Npts is the number of detections and Nlayers is the number of layers of the
sensor

Result: Every point pn is assigned to a cluster, each for which a shape is extracted
1 for j = 1 : Nlayers do
2 Find all the points derived from layer j by finding a Set Pj ⊆ P consisting of all

points pk where lk = j and lk is an element in L and k ⊆ n ;
3 Perform clustering on all points Pj of the current layer j, using modified dual

breakpoint detection to assign a cluster ID ck ∈ N+ to each point pk;
4 end
5 Shape extraction for all clusters;
6 Cluster merging;
7 Shape extraction for merged clusters;

Each of these steps are further described later in this chapter. As the obtained
shapes are ultimately intended for use in a Bayesian filter, it is important to be able
to associate an uncertainty to each shape. However, a full uncertainty model for
shapes have not been developed although an overlap factor have been suggested as
explained in Section 4.2.5 which may be used in such a model.

4.2.2 Clustering
The ultimate goal of the clustering step is to assign every data point to a cluster such
that all objects in the sensor’s field of view are distinguished from each other, and
are represented by exactly one cluster each. In this implementation, the clustering is
performed layer-by-layer which results in an initial oversegmentation, which is later
corrected in the merging step presented in Section 4.2.4.

As the clustering is done layer-by-layer without any intra-layer information ex-
change, the algorithm will be described as if only considering a single layer, but
in the implementation it is applied to each layer separately.

The method is similar to DBD in Section 3.1.1.2 in that an ABD (Section 3.1.1.1) is
extended with a method to cluster structures which are detected at a lower incidence
angle based on the collinearity of these points.

The details of the implementation and the differences of this method from the DBD

25

4. Methods

in Section 3.1.1.2, and the motivations for any additions or changes will be described
after a short summary of the main differences:

1. Rather than separating clusters according to their classification as DC or AC,
this method combines the criteria, so that a cluster can contain points included
by both the distance-based or the angle-based criteria.

2. The previous DBD determines distance from each point to the successive point,
and angle between a point and its two successive points. The method described
here, however, compares each point to the nearest point in a three-dimensional
Euclidean sense amongst the N consecutive points for the distance criterion,
and additionally amongst the N preceding points for the angle criteria.

3. Rather than automatically including a point based on the angle criterion, this
method increases the distance threshold depending on the estimated incidence
angle of the measured surface.

Pseudocode of the full clustering algorithm can be seen in Algorithm 2.

Algorithm 2: Modified Dual Breakpoint Clustering
Data: Set A = [p1, p2, ..., pNpts] of points pn = [xn, yn, zn]
Result: Every point p is assigned to a cluster

1 Nhorizon ← number of points to look ahead/behind of current point;
2 for n = 1 : Npts do
3 Find i which minimises Ddist

i = ||pn+i − pn||, i ∈ [1, 2, ..., Nhorizon] ;
4 if Ddist

i < Ddist
0 then

/* distance-threshold is satisfied */;
5 Cluster pn+i and pn together, update clusters if required;
6 else
7 Find j which minimises Dangle

j = ||pn−j − pn||, j ∈ [1, 2, ..., Nhorizon];
8 Calculate δ using pn−j, pn and pn+i;
9 Estimate incidence angle φ;

10 Calculate Dangle
0 using Dextra

max , φ, Ddist
0 ;

11 Find the second longest distance Dv
max between the points pn−j, pn and

pn+i;
12 if (δ < δ0) ∧ (φ < φ0) ∧ (Dv

max < Dangle
0) then

/* angle criteria are satisfied */;
13 Cluster pn−j, pn and pn+i together, update clusters if required;
14 else if pn has no cluster then
15 Start a new cluster containing only pn
16 end
17 end
18 end

The parameter Nhorizon determines how many points ahead or behind the current
point pn the algorithm will look for candidate points for clustering, which is done

26

4. Methods

on line 3 and 7. This is useful since the sequential ordering of the points in set A
does not necessarily correspond to the proximity of the points, due to noise and
occlusions. An example of an occlusion can be seen in Figure 4.2. The algorithm
takes the point pn in Figure 4.2a and compares it to the Nhorizon points succeeding
pn, i.e. pn+i where i ∈ [1, 2, ..., Nhorizon], and selects the point pn+i with the shortest
Euclidean distance ||pn+i − pn|| to the point pn to consider for clustering. The dis-
tance Ddist

i = ||pn+i − pn|| is then tried against the distance threshold Ddist
0 on line

4, which is defined as the distance in Equation 3.3, and if successful, point pn+i will
immediately be added to the cluster of pn on line 5. Figure 4.2 illustrates how the
forward horizon on line 3 works with the distance threshold for a sequence of points
with an occluding object.

When two points pn and pn+i are being clustered on line 5, or three points pn, pn+i
and pn−j are being clustered on line 13, the following logic is applied with respect
to cluster assignment and merging:

1. If none of the points are part of a cluster, create a new cluster and add all the
two or three points to it.

2. If one point is already part of a cluster, add the other point or points to that
cluster.

3. If more than one point is already part of a cluster, merge those clusters and
add the considered points to the new cluster.

If the distance threshold on line 4 is violated, line 7 to 16 will evaluate whether the
points can still be clustered using the angle criteria on line 12. A third point pn−j is
also considered, which is the closest point preceding pn analogously with how pn+i is
the closest point succeeding pn. Firstly, the three points pn−j, pn, and pn+i are used
to calculate three Sets v1, v2 and u which connect the points in any direction, see
Figure. 4.3. v1 and v2 are chosen to be the two shorter vectors, while the longest
one is designated u. The smallest angular difference δ between the two vectors v1
and v2 is calculated on line 8 using a re-ordering of the geometric definition of the
dot product as

δ′ = cos−1(v1 • v2

‖v1‖‖v2‖
) (4.2a)

δ = min({δ′, π − δ′}) (4.2b)

where Equation 4.2b is used to select the smallest angle between the vectors. An-
other vector w is is defined as the difference between the sensor coordinate, and the
mean coordinate of the three points pn−j, pn, and pn+i.

Secondly, the incidence angle φ is approximated on line 9 by calculating the angle
between the vectors w and u using the method described in Equations 4.2a and 4.2b,
see Figure 4.3.

27

4. Methods

pn−1 pn pn+3

pn+1

pn+4

pn+2

C1

(a) In Algorithm 2, the distance be-
tween point pn and pn+3 is being con-
sidered because of line 3, despite pn+1
being the one directly succeeding it in
the data order. In this case pn+3 will
be added to cluster C1, on line 5.

pn−2 pn−1 pn+2

pn

pn+3

pn+1

C1

(b) A point pn from an occluding ob-
ject is being considered. The closest
successive point is pn+1, which will
form a new cluster C2 together with
pn, since none of the points are previ-
ously clustered, see line 14-15 of Al-
gorithm 2.

pn−3 pn−2 pn+1

pn−1

pn+2

pn

C1

C2

(c) At the next iteration, the second
point of the occluding object is be-
ing considered. The closest successive
point is pn+1, which in this case is too
far to cluster. No clusters will change
since pn is already part of a cluster.

pn−4 pn−3 pn

pn−2

pn+1

pn−1

C1

C2

(d) Point pn is being considered. The
closest successive point is pn+1 which
will be clustered and included in C1.

Figure 4.2: Example of modified dual breakpoint clustering for a sequence of points
interrupted by an occlusion.

Thirdly, the length Dv
max is defined as the shortest vector among v1 and v2 which is

used on line 11.

The criteria on line 12 that need to be satisfied for clustering of the points pn, pn+i

28

4. Methods

and pn−j can then be formulated as

δ < δ0

φ < φ0

Dv
max < Dangle

0

(4.3)

where δ0 and φ0 are predefined thresholds, and Dangle
0 is a dynamic threshold defined

as
Dangle

0 = Ddist
0 +Dextra

max · f(φ) (4.4)

where Ddist
0 is the distance threshold, Dextra

max a predefined maximum extra distance
and f(φ) a scaling function which takes values between 0 and 1. f(φ) is defined as

f(φ) =

1, φ ≤ 0,
−φ2+α2

0
α2

0
, 0 < φ ≤ α0

0, φ > α0

(4.5)

which is designed to be 1 when φ is close to zero and is strictly decreasing in the
interval 0 < φ < α0, and 0 when φ ≥ α0. f(φ) is set to 0 for any negative value of
f(φ). An example of points being clustered using these angle criteria can be seen in
Figure 4.4, where the first criteria in Equation 4.3 is illustrated.

Sensor

φ

pmean

p1

p2 p3

δ

v1
u

v2

w

Figure 4.3: Angle criterion calculation for three points p1, p2 and p3. Vectors v1,
v2 and u, whose directions are unimportant, connect the three points. The longest
vector is u, while v1 and v2 are the two shorter vectors. δ is the angle between the
shorter vectors v1 and v2, and must be smaller than δ0 on line 12 in Algorithm 2 for
the criteria to be satisfied. pmean is the mean of the three points p1, p2 and p3, and
w is the vector from the sensor to pmean. The incidence angle φ is approximated by
calculating the angle between the two vectors u and w, and must be smaller than
φ0 on line 12 for the criteria to be satisfied.

29

4. Methods

xpn pn+1pn−1

δ

x

y

C1

(a) The distance between pn and pn+1
is large so the distance criterion on
line 4 is violated. The angle criteria
are instead evaluated, but here the an-
gle δ is too large, and no new point is
added to the cluster C1.

x
pn pn+1pn−1

δ

x

y

C1

(b) The distance between pn and pn+1
is large so the distance criterion on
line 4 is violated. The angle crite-
ria are instead evaluated, and here the
angle δ is small enough. As long as the
other criteria in Equation 4.3 are also
satisfied, pn and pn+1 will be added to
the cluster C1.

Figure 4.4: Example of the first criterion in Equation 4.3 for modified dual break-
point clustering for a sequence of points detected around a corner.

4.2.3 Shape Extraction
When the detections have been clustered layer by layer as in the section above,
shape extraction is performed on all the clusters. In this step, the previous 3D
coordinates are transformed into 2D by simply ignoring the z-component for the
purpose of fitting shapes in the xy−plane, as mentioned in Section 1.4. The shapes
are to be used to provide additional information to the cluster merging subfunction,
which is described in Section 4.2.4. The first part of this section pertains to shape
fitting and how shapes are represented and the second part deal with how clusters
are classified as the different shapes.

4.2.3.1 Shape Fitting and Representation

There are four shapes which are considered in shape extraction, namely points,
polygons, lines and L-shapes. Typical examples of data that would be assigned
these shapes are presented in Figure 4.5.
Each of these shapes are assigned a shape identification number from one to four,
which in addition to identity also corresponds to the shape’s priority. Priority in-
creases with the shape identification number. Assignment for each shape is sum-
marised in Table 4.1. The priority information is used in cluster merging, as de-
scribed in Section 4.2.4, where merging of clusters is considered based on shape
information.
Below the extraction and representation of each shape is detailed.

30

4. Methods

x

y

(a) Point

x

y

(b) Polygon

x

y

(c) Line

x

y

(d) L-shape

Figure 4.5: The figures above illustrate possible cluster formations and their ideally
assigned shape in the respective caption. The different shapes considered for shape
extraction are points (a), polygons (b), lines (c) and L-shapes (d).

Table 4.1: Shape identification number for the different shapes. The number also
corresponds to the priority of the shapes, where a higher number indicates higher
priority.

