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Electromyography Recordings with Epimysial and Intramuscular Electrodes 

Master’s thesis in  Biomedical Engineering 

Berglind Hlidkvist Thorgeirsdottir 
Department of Electrical Engineering 
Division of Signal Processing and Biomedical Engineering 
Biomechatronics and neurorehabilitation laboratory 
Chalmers University of Technology 

 

ABSTRACT 

Electromyography (EMG) is the recording of the electrical activity produced during 

muscular contractions. EMG is most commonly acquired via electrodes placed on the 

surface of the skin above muscle of interest (sEMG), and this is the preferred method 

for control of powered upper limb prostheses. Implanted electrodes over or inside 

muscles provide higher quality signals than sEMG. However, little is known about the 

performance of these extra- and intra-muscular electrodes types against each other.  

The objective of this study was to design an experimental procedure to compare 

two types of implanted muscular electrode for EMG recordings, namely intramuscular 

(iEMG) and epimysial (eEMG). 

A framework for evaluation of iEMG and eEMG electrodes with regards to 

signal to noise ratio (SNR) was developed. The experimental procedure was tested by 

implanting each type of these electrodes in the Flexor Carpi Ulnaris (FCU) muscle of a 

volunteer. The volunteer was instructed to perform ten selective movements to generate 

EMG signals. The EMG signals were acquired, simultaneously from both electrode 

types, using three different analog front ends (AFEs), and via an open-source platform 

for myoelectric pattern recognition (BioPatRec). In addition to SNR, crosstalk between 

adjacent muscles and myoelectric pattern recognition (MPR) accuracy was compared 

between electrode types and recording systems. 

The results from this single case study indicated that eEMG outperforms iEMG 

based on the aforementioned metrics. However, further work using the methods 

developed in this study must be done to reach conclusive results. 

 
Keywords: Electromyography, intramuscular electrodes, epimysial electrodes, analog 
front end, data acquisition, signal to noise ratio, crosstalk, myoelectric pattern 
recognition.    
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1 Introduction  
The number of people suffering from limb loss is rapidly increasing. In the year 2005, 

an estimated 1.6 million people in the United States suffered from limb loss. It is 

estimated that this number will double before 2050 [1].  Primarily due to the rising 

prevalence of vascular diseases, i.e., caused or acquired from the poor vascular 

circulation of a limb. This predicted increase demands viable and affordable 

alternatives to limb replacement. The options for amputees are limited, for upper 

extremity amputee that includes hand transplantation surgery or the use of a prosthetic 

limb, being the latter significantly more common. The purpose of this thesis is to 

contribute to the advancements of prosthetic limbs.  

 
The objective in the field of prosthetics is to replace the lost limb with an artificial limb 

(prosthesis). The long-term aim is to acquire a natural control of the prosthesis, which 

offers simultaneous control as a healthy physical limb would do. By definition “natural” 

in this context is to mimic the physiological system of the lost limb [2]. That entails 

that the input signals for prosthetic control must be obtained from the nerves and 

muscles that originally meant to produce the movement. Although the muscle originally 

meant to produce that movement is amputated, myoelectric pattern recognition (MPR) 

introduces the possibility to detect distant motions at the stump level and decodes the 

intended motion of the phantom limb [3], [4].  

 
Electromyography (EMG) is the recording of the electrical activity induced by 

muscular contractions. EMG signal is most commonly acquired via sensing electrodes 

placed on the surface of the skin above muscle tissue. Electrodes can be defined as 

either surface electrodes or implantable electrodes  [2]. Surface electrodes are currently 

most commonly used for the control of prosthesis. Implantable electrodes are a type of 

electrodes that are invasive but provide more localized measurements compared to 

surface electrodes [2].  

 
The work in this thesis was to compare the electromyography signals obtained by two 

types of implantable electrodes, intramuscular electrodes (iEMG) and epimysial 

electrodes (eEMG). The comparison included an evaluation of signal to noise ratio 

(SNR), crosstalk between adjacent muscles and MPR accuracy. This comparison aimed 

to determine the most optimal way to acquire EMG signals for prosthetic control.  
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1.1 Background  

Alternative solutions to a physical hand have been implemented for over a millennium, 

from iron hands mainly used in battle to the state-of-the-art myoelectric prosthesis used 

today [5].  

