
A software toolkit for generating ice and
snow particle shape data

Torbjörn Rathsman

Master's Thesis in COMPLEX ADAPTIVE SYSTEMS

Department of Earth and Space Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

A software toolkit for generating ice
and snow particle shape data

Master’s Thesis

by

Torbjörn Rathsman

Department of Earth and Space Sciences
Chalmers University of Technology

Gothenburg, Sweden 2016

A software toolkit for generating ice and snow particle shape data
Torbjörn Rathsman

c© Torbjörn Rathsman, 2016

RRYX03 - Master’s thesis at Earth and Space Sciences
Supervisor: Patrick Eriksson
Examiner: Patrick Eriksson

Department of Earth and Space Science
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
+46 (31) 772 1000

Printed by Chalmers Reproservice
Göteborg, Sweden 2016

Cover: A picture of a snowflake generated by one of the algorithms implemented
during this project. In order to show refraction effects simulated by the picture
renderer, the snowflake has been placed in front of a checkerboard background.

Abstract

Ice and snow particle shape data are important for understanding the scattering of
microwave radiation from a cloud. This thesis presents a software toolkit that can be
used to generate such data, for use with Discrete Dipole Approximation calculations.
The toolkit has been used to implement a Gillespie-based algorithm with overlap
rejection. This algorithm, when used with hexagonal columns, has reproduced some
of the properties of real snowflakes, namely their fractal dimension, and their size
distribution.
The toolkit uses ice crystal prototypes to construct aggregates. Ice crystal proto-

types can be modeled in 3D modelling software. This makes it is easy to construct
exotic shapes, as opposed to a system based on different classes for different proto-
types. In order to keep the possibility of arbitrary parameterisation, the ice crystal
prototypes specifies transformation rules that are used if the ice crystal prototype
should be deformed. Aggregates and ice crystal prototypes can be merged in differ-
ent ways to form larger aggregates. To feed a DDA calculation program, the toolkit
also provides a rasterisation system, which fills geometry with voxels by using a
6-directional floodfill algorithm.
A large part of the thesis discusses various ways of measuring particles. This

has lead to a unit neutral way of testing whether or not a model simulates reality.
The idea is to compare an averaged spherical volume fill ratio, which according to
measurements should follow a particular equation, derived within this thesis.
Besides giving an overview of the toolkit, and presenting simulation results, this

thesis also serves as a reference manual on how to use the toolkit.

Acknowledgements
This project would not have been without the idea from Patrick Eriksson. He has
also suggested relevant quantities for the data analysis part of this project. A person
who also should be mentioned is Robin Eklund for his feedback on the usability of
the code, and his suggestions on improvements.

The author, April 2016

Contents
Notations used within this report v

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 About current research . 2
1.2 The purpose of this project . 3
1.3 Report outline . 3

2 Construction of the toolkit 4
2.1 Ice particle synthesization . 5
2.2 Storing ice particles . 7

2.2.1 Intermediate aggregate storage 7
2.3 Mesh assembly . 8

2.3.1 Deformation . 9
2.3.2 Merging geometry . 9

2.4 Geometry sampling . 11
2.5 Utility routines . 12

2.5.1 Face normal calculation . 12
2.5.2 Aligning normal vectors . 12
2.5.3 Testing whether or not a point is inside a domain 13
2.5.4 Centroid and volume calculation 13
2.5.5 Overlap detection . 14

3 Models describing snowflake formation 17
3.1 A static “model” . 17
3.2 A stochastic collision model (Model A) 17

3.2.1 Implementation in this toolkit 19
3.3 Non-spherical crystals and overlap detection 21

3.3.1 Non-spherical particles . 21
3.3.2 Overlap detection . 23

3.4 Adding more processes to the model (Model B) 23
3.4.1 Event probabilities . 23
3.4.2 Storing probabilities . 27

i

3.4.3 The resulting algorithm . 28

4 Evaluating models 31
4.1 The relation between particle volume and radius 31
4.2 The particle size distribution . 32
4.3 The spherical volume fill ratio . 33
4.4 Data collection procedure . 35

4.4.1 Collection of data from model B 35
4.5 Model parameter fitting . 38

4.5.1 Dealing with time-dependent quantities 38
4.5.2 Finding quantity distribution among particles 42
4.5.3 Determining the fractal dimension 42
4.5.4 Determining particle size distribution 42

5 Results 43
5.1 The relation between particle volume and radius 43
5.2 The size distribution parameter . 50
5.3 The spherical volume fill ratio . 50

6 Discussion 58
6.1 Ways to improve the toolkit . 58
6.2 Extensions and correctness of the models 59
6.3 Alternative ways of analyse data . 59
6.4 Uncertainties in data . 60

7 Conclusions 61

Glossary 62

Bibliography 64

A System requirements 66

B Retrieving and compiling the toolkit 67

C Predefined crystal files 69

D Command files used by the toolkit 70
D.1 General syntax . 70
D.2 Ice crystal prototype definition files 71

D.2.1 Using Blender for creating ice crystal prototypes 73
D.3 Aggregate description files . 74

D.3.1 Defining the graph . 74

ii

D.3.2 Declaring and retrieving parameters 77
D.3.3 Arithmetical transformation of parameters 77
D.3.4 Other commands . 77

E API reference 78
E.1 List of source files . 78
E.2 Class reference . 80

E.2.1 struct AggregateEdge . 82
E.2.2 class AggregateGraph . 83
E.2.3 class AggregateGraphLoader:public ConfigCommandHandler 83
E.2.4 class AggregateNode . 84
E.2.5 struct BoundingBox . 85
E.2.6 class ConfigCommandHandler 85
E.2.7 struct ConfigCommand . 85
E.2.8 class ConfigParser . 86
E.2.9 class ElementRandomizer . 86
E.2.10 class FileIn . 86
E.2.11 class FileOut . 87
E.2.12 class IceParticle . 87
E.2.13 class IceParticleVisitor 88
E.2.14 class MatrixStorage . 89
E.2.15 class SolidBuilder:public IceParticleVisitor 90
E.2.16 class SolidBuilderBBC:public IceParticleVisitor 91
E.2.17 class Solid . 91
E.2.18 class SolidDeformation . 94
E.2.19 class SolidLoader:public ConfigCommandHandler 95
E.2.20 class SolidWriter . 95
E.2.21 class Task . 96
E.2.22 class Thread . 96
E.2.23 class TicToc . 96
E.2.24 struct Twins:public std::pair<T,T> 97
E.2.25 class VolumeConvex . 97
E.2.26 class VolumeConvex::Face 100
E.2.27 class VoxelBuilder . 101
E.2.28 class VoxelBuilderAdda:public VoxelBuilder 102

E.3 Function reference . 103

F Result tables 104

iii

iv

Notations used within this report

Example Description
forward model A word explained in the glossary found at page 62
C An arbitrary constant whose meaning depends on the con-

text
O The origin
AB A line segment between the points A and B
v A geometric vector
−→
AB A geometric vector between the points A and B
|v| The magnitude of a vector
v̂ A unit vector that is |v̂| = 1
n A non-normalised face normal vector
n̂ A normalised face normal vector
A A matrix
I The identity matrix
X A general vector
k, l Indices or integers
bxc The integer part of x
dxe The smallest integer grater than x
∂xf The parial derivative of f with respect to x
∇ = x̂∂x + ŷ∂y + ẑ∂z The del operator
d

dx The ordinary derivative with respect to x
ẋ The time derivative of x
∂Ω The boundary of Ω
x ∼ A The random variable x follows the probability distribution

A
E(x) = 〈x〉 The expectation value of x
std(x) The standard deviation of x
A ∩B The intersection between the sets A and B
∅ The empty set
O(N) Algorithmic complexity. If R(N) is the amount of re-

sources used and the algorithmic complexity is O(N),
then limN→∞

R(N)
N

= C, where C is a constant.
Foobar A class called Foobar used within a computer program
foo An identifier in program source code
foo A command or function called foo
foo A programming keyword like nullptr
Bar A program called Bar
A (U+0041) Character with its Unicode codepoint

v

List of Figures

1.1 An illustration of the purpose of a forward model 1
1.2 Some common shapes used for simulating ice particle scattering . . . 2

2.1 Possible data flows for generating snowflake shape data 6
2.2 A simplified class diagram showing the structure of the graph model

of aggregates . 8
2.3 An illustration of the mesh assembly process 10
2.4 An illustration of 6-directional flood fill 12
2.5 An illustration of the criterion used to test whether or not a voxel is

inside a sub-volume . 14
2.6 An illustration of the geometry used to derive expressions for testing

triangle-triangle intersection . 15

3.1 The data flow in model A . 18
3.2 The merging scheme used in model A, without overlap detection . . . 18
3.3 A comparison between an UV-sphere (left) and an icosphere (right) . 20
3.4 An example of a “timber stack” . 22
3.5 The data flow in model B . 24
3.6 The layout of the probability matrix used by model B 27

4.1 A large and a small particle . 33
4.2 An example of the dependency between the simulated time and the

fractal dimension . 39
4.3 The two possible shapes of a convergent time-series 41

5.1 The computed fractal dimension of particles generated by model B,
as a function of different event rates 44

5.2 Correlation diagrams between the fractal dimension computed from
two different runs of model B with different seed, but the same pa-
rameter sweep (different event rates) 45

5.3 The computed volume growth coefficient of particles generated by
model B, as a function of different event rates 46

5.4 Correlation diagrams between the volume growth coefficient com-
puted from two different runs of model B with different seed, but
the same parameter sweep (different event rates) 47

vi

5.5 Relation between crystal prototype length and the fractal dimension
for particles generated by model B 47

5.6 Correlation diagrams between the fractal dimension computed from
two different runs of model B with different seed, but the same pa-
rameter sweep (different geometry) 48

5.7 Relation between crystal prototype length and the normalised volume
growth coefficient for particles generated by model B 48

5.8 Correlation diagrams between the volume growth coefficient com-
puted from two different runs of model B with different seed, but
the same parameter sweep (different geometry) 49

5.9 Particle volume as a function of their size for particles generated by
model B . 49

5.10 The size distribution parameter among particles generated by model B,
as a function of different event rates 51

5.11 Correlation diagrams between the fractal dimension computed from
two different runs of B with the same parameter sweep (different event
rates) . 52

5.12 Relation between crystal prototype length and the size distribution
parameter among particles generated by model B 52

5.13 Correlation diagrams between the fractal dimension computed from
two different runs of B with the same parameter sweep (different
geometry) . 53

5.14 Size distribution among particles generated by model B 53
5.15 Size distribution among dropped particles generated by model B . . . 54
5.16 The pseudo-average spherical volume fill ratio of particles generated

by model B, as a function of different event rates 55
5.17 Correlation diagrams between the pseudo-average spherical volume

fill ratio computed from two different runs of model B with different
seed, but the same parameter sweep (different event rates) 56

5.18 Relation between crystal prototype length and the pseudo-average
spherical volume fill ratio of particles generated by model B 56

5.19 Correlation diagrams between the average spherical volume fill ratio
computed from two different runs of model B with different seed, but
the same parameter sweep (different geometry) 57

5.20 The reduced spherical volume fill ratio as a function of particle size . 57

vii

List of Tables

2.1 Some predefined crystal shapes bundled with the toolkit 5

4.1 The quantities recorded during simulations 36
4.2 Parameter values used to evaluate model B 37
4.3 The parameter values used to evaluate model B with respect to dif-

ferent geometry . 37

C.1 Crystal prototypes bundled with the toolkit. 69

D.1 Delimiter characters and their function during the parsing process of
command files . 70

D.2 Commands allowed in an ice crystal prototype definition file 71
D.3 Commands allowed in an aggregate description file 76

F.1 Computed values of the fractal dimension of particles generated by
model B for different event rates . 104

F.2 Computed values of the normalised volume growth coefficient of par-
ticles generated by model B for different event rates 105

F.3 Computed values of the fractal dimension of particles generated by
model B with different crystal prototype length 106

F.4 Computed values of the volume growth coefficient of particles gener-
ated by model B with different crystal prototype length 106

F.5 Computed values of the size distribution parameter among particles
generated by model B . 107

F.6 Computed values of the size distribution parameter among particles
generated by model B with different crystal pototype length 108

F.7 Computed values of the mean spherical volume fill ratio of particles
generated by model B . 109

F.8 Computed values of the mean spherical volume fill ratio of particles
generated by model B . 110

viii

1 Introduction
Both weather forecasting and climate model verification are today dependent on
satellite observations. Many such observations are dependent on a reliable forward
model (see fig. 1.1), since the quantities of interest cannot be measured directly. By
inverting the forward model, it is possible to retrieve the quantities of interest. This
requires that all parameters of the forward model can be found. Finding parameters
can be done by measuring pairs of Y and X, and then fitting the model to all data
points. By using the fitted parameters, it should then be possible to get X from
Y or vice versa. It may also happen that the parameters themselves are of main
interest. In the context of weather and climate modelling, one such parameter is
the integrated water content of a cloud.
The integrated water content of a cloud is related to the amount snow and ice

particles in the cloud. An important effect of such particles is the scattering from
them. Understanding the scattering is needed for getting a correct data retrieval,
since it has a great impact on the measurement. For example, if it is of interest
to measure the temperature of a radiating object below an ice cloud, the scattering
from the cloud will affect the measurement. The scattering from an object, in this
case the particles inside the cloud, is among other things dependent of its shape,
and therefore, there is a need for facilities that can generate realistic particle shape
data.
It is in general impossible to find analytical expressions for the scattering, and

therefore computer simulations are needed in order to find out how different particle
mixtures affects scattering. Of particular interest is microwave scattering, since
the frequencies used for measurement is in the range 50 GHz to 800 GHz, which
corresponds to wavelengths of size 0.4 mm to 6 mm. This is approximately the same
size as the particles of interest and therefore, the scattering process is called Mie
scattering (Rees, W.G. 2001, p72-73). Simulations within this wavelength region

YX F

Figure 1.1: An illustration of the purpose of a forward model. The quantity Y is
measured, and the interesting quantity is X. By inverting the forward
model F , it is possible to find X from measured data.

1

1 Introduction

Figure 1.2: Some common shapes used for simulating ice particle scattering

can be performed using the Discrete Dipole Approximation (DDA)1 method (Draine,
B.T. et al. 1994). The DDA technique requires the particle volume to be filled with
a three-dimensional raster of electric dipoles (Draine, B.T. et al. 1994). To be able
to do this, the particle shape has to be known.

1.1 About current research

Current research has shown that the mass-radius relation for ice particles in cirrus
clouds is a power law, that is m = CRmax

β, with β ≈ 2 (Baran, A. J. 2012). The size
distribution of the ice particles is somewhat more uncertain, especially the amount of
smaller particles (those of size less than 250 µm), due to the destructive measurement
techniques used (Baran, A. J. 2012). Nevertheless there are measurements of ice
particles that indicate that their size distribution is exponential (Garrett, T. J. et
al. 2015), and the range of measured particle sizes spans 10 µm to 1000 µm and
larger(Baran, A. J. 2012).
There exists a number of models describing the shapes of ice particles. Many

of these models do not include any dynamics. Rather, they are based on static
distributions of the particle shapes and sizes (Baran, A. J. 2012), like those shown
in fig. 1.2. There are also some models which involve dynamics. One such model,
which is described by Maruyama, K. et al. (2005), is a stochastic model driven by
coalescence probabilities of all particles inside a cloud. While the authors chose to
include only spherical particles for the initial set of particles, and did not consider
event types other than particle coalescence, the model can in principle be extended
to cover any initial mixture of particle geometry, and it is also possible to add other
event types such as new particle creation, particle melting, and particle drop-out.

1A glossary is found at page 62

2

1.2 The purpose of this project

1.2 The purpose of this project
In order to understand more about the scattering from ice particles, there is a
need for software that can, given a more flexible geometry representation, generate
three-dimensional raster data suitable for DDA calculations, and that can be used
to simulate the formation of ice particles. With a more flexible geometry repre-
sentation, it is possible to build complex geometries out of simple primitives, with
an accuracy only limited by machine precision. This would not be possible with
the DDA-friendly raster, unless it has an impractical amount of raster points. The
possibility of building complex geometries for use with DDA calculations makes it
easier to simulate how different particle shapes affect microwave scattering. Particle
formation can also be thought of as building complex structures out of primitives by
following certain rules. Therefore, the ability to assemble geometry from primitives
can also be used when simulating particle formation.
The goals of this project have been to implement code that can generate input data

to be used in DDA calculations, and to implement at least one model that simulates
ice or snow particle formation. The first task has been done by first creating a set of
basic crystal shapes shapes, that can be imported through an aggregate description
file, and then rasterised. For the second task, the basic crystal shapes has been used
as input for the implemented models.
For the modelling part, the main focus has been on extending the model sug-

gested by Maruyama, K. et al. (2005), and to some extent, analyse its output. The
extensions made to the model are to include the possibility of different initial shapes
other than spheres, as well as to include new particle formation, particle melting,
and particle drop-out.

1.3 Report outline
Since the project has focused on implementing “A software toolkit for generating ice
and snow particle shape data”, the main part of the report begins with a description
of how different parts of the toolkit are implemented. In the following chapter,
models for ice particle formation are discussed. Chapter 4 is dedicated to model
evaluation through analysis of data collected from the raw output of simulations.
Some results of the results from the analysis are presented in Chapter 5. The results
are discussed further in Chapter 6, which also contains suggestions on how the work
done during this project can proceed.

3

2 Construction of the toolkit
Rather than building a monolithic application, the toolkit works as a software li-
brary. The main reason for that is that it should be possible to use different al-
gorithms to generate snowflakes. By implementing a common set of subroutines,
algorithms can use those subroutines in order to generate snowflakes. This chapter
is dedicated to explain the theory behind these subroutines. A programmer’s view
on the Application Programming Interface (API) can be found in appendix E. Most
of the subroutines implement algorithms from computational geometry, making the
toolkit more or less a geometry engine. There are also functions for loading and
storing geometry in different file formats.
Despite a general approach, some assumptions has to be made. As a starting

point, it is assumed that a program based on the toolkit requires some parameters,
and a set of basic ice crystal geometries, that can be used to create more complex
shapes. The basic crystal geometries are hereafter called crystal prototypes. Some
common shapes bundled with the toolkit are shown in table 2.1. Instead of using
the bundled shapes, the user can also draw custom shapes by using 3D modelling
software, or write them manually by using a text editor.
The toolkit does not assume any particular set of measurement units. Since the

toolkit is more of a geometry engine than a physics engine, the only unit of interest
is the unit of length, which is assumed to be the same as the one used when drawing
the crystal prototypes. This unit is called system unit. If the user does not convert
the output quantities before storing data, this unit will also be used when exporting
data.
The toolkit is constructed around the data flow outlined in fig. 2.1. It consists

of four major stages: Particle synthesization, Mesh generation, Geometry
sampling, and Data collection. The input data mentioned above are collectively
named “Static resources” in fig. 2.1. Although this picture has been used for in-
spiration when implementing the toolkit, the toolkit does not force any execution
order. In other words, the toolkit does not use inversion of control to force a par-
ticular data flow, anywhere but in a few places where data traversing seemed to be
complicated. An overview of the source code can be found in appendix E.
In the first stage, ice particles are assembled using some model. The model can do

anything from assembling prescribed shapes, to perform a more complete physical
simulation, using other already computed results as input.
The ice particle synthesization stage can generate a polygon mesh directly as well

as using a graph structure as an intermediate form. If the former approach is used,

4

2.1 Ice particle synthesization

Table 2.1: Some predefined crystal shapes bundled with the toolkit. A complete
list of crystal prototypes together with their parameters can be found in
table C.1

Shape Name Description
bullet A single-ended hexagonal bullet. The tip

height can be reduced to zero, which turns
the bullet into a column

hollow A hollow column. The hole depth can be re-
duced to zero, which turns the hollow column
into a solid column

spheroid A spheroid. The spheroid can be stretched
along any orthogonal set of axes.

the synthesization algorithm can determine to merge ice particles and then, they
form a new ice particle directly. If the latter approach is used, the mesh assembly
stage converts the graph structure into polygon meshes.
The final polygon mesh can be fed into the geometry sampler to generate DDA

input data. The geometry sampler fills the generated ice particles with virtual
electric dipoles. To create measurements of the ice particles produced, there are
also various data collection procedures, that measure geometric quantities of an ice
particle. Since the mesh follows a conventional structure, it is possible also to export
the mesh and import it into other tools.

2.1 Ice particle synthesization
The particle synthesization process is responsible for creating aggregates using some
physical model, unknown to the toolkit. Therefore, what happens in this stage is
fully defined by the chosen physical model. The models implemented during this
project are outlined in chapter 3. The responsibility of the toolkit is to provide
the basic functionality needed to implement the physical model. All models im-
plemented in this project are based on physically motivated “copy-paste” processes
that need routines for processing geometry through deformation, rotation, placing,
and merging.
As described above, the toolkit support two different ways of assembling an ice

particle: a direct method without intermediate storage, and an indirect method
with intermediate storage. In common, both methods formalise the way of merging

5

2 Construction of the toolkit

Mesh
assembly

Statistics

Parameters

Particles to
merge

Aggregate
graph

External tools
Geometry
sampler

Data
collection

Polygon
mesh

Particle
synthetization

DDA
shape data

Static
resources

ProcessX

Data storageX

Data flow

Optional path

Figure 2.1: Possible data flows for generating snowflake shape data. The particle
synthesization stage is responsible for the assembly of the geometry,
while the mesh generator constructs a polygon mesh. The particle syn-
thesization stage can both create a polygon mesh directly and use the
intermediate aggregate graph storage for later assembly. The polygon
mesh is used to generate DDA input data, or polygon mesh statistics.
The polygon mesh can also be exported for other usage.

6

2.2 Storing ice particles

two polygon meshes. With the direct method, these polygon meshes are directly
merged through a transformation matrix specified by the caller. As mentioned
above, the indirect method uses a graph structue which connects polygon meshes
with offset vectors and bond angles. The indirect method can be used for models that
are more easily formulated from angles and distances than using absolute positions,
or models that need to break an ice particle while preserving its parts. If the model
does not need these feature, it should be implemented using the direct method
instead, since it avoids the possibly large overhead in converting the graph to a
polygon mesh.

2.2 Storing ice particles
The most fundamental building block used for storing ice particles is a sub-volume.
A sub-volume consists of a non-loose polygon mesh described as vertices and faces,
each face referring to three vertices. An important feature of a sub-volume is that
it is a convex set. To emphasise this assumption, they are called VolumeConvex
within the toolkit. Besides vertices and faces, a sub-volume also maintains a list of
faces that are assumed to be visible, and associations between vertex groups and
vertices.
To be able to construct non-convex geometry, there are Solids. A Solid is a

collection of sub-volumes and a set of transformation rules, each described by a
4× 4 matrix with parameterised entries. The transformation rule also has a name,
which associates it with a vertex group.
The next level of abstraction is an IceParticle. An IceParticle adds non-

geometrical information such as velocity and density. It also keeps its own set of
parameters for the geometry transformations. In this sense, a Solid works as a
template when forming an IceParticle.

2.2.1 Intermediate aggregate storage
When the indirect approach for generating an ice particle is used, the structure
of the new particle is stored as a graph illustrated in fig. 2.2. Each node has an
IceParticle, and contains all edges that connects the IceParticle of the current
node to all its neighbours. In addition to storing pointers to the two nodes that are
connected through the edge, the edge also stores geometric data used for the mesh
generation process illustrated in fig. 2.3. The geometric data consists of

– the offset vector u from the centre of the parent IceParticle P0 to the joint
anchor point A in coordinates of the parent IceParticle

– the offset vector v from the centre of the child IceParticle P1 to the joint
anchor point B in coordinates of the child IceParticle

7

2 Construction of the toolkit

AggregateGraph
nodes: AggregateNode
other data

AggregateNode
grain: Grain
bonds: AggregateEdge

Grain
geometry data
physical data

AggregateEdge
parent: AggregateNode
child: AggregateNode
geometry data

1

0..N

1

1

1

0..*

Figure 2.2: A simplified class diagram showing the structure of the graph model
of aggregates. A solid diamond at class A marks that the data de-
scribed by the class at the other end of the association are stored
together with the data described by A (A IceParticle is stored to-
gether with an AggregateNode), and a hollow diamond marks that
the data is stored somewhere else (An AggregateEdge contains two
AggregateNode pointers).

