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3D scenario generation using generative models
Unsupervised virtual-to-real domain adaptation
ANDREA RAMAZZINA
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Virtual scenario is a promising approach to test the software in a fast and repetitive way with
a much broader parameter space compared to using expensive and time consuming real data.
However, there is a significant risk of the model not being able to generalize well enough on
real images, since there is still a lot of gap between synthetic and real images, leading the model
to learn only the features present in the synthetic data.

In this work we focus on the task of designing and experimenting with generative models able to
transform a computer-generated image in a photo-realistic one, indistinguishable from a given
dataset of real images, while preserving the semantic information of the underlying scene. The
models used are based on the Generative Adversarial Network (GAN) framework, a particular
sub-category of Neural Networks (NN).

We show that through the addition of novel objective functions and the modification of the
model architecture it is possible to achieve state-of-the-art photo-realistic images which retain
the semantic information of the synthetic input.
Furthermore, in order to evaluate the results in a quantitative and coherent manner, we also
propose different evaluation metrics to assess the quality of the resulting generated images and
examine how different metrics give different insights on the output quality.

Keywords: Machine Learning, Computer Vision, Artificial Intelligence, Neural Network, Un-
supervised Learning, Generative Network, Image Transformation, Domain Translation
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1
Introduction

Thanks to the recent advancements in both hardware and software technologies, machine learn-
ing (ML) solutions are starting to revolutionize and disrupt the automotive sector. Namely,
autonomous driving and driver assistance capabilities are being developed and incorporated in
a growing number of vehicles.
As one of the major vehicle company in Europe, Volvo Cars has been in the recent years deeply
committed in the development of autonomous technologies, with particular regards to safety
and reliability.

1.1 Background

In the active safety department at Volvo Cars, there is a lot of driving data being generated on
regular basis via expeditions conducted by different teams in diverse environmental conditions.
This data is a key point in the way software applications are developed and verified.
Furthermore, one of the main problem involved in the development of these technology is the
ever-growing amount of data needed to develop and test ML algorithms. Gathering real-world
data is usually time consuming and expensive.

Generating virtual scenarios based on parameterized real-life data might be a solution to this
problem. By doing so, it is possible to test the software in a fast and repetitive way with a much
broader parameter space.In fact,with the progress in computer graphics simulation platforms
are increasingly improving in generating synthetic data for modelling purposes.

Nevertheless, using these synthetic images for training models poses a significant risk of the
model not being able to generalize well enough on real images, since there is still a lot of gap
between synthetic and real images, leading the model to learn only the features present in the
synthetic data. This makes it paramount to reduce this ’gap’ and generate synthetic images as
realistic as possible.

One way of closing this gap is using content modelling and state of the art rendering algorithms,
however these approaches can be extremely time consuming and computationally demanding.
Moreover, even the latest rendering algorithms fail to account for the characteristics of real
images bringing back the problem of generalization on real world data.
A relatively inexpensive and promising approach is Generative adversarial networks which
have in practice demonstrated generating high quality realistic images[2] .
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1.2 Problem description
The aim of this thesis is to study the applicability of the Generative Adversarial Network (GAN)
framework to generate realistic images, with main focus on urban scenarios starting from sam-
ples generated by simulator environment such as the Unity 3D platform. Ideally, the generated
synthetic data should be generated on demand/ quantity simulating various scenarios, espe-
cially related to Autonomous driving and safety and keeping the annotation-information of the
synthetic images.

Figure 1.1: An example of virtual image extracted from a simulated environment (top image)
and a corresponding desired outcome of the GAN (bottom image). Examples from the Virtual
KITTI Dataset [4]

The main objective of this work is to refine the quality of synthetic images in an effort to bring
them closer to real world data without changing the semantic content. This is achieved through
the design of effective generative models,namely GANs, and novel extensions (architecture,
loss functions etc.) to state of the art approaches.

Figure 1.1 shows an example of synthetic and real images couple which represent the same
underlying scene . In this case, the semantic information of the real images has been extracted
and the synthetic image is the product of a simulation environment using such information.

As a second step of this thesis, it is also of interest to propose and study different quantitative
metrics to assess the quality of the refined images. In particular, the scope is to design quan-
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titative measures to characterize both the the similarity to real data and its coherence with the
starting synthetic scene.

1.2.1 Limitations
There are issues which will not be dealt during this work.
First, as the intended scope of this project is to study the feasibility and potential of these new
approaches and technologies, achieving a fast and efficient solution-implementation is not go-
ing to be particularly taken in account. Hence, the proposed solutions will be mainly written in
higher level programming languages (and tested on high-performance platform).

Furthermore, the focus of this work is on image-to-image transformations. This implies that,
due to the chaotic nature of GANs architectures, the resulting transformation of a video se-
quence (obtained through single transformations of each frame) is likely not to be smooth and
coherent. Since taking in account this fact would arise the complexity of the problem, this has
not been taken in consideration and is left to further works.

Finally, only the single-to-single domain will be treated as generalizing to multi-domain ap-
proach would require a more complex framework. Additionally, such method would require
additional datasets and tuning of different variables, which is time consuming and source of
further issues.

1.2.2 Main contributions
The essence of this work can be summarized in three main contributions:

• Adaptation of current state-of-the-art models for image-to-image translation across mul-
tiple input modalities to suit the case in exam

• Proposal of a different objective function formulation able to yield a model capable of a
more rigorous semantics preservation

• Introduction and comparison of different metrics to assess the quality of the refined image
keeping in account the semantics preservation requirement

1.3 Thesis outline
This report is organized in five chapter. First, in the Theory chapter an holistic overview of the
problem in exam is given, together with the main approaches introduced to solve such task.
In the following chapter Methods it is described how the task has been approached and the
proposed solution is explained.
The Discussion chapter contains the outcomes and results of the implemented model and fi-
nally the Conclusions chapter sums up the overall work along with presenting thoughts and
conclusions.

3



4



2
Theory

2.1 Generative models
Broadly speaking, image-to-image translation belongs to the family of the generative models
approaches. Given two (observable) variables X and Y , the scope of a generative model is to
learn the (usually non deterministic) mapping between the two domain f : X → Y , or in other
words the model of the conditional probability P (Y |X = x) . The main application is hence
to get for any sample x ∈ X its (most-likely) counterpart in the second domain.
Moreover, if the (marginal) probability distribution P (X) is known, it is thus possible to get
the joint probability distribution P (X, Y ) = P (Y |X) · P (X) and have full control on the gen-
erative process.
A multitude of different methods and approaches have been proposed for different uses. Some
of the most well-understood and used approaches are for example Gaussian mixture model,
Hidden Markov model or Bayesian networks, but all these traditional algorithms have in good
part failed to generate complex and realistic images.
The advent of deep neural networks allowed to greatly push forward the boundaries of genera-
tive algorithms, allowing approaches with models able to capture and reproduce more complex
distributions.