 
A significant concern in the field of prosthetics has been the attachment of the 

prosthesis. Attachment with socket suspension shows limitations in the form of skin 

ulceration, sweating, pain, difficult fitting, limited range of motion, and discomfort [6]. 

These limitations consequently reduce prosthetic use and decrease the quality of life of 

amputees.  

 
Dr. Per-Ingvar Brånemark discovered osseointegration in the late 60’s. 

Osseointegration can provide stable fixation of bone tissue to a titanium implant [7], 

and nowadays, it is a conventional solution for dental implants. Osseointegration has 

also been suggested as an alternative for socket suspended prosthesis, relying on the 

direct skeletal attachment of the prosthetic limb. The first attempt to use 

osseointegration was on 15 May 1990 on a transfemoral amputee [8].  Osseointegration 

proved to be a successful alternative solution to sockets, both regarding comfort and 

range of motion.  

 
Battye et al. initiated the development of the state-of-the-art myoelectric prosthesis in 

1955 [9], she suggested using myoelectrical signal (MES) in the stump of an amputee 

to operate a prosthesis. MES controlled devices require the ability to discriminate 

against different muscle states for various movements where MPR can detect distant 

motions at the stump level and decode the motion of the phantom limb. 

 
MPR was first implemented in the 1960s by Wirta et al. In 1977, a microcontroller unit 

based MPR system was introduced [10]. MPR has since been under rapid development, 

partly due to an improved central processing unit of modern computers and partly due 

to feature extraction and classifier training. Feature extraction is commonly done in 

pattern recognition problems to reduce the dimensionality of the data set and to 

correlate the stochastic nature of MES to a movement. E.g., the widely used four-time 

domain Hudgin’s vectors, extract the mean absolute value, zero-crossing, wavelength, 

and slope changes of the EMG signals [11].    
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Classifiers are used to learn the patterns that each movement produces in the muscle, 

e.g., by randomly assigning feature vectors to training, validation, and testing sets. The 

classifiers are trained on before seen training data and validated. The classifier 

performance is evaluated by how well it classifies the unseen testing set.  

 
The MPR accuracy provides a metric for the evaluation of the performance of state-of-

the-art myoelectric prosthesis that incorporates the strategies mentioned above. MPR 

accuracy can be evaluated in different ways, with no standardized form reported [12]. 

Accuracy can be evaluated for both real-time and offline performance. Offline refers to 

previously collected data. Real-time refers to the classifier that has “learned” the 

patterns but has to decode the intended movements continuously in real-time. This 

technology is moving from the laboratories into the daily living of amputees. There are 

two commercially available MPR powered prosthesis, the Complete Control (CoAPT 

LLC, Chicago, IL) and Sense Control (IBT LLC, Baltimore, MD). 

 
To obtain myoelectrical signals from the muscles sensing electrodes are used. The focus 

of this study were implantable electrodes, and due to their invasive placement, they 

have to fulfill the strictest requirements on medical devices. Biocompatibility is one of 

the significant requirements, defined by the International Organization for 

Standardization (ISO) and can be further divided into passive and active 

biocompatibility [2]. Passive biocompatibility is associated with the tissue reaction to 

the shape, size, composition, and mechanical properties of the electrode materials. 

Active biocompatibility is associated with the position of the electrodes under dynamic 

stress, keeping tissue injuries to a minimum and ensure that the signals are both stable 

and repeatable during measurements [2], [13].  

 
Prior comparison between surface and intramuscular electrodes has been conducted by 

[14]–[17]. Perry et al. [14] evaluated the global information of the surface electrode by 

creating a mathematical model with information from intramuscular percutaneous 

implanted electrodes. Farrell and Hargrove et al. [16], [17] evaluated the performance 

accuracy of the two recording methods, which yielded little to no difference in pattern 

classification accuracy.  
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Smith et al. [15] in 2013 evaluated the MPR accuracy with simultaneous movements, 

that yielded a better result when using the signals from the intramuscular electrodes 

with three parallel linear discriminant analysis (LDA) classifiers.   

 
Limited research was found for a prior comparison of epimysial and intramuscular 

electrodes. In 1994, Memberg et al. compared epimysial and intramuscular electrodes 

in vitro and a cat [18]. Sando et al. compared both epimysial and intramuscular 

electrodes in rats where they concluded that epimysial electrodes outperform the 

intramuscular hook electrodes [19].  