– the turn angles—illustrated by ∆θ—to rotate by, when moving from the parent
node to the child node.

In order to keep the mesh generation process independent of the choice of starting
node, both the parent and child node keep an own version of the binding edge (the
class AggregateEdge in fig. 2.2). In the child version, the two node pointers, as well
as the vectors u and v are swapped, and the turn angles are ordered backwards and
have opposite sign.

2.3 Mesh assembly

The mesh assembly process is responsible for creating composite IceParticles from
other IceParicles. The process takes two already existing IceParticles A and B
and creates a new IceParticle composed of A and B. The process can be described
as a two-stage process, an optional deformation step followed by the merging of the
particle geometries.

8

2.3 Mesh assembly

2.3.1 Deformation
Before merging IceParicles, any newly added IceParticles are deformed by ap-
plying the transformation rules (see section 2.2) associated with the underlying
Solid. This step makes it possible to do continuous deformations of the correspond-
ing crystal prototype, without having to store one crystal prototype per imaginable
mesh deformation.
When an IceParticle is deformed, vertices are moved through the matrix trans-

formation specified by the corresponding transformation rule. The 4 × 4 matrix of
the transformation rule is an ordinary geometry transformation matrix, and this
matrix is applied to all vertices within the group with the same name as the trans-
formation rule. As an example of how the deformation system works, consider the
transformation rule foo. If the transformation has the matrix

T =

1 0 0 t
0 1 0 0
0 0 1 0
0 0 0 1

all vertices within the group foo will be moved t units to the right. The parameter
t may be specified any time during runtime.
No deformation must break the assumption that each sub-volume is a convex set.

There is also a reserved group called $global, which affects all vertices within the
IceParticle.

2.3.2 Merging geometry
To locate and orient the IceParticles to each other, the offset vectors u and v
(see fig. 2.3) are used, together with the turn angles θ and ∆θ. More precisely, the
IceParticles are placed by locating B at A, and by rotating the IceParticles.
Given the designations in fig. 2.3, it holds that{

ra = r0 + u
rb = r1 + v

To find a relation between the position vector r0 and the position vector r1, the
constraint A = B =⇒ ra = rb is used. This gives

r0 + u = r1 + v ⇔ r1 = r0 + u− v

Since u and v are expressed in the coordinates of the corresponding IceParticle,
both u and v have to be rotated. In the two-dimensional case drawn in fig. 2.3, the
correct expression for r1 becomes

r1 = r0 +R(θ)u−R(θ + ∆θ)v = r0 +R(θ)(u−R(∆θ)v)

9

2 Construction of the toolkit

P0

B
∆θ

u

O

r0

vP1
θ

r1
A

ra
rb

Figure 2.3: An illustration of the mesh assembly process. Two IceParticles are
being merged at the anchor points A = B. The points are identified by
the vectors u and v respectively. To make the figure more clear, only
the two-dimensional case is drawn. The code works in 3D.

where R is the rotation matrix. In 3D, the rotation matrix is composed by three
matrices—one for each rotation axis, which gives

r1 = r0 +Rz(θz)Ry(θy)Rx(θx)(u−Rz(∆θz)Ry(∆θy)Rx(∆θx)v)

When the direct approach is used, the rotation matrix has to be specified rather
than the turn angles. To make it easier to construct such a matrix, there is a
function, described in section 2.5.2, that constructs a rotation matrix given two
normal vectors.
When the indirect approach is used, the turn angles are stored in the graph edges

described in section 2.2.1. To assemble the full ice particle, the graph is traversed
using the depth first approach. After two IceParticles have been merged, the
current coordinate system state (its origin and orientation) case updated according
to the rules

r1 → r0

θx + ∆θx → θx

θy + ∆θy → θy

θz + ∆θz → θz

To be able to recover the old state when a branch is finished, the coordinate system
state is stored on a stack before processing the nodes of a branch. When all nodes
in the branch has been processed, the old coordinate system state is restored from
the stack.

10

2.4 Geometry sampling

The graph traversal is done by first pushing the next child of the current node
onto a stack, and then by pushing the first grandchild onto the stack. The latter is
only pushed if it has not yet been visited. Nodes are popped subsequently as long
as there are nodes left on the stack.

2.4 Geometry sampling
The geometry is sampled by using a 6-directional flood fill algorithm—illustrated
in fig. 2.4—on each sub-volume in the ice particle. This way, the entire ice particle
is filled, and each location is only filled once. The flood fill algorithm starts at the
current sub-volume’s geometric mass centre C, which is guaranteed to be inside the
sub-volume due to the assumption of it being a convex set.
The flood fill algorithm requires discretisation of the ice particle volume. The

discretisation is done by dividing the axis-aligned bounding box of the assembled ice
particle into Nx × Ny × Nz elements or voxels. The coordinate quantisation that
goes from a continuous coordinate x to a discrete coordinate k is

k =
⌊
Nx(x− xmin)
xmax − xmin

⌋
(2.1)

The “inverse” formula is

x = xmin +

(
k + 1

2

)
(xmax − xmin)
Nx

(2.2)

where k ∈ [0, Nx[∩Z. The initial value of k is given by eq. (2.1) evaluated at x = Cx.
During the execution of the algorithm, its value is changed by ±1 as long as the
value stays inside the allowed boundaries, the x given by eq. (2.2) is inside the sub-
volume, and the voxel at the next k is not yet visited. Similar expressions are also
used for the y and z coordinates.
In addition to an initial position and discritisation, the flood fill process relies on

a way to find out whether or not a voxel belongs to the domain that is going to be
filled. The hit test algorithm used for this purpose is described in section 2.5.3.
For simplicity, the toolkit does not force overlap detection so it may happen that

IceParticles overlap as the result of the geometry assembly process described in
section 2.3, which results in overlapping sub-volumes. Since the flood fill algorithm
keeps track of all visited voxels, no same voxel will be filled twice, but the flood fill
algorithm stops walking as soon as it hits a visited voxel. When two sub-volume
overlap, this leads to a premature stop. As a result, there might be unfilled voxels
left. The solution to this problem is to use a secondary fill matrix for the current
sub-volume, and use that matrix to determine whether or not to move to the next
voxel. By resetting the content of this matrix before visiting next sub-volume, the
algorithm will visit all voxels within that sub-volume.

11

2 Construction of the toolkit

Figure 2.4: An illustration of 6-directional flood fill. Up to six neighbouring voxels
are visited and filled for each voxel, as long as the next voxel is unvisited
and its position is within the boundaries of the surrounding volume.

2.5 Utility routines
The toolkit provides some utility routines that are needed to make it easier to im-
plement snowflake generating models. Since the toolkit does not use inversion of
control, it is up to the user to call them when the simulation requires the corre-
sponding functionality.

2.5.1 Face normal calculation
The face normals are calculated by taking the vector cross product between two of
the vectors forming the corresponding face triangle:

n = −−→V0V1 ×
−−→
V0V2

where it is assumed V0, V1, and V2 are oriented counter-clockwise. Some transfor-
mations may have a negative determinant and as a consequence, they flip the face
normals. To fix this issue, there is a function that flips all face normals by swap-
ping two vertex references for each face in the affected Solid. This works since
−
−−→
V0V1 = −−→V1V0.

2.5.2 Aligning normal vectors
Instead of giving rotation angles manually, it is possible to construct a rotation
matrix by aligning the normal vectors of two faces so they become parallel to each
other. The formula used for rotating the vector û onto v̂ is

R = I + S + S2 1− û · v̂
|s|2

12

2.5 Utility routines

where
s = û× v̂

and

S =

 0 −s3 s2
s3 0 −s1
−s2 s1 0

In the trivial case when u = v, R is set to the identity matrix I. If u = −v, there

is a problem since the cross product becomes zero, and using the identity matrix
would rotate in the wrong direction. Instead, R is set to the mirroring matrix −I.

2.5.3 Testing whether or not a point is inside a domain
The test used to determine whether or not a voxel is inside a sub-volume is illustrated
in fig. 2.5. The test uses the sign of the dot product of the vector from the current
point to the midpoint of the current face, and the current face normal. If the dot
product is negative as happens in fig. 2.5b, then the point cannot be inside the
sub-volume, and no more tests have to be performed. If it is positive for all faces
as in fig. 2.5a, the point is inside the sub-volume. The test relies on the fact that
all sub-volumes are convex sets, which is ensured by the definition of a sub-volume
found in section 2.2.

2.5.4 Centroid and volume calculation
The volume of a Solid is defined as the sum of the volumes of all consisting sub-
volumes. This makes the volume calculation correct if and only if there is no overlap
between any of the sub-volumes. The centroid is computed as the mean positions
of the centroids for the sub-volumes. Both the centroid calculation and volume cal-
culation uses the formula found in Nürnberg, R. (2013). These formulæ are derived
from the divergence theorem. For the expression for the centroid, see (Nürnberg,
R. 2013). For the volume VΣ of a sub-volume Σ it holds that1

VΣ =
∫
Σ

1 dV =
∫
Σ

∇ ·
(1

3r
)

dV = 1
3

∫
∂Σ

r · dS

Since the surface consists of N triangles

VΣ =
N−1∑
k=0

1
3

∫
Tk

r · dSk

1This calculation does not require convexity, but works for any polyhedron

13

2 Construction of the toolkit

(a) Inside (b) Outside

Figure 2.5: An illustration of the criterion used to test whether or not a voxel is
inside a sub-volume. When a point is inside the sub-volume as in case
(a), the dot product of any face normal and the vector from the point to
the midpoint of the face, always has the same sign. This does not hold
when the point is outside as in case (b).

For a triangle, it holds that the vector area dSk = 1
2nk, where nk is the non-

normalised normal vector to the triangle k. The projection of r on nk is constant
(Nürnberg, R. 2013), and

VΣ = 1
6

N−1∑
k=0

vk0 · nk

where vk0 is one of the vertices in triangle k.

2.5.5 Overlap detection
Two Solids A and B overlap each other if and only if at least one of the following
statements is true

1 At least one vertex of A falls inside B
2 At least one vertex of B falls inside A
3 At least one of the faces of A crosses at least one of the faces of B

Conditions 1 and 2 are checked by using hit-testing algorithm described in sec-
tion 2.5.3 on the sub-volumes in A and B.
Condition 3 is checked by a triangle intersection test based on Möller, T.’s (1997).

Consider the triangles T1 and T2, being subsets of the planes π1 and π2 respectively.

14

2.5 Utility routines

t0 t2

−Π2(V1)

V1

Π2(V0) Π2(V2)

ti0

V0 V2

ti1t1

Figure 2.6: The construction used to find the parameter values ti0 and ti1 for
eq. (2.3). The vertices of the triangle T1 projected onto the plane or-
thogonal to π2. The triangle edges and the line given by eq. (2.3) forms
two pairs of similar triangles.

If all vertices of T1 lay on the same side of π2, or all vertices of T2 lay on the same
side of π1, the triangles do not intersect. If the vertices of T1 all belong to π2—or
equivalently—the vertices of T2 all belong to π1, T1 and T2 are coplanar, which is
also treated as non-intersecting case, since the triangles did not cross each other.
Otherwise, intersection is detected by the existence of a segment of the intersection
line between π1 and π2, contained in both T1 and T2.
The equation for the planes π1 and π2 is found directly from an arbitrary vertex

of the triangle—take V 1
0 for π1—and the face normal. The equation for π1 becomes

Π1(P) = n̂1 ·
−−→
P0P − n̂1 ·

−−−→
P0V

1
0 = 0

where P0 is an arbitrary reference point. Similarly, the equation for π2 becomes

Π2(P) = n̂2 ·
−−→
P0P − n̂2 ·

−−−→
P0V

2
0 = 0

Extending the definition of the functionΠ to cover the whole space, the sign ofΠ(P)
determines which plane side the point P is located at. The magnitude determines
the orthogonal distance between P and the plane π. The point on π, where the line
orthogonal to π through P intersects π, is called P⊥.
The line of intersection between the two planes is orthogonal to both n1 and n2.

Therefore, the direction d of the intersection line is determined by the vector cross
product between n1 and n2. If O is located at the line, any point Pl on it satisfies

Pl = td+O (2.3)

The intersection point I between the intersection line, and one of the T1 edges
that crosses π2, gives the range for the parameter t for which Pl is inside the triangle.

15

2 Construction of the toolkit

Assume that the edge connects V0 and V1. In Möller, T. (1997), the intersection
point is found by projecting V0 and V1 on to the intersection line and observing
that 4V0P0⊥I and 4V1P1⊥I are similar, and so are their projection onto the plane
orthogonal to π2. From fig. 2.6,

ti0 − t0
Π2(V0) = −t1 − ti0

Π2(V1) ⇐⇒ ti0 = t0Π2(V1)− t1Π2(V0)
Π2(V1)−Π2(V0) (2.4)

and
t2 − ti1
Π2(V2) = −ti1 − t1

Π2(V1) ⇐⇒ ti1 = t1Π2(V2)− t2Π2(V1)
Π2(V2)−Π2(V1) (2.5)

where
tk = d · (Vk −O) k ∈ {0, 1, 2}

Applying eqs. (2.4) and (2.5) on the triangles T1 and T2, gives two line segments
L1 = t1i0 t

1
i1 and L2 = t2i0 t

2
i1. An overlap is then absent if and only if L1 ∩ L2 = ∅ for

all possible pair of triangles.

16

3 Models describing snowflake
formation

This chapter describes different models that can be used to assemble an ice par-
ticle. All models that involve stochastic processes uses the std::mt19937 random
generator found in the standard library in C++11 (see (cppreference.com 2015)).

3.1 A static “model”
To be able to generate DDA data for known crystal shapes, a static model has
been implemented. In this “model”, an aggregate is loaded as a graph according to
fig. 2.2 from a user specified file, and a polygon mesh is assembled by traversing the
graph. The aggregate file specifies parameters that can be set to affect the shape of
the resulting aggregate. The aggregate file also refers to ice crystal prototype files
which contain the polygon mesh for the individual ice particles that the aggregate
is made of. A description of these kinds of files can be found in appendix D.

3.2 A stochastic collision model (Model A)
The model described in this section is discussed by Maruyama, K. et al. (2005),
and is based on the Gillespie method1 developed for coalescing water droplets. The
method, illustrated in fig. 3.1 can be outlined as follows

1 Initialise the system with particles of different sizes
2 Choose time-step and a pair of particles (k, l), k < l, for the next coalescence
3 Update the current time with the time-step chosen time-step
4 Merge the selected pair
5 Remove the two original particles
6 If the stop condition is not fulfilled go to step 2

1Gillespie has formulated a few slightly similar algorithms. The particular variant referred to by
Maruyama, K. et al. (2005) is described in (Gillespie, D.T. 1975)

17

3 Models describing snowflake formation

Initialise
prototypes

Choose a pair
of particles

Pool of
particles

Merge the
chosen particles

Merged particle

Figure 3.1: The data flow in model A. For each turn, a larger particle is created,
that replaces the two smaller particles it was created from.

Figure 3.2: The merging scheme used in model A, without overlap detection. It is
possible that merging two to ice particles results in an overlap, despite
the fact that the two colliding particles are attached face to face.

18

3.2 A stochastic collision model (Model A)

The model does only consider spherical crystal prototypes, which are merged so
that they touch each other in a random direction like in fig. 3.2. It is not clear
whether or not the possibility of overlap is taken into account.
The initial particle sizes are drawn from a gamma distribution. The time-steps

are drawn from an exponential distribution with parameter C0, where C0 is the
probability that any particle collide within the time-step. The probability to choose
a specific pair (k, l) is

Ckl = ε
σkl|vk − vl|

V
(3.1)

where ε, is the coalescence efficiency, σkl is the cross-section, v is the particle velocity,
and V is the volume of space. This equation basically says that two particles with
the same velocity never collides, and the larger volume, the lower collision frequency.
The efficiency is assumed to be one, and the cross-section is assumed to be a

circle with its radius equal to the sum of the maximum distance between the centre
of gravity and the edge, computed for both particles. The velocity is modelled by
using the particle terminal velocity, which is given by flow and fluid parameters like
Reynolds number and air viscosity η. More precisely, the formula for the terminal
velocity is

v = ηRe
2ρa

√
π

A
(3.2)

where ρa is the ambient density, and A is the area of the minimal circle covering the
entire ice particle, and whose normal vector is parallel to the falling direction. The
expression for the Reynolds number Re is

Re = 8.5

√√√√√1 + 0.1519

√√√√8mgρa
πη2

(
A

Ae

)1/4
− 1

2

where Ae is the area of the ice particle projected to the plane with normal in the
falling direction, which is assumed to be random.

3.2.1 Implementation in this toolkit
Rather than computing Ae the simpler expression for the ratio between A and Ae
is used, namely

A

Ae
= 4m
πρRmax

3

where Rmax is the largest distance from the particle centroid to its edge. This
expression is also found in Maruyama, K. et al. (2005).
The particles to merge are chosen using “full conditioning” as described by Gille-

spie, D.T. (1975). The strategy for this method is first to choose one particle k from

19

3 Models describing snowflake formation

Figure 3.3: A comparison between an UV-sphere (left) and an icosphere (right).
The icosphere has equal area for all of its faces but the UV-sphere has
very small faces near the poles.

the probability distribution

Pk = 1
A

N−1∑
l=k+1

Ckl

and then to choose particle l from the distribution

Pl = 1
B
Ckl, k + 1 ≤ l < N

where A and B are normalisation constants. This strategy results in a time process-
ing time complexity that is O(N). The matrix Ckl, which has a number of elements
that is O(N2), either needs to be computed for each iteration, or stored in memory.
Otherwise, the normalisation constants cannot be known. What is most beneficial
depends on N , and how complicated it is to compute Ckl. If N is too large, the
data would not fit in memory, and if Ckl is complicated, it takes time to compute all
probabilities when computing the sum. Since N will always decrease in this model,
it is waste of space to allocate a large matrix, and therefore the matrix elements are
recomputed in each iteration.
Since the toolkit uses polygon meshes for representing the geometry, the ran-

domized direction is most easily implemented by drawing one face from each of the
chosen particles uniformly, and aligning their normal vectors. To locate the faces,
their midpoints are attached to each other. This strategy is only correct if all avail-
able faces have the same area. However, since the sphere in the crystal library is
an icosphere (see fig. 3.3), this requirement is fulfilled. Also the directions become
quantised since the offset vectors can only point to the midpoint of a face. This
issue is solved by the fact that the sphere consists of a large number of faces.

20

3.3 Non-spherical crystals and overlap detection

3.3 Non-spherical crystals and overlap detection
One can argue that ice particles seldom are spherical and that ice particles should
not overlap. Also a typical snowflake tends to be more flat than the expected output
of isotropic sticking probability. This motivates the formulation of a modified model,
that takes these effects into account.

3.3.1 Non-spherical particles
When going from spherical to non-spherical particles, the faces no longer need to
have the same area. Also, the area of each face may be non-negligible. Thus, the
two issues in the implementation described in section 3.2.1 need to be fixed. The
use of non-spherical particles also introduces an additional degree of freedom, since
they do no longer need to have rotational symmetry around their upward direction.

Compensating for different face area

To compensate for the difference in area among the faces, the area of each face
is used to determine its probability of being chosen. Since the faces are triangles,
their respective area is half the magnitude of their non-normalised normal vectors
(see section 2.5.1 for definition and calculation of these vectors). The probability to
choose a particular face m is then

P (i)
m = 1

2Atot
|n|

where Atot is the total surface area of the corresponding chosen particle.
It is also possible to add anisotropy by weighting the face area with the magnitude

of the projection of the face normal onto a preferred direction ŵ. By introducing a
new normalisation constant A′, the probability distribution then becomes

P (a)
m = 1

A′
|ŵ · n̂||n| = 1

A′
|ŵ · n| (3.3)

If there still should be a probability to choose a direction orthogonal to ŵ, a
blending parameter can be used to blend between a complete isotropic probability
by introducing a blending parameter α ∈ [0, 1]. This gives the probability

Pm = αP (a)
m + (1− α)P (i)

m

Since the toolkit stores all ice particles as a collection of sub-volumes, the face
selection has to be implemented by first picking a sub-volume, and then by picking a
face from that sub-volume. The choice of sub-volume is done by using probabilities

21

3 Models describing snowflake formation

Figure 3.4: An example of a “timber stack”. This may happen if ice particles are
merged using the same yaw angle.

computed from the total area of all their visible faces. When computing the total
area, it is possible to use eq. (3.3) to add anisotropy like

Atot = 1
2

N−1∑
k=0
|ŵ · nk|

where the sum is computed over all visible faces in a specific sub-volume.

Dealing with non-negligible face area

Since the face area may no longer be negligible, a new particle can stick anywhere
on the selected face. To choose another anchor point than the face midpoint, a point
(ξ0, η0) from the triangle

(ξ, η) : ξ ∈ [0, 1] ∧ η < 1− ξ

is drawn uniformly. The triangle vertices are mapped to the vertices (V0, V1, V2) of
the selected face. From the equation of the plane, the offset vector (see fig. 2.3)
becomes

u = V0 + ξ0(V1 − V0) + η0(V2 − v0)− P0 (3.4)
The equation for v is similar.

Dealing with non-symmetric ice particles

The final degree of freedom is resolved by choosing the yaw angle in the rotated
coordinates from a uniform distribution U(0,2π). This is needed, otherwise the
simulation may result in a lot of “timber stacks” (see fig. 3.4). The angle can also
be quantised to integer multiples of π

3 , since this angle matches the typical crystal
structure of ice.

22

3.4 Adding more processes to the model (Model B)

3.3.2 Overlap detection
To avoid the possibility of particle overlap illustrated in fig. 3.2, an algorithm for
detecting whether or two particles overlap is needed. Also, there has to be strategy
for dealing with events that would lead to an overlap. The overlap is detected by
using the algorithms described in section 2.5.5. When an overlap occurs, the event is
simply dropped, meaning that steps 4 and 5 in the algorithm outlined in section 3.2
are skipped.

3.4 Adding more processes to the model (Model B)
In a real cloud, there are at least three more processes in addition to coalescence:
melting, particle drop-out, and new particle formation. Introducing the possibility
of adding new particles to the cloud adds the possibility to keep a certain number of
particles inside the cloud so the process can go on forever. The two other processes
have an impact on the size distribution of the particles in the cloud: No drop-out
or melting and the particle sizes would keep growing as long as new particles are
added. This is because without drop-out or melting, the only process that reduces
the number of particles is the coalescence process, which is responsible for creating
larger particles. With all these processes, the data flow for this model with look like
the one in fig. 3.5.
When constructing this extended model—this must also be true for model A, it is

assumed that every spatial location within the cloud could be considered identical
with respect to quantities affecting the transition rates between different states in
water. An example of a scenario satisfying this criterion is when pressure and
temperature is roughly constant.