Shape ID number Shape
1 point
2 polygon
3 line
4 L-shape

Point Points are represented by the mean position of the cluster. Each point
shape will thus be represented by a vector

Point = pmean =
[
x̄
ȳ

]
. (4.6)

Polygon Depending on the number of points in the cluster, a convex hull or a
concave hull is calculated to describe a polygon. If the number of points ntot satisfy

ntot < nmax,concave (4.7)

a concave hull will be computed and otherwise a convex hull. The reason for this
is that the computational time to generate the concave hull increases significantly

31

4. Methods

with the number of points in the cluster and is thus unfeasible for clusters with more
than nmax,concave points.

The calculations to generate the respective hulls follow the algorithms referred to
in Sections 3.2.3 and 3.2.4. The polygon is saved in a matrix consisting of x and y
coordinates, where each column represents an edge point of the hull. Considering a
hull with n edge points, the matrix for the polygon will be,

Polygon =
[
p1 p2 . . . pn p1

]
=

[
x1 x2 . . . xn x1
y1 y2 . . . yn y1

]
, (4.8)

note that the first and last point are the same. This fact makes it easier to use the
data from an implementation standpoint.

Line For line extraction, an implementation of the Theil-Sen estimator is used as
described in Section 3.2.1. An additional step is added to determine the endpoints
of the line, as the original estimator only gives the slope and y-intercept of the line.
The method that is implemented utilises the obtained angle of the line to perform a
series of coordinate transformations on the data in order to acquire the endpoints.
The process is decribed below:

1. From the estimated slope k, the angle φ is obtained.
2. Points are made zero mean with respect to x and y, centering the cluster at

the origin.
3. The points are clockwise rotated to the x-axis using φ. The extreme x-values,
xo,min and xo,max yields the start and stop x-coordinates for the line at this
orientation.

4. With y-coordinates as yo,min = y0,max = 0, a horizontal line is defined at the
origin, which is then rotated counter-clockwise with φ and translated back
using the mean of all points in order to obtain the final line.

The line is then given as the two points in the following format

Line =
[
x
y

]
=

[
xmin xmax
ymin ymax

]
. (4.9)

Furthermore, line extraction takes into account the presence of outliers by looking at
the square distances of all the points to the the fitted line, and determining a lower
and upper threshold for outliers. This is done by considering the interquartile range
(IQR) and the first, Q1 and third quartile Q3 of the square distances, according to

Lower threshold = Q1 − c · IQR
Upper threshold = Q3 + c · IQR,

(4.10)

where c is a tuneable factor. By re-estimating the line without the outliers, a more
representative shape is generally acquired, with a few exceptions. An example of
when it runs into problems is when a cluster is shaped as a long, near horizontal
line as shown in Figure 4.6. In this case, the right most part of the cluster would

32

4. Methods

be excluded after outlier rejection due to a small curvature at the far end of the
cluster. The re-estimated line would be using a smaller subset of the cluster’s points,
providing a significantly shorter line. A way to mitigate this weakness is to only
allow the re-estimated line to replace the initial one if the length of the line is close
to unchanged. To be considered unchanged, the length may not change more than
a set proportion pline or exceed a maximum shrinkage threshold δmin.

x

y

outlier

Figure 4.6: An example encountered from detections on a guardrail. The initial
line fitting of all the points yields the red line. The point indicated in green is an
outlier with respect to red line and is excluded in re-estimation of a line without
outliers. However, the new line marked in black, is significantly shorter than the
actual object as indicated by the points so the red line would in this case be retained.

When the cluster appears as a vertical or horizontal line, which is described below in
Section 4.2.3.2, line extraction is performed differently from the above description.
Instead, the maximum and minimum values of the y or x coordinates of all the
points in the cluster are used to determine the span of the line. And the mean of
the all the x or y values, are used to place the line. This concept is summarised in
Table 4.2 for the horizontal and vertical case respectively.

Table 4.2: Line coordinates for a horizontal or a vertical line

xmin ymin xmax ymax
Horizontal min(x) ȳ max(x) ȳ
Vertical x̄ min(y) x̄ max(y)

L-shape The output of the SBRF algorithm described in Section 3.2.2 provides
four unbounded lines, the intersection points of these lines constitute the endpoints

33

4. Methods

of the rectangle that is of interest, see Figure 4.7a, and are calculated by solving
a linear system of equations. Under the assumption that L-shapes from vehicles
must be convex the L-shape is generated by the three points closest to the sen-
sor. That is, the distance from the sensor to each point is calculated and the point
with the greatest distance to the sensor is removed as seen in Figure 4.7b. The re-
maining points, shown in 4.7c, constitute the L-shape and are ordered consecutively.

x

y

Sensor

p1 p2

p3 p4

(a)

x

y

Sensor

p1 p2

p3 p4

(b)

x

y

Sensor

p1

p3 p4

(c)

Figure 4.7: The process of generating an L-shape from the four lines obtained
by SBRF. In (a) the intersection points are found. Next, in (b) the point furthest
from the sensor, p2 is identified and finally in (c) it is removed creating an L-shape
consisting of the three points p1, p3 and p4.

For the example in Figure 4.7, the L-shape will be a matrix consisting of the re-
maining points, p1, p3 and p4, according to

L-shape =
[
p1 p3 p4

]
=

[
x1 x3 x4
y1 y3 y4

]
. (4.11)

4.2.3.2 Classification of Shapes

The assignment of a shape to each cluster is done in two steps, first points and lines
are classified. This is done by using the principal components of the cluster, namely
the eigenvalues and eigenvectors of the covariance matrix of the cluster. Secondly,
clusters classified as neither points nor lines are tested for possibly being an L-shape
or a line.

Clusters where both eigenvalues λ = {λ1, λ2} of the covariance matrix are smaller
than a threshold, σpoint, or only contain one point are immediately classified as
points. Next, if the cluster is not a point type, the variance of a cluster is used
to establish whether the cluster can be well represented by a vertical or horizon-
tal line. This is true for clusters with a small variance σ2

x or σ2
y as seen in Figure

4.8a and 4.8b, provided a sufficiently small covariance σ2
xy. These conditions are

managed as thresholds, σ0,var and σ0,cov on the variance and covariance respectively.
Lastly the size of the first and second principal component of the cluster, defined by
the eigenvalues of the covariance matrix are used to determine whether the cluster
should should be tagged as a line despite being non-vertical and non-horizontal, as

34

4. Methods

illustrated in Figure 4.8c. For this to be true, the primary principal component need
to satisfy λ1 > σpoint and the secondary principal component, λ2 < σpoint/3.

x

y

(a) A horizontal line is fit-
ted when there is a small
variance σ2

y < σpoint, and
σ2
x > σpoint

x

y

(b) A vertical line is fit-
ted when there is a small
variance σ2

x < σpoint, and
σ2
y > σpoint

x

y

(c) A non-horizontal, non-
vertical line is fitted when
the secondary principal
component λ2 is signifi-
cantly smaller than the pri-
mary principal component
λ1 such that λ1 > σpoint
and λ2 < σpoint/3

Figure 4.8: Three examples of line clusters that could be classified using the
variance σ2

x, σ2
y or the principal components λ1 and λ2.

The clusters that are not classified as points or lines are analysed in a second step,
designed specifically to find L-shapes and polygons. The initial action for this check
is to fit a bounding box to the cluster using SBRF as described in Section 3.2.2.
Some data processing is performed on the bounding boxes to obtain an L-shape rep-
resenting the sides visible to the sensor, as was described above in Section 4.2.3.1.
This L-shape is then analysed and compared to other shapes in several stages to
verify or reject it as the best shape for the specific cluster.

Firstly, the fitted rectangle’s width w, constituting the shortest side, is compared to
a threshold wmax. If

w < wmax, (4.12)

a line will be fitted to the cluster to be used in subsequent comparisons. The cluster
can in this case be classified as either an L-shape, a line or a polygon. If w > wmax,
the line will not be fitted and the cluster can subsequently only be classified as an
L-shape or a polygon.

To choose an L-shape several criteria needs to be met. The first stage of this
procedure is creating a diagonal vector between the two endpoints of the constructed
L-shape and calculating the proportion, p of points that are distributed on the side
of the diagonal towards the sensor as described in Figure 4.9. This proportion need
to satisfy,

p > pmin, (4.13)

35

4. Methods

where pmin is the minimum proportion allowed for an L-shape to be feasible.

x

y

Sensor

Figure 4.9: A cluster bounded by a rectangle, where the assumed L-shape is the
two sides closest to the sensor. The proportion p = nL/ntot, where ntot, is the total
number of points contained in the rectangle and nL, the number of points on the
shaded side.

Additionally the mean square error MSEL of all the points to the closest lines in
the L-shape are calculated which need to meet a maximum requirement MSEL,max
according to

MSEL < MSEL,max. (4.14)

A further consideration is the area of the rectangle AL that the L-shape spans, which
needs to satisfy a minimum threshold Amin as

AL > Amin (4.15)

to be feasible. Finally, the L-shape is chosen for the cluster if equations 4.13 - 4.15
are satisfied and additionally if Equation 4.12 is satisfied, the mean square error for
the L-shape also needs to be sufficiently smaller than the mean square error of the
line

MSEL(1 + τline) < MSEline, (4.16)

where τline is a tunable factor.

If the L-shape is not chosen, the computed line shape will instead be used as a
preliminary shape unless two criteria for polygons are satisfied. Firstly, the fitting
error of the preliminary line MSEline has to be larger than a threshold MSEline,max
as

MSEline > MSEline,max (4.17)

36

4. Methods

and secondly, the rectangle area AL has to be larger than the minimum area thresh-
old for polygons Ap,min as

AL > Ap,min. (4.18)

If both of the criteria in Equations 4.17 or 4.18 are satisfied, a polygon will be fitted
to the cluster.

4.2.4 Cluster Merging
As the modified DBD algorithm presented in Section 4.2.2 works on a layer-by-layer
basis, the initial clustering and consequently the pre-classification of shapes will re-
sult in significant oversegmentation. This is illustrated in Figures 4.10a and 4.10c,
where in both cases multiple shapes describe one single object. This is a typical re-
sult when an object is detected by several layers simultaneously, and is why merging
of clusters and their associated shapes is necessary.

As mentioned in Section 3.1.2, there are several hierarchical clustering methods of
associating elements, or in this case clusters, based on proximity. Taking the nature
of the lidar data into account a suitable method is single linkage clustering, which
uses the closest distance between clusters as similarity measure. By applying single
linkage clustering on the multiple clusters, they can be combined into more desirable
clusters and new shapes can be fitted as seen in Figures 4.10a and 4.10d.

The full pseudocode for cluster merging is presented in Algorithm 3. In order to
perform single linkage merging each cluster is represented by a convex hull, see line
2, and the distances between clusters are collected in a cost matrix D according to
line 3 to 17. To improve efficiency, only pairs of clusters that have an overlap in
extreme x or y coordinates are considered, since this value can quickly be calculated.
The distance is then calculated on line 12 using the smallest distance between the
convex hulls. To check for overlap the separating axis theorem is used as described
in Section 3.2.3, and if the convex hulls overlap, the distance is set to zero. After
the distances between all clusters have been found, the merging is done in a loop
described on line 19 to 33, which runs until the minimum distance between clusters
as found in D, exceeds a certain cutoff threshold. Furthermore, relying exclusively
on single linkage for merging has some disadvantages, one can be seen in Figure
4.11, the advent of ground points in the data would cause the object represented by
an L-shape to merge with the clusters containing mainly ground points. As such
the shape type for each clusters is used as a way of discriminating against mergers
of specific shapes in line 23, which is handled by a separate function presented in
Algorithm 4.