2.2 Image-to-image translation
At the intersection of image processing, computer vision and generative approaches areas, the
image-to-image translation problem has recently caught a wide interest both in industry and
academia.
This area mainly deals with the task of transforming one image from a certain domain to a
different one, preserving the intrinsic information.
Many steps forward have been made in this relatively-new area and, while different classic
algorithms have been proposed for several tasks[5] [6], with the recent advancements in the
fields of Statistics and Machine Learning (in particular with the introduction of Convolutional
neural networks [7]), neural network-based approaches have become the standard solution to
approach the problem in analysis.
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2.2.1 Supervised case

In the supervised learning setting, the aim is to learn the mapping f : X → Y and it is given a
set of images samples (x, y) from the target joint distribution P (X, Y ).
A traditional approach is to consider the output-space as mostly unstructured, that is each pixel
in the output image y is not dependent from the other pixels, hence such relationship can be
neglected and the image transformation problem can be reformulated as a per-pixel regression
problem. This approach has shown to work well in different tasks, such as image colorization
problems [36] [37] or realistic image synthesis [38]. Although different architecture are used,
the main idea of these works is to use a deep convolutional neural network to learn the target
mapping in an end-to-end way through direct supervision.

2.2.2 Unsupervised case

However, the previously mentioned approaches can not be used in the case in which the given
dataset contains samples of unpaired images for the distinct domains X and Y . In other words,
only samples from the marginal distributions P (X), P (Y ) rather than from the joint distribu-
tion. It is hence not possible to directly train a network end-to-end and other methodologies
have to be adopted. For example, in [39] the style and content of the input image are extracted
using a deep convolutional neural network pre-trained for unrelated object classification tasks
and such distinct sets of information are then recombined in order to reproduce the same image
content in another style,i.e. the counterpart image in the target output domain.
Other approaches include using Markov random fields with pairwise potentials to model the
output image distribution and a Bayesian network for the conditioned likelihood [40]

2.3 Generative adversarial network

The types of generative models used in this work are mainly Generative Adversarial Networks
(GANs)[25]. Introduced in 2014 by Ian Goodfellow, this framework quickly become one of
the most used generative approach thanks to its flexibility and potential.
Currently,there are more three hundreds papers regarding GANs published[3] and they have
been used to tackle problems in several different areas like Medicine, Finance or Animation.
The GAN framework is now presented and some of the different variations employed or used
for inspiration during this work are explained. Next, some of the current state-of-the-art solu-
tion for the problem in exam are presented as well as their limitations and how to overcome
them.

Generative adversarial network is a particular class of adversarial machine learning algorithms,
formed by two artificial neural networks,called generator and discriminator network, competing
against each-other. As shown in Figure 2.1, in the original version the scope of the generator is
to learn a mapping between a given latent space and a target distribution (from which we have
some samples), while the discriminator has to effectively distinguish a sample coming from the
original distribution from one created by the generator.
In other words, the generator has to ’deceive’ the discriminator in believing that the sample it
got as input comes from the original distribution.

6



Such framework can be expressed as a min-max optimization problem:

min
G

max
D

L = min
G

max
D

Ex∼Pr [logD(x)] + Ez∼Pz [log(1−D(G(z)))] , (2.1)

where G is the generator, D the discriminator, Pr is the distribution we want the Generator to
approximate, x is a sample extracted from such distribution, Pz is our latent distribution and z
a sample from it.

Figure 2.1: Illustration of the basic functioning of the Generative Adversarial Networks. Xtrain

is the real samples dataset,G and D are the two neural networks.

As both the generator and discriminator are neural networks, such optimization problem equals
to finding the parameters (i.e. the weights) of the two networks, usually through concurrent
backpropagation of both the networks.

There are different possible architectures for both the Generator and Discriminator, and it is
difficult to assess which configuration might be better suited for the problem in exam.
For example, recurrent neural networks (RNN) have been shown useful for the generation of
times series[8] [24], while skip connections and transposed convolutions have been at the basis
of high quality image generation [41]

2.3.1 GANs for image-to-image transformation
In the image-to-image transformation problem, we can interpret Pr of eq. 2.1 as the space in
which the synthetic images lie (thus x is a sampled synthetic image), while Pz is the space of
the real images. The generator transforms a synthetic image into a real one, which is right the
goal that we want to achieve.
However, from this simple formulation different problems arise.
In fact, there is not any further requirement on the generator’s output and input , allowing the
network to produce results which do not preserve important information present in the simu-
lated image. Furthermore, the training is often unstable, not always converging, and the model
is prone to fall in sub-optimal states (called "mode collapse").
It hence of critical importance to further expand the model adding constrains or changing ob-
jective function formulation. Analogously to the previous overview, also in this sub-area there
is a distinct difference between supervised and unsupervised approaches.
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2.3.1.1 Supervised GAN approaches

A popular and effective approach to try to overcome the above-mentioned problems is to frame
the problem in a supervised learning framework, such as in the popular Pix2Pix model[33].
During training, for each input image z the corresponding target image r is known. Thus, it is
possible to get the generator to produce a result G(z) as close as possible (usually in terms of
L1 distance) to r, getting the following total loss:

L = Ex∼Pr [logD(x)] + Ez∼Pz [log(1−D(G(z)))] + λEz,r [||r −G(z)||1] , (2.2)

where λ is a weighting constant parameter used to set the importance of the new term. The
latter loss term is also indicative of the paradigm shift from a mere unstructured to a inter-
pixel-dependent output space view.

Another interesting feature of the proposed model is the architecture of the discriminator and its
loss. In fact, as exemplified in Figure 2.2, instead of having the discriminator produce a single
number indicative of the whole image a better approach is to have its output as a probability
map [34] [35], in which each element focuses only on a sub-part of the image (which can be
identified back-tracing its total field of view). For the loss calculation, the resulting map can
then be averaged to get a single number. The benefit of this approach is that the discriminator
weights each part of the image equally and it is forced not to simply focus on small details
which might only be present in a small portion of the image.

input
conv conv conv conv conv conv

Figure 2.2: Example of the architecture of a discriminator. In most of the cases, its principal
component is the convolutional layer, usually alternating it with an activation function such as
ReLu for the inner layer and a Sigmoid for the final one.

The main problem with this category of approaches is that it is fundamental to have a dataset
of paired images, which is pretty difficult to obtain in our specific case.
In fact, the only reasonably possible way to get it is to start from real images, understand the
whole image scenario, then recreate it with high fidelity in a simulation. Along with perception
and classification challenges, this task would have to be carried with high precision since the
L1 loss term is a per-pixel comparison hence even a small spatial displacement of reproduction
could bring to an high error.
This is why the focus of this thesis is on the unsupervised learning case, in which we have two
independent datasets, one of real images and one of synthetic ones, which are not linked in any
meaningful way.
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2.3.1.2 Cycle GAN for unsupervised learning

To overcome the unpaired dataset problem, several recent papers have introduced the idea of
using two separated GANs, which allows the addition of new loss components.
In [43] the generator of the first GAN (formed by the generator G and discriminator DY )
translates a synthetic image in a real one while the generator of the second GAN (formed by
the generator F and discriminator DX) does the opposite, that is translating from the real to
the synthetic domain, as illustrated in Figure 2.3. In this setting it is thus possible to impose a
cycle-consistency condition, asking G(F (y)) and F (G(x)) to be equal to respectively y and x:

L = LGANX→Y
+ LGANX→Y

+ LCycleX
+ LCycleY

= LGAN1 + LGAN2 + λ1Ex [||x− F (G(x))||1] + λ2Ey [||y −G(F (y))||1] ,
(2.3)

where LGAN1 and LGAN2 are the previously-described standard losses of the two GANs, while
the latter two terms are the cycle-consistency losses introduced in this new formulation.