 
To the best of the author’s knowledge, the only article that used human subjects with a 

comparison between the electrodes of interests was conducted by Memberg et al. in 

2014 [20]. There they assessed implanted myoelectric sensors (IM-MES) which is a 

type of intramuscular electrode with wireless communication. They concluded that the 

IM-MES is an acceptable alternative to the epimysial MES electrode for use in human 

applications.  

 
Combining these advancements in prosthetics, Dr. Ortiz-Catalan et al. [21] introduced 

the osseointegrated human-machine gateway for long-term sensory feedback and motor 

control of artificial limbs, by using the osseointegrated titanium implant in combination 

with implanted electrodes on nerves and muscles. The percutaneous titanium 

component serves both as an anchor for the prosthetic limb as well as a gateway for the 

leads of the implanted electrodes. Such technology addresses the major limitations of 

current prosthetics - the lack of reliable, long-term source for control as well as the 

discomfort of the socket’s attachment.   

 
Significant advancements have been achieved in the field of prosthetics which 

motivates the need for further research to improve the functionality and reliability of 

prosthetic limbs [22]. Therefore, a closer look needs to be taken at the input signals 

used for prosthetic control. For improved prosthetic control, it has been suggested that 

either the use of signal processing or acquiring superior raw signals - to supply more 

informative input signals to the controller [17]. The latter will be explored further in 

this study, which type of electrode provides the most informative signals for prosthetic 

use. 
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1.2 Aim of the study  

The objective of this thesis was to determine which type of muscular electrode provides 

superior EMG signals for prosthetic control. A framework for evaluation of 

intramuscular and epimysial electrodes with regards to signal to noise ratio (SNR), 

crosstalk, and MPR accuracy was developed and evaluated. The long-term aim of this 

study is to improve the quality of life of subjects with limb amputation by providing 

more precise and reliable control of their limb prostheses.    

1.3 Ethical Aspects  

Ethical approval was granted by the regional ethical committee (761-18) to perform 

this experiment in six subjects. The work presents the initial evaluation in one subject 

were both types of muscular electrodes were implanted. The volunteer provided written 

informed consent prior enrolment. 

1.4 Thesis outline  

The scope of this thesis is in five parts, listed below.  

▪ Chapter 1 - Introduction 

I. Introduction to the need and thus, the motivation for this thesis.  

II. A summary of the development in the field of prosthetics.  

III. Literature review and related research of implanted electrodes. 

▪ Chapter 2 - Theory 

I. Introduces general knowledge on the core concept of this thesis and thus 

provides a deeper understanding of the methods used. 

II. Muscles introduced in more detail and their role in EMG recordings. 

III. Electrodes and the analog front end (AFE) that interfaces the analog 

input signal from the electrodes to the computer.  

IV. Introduces the computations to evaluate the iEMG and eEMG signals 

and the software BioPatRec that acquired the signals for the comparison.   

▪ Chapter 3 - Methodology  

I. The framework for the EMG recordings, from both the surgical 

perspective and the recording perspective.  

II. The implementation of the comparison of the electrodes with the 

acquired signals. 
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▪ Chapter 4 - Results 

I. The results from the post-processed data displayed.  

II. Impedance analysis 

III. Amplitude analysis 

IV. Crosstalk analysis 

V. MPR accuracy 

▪ Chapter 5 - Discussion 

I. The discussion on the findings from the result chapter and the obstacles 

that presented themselves with suggestions on future improvements.  

II. Evaluation of the results and comparison of the electrodes. 

▪ Chapter 6 - Conclusion 

I. The conclusion made from the single case study for the evaluation of the 

iEMG and eEMG signals.   
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2 Theory 
This chapter introduces the general concepts behind EMG recordings. EMG is the 

recordings of myoelectric signals generated due to a muscle contraction where these 

recordings are widely used as a method of measuring the neuromuscular activity and 

selectivity of muscle activity in the body. This chapter provides an overview of how to 

obtain EMG signals and the information they carry. It also explains how these signals 

are acquired and stored. The chapter concludes by introducing the parameters used to 

evaluate the performance of acquired EMG signals. 