3.4.1 Event probabilities
Equation (3.1) for the coalescence probability is inherited from model A, as well as
the random falling direction, which is equivalent to random orientation. However,
since three more processes are added, there are three new parameters. To keep the
number of parameters graspable, the model for the terminal velocity (eq. (3.2)) is
replaced by the value given by the basic drag formula

Fdrag ∝ ρaAk|vk|2

where ρa is the ambient density, Ak is an area for particle k, and vk is the velocity
of particle k. Now

Aρa|vk|2 ∝ Vkρg ⇐⇒ v ∝
√
Vkρg

ρaAk
= C

√
Vk
Ak

(3.5)

23

3 Models describing snowflake formation

R
em

ov
e
th
e

pa
rt
ic
le

fr
om

th
e
po

ol

G
en

er
at
e

pa
rt
ic
le

fo
rm

pr
ot
ot
yp

e

C
oa
le
sc
e
th
e

ch
os
en

pa
rt
ic
le
s

R
em

ov
e
th
e

pa
rt
ic
le

fr
om

th
e
po

ol

C
oa
le
sc
e
th
e

ch
os
en

pa
rt
ic
le
s

Pr
ob

ab
ili
ty

m
at
rix

D
ro
pp

ed
an

d
st
or
ed

pa
rt
ic
le
s

C
ho

os
e
m
at
rix

el
em

en
t

Po
ol

of
pa

rt
ic
le
s

C
oa
le
sc
ed

pa
rt
ic
le

O
ve
rla

p
M
el
t
ev
en
t

C
oa
le
sc
en

ce
ev
en
t

N
o
ov
er
la
p

D
ro
pp

ed
pa

rt
ic
le

D
ro
p
ev
en
t

G
en

er
at
e
ev
en
t

Figure 3.5: The data flow in model B. The addition of additional processes intro-
duces two branches. The addition of dropping particles (as opposed to
melting them) requires a new pool of particles. The reason for storing
these non-active particles rather than discard them, is that they can
used for further analysis.

24

3.4 Adding more processes to the model (Model B)

where ρ is the particle density and g is the gravity of earth. The area Ak of particle
k is computed as the square of the maximal distance from the centroid of particle
k. This simpler model has one parameter while the model used by Maruyama, K.
et al. (2005) has five. When the formula is inserted into other expressions, it will be
clear that the parameter C can be eliminated as well, leaving no free parameters.
It may seem like the simple formula in eq. (3.5) leaves too many details, since there

is only one parameter, but there is no guarantee that a more complicated expression
cover all cases equally well. For the terminal velocity, the particle geometry will
affect the flow, and the geometry of the particles changes after coalescence events,
and then it is likely that the model that worked well for the previous case is no
longer valid. In particular, the drag coefficient, which have been set to a constant
eq. (3.5), depends on the characteristics of the flow, which in turn is dependent on
the particle geometry.

Melting and particle formation

A simple model for melting is to assume that a particle receives constant power
from its neighbourhood. Then, the time it takes before the particle k has melted
is proportional to its latent heat, which for a homogeneous material is proportional
to the particle volume. The probability for the particle to melt during a time-step
then becomes

Pmk = Rm

Vk
(3.6)

where Vk is the particle volume and Rm is proportional to the specific latent heat
of the particle. Other quantities that are likely to affect Rm, include the cloud
temperature and the total surface area of the particle. Even though the latter
definitely is dependent on the choice of particle, and as a consequence cannot be
hidden within Rm, this model does not include that effect. When building a more
elaborate model, this effect should probably be included.
New particles are added to the cloud at a constant rate Rg from an inexhaustible

source of ice particles. This makes it possible to start with zero particles, and it also
makes it possible to maintain a cloud for an arbitrary number of iterations.
When a particle melts in the model, it water content disappears with it, so it

would be more correctly named sublimation. If the particle water content stays,
there is an equilibrium process

H2O(`) C1−−→ H2O(s)

H2O(s) C2−−→ H2O(`)
(3.7)

The reaction rates are affected by atmospheric pressure and temperature. The

25

3 Models describing snowflake formation

corresponding differential equations (with source terms added) become
d
dt [H2O(`)] = −C1[H2O(`)] + C2[H2O(s)]
d
dt [H2O(s)] = C1[H2O(`)]− C2[H2O(s)] + S

where [H2O(`)] is the concentration of liquid water, [H2O(s)] is the concentration of
solid water, and S is a source term. The eigenvalues λ for the homogeneous system
are given by the equation

(−C1 − λ)(−C2 − λ)− C1C2 = 0 ⇐⇒ (C2 + C1)λ+ λ2 = 0

The eigenvalues are λ1 = 0 and λ2 = −(C1 + C2), and the system has a stable
manifold that is the line

[H2O(s)]
[H2O(`)] = C1

C2

Since the amount of liquid water is not used in any other process than ice particle
formation and melting, the equilibrium process described by eq. (3.7) only adds
a time delay, and reduces the stationary production rate of ice. Thus the model
without the equilibrium is equivalent with an equilibrium process with a large value
of |λ2|.

Particle dropout

The probability for a particle to leave the cloud—particle drop-out—is assumed to
be proportional to the particle speed |vk|, giving

Pdk ∝ |vk|

The only particles that are considered for leaving during one time-step are those
that are located at the surface of the cloud. Let Nsurf be the number of particles
at the surface of the cloud, and r be some equivalent radius of the cloud. For a
homogeneous cloud, the number of particles N in the cloud has to be proportional
to the volume of the cloud, which is proportional to r3 and

N ∝ r3 (3.8)

Also, Nsurf is proportional to surface area of the cloud, which is proportional to r2.
Therefore

Nsurf ∝ r2

Substituting r given by eq. (3.8),

Nsurf ∝ N2/3

26

3.4 Adding more processes to the model (Model B)

Nmax + 1 rows

0 3 · · · 3 2
3 0 2
... 3 ...
3 · · · 3 0 2
1 1 · · · 1 6

︸ ︷︷ ︸
Nmax + 1 columns

0 New particle formation
1 Particle drop-out
2 Melting
3 Coalescence
6 Not assigned

Figure 3.6: The layout of the probability matrix used by model B. Different digits
marks the locations for the probabilities of different kinds of events.
When an element which indicates that an event of type 3 is to occur, the
row and column number defines which two particles that will coalesce.
To determine the affected particle for particle drop-out (type 1) and
melting (type 2), the column and row numbers respectively are used.
The probability for new particle formation (type 0), the sum of the
diagonal elements.

For the probability that any particle Pd will drop-out is then proportional to Nsurf.
Provided that the speed has an expectation value,

Pd ∝
∑
Surf
|vk| ∼ N2/3 E|vk| N →∞

Dividing the asymptotic limit by the total number of particles now gives an expres-
sion for Pdk:

Pdk = Rd

N1/3 |vk| (3.9)

where Rd is the event rate.
As mentioned above, eq. (3.1) for the coalescence probability, is the same as before.

By observing that all probabilities that involve the terminal velocity always scales
linearly with the speed, the proportionality constant C in eq. (3.5) can be set to 1.
The same goes for V in eq. (3.1), which only affects the time-scale of the simulation.

3.4.2 Storing probabilities
The number of probabilities, required by both this model and the two previous
models, scales by N2. When the number of particles always decreases between
two iterations as it does in the previous model, it makes sense not to store all
probabilities since it makes it possible to start with a larger number of particles,
but when the number of particles remains large during the simulation, profiling
showed that computing Ckl is expensive, and therefore, the method of storing Ckl

27

3 Models describing snowflake formation

was chosen. This way, only those elements that are affected by an event need to
be recomputed, which—ignoring the computation of the matrix sum for the time
being—reduces the computational complexity from O(N2) to O(N). On the other
hand, it increases the memory usage from O(N) to O(N2), and—if not considering
memory reallocation—it also sets an upper limit on how many particles the current
simulation can deal with. It should be noted that it in theory is sufficient to store
Pk, by subtracting and adding values to the sum for each iteration. However, this
approach may accumulate errors and has therefore not been chosen.
With precomputed matrix elements, most of the simulation time is spent in com-

puting the matrix sum, which still is O(N2
max), but each operation in computing

the matrix sum is much cheaper than computing a matrix element. To increase
performance, this part of the simulation is both multi-threaded, and vectorised.
This implementation puts a restriction on Nmax: Nmax + 1 has to be divisible by
both four—due to the use of Advanced Vector Extensions (AVX)-256 with doubles
(Intel Corporation 2015), and the number of computation threads. It would have
been possible to remove these constraints, but it would have required more code,
reducing the performance for the optimal case.
The probabilities are stored in an (Nmax + 1)× (Nmax + 1) matrix E illustrated in

fig. 3.6. All off-diagonal elements except the last row and column store the coales-
cence probability between different particles. The last row stores the probabilities of
particle drop-out and the last column stores the probabilities of melting. The main
diagonal is used to store the probability of new particle formation. The reason for
splitting the probability for new particle formation is to reduce the effect of possible
truncation when normalising the matrix.
Since the probability for new particle formation has been distributed along N

entries in the main diagonal of E, the corresponding matrix elements have to be
divided by N . The melting and drop-out probabilities are unmodified and given
by eq. (3.6) and eq. (3.9) respectively. The number of elements that results in
a coalescence event for a given particle is twice as large as the actual number of
possible coalescence events. This will bias the event selection towards coalesce. To
make the selection unbiased, all other elements has to be multiplied by two.
Throughout the simulation, the size of E is never changed. When a particle leaves

the system, all of the corresponding matrix elements in E are set to zero, effectively
removing the possibility to choose that particle. That is, if particle k is removed,
all values in row and column k are set to zero except element (k, k), which being a
growth probability is not associated with any particle.

3.4.3 The resulting algorithm
The algorithm for implementing the extended model looks similar to the algorithm
for model A, but with more choices inside the loop, since the new model has melting,
generation and drop-out processes in addition to the coalescence process. Also, if

28

3.4 Adding more processes to the model (Model B)

the event type is a coalescence event that would result in overlap, the event is
rejected and a completly new event is to be drawn. There are also some additional
initialisation that has to be done, given that there is now a possibility to choose
different crystal prototype, and the fact that probabilities are stored in a matrix.
With all steps, the algorithm becomes as follows:

1 Load the desired crystal prototype
2 Allocate the matrix E of size (N + 1)× (N + 1)
3 Allocate an array A consisting of N IceParticles.
4 Choose an matrix element (k,l) from E

5 Now, if
1 k = l (This is a new particle generation event):

51 Find a “dead” g IceParticle in A.
52 If there is such g

521 Create a new IceParticle in the place of g, with the desired
size

522 Update the affected matrix elements
2 k = N (This is a particle drop-out event):

51 Save the affected grain to a dynamic array for later use
52 “Kill” the grain IceParticle located at index l in A
53 Update the affected matrix elements

3 l = N (This is a particle melt event):
51 “Kill” the grain IceParticle located at index k in A
52 Update the affected matrix elements

4 k 6= l ∧ k < N ∧ l < N (This is a coalescence event):
51 Choose a face fk from the IceParticle gk located at position k in

A

52 Choose a face fl from the IceParticle gl located at position l in A
53 Choose offset vectors u and v (see eq. (3.4) and fig. 2.3), so their end

lies on fk and fl respectively
54 Calculate a rotation matrix R such that the normal vectors of fk and

fl would become anti-parallel if one of the two IceParticles were
rotated by R. Assume gl is rotated.

55 Rotate gl around its new heading

29

3 Models describing snowflake formation

56 If merging gl into gk does not result in overlap
561 Merge gl into gk
562 “Kill” gl
563 Update affected matrix elements

6 Update current simulated time, given the probability that any event happened
7 If stop condition is not fulfilled, go to step 4

30

4 Evaluating models
To evaluate models, a set of measurable quantities has to be computed. To un-
derstand the system behaviour it is interesting to measure how quantities vary with
time. However, many studies of real snowflakes focus on geometrical aspects (Baran,
A. J. 2012, Garrett, T. J. et al. 2015, Matrosov, S.Y. 2007, Mitchell, D. L. et al. 1990),
rather than time evolution. Therefore, the analysis has focused on such aspects. The
aspects analysed are the relation between particle volume and radius, par-
ticle size distribution, and the spherical volume fill ratio.

4.1 The relation between particle volume and radius
The relation between particle mass m and its maximal radius Rmax measured from
the centre of the particle is expected to look like

m = CRmax
β (4.1)

where β, also known as the fractal dimension, is from theory expected to be equal
to two (Stein, T.H.M. et al. 2015). This value is also supported by experiments
(Matrosov, S.Y. 2007). Since constant ice density is assumed, eq. (4.1) is equivalent
to

V = κRmax
β (4.2)

where κ = C
ρ
. Equation (4.2), with particular values of κ and β is expected to hold

for a specific set of model parameters. This means that given a particular set of
model parameters, the value of κ and β should be the same. However, there is no
assumption that there is any relation between κ and β.
The fractal dimension β is a measurement of the effective number of directions in

which the particles grow. If β = 1, the particle is formed along a curve, and β = 2
implies that the particle is formed on a surface. The constant κ is a volume growth
coefficient and gives a measure of how much the volume of a particle increases when
looking at larger particles.
A value for C has been measured for a set of natural particles by Mitchell, D. L.

et al. (1990). The value given in that article is 0.088 kg/m2. Other possible values
are 0.12 kg/m2 and 0.11 kg/m2 (Matrosov, S.Y. 2007). To be able to compare the
data retrieved from simulations with this value, eq. (4.1) needs to be normalised.
Assuming regular solid ice, ρ = 917 kg/m3. To get rid of the length unit, an estimate

31

4 Evaluating models

of the expectation value rmax of the crystal prototypes used to generate the particles
is used. By multipling κ by rmax

β−3, the dimensionless normalised volume growth
coefficient α is constructed and

α = κrmax
β−3 = Crmax

β−3

ρ
(4.3)

From Schmitt, C.G. et al. (2014), rmax ≈ 0.1 mm = 1× 10−4 m. This value has
been retrieved by measuring the diameter of a crystal in an image—more precisely
the first image in figure 2 in Schmitt, C.G. et al. (2014)—captured using a Cloud
Particle Imager (CPI) probe. Combining the data retrieved from Mitchell, D. L. et
al. (1990) and Schmitt, C.G. et al. (2014) gives κ = 9.6× 10−5 m, and α = 0.96.
The coefficients from Matrosov, S.Y. (2007) gives α = 1.2 and α = 1.3 respectively
for β = 2.

4.2 The particle size distribution
The particle sizes have been found by to follow an exponential distribution (Garrett,
T. J. et al. 2015, Matrosov, S.Y. 2007).

d
dN (Rmax) = C exp(λRmax) (4.4)

This equation is somewhat problematic, since the parameter λ is not dimensionless,
being a reciprocal length. Therefore, this parameter needs to be normalised. By
using rmax, eq. (4.4) can be written as

d
dN (Rmax) = C exp(λRmax) = A exp

(
λrmax

Rmax

rmax

)
(4.5)

Therefore, measuring Rmax in terms of rmax, gives a dimensionless parameter γ =
λrmax, and this value is used in favour of λ.
Measurements show that λ is in the range −13 mm−1 to −1.2 mm−1 (Garrett,

T. J. et al. 2015, Braham, R.R. 1990), depending on snowfall intensity (Matrosov,
S.Y. 2007). Together with the data from Schmitt, C.G. et al. (2014), this gives
a value of γ in the range −1.3 to −0.12. These figures can also be converted to
expectation values for the distribution given by eq. (4.5). Then E

(
Rmax
rmax

)
is in the

range 2.5 to 8.3. The size distributions in Garrett, T. J. et al. (2015) have been
obtained by collecting data from falling snow by using a Multi-Angle Snowflake
Camera (MASC), and by rejecting particles with low complexity due to difficulties
in the measurement procedure (Garrett, T. J. et al. 2015). Also in this project, the
low-complexity particles has been rejected for analysis.
The particle size is mainly interesting because it is a measurement of complexity.

Given two particles like those in fig. 4.1 that are composeed of crystal prototypes

32

4.3 The spherical volume fill ratio

Figure 4.1: A large and a small particle. The larger particle is composed of more
crystal prototypes than the smaller one.

of similar sizes, the larger particle needs to be composed of more crystal prototypes
than the smaller one. While it is possible to measure complexity (Schmitt, C.G. et
al. 2014), particle size is easier to define and measure, and therefore the size is used
instead.

4.3 The spherical volume fill ratio
Besides the fractal dimension β and the particle size distribution, one can measure
the spherical volume fill ratio vr. This quantity is defined as ratio of the particle
volume by the volume of a sphere with the same Rmax.

vr = 3κRmax
β

4πRmax
3 (4.6)

Being a ratio between volumes, it is dimensionless and thus, this value can be
compared to measurements directly, given the ratio κRmaxβ

R3
max

. It also serves as a
measurement of κ in eq. (4.2) because

vr = 3κRmax
β

4πRmax
3 ⇐⇒ κ = 4πvrRmax

3

3Rmax
β

Since vr is dependent on Rmax, it is practical to compute an averaged value vr0.
The most natural definition would be vr0 = 〈vr〉, but this definition has problems
for β < 3. Instead, vr0 is taken as a pseudo-expectation value, defined as

vr0 = 〈V 〉
〈Vsphere〉

=
3κ
〈
Rmax

β
〉

4π
〈
Rmax

3
〉 (4.7)

33

4 Evaluating models

Because κ and β is assumed to vary depending on simulation parameters, the mean
values are connected a specific set of model parameters.
Both the numerator and the denominator in eq. (4.7) contain expectation val-

ues, of Rmax to the power of a positive constant. By using the assumption that
Rmax ∼ Exp(−λ), it is possible to find the expectation value of Rmax

a. This value
can then be substituted into eq. (4.7), with a = β and a = 3 respectively. From
the definitions of an expectation value for a continuous random variable, and the
exponential distribution,

〈Rmax
a〉 =

∞∫
0

Rmax
a · (−λ) exp(λRmax) dRmax

This integral can be simplified by the substitution

x = −λRmax ⇐⇒ Rmax = −x
λ

=⇒ d
dxRmax = −1

λ
⇐⇒ dRmax = −1

λ
dx

which gives

〈Rmax
a〉 = 1

(−λ)a
∞∫

0

xa exp(−x) dx = 1
(−λ)aΓ(a+ 1)

and from eq. (4.7)

vr0 = 3κΓ(β + 1)
(−λ)β

/
4πΓ(4)
(−λ)3 = 3κ · (−λ)3−βΓ(β + 1)

4πΓ(4) (4.8)

It is now possible to construct a quantity that only depends on the dimensionless
quantities −λRmax and β. This can be done by considering the ratios vr

vr0
, as well as

its inverse. From eqs. (4.6) and (4.8)
vr
vr0

= 3κRmax
β · 4πΓ(4)

4πRmax
3 · 3κ · (−λ)3−βΓ(β + 1)

= Γ(4)
Rmax

3−β · (−λ)3−βΓ(β + 1)

= 6
(−λRmax)3−βΓ(β + 1)

(4.9)

which hereafter will be called the reduced spherical volume fill ratio. In the special
case when β = 2, it holds that Γ(β + 1) = 2, and thus

vr
vr0

∣∣∣∣
β=2

= − 3
λRmax

(4.10)

In eq. (4.10), the only parameter that depends on simulation parameters is λ. There-
fore, by plotting the reduced spherical volume fill ratio as a function of x = −λRmax,
all data points should end up on the line 3

x
.

A possible use of eq. (4.9) is that it can be used to compare different data-sets.
By plotting the measured vr

vr0
against −λRmax in a log-log plot, all points should end

up on a line and therefore, it is possible to justify the claim that the particle size is
exponentially distributed, and that β = 2.

34

4.4 Data collection procedure

4.4 Data collection procedure
The quantities recorded in order to compare models are listed in table 4.1, together
with their symbol. Instead of recording the ensemble average of the particle speed
and reciprocal volume, these properties are recorded for individual particles and the
reciprocal volume is derived from the regular volume. This way, it is possible to
generate histograms, showing the distribution of the per particle quantities. Since
the toolkit works in units defined by the crystal prototypes so called system units,
all size measurements are given in system units.
In addition to the particle related properties mentioned above, the simulated time

and the current system time is recorded. The former can be used to check if some
other quantity converge to a certain value, and the latter is used as a measure of
simulation expensiveness.
In order to understand how the model parameters affects the result, all quantities

are computed from runs with different combinations of parameters. At a regular
iteration interval, all per-particle quantities are stored on a file for later analysis.
Also, the particle independent data are written to a separate file.

4.4.1 Collection of data from model B
In model B, there are two sets of particles: those that have not yet left the cloud, and
those that have. To capture all statistics, both sets are sampled individually. The
model has been evaluated both with respect to event rates, and different particle
geometry. The hypothesis is that the event rates mainly affect the particle size
distribution, that is the size distribution parameter λ in eq. (4.4), and the geometry
has a larger impact on β in eq. (4.2), although there can be a small opposite coupling
as well.
To be able to compute the normalised size distribution parameter γ, the value

rmax in eq. (4.5) needs to be computed. This is done by computing the average of
Rmax for all non-coalesced particles generated with the same geometry parameters,
and by using the obtained value as rmax.
For the simulations with varying event rates, the parameter values listed in ta-

ble 4.2 are used, together with the column type crystal prototype. To see what
happens when the model is applied to different geometry, the parameter values
listed in table 4.3. Also for this simulation, the column type crystal prototype is
used. In these simulations, the expectation value of L is chosen so that completely
deterministic value of L would preserve the crystal prototype volume from the other
simulation. By fixing the particle volume 3

√
3

2

(
1
3

)2
= V0 = 3

√
3

2 La2, the axial ratio
becomes

L

2a = 1
18a3 (4.11)

Since the model is stochastic, the same set of simulations is run twice, each time

35

4 Evaluating models

Table 4.1: The quantities recorded during simulations. Per particle quantities
vary between all particles within one iteration, and the Per iteration
quantities vary only between iterations.

Symbol Description
Per particle Rmax The maximum distance from particle cen-

troid to the particle edge
Lx The width of the particle bounding box
rxy The x/y aspect ratio. rxy = Lx

Ly
where Lx and

Ly are sizes of the bounding box described in
section 2.4.

rxz The x/z aspect ratio. rxz = Lx
Lz

where Lx and
Lz are sizes of the bounding box described in
section 2.4.

V The particle volume. Since the density is as-
sumed to be constant, this quantity is pro-
portional to the particle mass

|v| Particle speed
Np The number of building blocks used for cre-

ating the current particle
Per iteration Ncloud The number of particles in the cloud

Ndropped The number of particles that have left the
cloud∑

Ckl The total coalescence rate
τ The simulated time
t The system time measured in POSIX time

36

4.4 Data collection procedure

Table 4.2: Parameter values used to evaluate model B. The logarithmic increments
are used in order to increase the parameter ranges. The crystal prototype
and its parameters are described in table C.1.

Parameter Description Values
Crystal prototype Initial shape bullet.ice

t Length of tip (see table C.1) 0
a Side of cross section hexagon

(see table C.1)
0.33

L Crystal length (see table C.1) E(L) = 1, std(L) = 0.25
Rg Generation rate (See sec-

tion 3.4)
15× 106, 20× 106, 33× 106

Rm Melt rate (See section 3.4) 500, 1000, 2000
Rd Drop rate (See section 3.4) 10 000, 20 000, 50 000

Table 4.3: The parameter values used to evaluate model B with respect to different
geometry. The crystal prototype and its parameters are described in
table C.1. The quantities are the same as in table 4.2.

Parameter Values
Crystal prototype bullet.ice

t 0
a 0.17, 0.22, 0.28, 0.33, 0.39, 0.44, 0.5, 0.55,

0.61, 0.66
L Random with std(L) = 0.25E(L), and

E(L) = 0.332

a2

Rg 33× 106

Rm 500
Rd 20 000

37

4 Evaluating models

with seeds created by reading four bytes from the special file /dev/urandom, pro-
vided by the Linux R© kernel (Linux Kernel Organization 2013).