Figure 2.3: Illustration of the basic functioning of the CycleGAN. G and F are the two Gen-
erators, while Dx,Dy are the two discriminators of respectively the first and second GANs.

Through the addition of this new term in the loss function the aim is to force a generator not to
lose any embedded information of the scene during domain translation, as the original image
has to be then restored to the original one by the other generator.
However, in different situations the cycle-consistency loss is not enough and the image trans-
lation process is still sub-optimal. This might happen for several reasons, such as the wrong
hyper-parameters selection or the malfunctioning of either one of the two GANs, but the most
critical ones are related to the high complexity involved in the domain translation and the ill-
posed characteristic of the problem.

2.3.1.3 Latent space assumption and weight sharing

An approach to address the ill-posed nature of this problem is to impose further assumptions
on the model.
An example is the latent space assumption introduced in the paper "Unsupervised Image-to-
Image Translation Networks" [14]. In the specific, such assumption states that a pair of samples
coming from two distinct distributions (in our case the real and virtual domains) can be mapped
in a shared latent space to the same representation.
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As illustrated in Figure 2.4, given two domainsX1 andX2 instead of obtaining a direct transfor-
mation between these two spaces (i.e. the generator network) the goal is to learn the mappings
between the domains and the shared latent space Z. In order to do so, such functions are framed
as the parts of two variational autoencoders (VAE).

Figure 2.4: Illustration of the shared latent space assumption. Instead of a direct translation
from/to the two domains (that is X1,X2), the interest is to learn the mapping to the latent space
Z shared by the two domains.

Furthermore,as first introduced in the paper "Coupled Generative Adversarial Networks"[15],
a further constrain is imposed to the model through the weight sharing between the last layers
of the two networks mapping to the latent space. These are the layers extracting the high level
features present in the scene.
Analogously, also the first layers weights of the networks mapping from the shared space to the
two domains are shared.This further constrain imposes the same encoding and decoding of the
high level representations for both the image domains.

2.3.1.4 Multiple inupt modalities

Another different approach to address the previously-mentioned problems is through the ad-
dition of additional input modalities. Thus, the task now is to translate the input in a target
domain starting from multiple ones. For example, we might want to obtain a RGB image start-
ing from the Near Infrared and Grayscale versions.
While such problem can be approached using different methods [9] [10] [11], the focus in this
work is on how such additional information can be used in a GAN framework.
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Figure 2.5: Illustration of multiple-inputs-to-image translation model. The main focus is how
to successfully make use of the different input modalities.

2.3.1.4.1 Semantic-aware grad-GANs

An advantage of using different input domains is the possibility to introduce further constrains
to the transformation that the network has to learn, in this case usually expressed as additional
loss terms. Such approach has been adopted in the paper "Semantic-aware Grad-GAN for
Virtual-to-Real Urban Scene Adaption"[23], trying to perform virtual-to-real domain adaption.
In particular, in the proposed approach it has made use of the semantic labels maps as additional
domain, which allows two distinct additions to the standard Cycle-GAN paradigms.
First, the discriminator makes use of the semantic labels maps thanks to which it is able to
better discriminate images parts based on their semantic classes. Such network is similar to the
PatchGAN[33] previously introduced, however instead of producing a single activation map
it outputs several channels. Each element of the multi-channel matrix does not directly give
the probability of the corresponding area to come from the real dataset, rather it contains such
probability conditioned to belonging to the different classes. To extract the probability maps
is hence enough to multiply (element-wise) such tensor with the ground truth semantic labels
map, as show in Figure 2.6.

Figure 2.6: Illustration example of the functioning of the semantic-aware discriminator. In-
stead of giving as output a probability matrix, the CNN outputs a tensor which is then multiplied
with the Semantic labels map to get the final probabilities matrix.
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Furthermore, a gradient-sensitive loss term is added to enforce the preservation of semantic
boundaries during the translation process. In order to get such measure, first the edges of both
the synthetic and generated image are computed. It is hence reasonably to expect such edges
in the two domains to be similar on the semantic boundaries. In practice, this requirement can
be expressed as:

Lgrad = Lgrad1 + Lgrad2 =
λ1Ex [|| (| (|Ci ∗ x| − |Ci ∗G(x)|) |)� sign(Cs ∗ sx)||1] +
λ2Ey [|| (| (|Ci ∗ y| − |Ci ∗ F (y)|) |)� sign(Cs ∗ sy)||1]

(2.4)

Where C is a gradient filter used to extract the edges through convolution. In the paper in exam
such filter is the Sobel filter, thus C = {Cx, Cy} defined as follows:

Cx =

−1 0 1
−2 0 2
−1 0 1

 , Cy =

 1 2 1
0 0 0
−1 −2 −1

 (2.5)

However, it is important to note that both this additions relies on the ability to provide ground
truth semantic labels for both the input domains. If the semantics are given only for one do-
main, it is not possible to either train the semantic-aware discriminator or to compute Lgrad2 . In
fact, the problem in exam is better represented in Figure 2.5, where the synthetic domain might
be formed by multiple modalities, but the real domain is only a set of RGB images.

2.3.1.4.2 Multi-image-to-image GAN

A different (and more) flexible approach has been used in the paper "In2I : Unsupervised Multi-
Image-to-Image Translation Using Generative Adversarial Networks" [12] which makes use of
the different input domains (regardless their type) through a multimodal generator structure
allowing for the addition of further loss terms.
In particular, the overall structure is analogous to the CycleGAN but the two domains can be
composed by different modalities. The generator of each GAN is thus not performing a one-
to-one image translation, but possibly a one-to-many or many-to-many.
In the proposed approach, an independent discriminator is set for each single modality and such
model will be further discussed in the following chapter.
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2.4 Image quality assessment
In the context of image-to-image translation, devising a quantitative metric for the quality of
the output image is not an easy task. First of all, such simplistic terminology leaves much
ambiguity for what "good" means and which aspects of the image such measure is suppose to
quantify.
In fact, different measures have been proposed to assess different attribute of an image. The
two main categories are Subjective and Objective measures.[17] The first group mainly makes
use of scores given by humans on different questions[13] [16] , whereas the second group avoid
the human feedback and devices measure based on computational methods. Although in many
cases the results of the subjective approaches are considered as more plausible, such family of
methods have different drawbacks, namely the lack of impartiality and explainabily or the fact
that it is highly time consuming and hardly automatable.
Hence, devising a more quantitative metrics is of great interest and importance.
Furthermore, as the scope of the model in exam is to translate an input image preserving the
underlying scene, it is also important to consider whether the model is able to consistently
preserve such information.

2.4.1 Subjective image quality
As previously mentioned, in many cases humans’ feedback is considered as the best judgment
of the quality of an image. The basic approach is the Single-stimulus method, in which each
participant expresses a feedback on a given processed image. In the Double-stimulus variant
the human is given with both the starting and modified images [16]. Usually, such feedback
is given as a score and these (independent) ratings are then averaged out to form the Mean
Opinion Score (MOS) measure [13].

2.4.2 Objective image quality
The Objective Image quality measures can be divided in full-reference based measures, in
which the assessment is made through a comparison of the image in analysis with the source
image which is supposed to be perfect in quality, and no-reference based measures which do
not have the original image as term of comparison.