Algorithm 4: AllowMergeSingleLinkage is used as a criterion function to allow or
disallow a potential cluster merging. It uses the shape information of the clusters
and some heuristic to reject certain merging types more likely to result in underseg-
mentation or distortion of shape. The input clusters K = {k1, k2} can consist of one
or more shapes, if they have been previously merged with other clusters. On line
1 to line 3, the highest priority shapes of the clusters in K are therefore found and

37

4. Methods

x

y

(a) Oversegmentation due to overlap-
ping clusters from different layers on
the rear end of a car.

x

y

(b) The resulting cluster and shape
after merging clusters in (a).

x

y

(c) Heavy oversegmentation of detec-
tions on a guardrail.

x

y

(d) The resulting cluster and shape
after merging of the clusters in (c).

Figure 4.10: The above figures illustrates two examples of DBD clustering and
shape extraction, (a) and (c) which motivate merging with single linkage in order
to generate one cluster and one shape for each object, (b) and (d).

ordered so that Imax corresponds to the highest cluster ID of both clusters in K,
while Imin corresponds to the highest cluster ID in the other cluster. Basically only
the highest shape ID in each cluster {k1, k2} are being used in for the conditions
being evaluated from line 4 and onward.

On line 4 to line 6, the algorithm returns true if both clusters in K only contain
points or polygon shapes, for example the situation in Figure 4.12a. This is due
to the fact that most noise will appear as points or polygons, while most vehicles
and objects will appear as lines or L-shapes. For this reason the grouping of points
and polygons rarely risk distorting any good shape representing a vehicle or other
dynamic object. Conversely, the merging of a polygon and a line or L-shape will
quite often distort the line or L-shape and cause the merged cluster to become a
polygon as can be seen in Figure 4.12b. To avoid this, the algorithm will return
false on line 7 to line 9 when this situation occurs. The final merging case that
is handled by Algorithm 4 is between lines and L-shapes, that is when one cluster
contains at least one L-shape, and when the other cluster contains at least one line
but no L-shapes, as in Figure 4.12c. Line 10 to line 22 describe how this case is
handled, with line 15 calculating the distance between the end points of the line to
any point on the L-shape, as illustrated in Figure 4.12c and 4.12d.

38

4. Methods

Algorithm 3: Cluster Merging
Data: Set of N clusters of points S = {s1, . . . , sN}, N shape ids I = {i1, . . . , iN},

shape data F
Result: Merged clusters

1 P ← set of all cluster indices to keep track of performed mergers;
2 C ← convex hulls for each cluster;
3 D ← initiate a N by N cost matrix of infinite distances;
4 for n=1:N-1 do /* compute the cost matrix */
5 E1,x ← maximum and minimum x values in C(n);
6 E1,y ← maximum and minimum y values in C(n);
7 for m=n+1:N do
8 E2,x ← maximum and minimum x values in C(m);
9 E2,y ← maximum and minimum y values in C(m);

10 if isOverlapping(E1,x,E2,x) then /* Extreme x values overlap */
11 if isOverlapping(E1,y,E2,y) then /* Extreme y values overlap */
12 D(n,m)← DistanceBetweenConvexHulls(C(n),C(m));
13 D(m,n)← D(n,m);
14 end
15 end
16 end
17 end
18 dmin,last ← initiate as 0;
19 for i = 1 : (N2)/2 do /* Merging */
20 if dmin,last < cutoff threshold then
21 dmin,last ← minimum distance in D;
22 Find indices K which identifies the pairwise closest clusters;
23 while ¬ AllowMergeSingleLinkage(K,I,P,F) ∧ (dmin,last < cutoff threshold)

do
24 Set D for indices K as infinite;
25 Update dmin,last and K;
26 end
27 if dmin,last < cutoff threshold then
28 Update clusters S, matrix D and list of performed mergers P ;
29 end
30 else
31 break;
32 end
33 end

39

4. Methods

x

y

Figure 4.11: The L-shaped data, mainly constituting of the yellow cluster is sur-
rounded by clusters which include predominantly ground points. The dashed ellipse
indicate a possible grouping that a single linkage clustering algorithm might give on
the scenario depicted.

40

4. Methods

Algorithm 4: AllowMergeSingleLinkage
Data: Proposed merge of clusters with indices K = {k1, k2}, where each cluster

consists of a list of Shapes SK = {s1, s2, ..., sn} and each shape si has an
associated Shape ID Isi

and a list of points Psi
= {p1, p2, ..., pm} which

describe the geometry of the shape.
Result: Boolean flag

1 Find the highest shape IDs I ′1,max and I ′2,max among the shapes that are part of
clusters k1 and k2 respectively;

2 Imax ← max{I ′1,max, I
′
2,max};

3 Imin ← min{I ′1,max, I
′
2,max};

/* Allow merging of points and polygons */;
4 if (Imax ≤ 2) ∧ (Imin ≤ 2) then
5 return true;
6 end

/* Disallow merging of polygons with lines or L-shapes */;
7 if (Imax ≥ 2) ∧ (Imin = 2) then
8 return false;
9 end

/* Allow circumstantial merging of lines with L-shapes */;
10 if Imax = 4 ∧ Imin = 3 then
11 Call the cluster which includes L-shapes ki, and the other cluster kj;
12 for each L-shape in cluster ki do
13 for each line in cluster kj do
14 for each endpoint of the line which is outside of the L-shape do
15 Calculate distance d as distance from the endpoints of the line to

any point on the L-shape;
16 if d > d0 then
17 return false;
18 end
19 end
20 end
21 end
22 end
23 return true;

41

4. Methods

C1

C2

(a) A polygon cluster C1 will always
be allowed to merge with a point clus-
ter C2.

C1

C2

(b) A polygon cluster C1 will never be
allowed to merge with a line cluster
C2.

C1

C2
P1

P2

d0

(c) Line and L-shape will not be al-
lowed to merge since an endpoint P1
of the line is outside the L-shape, and
outside of the distance threshold d0.

C1

C2

P1

P2d0

(d) Line and L-shape will be allowed
to merge since the endpoints of the
line P2 is inside the L-shape, and
while P1 is outside the L-shape it is
still within the distance threshold d0
of the edges of the L-shape.

Figure 4.12: Different examples of shape combinations that are assessed by Algo-
rithm 4.

42

4. Methods

4.2.5 Overlap factor
An overlap factor is proposed which can be used as a supporting metric for dynamic
tuning of covariances in an uncertainty estimation model. The overlap factor, Γ is
a confidence measure that aims to provide information of how well a final, merged
cluster is represented by the individual clusters from multiple layers which forms it.
Clusters that have not merged will have an overlap factor Γ = 1, while a cluster
consisting of n merged clusters of identical shape from n different layers would have
an overlap value of Γ = n. For all clusters the overlap is calculated by considering the
merged cluster’s total angular span αtot and the included clusters’ separate angular
ranges αj for j = 1 . . . n, where n is the number of clusters that have been merged.
The angular spans are calculated by observing which azimuth the points of each
cluster were observed in. The overlap is then defined as

Γ =
∑n
j=1 αj

αtot
, (4.19)

where each included cluster j has a minimum and maximum azimuth angle θj,min
and θj,max, an example case is presented in Figure 4.13, which have been used to
calculate the azimuth angle range αj and αtot according to

αtot = max
j

(θj,max)−min
j

(θj,min) (4.20)

αj = θj,max − θj,min. (4.21)

The resulting overlap will be less than one if there are gaps between the merged
clusters. For clusters consisting of multiple singular clusters of only one data point
each, the overlap will be zero as θj,max = θj,min in this case.

x

y

θ1,min

θ1,max

θ2,max

θ2,min

Figure 4.13: The angles,θ1,max, θ1,min, θ2,max and θ2,min for an example with two
merged clusters, represented by the black and white dots respectively.

4.3 Evaluation
To evaluate the algorithm, qualitative and quantitative methods were used which
are described in detail below. In order to assess the algorithm’s comparative perfor-
mance, a basic reference algorithm has been made available. The reference algorithm

43

4. Methods

was compared with the proposed algorithm in all evaluation cases. The main sub-
functions that the reference algorithm consists of are:

• Ground point removal (GPR) and removal of points close to the sensor due to
noise.

• Clustering of data from all layers simultaneously using an adaptive breakpoint
detector approach.

• Merging of clusters by proximity using single linkage clustering
• Shape extraction of points, lines and L-shapes.

4.3.1 Manual Evaluation
In order to assess the algorithm’s performance when driving in ordinary traffic, a
limited set of frames over different driving sequences have been manually stepped
through and evaluated. The priority was to verify that dynamic objects was cor-
rectly segmented and subsequently correctly represented by the shapes extracted by
the algorithm. To be able to manually assess these results, certain criteria needed
to be established to facilitate consistency in deciding whether an object had been
correctly or incorrectly represented.

An object has been considered correctly represented if it was only represented by
one shape, and was neither oversegmented nor undersegmented. Shapes that poorly
fit the data were labelled undesired shapes and exemplified in figures. If an object
was oversegmented or undersegmented and also had an undesired shape, it was only
marked as oversegmented or unsegmented. This assessment was subjective but the
aim was to only note obvious cases, such as when an L-shaped cluster was fitted
with a line shape. Consequently no assessment was made to verify the accuracy
of the shape’s poses with respect to the direction the vehicle is travelling. When
an oversegmented object was found for the proposed algorithm, the overlap factors
of the shapes which constituted that object were compared. If the shape with the
highest overlap factor was also a shape that would give a good representation of the
vehicle, this was noted. An example of this particular case is illustrated in Figure
4.14. Here the overlap factor is expected to be higher for the shape, s1, on the
primary side, since it consists of more detections from multiple layers compared to
the shapes s2, s3 and s4 that represent detections on the secondary side.

In a report published by the U.S. Department of Transportation [39], Najm et al.
provide recommendations for test scenarios to use for assessment of integrated ve-
hicle based safety systems based on the most common pre-crash scenarios for light
vehicles and heavy duty trucks. These include base test scenarios for imminent,
rear-end, lane change, run-off-road and multiple threat collisions. Ideally sequences
involving all these scenarios should be covered thoroughly to verify the algorithms
performance from a road safety perspective but that is not feasible within the scope
of this thesis. Instead due to the focus on shape extraction, a lane change situa-
tion, scenario 1, have been prioritised which aimed to evaluate consistency of the
shape when a preceding vehicle changes lane. The scenario is outlined in Figure 4.15.

44

4. Methods

x

y

s1

s2 s3 s4

Sensor

(a) Oversegmented object consisting
of four shapes, three lines s1, s2 and
s4, and one point, s3.

x

y

s1

Sensor

(b) Ideal segmentation of an object,
only one shape, an L-shape, s1.

Figure 4.14: Resulting shape extraction for detections on the vehicle above should
ideally be the L-shape shown in (b), but could for instance be oversegmented into
four shapes as illustrated in (a). In (a), the vehicle’s side represented by s1, is the
most important side to obtain for tracking due to it containing the most information
about distance from the sensor to the vehicle as well as the vehicle’s direction. The
overlap factor is aimed assist in distinguishing which of the shapes that represent
this side.

Sensor

i

Figure 4.15: Scenario 1, where a preceding vehicle in the left lane with respect to
the ego vehicle initiates a lane change. The ego vehicle is represented by the sensor
in the figure. The shape of the detections on the vehicle change from an initial
L-shape to a final vertical line.

For this scenario the shape of the vehicle was expected to change from an L-shape
to a vertical line. Evaluating this scenario was aimed at observing the transition
between these shapes as well as evaluating the shape extraction under the conditions
stated above. For comparison, the reference algorithm was used with and without

45

4. Methods

GPR in order to observe the impact of GPR on segmentation and shape extraction.

In Section 4.2.4, regarding cluster merging it was mentioned that using the shapes of
different clusters in merging could make it possible to differentiate between clusters
containing mainly ground points and those that mainly represent a vehicle on the
road. To test this, three scenarios similar to the case presented in Figure 4.11 have
been used, starting with Scenario 2 which is detailed in Figure 4.16.