4.5 Model parameter fitting
Parameters are found by using the least square approach on the simulation output
data. That is, to find the parameters ξ that minimises

δ(ξ) =
N−1∑
k=0

(yk − f(ξ, xk))2

where xk and yk are values obtained from the simulation, and f is the model that
describes how y depends on x. The error measure e used is the root mean square
error, normalised to the full range of the observed y values. With this definition

e =

√
δ(ξ)

√
N

(
max
k∈[0,N [

(yk)− min
k∈[0,N [

(yk)
) (4.12)

One possible approach when solving the least square problem, is to transform the
equation

y = f(ξ, x)

into a linear form
y′ = L(ξ, x′)

Then, the problem can be solved by non-iterative algorithms derived from matrix
algebra. However, the transformation may have some undesirable effects (see New-
man, M.C. (1993)) and therefore, a non-linear solver fminsearch (Eaton, J.W.
et al. 2011) is used. This solver requires an initial guess for ξ (Eaton, J.W. et
al. 2011), which is found by solving the corresponding linear problem. This is a
form of bootstrapping.

4.5.1 Dealing with time-dependent quantities
The quantities in table 4.1 may vary between iterations. To give them a time-
independent value, their behaviour for large simulated times are studied. If the value
seems to converge towards a limit y∞—like in fig. 4.2–this value is used. Otherwise,
the quantity cannot be assigned a time-independent value. To find such a limit, two
models are used to described the time-evolution of the quantity. A linear model

y(τ) = Cτ +m (4.13)

38

4.5 Model parameter fitting

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

τ/τmax

β

Long model fitLong model fit
Short model fitShort model fitFilterd dataRaw dataFinal average

Figure 4.2: An example of the dependency between the simulated time τ and the
fractal dimension β. This time-series was obtained by running model B,
with Rg = 22× 106, Rm = 500, and Rd = 20 000. The dashed and
dotted lines are the least-square fits of the parameters in eq. (4.13) and
eq. (4.14), to the data to the left of the vertical lines. When fitting to less
data (dashed lines), the exponential model (eq. (4.14)) gives significantly
better prediction than the linear model (eq. (4.13)). In this case, the
difference is smaller for the larger data-set (dotted lines).

39

4 Evaluating models

and an exponential model with offset

y(τ) = C exp(aτ) + y∞, a < 0 (4.14)

If the linear model better determines the collected data, no good value for y has
been found. If the exponential model is better, it is more likely that a limit exists.
The linear model is chosen as reference because it

– does not predict a limit at infinity
– is monotonic
– has a second derivative that is not greater than zero
– is easy to work with

The comparison between the two models is based on their prediction power. To
measure the prediction power, the data-set is split in two parts (the vertical line in
fig. 4.2), their relation in duration being the same as the longest duration to the
total duration. Those data points corresponding to the first and smaller part of
the time-series are used to fit the model parameters. The remaining part is used to
compute a prediction error from eq. (4.12), with the parameters computed from the
data in the first part. The ratio in prediction error between the linear model for y
and the exponential model for y is called the prediction ratio of y and is denoted
Pr(y). A large value of Pr(y) indicates that it is more likely that a limit exists.
If the prediction ratio is less than 1, the captured part of the time-series does not
indicate any convergence.
Due to some apparent stability problems in fitting the exponential model eq. (4.14),

the input data is first filtered. To easily preserve the initial value, and to avoid the
need of interpolating data, a digitally implemented analogue filter of second order,
with its initial state set to (y(0), 0), is used. Calling the filter output yf , the initial
value problem for filtering the signal becomes

ω2
cyf = ÿf + 2ωcζẏf + ω2

cyf

yf (0) = y(0)
ẏf (0) = 0

To avoid ringing artefacts, a critically damped filter, that is ζ = 1, is used. The
cut-off frequency is set through a desired raise-time measured in units of signal
duration. The initial value problem is solved with the trapezoidal rule with the
time-steps given by the input data.
While fitting the parameters in the linear model can be done through the linear

least squares method, the exponential model being non-linear requires bootstrapping
of the non-linear solver. Since it is assumed that yf → yf,∞ when τ →∞, the mean
value of yf computed over the largest possible τ values is used as initial guess of

40

4.5 Model parameter fitting

Figure 4.3: The two possible shapes of a convergent time-series.

yf,∞. Given an initial value for yf,∞, the most likely shape S (see figure fig. 4.3)
of the curve is computed. This is done by taking the sign of the integral of the
difference between the time-series and the initial yf,∞:

ŝ · S = sgn
 τmax∫

τ0

(yf (τ)− yf,∞) dτ

where τ0 is a value in the beginning of the time-series, and τmax is the value at the end
of the selected interval. If integral is negative, the shape is inverted by multiplying
both the input data and yf,∞ by −1, which is equivalent to multiply yf by ŝ · S in
any case. To avoid introducing a new variant of y, assume ŝ·S > 0. The initial guess
for A is taken as the difference between the largest value in the possibly inverted
time-series and the corresponding yf,∞. The parameter k is estimated through the
derivative

Ca exp(aτ) = d
dτ y ≈

yf (τ +∆τ)− yf (τ)
∆τ

When τ = 0

Ca ≈ yf (∆τ)− yf (0)
∆τ

≈ − C

∆τ

Therefore

a ≈ − 1
∆τ

which is used as the initial guess for a.
Some time-series may converge very rapidly. In this case, Pr(y) value computed

from the procedure outlined above, may be too low. Therefore, the curve fitting is
repeated on a smaller part of the data filtered data, and the largest Pr(y) is reported.
Due to the stability problems mentioned above, the mean value of y over the end of
the signal is used instead of the computed yf,∞

41

4 Evaluating models

4.5.2 Finding quantity distribution among particles
The distribution of a quantity among particles is found by computing the corre-
sponding histogram, normalised in the sense that the sum of all bin values equals
one. The number of bins in the histogram is chosen according to the Freedman and
Diaconis rule so that the number of bins n are determined by

n = N1/3

2 IQR(x)

⌈
max
k∈[0,N [

(yk)− min
k∈[0,N [

(yk)
⌉

(4.15)

where IQR(x) is the interquartile range of x.

4.5.3 Determining the fractal dimension
To bootstrap the non-linear solver for the fractal dimension, both sides in eq. (4.2)
are transformed using a logarithm of both sides. Then, the model is converted to
linear model

Vk = κRβ
k ⇐⇒ log(Vk) = log(κ) + β log(Rk)

This expression is then used with a linear least squares solver to bootstrap the non-
linear solver. The fractal dimension varies between different iterations and thus, its
value is assigned according to the procedure described in section 4.5.1.

4.5.4 Determining particle size distribution
The particle size distribution is found by creating a histogram whose number of bins
is determined by eq. (4.15). Instead of fitting the histogram data to the probability
density function given by eq. (4.5), the cumulative density function is used. This
avoids potential problems with very rare events which would have a zero probability
due to the finite number of events. From eq. (4.5)

1− F
(
Rmax

rmax

)
= 1−

(
1− exp

(
γ
Rmax

rmax

))
= exp

(
γ
Rmax

rmax

)
where F is the cumulative distribution function. The function F is measured by
computing the cumulative sums of the histogram. This adds more stability, since
summation tends to reduce noise.
In order to find γ, bootstrapping is needed. This procedure is similar to the pro-

cedure used for the exponential model in section 4.5.1 is used. The only differences
here are that no filter is used, and that the shape is known a priori. Also, the current
model has no offset.

42

5 Results
When evaluating the results, it must be remembered that the models are stochastic,
and therefore all quantities are compared between two independent runs, but with
the same set of parameters. The data from these two runs are then plotted against
each other in a correlation diagram as in fig. 5.6. If the quantity is random, then the
sampled values will not end up along the identity line. If they do not, the quantity
may still be deterministic in the limit, but there are too little data to draw any
conclusions.

5.1 The relation between particle volume and radius
When varying the event rates as described in section 4.4.1, the fractal dimension
β, defined by eq. (4.2) and retrieved from simulations, vary between 1.5 and 2.2,
for both particles in the cloud, and for dropped particles. With Pr(β) > 1 (see
section 4.5.1), the results also indicate that β converge. For a table concluding
these results, see table F.1.
One way to determine if β is affected by any event rate, is to plot it as a function

of each of the varied parameters as in fig. 5.1. This figure shows that the fractal
dimension decreases when Rd increases. There is also a small decrease in β when
Rm increases, and a small increase in β when Rg increases. Another effect is that
increasing Rg makes the range of computed values of β smaller. The opposite holds
when increasingRm orRd. The correlation diagrams of β obtained from two identical
runs with different seed are shown in fig. 5.2. The figure indicates all data points
gather along the line y = x and therefore β is well defined.
The same kind of diagrams for the normalised volume growth coefficient α are

shown in figs. 5.3 and 5.4. The correlation diagrams in fig. 5.4 show a rather weak
correlation, especially among the cloud particles. The correlation between different
runs among dropped particles is somewhat higher, but not as high as the correlation
for β between different runs. This figure also shows that the value of α tends to
stay around 1 given the tested parameters. The results are concluded table F.2. In
all cases, and thus the quantity converged in most of the cases.
The relation between β and the geometry parameter a is shown in fig. 5.5. This

figure indicates that a smaller a, or equivalently longer crystal prototypes, gives a
slightly higher β. The corresponding correlation diagrams are shown in fig. 5.6. In
this case, the correlation diagrams indicate that the correlation between two different

43

5 Results

1 1.5 2 2.5 3 3.5
1.5
1.6
1.7
1.8
1.9
2

2.1

Rg × 10−7

β
cl

ou
d

1 1.5 2 2.5 3 3.5
1.5
1.6
1.7
1.8
1.9
2

2.1

Rg × 10−7

β
dr

op
pe

d

0.5 1 1.5 2 2.5
1.5
1.6
1.7
1.8
1.9
2

2.1

Rm × 10−3

β
cl

ou
d

0.5 1 1.5 2 2.5
1.5
1.6
1.7
1.8
1.9
2

2.1

Rm × 10−3

β
dr

op
pe

d

1 2 3 4 5
1.5
1.6
1.7
1.8
1.9
2

2.1

Rd × 10−4

β
cl

ou
d

1 2 3 4 5
1.5
1.6
1.7
1.8
1.9
2

2.1

Rd × 10−4

β
dr

op
pe

d

Figure 5.1: The fractal dimension β of particles generated by model B, as a function
of different event rates. The values were computed following the proce-
dure described in section 4.5.1 with parameter values listed in table 4.2.

44

5.1 The relation between particle volume and radius

1.4 1.6 1.8 2 2.2
1.4

1.6

1.8

2

2.2

βcloud

β
cl

ou
d

(a) Data from cloud particles

1.5 1.6 1.7 1.8 1.9 2 2.1

1.5

1.6

1.7

1.8

1.9

2

2.1

βdropped

β
dr

op
pe

d
(b) Data from dropped particles

Figure 5.2: Correlation diagrams between the fractal dimension β computed from
two different runs of model B with different seed, but the same parameter
sweep. The dashed line marks the identity line y = x. The values were
collected in the same way as for fig. 5.1.

runs is weak, or there are too little data to draw any conclusions. Therefore, it is
not possible to claim that there is any relation between a and β. The results for
one run are listed in table F.3. For all estimates of β, Pr(β) > 1, again indicating
convergence.
While α seems to be unaffected by the choice of any event rate, it is affected by the

geometry parameter a. Figure 5.7 shows that α has a maximum around a = 0.45,
and that α varies between 0 and 1.4. The correlation diagrams for these simulations
are shown in fig. 5.8. These diagrams show a much higher correlation than fig. 5.4.
The results are concluded table F.4. In all cases Pr(α) > 1, and thus the quantity
converged in most of the cases.
Figures 5.1 to 5.8 do not say anything about how well the power-law from eq. (4.2)

fits with the collected data. To get an idea of how well the model works, V as a
function of Rmax is shown in fig. 5.9, for a particular set of parameters. From this
figure, the model seems to produce data that fits with a power-law, with exception
for particles that are built of only one crystal prototype. The power law is also
confirmed by fig. 5.16, which contains all simulation data.
As mentioned in section 4.1, β is expected to be equal to 2. Figures 5.1, 5.2, 5.5

and 5.6 show that its value tends to be a bit lower in general, but also that there
are parameters that leads to β > 2. The normalised volume growth coefficient α is
expected to be equal to 0.96. From fig. 5.7, this can be achieved by an appropriate
choice of geometry parameter a.

45

5 Results

1 1.5 2 2.5 3 3.5
0.7
0.8
0.9
1

1.1
1.2
1.3

Rg × 10−7

α
cl

ou
d

1 1.5 2 2.5 3 3.5
0.7
0.8
0.9
1

1.1
1.2
1.3

Rg × 10−7

α
dr

op
pe

d

0.5 1 1.5 2 2.5
0.7
0.8
0.9
1

1.1
1.2
1.3

Rm × 10−3

α
cl

ou
d

0.5 1 1.5 2 2.5
0.7
0.8
0.9
1

1.1
1.2
1.3

Rm × 10−3

α
dr

op
pe

d

1 2 3 4 5
0.7
0.8
0.9
1

1.1
1.2
1.3

Rd × 10−4

α
cl

ou
d

1 2 3 4 5
0.7
0.8
0.9
1

1.1
1.2
1.3

Rd × 10−4

α
dr

op
pe

d

Figure 5.3: The normalised volume growth coefficient α of particles generated by
model B, as a function of different event rates. The values were com-
puted following the procedure described in section 4.5.1 with parameter
values listed in table 4.2.

46

5.1 The relation between particle volume and radius

0.8 1 1.2 1.4

0.8

1

1.2

1.4

αcloud

α
cl

ou
d

(a) Data from cloud particles

0.9 1 1.1 1.2 1.3 1.4 1.5

0.9

1

1.1

1.2

1.3

1.4

1.5

αdropped

α
dr

op
pe

d

(b) Data from dropped particles

Figure 5.4: Correlation diagrams between the normalised volume growth coefficient
α computed from two different runs of model B with different seed, but
the same parameter sweep. The dashed line marks the identity line
y = x. The values were collected in the same way as for fig. 5.3.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
1.9

1.95

2

2.05

2.1

2.15

a

β

Cloud particlesDropped particles

Figure 5.5: Relation between crystal prototype length and the fractal dimension β
for particles generated by model B. The solid line is for particles in
the cloud, and the dashed line is for dropped particles. The values
were computed following the procedure described in section 4.5.1 with
parameter values listed in table 4.3. The axial ratio can be found from
eq. (4.11).

47

5 Results

1.8 1.9 2 2.1 2.2

1.8

1.9

2

2.1

2.2

βcloud

β
cl

ou
d

(a) Data from cloud particles

1.8 1.9 2 2.1 2.2
1.8

1.9

2

2.1

2.2

βdropped

β
dr

op
pe

d
(b) Data from dropped particles

Figure 5.6: Correlation diagrams between the fractal dimension β computed from
two different runs of model B with different seed, but the same parameter
sweep. The dashed line marks the identity line y = x. The values were
collected in the same way as for fig. 5.5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

a

α

Cloud particlesDropped particles

Figure 5.7: Relation between crystal prototype length and the normalised volume
growth coefficient α for particles generated by model B. The solid line
is for particles in the cloud, and the dashed line is for dropped parti-
cles. The values were computed following the procedure described in
section 4.5.1 with parameter values listed in table 4.3. The axial ratio
can be found from eq. (4.11).

48

5.1 The relation between particle volume and radius

0.5 1 1.5

0.5

1

1.5

αcloud

α
cl

ou
d

(a) Data from cloud particles

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

1.2

1.4

αdropped
α

dr
op

pe
d

(b) Data from dropped particles

Figure 5.8: Correlation diagrams between the normalised volume growth coefficient
α computed from two different runs of model B with different seed, but
the same parameter sweep. The dashed line marks the identity line
y = x. The values were collected in the same way as for fig. 5.7.

1e-1 1e+0 1e+1 1e+2
1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

Rmax

V

Data points
V = 0.57Rmax

2.04

Figure 5.9: Particle volume V as a function of Rmax in system units, for particles
generated by model B. This result was obtained with Rg = 33× 106,
Rm = 500 and Rd = 10 000. Other parameters are the same as for
fig. 5.1.

49

5 Results

5.2 The size distribution parameter
The simulations with different event rates gives γ between −2 and −0.5. Since
Pr(γ) > 1, the values seem to converge. The results are listed in table F.5. From
fig. 5.10, the size distribution parameter among particles inside the cloud γcloud,
increases with Rg, and decreases with Rm and Rd. This means that a higher Rg, and
smaller Rd and Rg implies larger particles. The same holds for the size distribution
parameter among the dropped particles γdropped. This conclusion is supported by the
correlation diagrams in fig. 5.11, which shows that both γcloud and γdropped between
two different runs with the same parameter sweep are correlated.
The relation between γ and the geometry parameter a is shown in fig. 5.12. This

figure shows that γ is largest when a = 0.44. The more extreme ratio between a
and L, the smaller are the generated ice particles. The corresponding correlation
diagrams are shown in fig. 5.13. For a table concluding the results, see table F.6.
Also in this case, Pr(γ) > 1.
To see whether or not eq. (4.5) correctly describes the particle size distribution, a

particular distribution is plotted in fig. 5.14. This figure shows that the model fits
pretty well in slope, with exception for the apparent high frequency of large particles
in the simulation output, but since the creation of larger particles is rare, there are
much more uncertainties in that end of the figure.
Compared to real measurements referenced in section 4.2, all data-sets analysed

so far corresponds to the smaller or equivalently, less complex, snowflakes found
in measurements. It is possible to create larger particles by increasing the life-
time of particles inside the cloud. For example, the choice a = 0.33, Rd = 500,
Rm = 2000, and Rg = 44× 106 results in γcloud = −0.0949 and γdropped = −0.115.
The resulting particle size distribution from one such run is shown in fig. 5.15. In
this case βcloud = 1.88, αcloud = 2.90, βdropped = 1.87, and αdropped = 2.69.
If rmax is expected to be unaffected by particle size, Matrosov, S.Y. (2007) suggests

that larger particles should result in a larger value of α. The results indicates that
this is the case. As seen from fig. 5.7, it is possible to shrink α by using more extreme
aspect rations for the crystal prototypes. With the same parameters as above, but
with a = 0.22, gives γcloud = −0.138, γdropped = −0.185, αcloud = 0.64, βcloud = 1.92,
αdropped = 0.26, and βcloud = 2.18.

5.3 The spherical volume fill ratio
From fig. 5.16, the trend for the average spherical volume fill ratio vr0 defined by
eq. (4.7) is that it decreases with slower growth rate Rg. From the same figure,
increasing the melt rate Rm or drop rate Rd, increases vr0. The correlation diagrams
in fig. 5.17, indicates that there is a true correlation. The underlying values are are
listed in table F.7. For all tested parameter, Pr(vr0) > 1, indicating convergence.

50

5.3 The spherical volume fill ratio

1 1.5 2 2.5 3 3.5
-2

-1.5

-1

-0.5

Rg × 10−7

γ
cl

ou
d

1 1.5 2 2.5 3 3.5
-2

-1.5

-1

-0.5

Rg × 10−7

γ
dr

op
pe

d

0.5 1 1.5 2 2.5
-2

-1.5

-1

-0.5

Rm × 10−3

γ
cl

ou
d

0.5 1 1.5 2 2.5
-2

-1.5

-1

-0.5

Rm × 10−3

γ
dr

op
pe

d

1 2 3 4 5
-2

-1.5

-1

-0.5

Rd × 10−4

γ
cl

ou
d

1 2 3 4 5
-2

-1.5

-1

-0.5

Rd × 10−4

γ
dr

op
pe

d

Figure 5.10: The size distribution parameter γ among particles generated by
model B, as a function of different event rates. The values were com-
puted following the procedure described in section 4.5.1, with the pa-
rameter values listed in table 4.2.

51

5 Results

-2 -1.5 -1 -0.5

-2

-1.5

-1

-0.5

γcloud

γ
cl

ou
d

(a) Data from cloud particles

-2 -1.5 -1 -0.5

-2

-1.5

-1

-0.5

γdropped

γ
dr

op
pe

d
(b) Data from dropped particles

Figure 5.11: Correlation diagrams between the size distribution parameter com-
puted from two different runs of model B with the same parameter
sweep. The dashed line marks the identity line y = x. The parameter
values used are those found in table 4.2. The values were collected in
the same way as for fig. 5.10.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
-0.55

-0.5

-0.45

-0.4

-0.35

a

γ

Cloud particlesDropped particles

Figure 5.12: Relation between crystal prototype length and the size distribution
parameter γ among particles generated by model B. The solid line is
for particles in the cloud, and the dashed line is for dropped parti-
cles. The values were computed following the procedure described in
section 4.5.1, with the parameter values listed in table 4.3. The axial
ratio can be found from eq. (4.11).

52

5.3 The spherical volume fill ratio

-0.46-0.44-0.42 -0.4 -0.38-0.36
-0.46

-0.44

-0.42

-0.4

-0.38

-0.36

γcloud

γ
cl

ou
d

(a) Data from cloud particles

-0.54 -0.52 -0.5 -0.48 -0.46
-0.54

-0.52

-0.5

-0.48

-0.46

γdropped
γ

dr
op

pe
d

(b) Data from dropped particles

Figure 5.13: Correlation diagrams between the size distribution parameter com-
puted from two different runs of model B with the same parameter
sweep. The dashed line marks the identity line y = x. The values were
collected in the same way as for fig. 5.12.

0 5 10 15 20 25
1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

Rmax
rmax

d dN

(R
m

ax
r

m
ax

)

Data pointsData fit γ = −0.45

Figure 5.14: Size distribution among particles generated by model B. This result
was obtained with a = 0.44. Other parameters are the same as for
fig. 5.13.

53

5 Results

0 10 20 30 40 50
1e-4

1e-3

1e-2

1e-1

1e+0

Rmax
rmax

d dN

(R
m

ax
r

m
ax

)
Data pointsData fit γ = −0.11

Figure 5.15: Size distribution among dropped particles generated by model B. This
result was obtained with Rg = 44 000 000, Rm = 2000 and Rd = 500.
Other parameters are the same as for fig. 5.11.

The effect on vr0 of making the aspect ratio of the crystal prototypes more extreme
is that its value decreases, as seen in fig. 5.18. As seen in fig. 5.19, the correlation
is strong also in this case. The underlying values are are listed in table F.8. For all
tested parameter, Pr(vr0) > 1, indicating convergence.
To see the relation between Rmax and vr, the ratio vr

vr0
from eq. (4.9) is plotted. The

result is shown in fig. 5.20. By multiplying the values in this plot with vr0 computed
from different parameters, the spherical volume fill ratio is obtained. Figure 5.20
also compares the ratio obtained from all simulations with the theoretical expression
eq. (4.10) derived in section 4.3. The data points seem to end up parallel to the
theoretical line, but somewhat shifted.
From figs. 5.16 and 5.18, the pseudo-average of the spherical volume fill ratio

varies between 0.02 and 0.1 for particles that are not generated from very thin
crystal prototypes. For particles generated from the thinnest crystal prototypes
(a = 0.17), the value goes down to 3× 10−3. When multiplying these values by
values for the reduced spherical volume fill ratio from fig. 5.20, it is found that
the spherical volume fill ratio varies between 6× 10−4 and somewhere around 1,
depending on particle size and shape.