2.4.2.1 Reference based metrics

One of the most common metrics used to compare the resulting image xwith its original version
y is the Mean Squared Error (MSE):

MSE(x, y) = 1
n

n∑
i=1

(xi − yi)2 , (2.6)

where n is the total amount of pixels in the image. Connected to the MSE metrics is the Peak
signal-to-noise ratio (PSNR), which quantify the relationship between the power of corrupting
noise and maximum power of a signal:

PSNR = 10 · log10

(
2552

MSE

)
. (2.7)
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The main problem with these metrics formulation is that its outcome highly differs from the
feedback given by an human judgment. A possible reason for this mismatch is that the human
judgment is (in part) based on the structural information of the image naturally extracted by
human eye, rather than a mere per-pixel comparison.
To address this problem, the Structural Similarity Measure (SSIM) [18] focuses at the pix-
els dependencies and tries to quantify the image quality comparing the structures of the two
images:

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2)

(2.8)

, where C1 and C2 are constants put to avoid instabilities occurring when the numerator of
denominator goes towards zero, defined as:

C1 = (K1L)2 , C2 = (K2L)2 ,

in which K1 and K2 are small constants close to zero and L is the range of the pixel values
(commonly 255).
Finally, µx and µy are the mean intensities of the source and modified image:

µx = 1
N

N∑
i=1

xi , µy = 1
N

N∑
i=1

yi

and σx and σy are the standard deviation of the two images and σxy can be expressed as the
covariance:

σx =
(

1
N − 1

N∑
i=1

(xi − µx)2
)1/2

, σy =
(

1
N − 1

N∑
i=1

(yi − µy)2
)1/2

σxy = 1
N − 1

N∑
i=1

(xi − µx)(yi − µy) .

2.4.2.2 No-reference metrics

Regardless some differences of approach, all above-mentioned measures rely on the (strong)
assumption that the source image is provided and the measure can thus be expressed as the
output of some sort of comparison. However, this family of approaches can not be used if the
reference image is not provided (or does not exists).
In such case No-Reference Image Quality Assessment (NR-IQA) metrics are used. There are
two categories of NR-IQA: general-purpose and application-specific [19]. Application-specific
NR-IQA measures assume that the image in analysis is the product of a specific distortion being
applied on a source image. Thus, the quality metrics is attributed as the level of such distortion.
For example, in the case of a blurried image different methods have been proposed to quantify
the level of such distortion. One of the most popular is the Maximum Local Variation (MLV),
which assess the sharpness of the image using the pixel intensities’ high variations. [21]

General-purpose IQA metrics do not assume any specific underlying deformation, rather re-
lying on a more holistic approach usually divided in two parts: feature extraction, in which
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different features linked to the quality of the image are extracted, and model mapping, that
computes the quality measure from the extracted features [20]. While it is possible to hand-
craft these feature through domain expertise, more recent solutions rely on a end-to-end neural
network approach to learn both the feature-extraction and mapping tasks[22].

2.4.2.3 Application-based metrics

Instead of trying to construct a metric that matches the human vision system’s feedback, an
alternative is to employ other methods of comparisons, depending on which application such
model is designed for.
For example, in a data augmentation setting an informative metrics can be the increase of the
model accuracy using the generated data [42] [35].
In specific case in exam, since the aim is to transform an image preserving the underlying infor-
mation of the scene, a good result is expected to preserve the semantics of the original image.
Hence, a quality estimation can be interpreted as the agreement of the semantics map extracted
from the refined image (namely using a segmentation algorithm) and the semantics of the syn-
thetic image used for the transformation[23].
Analogously, another possible approach is to use part of the GAN model’s as source of feed-
back on which it is possible do construct a quality metric. For example, the output of the
discriminator on a refined image can be a good indicator of how well such image can fool the
discriminator, or in other words how similar it is to the real images[26].
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3
Methods

The work of this thesis can mainly be divided in two parts. First, the design and implementation
of a suitable model for the problem in exam, consequentially the set up of different quantitative
metrics to assess the quality of the refined image obtained from the designed model.

3.1 Datasets choice

Two open-source datasets have been using to train and validade the model. For the synthetic
domain, the dataset used is a part of the SYNTHIA VIDEO SEQUENCES Datasets[27]. In
particular, the fall sub-sequences 02 and 05, featuring a New York-like city. Such choice is
motivated by the goal to have a coherent dataset representing an urban environment.
Although there are datasets with an higher quality synthesized images [4] [28], the peculiarity
of the SYNTHIA dataset is to provide the semantics and the depth map (pixel-level) for each
image sample.
While the dataset provides images of the front,rear,left and right car view, only the first two
classes are considered for consistency with the real dataset. The resulting dataset is composed
by a a total of of 2870 images.

Figure 3.1: Example set from the SYNTHIA Dataset. In order from left to right, it is shown
the RGB image, depth map and semantic labels map of a scene

Regarding the real domain, it has been opted for employing the Cityscape Dataset [30], one of
the most commonly used image dataset that provides ground truth pixel-level semantics. Fur-
thermore, the images are taken from an angulation similar to the SYNTHIA’s one, easing the
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translation process.

Figure 3.2: Sample image from the Cityscape Dataset.

At training, the resulting dataset for the real domain is composed by 1879 pictures (taken in
different German cities). The images from both the dataset are then resized to 256x256 pixels
dimension to be fed in the model. Figures 3.1 and 3.2 show examples of respectively synthetic
and real datasets samples.

3.2 Model strucutre

3.2.1 Base model
The overall model structure is analogous to the one introduced in Multi-image-to-image GAN
[12]. As an expansion of the CycleGAN framework, such model is composed by two distinct
GANs. In the first one, shown in the left part of Figure 3.3 , the generator translates a set of in-
put (RGB image, depth and semantics maps) in an image that looks as realistic as possible (i.e.
is labeled as true by the corresponding discriminator) and satisfies certain conditions, namely
the conservation of the underlying information of the scene, while the discriminator’s aim is to
differentiate between real and generated images.

Figure 3.3: Illustration of the overall structure of the basic model. On the left is shown the first
GAN (from synthetic to real), while on the right the second one (from real to synthetic)

The second GAN functioning is the opposite: its generator produces the synthetic domain’s
output from a real domain’s image while the discriminator classifies a set of input modalities
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as belonging to the given synthetic dataset or as a result of the corresponding generator.
Let R be the real dataset, S the synthetic one, G1,G2 and D1,D2 respectively the generators
and discriminators of the two GANs. In this formulation, the maximization objective function
of the first discriminator is:

LD1 = Er∼PR
[logD1(r)] + Es∼PS

[log(1−D1(G1(s)))] . (3.1)

In the original formulation there is an indipendent discriminator for each of the modality of the
synthetic domain, thus the loss is their output sum (or average):

LD2 =
3∑

i=1
D2i =

3∑
i=1

Es∼PS
[logD2i(si)] + Er∼PR

[log(1−D2i(G2(r)i))] . (3.2)

Following the eq. 2.3 presented in the CycleGAN model, the minimization objective function
for the two genereators is:

LCycleGAN = LD + Lcycle = LD1 + LD2 + Lcycle1 + Lcycle2

= LD1 + LD2 + λ1Er [||r −G1(G2(r))||1] + λ2Es [||s−G2(G1(s))||1] .
(3.3)

Furthermore, following the assumption that the real and synthetic domains have a common
latent representation, it is possible to further constrain the problem requiring such latent rep-
resentation to be preserved during a cycle as discussed in section 2.3.1.3. The two generators
transformations can be decomposed as :

G1(·) = E1(F1(·))
G2(·) = E2(F2(·)) .