Sensor

i

Figure 4.16: In scenario 2 the ego vehicle is stationary, waiting to turn left while
facing a small incline road. A vehicle in the right lane passes through an area where
a large set of ground detections are obtained.

Scenario 3 captures a situation where a preceding vehicle is travelling between traf-
fic islands. The raised islands result in several detections near the vehicle which
complicate shape extraction as also ground detections are present. An approximate
illustration of this situation is shown in Figure 4.17.

Finally in scenario 4 the ego vehicle is turning left in an intersection. During this
maneuver the sensor sweeps over a stationary car waiting in a slope. Due to the
height difference caused by the slope many ground points are obtained around the
car, making proper segmentation challenging. The scenario is illustrated in Figure
4.18.

In scenario 1-4, shape extraction for only one vehicle was considered. There was a
difference at what distance the vehicle detections occurred in each scenario, and the
approximate ranges of those distances are given in Table 4.3.

46

4. Methods

Sensor

Figure 4.17: In scenario 3, the ego vehicle is moving forward, rightward in the
figure. On its right side a vehicle is passing between traffic islands which cause
several detections. Additionally ground detections close to the vehicle occur. This
combination of detections close to the vehicle is challenging to handle and could
possibly lead to undersegmentation. Note that detections on the vehicle have not
been included in the illustration.

Sensor

Figure 4.18: The ego vehicle is making a left turn at an intersection, while the
sensor sweeps over a stationary vehicle waiting on the opposite side of the intersec-
tion. The vehicle is standing in a rising slope, which causes ground detections near
the vehicle.

Table 4.3: Approximate distance to observed vehicle in scenario 1-4.

Scenario Distance [m]
1 14 – 24
2 13 – 19
3 29 – 31
4 19 – 28

The length of the different scenarios varied, the total number of frames assessed in

47

4. Methods

each scenario is summarised in Table 4.4.

Table 4.4: Number of frames assessed in each scenario.

Scenario Number of frames
1 89
2 13
3 36
4 17

4.3.2 Reference Target Evaluation
To assist in evaluating the algorithm proposed in this work, a setup was used where
an ego car is carried a lidar to collect data as described in Section 2.2. A reference
vehicle, denoted “target” vehicle" was along with the ego vehicle equipped with an
accurate differential GPS among other sensors to log both vehicles’ locations contin-
uously. This setup provided a reference where lidar measurements, and subsequently
extracted shapes from the proposed algorithm and the reference algorithm could be
compared with the true location and heading of the detected target, see Figure 4.19.
The reference algorithm was tested with ground point removal (GPR).

We call the one or two sides of the target vehicle which are visible to the sensor the
"reference shape". The scenario was set up in a restricted area without any traffic
apart from the ego and the target vehicles. Some errors arise from inaccuracies in
synchronising the data logs from both vehicles and other factors.

For evaluating the accuracy of the shapes produced, the output shapes of the al-
gorithm were compared to the reference shapes of the target vehicle during certain
vehicle maneuvers. The primary goal of analysing this data was to assess how well
the shapes obtained from the algorithm fit the target vehicle. The scenario only in-
cluded one vehicle other than the ego vehicle, and few terrain structures and objects
compared to a real scenario. As such, an evaluation of undersegmentation was not
performed since the testing case was absent of many surrounding objects. In a real
scenario, these objects typically are what cause undersegmentation by merging into
the target vehicle. Oversegmentation was however assessed, as it is typically caused
only by a faulty clustering and merging of the detections from the actual target,
rather than from interference with the surrounding objects.

A box was created to represent the target vehicle, after which one or two of its sides
were used as the reference shapes. In the case of a line shape being detected by the
algorithm, the line was compared with the primary side of the target box, see Figure
4.20. In case of an L-shape being detected by the algorithm, the L was compared
with both the primary and the secondary lines of the reference shape. The primary
side represents the visible side of the target vehicle with the largest incidence angle,
also referred to as the primary incidence angle θ1. The secondary line represents the

48

4. Methods

SensorEgo vehicle

Target vehicle

Detected points

Figure 4.19: The reference car designated target vehicle is at a known location
in relation to the ego vehicle. Detected points, and subsequently shapes, can be
compared to the true location and heading of the target vehicle.

other visible side, corresponding to the smaller incidence angle, also referred to as
the secondary incidence angle θ2.

Sensor

θ1

θ2

Primary side

Secondary side

Target vehicle

Figure 4.20: The side of the target vehicle which is visible to the sensor and has
the largest (primary) incidence angle max{θ1, θ2} is considered the primary side. If
more than one side of the target vehicle is visible to the sensor, the side with the
smaller (secondary) incidence angle θ2 is called the secondary side.

49

4. Methods

The metrics that are calculated are described in this section, and can be summarised
as:

• Number of shapes within distance d0 of the target vehicle
• Number of valid shapes, i.e. lines and L-shapes within distance d0 of the target

vehicle
• Angular fitting error Eang
• Mean square error MSEprim of primary line with best angular fit
• Mean square error MSEsec of secondary line, when an L-shape is detected
• The proportion of L-shapes versus the proportion of line shapes that are out-

put by the algorithm, at different distances between the sensor and the target
DST

The number of shapes within distance d0 of the target are those shapes which have
at least one corresponding detection within a certain distance d0 from the bound-
ing box of the target vehicle. The distance is calculated in the same way for valid
shapes, except that polygons and points are excluded from this data, as they are
typically outliers. The angular fitting error Eang is the angular difference between
the reference line and the fitted shape.

The mean square error is the arithmetic mean of the squared distances between the
endpoints of the fitted line and the reference line, see Figure 4.21. If a line shape is
detected near the target vehicle, only the distance to the primary line is considered,
See Figure 4.21a. If an L-shape is detected, both the primary and the secondary
side are considered, see Figure 4.21b.

If there are multiple lines or L-shapes near the target, Eang, MSEprim and MSEsec
are not calculated.
Some informative data about the details of the evaluation scenarios is also collected,
and include:

• Histogram of the number of samples N collected at certain distances to target
vehicle DST .

• Histogram of the number of samples N collected at certain secondary incidence
angles θ2

• The magnitude of the primary and secondary incidence angles θ1 and θ2 over
different distances to the target vehicle DST

Two different scenarios are used, where the ego and the target vehicle repeatedly
perform certain maneuvers, see Figure 4.22. For both cases, three repetitions of the
same scenario were sampled. The two different scenarios consist of:

50

4. Methods

Target vehicle

d1
d2

Eang

(a) The mean square error of the pri-
mary side MSEprim is calculated as
MSEprim = 1

2(d2
1 + d2

2) using the dis-
tances d1 and d2 between the end-
points of the fitted red line and the
primary reference line of the target ve-
hicle. The angle Eang is the angular
fitting error.

Target vehicle

d1
d2

Eang

d3

(b) The mean square error of the sec-
ondary side MSEsec is calculated as
MSEsec = 1

2(d2
2 + d2

3) using the dis-
tances d2 and d3 between the end-
points of the fitted red L and the sec-
ondary reference line of the target ve-
hicle. The angle Eang is the angular
fitting error.

Figure 4.21: The mean square errors MSEprim and MSEsec are calculated using
the distances from the endpoints of the fitted line or L to the reference line. The
angular fitting error Eang is the angular difference between the fitted line or L and
the primary reference line.

1. Ego overtaking, where the ego vehicle overtakes the target vehicle. The sce-
nario consists of a straight approach by the ego vehicle from behind the target
vehicle for most of the scenario, and is completed by a quick turn and over-
taking when the target at a distance of DST ≈ 30m, see Figure 4.22a. The
scenario begins when the distance to target DST ≈ 125m from the ego vehicle,
and ends when the target is overtaken and partially out of view from the lidar.
In total, 3831 frames were sampled and analysed.

2. Target overtaking, where the target vehicle overtakes the ego vehicle on the
left side. The scenario consists of a straight departure of the target vehicle
from the ego vehicle in the adjacent lane, see Figure 4.22b. This scenario
begins when the target is alongside the ego vehicle and fully in view of the
sensor, and ends when the target has reached a distance of DST ≈ 100m. A
total of 399 frames were sampled and analysed.

4.3.3 Execution time
To compare the execution time of the proposed algorithm and the reference algo-
rithm, the algorithms were run on data previously collected in real traffic situations.
The data consisted of 6833 data frames representing driving in highway and ur-
ban traffic during good weather conditions. The simulations were run in MATLAB
R2015b, on a Windows 7 PC with i7-4610M @ 3.00 Ghz CPU and 8 GB of RAM.
The execution time was calculated separately for each subfunction as described in

51

4. Methods

100m

T

E

30m

(a) The ego vehicle overtakes the tar-
get vehicle. Starting at a distance of
DST ≈ 125m, the ego vehicle per-
forms a straight approach in the same
lane as the target. The ego vehicle
turns to overtake the target at a dis-
tance of DST ≈ 30m, and the scenario
ends when the target is partially out
of view of the lidar.

100m

T E

(b) The target vehicle overtakes the
ego vehicle. The scenario begins when
the target vehicle has fully entered the
lidar’s field of view alongside the ego
vehicle. The target vehicle departs
from the ego in the adjacent lane, and
the scenario ends when the target is at
a distance of DST ≈ 100m.

Figure 4.22: Two scenarios were evaluated using a reference target vehicle with a
known location relative to the ego vehicle. The distances in the figures are approx-
imations.

Section 4.2.1, namely clustering, shape extraction on layer separated clusters, clus-
ter merging and finally shape extraction on combined clusters. The execution times
for each frame was stored, along with information on the number of scan points
in the frame, the number of clusters formed by the clustering algorithm, and the
final number of shapes produced. In addition, 400 frames were analysed with the
MATLAB profile tool, which allowed some insight into which parts of the respective
subfunctions consumed the most time.

52

5
Results

In this chapter the results of the evaluation described in Section 4.3 are presented.
The results consist of three main parts. First in Section 5.1 the results of the
manual assessment of segmentation is presented. Next, in Section 5.2 results of
the algorithms with respect to reference target data as detailed in Section 4.3.2 are
given. And finally in Section 5.3 the execution times of the proposed algorithm and
the reference algorithm are presented.

5.1 Manual Evaluation

The manual evaluation is composed of two parts, the first one is focusing on shape
consistency of shape extraction for a preceding vehicle during a lane change, scenario
1. Secondly, scenarios 2, 3 and 4, with ground detections, have been assessed.
Figures presented in this section are illustrative but closely resemble observations
made on real data.

5.1.1 Scenario 1

Scenario 1, as described in Figure 4.15, includes a sequence which has been manu-
ally assessed for the designed algorithm and for the reference algorithm, with and
without Ground Point Removal (GPR).

The results are presented in Table 5.1. As can be observed almost all cases of wrong
shapes for each algorithm were due to oversegmentation. No undersegmentation
was observed. However, for the proposed algorithm there was one case in which
the extracted shape was not oversegmented but it was incorrectly classified as a line
instead of an L as can be observed in Figure 5.1a. For comparison purposes, the
shape extraction of the vehicle in the same frame for the reference algorithm without
GPR has also been included, Figure 5.1b.

53

5. Results

Table 5.1: Results for scenario 1, showing the percentage of frames, in which the
extracted shapes were wrong and what the reason was. P alg. refers to the ’Proposed
algorithm’ and Ref. alg refers to the ’Reference algorithm’.