2.1 Muscles 
In the human body, there are three types of muscles: skeletal, smooth, and cardiac. The 

skeletal muscle is the only muscle type that can be voluntarily contracted [23]. Thus, it 

is of primary interest in acquiring information about voluntary muscle contractions.   

A skeletal muscle is made up of many motor units, where each motor unit consists of a 

motor neuron and the group of muscle fibers it innervates [24]. Motor unit action 

potential is the process where the nerve transmits the signal coming from the Central 

Nervous System and delivers it to the group of innervated muscle fibers. This process 

triggers the fibers contraction, which, at the same time, generates a voltage change 

across the muscle tissue [25]. The recording of these voltage changes most often display 

the combination of multiple motor unit action potentials resulting in the known EMG 

waveform (an example of raw EMG signal in Figure 1).  

 
Figure 1 Displays an overview of how EMG signals are composed of multiple motor unit action potentials. Where 
the motoneurons deliver the signals to the muscle fibers that generate the voltage change that facilitates muscle 
contraction, the surface electrode placed above the muscle tissue acquires the raw EMG signals composed of all the 
motoneurons attached to the muscle, by decomposition individual MUAPs can be obtained [26]. 
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Thus, the voluntarily contracted skeletal muscles produce the EMG signals that the 

recordings acquire. A particular focus was on the muscles located in the human forearm, 

due to the interest in upper limb amputees and the accessibility of the muscles in the 

forearm. The muscles located in the forearm can be classified as anterior/posterior and 

divided into three layers as superficial, intermediate, and deep. The muscles in the 

anterior compartment of the forearm are associated with the flexion of the wrist and the 

fingers, as well as pronation of the hand. The posterior compartment contains the 

antagonists’ muscles, so the extensors responsible for extending the wrist and the 

fingers, and supinate the hand [23].   

 
Figure 2 The anterior compartment of the forearm. A. The superficial layer of the anterior compartment highlighting 
the FCU muscle. B. The intermediate layer of the anterior compartment, highlighting the FDS muscle. C. The deep 
layer of the forearm muscle highlighting the FDP. Figure adapted from [23]. 

Of the twenty muscles in the forearm, three muscles associated with specific 

movements were chosen because of their anatomical location. These muscles are from 

every layer in the anterior compartment and lie adjacent to one another:  

▪ Flexor Carpi Ulnaris (FCU) is one of the four muscles in the superficial layer 

and functions as a flexor and adductor of the wrist, i.e., ulnar deviation.  

▪ Flexor Digitorum Superficialis (FDS) is the only muscle in the intermediate 

layer, and it acts as a flexor of the fingers. Four tendons pass through the wrist 

to each of the medial fingers.  

  

A. B. C. 

sFlexor 
Carpi 

Ulnaris 
sFlexor Digitorum 

Superficialis 
sFlexor Digitorum 

Profundus 
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The tendons attach at the joint where the metacarpals and proximal phalanges 

join, seen in Figure 3. The flexion of FDS results in the finger flexed from that 

joint [23].  

▪ Flexor Digitorum Profundus (FDP) is one of three muscles in the deep layer 

of the anterior compartment. It passes through the wrist and into the four medial 

fingers. Similar to FDS but the tendons attach at both the proximal and 

intermediate joints of the four fingers. By contracting the distal part of the 

finger, i.e., the fingertip will result in selective activation of the FDP.  

 
Figure 3 The hand where the distal, middle, and proximal location of the phalanges, which is highlighted in red. 
Figure adapted from [23]. 

2.2 Electrode Configuration  
The EMG signals are obtained by an electrode that measures the voltage changes in the 

electrophysiology of the muscles. The electrode design and the recording setup 

configuration can vary depending on the particular requirements of the intended 

recording [2]. The electrode designs are most often defined as monopolar or bipolar, 

depending on the number of sensing plates available, one or two respectively. 

Consistently with the electrode design used, the signal can be acquired with single-

ended or differential configurations (Figure 4). In the single-ended configuration 

(Figure 4A), the EMG signal sensed from a monopolar electrode located on the muscle 

tissue is acquired in reference to another electrode located in a distal electrical neutral 

tissue, namely the ground electrode. Multiple single-ended measurements (and 

monopolar electrodes) can refer to the same common ground electrode.  