(3.4)

Thus, the latent consistency loss can be written as:

Llatent = Ll1 + Ll2

= λ3Er [||F2(r)− F1(E2(F2(r)))||1] + λ4Es [||F1(s)− F2(E1(F1(s)))||1] .
(3.5)

The overall architecture of the generator network of the first GAN can be divided in two distin-
guished parts,namely E1 and F1. The structure of F1 can be seen in Figure 3.4. First, for each
input modality an extractor network formed by convolutional and residual blocks, is used to ex-
tract the meaningful features. The resulting features are then stacked and the encoder network
will give the latent-space representation.
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Figure 3.4: Illustration of the first half F1 of the Generator for the Synthetic-to-Real translation.
Its aim is to combine different input modalities to extract the latent representation of the input
scene

Finally, the decoder network E1 (formed by residual and deconvolutional blocks) translates the
latent-space representation to the real domain.
The overall architecture and functioning of the second GAN (taking as input the RGB image
from the real domain and generating the different synthetic modalities) is specular to the one
of the just described.

3.2.2 Grad-sensitive loss

As long as the cycle consistencies losses are kept low, the semantics of the generated image
might vary considerably. It might be easier for the generator to produce considerable changes
and distortions (which can then be removed by the second generator) to the image so to lower its
discriminator loss rather than correctly preserving the semantics of the original scene. In fact,
the cycle-consistency loss enforces the preservation of the starting image information (through
a cycle) but does not put a constrain on how such information is encoded in the generated im-
age. For this reason, a more explicitly loss term which (only) makes use of the generator’s
input and output is needed.

Hence, in attempt to specifically stronger enforce the preservation of the semantics, a gradient
sensitive loss similar to the one described in Section 2.3.1.4.1 is introduced.
As exemplified in Figure 3.5, the gradients similarity is enforced only at the borders between
different classes because the changes within a class should not be punished since it might be
given by a change of texture or lighting.
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Figure 3.5: Top row, from left to right: the starting synthetic image s1, its labels map s3 and
the refined image G1(s). Bottom row, from left to right: the extracted edges for the syntethic
image C ∗ s1, the class boundaries C ∗ s3 and the edges for the refined image C ∗G1(s). Note
how for example the texture of the road changes

However, differently from the reference case, the semantics label map is given only in the
synthetic domain thus the gradient-sensitive loss term is reduced to:

Lgrad = λ5 Es [|| (| (|C ∗ s1| − |C ∗G1(s)|) |)� sign(C ∗ s3)||1] (3.6)

Where s = {s1, s2, s3} is the triplet formed by respectively RGB image, depth map, semantics
label map (of the synthetic dataset) and C is the filter used to extract the edges.
It would be also possible to express such loss term for the second GAN, using the generated
semantics instead of the ground truth (as it is not given for the real domain). However, since
the resulting semantic label map is usually inaccurate (especially at the beginning), such loss
would hinder the correct training process penalizing the wrong gradients differences.

3.2.3 Semantic-aware discriminator
Another problem that might arise concerns the structure of the discriminator for the second
GAN. In fact in the current form, that is an independent network for each modality, it models
the three marginal distributions Ps1,Ps2,Ps3 rather than their joint distribution Ps = {s1, s2, s3}
impacting consequently the generator’s learning. In other words, the generator is only pushed
to generate outputs single-modality-wise realistic but it is not punished if the three modalities
do not match.
On the other hand, simply devising a discriminator that takes as input the three input modalities
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together might be sub-optimal, as such network could simply learn to focus on a single modality
(the easiest to exploit) neglecting the other two.
To solve this problem, an additional discriminator has been added. Its framework is analogous
to the Semantic-aware discriminator introduced in Section 2.3.1.4.1 with both RGB image and
semantic mask given by the generator.

Figure 3.6: Illustration of the overall structure of the modified model. On the left is shown the
first GAN(from synthetic to real), while on the right the second one (from real to synthetic

In case of ’disagreement’ between the two output modalities, for example if a building is labeled
as car, it would be relatively easy for such discriminator to correctly classify the sample as a
generator’s output, forcing the latter to produce more cross-modality coherent results.
The total loss for the second GAN discriminators introduced as Eq. 3.2 thus becomes:

LD2 = Es∼PS
[logD24(s1|s3)] + Er∼PR

[log(1−D24(G2(r)1|G2(r)3))] +
3∑

i=1
Es∼PS

[logD2i(si)] + Er∼PR
[log(1−D2i(G2(r)i))] .

(3.7)

3.2.4 Weigthed cycle-consistency
In its basic form, the Cycle-Consistency loss for the first GAN is the L1 distance between the
initial sample s and the resulting output of the two generators G2(G1(s)):

Lcycle2 = λ2Es [||s−G2(G1(s))||1] . (3.8)

This loss is the principal enforcing mechanism for the content preservation [43], however by
definition is prone to give more importance to the classes which have bigger presence in the
image. Smaller objects, such as pedestrian or poles, might not be accurately preserved during
the translations as they do not weight much in the current loss formulation.
It might hence be useful to modify the cycle-consistency loss to attribute to each of the n class
the same weight, using the ground truth labels s3:

Lcycle2 = λ2 Es

[
1
n

n∑
i=1

|| |s−G2(G1(s))| � s3(i)||1
||s3(i)||1

]
, (3.9)

where s3 is the semantic labels map in a one hot encoding (OHE) version. Thus, s3(i)x,y is 1 if
the pixel (x, y) belongs to the class i, 0 otherwise (there are not cases in which a pixel belongs
to two different classes simultaneously).
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Such loss term could be also added to the second GAN using the generated semantic map
G2(r)3 however, similarly to the gradient sensitive loss case, it has been opted not to include it
since it might encourage the generator to minimize such loss term in undesired ways, such as
having the most number of classes empty (so that multiple term of the class average are zero).

3.2.5 Self regularization
A different approach to enforce the preservation of the information is to introduce a self-
regularization term that penalizes a big per-pixel difference between the starting and modified
image[35]:

Lsreg = Es [||s−G1(s)||1] + Er [||r −G2(r)||1] . (3.10)

Such loss term poses a stronger constrain on the generation and, coupled with the cycle loss,
might encourages the identity mapping. However it might nonetheless be a beneficial term as
it discourages abrupt changes in the modified image which might then be countered during the
second GAN transformation still yielding to a low cycle loss.

Summing up, the total (minimization for G1, G2, maximization for D1, D2) objective loss of
the model is:

L = λDLD + λcycleLcycle + λlatentLlatent + λgradLgrad + λsregLsreg . (3.11)
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3.3 Training procedure and settings
The overall training procedure is analogous to the CycleGAN one. At each step, both the
discriminators and generators get update once as shown in Algorithm 1 (with learning rate re-
spectively of 1 · 10−4 and 2 · 10−4, linearly decreased after the first 100 epochs). Such loop is
repeated for a total number of 200 epochs and batch size of one, using the Adam algorithm[31]
as optimization algorithm.
The weights of the networks have been initialized using the Xavier method [32].