Reason for wrong shape P. alg. Ref. alg. without GPR Ref. alg. with GPR
Undesired shape 1,12% 0% 0%
Oversegmentation 31.46% 44.94% 32.58%
Total 32.58% 44.94 % 32.58%

x

y

(a) Proposed algorithm

x

y

(b) Reference algorithm without
GPR

Figure 5.1: Resulting shape extraction for a specific frame for the proposed algo-
rithm and the reference algorithm. In (a) the proposed algorithm fit a the wrong
shape and for the same case the reference algorithm with GPR suffer from overseg-
mentation as seen in (b).

Regarding oversegmentation, this occurred slightly more for the reference algorithm
without GPR, compared to the proposed algorithm and the reference algorithm
with GPR which performed very similarily. For all algorithms, it was common
that the oversegmentation consisted of an assortment of points and lines instead of
an desired L-shape. The majority of frames where oversegmentation was observed
occurred when the distribution of detections for the vehicle transitioned from an
L-shaped cluster to a line shape. In this transition the detections on the secondary
side of the vehicle gradually became sparser as an example show in Figure 5.2. Fur-
thermore, it was observed during oversegmentation with the proposed algorithm,
that the overlap factor in all cases was highest for the primary side of the vehicle as
expected.

There was some difference in performance between the reference algorithm with and
without GPR. Mainly, that the configuration without GPR had more instances of
oversegmentation.

54

5. Results

x

y

Figure 5.2: Detections on the vehicle in scenario 1 in a sample where the detections
are noticeably sparser on the secondary side resulting in oversegmentation for the
proposed algorithm.

5.1.2 Scenarios 2, 3 and 4
In these scenarios, different sequences containing ground points were manually as-
sessed. The results are presented in Table 5.2 for each scenario separately.

Table 5.2: Results for manual assessment of scenario 2, 3 and 4, with the proposed
algorithm and the reference algorithm with GPR.

Scenario 2 Scenario 3 Scenario 4
Reason for wrong shape P alg. Ref. alg. P alg. Ref. alg. P alg. Ref. alg.
Undesired shape 0 % 0 % 0 % 16.67% 0% 0%
Undersegmentation 23.08% 0% 25% 25% 35.29% 76.47%
Oversegmentation 0 % 23.08% 0% 0% 0% 0%
Total 23.08% 23.08% 25% 41.67% 35.29% 76.47%

One case of undersegmentation observed in scenario 3 is exemplified in Figure 5.3.
For both the proposed algorithm and the reference algorithm the cluster indicating
the tail end of the vehicle and a cluster consisting of ground points are clustered.
As can be seen the only difference is the shape extracted, but the result is undesired
for both cases. Furthermore, in the same scenario, 16.67% percent of the points
of the wrong shapes produced by the reference algorithm were correctly segmented
but generated an undesired shape. This was mostly cases were an L-shape was
produced instead of a desired line, an example of this is illustrated in Figure 5.4.

55

5. Results

As can be seen for this particular case the proposed algorithm instead extract a line.

x

y

(a) Proposed algorithm

x

y

(b) Reference algorithm with GPR

Figure 5.3: The figures illustrate the resulting shape extraction for a specific frame
for the proposed algorithm and the reference algorithm with GPR. In (a) and (b)
both algorithms cluster ground detections and vehicle detections together.

x

y

(a) Proposed algorithm

x

y

(b) Reference algorithm with GPR

Figure 5.4: The figures illustrate the resulting shape extraction for a specific
frame for the proposed algorithm and the reference algorithm. In (a) the proposed
algorithm manages to extract the desired shape, namely a line, while in the (b) the
reference algorithm fails to do so and extracts an L-shape.

The results considering all the sequences with ground points together are given in
Table 5.3. As can be observed, the proposed algorithm perform better overall un-
der the determined assessment criteria. However, looking at scenario 2 in Table
5.2 the percentage of frames with wrong shapes are the same for both algorithms.
But the reason is different, for the proposed algorithm the issue is oversegmentation
due to ground points. For the reference algorithm, most of the ground detections
were successfully removed by GPR, but reducing the data from detections at this
range instead increased the oversegmentation. The greatest difference between the
algorithms was observed in scenario 4, were both algorithms suffered from under-
segmentation but the reference algorithm more so than the proposed algorithm. It

56

5. Results

should be noted that the ground points in this scenario was mostly detected at a
greater height than in the other scenarios due to the slope the vehicle was standing
in, which the GPR for the reference algorithm seemed unable to manage.

Table 5.3: The result of the manual assessment for scenario 2, 3, and 4 combined.

Scenario 2-4
Reason for wrong shape P alg. Ref. alg
Undesired shape 0% 9.09%
Undersegmentation 27.27% 33.33%
Oversegmentation 0% 4.55%
Total wrong shape 27.27% 46.97%

57

5. Results

5.2 Reference Target
In this section, results are presented for the evaluation method detailed in Section
4.3.2. The evaluation consists of an ego vehicle, on which the lidar is mounted, and
a target vehicle. The locations of the ego vehicle and the target vehicle are known
by logging an accurate GPS, so a reference shape can be extracted from the target
car and compared to the outputs of the algorithm. Both the proposed algorithm,
detailed in Section 4.2 and the reference algorithm, mentioned in Section 4.3 are
evaluated in two different scenarios.

5.2.1 Ego Overtaking
The scenario consists of the ego vehicle approaching the target vehicle in a straight
line at relatively constant speed, and performing a quick lane change towards the
end of the maneuver. In Figure 5.5a, the number of frames are distributed evenly
over different distances from the sensor to the target vehicle DST , ranging from
10m to 120m. The vast majority of the frames are collected from the approaching
phase, while the overtaking maneuver only constitutes a small portion of each test.
The results of this can be seen in Figure 5.5b, where the concentration of secondary
incidence angles, θ2, under 5° indicates that the target was approached straight from
behind. In Figure 5.5c, it can be observed that the secondary incidence angle is only
larger than 5° below approximately 25m, indicating that the overtaking maneuver
starts at that distance from the target vehicle.

0 25 50 75 100 125 150

DST ,m

0

500

1000

N

(a) Shows the number of
samples N collected with
distance to target vehicle
DST . The samples are
evenly spread between 10m
and 120m, with a peak at
100-110m.

0 5 10 15 20 25 30 35 40

θ2, deg

0

1000

2000

3000

N

(b) Shows the number of
samples N collected at dif-
ferent secondary incidence
angles θ2 of the target vehi-
cle. Nearly all data is sam-
pled with θ2 < 5°.

0 25 50 75 100 125 150

DST ,m

0
10
20
30
40
50
60
70
80
90

100

θ
,
d
eg θ1

θ2

(c) Primary θ1 and sec-
ondary θ2 incidence angles
values at varying sensor to
target distances DST .

Figure 5.5: Samples collected with target distance evenly spread between 10m and
120m, with a peak at 100-110m. The θ2 is below 5° for nearly all frames.

Both the proposed algorithm and the reference algorithm performed similarly with
regards to segmentation accuracy, as can be seen in Figure 5.6. Figures 5.6a and
5.6d show that both algorithms only outputs a single line or L-shape in the majority
of cases, but that both suffer from some oversegmentation of valid shapes at a

58

5. Results

distance of approximately 30m from the target. This coincides with the overtaking
maneuver, and indicates that more than one line or L-shape is detected on the same
object at these occasions. Figures 5.6b and 5.6e show that more than one shape is
detected in a majority of frames between approximately 30m and 60m from target.
By comparing with Figures 5.6a and 5.6d, which only show lines or L-shapes, one
can deduct that most of these shapes are points and polygons.

0 25 50 75 100 125 150

DST ,m

0

0.2

0.4

0.6

0.8

1

P
ro
p
o
rt
io
n

Nshapes = 0

Nshapes = 1

Nshapes > 0

(a) Proposed algorithm:
Shows the proportion of
frames which has Nshapes

valid shapes close to the
target vehicle at different
distances.

0 25 50 75 100 125 150

DST ,m

0

0.2

0.4

0.6

0.8

1

P
ro
p
o
rt
io
n

(b) Proposed algorithm:
Shows the proportion of
frames which have Nshapes

total shapes close to the
target vehicle at different
distances.

0 25 50 75 100 125 150

DST ,m

0

0.5

1

P
ro
p
o
rt
io
n

L-shapes

line shapes

(c) Proposed algorithm:
Shows the proportion of L-
shapes and lines at varying
distance from the target.

0 25 50 75 100 125 150

DST ,m

0

0.2

0.4

0.6

0.8

1

P
ro
p
o
rt
io
n

Nshapes = 0

Nshapes = 1

Nshapes > 0

(d) Reference algorithm:
Shows the proportion of
frames which have Nshapes

valid shapes close to the
target vehicle at different
distances.

0 25 50 75 100 125 150

DST ,m

0

0.2

0.4

0.6

0.8

1

P
ro
p
o
rt
io
n

(e) Reference algorithm:
Shows the proportion of
frames which have Nshapes

shapes close to the tar-
get vehicle at different dis-
tances.

0 25 50 75 100 125 150

DST ,m

0

0.5

1

P
ro
p
o
rt
io
n

L-shapes

line shapes

(f) Reference algorithm:
Shows the proportion of L-
shapes and lines at varying
distance from the target.

Figure 5.6: Proportion of frames with different numbers of shapes in the vicinity of
the target vehicle at varying distances for the designed algorithm in (a) and (c), and
the reference algorithm in (b) and (d). (e) and (f) show the proportion of L-shapes
versus lines among the valid shapes, at varying distances to the target vehicle. The
proposed algorithm and the reference algorithm provide largely identical results.

Figure 5.7 shows the different fitting errors for the proposed algorithm, and the ref-
erence algorithm. Figures 5.7a and 5.7d indicate that the proposed algorithm has
a similar fitting error to the reference algorithm on the primary side of the target
vehicle. Likewise, in 5.7c and 5.7f, the average errors of both algorithms are similar.
One can observe that the standard variations for the reference algorithm in 5.7d and
5.7f are larger than the proposed algorithm in the interval between 50m and 75m.

59

5. Results

Figures 5.7b and 5.7e represent the fitting error of the secondary side of the target
vehicle, meaning representing the side with the lower incidence angle for L-shapes
only. Lines do not produce a secondary side fit, which explains the short range of
the distance to target DST for both these figures. The proportion of L-shapes versus
lines among the valid shapes is illustrated in Figures 5.6c and 5.6f for the proposed
algorithm, and reference algorithm respectively. It is evident that the vast majority
of all detections are of lines, with L-shapes only occurring at distances closer than
30m. In this range, the Figures 5.7b and 5.7e indicate that the proposed algorithm
has more accurate secondary side fits than the reference algorithm.

0 25 50 75 100 125 150

DST ,m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
S
E

MSEprim

σstd

(a) Proposed algorithm:
Primary side fitting error
MSEprim.

25

DST ,m

0

0.5

1

1.5

2

2.5

3

3.5

4

M
S
E

MSEsec

σstd

(b) Proposed algorithm:
Secondary side fitting error
MSEsec.

0 25 50 75 100 125 150

DST ,m

0

2

4

6

8

10

12

d
eg

Eang

σstd

(c) Proposed algorithm:
Angular fitting error Eang.

0 25 50 75 100 125 150

DST ,m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
S
E

MSEprim

σstd

(d) Reference algorithm:
Primary side fitting error
MSEprim.

0 25 50 75

DST ,m

0

0.5

1

1.5

2

2.5

3

3.5

4

M
S
E

MSEsec

σstd

(e) Reference algorithm:
Secondary side fitting error
MSEsec.

0 25 50 75 100 125 150

DST ,m

0

2

4

6

8

10

12

d
eg

Eang

σstd

(f) Reference algorithm:
Angular fitting error Eang.

Figure 5.7: Fitting errors for the proposed algorithm in Figures (a), (b) and (c),
and for the reference algorithm in Figures (d), (e) and (f). MSEprim in (a) and
(d), are similar for both algorithms, but with more stable results in the proposed
algorithm. The same fact can be observed for MSEsec in Figures (b) and (e), and
Eang in Figures (c) and (f).