Distal 

Middle 

Proximal 
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In the differential configuration (Figure 4B), the EMG signal is instead acquired from 

two electrodes, often spatially close to each other within a bipolar design. The acquired 

signals, either referred to the same ground or “non-grounded”, are then subtracted to 

obtain the differential measurement [24].  

For a bipolar electrode design acquired with a differential configuration, the inter-

electrode distance can greatly impact the amplitude of the acquired signal. In fact, the 

closer the inter-electrode distance, the smaller the output and the crosstalk from 

neighboring muscles [24], [27].  

 
Figure 4 The two different electrode configurations [25]. A. The monopolar configuration where positive input to 
the amplifier placed on the muscle tissue and the negative input placed in an electrical neutral tissue. B. The bipolar 
configuration shows how both inputs to the amplifier placed on top of the muscle tissue with a small inter-electrode 
distance. - the reference electrode placed in electrical neutral tissue. 

There are trade-offs between both configurations. The monopolar configuration yields 

a higher amplitude of the EMG since it compares the signal to a reference at zero 

voltage and requires one lead for the signal acquisition and one for the reference. The 

bipolar configuration shows the differential voltage between two electrode contacts and 

displays their potential difference. Consequently, there is less crosstalk, but smaller 

signals, and it requires two leads with additional reference lead [17], [24].  

2.3 Electrodes  
There are several types of biopotential electrodes used for acquiring EMG signals. The 

electrodes used for prosthetic applications can be divided into two categories. The first 

category includes surface electrodes, which are non-invasive and located over the skin. 

Surface electrodes have been most widely used in myoelectric prosthetic control to this 

day [2]. The second category includes implantable electrodes. These are invasive 

solutions that can provide more localized recordings than surface electrodes. The 

implanted electrodes are further classified into muscle-based electrodes and nerve-

based electrodes. The scope of this thesis is limited to the evaluation of two types of 

implanted muscle-based electrodes.  

A. B. 
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The two types of muscle-based electrodes of interest for this study are intramuscular 

and epimysial. These are differentiated by the location of implantation, either inside the 

muscle or outside the muscle on the epimysium.  

Intramuscular electrodes are placed inside the muscle using guiding fine-needle. 

EMG recordings acquired by intramuscular electrodes shall be referred to as iEMG 

recordings for the remainder of this thesis. iEMG is known to provide localized 

measurements of the activation inside of the muscle [24].  

Epimysium is the tissue envelope that surrounds skeletal muscle. Epimysial 

electrodes are sometimes called extra-muscular electrodes since the placement is 

outside the muscle. Surgery is required to attach the electrode to the epimysium. These 

electrodes are sown on the epimysium that surrounds the muscle. EMG recordings 

acquired by epimysial electrodes shall be referred to as eEMG recordings.  

2.4 Analog Front End 
Signal acquisition hardware must provide the source signals for further processing. The 

electrodes acquire the analog EMG signals from the muscle activation. Converting the 

EMG from analog to digital form requires discretization, i.e., the process of transferring 

continuous variables into its discrete counterparts. That transformed number then stored 

in a binary format for the MCU for post-processing. The sampling rate and the number 

of bits determine the quantity and speed of digitization.  

Analog Front Ends (AFEs) interface the analog input of the EMG signals to the 

digital MCU. Signal acquisition hardware for EMG signals is aimed to record low 

amplitude signals. In addition to acquiring the signals, the AFEs are often designed to 

amplify, bandpass filter, and condition the signals before sending the signals to the 

analog-to-digital converter (ADC). AFEs that are compact and low noise are rising in 

importance for the bioelectric signal acquisition of a portable system [28]. 
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2.5  BioPatRec 
The open-source modular platform BioPatRec in MATLAB (MathWorks, USA), 

acquires EMG signals for prosthetic control and has multiple functions for signal 

processing [29]. An overview of the functionality of the software seen in Figure 5.  

 
Figure 5 Displays an overview of the different modules available in BioPatRec and the Figure was obtained from 
[29]. The Signal Recording module acquires the EMG signals and displays guided movements in a dedicated GUI. 
The Signal Treatment module is used to reduce the dimensionality of the data from the Signal Recording, by the use 
of taking a central percentage of the contraction period and by dividing the signals into overlapping windows. 
Feature Extraction module performs discretized characterization of the signals and, the Pattern Recognition module 
performs the offline classification of the signals with various options of classifiers. The Control Algorithms module 
has two options for evaluating real-time performances. The Motion Test and the Target Achievement Test (TAC) test 
[30], [31]. 