Algorithm 1: Model training procedure
Initialize the networks D1,D21,D22,D23,D24 and G1,G2
for epochs_number do

Update learning parameters and λi=1,..,5
for samples in synthetic dataset do

take random image from real dataset
train step D1
train step D21
train step D22
train step D23
train step D24
train step G1 and G2

end
end
The model has been implemented using Python 3.6 and the machine learning library Pytorch.
Training and inference has been run on a Debian GNU 9 operating system equipped with Nvidia
GeForce GTX 1080 Ti.
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3.4 Evaluation metrics

As already explained in the previous chapter, there are different metrics to evaluate the quality
of the output. Overall, the resulting image has to look as realistic as possible (with respect to
the real images dataset), while at the same time preserving the semantics of the synthetic input.
In this work it has been decided to employ four different approaches and compare their differ-
ent output.

3.4.1 Mean opinion score

The mean opinion score is probably one of the most robust and used metrics. In particular for
this work a survey composed by a variable number of questions has been completed by a total
of 84 participants.
In each question a pair of synthetic and refined image is shown and the user is asked to give
a score from one to five regarding how well he or she thinks that the refined image could be a
realistic version of the synthetic counterpart.
The reason why also the synthetic image is shown is the need to keep in consideration how
well the semantics are preserved, avoiding the case in which a heavily-altered image receives
an high score even if the content of the refined image is different.

3.4.2 Model-based metrics

Another possible approach relies on using part of the model itself as a source of feedback on
the quality of the image.
Specifically, the main idea is to use the output of the discriminator of the first GAN as an in-
dicator of the image quality. In fact, a not-realistically-looking refined image would not be
similar to a real one thus it is reasonable to expect the discriminator to be confident in labelling
it as fake. Given a sample from the syntehtic dataset s = s1, s2, s3 ∈ S, (respectively RGB
image, Depth map, semantics map) such measure m1 is defined as :

m1(s) = mean (D1(G1(s)))) . (3.12)

Along with the output of the discriminator, it might be also of interest to visualize the other
fundamental part of the CycleGAN, namely the cycle results. However, instead of extracting
the (per pixel) difference between the original synthetic image and the reconstructed one, what
has been computed is the difference between the refined image and the result of a consequent
cycle:

m2(s) = ||G1(s)−G1(G2(G1(s)))||1 . (3.13)

The aim is to have such measure highlight the discrepancies between the synthetic and refined
images that the mere cycle loss would not be able to show as the generators have expressly
trained to reduce it.
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3.4.3 Segmentation metrics

The preservation of the scene information embedded in the synthetic image can be well rep-
resented by its semantic labels. Thus, it is reasonable to expect the refined image to preserve
such attribute.
In order to be able to extract the semantic labels from the refined image, a semantic segmen-
tation algorithm is trained on the real-images dataset (with the corresponding ground truth
labels). Such trained algorithm is then used on the refined image and its output is compared
on the semantic labels of the original synthetic image. Let A(·) be the segmentation algorithm
trained on the real dataset R, such quality metrics can be defined as:

m3(s, A) = ||s3 − A(G1(s))||1 . (3.14)

The choice or model and training of the Segmentation Algorithm plays a crucial role in such
metrics definition, as a poorly-performing algorithm would make such metrics meaningless.
For this case it has been adopted a Densely Connected Convolutional Networks (DensNet)
tailored for the specific purpose as described in [44] and shown in Figure 3.7.

Figure 3.7: Illustration of the overall structure of the Fully Convolutional DenseNet, showing
the building blocks used. The Dense Block is formed by the concatenation of different reso-
lutions feature maps, Transition Down is composed by a 1x1 convolution followed by pooling
operation and Transition Up is an upsampling operation.

This model has been chosen since it has been shown to perform well on the segmentation task
of the CamVid dataset [29]. The training has been conducted for 300 epochs with batch size of
one.
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3.4.4 Classifier based metrics
Expanding on what introduced in the section 3.4.2, the discriminator-based metrics can be ex-
tended to the use of a different network. In fact, a different architecture and training procedure
might yield to a classifier better able to discriminate the real from the fake images, as its train-
ing is independent from the generator’s one.
With this goal, a model introduced in [45] has been trained using the real dataset and a set of
refined images.
Such trained binary classification algorithm C(·), whose structure is illustrated in Figure 3.8,
is then used (instead of the discriminator) to try to assess the image quality:

m3(s) = C(G1(s)) . (3.15)

Figure 3.8: Illustration of the overall structure of the Classifier algorithm. The model makes
use of both automatically extracted features (through the Convolutional neural network) and
handcrafted features, combining then their result

The model is trained for 40 epochs (which are enough to achieve a considerably high accuracy),
learning rate of 0.1 with batch size 1.
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4
Results

In this chapter the results of the trained models are presented.
The results are shown and compared both visually and using quantitative metrics.

4.1 Experimental results
As shown in equation 3.11, the total loss of the model is given by the weighted sum of differ-
ent terms previously explained. Hence, the choice of the corresponding weight parameters is
critical. The higher one of this parameter, the more effect its corresponding loss term has on
the total loss and consequently the generators will focus on it, rather than the other terms.
For this reason, different configuration have been tried with the aim of study how such changes
might affect the model behaviour. In total, four different configuration have been tested and the
outcome is now shown.

4.1.1 First model
As first trial, the model has been set to be closer with the original approach. The first three
parameters have been kept unchanged, that is λD = 1 and λcycle = 10, λlatent = 1, and the
cycle consistency loss is equal to the original, hence without the weighted method explained in
section 3.2.4.
The weighting parameter for the gradient-sensitive loss term has been put as λgrad = 1

6·104 and
the self-regularization term λsreg is put to zero to analyze the results without such component.

Examples for the current set are shown below in Figure 4.1:
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Synthetic image Depth map Semantic labels Refined Image

Figure 4.1: Samples of results of the trained model. From left to right, there are respectively
the RGB image, depth and semantic labels map (the three input modalities of the synthetic
domain), followed by the corresponding refined image.
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4.1.2 Second model
For the second model, it has been added the self-regularization loss, putting λsreg = 2.
The other parameters are left unchanged and some results are shown in the Figure 4.2 below:

Synthetic image Depth map Semantic labels Refined Image

Figure 4.2: Samples of results of the trained model. From left to right, there are respectively
the RGB image, depth and semantic labels map (the three input modalities of the synthetic
domain), followed by the corresponding refined image.
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4.1.3 Third model
The third model is analogous the the second one, with the weighted cycle loss instead of the
original cycle-consistency formulation. Some results are shown in the Figure 4.3 below:

Synthetic image Depth map Semantic labels Refined Image

Figure 4.3: Samples of results of the trained model. From left to right, there are respectively
the RGB image, depth and semantic labels map (the three input modalities of the synthetic
domain), followed by the corresponding refined image.
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4.1.4 Fourth model
In order to have an output closer to the original synthetic image, the parameters weights of the
Gradient-Sensitive and Self-Regularization losses are increased to respectively λsreg = 5 and
λgrad = 1

4·104 . The other parameters are kept unchanged from the previous model and some
results are shown in Figure 4.4

Synthetic image Depth map Semantic labels Refined Image

Figure 4.4: Samples of results of the trained model. From left to right, there are respectively
the RGB image, depth and semantic labels map, followed by the corresponding refined image

33



4.2 Measures results
As explained in Section 3.4 , different metrics have been proposed in order to assess the quality
of the results and such results are here shown for the different models proposed.