5.2.2 Target Overtaking
The scenario consists of the target vehicle approaching the ego vehicle from behind,
in a straight line at relatively constant speed. The target car overtakes the ego car
and keeps going for approximately 100m in a straight line in the adjacent lane. The
results only cover the moment after which the entire target car enters the field of
view of the sensor. In Figure 5.8a, the spread of frames over varying distances show

60

5. Results

that the amount of samples are diminishing with the increasing distances from the
sensor to the target vehicle DST . Since the target car keeps driving in the adjaceny
lane for the duration of the scenario, two sides of the car are always within the sen-
sor’s field of view, however the secondary incidence angle θ2 shrinks with increasing
distance as can be seen in Figures 5.8b and 5.8.

0 25 50 75 100

DST ,m

0

20

40

60

80

N

(a) Shows number of sam-
ples N collected at dis-
tance to target vehicle
DST . The samples are
evenly spread when 10m <
DST < 50m, and diminish
with when DST > 50m.

0 5 10 15 20 25 30 35

θ2, deg

0

50

100

150

N

(b) Shows number of sam-
ples N collected at dif-
ferent secondary incidence
angles θ2 of target vehicle.
The amount of sampled
data follows an exponen-
tial decay with the num-
ber of samples N decreas-
ing as the secondary inci-
dence angle θ2 increases.

0 25 50 75 100

DST ,m

0
10
20
30
40
50
60
70
80
90

100

θ
,
d
eg

θ1

θ2

(c) Primary θ1 and sec-
ondary θ2 incidence angles
values at varying sensor to
target distances DST .

Figure 5.8: The collected data samples for different sensor to target distances DST

are evenly spread when 10m < DST < 50m, and diminish with when DST > 50m.
The amount of sampled data per secondary incidence angle θ2 follows an exponential
decay with the number of samples N decreasing as θ2 increases.

Both the proposed algorithm and the reference algorithm performed similarly with
regards to segmentation accuracy, as can be seen in Figure 5.9. Figures 5.9a and 5.9d
show that both algorithms only outputs one valid shape in the majority of cases, but
that both suffer from some oversegmentation at a distance of approximately 30m
from the target. This coincides with the moment where the output shapes transition
from mainly L-shapes, to mainly lines as the target vehicle moves further from the
ego vehicle, decreasing the secondary incidence angle θ2. This transition can be seen
in Figures 5.9c and 5.9f.

Figures 5.9b and 5.9e show that a more than one shape is detected in a majority
of frames between approximately 20m and 50m from target. By comparing with
Figures 5.9a and 5.9d which only shows lines or L-shapes, one can deduct that most
of these shapes are points and polygons.

61

5. Results

0 25 50 75 100

DST ,m

0

0.2

0.4

0.6

0.8

1
P
ro
p
o
rt
io
n

Nshapes = 0

Nshapes = 1

Nshapes > 0

(a) Proposed algorithm:
Shows the proportion of
frames which has Nshapes

valid shapes close to the
target vehicle at different
distances.

0 25 50 75 100

DST ,m

0

0.2

0.4

0.6

0.8

1

P
ro
p
o
rt
io
n

(b) Proposed algorithm:
Shows the proportion of
frames which have Nshapes

shapes close to the tar-
get vehicle at different dis-
tances.

0 25 50 75 100

DST ,m

0

0.5

1

P
ro
p
o
rt
io
n

L-shapes

line shapes

(c) Proposed algorithm:
Shows the proportion of L-
shapes and lines at varying
distance from the target.

0 25 50 75 100

DST ,m

0

0.2

0.4

0.6

0.8

1

P
ro
p
o
rt
io
n

Nshapes = 0

Nshapes = 1

Nshapes > 0

(d) Reference algorithm:
Shows the proportion of
frames which have Nshapes

valid shapes close to the
target vehicle at different
distances.

0 25 50 75 100

DST ,m

0

0.2

0.4

0.6

0.8

1

P
ro
p
o
rt
io
n

(e) Reference algorithm:
Shows the proportion of
frames which have Nshapes

shapes close to the tar-
get vehicle at different dis-
tances.

0 25 50 75 100

DST ,m

0

0.5

1

P
ro
p
o
rt
io
n

L-shapes

line shapes

(f) Reference algorithm:
Shows the proportion of L-
shapes and lines at varying
distance from the target.

Figure 5.9: Proportion of frames with different numbers of shapes in the vicinity
of the target vehicle at varying distances for the designed algorithm in (a) and
(c), and the reference algorithm in (b) and (d). Subfigures (e) and (f) show the
proportion of L-shapes versus lines among the valid shapes, at varying distances
to the target vehicle. The proposed algorithm and the reference algorithm provide
largely identical results.

Figure 5.10 shows the different fitting errors for the proposed algorithm, and the
reference algorithm. Figures 5.10a and 5.10d indicate that the proposed algorithm
has a similar fitting error to the reference algorithm on the primary side of the target
vehicle when DSR > 45m, but that the proposed algorithm performs better when
DSR < 45m. Likewise, in 5.10c and 5.10f, the average errors of both algorithms are
similar for DSR > 55m, while the proposed algorithm performs substantially better
when DSR < 55m.

One can observe that the largest errors MSEprim and Eang for both algorithms in
Figures 5.10a, 5.10d, 5.10c and 5.10f occur at a distance of DST ≈ 30m, which again
coincides with the transition between lines and L-shapes as the main descriptor for
the target, as was seen in Figures 5.9c and 5.9f.

62

5. Results

Figures 5.10b and 5.10e show that the secondary fitting error of both algorithms are
roughly similar. The performance of both fits start to deteriorate when DST > 25,
which coincides with the decreased frequency of L-shape outputs from both algo-
rithms as seen in Figures 5.9c and 5.9f.

0 25 50 75 100

DST ,m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
S
E

MSEprim

σstd

(a) Proposed algorithm:
Primary side fitting error
MSEprim.

0 25 50

DST ,m

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
S
E

MSEsec

σstd

(b) Proposed algorithm:
Secondary side fitting error
MSEsec.

0 25 50 75 100

DST ,m

0
2
4
6
8

10
12
14
16
18

d
eg

Eang

σstd

(c) Proposed algorithm:
Angular fitting error Eang.

0 25 50 75 100

DST ,m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
S
E

MSEprim

σstd

(d) Reference algorithm:
Primary side fitting error
MSEprim.

0 25 50

DST ,m

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
S
E

MSEsec

σstd

(e) Reference algorithm:
Secondary side fitting error
MSEsec.

0 25 50 75 100

DST ,m

0
2
4
6
8

10
12
14
16
18

d
eg

Eang

σstd

(f) Reference algorithm:
Angular fitting error Eang.

Figure 5.10: Fitting errors for the proposed algorithm in Figures (a), (b) and
(c), and for the reference algorithm in Figures (d), (e) and (f). The proposed
algorithm outperform the reference algorithm with regards to primary side fitting
errorMSEprim in (a) and (d) and angular fitting error Eang in (c) and (f). At shorter
distances DST < 30, and perform similarly for longer distances. The algorithms also
appear equivalent with regards to secondary side fitting error MSEsec in (b) and
(e).

5.3 Execution time

Data on the execution times were sampled on recorded data as briefly described in
Section 4.3.3. The execution times of both the proposed algorithm and the reference
algorithm were considered. The average execution time of the proposed algorithm
was significantly slower than the reference algorithm, as can be seen in Table 5.4

63

5. Results

Table 5.4: The average execution time Tavg and the standard deviation σ for the
proposed algorithm and the reference algorithm.

Algorithm execution time, seconds
Tavg σ

Proposed algorithm 0.287 0.134
Reference algorithm 0.039 0.026

For each subfunction of the proposed algorithm described in Section 4.2 and the
preprocessing step described in Section 4.1, the execution time was measured, which
can be observed in Figure 5.11. The steps consuming the most time were the two
final steps, namely the cluster merging described in Section 4.2.4 and the second
shape extraction described in Section 4.2.3, constituting 39.9% and 35.2% of the
total execution time respectively. The clustering, described in Section 4.2.2 and
the first shape extraction each took 12.8% and 12.0% of the total execution time
respectively, while the execution time of the preprocessing was less than 0.1%.

fpre fclus fSE1
fmrg fSE2

0

0.1

0.2

0.3

P
ro
p
o
rt
io
n

Figure 5.11: Proportion of total execution time on average spent in each step
of the proposed algorithm, preprocessing fpre (< 0.1%), clustering fclus (12.8%),
initial shape extraction fSE1 (12.0%), cluster merging fmrg (39.9%) and final shape
extraction fSE2 (35.2%)

The average execution time Tavg for different number of scan points, number of
clusters before merging and final number shapes are shown in Figure 5.12. The
figure shows a noisy trend of Tavg increasing with a higher number of scan points
Nscan points in Figure 5.12a. In Figure 5.12b however there is a clear correlation
with increasing Tavg for a higher number of clusters Nclusters. The number of shapes
Nshapes in Figure 5.12c appears to be correlated with Tavg for lower numbers of
Nshapes until Tavg flattens out when Nshapes > 60. The trend is most obvious for
the case of clusters, implying that the number of clusters obtained in the clustering
subfunction heavily affects the overall execution time.

64

5. Results

1000 2000 3000

Nscanpoints

0.1

0.2

0.3

0.4

T
a
v
g

fclus
fSE1

fmrg

fSE2

ftot

(a) Average execution time
Tavg for different numbers
of scan points Nscan points in
the frame. The execution
times of ftot, fmrg and fSE2

appears to be correlated to
Nscan points.

100 200 300 400

Nclusters

0.2

0.4

0.6

0.8

T
a
v
g

(b) Average execution time
Tavg for different numbers
of clusters Nclusters in the
frame. The execution
times of ftot and fmrg ap-
pears to be heavily corre-
lated to Nclusters.

20 40 60 80 100 120

Nshapes

0.1

0.2

0.3

T
a
v
g

(c) Average execution time
Tavg for different numbers
of scan points Nshapes in
the frame. The execu-
tion times of ftot, fmrg and
fSE2 appears to be ap-
proximately correlated to
Nshapes when Nshapes <
60, but remains unchanged
for growing Nshapes when
Nshapes > 60.

Figure 5.12: Average execution time Tavg for different numbers of scan points
Nscan points (a), clusters before merging Nclusters (b) and final number of shapes
Nshapes (c). The execution times of the different subfunctions of the proposed al-
gorithm ftot include clustering fclus, primary shape extraction fSE1 , cluster merging
fmrg and secondary shape extraction fSE2 . ftot is the sum of the subfunctions.
Nclusters, as seen in (b) appears to have the strongest correlation with Tavg for the
total execution time ftot.

The execution time of a subset of 400 frames was further analysed using the profile
tool in MATLAB. The average execution time was 0.45 seconds per frame, which
is higher than the average in Table 5.4. However the proportion of time spent in
the different subfunctions was similar to those previously established in Figure 5.12,
with the merging subfunction fmrg and the final shape extraction fSE2 composing
37% and 35% of the total execution time, respectively. The purpose was to pinpoint
the most time consuming parts of fmrg and fSE2 .

For fmrg, the most time consuming parts were Algorithm 3: AllowMergeSingleLink-
age, and the DistanceBetweenConvexHulls function on line 12 in Algorithm 3. Both
these functions are detailed in Section 4.2.4 and accounted for 34% and 24% of the
time spent in this step respectively.