2.6 Computations 

2.6.1 Impedance  
For implanted conductive electrodes, the primary requirement is to establish a low 

impedance contact with the tissue and the implanted electrode. To evaluate the 

impedance of an implanted electrode, the electrode-tissue interface is approximated to 

an electric circuit. Ohm’s law derives the voltage (V) given that direct current (i), and 

resistance (R) is known. Resistance found if the voltage and current are known as seen 

in Equation 2.1. Equation 2.2 shows the Ohm’s law rewritten for an electric circuit 

supplied with alternating current (AC). 

 𝑉 = 𝑖 ∗ 𝑅 =>  𝑅 =
𝑉
𝑖  

 

Equation 2.1 

 𝑉 = 𝑖 ∗ 𝑍 Equation 2.2 

The body can be modeled as a capacitor and a resistor, and the capacitive behavior can 

be observed when the electrodes are supplied by alternating current. AC supplied circuit 

has a combined effect of complex ohmic resistance (X) and reactance (jR). Equation 

2.3 shows that the impedance (Z) is comprised of the magnitude (real component 

vector) and the phase (imaginary component vector).  

 𝑍 = 𝑋 ∗ 𝑗𝑅 Equation 2.3 

The impedance Z is extracted by approximating the body to an electric circuit.  
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2.6.2 Root Mean Square (RMS) 
For a sample of signals,  
Equation 2.4 as the name indicates takes the root mean square (RMS) over an integral 

of signals. Used to normalize the contraction period of the maximum voluntary 

contraction (MVC), due to the stochastic nature of the EMG signals.  

 
𝑥𝑅𝑀𝑆 =  √1

𝑁 ∗ (x1
2 + x2

2 + ⋯ + xn
2) 

 

Equation 2.4 

 

2.6.3 Signal to Noise ratio (SNR)  
Mastinu et al. evaluated the SNR as the ratio of signal amplitude to noise amplitude of 

the obtained EMG in the time domain [28]. The signal (S) defined as integral over the 

RMS value of the signals’ recorded during a muscle contraction, and noise (N) is the 

integral over the RMS value of the baseline of the signal when the muscle is at rest.  

The SNR often displayed on a logarithmic decibel scale due to the broad dynamic range 

of the signals, shown in Equation 2.5.  

 
SNRdB  = 10 ∗ log10

𝑆𝑅𝑀𝑆
2

𝑁𝑅𝑀𝑆
2   

 

Equation 2.5 

2.6.4 Cross-Correlation  
To quantify the amount of crosstalk, i.e., the signals that are generated from the adjacent 

muscles and influence the targeted muscle was evaluated between neighboring muscles. 

The most common approach to quantify crosstalk is the cross-correlation function [32]. 

Traditionally, crosstalk has been measured by evaluating the peak value of cross-

correlation between a pair of electrodes. Key features are peak correlation value, value 

at a zero-phase shift, and the timing of zero-crossings.  

 

Equation 2.6 shows the two signals x(t), and y(t) and T is the length of the signals being 

cross-correlated. The signal y(t) shifts by 𝜏  over the signal x(t), computing the 

correlation at each time interval. The higher the result from the equation, the higher the 

correlation is between the two signals. A higher correlation indicates crosstalk between 

the compared signals. 
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𝑅𝑥𝑦(𝜏) =

1
𝑇 ∫ 𝑥(𝑡)𝑦(𝑡 + 𝜏)𝑑𝑡

𝑇

0
 

 

 

Equation 2.6 

There are problems related to Equation 2.6, where the value is hard to interpret. 

Problems with detecting correlation with a varying amplitude of signals and zero values 

are not taken into account since it is a multiplication with 0. Normalized cross-

correlation solves these problems, the normalized form of the cross-correlation function 

where the results lie between -1 and 1 seen in Equation 2.7. 