4.2.1 Model-based metrics

4.2.1.1 First model

Using the metrics defined in Equation 3.4.2, for the first model the resulting average m1 score
is µm1 = 0.5221 (which means that the discriminator on average is not able to distinguish
effectively between real and refined images), with a standard deviation of σm1 = 0.1369. Some
of examples of refined images with high and low scores are shown in Figure 4.5.

(a) Examples of generated images with high m1 (respectively 0.8412 and 0.8227)

(a) Examples of generated images with low m1 (respectively 0.0575 and 0.212)

Figure 4.5: Some of the output images with the highest or lowest m1
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The values of the second metricsm2, defined in Equation 3.13, have a less directly interpretable
meaning.
Such metrics results are shown in Figure 4.6 withm1. The plot might be of interest to both visu-
alize the results of this metrics and to spot any clear relationship with the previously-discussed
metrics.
The Pearson correlation coefficient (PCC), which measures the linear correlation of these two
metrics results (for the model in exam), is PCC = 0.127 , with a two-sided p-value (with null
hypothesis of independent sample pairs) of p = 9.06 · 10−7

Figure 4.6: Scatter plot of the model results with respect to m1 and m2. Some of such points
are replaced with the corresponding refined image to better visualize the results
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4.2.1.2 Second model

Analogously, for the second model the resulting average m1 score is µm1 = 0.20659, with a
standard deviation of σm1 = 0.11412. Some of examples of refined images with high and low
scores are shown in Figure 4.7.

(a) Examples of generated images with high m1 (respectively 0.5929 and 0.5629)

(a) Examples of generated images with low m1 (respectively -0.150 and -0.103)

Figure 4.7: Some of the output images with the highest or lowest m1

The Pearson correlation coefficient in this case is PCC = 0.342 with corresponding p-value
p = 6.61 · 10−42
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Figure 4.8: Scatter plot of the model results with respect to m1 and m2. Some of such points
are replaced with the corresponding refined image to better visualize the results
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4.2.1.3 Third model

For the third model, the resulting averagem1 score is µm1 = 0.31897, with a standard deviation
of σm1 = 0.09792. Some of examples of refined images with high and low scores are shown in
Figure 4.9. Contrary to the previous cases, the Pearson correlation coefficient is PCC = −0.35
with corresponding p-value p = 8.114 · 10−45 as can be seen in figure 4.10

(a) Examples of generated images with high m1 (respectively 0.5803 and 0.4664)

(a) Examples of generated images with low m1 (respectively 0.0595 and 0.0137)

Figure 4.9: Some of the output images with the highest or lowest m1

3.13
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Figure 4.10: Some of the output images with the highest or lowest m1

4.2.1.4 Fourth model

For the third model, the results differ from the previous ones as resulting average m1 score is
µm1 = 0.08962, with a standard deviation of σm1 = 0.07845. Some of examples of refined
images with high and low scores are shown in Figure 4.11. The Pearson correlation coefficient
is PCC = 0.74 with corresponding p-value p = 2.228 · 10−150, such results are shown in
Figure 4.12
3.13

Figure 4.12: Scatter plot of the model results with respect to m1 and m2. Some of such points
are replaced with the corresponding refined image to better visualize the results. Most of the
samples are grouped in the bottom left area.
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(a) Examples of generated images with high m1 (respectively 0.4759 and 0.3855)

(a) Examples of generated images with low m1 (respectively 0.0481 and 0.0231)

Figure 4.11: Some of the output images with the highest or lowest m1
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4.2.2 Segmentation metrics

Another possible approach proposed is to assess the quality of the refined image based on the
segmentation result of a segmentation algorithm trained on the real dataset (using its ground
truth semantic labels), as described in Section 3.4.3.

As a further possible term of comparison, such methodology is applied also to the synthetic
images. For such case, the average accuracy is m3 = 0.7079. , while the single per-class accu-
racy is shown below in Table 4.1 :

Segmentation Accuracy
Class Accuracy
Sky 0.7684
Road 0.7890
Building 0.8335
Car 0.2666
Pedestrian 0.1795
Vegetation 0.3640

Table 4.1: Resulting segmentation accuracy on the synthetic images for each class

Such process is repeated for the baseline model as well for the four different model previously
introduced. The results can be seen in Table 4.2

Pixel Segmentation Accuracy
Class Baseline (In2I) First Second Third Fourth
Total (m3) 0.5614 0.61817 0.5716 0.5514 0.6321
Sky 0.1899 0.5139 0.4126 0.3540 0.1105
Road 0.9715 0.9507 0.9196 0.9070 0.8370
Building 0.5132 0.5873 0.4610 0.4881 0.8478
Car 0.2569 0.3578 0.4453 0.3939 0.4260
Pedestrian 0.0947 0.1027 0.1154 0.2163 0.1957
Vegetation 0.3185 0.4387 0.5468 0.5840 0.3799

Table 4.2: Resulting segmentation accuracy for the different models

Overall, there is not an evident correlation between the previous metrics m1,m2 with the seg-
mentation accuracy, as shown for example in Figure 4.13 for the fourth model.
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Figure 4.13: Scatter plot of the model results with respect to m2 and m3. Some of such points
are replaced with the corresponding refined image to better visualize the results. Most of the
images lies on the far left of the graph.

4.2.3 Classifier based metrics
As expected, the classification algorithm is able to correctly discriminate the refined images
from the real ones in all the cases, although in some cases with higher accuracy, as shown in
Table 4.3

Average accuracy
Model Average accuracy
Synthetic 0.997
First 0.954
Second 0.956
Third 0.964
Fourth 0.972

Table 4.3: Average classification algorithm accuracy

Furthermore, the classification algorithm output in all the four model reflects the discriminator
measure m1 not bringing further information about the image quality.

4.2.4 Mean opinion score
In order to obtain the Mean Opinion Score, a total of fifty-two synthetic-refined image pairs
have been asked to be judged by a diverse pool of people.
In total, 84 people participated to the study. Such group of people varies both in age and occu-
pation. Table 4.4 shows the average MOS for the different models, while Figure 4.14 represents
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such results with respect to m2.

Models Mean Opinion Score
Model MOSaverage MOSstd

First 3.1692 0.3413
Second 2.8281 0.3857
Third 2.8119 0.2948
Fourth 3.4984 0.3887

Table 4.4: Mean opinion score averages (MOS) for the different models

Figure 4.14: Scatter plot of the refined image samples which have been judged by humans.
On a scale from 1 to 5, 1 corresponds to a bad result, while 5 to a refined image that looks real
(while being coherent with the synthetic counterpart).
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4.3 Discussion of the results

4.3.1 Models comparison

The differences between the models are only based on the loss formulation, and it is possible
to see how certain constrains bring to specific outcomes.
The first model, being the least constrained among the four settings, attributes a bigger impor-
tance to the output of the discriminator. Reasonably, as can be seen by the average m1 measure
µm1, the generator (of the first GAN) learns reasonably well to deceive the corresponding dis-
criminator.
However, once imposed the self regularization term, the generator is forced to match closer
the synthetic image and the corresponding m1 values for all the following models decrease.
In particular in the fourth model, as such constrains are strengthened, the generator output is
always correctly classified as not-real by the discriminator (µm1 = 0.08962).
Analogously, compared to the baseline In2I the results of the proposed models are more coher-
ent with the corresponding synthetic images, as can be seen in Table 4.2 and visually, although
as previously discussed this partially impacts the performance on the perceptual loss.
The weighted term addition in the third model has minor repercussions on its behaviour. Mainly,
smaller classes objects (such as poles, pedestrian and cars) are less modified while bigger ones,
like building and sky, allow for heavier changes.