54

5.3 The spherical volume fill ratio

1 1.5 2 2.5 3 3.5
0.03
0.04
0.05
0.06
0.07
0.08
0.09

Rg × 10−7

v r
0 c

lo
ud

1 1.5 2 2.5 3 3.5
0.03
0.04
0.05
0.06
0.07
0.08
0.09

Rg × 10−7

v r
0 d

ro
pp

ed

0.5 1 1.5 2 2.5
0.03
0.04
0.05
0.06
0.07
0.08
0.09

Rm × 10−3

v r
0 c

lo
ud

0.5 1 1.5 2 2.5
0.03
0.04
0.05
0.06
0.07
0.08
0.09

Rm × 10−3

v r
0 d

ro
pp

ed

1 2 3 4 5
0.03
0.04
0.05
0.06
0.07
0.08
0.09

Rd × 10−4

v r
0 c

lo
ud

1 2 3 4 5
0.03
0.04
0.05
0.06
0.07
0.08
0.09

Rd × 10−4

v r
0 d

ro
pp

ed

Figure 5.16: The pseudo-average spherical volume fill ratio vr0 defined by eq. (4.7),
of particles generated by model B, as a function of different event rates.
The values were computed following the procedure described in sec-
tion 4.5.1, with the parameter values listed in table 4.2.

55

5 Results

0.030.040.050.060.070.080.09

0.03

0.04

0.05

0.06

0.07

0.08

0.09

vr0cloud

v r
0 c

lo
ud

(a) Data from cloud particles

0.030.040.050.060.070.080.09
0.03

0.04

0.05

0.06

0.07

0.08

0.09

vr0dropped

v r
0 d

ro
pp

ed
(b) Data from dropped particles

Figure 5.17: Correlation diagrams between the pseudo-average spherical volume fill
ratio vr0 defined by eq. (4.7), computed from two different runs of
model B with different seed, but the same parameter sweep. The
dashed line marks the identity line y = x. The values were collected in
the same way as for fig. 5.16.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.01

0.02

0.03

0.04

0.05

a

v r
0

Cloud particlesDropped particles

Figure 5.18: Relation between crystal prototype length and the pseudo-average
spherical volume fill ratio vr0 defined by eq. (4.7), for particles gen-
erated by model B. The solid line is for particles in the cloud, and the
dashed line is for dropped particles. The values were computed follow-
ing the procedure described in section 4.5.1, with the parameter values
listed in table 4.3.

56

5.3 The spherical volume fill ratio

0.0050.010.0150.020.0250.03

0.005

0.01

0.015

0.02

0.025

0.03

vr0cloud

v r
0 c

lo
ud

(a) Data from cloud particles

0.01 0.02 0.03 0.04

0.01

0.02

0.03

0.04

vr0dropped

v r
0 d

ro
pp

ed
(b) Data from dropped particles

Figure 5.19: Correlation diagrams between the average spherical volume fill ratio
vr0 defined by eq. (4.7), computed from two different runs of model B
with different seed, but the same parameter sweep. The dashed line
marks the identity line y = x. The values were collected in the same
way as for fig. 5.18.

1e+2

v
r

v
r

0

−λRmax

10 205210.50.2

1e+0

1e-4

1e-3

1e-2

1e-1
Ev

en
t
in
te
ns
ity

1e-1

1e+1

Figure 5.20: The reduced spherical volume fill ratio defined by eq. (4.9), as a func-
tion of −λRmax. The scatter-plot contains all data points from every
simulation. The line shows the relation vr

vr0
= − 3

λRmax
, that is eq. (4.10)

derived in section 4.3. The intensity is logarithmic and represents the
abundance of events at the specific point weighted by the number of
events for the corresponding λ.

57

6 Discussion
This project has shown that algorithms from the study of computational geometry
can be useful when generating snow particle shape data. From the data analysis
from the output of model B, it appears that the model can, for large particles,
reproduce the volume growth coefficient, fractal dimension, and size distribution
of real particles. For the smallest generated particles, booth the fractal dimension
and size distribution deviate from what is expected, but in this range it is harder
to perform measurements accurately due to “shattering on the housing of probes”
(Baran, A. J. 2012).
The particle aspect ratio, and speed, has been recorded, but not analysed. This is

also true for the system dynamics. There is no real reason for skipping this analysis,
other than the fact that such analysis would have bloated the report. The aspect
ratios recorded are axis aligned. Another way of measuring the aspect ratio is to
use the principal axes, but in its current state, there is no function for computing
principal components within the toolkit.

6.1 Ways to improve the toolkit
In its current state, the toolkit provides basic functionality for generating composed
particles, and that is probably enough to implement very sophisticated models, but
there is room for improvements of the toolkit. The following list shows some points
of improvements:

• It would be a benefit if the toolkit could divide imported geometry into convex
parts by itself. Then, it would be easier to make new ice crystal prototypes.
Also, the particle deformation described in section 2.3.1 can be less restrictive.
• Implement principal component analysis. Besides the possibility to measure

aspect ratios relative to the principal axes, it makes it possible to implement
a model that takes the normal to the largest spanned parallelogram as falling
direction.
• Use composed transformations in a larger extent in order to save computation

time
• If it can be shown that the most realistic shapes are generated from crys-

tal prototypes with a small number of vertices, a limit can be added to the

58

6.2 Extensions and correctness of the models

number vertices a subvolume may contain. Such a limit may reduce the num-
ber of memory cache misses due to increased memory locality. This comes
from the fact that a variable number of vertices requires an additional pointer
dereference.

6.2 Extensions and correctness of the models
Even though it is straight forward to implement anisotropy to the coalescence pro-
cess, this has not been done within the project. The reason for this is that more
simulations adds more results, and the project has already resulted in more data
than could be analysed.
There are some cheating in computing the matrix elements in model B namely

that events that would result in an overlap (see fig. 3.2), should have a probability of
zero so they never occur. It is possible to implement this, but then the probability
matrix needs to store the probabilities on face level, rather than on particle level,
and this would result in a much larger matrix. Also, in order to compute the matrix
element, collision detection has to be performed between all faces, which certainly
is impractical.
It could be interesting to add the equilibrium between solid and liquid water

described by eq. (3.7). Then coalescence of water droplets, as well as water droplets
and ice crystals, also have to go into the model. Adding water droplets does not
add much new to the algorithm described in section 3.4.3, since water droplets can
be thought of as a spheroid crystal prototype, but the coalesce process will differ for
the coalescence of water droplets, if they are not assumed to freeze directly. Another
difference between water droplets and ice particles lie in their density. Therefore,
the particle density has to be considered when computing the terminal velocity.
When running simulations, the crystal prototype radius has been kept constant.

It is not difficult to modify the code so this quantity can be randomised as well.
Varying both length and radius may lead to a larger fractal dimension, since this
gives a two-dimensional scaling, instead of a one-dimensional scaling.

6.3 Alternative ways of analyse data
Besides testing other models, natural ways of continuing the work within this field
include studying more aspects of the evaluated model such as the distribution of par-
ticle aspect ratios with respect to their principal component axes, and the dynamics
of the simulated system.
Instead of using Rmax, one can measure Dmax and the latter measurement is

actually more easy to compute. However, since Rmax was used for estimating cross-
sections, it was used in data analysis as well. Because Rmax is based on the location

59

6 Discussion

of the centroid, there can be some differences in particle sizes. It is unlikely to affect
the fractal dimension, but it may affect the volume growth coefficient, since it may
happen that Rmax is no longer exactly equal to Dmax

2 .
Another way of analysing data is to compare some of the generated particles

with photographic data of real snowflakes. Indeed, since the framework contains
functionality needed to communicate with any tool that accepts geometry data in
the Wavefront file format (FileFormat.Info 2015), it is straightforward to feed the
simulation output into a either a scanline rasteriser or a ray-tracer.
A scanline rasteriser can be used to compare the geometrical features in the output

of the simulation with real data. While there are analysis techniques for such images
(Schmitt, C.G. et al. 2014), this kind of analysis has not been done during this
project.
A ray-tracer has been used to generate the cover picture. A ray-tracer makes it

possible to analyse optical properties as well as geometrical features, but then the
background of the real data should be the same as the background and lightning
used when running the ray-tracer. A good background might be a checker-board
pattern in the scale of individual ice crystal prototypes, since it reveals the refraction
effect. One should also keep in mind that a ray-tracer is at the time of writing very
slow compared to a scanline rasteriser, and therefore, ray-tracing is only beneficial
if there are models of weather or climate, that in some way affects or is affected by,
the index of refraction within the optical region.

6.4 Uncertainties in data
As mentioned in section 4.1, the value used for the size normalising constant rmax
was obtained by an estimate from one image of a real ice particle, which makes this
value not very accurate. This uncertainty mainly affects the complexity of particles:
a smaller rmax requires a more complex aggregate given the same aggregate size, and
vice versa. Assuming this measurement indeed is correct, the distance was measured
orthogonal to the particle length, which introduces another uncertainty since the
latter is unknown. That is because the real length particle size is rmax =

√
L2 + r⊥2,

where L is the length of the crystal prototype, and r⊥ is the radius measured in the
picture. One possible way to deal with the latter problem is to run simulations and
see how L relates to other measurable quantities. It may then be possible to set up
a self-consistency condition, which gives the particle aspect ratio.

60

7 Conclusions
During the project, a toolkit that can be used to generate snow particles, and ras-
terise them, has been developed. The toolkit was used to implement a Gillespie
based method that was evaluated by letting it generate snow particles. By using the
data analysis methods described in chapter 4, it was found that all of the studied
time-series converged, and that the algorithm generated particles, that exhibit some
properties also found among snow particles in nature. Additionally, it was found
that

– the fractal dimensions of the generated particles appear to be quite insensi-
tive to the prototype aspect ratio, but there is a tendency for their fractal
dimensions to grow with the number of particles within the cloud

– the growth coefficient is mainly affected by the prototype aspect ratio, and
not by the event rates. The growth coefficient is largest for cubic particles,
and decreases when the prototype aspect ratio becomes more extreme.

– the spherical volume fill ratio is both affected by the prototype aspect ratio,
and the event rates. With respect to the prototype aspect ratio, the spheri-
cal volume fill ratio behaves similar to the growth coefficient. The spherical
volume fill ratio decreases with the number of particles within the cloud.

– to generate large particles, the particle lifetime within the cloud should be
long

– for tested parameter, particles within the cloud tends to be larger than dropped
ones

During the construction of analysis methods, it was found that it is possible to
construct a relation between volume fill ratio, averaged volume fill ratio, and the
particle size, given the size distribution parameter. Although the expression was
derived assuming an exponential distribution among the particle sizes, it should
be possible to derive that kind of expressions for different size distributions. The
benefit of such a relation is that it is easier to compare different data sets retrieved by
simulations or observations, provided that both sets follow the same size distribution.

61

Glossary
Advanced Vector Extensions An extension to the x86 architecture that allows

hardware support for arithmetic on multiple numbers. 28
API Application Programming Interface. 4
Application Programming Interface A set of routines, protocols, and tools for

building software and applications. 4
AVX Advanced Vector Extensions. 28

bootstrapping The procedure of starting a procedure without any additional input
that normally would require such input. 38, 42

bounding box The minimal cuboid that completely encloses a body. 11, 36

Cloud Particle Imager A device that can be used to capture images of cloud par-
ticles. 32

convex set A set such that for all points Pl on the line segment between any two
points in the set, Pl belongs to the set. 7, 9, 11, 13

CPI Cloud Particle Imager. 32
crystal prototype Template geometry used to initialise ice particle generation. 4,

5, 9, 29, 31, 35, 43, 45, 47, 48, 50, 52, 54, 56, 59

DDA Discrete Dipole Approximation. 2, 3, 5, 6, 17
depth first An algorithm for traversing a graph. In this algorithm, the grandchil-

dren takes precedence over siblings. 10
Discrete Dipole Approximation A technique used simulate electromagnetic scat-

tering. 2

edge The link between two nodes in a graph. 7, 8, 10

forward model A model that describes how the interesting quantities are mapped
to measured quantities. 1

fractal dimension The exponent in the mass-radius relation. It can be interpreted
as the effective number of directions in which the particles grow.. 31, 39, 44

62

Glossary

graph A set of nodes connected through edges. Objects that can be represented by
a graph includes electrical circuits, tram charts, and road networks. 4, 5, 7, 8,
10, 17

inversion of control A software design in which custom-written portions of a com-
puter program receive the flow of control from a generic, reusable library. 4

MASC Multi-Angle Snowflake Camera. 32
Mie scattering Scattering of electromagnetic radiation with a wavelength that is

of the same size as the scattering particles. 1
Multi-Angle Snowflake Camera A device that automatically photographs hydrom-

eteors in free fall. 32

normalised volume growth coefficient A dimensionless version of the volume growth
coefficient. 32, 43, 45

polygon mesh A storage model that is frequently used in 3D computer graphics to
represent 3D objects. 4–7, 17, 20

POSIX time The number of seconds since 1970-01-01 00:00. 36
prediction ratio The prediction ratio between two models is the ratio between their

prediction error. 40
profiling The process of measuring the time spent in different parts of computer

program. 27

reduced spherical volume fill ratio The spherical volume fill ratio divided by the
pseudo-average of the spherical volume fill ratio. 34, 57

ringing artefacts Initial oscillations in a dynamical system. 40

stack A data structure that stores elements following the last-in first-out scheme.
10, 11

sub-volume A convex subset of an IceParticle. 7, 9, 11, 13, 14, 21, 22
system unit The unit of length used for measuring the size of particles.. 4, 35, 49

volume growth coefficient Coefficient measuring how much the volume of a par-
ticle is affected by the particle size. 31

voxel A three-dimensional pixel. 11–14

63

Bibliography
Baran, A. J. (2012) From the single-scattering properties of ice crystals to climate

prediction: A way forward. Atmospheric Reasearch, vol. 112, pp. 45–69
doi: 10.1016/j.atmosres.2012.04.010

Braham, R.R. (1990) Snow Particle Size Spectra in Lake Effect Snows. Journal of
Applied Meteorolgy, vol. 29, issue 3, pp. 200–207
doi: 10.1175/1520-0450(1990)029<0200:SPSSIL>2.0.CO;2

Pseudo-random number generation. (2015) In cppreference.com.
http://en.cppreference.com. (2015-08-16)

std::pair. (2015) In cppreference.com.
http://en.cppreference.com. (2015-09-09)

Draine, B.T. and Flatau, P. J. (1994) Discrete-dipole approximation for scattering
calculations. Journal of the Optical Society of America, vol. 11, issue 4, pp.
1491–1499
doi: 10.1364/JOSAA.11.001491

Eaton, J.W. et al. (2011) GNU Octave v. 3.8.0. GNU.

Wavefront OBJ: Summary from the Encyclopedia of Graphics File Formats. (2015)
In FileFormat.Info.
http://www.fileformat.info. (2015-07-16)

Garrett, T. J. et al. (2015) Orientations and aspect rations of falling snow. Geophys-
ical Reasearch Letters, vol. 42, issue 11, pp. 4617–4622
doi: 10.1002/2015GL064040

Gillespie, D.T. (1975) An Exact Method for Numerically Simulating the Stochastic
Coalecence Process in a Cloud. Journal of the Atmospheric Sciences, vol. 32,
issue 10, pp. 1977–1989
doi: 10.1175/1520-0469(1975)032<1977:AEMFNS>2.0.CO;2

Hong, G. (2007) Parameterization of scattering and absorption propoerties of
nonspherical ice crystals at microwave frequencies. Journal of Geophysical
Reasearch, vol. 112, issue D11208, pp. n/a
doi: 10.1029/2006JD008364

64

http://en.cppreference.com
http://en.cppreference.com
http://www.fileformat.info

BIBLIOGRAPHY

Intel Corporation (2015) Intel R© 64 and IA-32 Architectures Software Developer’s
Manual vol. 1. Intel Corporation.

Linux Kernel Organization (2013) Linux Programmer’s Manual vol. 4. Linux Kernel
Organization.

Maruyama, K. and Fujiyoshi, Y. (2005) Monte Carlo Simulation of the Formation
of Snowflakes. Journal of the Atmospheric Sciences, vol. 64, issue 5, pp. 1529–
1544
doi: 10.1175/JAS3416.1

Matrosov, S.Y. (2007) Modeling Backscatter Properties of Snowfall at Millimeter
wavelength. Journal of Atmospheric Sciences, vol. 64, issue 5, pp. 1727–1736
doi: 10.1165/JAS3904.1

Mitchell, D. L., Zhang, R. and Pitter, R. L. (1990) Mass-Dimensional Relationships
for Ice Particles and the Influence of Riming on Snowfall Rates. Journal of
Applied Meteorolgy, vol. 29, issue 2, pp. 153–164
doi: 10.1175/1520-0450(1990)029<0153:MDRFIP>2.0.CO;2

Möller, T. (1997) A Fast Triangle-Triangle Intersection Test. Journal of Graphics
Tools, vol. 2, issue 2, pp. 24–30
doi: 10.1080/10867651.1997.10487472

Newman, M.C. (1993) Regression analysis of log-transformed data: Statistical bias
and its correction. Environmental Toxicology and Chemistry, vol. 12, issue 6,
pp. 1129–1133
doi: 10.1002/etc.5620120618

Nürnberg, R. (2013) Calculating the volume and centroid of a polyhedtron in 3d.
Imperial Collage London.
http://wwwf.imperial.ac.uk/~rn/centroid.pdf. (2015-07-09)

Rees, W.G. (2001) Physical principles of remote sensing. 2ed. Cambridge: Cam-
bridge University Press.
ISBN: 0-521-66948-0

Schmitt, C.G. and Heymsfield, A. J. (2014) Observational quantification of the sep-
aration of simple and complex atmospheric ice particles. Geophysical Reasearch
Letters, vol. 41, issue 4, pp. 1301–1307
doi: 10.1002/2013GL058781

Stein, T.H.M., Westbrook, C.D. and Nicol, J. C. (2015) Fractal geometry of aggre-
gate snowflakes revealed by triple-wavelength radar measurements. Geophysical
Research Letters, vol. 42, issue 1, pp. 176–183
doi: 10.1002/2014GL062170

65

http://wwwf.imperial.ac.uk/~rn/centroid.pdf

A System requirements
The toolkit has been developed and tested on Ubuntu 14.04, with the the compiler
g++ 5.1.0. One design principle of the project has been to keep the dependency on
third-party libraries as small as possible. Nevertheless, the toolkit requires a GNU
system together with the Linux R© kernel, and the GLM library1. Also, the toolkit
requires

– A compiler that supports C++11 (g++ 4.8 should work)
– A processor that supports AVX-256 instructions (An Intel R© IvyBridge or later
should work)

To avoid the need for maintaining make-files, the Wand tool from Gabi2 version
5.77 has been used. Notice that the toolkit does not have any dependencies to the
Herbs3 library, and the source code ships with a wandcfg.spell file. Therefore,
compiling Gabi and placing the wand executable file in an appropriate directory4

should be enough to compile the toolkit. In other words, the formal installation
procedure for installing Gabi is not needed. That said, the toolkit can be compiled
without Wand though using Wand makes it easier to maintain the make-file in case
the internal dependency graph of the toolkit changes.
Since the ice crystal prototypes are stored in text files, it is possible to create

custom prototypes in a text editor. However, it can be easier to create the shape if
WYSIWYG5 editing can be used. This is possible by using the 3D modelling and
rendering package Blender6, to draw the geometry for the crystal prototypes, and
then using the bundled plug-ins intended for Blender to export the geometry into a
crystal prototype file.

1See http://glm.g-truc.net (2015-08-11 18:26)
2More information about Gabi can be found at https://github.com/milasudril/gabi (2015-
08-11 18:30). The source code for the stable branch can be found at https://github.com/
milasudril/gabi/releases (2015-08-11 18:30)

3Herbs is the class library shipped with Gabi
4An appropriate directory is any directory included in the PATH environment variable
5What You See Is What You Get
6See https://www.blender.org (2015-08-11 18:18)

66

http://glm.g-truc.net
https://github.com/milasudril/gabi
https://github.com/milasudril/gabi/releases
https://github.com/milasudril/gabi/releases
https://www.blender.org

B Retrieving and compiling the
toolkit

Below is a shell script that downloads and compiles the toolkit.
#!/ bin / bash

Download Gabi
wget −O gabi −5.77. ta r . gz " https : // github . com/m i l a s ud r i l / gabi / a r ch ive / 5 . 7 7 . ta r . gz "

Decompress the t a r b a l l
gz ip −d " gabi −5.77. ta r . gz "

Extrac t i t s con ten t s
ta r −xf " gabi −5.77. ta r "

Cd in to the Gabi source d i r e c t o r y
cd " gabi −5.77/ source "

Compile Gabi
make −f " Makef i le−GNULinux64"

Move Wand to an appropr ia t e p l ace
mv "__wand_targets−x86_64−gnul inux /wand/wand" ~/bin /wand

Leave the Gabi source d i r e c t o r y
cd . . / . .

Everyth ing above t h i s l i n e can be sk ipped i f the c o r r e c t v e r s i on
of Wand i s a l r eady i n s t a l l e d
##

Download the t o o l k i t (the l a t e s t v e r s i on)
g i t c l one " https : // github . com/m i l a s ud r i l / snowflakemodel−t o o l k i t . g i t "
A l t e r n a t i v l y , the code used f o r s imu la t i on s w i th in t h i s p r o j e c t can
be r e t r i e v e d by the command
wget −" h t t p s :// g i t h u b . com/ m i l a s u d r i l / snowf lake−t o o l k i t / a rch i v e /v1 . 0 . t a r . gz "
and by e x t r a c t i n g the content o f t h a t f i l e

Cd in to the snowf lake t o o l k i t d i r e c t o r y
cd " snowflakemodel−t o o l k i t "

Run Wand to compi le the p r o j e c t

67

B Retrieving and compiling the toolkit

~/bin /wand " p r o f i l e [r e l e a s e] "

During compilation of the toolkit, all targets will be written to __wand_targets,
or __wand_targets_dbg. The targets include object files, that contains the compiled
code for the toolkit, and executables. The executables are

snowflake_generate generate a snowflake using a static aggregate file
snowflake_prototype-test a test program for rendering of a single ice crystal pro-

totype
snowflake_simulate implementation of model A
snowflake_simulate3 implementation of model B

All of these programs uses GNU style long options and accepts the option --help,
which will print information about availible parameters. As example the following
command will print information about snowflake_simulate3:
__wand_targets/ snowf lake_simulate3 −−help

68

C Predefined crystal files

Table C.1: Crystal prototypes bundled with the toolkit. The prototypes are viewed
in orthographic projection, in the (x, y)-plane, and the (y, z)-plane. The
parameters for bullet.ice and hollow.ice follow the same convention
as Hong, G. (2007), table 1.

Name Description of shape and parameters
bullet.ice

L t

a

bullet-double.ice

L t

a

t

cuboid.ice
ry

rx rz

hollow.ice

L

t

a

t

spheroid.ice
ry

rx rz

69

D Command files used by the toolkit
The framework uses special command files to store input data, such as prototype
crystal geometry, and aggregates. There are two kinds of command files. The first
kind—aggregate files—is used to describe aggregates, and the second kind—crystal
files—is used to describe prototype crystals.

D.1 General syntax
A command file contains a number of commands. An example of a command file can
be found in listings D.1 and D.2. The syntax is based on single delimiter characters
listed table D.1, each determining what action should be taken. Each command
starts with its name, directly followed by an opening parenthesis ((U+0028). If a
command is already being processed, the processing state is pushed onto a stack, so
it can be finished later. Then the command arguments follow separated by comma
, (U+002c). The argument list, and the command, end with a closing parenthesis
) (U+0029). The preceding token is treated as a command argument, and the
current command is executed. The result of the current command is then used as
argument to the previous command.
A backslash \ (U+005c) is used as escape character in the sense that the charac-

ter that follows an escape character is interpreted literally. Any leading whitespace
within a token is always skipped, unless it follows an escape character. The white-
spaces that follow an escape character are always preserved. This also holds for

Table D.1: Delimiter characters and their function during the parsing process of
command files. The corresponding Unicode codepoint is written in
parenthesis in hexadecimal notation.