 
𝑅′

𝑥𝑦(𝜏) =
𝑅𝑥𝑦(W)

√𝑅𝑥𝑥(0)𝑅𝑦𝑦(0) 
  

Equation 2.7 

Rxx(0) is the autocorrelation of the signal x(t) at the time shift τ = 0. The same goes for 

Ryy(0) for the signal y(t). Autocorrelation is applicable for detecting repeatable patterns 

of signals. 

 
2.6.5 Myoelectric Pattern Recognition (MPR) 
Myoelectric pattern recognition (MPR) decodes the intended motion and can be 

developed to achieve more intuitive control, based on specific EMG patterns recorded 

from the residual limb of amputees. For evaluating the performance of the MPR 

algorithm, the classification accuracy is the most common way [12]. 

 

There are different ways to evaluate accuracy with no standardized from, the global 

accuracy is the most general and is shown in Equation 2.8 [12]. The acronyms stand 

for true positive (TP), true negative, (TN), false positive (FP) and false negative (FN). 

The definitions of these acronyms where TP is a correct activation, TN is a correct 

inactivation, FP is a false activation, and FN is a false inactivation. The global accuracy 

is a percentage of times that the correct classification manages to decipher the intended 

movement of the subject. The classification accuracy can be influenced by the window 

length, extracted EMG signal features, type of classifier, and the division into training, 

validation, and testing sets [33].  
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The class-specific accuracy (CS accuracy) considers the outcome of each movement 

class individually and is preferred in multi-class evaluations to dismiss false outcomes 

for any movement [12]. The BioPatRec approach to evaluate MPR accuracy shown in  

Equation 2.8  [34]. The CS accuracy evaluated with correct classifications divided by 

the total number of true and false classifications. 
 

𝐺𝑙𝑜𝑏𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃 + ∑ 𝑇𝑁

∑ 𝑇𝑃 + ∑ 𝑇𝑁 + ∑ 𝐹𝑃 + ∑ 𝐹𝑁 

 

𝐶𝑆 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑎𝑏𝑠𝑜𝑙𝑜𝑡𝑢𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑖𝑡𝑜𝑛𝑠  

 

 

Equation 2.8 

 

Equation 2.9 
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3 Methodology  
This chapter describes the methodology used in the study to draw a comparison between 

EMG signals recorded from epimysial and intramuscular electrodes placed in an able-

bodied volunteer. The first part of the chapter describes the methods followed to 

surgically implant the electrodes in the volunteer enrolled in the study. The second part 

of the chapter describes the methods followed to acquire, process, and compare the 

EMG signal recorded from both epimysial (eEMG) and intramuscular (iEMG) 

electrodes.  

3.1 Procedures for Surgical Implantation 
Ardiem Medical, Inc. fabricated and manufactured the electrodes used in this study. 

The electrodes were supplied sterile and in sterilized packaging. Both electrode types 

were designed for Integrum AB, schematics, shown in Figure 7.  

The percutaneous leads of the intramuscular electrode were comprised of a 

seven-strand type stainless steel 316 LVM wire with perfluoroalkoxy (PFA) tubing for 

insulation. The electrode body was in silicone with exposed bipolar contacts. A 

polypropylene anchor attached at the distal end ensured the mechanical stability of the 

electrode. 

The epimysial electrode percutaneous leads were comprised of a Drawn Filled 

Tubing (DFT) wire and PFA insulation. The electrode body was in silicone with 

exposed bipolar contacts, 90% platinum, and 10% iridium (PT90/IR10). The silicone 

body was sutured on the outer layer of the muscle to ensure mechanical stability.  

  
Figure 6 The two types of implanted muscle-based electrodes used to conduct this study. A. The intramuscular 
electrode B. The epimysial electrode. 

A. B. 
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Figure 7 The schematics of the implanted electrodes with relevant dimensions for this study. A. The intramuscular 
electrode, with IED as 6mm, the length of each contact was 4 mm and the diameter 1.3 mm. B. The epimysial 
electrode, where the diameter exposed contact area was 2.4 mm and the IED 5.2 mm. 

3.2 Implantation  
The implantation was performed by a hand surgeon at the Hand Surgery Department of 

the Sahlgrenska Hospital in June 2019. One able-bodied volunteer participated in this 

study (age 26 years) for sixteen days. The ethical approval (Dnr: 761-18) was obtained 

from the Swedish regional ethical committee in Gothenburg. Written informed consent 

was given prior to any data and media collection.  