For fSE2 the most time consuming parts were L-shape fitting (42.5%), concave hull
fitting (21%) and line fitting (20%). All these subfunctions are detailed in Section
4.2.3. The concave hull fitting includes an initial convex hull fitting, as explained
in Section 4.2.3.1 and was observed in the same way to only constitute 2% of the
concave hull execution time.

65

5. Results

66

6
Discussion and Future Work

In this chapter the results presented in Chapter 5 are discussed in detail. The aim
is to clarify and reason about the differences seen in the results from the evaluation
of the proposed algorithm and the reference algorithm. Furthermore a discussion
on the reliability and the value of the produced results is provided. In addition,
suggestions for future work to improve the proposed algorithm are given at end of
the chapter.

6.1 Clustering
As detailed in Section 1.2, one of the fundamental problems to be solved by the
designed algorithm was reliable clustering of data. The clustering was evaluated
manually in Section 5.1 and using reference target data presented in Section 5.2.

The results from the manual assessments of scenario 1 in Section 5.1.1 show that
segmentation achieved by the proposed algorithm was similar to that of the refer-
ence algorithm when it used GPR, as can be seen in Table 5.1. In the transition
between L-shapes and lines, the detections on the secondary side of the preceding
vehicle were seen to become sparse compared to the primary side, which made the
clustering less reliable as seen in Figure 5.2. This coincided with the frames that
were most oversegmented, indicating that a particularly difficult case to achieve cor-
rect segmentation is in the transition phase from an L-shape to a line. It should be
noted that the evaluation criteria decided on in Section 4.3.1 were very conservative,
such that any case where there was any noticeable oversegmentation was labelled
as incorrect. However, in many cases the oversegmented object also included a well
represented shape, which could have been used as long as it could have been distin-
guished from the other shapes. For the proposed algorithm it was observed that the
shape with the largest overlap factor consistently yielded the best shape to describe
the cluster. This indicates that the overlap factor can be useful in scenarios where
multiple shapes are detected on a single object.

Scenario 2, 3 and 4 were presented in Section 5.1.2, with the aim to observe seg-
mentation in the presence of ground detections. It was found that the proposed al-
gorithm frequently suffered from undersegmentation, while the reference algorithm
had more inconsistent results, as it additionally suffered from oversegmentation and
faulty classification. The inconsistency in the results for the reference algorithm is

67

6. Discussion and Future Work

likely due to the different situations in each scenario with respect to distance to the
vehicle, terrain and at what height ground detections occurred. The most striking
difference between the two algorithms was found in scenario 2 where the proposed
algorithm suffered from undersegmentation and the reference algorithm from over-
segmentation. This is mainly believed to be related to the reference algorithm’s use
of a subfunction for ground removal, GPR. GPR did in this case remove detections
on the vehicle rather than just the ground detections, which here lead to overseg-
mentation. This is a example where the GPR policy of removing data to avoid
ground detections instead lead to oversegmentation, which supports the approach
taken with the proposed algorithm to retain as much data as possible.

In scenario 4, undersegmentation was especially prevalent for the reference algo-
rithm. The ground detections that occurred around the vehicle in the slope were
not managed by the GPR in the reference algorithm and the proposed algorithm
instead showed an edge in this scenario. However, the slope caused a lot of ground
detections that both algorithms struggled to distinguish from the vehicle in a sat-
isfactory manner. Overall, the results from scenario 2-4 seem to indicate that the
proposed algorithm is more reliable and consistent at distinguishing between the
vehicle and ground points in different scenarios.

For the reference target evaluation in Section 5.2 the undersegmentation differences
were hard to assess due to the absence of other objects around the target vehicle, as
discussed in Section 4.3.2, however it was possible to get a measure on oversegmen-
tation. The results from ego overtaking in Section 5.2.1 and target overtaking in
Section 5.2.2 again does not show any significant segmentation difference between
the proposed algorithm and the reference algorithm. This indicates that the two
algorithms are nearly equally good at segmentation in a situation where ground
points are rare.

As mentioned above, in the manual evaluation of scenario 1, the vast majority of
oversegmention cases occurred in the transition from an L-shape to a line. In the
reference target evaluation of an overtaking target vehicle in Section 5.2.2, the im-
portance of the secondary incidence angle was shown. As the angle becomes smaller,
as shown in Figure 5.8c, both the proposed algorithm and the reference algorithm
with GPR became more sensitive to oversegmentation, as seen in Figures 5.9a and
5.9d, until the angle becomes smaller than approximately 5°, after which segmenta-
tion accuracy is good.

6.2 Shape Extraction
The aim with shape extraction was to fit a representative geometric shape to each
cluster of lidar detections. In the manual assessment some observations of incorrect
shape classification were observed. During the lane change in scenario 1, there was
one frame in which the proposed algorithm produced a correct segmentation of the
detections from the vehicle, but fitted the wrong shape, as shown in Figure 5.1a.

68

6. Discussion and Future Work

This resulting shape indicated that there are certain data which even when clustered
appropriately can not be correctly represented by the proposed algorithm. However,
since no optimal tuning of the algorithm has been attempted, it is believed that this
could be partially mitigated by finding cases such as this and modifying parameters
to allow for better shape classification. Considering the results of scenario 3 in Table
5.2, it seems that the proposed algorithm in this situation is able to find the correct
shape more reliably than the reference algorithm.

The two reference target scenarios described in 4.3.2 both gave slightly different
results related to shape extraction accuracy. In the target overtaking scenario in
Section 5.2.2, the shape fitting error of the proposed algorithm was in every case
equal or better to that of the reference algorithm. In the ego overtaking scenario
however, no clear difference between the two algorithms could be observed.

The main difference between the two scenarios is which angle the target vehicle is
visible from, in other words the secondary incidence angle θ2. In ego overtaking, θ2
was very low throughout the scenario except for a small number of frames towards
the end, where the ego vehicle overtook the target as seen in Figure 5.5b. The result
of this was that the target vehicle for the most part appeared as a straight line for
the lidar, hence mainly resulting in fitting of line shapes from both algorithms as
supported by Figures 5.6c and 5.6f. We can draw the conclusion that both algo-
rithms perform equally well, or nearly equally well when faced with this type of
cluster.

In the target overtaking scenario, θ2 had a greater spread as can be seen in Figure
5.8 which resulted in the lidar having vision of two sides of the target vehicle for a
larger part of the scenario. The proposed algorithm here outperformed the reference
algorithm for distances shorter than 50 meters, as observed in Figure 5.10. For both
algorithms, all L-shapes observed were in this region, as can be seen in Figures
5.9c and 5.9f. It is also the region where both algorithms had the greatest errors,
which could in part be due to the oversegmentation observed in 5.9b and 5.9e.
The region with oversegmentation coincides with values of the secondary incidence
angle θ2 between 5° and 10°, which is typically the region when two sides of the
target vehicle are detected, but the points on the secondary sides are still much
sparser that the primary side. This region is also where the frequency of lines and
L-shapes are roughly equal, as seen in Figures 5.9c and 5.9f. This corresponds to the
transition area between L-shapes and lines which was also observed to contain more
segmentation errors as discussed in Section 6.1. The conclusion is that the secondary
incidence angle θ2 is very important for the segmentation and the accuracy of the
algorithm, and degrades performance in the region 5° < θ2 < 10°. This is due to the
relative sparsity of the points on the secondary side in this region, which leads to
the oversegmentation which can be observed for both the proposed algorithm and
the reference algorithm.

69

6. Discussion and Future Work

6.3 Execution Time

The reference algorithm was shown in Section 5.3 to have a considerably faster av-
erage execution time than the proposed algorithm. This can be explained by the
costly merging and shape extraction subfunctions of the proposed algorithm, which
together account for around 75% of the total execution time, as seen in Figure 5.11.
It is also likely that the MATLAB implementations of the two algorithms differed in
performance, and that the proposed algorithm could be implemented in a way that
is considerably faster that the current implementation. Even if this is not the case,
the average execution time of 287 milliseconds for the proposed algorithm could
probably be reduced greatly by optimising the code and implementing it in a more
efficient programming language such as C++.

The main factor that impacts the performance of the proposed algorithm is the
number of clusters obtained in the clustering step, as illustrated in Figure 5.12b.
This is correlated to the increase in execution time of the merging step fmrg. A
reason for this might be that single linkage clustering is performed on those clusters
in fmrg, as described in Section 4.2.4. Single linkage merging maintains a matrix of
all the distances between the different clusters, as explained in 3.1, and therefore the
memory and computational requirements grows as the the square of the number of
elements. The MATLAB profiling showed that two functions in particular affected
performance in the merging step: AllowMergeSingleLinkage and DistanceBetween-
ConvexHulls. Both of these are used within the single linkage merging, and has to be
run more times if there are more clusters present. One way which the computation
time could be reduced could be to use a different method of finding the distances
between the different clusters. An idea is to save cluster distance information in
the clustering step to give a preliminary guess of which clusters are likely to be in
proximity, to avoid having to compute the full graph of all the clusters distances in
each merging step. This could for example take the shape of arranging the differ-
ent clusters in some sort of occupancy map, and subsequently limiting the search
to neighbouring grids when computing distances between clusters. Another option
is to attempt to optimise the implementation of the two functions AllowMergeSin-
gleLinkage and DistanceBetweenConvexHulls in a different programming language,
which is likely to improve performance.

The secondary shape extraction step fSE2 also made up a large part of the total
execution time. Profiling in MATLAB showed that the most significant time con-
sumption was from L-shape fitting, concave hulls and line fitting constituting 43.5%,
21% and 20% respectively. The main issue with L-shape fitting using the SBRF al-
gorithm detailed in 3.2.2 is that it always needs to fit a large number of boxes before
it can find the optimal. If, for example an angular resolution of 1° is sought, 89
boxes will need to be fitted before the best one is found in the interval [0°, 90°).
The most obvious way to reduce the computation time of the L-shape fitting would
therefore be to lower the angular resolution, but this would come at the cost of an-
gular accuracy. Another approach, that could drastically improve the computation
time without losing accuracy is to use a simulated annealing effect, where a larger

70

6. Discussion and Future Work

initial angular step size is gradually decreased and re-estimated for the best region
until the best global minimum is reached. Another idea is to reduce the amount
clusters that are sent to the L-shape fitting function by performing additional pre-
classification on the clusters, for example by removing clusters that are too large
to represent a vehicle. The concave hull fitting consumed 21% of the time spent in
the fSE2 subfunction, which could be reduced by replacing the concave hulls with
convex hulls which takes 98% less time to compute. This would however lead to
less accurate results as a polygon could include empty areas that are spanned by
the points. Alternatives to the implemented algorithm to generate concave hulls
were not explored so it is also possible that another, more efficient algorithm, could
reduce its computation time.

6.4 Future Work
In addition to the suggestions mentioned above, additional recommendations for
future work are presented below.

Most pressingly, the designed algorithm needs tuning and further evaluation to as-
sess its performance in general traffic situations. Furthermore, for the algorithm to
be useful in an extended object tracker, the shape representation likely needs to be
modified to suit the design of the tracker. For example, the extent of the shapes
could be represented differently and with additional parameters that describe the
orientation of the shape. The algorithm should then be evaluated together with
the tracker to fully assess its performance. An appropriate uncertainty model for
different shapes also need to be implemented in order for an extended object tracker
to perform well. Further work could investigate if the proposed overlap factor could
be used as a dynamic factor in such a model.

To facilitate easier data association in cases of oversegmentation for a tracker, it
could be beneficial to retain information about the proximity of clusters that due to
incompatible shapes were rejected for merging.

71

6. Discussion and Future Work

72

7
Conclusions

In this thesis, an algorithm is proposed with the purpose of reducing data complex-
ity for use in a future object tracking algorithm. The proposed algorithm performs
clustering and shape extraction on multi-layer lidar point cloud data, to be run in
real-time in conjunction with a lidar mounted on the front bumper of an ego vehicle.