Character Function
(U+0023) Indicates that a line is a comment
((U+0028) Starts a new command
) (U+0029) Ends the current command and returns to the previous command
, (U+002c) Delimits command arguments
\ (U+005c) Escape character

70

D.2 Ice crystal prototype definition files

Table D.2: Commands allowed in an ice crystal prototype definition file

Command Description
face Defines a new face
group Associates vertices with a deformation rule (see section 2.3.1)
matrix Defines a new deformation rule (see section 2.3.1)
mirror_heading Activates mirroring in the heading (x) direction
vertex Defines vertex
volume Starts a new sub-volume

whitespaces that follow a regular character in a token string. The characters that
follow a number sign # (U+0023) are comments. The comment ends with the next
line. Both a carriage–return and line–feed character are treated as line delimiters.

D.2 Ice crystal prototype definition files
Crystal definition files may contain the commands listed in table D.2. The vertex
command adds a vertex to the current sub-volume. The location of the vertex are
given as x, y and z.
A face is defined by the face command. The face command takes three zero-based

vertex indices, each referring to one of the vertices within the current sub-volume,
and a flag that tells the SolidLoader whether or not the face is visible. It is
important that all vertices referred to by the face command are defined before the
face. In order to get the face normal correct, the triangle defining the face has to
be traversed counter-clockwise.
The volume command marks a new sub-volume. The following vertex and face

up to the next volume command is added to the current sub-volume. As mentioned
in section 2.2, the connections of the vertices inside each sub-volume has to form
convex set.
The matrix command adds a new deformation rule (see section 2.3.1). The first

argument is the name of the deformation rule. The 16 remaining arguments are the
individual matrix elements in row-wise order. If an argument is not a number, it is
treated as a parameter name, that will take a value during runtime. The deforma-
tions are applied to the ice crystal prototype in the same order as the corresponding
matrix commands in the crystal definition file.
The vertices affected by a deformation rule are defined by the group command.

The first argument associates the group with a deformation rule. Following the
name of the deformation rule, the indices of all affected vertices are listed. The
vertex indexing follows the same convention as for the face command. A vertex

71

D Command files used by the toolkit

index may be present in more than one group.
In addition to the commands mentioned above, there is the commandmirror_heading,

that takes all deformed geometry and adds a mirrored copy of the geometry to its
tail.

Listing D.1: Example of an ice crystal prototype definition. This listing shows the
definition for bullet.ice

#SnowflakeModel Ice c r y s t a l Prototype

#Sca l ing matr ices

#f r o n t i s the t i p v e r t e x

matrix (f ront ,
t , 0 , 0 , 0 ,
0 , 1 , 0 , 0 ,
0 , 0 , 1 , 0 ,
0 , 0 , 0 , 1)

#back i s the f l a t end

matrix (back ,
L , 0 , 0 , 0 ,
0 , 1 , 0 , 0 ,
0 , 0 , 1 , 0 ,
0 , 0 , 0 , 1)

#g l o b a l s c a l i n g matrix

matrix ($g loba l ,
1 , 0 , 0 , 0 ,
0 , a , 0 , 0 ,
0 ,0 , a , 0 ,
0 , 0 , 0 , 1)

#Mesh subvolumes . Each o f t h e s e needs to be convex

volume ()
ver tex (−1 ,0 ,−5.960464e−08)
ver tex (1 ,0 , 5 . 960464 e−08)
ver tex (−1 ,1 ,−5.960464e−08)
ver tex (0 ,1 , 5 . 960464 e−08)
ver tex (−1 ,0.5 ,−0.8660255)
ver tex (1 .192093 e−07 ,0.5 ,−0.8660254)
ver tex (−1 ,−0.5000001 ,−0.8660254)
ver tex (1 .192093 e−07 ,−0.5000001 ,−0.8660253)

72

D.2 Ice crystal prototype definition files

ver tex (−1 ,−1 ,0)
ver tex (0 ,−1 ,1.788139 e−07)
ver tex (−1 ,−0.4999999 ,0.8660254)
ver tex (0 ,−0.4999999 ,0 .8660255)
ver tex (−1 ,0 .4999999 ,0 .8660254)
ver tex (0 , 0 . 4999999 ,0 . 8660255)

f a c e (0 , 2 , 4 , ou t s id e)
f a c e (1 , 5 , 3 , ou t s id e)
f a c e (3 , 5 , 4 , ou t s id e)
f a c e (0 , 4 , 6 , ou t s id e)
f a c e (1 , 7 , 5 , ou t s id e)
f a c e (5 , 7 , 6 , ou t s id e)
f a c e (0 , 6 , 8 , ou t s id e)
f a c e (1 , 9 , 7 , ou t s id e)
f a c e (7 , 9 , 8 , ou t s id e)
f a c e (0 , 8 , 10 , ou t s id e)
f a c e (1 , 11 , 9 , ou t s id e)
f a c e (9 ,11 ,10 , ou t s id e)
f a c e (0 ,10 ,12 , ou t s id e)
f a c e (1 ,13 ,11 , ou t s id e)
f a c e (11 ,13 ,12 , ou t s id e)
f a c e (0 , 12 , 2 , ou t s id e)
f a c e (1 , 3 , 13 , ou t s id e)
f a c e (13 ,3 , 2 , ou t s id e)
f a c e (2 , 3 , 4 , ou t s id e)
f a c e (4 , 5 , 6 , ou t s id e)
f a c e (6 , 7 , 8 , ou t s id e)
f a c e (8 , 9 , 10 , ou t s id e)
f a c e (10 ,11 ,12 , ou t s id e)
f a c e (12 ,13 ,2 , ou t s id e)

group (back , 0 , 2 , 4 , 6 , 8 , 1 0 , 1 2)
group (f ront , 1)

D.2.1 Using Blender for creating ice crystal prototypes

Although it is possible to create ice crystal prototypes in a text editor, it is difficult
to visualise the resulting geometry that way. As an alternative to creating ice crystal
prototypes “by hand”, it is possible to draw them in Blender. This requires installing
the Blender add-ons io_scene_snowflakecrystalprototype and mesh_faces_tag,
both provided by the toolkit. After these add-ons has been installed and enabled,
it is possible to use Blender as an ice crystal prototype editor.

73

D Command files used by the toolkit

Drawing sub-volumes

Each sub-volume required by the ice crystal prototype geometry is drawn as free-
standing “mesh objects” (in Blender terminology). It is important to keep these
mesh objects convex. Otherwise, the drawing procedure is identical to how 3D ob-
jects are drawn in Blender. Currently, the division of a solid into convex sub-volume
has to be done manually, so it easiest to create the sub-volumes one by one. Vertex
groups are used to bind vertices with a deformation.

Adding deformations

Deformations are added to the ice crystal prototype by adding a mandatory text
resource, called matrices, to the Blender file. The text resource contains matrix
commands that are copied when exporting the file to an ice crystal prototype. Even
though the ice crystal prototype does not have any deformation, there must be a
text resource called matrices before the Blender file is exported. Otherwise, the
exporter will complain.

Triangulating faces

Before exporting the Blender file to an ice crystal prototype, all faces has to be split
into triangles. This can be done automatically by using the “Triangulate” option
from the mesh menu. It is a good idea to do triangulation before face tagging (see
below), since face tags are not copied to the new faces created during triangulation.

Tagging faces

The mesh_faces_tag add-on, accessed from the “Misc” tab in the edit toolshelf, is
used to tag faces, so the system knows whether or not a face will be visible. Visible
faces are those that are not co-planar with another face. Such faces must have the
tag outside. All other faces must have the tag inside.

D.3 Aggregate description files
Aggregate graphs can be loaded from an aggregate description file. An aggregate
description file may contain the commands listed in table D.3. An example of an
aggregate description file is shown in listing D.2.

D.3.1 Defining the graph
In order to create an aggregate graph, at least one crystal prototype file has to be
loaded. The crystal command loads an ice crystal prototype file (see appendix D.2)

74

D.3 Aggregate description files

Listing D.2: Example of an aggregate description file. This listing shows the de-
scription file bulletrosette-6.flake.

param_declare (L , 2)
param_declare (t , 0 . 5)
param_declare (a , 1)

c r y s t a l (bu l l e t , . . / c r y s t a l−l i b r a r y / bu l l e t . i c e)

node (a , b u l l e t)
node (b , b u l l e t)
node (c , b u l l e t)
node (d , b u l l e t)
node (e , b u l l e t)
node (f , b u l l e t)

vec to r (u , 1 , 0 , 0)
nodes_connect (a , u , b , u , 0 , 0 , 0 . 5)
nodes_connect (a , u , c , u , 0 , 0 , 0 . 2 5)
nodes_connect (a , u , d , u , 0 , 0 , −0.25)
nodes_connect (a , u , e , u , 0 , 0 . 25 , 0)
nodes_connect (a , u , f , u , 0 , −0.25 , 0)

node_param_set (a , L , param_get (L))
node_param_set (b , L , param_get (L))
node_param_set (c , L , param_get (L))
node_param_set (d , L , param_get (L))
node_param_set (e , L , param_get (L))
node_param_set (f , L , param_get (L))

node_param_set (a , a , param_get (a))
node_param_set (b , a , param_get (a))
node_param_set (c , a , param_get (a))
node_param_set (d , a , param_get (a))
node_param_set (e , a , param_get (a))
node_param_set (f , a , param_get (a))

node_param_set (a , t , param_get (t))
node_param_set (b , t , param_get (t))
node_param_set (c , t , param_get (t))
node_param_set (d , t , param_get (t))
node_param_set (e , t , param_get (t))
node_param_set (f , t , param_get (t))

75

D Command files used by the toolkit

Table D.3: Commands allowed in an aggregate description file

Command Description
crystal Loads an ice crystal prototype
node Associates a node name with an ice crystal
nodes_connect Connects two nodes in an aggregate graph
node_param_set Sets node parameters
vector Defines an offset vector
param_declare Defines a parameter that can be set from elsewhere
param_get Retrieves the value of a previously declared parameter
add Adds two numbers and returns their sum
curt Takes the cubic root of its argument
div Divides two numbers and returns their quotient
mult Multiplies two numbers and returns their product
pi Returns π
prod Multiplies its arguments and returns their product
sub Subtracts two numbers and substitutes returns their difference
print Prints its arguments to the standard error stream

and associates the loaded ice crystal prototype with a name. The first argument is
the symbolic name, and the second argument is the path of the file describing the
ice crystal prototype. The symbolic name must be unique within the file. The path
can be absolute, or relative to the directory of the current file.
The nodes in the aggregate graph are all associated with an ice crystal prototype.

In order to associate a node with an ice crystal prototype, the command
node is used. Its first argument is the name of the node, and the second argument
is the symbolic name of a previously loaded ice crystal prototype. Each node within
the file has to have a unique name, but they can share their ice crystal prototype.
Two nodes in the aggregate graph are connected by using the command nodes_connect.

This command takes seven parameters: the first node and its offset vector, the sec-
ond node and its offset vector, and finally the three rotation angles, divided by 2π.
These parameters are all illustrated in fig. 2.3. Both the nodes and offset vectors
has to be defined earlier in the file.
The deformation parameters (see section 2.3.1) of the ice crystal prototype as-

sociated with a node can be changed by the command node_param_set. The first
argument of this command is the name of the affected node, and the two following
are the parameter name and its new value, respectively.
Offset vectors (see section 2.3), are defined by the command vector. It takes four

parameters, its symbolic name for use within the file, followed by the x, y, and z

76

D.3 Aggregate description files

coordinates.

D.3.2 Declaring and retrieving parameters
It is possible to pass parameters to the aggregate graph loading routine. Which
parameters it takes is controlled by the use of the command param_declare. The
command takes two parameters: its name, and its default value. The name of the
parameter has to be unique within the current file.
Parameter values are retrieved through the command param_get command. The

only parameter given to this command is the parameter name.

D.3.3 Arithmetical transformation of parameters
There is some basic support for arithmetical transformation of values. Through
this mechanism, more complicated parametrisations can be used. The arithmetic
functions area

• add that returns the sum of its arguments
• curt that returns the cubic root of its argument
• div that returns the quotient of its arguments. The first argument is the

numerator.
• mult that returns the product of its arguments
• pi that returns π
• prod that returns the product of all of its arguments
• sub that returns the difference between its arguments

D.3.4 Other commands
In addition to the commands mentioned above, there is a print command, that
prints its argument to the standard error stream. This command can be useful
when debugging.

77

E API reference
This appendix gives a source-level overview of the toolkit, by listing files, classes
and namespace-level functions. All identifiers that do not refer to a standard type
are declared within the namespace SnowflakeToolkit.

E.1 List of source files
This list gives a short description of each source file in the toolkit.

aggregate_edge.h the definition of AggregateEdge (see appendix E.2.1)
aggregate_graph.cpp implementations of member functions of AggregateGraph

(see appendix E.2.2)
aggregate_graph.h the definition of AggregateGraph (see appendix E.2.2)
aggregate_graph_loader.cpp the implementation of AggregateGraphLoader (see

appendix E.2.3)
aggregate_graph_loader.h the definition of

AggregateGraphLoader (see appendix E.2.3)
aggregate_node.cpp implementations of member functions of AggregateNode (see

appendix E.2.4)
aggregate_node.h the definition of AggregateNode (see appendix E.2.4)
bounding_box.h the definition of BoundingBox (see appendix E.2.5)
config_command.h the definition of ConfigCommand (see appendix E.2.7)
config_commandhandler.h the definition of

ConfigCommandHandler (see appendix E.2.6)
config_parser.cpp implementations of member functions of ConfigParser (see ap-

pendix E.2.8)
config_parser.h the definition of ConfigParser (see appendix E.2.8)
element_randomizer.cpp the implementation of member functions of

ElementRandomizer (see appendix E.2.9)
element_randomizer.h the definition of ElementRandomizer (see appendix E.2.9)
file_in.h the definition of FileIn (see appendix E.2.10)

78

E.1 List of source files

file_out.h the definition of FileOut (see appendix E.2.11)
ice_particle.cpp implementations of member functions of IceParticle (see ap-

pendix E.2.12)
ice_particle.h the definition of IceParticle (see appendix E.2.12)
ice_particle_vistor.h the definition of IceParticleVisitor (see appendix E.2.13)
matrix_storage.cpp implementations of member functions of MatrixStorage (see

appendix E.2.14)
matrix_storage.h the defintion of MatrixStorage (see appendix E.2.14)
new.cpp replacement of operator new, and operator delete

profile.cpp implementations of member functions of TicToc (see appendix E.2.23)
profile.h simple facilities for profiling a task, and the definition of TicToc (see

appendix E.2.23)
snowflake_generate.cpp aggregate graph assembly program
snowflake_prototype-test.cpp program for testing ice crystal prototypes
snowflake_simulate3.cpp implementation of model B
snowflake_simulate.cpp implementation of model A, but with simplified area cal-

culation
solid_builder_bbc.cpp implementations of member functions of

SolidBuilderBBC (see appendix E.2.16)
solid_builder_bbc.h definition of SolidBuilderBBC (see appendix E.2.16)
solid_builder.cpp implementations of member functions of SolidBuilder (see ap-

pendix E.2.15)
solid_builder.h definition of SolidBuilder (see appendix E.2.15)
solid.cpp implementations of member functions of Solid (see appendix E.2.17)
solid_deformation.h definition of SolidDeformation (see appendix E.2.18)
solid.h definition of Solid (see appendix E.2.17)
solid_loader.cpp implementations of member functions of SolidLoader (see ap-

pendix E.2.19)
solid_loader.h definition of SolidLoader (see appendix E.2.19)
solid_writer.cpp implementations of member functions of SolidWriter (see ap-

pendix E.2.20)
solid_writer.h definition of SolidWriter (see appendix E.2.20)
task.h definition of Task (see appendix E.2.21)

79

E API reference

thread.cpp implementations of member functions of Thread (see appendix E.2.22)
thread.h definition of Thread (see appendix E.2.22)
twins.h definition of Twins (see appendix E.2.24)
vector.cpp implementation of geometry related functions
vector.h geometry related definitions
volume_convex.cpp implementations of member functions of VolumeConvex (see

appendix E.2.25)
volume_convex.h definition of VolumeConvex (see appendix E.2.25)
voxelbuilder_adda.cpp implementations of member functions of

VoxelbuilderAdda (see appendix E.2.28)
voxelbuilder_adda.h definition of VoxelbuilderAdda (see appendix E.2.28)
voxel_builder.h definition of VoxelBuilder (see appendix E.2.27)

E.2 Class reference
This section gives an overview of all classes defined within this toolkit. Each class
is described in more detail in its own section. Some classes have mutable members.
These members are used to store values that are expensive to compute. Upon
request, their value is recomputed only if needed. In the current implementation,
there is no mutex guarding access to these members. Therefore, the functions that
retrieves such a member cannot be used from more than one thread at onece.

struct AggregateEdge a connection between two nodes in an AggregateGraph
graph.
See: appendix E.2.1

class AggregateGraph the class used for intermediate storage of ice particles.
See: appendix E.2.2

class AggregateGraphLoader:public ConfigCommandHandler the class used to load
aggregate definition files
see appendix E.2.3

class AggregateNode a node in an AggregateGraph graph. See: appendix E.2.4
struct BoundingBox a description of a bounding box.

See: appendix E.2.5
class ConfigCommandHandler interface for processing events issued by a

ConfigParser.
See: appendix E.2.6

80

E.2 Class reference

struct ConfigCommand data passed from a ConfigParser to a
ConfigCommandHandler.
See: appendix E.2.7

class ConfigParser class used for decoding configuration files described in ap-
pendix D.
See: appendix E.2.8

class ElementRandomizer class used to select a random element in a matrix.
See: appendix E.2.9

class Face a triangle found in a VolumeConvex. This class is defined inside
VolumeConvex.
See: appendix E.2.25

class FileIn a thin wrapper class for reading files by using the C I/O API.
See: appendix E.2.10

class FileOut a thin wrapper class for writing files through the C I/O API.
See: appendix E.2.11

class IceParticle a building block for ice particles.
See: appendix E.2.12

class IceParticleVisitor interface for processing nodes in an AggregateGraph
graph.
See: appendix E.2.13

class MatrixStorage a matrix without support for matrix algebra.
See: appendix E.2.14

class SolidBuilder:public IceParticleVisitor IceParticleVisitor that uses
“regular” offset vectors
see appendix E.2.15

class SolidBuilderBBC:public IceParticleVisitor IceParticleVisitor that uses
offset vectors normalised to the bounding box of the current IceParticle
see appendix E.2.16

class Solid a collection of sub-volumes used to store the geometry of an IceParticle
(see appendix E.2.12).
See: appendix E.2.17

class SolidDeformation a named 4× 4 matrix with named elements.
See: appendix E.2.18

class SolidLoader:public ConfigCommandHandler class used to load a Solid from
a ice crystal prototype file.
See: appendix E.2.19

81

E API reference

class SolidWriter class used to store a Solid in Wavefront (FileFormat.Info 2015)
file format.
See: appendix E.2.20

class Task interface for a running entity.
See: appendix E.2.21

class Thread class for initializing and synchronizing parallel tasks.
See: appendix E.2.22

class TicToc a timestamp manager.
See: appendix E.2.23

struct Twins:public std::pair<T,T> a pair whose members both have the type T.
See: appendix E.2.24

class VolumeConvex the most fundamental building block in ice particles.
See: appendix E.2.25

class VoxelBuilder interface for processing events issued when rasterising a Solid.

class VolumeConvex::Face Defines a face.
See: appendix E.2.26 See: appendix E.2.27

class VoxelbuilderAdda:public VoxelBuilder rasteriser writing data in ADDA for-
mat.
See: appendix E.2.28

E.2.1 struct AggregateEdge

An AggregateEdge is a connection between two nodes in an AggregateGraph (see
appendix E.2.2) graph. The connection describes the bond connecting the associated
IceParticles. The struct AggregateEdge has the following public members:

AggregateEdge (AggregateNode* node_parent,const Vector& offset_parent
, AggregateNode* node_child,const Vector& offset_child
, float angle_x,float angle_y, float angle_z) constructor initialising an
AggregateEdge

Vector m_offset_parent the vector of the anchor point in the parent IceParticle

Vector m_offset_child the vector of the anchor point in the child IceParticle

AggregateNode* r_node_parent a pointer to the parent node
AggregateNode* r_node_child a pointer to the child node
float m_angle_x the roll angle
float m_angle_y the pitch angle
float m_angle_z the yaw angle

82

E.2 Class reference

E.2.2 class AggregateGraph

An AggregateGraph is used for intermediate storage of ice particles. The storage
model uses a graph structure similar to the one outlined in section 2.2.1. The public
members of the class AggregateGraph are
AggregateGraph() constructor initialising an AggregateGraph. All it does, is set-

ting the root point to the origin, and setting all angles to zero.
void nodesVisit(IceParticleVisitor&& builder) traverses all nodes in depth-

first order.
AggregateNode& nodeAppend(const Vector& u

, AggregateNode& node_v, const Vector& v
, float angle_x,float angle_y,float angle_z) appends a new node to the
graph, and connects it to node_v. The function returns a reference to the
newly appended node.

AggregateNode& nodeAppend() appends a new node to the graph, without cre-
ating any connection. The function returns a reference to the newly appended
node.

const Vector& positionGet() const noexecpt returns the position of *this aggre-
gate

Other members are
std::vector< std::unique_ptr<AggregateNode> > m_nodes all nodes in the

graph
Vector m_position the position of the aggregate
float m_angle_root_x the roll angle of the aggregate
float m_angle_root_y the pitch angle of the aggregate
float m_angle_root_z the yaw angle of the aggregate

E.2.3 class AggregateGraphLoader:public
ConfigCommandHandler

This kind of ConfigCommandHandler loads an AggregateGraph (see appendix E.2.2)
from a configuration file. An AggregateGraphLoader accepts the commands listed
in appendix D.3. The class AggregateGraphLoader has the following public mem-
bers:

AggregateGraphLoader (AggregateGraph& graph
, const std::map<std::string,std::string>& varlist
, std::map<std::string,Solid>& solids) constructor initialising an
AggregateGraphLoader

83

E API reference

std::string invoke(const ConfigCommand& cmd
, const FileIn& source) function override from ConfigCommandHandler
(see appendix E.2.6). The ConfigCommandss accepted by This function are
described in appendix D.3.

std::map<std::string,std::string>::const_iterator varsBegin() const This func-
tion returns an iterator to the beginning list of variables loaded from the ag-
gregate description file

std::map<std::string,std::string>::const_iterator varsEnd() const This func-
tion returns an iterator to the end list of variables loaded from the aggregate
description file

Other members are

AggregateGraph& r_graph a reference to the AggregateGraph being loaded
const std::map<std::string,std::string>& r_varlist a reference variables, in-

dexed by name, loaded before initialising *this
std::map<std::string,Solid>& r_solids all Solids loaded, indexed by name
std::map<std::string,std::string>m_varlist all variables, indexed by name, loaded

from the aggregate description file
std::map<std::string,AggregateNode*> m_nodes all nodes, indexed by name,

loaded from the aggregate description file
std::map<std::string,Vector> m_vectors all offset vectors, indexed by name,

loaded from the aggregate description file

E.2.4 class AggregateNode

An AggregateNode holds information about a node in an AggregateGraph (see
appendix E.2.2). An AggregateNode has a “color” property that can be used to test
whether or not the node has been visited. Two AggregateNodes can be connected
by using the function

void bondCreate(AggregateNode& node_u, const Vector& u, AggregateNode&
node_v, const Vector& v, float angle_x, float angle_y, float angle_z)
The public members of AggregateNode are

AggregateNode() constructor initialising the node
AggregateEdge* bondsBegin() const returns a pointer to the first bond of the

node
AggregateEdge* bondsEnd() const returns a pointer to the bond past the last

bond of the node

84

E.2 Class reference

unsigned int colorGet() const returns the node color
void colorToggle() toggles the node color
IceParticle& iceParticleGet() returns a reference to the IceParticle (see ap-

pendix E.2.12) of the node
bool leafIs() const returns true if and only if this node is a leaf

Other members are

IceParticle m_ice_particle the IceParticle (see appendix E.2.12) of the node
std::vector<AggregateEdge> m_bonds All bonds starting at the node
static constexpr unsigned int COLOR_BIT=1 bit mask for node color
unsigned int m_flags node flags

E.2.5 struct BoundingBox

A BoundingBox describes a bounding box. The public members of BouundingBox
are

Vector m_min Vector representing the “smallest” point
Vector m_max Vector representing the “largest” point

E.2.6 class ConfigCommandHandler

This is an interface used when processing events issued by a ConfigParser (see
appendix E.2.8). The public members of the interface are

virtual std::string invoke(const ConfigCommand& command
, const FileIn& source)=0 This method is invoked each time a command
occurs in source. The returned string is used as argument to the outer com-
mand.