Overall, it seems to consistently be an underlying trade-off between the fidelity with respect to
the original synthetic image and the ability to deceive the discriminator.
A related problem is also the well-known tendency of such GAN models to insert artifacts
and unwanted objects in the image. In fact, due to the different classes distribution of the real
dataset, the generator is pushed by the discriminator to better match the real images distribu-
tion through the addition of unwanted objects or features. In the case in exam, the most notable
byproduct of such behaviour is the addition of building in the sky (as usually in the real images
only a small portion of the image is sky) and the modification of building to vegetation (as this
is a predominant class the in the real dataset but less in the synthetic one). Figure 4.15 shows
some examples of refined images with extensive vegetation addition.

Furthermore, especially for the first three models, another problem to keep in account is the
robustness of such generative processes. In fact, the refinement process might sometimes yield
to confused images. Such behaviour, shown for example in Figure 4.16, might be attributed to
the limited generalizability capacity of generator.

The latter two behaviours are limited in the fourth model by the strong self regularization (and
gradient-sensitive) loss. However, in this case, a common problem arising is the addition of
finer patter in the sky which are not penalized much by either the self-regularization or gra-
dient sensitive losses, but hinder the segmentation process as those parts are wrongly labeled
as building. A possible explanation is that such behaviour is consistent with the attempt of the
generator to fill the sky with building-like objects but, due to the L1 loss, it can just insert lower-
level features of buildings. Figures 4.17 and 4.19 show some example of this phenomenon. In
fact, neglecting the cases in which a pixel is wrongly classified as building, the segmentation
accuracy of the fourth model would rise to m3 = 0.76731 (outperforming the synthetic images
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Synthetic image Depth map Semantic labels Refined Image

Figure 4.15: Samples of results of the trained models (respectively first and third model) in
which there is a heavy vegetation modification.

Synthetic image Depth map Semantic labels Refined Image

Figure 4.16: Samples of results of trained models (respectively third and first model) in which
there is a heavy modification of the image resulting in a chaotic output.

case).

4.3.2 Quality metrics
It is easy to note from Figures like 4.7 or 4.9 that an high m1 does not always mean a good
quality of the result. In fact, some of the highest m1 refined images are either chaotic or com-
pletely not coherent with the corresponding synthetic image.
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Synthetic image Depth map Semantic labels Refined Image

Figure 4.17: Samples of results of the fourth model in which in the image refined there are
artifacts in the sky.

Figure 4.18: Top row: from left to right, the semantic labels map, the synthetic and the refined
image. Bottom row, the semantic labels map, the segmentation comparison (w.r.t. the ground
truth) of respectively the synthetic and real images. The white color means the segmentation
result agrees with the ground truth, otherwise the pixel is colored with the mislabeled class.

Moreover, the highest mean opinion scores are achieved by the fourth model, whose m1 mea-
sures are the lowest among the four settings.

A better measure of the similarity between the synthetic image and the refined one can be ob-
tained using the segmentation accuracy, that it m3, but some points have to be discussed. First,
it is highly dependant on the input semantics. Certain semantics configurations are easier to
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extract than others, for example when just a class occupies the whole image, whereas an input
scene with many small objects will likely yield a worse segmentation accuracy. Figure 4.18 is
an example of bad-quality refined image which, due to simple semantics gets almost entirely
correctly classified. Furthermore, as already discussed in the previous chapter, the choice and

Figure 4.19: Top row: from left to right, the semantic labels map, the synthetic and the refined
image. Bottom row, the semantic labels map, the segmentation comparison (w.r.t. the ground
truth) of respectively the synthetic and real images. The white color means the segmentation
result agrees with the ground truth, otherwise the pixel is colored with the mislabeled class.Note
the sky in the refined image is almost completely wrongly classified as building, due to the finer
artifacts

training of the segmentation algorithm is critical to achieve a meaningful segmentation accu-
racy measure. In this case, the segmentation algorithm accuracy on the trained dataset was high
on large classes like building,sky and vegetation, but was not accurate on smaller instances like
poles, cars or pedestrian. Thus, it might be inaccurate to attribute the cause of the bad segmen-
tation performance on the refinement process.
It is also important to note that the size of the image is critical for the segmentation process.
In this work, it has been mainly performed image-to-image translation on small-sized images
(256x256 pixels). However, the same fourth model trained on a bigger scale (384x384) yields
to an higher accuracy in most of the classes (total accuracy: 0.6751) and usually segmentation
processes are performed on bigger images.

Broadly speaking, the segmentation accuracy measure highlights the overall difficulty of the
model to correctly attribute at each class its right essence. This is due to the lack of semantic
labels for the real images, which only allow the network to learn in an unsupervised way.
Such limit is also notable in the discriminator D24 performance, which outperforms the second
GAN generator in all four models. In other words, the second generator is not able to correctly
learn to segment a real image. It is an understandable outcome, as unsupervised segmentation
is still a difficult and mainly unsolved problem.
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While not a solid measure of the quality of the image, the reconstruction difference measurem2
seems to correctly identify instances in which big artifacts are introduced, like the one in Figure
4.18 and other instances are notable in Figure 4.13. In fact, Figure 4.14 suggests that high m2
values are correlated to low visual-quality images, hence such measure could be considered as
an upper-bound limit, however the samples are too small to draw any strong conclusion.
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5
Conclusion

In this thesis, different GAN models for synthetic-to-real transformation have been developed
and their results have been analyzed through the use of different metrics.
The results for such models vary in perceptual quality and semantics preservation, showing
how the fine tuning of different parameters might enhance different model behaviours.

Overall, the quality of the results are on pair with the state-of-the-art approach and offer the
user more control on the output semantics and characteristics. The addition of specific input
modalities are leveraged (namely semantic labels map) to obtain the desired result.

A single metrics capable of reproducing the human judgment has not been found, rather differ-
ent measure proposal have been proposed and it has been shown how such metrics can give an
insight on different characteristics of the refined image.

5.1 Future work
The unsupervised approach of such models offer great flexibility and will be continued to be
developed as it has shown promising results. Different modification and additions could be
made.
First, more work could be done with respect to the architecture choice of both the generator
and discriminators. Regularization techniques like dropout or normalization procedures could
be tested as they shown promising results in contiguous areas.

As mentioned in the previous chapter, the segmentation measure m3 strongly depends on the
image size and the segmentation algorithm. Thus, it might be of interest to train the GAN
models using bigger images, along with testing different segmentation algorithm architectures.

Finally, it is of great importance to further test the proposed model on different datasets to
study its behaviour and assess the improvements brought in the case in exam. Along with this,
a Mean Opinion Score test can be performed at a wider scale to have more informative and
precise results.
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