In manual assessments, the proposed algorithm has shown promising results in pro-
viding correct segmentation of dynamic objects in limited scenarios compared to a
reference algorithm. The capability is especially noteworthy with respect to being
able to provide adequate segmentation of vehicles that have ground detections in
close proximity. The reference target evaluation showed an improvement in accu-
racy when the proposed algorithm was compared to the reference algorithm in the
scenario of target overtaking, and equivalent performance in the second scenario
of ego overtaking. The results highlighted that both the proposed algorithm and
the reference algorithm performed considerably worse when an object was detected
at a secondary incidence angle between 5° and 10°. This effect was also observed
in the manual assessment in a scenario where a preceding vehicle performs a lane
change. The conclusion is drawn that this is due to the fact that the density of data
points on one of the sides of the target is much lower than on the other, leading to
oversegmentation of the object and reduced stability in the fitting accuracy.

The execution time of the proposed algorithm is worse than the reference algo-
rithm, but can be improved greatly by implementing the algorithm in a more high-
performing programming language and optimising the subfunctions of cluster merg-
ing and L-shape fitting.

73

7. Conclusions

74

Bibliography

[1] BenjStaw. C3top svg. [Online; used under the creative commons CC0 1.0
universal public domain dedication license; accessed: 2017-06-01; url: https:
//commons.wikimedia.org/wiki/File:C3top_svg.svg].

[2] BenjStaw. C3side svg. [Online; used under the creative commons CC0 1.0
universal public domain dedication license; accessed: 2017-06-01; url: https:
//commons.wikimedia.org/wiki/File:C3side_svg.svg].

[3] Geovany Araujo Borges and Marie-José Aldon. Line extraction in 2D range
images for mobile robotics. Journal of Intelligent & Robotic Systems, 40(3):267–
297, 2004.

[4] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[5] E Rosen, E Jansson, and M Brundin. Implementation of a fast and efficient
concave hull algorithm. Technical report, Uppsala University, Department of
Information Technology, 2014.

[6] World Health Organization. Global status report on road safety, 2015.
[Online; accessed: 2017-10-30; url: http://www.who.int/violence_injury_
prevention/road_safety_status/2015/en/].

[7] National Highway Traffic Safety Administration. Automated vehicles for
safety. [Online; accessed: 2017-10-30; url: https://www.nhtsa.gov/
technology-innovation/automated-vehicles-safety].

[8] Velodyne LiDAR. HDL-32E. http://velodynelidar.com/docs/datasheet/
97-0038_Rev%20K_%20HDL-32E_Datasheet_Web.pdf, 2017.

[9] Velodyne LiDAR. HDL-64E. http://velodynelidar.com/docs/datasheet/
63-9194_Rev-F_HDL-64E_S3_Data%20Sheet_Web.pdf, 2017.

[10] Ocular Robotics. RobotEye RE05. http://www.ocularrobotics.com/wp/
wp-content/uploads/2015/12/RobotEye-RE05-3D-LIDAR-Datasheet.pdf,
2014.

[11] CAR Magazine. How did Audi make the first car with level 3 autonomy? [On-
line; accessed: 2017-10-30; url: http://www.carmagazine.co.uk/car-news/
tech/audi-a3-level-3-autonomy-how-did-they-get-it-to-market/].

[12] The New York Times. What Self-Driving Cars See. [Online; accessed: 2017-
10-30; url: https://www.nytimes.com/2017/05/25/automobiles/wheels/
lidar-self-driving-cars.html].

[13] Simo Särkkä. Bayesian filtering and smoothing, volume 3. Cambridge Univer-
sity Press, 2013.

[14] Stefan Wender, Kay Ch Fuerstenberg, and Klaus Dietmayer. Object tracking
and classification for intersection scenarios using a multilayer laserscanner. In

75

https://commons.wikimedia.org/wiki/File:C3top_svg.svg
https://commons.wikimedia.org/wiki/File:C3top_svg.svg
https://commons.wikimedia.org/wiki/File:C3side_svg.svg
https://commons.wikimedia.org/wiki/File:C3side_svg.svg
http://www.who.int/violence_injury_prevention/road_safety_status/2015/en/
http://www.who.int/violence_injury_prevention/road_safety_status/2015/en/
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
http://velodynelidar.com/docs/datasheet/97-0038_Rev%20K_%20HDL-32E_Datasheet_Web.pdf
http://velodynelidar.com/docs/datasheet/97-0038_Rev%20K_%20HDL-32E_Datasheet_Web.pdf
http://velodynelidar.com/docs/datasheet/63-9194_Rev-F_HDL-64E_S3_Data%20Sheet_Web.pdf
http://velodynelidar.com/docs/datasheet/63-9194_Rev-F_HDL-64E_S3_Data%20Sheet_Web.pdf
http://www.ocularrobotics.com/wp/wp-content/uploads/2015/12/RobotEye-RE05-3D-LIDAR-Datasheet.pdf
http://www.ocularrobotics.com/wp/wp-content/uploads/2015/12/RobotEye-RE05-3D-LIDAR-Datasheet.pdf
http://www.carmagazine.co.uk/car-news/tech/audi-a3-level-3-autonomy-how-did-they-get-it-to-market/
http://www.carmagazine.co.uk/car-news/tech/audi-a3-level-3-autonomy-how-did-they-get-it-to-market/
https://www.nytimes.com/2017/05/25/automobiles/wheels/lidar-self-driving-cars.html
https://www.nytimes.com/2017/05/25/automobiles/wheels/lidar-self-driving-cars.html

Bibliography

Proceedings of the 11th World Congress on Intelligent Transportation Systems,
2004.

[15] Stefan Wender, Michael Schoenherr, Nico Kaempchen, and Klaus Dietmayer.
Classification of laserscanner measurements at intersection scenarios with auto-
matic parameter optimization. In Intelligent Vehicles Symposium, 2005. Pro-
ceedings. IEEE, pages 94–99. IEEE, 2005.

[16] Su-Yong An, Jeong-Gwan Kang, Lae-Kyoung Lee, and Se-Young Oh. Line
segment-based indoor mapping with salient line feature extraction. Advanced
Robotics, 26(5-6):437–460, 2012.

[17] Beomseong Kim, Baehoon Choi, Minkyun Yoo, Hyunju Kim, and Euntai
Kim. Robust object segmentation using a multi-layer laser scanner. Sensors,
14(11):20400–20418, 2014.

[18] Abel Mendes, L Conde Bento, and Urbano Nunes. Multi-target detection and
tracking with a laser scanner. In Intelligent Vehicles Symposium, 2004 IEEE,
pages 796–801. IEEE, 2004.

[19] Danilo Caceres Hernandez, Alexander Filonenko, Dongwook Seo, and Kang-
Hyun Jo. Lane marking recognition based on laser scanning. In Industrial
Electronics (ISIE), 2015 IEEE 24th International Symposium on, pages 962–
965. IEEE, 2015.

[20] Robert Lösch. Multitarget multisensor motion tracking of vehicles with vehicle
based multilayer 2D laser range finders. Master’s thesis, Technical University
of Munich, 2017.

[21] Beomseong Kim, Baehoon Choi, Seongkeun Park, Hyunju Kim, and Euntai
Kim. Pedestrian/vehicle detection using a 2.5-d multi-layer laser scanner. IEEE
Sensors Journal, 16(2):400–408, 2016.

[22] Gwennael Gate and Fawzi Nashashibi. Using targets appearance to improve
pedestrian classification with a laser scanner. In Intelligent Vehicles Symposium,
2008 IEEE, pages 571–576. IEEE, 2008.

[23] Samuel Gidel, Christophe Blanc, Thierry Chateau, Paul Checchin, and Laurent
Trassoudaine. A method based on multilayer laserscanner to detect and track
pedestrians in urban environment. In Intelligent Vehicles Symposium, 2009
IEEE, pages 157–162. IEEE, 2009.

[24] Viet Nguyen, Stefan Gächter, Agostino Martinelli, Nicola Tomatis, and Roland
Siegwart. A comparison of line extraction algorithms using 2D range data for
indoor mobile robotics. Autonomous Robots, 23(2):97–111, 2007.

[25] Valentin Magnier, Dominique Gruyer, and Jerome Godelle. Automotive lidar
objects detection and classification algorithm using the belief theory. In Intel-
ligent Vehicles Symposium (IV), 2017 IEEE, pages 746–751. IEEE, 2017.

[26] Rui Xu and Donald Wunsch. Survey of clustering algorithms. IEEE Transac-
tions on neural networks, 16(3):645–678, 2005.

[27] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering: a
review. ACM computing surveys (CSUR), 31(3):264–323, 1999.

[28] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Kdd, volume 96, pages 226–231, 1996.

76

Bibliography

[29] Felipe Jiménez and José Eugenio Naranjo. Improving the obstacle detection
and identification algorithms of a laserscanner-based collision avoidance system.
Transportation research part C: emerging technologies, 19(4):658–672, 2011.

[30] George Nagy. State of the art in pattern recognition. Proceedings of the IEEE,
56(5):836–863, 1968.

[31] Mingqiang Yang, Kidiyo Kpalma, and Joseph Ronsin. A survey of shape feature
extraction techniques, 2008.

[32] Pranab Kumar Sen. Estimates of the regression coefficient based on Kendall’s
tau. Journal of the American Statistical Association, 63(324):1379–1389, 1968.

[33] David Forsyth and Jean Ponce. Computer vision: a modern approach. Upper
Saddle River, NJ; London: Prentice Hall, 2011.

[34] H Theil. A rank-invariant method of linear and polynomial regression analysis,
Part 3. In Proceedings of Koninalijke Nederlandse Akademie van Weinenschat-
pen A, volume 53, pages 1397–1412, 1950.

[35] Xiao Zhang, Wenda Xu, Chiyu Dong, and John M. Dolan. Efficient L-shape
fitting for vehicle detection using laser scanners. In IEEE Intelligent Vehicles
Symposium, June 2017.

[36] Robert MacLachlan and Christoph Mertz. Tracking of moving objects from a
moving vehicle using a scanning laser rangefinder. In Intelligent Transportation
Systems Conference, 2006. ITSC’06. IEEE, pages 301–306. IEEE, 2006.

[37] Ronald L Graham. An efficient algorithm for determining the convex hull of a
finite planar set. Information processing letters, 1(4):132–133, 1972.

[38] Alex M Andrew. Another efficient algorithm for convex hulls in two dimensions.
Information Processing Letters, 9(5):216–219, 1979.

[39] Wassim G Najm and John D Smith. Development of crash imminent test
scenarios for integrated vehicle-based safety systems. Technical report, National
Highway Traffic Safety Administration, 2007.

77

Bibliography

78

	List of Figures
	List of Tables
	Introduction
	Background
	Purpose
	Related Work
	Scope and Limitations
	Contribution
	Thesis Outline

	System Overview
	Coordinate System
	Multi-layer Lidar

	Theory
	Clustering
	Breakpoint Detection
	Hierarchical Clustering

	Shape Extraction
	Line
	L-shape
	Convex Hull
	Concave Hull

	Methods
	Lidar Data
	Algorithm Implementation
	Overview
	Clustering
	Shape Extraction
	Cluster Merging
	Overlap factor

	Evaluation
	Manual Evaluation
	Reference Target Evaluation
	Execution time

	Results
	Manual Evaluation
	Scenario 1
	Scenarios 2, 3 and 4

	Reference Target
	Ego Overtaking
	Target Overtaking

	Execution time

	Discussion and Future Work
	Clustering
	Shape Extraction
	Execution Time
	Future Work

	Conclusions
	Bibliography