E.2.7 struct ConfigCommand

A ConfigCommad is used to pass command data from a ConfigParser (see ap-
pendix E.2.8) to a ConfigCommandHandler (see appendix E.2.6). The public mem-
bers are

std::string m_name the command name
std::vector<std::string> m_arguments the command arguments

85

E API reference

E.2.8 class ConfigParser

This class is used for decoding configuration files described in appendix D. The
public members are
ConfigParser(FileIn& source) constructor associating the ConfigParser with

a FileIn (see appendix E.2.10).
void commandsRead(ConfigCommandHandler& handler) reads the content of the

associated FileIn (see appendix E.2.10)
Other members are

FileIn& r_source a reference to the FileIn (see appendix E.2.10) being read

E.2.9 class ElementRandomizer

This class is used to select a random element in a matrix. The public members are
ElementRandomizer(const MatrixStorage& M) constructor associating the

ElementRandomizer with the matrix used for the probability distribution
Twins<size_t> elementChoose(std::mt19937& randgen) draws a random ele-

ment from the associated matrix by using the std::mt19937 random source
Other members are

const MatrixStorage& r_M the probability matrix

E.2.10 class FileIn

This class is a thin wrapper class for reading files by using the C I/O API. The
public members are
explicit FileIn(const char* source) constructor initialising the object by opening

the file referred to by source
explicit FileIn(FILE* source) constructor initialising the object by setting the

internal FILE object pointer to source. This is useful for reading standard
input.

const std::string& filenameGet() const returns the associated filename, if any.
If no filename is associated with the file, the returned string is empty.

int getc() directly returns the value returned by getc
Other members are

FILE* file_in a pointer to the underlying FILE object
std::string m_filename the name of the source file
In addition to the above members, the class has a deleted copy constructor and a

deleted copy assignment operator.

86

E.2 Class reference

E.2.11 class FileOut

This class is a thin wrapper class for writing files through the C I/O API. The public
members are

explicit FileOut(const char* dest) constructor initialising the object by opening
the file referred to by dest

explicit FileOut(FILE* dest) constructor initialising the object by setting the in-
ternal FILE object pointer to source. This is useful for writing standard output
or standard error.

const std::string& filenameGet() const returns the associated filename, if any.
If no filename is associated with the file, the returned string is empty.

void getc(char ch) directly calls putc
void printf(const char* format,...) printf-style function

Other members are

FILE* file_out a pointer to the underlying FILE object
std::string m_filename the name of the destination file

In addition to the above members, the class has a deleted copy constructor and a
deleted copy assignment operator.

E.2.12 class IceParticle

An IceParticle is a building block for ice particles. The class, whose purpose is
described in section 2.2, has the following public members

IceParticle() constructor initialising the object
void solidSet(const Solid& solid) associates a Solid (see appendix E.2.17) with

the IceParticle. If the particle is dead, this resurrects the particle.
const Solid& solidGet() const This function returns the Solid (see appendix E.2.17)

of the IceParticle. The Solid returned is the transformed version of the
Solid set by solidSet.

Solid& solidGet() Non-const version of the function above
void parameterSet(const std::string& name,float value) This function sets a

deformation parameter
void solidScale(float c) This function rescales the deformed version of the associ-

ated Solid (see appendix E.2.17) by the factor c
const Vector& velocityGet() const This function returns the current velocity of

the IceParticle

87

E API reference

void velocitySet(const Vector& v) const This function sets the velocity of the
IceParticle

float densityGet() This function returns the current density of the IceParticle

void densitySet() This function sets the density of the IceParticle

void kill() This function marks the IceParticle as dead
bool dead() This function returns non-zero if and only if the IceParticle is dead

Also, the class has the following members:

const Solid* r_solid a pointer to the associated solid
mutable std::vector<SolidDeformation> m_deformations all

SolidDeformations (see appendix E.2.18) that can be applied to r_solid
mutable Solid m_solid a Solid (see appendix E.2.17) that has been deformed

using the deformations from m_deformations
mutable uint32_t m_flags_dirty bit field indicating which data members that

needs to be recomputed
static constexpr uint32_t DEFORMATIONS_DIRTY=0x1 this bit mask is used

to indicate that the associated deformations needs to be updateed
static constexpr uint32_t VOLUME_DIRTY=0x2 this bit maks is used to in-

dicate that m_solid needs to be regenerated
Vector m_velocity the particle velocity
float m_density the particle density
bool m_dead the dead status of the particle
void solidGenerate() const This function updates m_solid from r_solid and the

deformations given by m_deformations

E.2.13 class IceParticleVisitor

This interface is used to define entry points needed for processing nodes in an
AggregateGraph (see appendix E.2.2) graph. It has the following public members:

virtual void branchBegin(AggregateEdge& edge,AggregateGraph& graph)=0
this method is invoked each time the graph traversal algorithm begins a new
branch

virtual void branchEnd(AggregateEdge& edge,AggregateGraph& graph)=0 this
method is invoked each time the graph traversal algorithm completes a branch

virtual void iceParticleProcess(AggregateEdge& edge
,AggregateGraph& graph)=0 this method is invoked each time the graph
traversal algorithm needs to process a node

88

E.2 Class reference

E.2.14 class MatrixStorage

This class is used to store a matrix, interpreted in as if its elements are stored
row-wise. Its public members are

typedef double ElementType The type of individual elements. When ElementType
is used within this section, it refers to this type

static size_t N_validate(size_t N,size_t M) This function test whether or
not the specified matrix size is valid. If the number is valid, it returns M*N,
otherwise it throws an exception.

MatrixStorage(size_t N_rows,size_t N_cols) constructor initialising the ma-
trix

const ElementType& operator()(size_t row,size_t col) const Element access
ElementType& operator()(size_t row,size_t col) the same as above but non-

const version
void symmetricAssing(size_t row,size_t col,const ElementType& value) This

function assings two matrix elements to value, keeping the matrix symmetric
const ElementType* rowGet(size_t row) const This function returns a pointer

to the specified row
ElementType* rowGet(size_t row) const the same as above, but non-const ver-

sion
size_t sizeGet() const This function returns the number of elements in the matrix
size_t nColsGet() const This function returns the number of columns in the

matrix
size_t nRowsGet() const This function returns the number of rows in the matrix
const ElementType* rowsEnd() const This function returns a pointer to the row

following the last row
ElementType* rowsEnd() the same as above, but non-const version
Twins<size_t> locationGet(size_t index) This function converts an element

index to a row/column pair
ElementType sumGet() const This function returns the sum of all matrix elements.

If the sum needs to be recomputed, it is done single-threaded.
ElementType sumGetMt() const This function returns the sum of all matrix ele-

ments. If the sum needs to be recomputed, it is done with multiple threads.

Other members are

typedef ElementType vec4_t __attribute__ ((vector_size(4*sizeof(double)))
) vectorised double

89

E API reference

size_t m_N_cols the number of columns
std::vector<ElementType> m_data the matrix data
mutable ElementType m_sum the sum of all matrix elements
class SumTask class describing an element summation task
mutable std::vector<ElementType> m_sums_row all partial sums computed

from worker Threads (see appendix E.2.22)
mutable std::vector<SumTask> m_sums all summation tasks
mutable std::vector<m_sum_workers> m_sum_workers summation worker

Threads
mutable uint32_t m_flags_dirty bit field indicating which values needs to be

recomputed
static constexpr uint32_t SUM_DIRTY=0x1 bit mask indicating that the ma-

trix sum needs to be updated
void sumCompute() const single-threaded sum computation
void sumComputeMt() const multi-threaded sum computation

E.2.15 class SolidBuilder:public IceParticleVisitor

A SolidBuilder is a IceParticleVisitor (see appendix E.2.13) that uses “regu-
lar” offset vectors. Regular in this context means that they are expressed in standard
basis, as opposed to the basis defined by the bounding box of an IceParticle. The
public members of SolidBuilder are

SolidBuilder(Solid& mesh_out) constructor initialising the SolidBuilder

void branchBegin(AggregateEdge& edge,AggregateGraph& graph) function over-
ride from IceParticleVisitor (see appendix E.2.13). This function pushes
the current bond onto the internal stack

void branchEnd(AggregateEdge& edge,AggregateGraph& graph) function over-
ride from IceParticleVisitor (see appendix E.2.13). This function restores
the current node from the internal stack.

void iceParticleProcess(AggregateEdge& edge,AggregateGraph& graph) func-
tion override from IceParticleVisitor (see appendix E.2.13). This function
follows the algorithm outlined in section 2.3 to assemble a Solid.

Other members are

Solid& r_mesh_out a reference to the Solid (see appendix E.2.17) being assem-
bled

90

E.2 Class reference

struct Bond definition of a “bond”
Bond m_bond the current “bond”
std::stack<Bond> m_bonds all “bonds”

E.2.16 class SolidBuilderBBC:public IceParticleVisitor

This class is identical to SolidBuilder (see appendix E.2.15), but instead of stan-
dard basis, it uses “bounding box coordinates” for the offset vectors. That is
u = (1, 1, 1) refers to a corner in the current IceParticle.

E.2.17 class Solid

This class is used to store the geometry data of an IceParticle (see appendix E.2.12).
A Solid is composed of VolumeConvexs (see appendix E.2.25), and
SolidDeformations (see appendix E.2.18). The class has the following public mem-
bers:

static constexpr uint32_t MIRROR_HEADING=0x1 bit mask indicating that
the solid should be mirrored in the plane with normal parallel to the heading
direction

Solid() constructor initialising the object
VolumeConvex& subvolumeAdd(const VolumeConvex& volume) This function

adds another VolumeConvex (see appendix E.2.25) to the object, and returns
a reference to the newly appended VolumeConvex

VolumeConvex& subvolumeAdd(VolumeConvex&& volume) This function does
the same as the one above, but is implemented with move semantics

const VolumeConvex* subvolumesBegin() const This function returns a pointer
to the first sub-volume in the Solid

const VolumeConvex* subvolumesEnd() const This function returns a pointer to
the sub-volume after the last

VolumeConvex* subvolumesBegin() This function returns a pointer to the first
sub-volume in the Solid, non-const version

VolumeConvex* subvolumesEnd() This function returns a pointer to the sub-volume
after the last, non-const version

size_t subvolumesCount() const This function returns the number of sub-volumes
within the Solid

const VolumeConvex& subvolumeGet(size_t index) const This function returns
a reference to the sub-volume at position index

91

E API reference

VolumeConvex& subvolumeGet(size_t index) the same as above, but non-const
version

void merge(const Matrix& T,const Solid& volume,bool mirrored) This func-
tion merges volume into this Solid, while applying the transformation matrix
T. If this matrix has a negative determinant, the mirrored argument has to be
non-zero

void merge(const Solid& volume) the same as above, but without any transfor-
mation

const BoundingBox& boundingBoxGet() const This function returns the bound-
ing box of the Solid

const Point& midpointGet() const This function returns the centroid of the
Solid. The returned value is only correct if none of the sub-volumes over-
lap each other.

float volumeGet() const This function returns the volume of the Solid. The
returned value is only correct if none of the sub-volumes overlap each other.

float rMaxGet() const This function returns the maximal distance from the cen-
troid of the Solid to its edge

void geometrySample(VoxelBuilder& builder) const This function samples the
geometry following the algorithm described in section 2.4. Visited voxels are
passed to the VoxelBuilder (see appendix E.2.27) referred to by builder.

void transform(const Matrix& T,bool mirrored) const This function transforms
the Solid with the Matrix T. The parameter mirrored must be non-zero if
the transformation causes the face normals to be reversed.

const VolumeConvex* inside(const Point& v) const This function tests whether
or not the Point& v lies inside the Solid. If so, the function returns a pointer
to the VolumeConvex that contains the point. Otherwise, the function returns
nullptr.

const VolumeConvex* cross(const VolumeConvex::Face& face) const This func-
tion tests whether or not face crosses a face in the Solid. If so, the function
returns a pointer to the VolumeConvex that contains the crossing Face. Oth-
erwise, the function returns nullptr.

void centerCentroidAt(const Point& pos_new) This function moves the Solid
in a way such that its centroid becomes located at pos_new.

void centerBoundingBoxAt(const Point& pos_new) This function moves the
Solid in a way such that its bounding box becomes centred at pos_new.

void normalsFlip() const This function reverses the direction of all normal vectors

92

E.2 Class reference

void deformationTemplateAdd(SolidDeformation&& deformation) This func-
tion adds a SolidDeformation (see appendix E.2.18) to the Solid

const std::vector<SolidDeformation>& deformationTemplatesGet() const This
function returns a reference to all SolidDeformations (see appendix E.2.18)
of this Solid

void mirrorActivate(uint32_t mirror_flags) This function activates mirroring for
the directions specified by mirror_flags

bool mirrorFlagTest(uint32_t const This function tests whether or not any mir-
ror is active

void mirrorDeactivate(uint32_t mirror_flags) the opposite of mirrorActivate
size_t facesCount() const This function returns the number of faces of the Solid

void clear() This function makes the Solid empty

Other members are

static constexpr uint32_t BOUNDINGBOX_DIRTY=0x1 this bit mask is used
to test whether or not the bounding box of the Solid needs to be recomputed

static constexpr uint32_t MIDPOINT_DIRTY=0x2 this bit mask is used to
test whether or not the centroid of the Solid needs to be recomputed

static constexpr uint32_t FACES_COUNT_DIRTY=0x4 this bit mask is used
to test whether or not the number of faces needs to be recomputed

static constexpr uint32_t RMAX_DIRTY=0x8 this bit mask is used to test
whether or not the maximal distance from the centroid the surface needs to
be recomputed

static constexpr uint32_t VOLUME_DIRTY=0x10 this bit mask is used to
whether or not the volume of the Solid needs to be recomputed

std::vector<VolumeConvex>m_subvolumes this member contains all sub-volumes.
The sub-volumes are stored as VolumeConvexs (see appendix E.2.25).

std::vector<SolidDeformation>m_deformation_templates this member con-
tains all SolidDeformations (see appendix E.2.18)

mutable BoundingBox m_bounding_box this is the bounding box of the Solid

mutable Point m_mid this is the centroid of the Solid

mutable size_t m_n_faces this is the number of faces of the Solid

mutable float m_r_max this is the maximal distance from the centroid of the
Solid to its edge

mutable float m_volume this is the volume of the Solid

93

E API reference

uint32_t m_mirror_flags bit field mirror flags
void midpointCompute() const this is a helper routine
void boundingBoxCompute() const this is a helper routine
void facesCountCompute() const this is a helper routine
void rMaxCompute() const this is a helper routine
void volumeCompute() const this is a helper routine

E.2.18 class SolidDeformation

A SolidDeformation is a named 4 × 4 matrix with named elements. Elements
with the same name can be accessed through the member function parameterFind.
This function returns all column-wise element indices in the matrix, that have a
name identical to the name given. The corresponding elements can then be updated
through the operator[]. The class has the following public members:

SolidDeformation(const std::string& name) constructor initialising the defor-
mation. Initially, the deformation is the identity matrix, and no matrix ele-
ments have an associated name.

float operator[](size_t index) const returns the value at element at the given
index as if the matrix were stored column-wise

float& operator[](size_t index) returns a reference to the element at the given
index as if the matrix were stored column-wise

void& parameterDefine(const std::string& name,size_t index
,float value_default) This function assigns name to the element at index as
if the matrix were stored column-wise. The parameter will have the default
value given by value_default

const std::vector<size_t> parameterFind(const std::string& name) const
This function returns a pointer to a std::vector<size_t> containing all ma-
trix element indices that matches name. If no index matches, nullptr is re-
turned

const std::string& nameGet() const This function returns the name of the
SolidDeformation

const Matrix& matrixGet() const This function returns the transformation ma-
trix

const std::string* parametersBegin() const This function returns a pointer to
the name of the first parameter

const std::string* parametersEnd() const This function returns a pointer to the
name of the parameter past the last

94

E.2 Class reference

Other members are

Matrix m_matrix the 4×4 transformation matrix. Elements are stored columnwise

std::string m_name the name of the deformation

std::map< std::string, std::vector<size_t> > parameter_map a std::map
from parameter name to element index

std::vector<std::string> param_names a std::vector of all parameter names

E.2.19 class SolidLoader:public ConfigCommandHandler

A SolidLoader is a ConfigCommandHandler (see appendix E.2.6) that is used to
load a Solid (see appendix E.2.17) from a ice crystal prototype file. The commands
understood by a SolidLoader are described in appendix D.2. The public members
of SolidLoader are

SolidLoader(Solid& solid) constructor that associates the SolidLoader with the
output Solid

std::string invoke(const ConfigCommand& cmd,const FileIn& source) func-
tion override from ConfigCommandHandler. This function processes the
ConfigCommand cmd according to the rules in appendix D.2.

Other members are

Solid& r_solid a reference to the target Solid

VolumeConvex* r_vc_current a pointer to the current sub-volume

E.2.20 class SolidWriter

A SolidWriter can be used to store a Solid in Wavefront (FileFormat.Info 2015)
file format. The class has the following public members:

SolidWriter(FileOut& dest) constructor connecting the SolidWriter to the
FileOut (see appendix E.2.11) object given by dest

void write(const Solid& solid) This function writes solid to the destination file

Other members are

FileOut& r_dest a reference to the destination file

95

E API reference

E.2.21 class Task

A Task is a running entity. An object of a class implementing this interface can
be used to define the execution of a Thread (see appendix E.2.22). If the Task
maintains any internal state, it should probably not be passed to more than one
Thread. The interface has the following public members:

virtual void run() noexecpt=0 this method is invoked from inside a thread after
its execution has started.

E.2.22 class Thread

This is a thin wrapper class around the POSIX thread type. The class has the
following public members:

Thread& operator=(Thread&& obj) noexcept this is the move-assignment oper-
ator

Thread(Thread&& obj) noexcept this is the move constructor
Thread(Thread& task, uint32_t thread_count) this constructor initialises a new

Thread and starts its execution in Task::run (called on task). The thread is
only allowed to run on the CPU identified by thread_count.

static uint32_t threadsMax() This function returns the maximum number of si-
multaneous threads. The returned value is the same as
sysconf(_SC_NPROCESSORS_ONLN).

~Thread() this is the class destructor. It will freeze the calling thread until the
managed thread has completed its operation.

Other members are

struct Impl struct describing the internal representation
Impl* pimpl this is a pointer to the internal representation

E.2.23 class TicToc

A TicToc can be used to profile a block of code. By creating a TicToc object
within two curly braces, the time it takes execute the code between the braces
can be measured. TicToc object shares a common file handle connected to the file
profile_data.txt within the working director, so only one TicToc object can be used
simultaneously. To profile code running in parallel, bind the TicToc object to the
same code block as all parallel threads. The class has the following public members:

TicToc(const char* file,int line) constructor that saves the pointer file and line.
Also, it stores a timestamp given by the system.

96

E.2 Class reference

~TicToc() the destructor prints the time difference between destruction and con-
struction to the profile file.

Other members are

static FileOut s_stats the log file for all timestamps
const char* r_file the source file of the codeblock being profiled by the TicToc

size_t* m_line the line where the TicToc was constructed
double m_start the time when the control entered the code block being profiled

E.2.24 struct Twins:public std::pair<T,T>
This class is identical to std::pair (see cppreference.com (2015)) with the two types
identical, hence the name Twins.

E.2.25 class VolumeConvex

The class VolumeConvex is the fundamental representation of ice particle geometry,
and as the name suggest, the geometry described by a VolumeConvex needs to be
convex. A VolumeConvex consists of a polygon mesh, represented by vertices and
faces. A face can be marked and unmarked as visible. Visible faces are referred to
from an internal array by indices that refers to the zero-based face number within
the VolumeConvex. A VolumeConvex also keeps an associative map between vertex
group names, and vertex indices. Like in the case of the visible faces, vertex indices
refers to the vertex number within the VolumeConvex.
The class VolumeConvex has the following public members:

typedef uint16_t VertexIndex A type describing a vertex index. Since this type
only reserves 16 bits, a VolumeConvex can only contain 65536 vertices, but
that should not be a limitation, since a Solid (see appendix E.2.17) can hold
VolumeConvexs only limited by the amount of available memory

typedef uint16_t FaceIndex A type describing a face index. Since this type
only reserves 16 bits, a VolumeConvex can only contain 65536 faces, but that
should not be a limitation, since a Solid (see appendix E.2.17) can hold
VolumeConvexs only limited by the amount of available memory

static constexpr uint16_t VERTEX_COUNT=3 The number of vertices in a
face

Point Vertex The type of a vertex
class Face Defines a face. VolumeConvex::Face (see appendix E.2.26)
VolumeConvex() Default constructor initialising an empty VolumeConvex

97

E API reference

VolumeConvex(const VolumeConvex& vc) Class copy constructor
size_t vertexAdd(const Matrix& T, const Point& p) Adds a transformed ver-

tex to the VolumeConvex and returns the new number of vertices.
size_t vertexAdd(const Point& p) This function adds a vertex to the VolumeConvex

and returns the new number of vertices.
const Vertex* verticesBegin() const This function returns a pointer to the first

vertex within the VolumeConvex

const Vertex* verticesEnd() const This function returns a pointer to the vertex
past the last within the VolumeConvex

const Vertex* verticesBegin() This function returns a pointer to the first vertex
within the VolumeConvex

const Vertex* verticesEnd() This function returns a pointer to the vertex past
the last within the VolumeConvex

size_t verticesCount() const This function returns the number of vertices within
the VolumeConvex

const Vertex& vertexGet(size_t index) const This function returns a reference
to the vertex at position index

void faceAdd(const Face& face) This function adds a new face to the VolumeConvex

const Face* facesBegin() const This function returns a pointer to the first face
within the VolumeConvex

const Face* facesEnd() const This function returns a pointer to a face past the
last within the VolumeConvex

Face* facesBegin() This function returns a pointer to the first face within the
VolumeConvex

Face* facesEnd() This function returns a pointer to the face past the last within
the VolumeConvex

const Face& faceGet(size_t index) const This function returns a reference to
the VolumeConvex::Face (see appendix E.2.26) at position index

void vertexGroupSet(std::string& name, VertexIndex index) This function
adds the vertex with index index to the vertex group name

const BoundingBox& boundingBoxGet() const This function returns the axis
aligned bounding box of the VolumeConvex

const Point&midpointGet() This function returns the centroid of the VolumeConvex.
For the formula used, see section 2.5.4

float volumeGet() const This function returns the volume of the VolumeConvex.
For the formula used, see section 2.5.4

98

E.2 Class reference

float areaVisibleGet() const This function returns the total visible area of the
VolumeConvex

void transform(const Matrix& T) This function applies the transformation matrix
T to the entire VolumeConvex. If T has a negative determinant, the function
normalsFlip needs to be called afterwards.

void transformGroup(std::string& name, const Matrix& T) This function ap-
plies the transformation matrix T to the vertex group name VolumeConvex

bool inside(const Point& point) const This function test whether or not point is
inside the VolumeConvex. The algorithm used to perform the test is explained
in section 2.5.3.

const Face* cross(const Face& face) const This function tests whether or not
the VolumeConvex::Face (see appendix E.2.26) referred to by face crosses any
face within this VolumeConvex. If there is such a face, a pointer to the crossing
Face is returned. Otherwise, the function returns nullptr. The algorithm used
to implement this function is described in section 2.5.5.

void geometrySample(VoxelBuilder& builder) const This function samples the
geometry of the VolumeConvex following the algorithm described in section 2.4.
Visited voxels are passed to the VoxelBuilder (see appendix E.2.27) referred
to by builder.

void normalsFlip() This function flips the direction of all face normals
void facesNormalCompute() const This function updates the face normals
void facesMidpointCompute() const This function updates the midpoint of all

faces
void boundingBoxCompute() const This function updates the bounding box
void midpointCompute() const This function updates the centroid
void volumeCompute() const This function updates the volume
void areaVisibleCompute() const This function updates the visible surface area
FaceIndex facesOutCount() const This function returns the number of visible

faces in the VolumeConvex

const FaceIndex* facesOutBegin() const This function returns a pointer to the
first face index in the array of visible faces.

const FaceIndex* facesOutEnd() const This function returns a pointer to the
face index past the last in the array of visible faces.

void faceOutAdd(FaceIndex i) This function adds face index i to the array of
visible faces

99

E API reference

const Face& faceOutGet(size_t i) const This function returns a reference to the
face that corresponds to the visible face i

bool normalsDirty() const This function returns true whenever any of the face
normals needs to be updated

It also has the following private members:

std::vector<Vertex> m_vertices contains all vertices of the VolumeConvex

std::vector<Face> m_vertices contains all faces of the VolumeConvex

std::vector<FaceIndex> m_faces_out contains the indices of all visible faces
of the VolumeConvex

std::map<std::string, std::vector<VertexIndex> > m_faces_out associates
a vertex group with vertices

mutable BoundingBox m_bounding_box is the current BoundingBox (see ap-
pendix E.2.5) of the VolumeConvex

mutable Point m_mid is the current centroid of the VolumeConvex

mutable float m_volume is the current volume of the VolumeConvex

mutable float m_area_visible is the current visible area of the VolumeConvex

mutable uint32_t m_flags_dirty is a bit field indicating what needs to be updated
static constexpr uint32_t BOUNDINGBOX_DIRTY=0x1 This bit mask indi-

cates that the bounding box needs to be recomputed
static constexpr uint32_t MIDPOINT_DIRTY=0x2 This bit mask indicates

that the centroid needs to be recomputed
static constexpr uint32_t FACES_NORMAL_DIRTY=0x4 This bit mask indi-

cates that the face normals need to be recomputed
static constexpr uint32_t FACES_MIDPOINT_DIRTY=0x8 This bit mask in-

dicates that the face midpoints need to be recomputed
static constexpr uint32_t VOLUME_DIRTY=0x10 This bit mask indicates that

the volume needs to be recomputed
static constexpr uint32_t AREA_VISIBLE_DIRTY=0x20 This bit mask indi-

cates that the visible area needs to be recomputed

E.2.26 class VolumeConvex::Face

A Face consists of three vertices in counter-clockwise order, and a reference to the
VolumeConvex (see appendix E.2.25) owning the Face. The class has the following
public members:

100

E.2 Class reference

Face(VertexIndex v0,VertexIndex v1,VertexIndex v2,const VolumeConvex&
parent) Constructor initialising the Face.

const Vertex vertexGet(int index) const This function returns a reference to
the vertex with the given index, which has to be less than VERTEX_COUNT,
which equals 3.

mutable Point m_mid is the median point of the face

mutable Vector m_normal is the normalised face normal vector n̂

mutable Vector m_normal_raw is the non-normalised face normal vector n

void directionChange() This function changes the orientation of the face. Notice
that after calling this function, the face normal vector needs to be updated.

VertexIndex vertexIndexGet(int index) const returns the index (in the associ-
ated VolumeConvex (see appendix E.2.25)) of the given vertex index,which
has to be less than VERTEX_COUNT, which equals 3.

void parentSet(const VolumeConvex& vc) This functions associates a new
VolumeConvex (see appendix E.2.25) with the face, potentially invalidating
the vertex references. Its existence is mainly for the copy constructor of
VolumeConvex.

It also has the following private members:

VertexIndex m_verts[VERTEX_COUNT] The indices of the vertices defining
the face

VolumeConvex* r_vc A pointer to the current VolumeConvex (see appendix E.2.25)

E.2.27 class VoxelBuilder

This interface defines events issued when rasterising a Solid. It public members are

virtual bool fill(const PointInt& position)=0 this method is invoked for each
voxel visited. If the no more voxel within the current sub-volume should be
processed, the implementation shall return zero.

virtual void volumeStart(const VolumeConvex& volume_new)=0 this method is
invoked every time a new sub-volume is visited

virtual PointInt quantize(const Point& position)=0 this method is invoked ev-
ery time “real” coordinates should be converted to discrete coordinates

virtual Point dequantize(const PointInt& position)=0 the opposite of quantize

101

E API reference

E.2.28 class VoxelBuilderAdda:public VoxelBuilder

This kind of VoxelBuilder (see appendix E.2.27) writes voxel data formatted as
an a-dda1 geometry file. The class has the following public members:

VoxelBuilderAdda(FileOut& dest,int n_x,int n_y,int n_z
,const BoundingBox& bounding_box) Constructor initialising the
VoxelBuilderAdda with a reference to the output file, the number of raster
points, and the BoundingBox (see appendix E.2.5) of the volume to fill. If any
of n_x, n_x, and n_x is less than or equal to zero, its value is computed to
preserve the aspect ratio of the boudning box. The number of raster points
should be chosen with care too few raster points will result in an incomplete
representation of the sampled geometry, but to many raster points will result
in a larger computation time.

virtual bool fill(const PointInt& position)=0 function override from
VoxelBuilder (see appendix E.2.27)

virtual void volumeStart(const VolumeConvex& volume_new)=0 function over-
ride from VoxelBuilder (see appendix E.2.27). This function resets
m_data_stop and sets r_volume_current so it points to volume_new.

virtual PointInt quantize(const Point& position)=0 function override from
VoxelBuilder (see appendix E.2.27). This function is implemented as eq. (2.1).

virtual Point dequantize(const PointInt& position)=0 function override from
VoxelBuilder (see appendix E.2.27). This function is implemented as eq. (2.2).

~VoxelBuilderAdda() The class destructor

Other members are

FileOut& r_dest a reference to the FileOut (see appendix E.2.11) being written
uint8_t* m_data_filled a pointer to an array holding information about all voxels

that has been filled
uint8_t* m_data_stop a pointer to an array holding information which voxels

that has been visited within the current sub-volume
BoundingBox m_bounding_box the bounding box to fill
const VolumeConvex* r_volume_current a pointer to the current sub-volume.
int m_n_x the number of raster points in the x direction
int m_n_y the number of raster points in the y direction
int m_n_z the number of raster points in the z direction

1See http://code.google.com/p/a-dda. At the time of writing, the project is being moved to
https://github.com/adda-team/adda

102

http://code.google.com/p/a-dda
https://github.com/adda-team/adda

E.3 Function reference

E.3 Function reference
This is a list of all free functions within the toolkit

void bondCreate(AggregateNode& node_u,const Vector& u, AggregateNode&
node_v,const Vector& v,float angle_x,float angle_y,float& angle_z)
This function creates a bond between the AggregateNodes (see appendix E.2.4)
node_u and node_v with the corresponding offset vectors. For an illustration
of the parameters, see fig. 2.3.

inline std::pair<float,uint32_t> extentMax(const Vector& v) This function
looks for the largest component in a Vector and returns its value together
with its zero-based index

std::pair<Matrix, bool> vectorsAlign(const Vector& dir
, const Vector& dir_target) This function computes the matrix needed for
transforming the unit vector dir so it points in the direction of the unit vec-
tor dir_target. In the case the determinant of the Matrix returned std::pair
is negative, its second member is non-zero. The formula used to generate the
transformation matrix is found in section 2.5.2.

103

F Result tables

Table F.1: Computed values of the fractal dimension β of particles generated by
model B for different event rates. Parameters not listed in the table
are those found in table 4.2. The values were computed following the
procedure in section 4.5.1.

Rg Rm Rd βcloud Pr(βcloud) βdropped Pr(βdropped)
1.5× 107 5× 102 1× 104 2.03 13.9 1.98 12.7
1.5× 107 5× 102 2× 104 2.05 15.7 2 10.1
1.5× 107 5× 102 5× 104 1.81 38 1.73 11
1.5× 107 1× 103 1× 104 1.94 19.9 1.93 66.4
1.5× 107 1× 103 2× 104 2.02 6.37 1.97 25.3
1.5× 107 1× 103 5× 104 1.75 11.3 1.68 8.36
1.5× 107 2× 103 1× 104 2.15 14.8 2 10.3
1.5× 107 2× 103 2× 104 1.78 18 1.82 42
1.5× 107 2× 103 5× 104 1.46 52.8 1.54 42
2.2× 107 5× 102 1× 104 2.01 18.3 1.96 42.7
2.2× 107 5× 102 2× 104 1.93 13.8 1.95 7.8
2.2× 107 5× 102 5× 104 1.81 22.1 1.89 41.6
2.2× 107 1× 103 1× 104 2.04 6.73 2.02 24.8
2.2× 107 1× 103 2× 104 2.15 7.59 2.02 4.54
2.2× 107 1× 103 5× 104 1.77 30.1 1.81 11.5
2.2× 107 2× 103 1× 104 2.08 18.5 2.03 30.4
2.2× 107 2× 103 2× 104 1.95 14.6 1.96 5.45
2.2× 107 2× 103 5× 104 1.72 13.3 1.69 23.8
3.3× 107 5× 102 1× 104 1.9 16 2.04 47.8
3.3× 107 5× 102 2× 104 2.03 14.1 1.95 10.2
3.3× 107 5× 102 5× 104 1.93 20.2 1.86 10.7
3.3× 107 1× 103 1× 104 1.88 9.93 1.95 12.5
3.3× 107 1× 103 2× 104 1.97 19.3 1.97 9.72
3.3× 107 1× 103 5× 104 1.84 10.4 1.91 15.8
3.3× 107 2× 103 1× 104 1.92 4.25 1.97 122
3.3× 107 2× 103 2× 104 1.98 7.93 1.97 52.5
3.3× 107 2× 103 5× 104 1.91 17.8 1.81 8.57

104

Table F.2: Computed values of the normalised volume growth coefficient α of parti-
cles generated by model B for different event rates. Parameters not listed
in the table are those found in table 4.2. The values were computed fol-
lowing the procedure in section 4.5.1.

Rg Rm Rd αcloud Pr(αcloud) αdropped Pr(αdropped)
1.5× 107 5× 102 1× 104 0.964 3.08 1.03 15.3
1.5× 107 5× 102 2× 104 0.825 13.8 0.909 2.84
1.5× 107 5× 102 5× 104 1.02 37.7 1.13 14.5
1.5× 107 1× 103 1× 104 1.06 22.9 1.09 104
1.5× 107 1× 103 2× 104 0.819 3.71 0.918 11.5
1.5× 107 1× 103 5× 104 1.04 5.88 1.13 11.6
1.5× 107 2× 103 1× 104 0.687 13.8 0.878 6.96
1.5× 107 2× 103 2× 104 1.03 12.6 1.03 24.3
1.5× 107 2× 103 5× 104 1.24 65.4 1.2 35.3
2.2× 107 5× 102 1× 104 1.03 17.2 1.09 969
2.2× 107 5× 102 2× 104 1.03 4.21 1.02 2.58
2.2× 107 5× 102 5× 104 1.05 15.5 0.97 725
2.2× 107 1× 103 1× 104 0.934 4.91 0.961 16.2
2.2× 107 1× 103 2× 104 0.686 3.39 0.875 3.52
2.2× 107 1× 103 5× 104 1.05 20.6 1.04 7.09
2.2× 107 2× 103 1× 104 0.789 14.8 0.89 65
2.2× 107 2× 103 2× 104 0.914 15.1 0.91 5.27
2.2× 107 2× 103 5× 104 1.06 10.6 1.1 5.45
3.3× 107 5× 102 1× 104 1.33 11.3 0.929 772
3.3× 107 5× 102 2× 104 0.923 15.9 1.05 20.2
3.3× 107 5× 102 5× 104 0.935 5.44 1.06 12.2
3.3× 107 1× 103 1× 104 1.33 7.02 1.09 22.6
3.3× 107 1× 103 2× 104 1.02 6.49 0.973 4.27
3.3× 107 1× 103 5× 104 1.03 7.98 0.962 31.3
3.3× 107 2× 103 1× 104 1.12 3.16 0.992 26.4
3.3× 107 2× 103 2× 104 0.918 4.51 0.94 23.2
3.3× 107 2× 103 5× 104 0.9 12.3 1.05 6.98

105

F Result tables

Table F.3: Computed values of the fractal dimension β of particles generated by
model B with different crystal prototype length. Parameters not listed
in the table are those found in table 4.3. The values were computed
following the procedure in section 4.5.1.

a βcloud Pr(βcloud) βdropped Pr(βdropped)
0.17 2.11 45.2 2.03 34.6
0.22 2.01 11.1 1.95 34.8
0.28 2.08 8.2 1.99 97.8
0.33 1.99 6.64 1.93 12
0.39 2.01 3.12 2 5.62
0.44 2.01 7.03 1.95 5.54
0.5 1.99 9.86 1.9 33.7
0.55 2 57.1 1.96 7.07
0.61 1.97 16.1 1.9 32.6
0.66 2.01 12.2 1.94 22.5

Table F.4: Computed values of the normalised volume growth coefficient α of par-
ticles generated by model B with different crystal prototype length. Pa-
rameters not listed in the table are those found in table 4.3. The values
were computed following the procedure in section 4.5.1.

a αcloud Pr(αcloud) αdropped Pr(αdropped)
0.17 0.0635 4.65 0.0717 12.3
0.22 0.246 2.17 0.268 13.9
0.28 0.565 2.68 0.64 635
0.33 0.997 3 1.09 24
0.39 1.19 3.66 1.2 3.12
0.44 1.2 3.17 1.33 5.69
0.5 1.21 7.43 1.37 59.7
0.55 1.06 40.3 1.09 6.61
0.61 0.95 18.4 1.07 205
0.66 0.772 8.48 0.848 43

106

Table F.5: Computed values of the size distribution parameter γ among particles
generated by model B. Parameters not listed in the table are those found
in table 4.2. The values were computed following the procedure in sec-
tion 4.5.1.

Rg Rm Rd γcloud Pr(γcloud) γdropped Pr(γdropped)
1.5× 107 5× 102 1× 104 −0.382 328 −0.436 20.1
1.5× 107 5× 102 2× 104 −0.581 376 −0.658 24.3
1.5× 107 5× 102 5× 104 −1.22 69.9 −1.3 58.9
1.5× 107 1× 103 1× 104 −0.456 71.3 −0.552 400
1.5× 107 1× 103 2× 104 −0.685 36.8 −0.8 30.8
1.5× 107 1× 103 5× 104 −1.48 20.8 −1.56 21.3
1.5× 107 2× 103 1× 104 −0.798 42.6 −0.915 75.7
1.5× 107 2× 103 2× 104 −1.22 69.5 −1.28 33.6
1.5× 107 2× 103 5× 104 −2.04 8.15 −2.08 12.2
2.2× 107 5× 102 1× 104 −0.316 609 −0.401 15.3
2.2× 107 5× 102 2× 104 −0.491 83.3 −0.567 24.6
2.2× 107 5× 102 5× 104 −0.956 115 −1.02 61.6
2.2× 107 1× 103 1× 104 −0.352 22.8 −0.47 12.5
2.2× 107 1× 103 2× 104 −0.574 157 −0.674 57.8
2.2× 107 1× 103 5× 104 −1.11 62.1 −1.23 39.3
2.2× 107 2× 103 1× 104 −0.539 31.5 −0.673 7.67
2.2× 107 2× 103 2× 104 −0.837 182 −1.01 19.4
2.2× 107 2× 103 5× 104 −1.48 20.9 −1.72 22.7
3.3× 107 5× 102 1× 104 −0.277 45.6 −0.385 11.8
3.3× 107 5× 102 2× 104 −0.385 85.4 −0.484 34.3
3.3× 107 5× 102 5× 104 −0.718 70.3 −0.829 47.4
3.3× 107 1× 103 1× 104 −0.301 106 −0.408 10.3
3.3× 107 1× 103 2× 104 −0.459 68.4 −0.555 21.4
3.3× 107 1× 103 5× 104 −0.846 28.9 −0.958 10.4
3.3× 107 2× 103 1× 104 −0.42 34.4 −0.598 5.97
3.3× 107 2× 103 2× 104 −0.615 55.3 −0.762 7.15
3.3× 107 2× 103 5× 104 −1.11 184 −1.22 58.2

107

F Result tables

Table F.6: Computed values of the size distribution parameter γ among particles
generated by model B with crystal pototype length. Parameters not
listed in the table are those found in table 4.3. The values were computed
following the procedure in section 4.5.1.

a γcloud Pr(γcloud) γdropped Pr(γdropped)
0.17 −0.43 29.2 −0.471 23.2
0.22 −0.451 18.5 −0.53 90.8
0.28 −0.439 429 −0.51 16.5
0.33 −0.398 37.4 −0.479 11.8
0.39 −0.375 598 −0.46 14.1
0.44 −0.357 51.8 −0.467 50.2
0.5 −0.376 69.4 −0.485 43.2
0.55 −0.408 75.6 −0.497 96
0.61 −0.417 41.2 −0.521 27
0.66 −0.451 50.1 −0.524 26.9

108

Table F.7: Computed values of the mean spherical volume fill ratio of particles gen-
erated by model B. Parameters not listed in the table are those found
in table 4.2. The values were computed following the procedure in sec-
tion 4.5.1.

Rg Rm Rd vr0cloud Pr(vr0cloud) vr0dropped Pr
(
vr0dropped

)
1.5× 107 5× 102 1× 104 0.0281 30.6 0.0311 72.9
1.5× 107 5× 102 2× 104 0.038 14.7 0.0422 20.1
1.5× 107 5× 102 5× 104 0.0655 15 0.0691 20.6
1.5× 107 1× 103 1× 104 0.0293 33.3 0.0358 8.08
1.5× 107 1× 103 2× 104 0.0418 40.8 0.0502 9.78
1.5× 107 1× 103 5× 104 0.0754 41.8 0.0784 22.9
1.5× 107 2× 103 1× 104 0.0469 34.8 0.053 22.8
1.5× 107 2× 103 2× 104 0.0647 8.5 0.0673 13.6
1.5× 107 2× 103 5× 104 0.0913 20.4 0.091 20.4
2.2× 107 5× 102 1× 104 0.025 50.8 0.0285 37
2.2× 107 5× 102 2× 104 0.0317 66.4 0.0359 83.2
2.2× 107 5× 102 5× 104 0.0551 43.4 0.059 35.6
2.2× 107 1× 103 1× 104 0.0288 107 0.0337 4.84
2.2× 107 1× 103 2× 104 0.0371 23.9 0.0422 15.4
2.2× 107 1× 103 5× 104 0.06 13.8 0.0677 19.6
2.2× 107 2× 103 1× 104 0.0362 8.68 0.0461 15.4
2.2× 107 2× 103 2× 104 0.0484 18.3 0.0565 64
2.2× 107 2× 103 5× 104 0.0769 13.5 0.0841 6.6
3.3× 107 5× 102 1× 104 0.0238 19.4 0.0292 8.9
3.3× 107 5× 102 2× 104 0.0285 24.2 0.0321 17.5
3.3× 107 5× 102 5× 104 0.0436 26.5 0.0492 82.3
3.3× 107 1× 103 1× 104 0.0251 12.8 0.031 11.7
3.3× 107 1× 103 2× 104 0.0308 10.8 0.0367 6.98
3.3× 107 1× 103 5× 104 0.0498 14.3 0.0567 3.76
3.3× 107 2× 103 1× 104 0.0316 9.21 0.0382 15.7
3.3× 107 2× 103 2× 104 0.0366 7.1 0.0477 3.65
3.3× 107 2× 103 5× 104 0.0621 22.7 0.0686 11.1

109

F Result tables

Table F.8: Computed values of the mean spherical volume fill ratio of particles gen-
erated by model B. Parameters not listed in the table are those found
in table 4.3. The values were computed following the procedure in sec-
tion 4.5.1.

a vr0cloud Pr(vr0cloud) vr0dropped Pr
(
vr0dropped

)
0.17 0.002 24 4.72 0.002 66 7.53
0.22 0.008 79 66.9 0.009 64 12.7
0.28 0.0216 16.5 0.0241 6.29
0.33 0.0297 68.4 0.0318 8.53
0.39 0.0323 35.7 0.0404 33.9
0.44 0.0338 63.3 0.0399 69.3
0.5 0.0317 75 0.0376 6.62
0.55 0.0316 56.6 0.0364 10.6
0.61 0.0284 25.4 0.0321 6.71
0.66 0.0271 62 0.0293 8.23

110

	Notations used within this report
	List of Figures
	List of Tables
	Introduction
	About current research
	The purpose of this project
	Report outline

	Construction of the toolkit
	Ice particle synthesization
	Storing ice particles
	Intermediate aggregate storage

	Mesh assembly
	Deformation
	Merging geometry

	Geometry sampling
	Utility routines
	Face normal calculation
	Aligning normal vectors
	Testing whether or not a point is inside a domain
	Centroid and volume calculation
	Overlap detection

	Models describing snowflake formation
	A static ``model''
	A stochastic collision model (Model A)
	Implementation in this toolkit

	Non-spherical crystals and overlap detection
	Non-spherical particles
	Overlap detection

	Adding more processes to the model (Model B)
	Event probabilities
	Storing probabilities
	The resulting algorithm

	Evaluating models
	The relation between particle volume and radius
	The particle size distribution
	The spherical volume fill ratio
	Data collection procedure
	Collection of data from model B

	Model parameter fitting
	Dealing with time-dependent quantities
	Finding quantity distribution among particles
	Determining the fractal dimension
	Determining particle size distribution

	Results
	The relation between particle volume and radius
	The size distribution parameter
	The spherical volume fill ratio

	Discussion
	Ways to improve the toolkit
	Extensions and correctness of the models
	Alternative ways of analyse data
	Uncertainties in data

	Conclusions
	Glossary
	Bibliography
	System requirements
	Retrieving and compiling the toolkit
	Predefined crystal files
	Command files used by the toolkit
	General syntax
	Ice crystal prototype definition files
	Using Blender for creating ice crystal prototypes

	Aggregate description files
	Defining the graph
	Declaring and retrieving parameters
	Arithmetical transformation of parameters
	Other commands

	API reference
	List of source files
	Class reference
	struct AggregateEdge
	class AggregateGraph
	class AggregateGraphLoader:public ConfigCommandHandler
	class AggregateNode
	struct BoundingBox
	class ConfigCommandHandler
	struct ConfigCommand
	class ConfigParser
	class ElementRandomizer
	class FileIn
	class FileOut
	class IceParticle
	class IceParticleVisitor
	class MatrixStorage
	class SolidBuilder:public IceParticleVisitor
	class SolidBuilderBBC:public IceParticleVisitor
	class Solid
	class SolidDeformation
	class SolidLoader:public ConfigCommandHandler
	class SolidWriter
	class Task
	class Thread
	class TicToc
	struct Twins:public std::pair<T,T>
	class VolumeConvex
	class VolumeConvex::Face
	class VoxelBuilder
	class VoxelBuilderAdda:public VoxelBuilder

	Function reference

	Result tables