3.2.1 Electrode Placement 
The selection of the muscle targeted in this study was critical. The requirements were: 

o Accessibility for implantation  

o Nondominant muscle 

o Positioned adjacent to large muscles 

The limitation of tissue trauma for the volunteer was considered a priority. The location 

of the electrodes was chosen to minimize the mechanical stress and strains. This was 

necessary to avoid damage to the tissue or to the electrodes. Moreover, this allowed 

more repeatable recordings from a localized site.  

Flexor Carpi Ulnaris (FCU) was found to fulfill the requirements for the EMG 

recordings while not overcomplicating the surgical procedure. The location of the FCU 

is in the superficial layer of the anterior compartment of the forearm. Its main 

functionality is the flexion and ulnar deviation of the wrist [23].  

A. 

B. 
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Figure 8 Schematics to visualize the muscle anatomy of the forearm A. Displays the circumference of the forearm 
with highlighted muscles of interest. The muscle FCU and its vicinity to both FDS and FD, adapted from  [35]   
B. Shows the anatomical location where the highlighted FCU was implanted approximately 5cm from the elbow 
adapted from [36] 

By activating the FCU and using palpation, the exact location of the muscle was 

determined. Under local anesthesia, a 2,5cm incision over the FCU was made to insert 

the electrodes, and another 1,5cm incision more distal from the elbow was made to 

thread the connector out percutaneously. The double incision was preferred to minimize 

the risk of infection to the electrode site.  

      
Figure 9 The surgical implantation of the electrodes and the percutaneous placement of the connector. A) Displays 
how the incisions were made, where the proximal incision to the body is where the electrodes were placed, and the 
distal incision is where the connector penetrated the skin. The two incisions were made to reduce the risk of infection 
to the electrode site. B) Shows how the incisions were covered and how the connector was placed.  

Crosstalk was induced by performing selective movements to activate the adjacent 

muscles. The movements facilitated the activation of the targeted muscle FCU and the 

adjacent muscles FDS and FDP. As Table 1 reveals, there are many muscles associated 

with these selective movements and the highlighted marks show the most selective 

activation of the muscles of interest. 
  

A. B. 

A. 

B. 
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Table 1 Simplified muscles-movements relation considered in this study.  

Movements FCU FDS FDP FCR FPL ECU ECR EDC 

Open Hand 
       

x 

Close Hand 
 

x x 
 

x 
   

Flex Wrist x x 
 

x 
    

Extend Wrist 
     

x x x 

Ulnar Deviation x 
       

Radial Deviation 
   

x 
 

x x 
 

Index Finger Flexion 
 

x 
      

Middle Finger Flexion 
 

x 
      

Ring Finger Flexion 
 

x 
      

Flexion of Distal 

Phalanges 

  

x 
 

x 
   

Abbreviations: FCU: Flexor Carpi Ulnaris, FDS: Flexor Digitorum Superficialis, FDP: Flexor Digitorum 

Profundus, FCR: Flexor Carpi Radialis, FPL: Flexor Pollicis Longus, ECU: Extensor Carpi Ulnaris, ECR: 

Extensor Carpi Radialis longus/brevis, EDC: Extensor Digitorum Communis 

 
Figure 10 The ten movement classes and rest. These movements were selected to target specific muscle activations 
for the recording sessions.  
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3.3 Measurement Procedure 

3.3.1 Analog Front End Systems 
Three different AFEs were used for signal acquisition. This was deemed appropriate in 

order to obtain different characteristics of the EMG signals, to compare acquisition 

topologies (e.g., monopolar vs. bipolar), and ultimately to provide a wider perspective 

for the comparison of the electrodes. 

Table 2 displays the main characteristics of the AFEs used in the study. The comparison 

between the acquired EMG signals and individual systems took into account the 

different characteristics of each AFE. 
Table 2 Configuration of each analog front-end system. Regarding amplifier topology, the acquisition chip used, the 
bandwidth to acquire the signals, amplification, and the digitalization of the signals. Note, the gain for 
MyoAmpF4F5 is variable from 50-5000. 

Device Amplifier 

topology 

Acquisition chip Band-

Pass [Hz] 

Gain Digitalization 

Artificial Limb 

Controller [37]  

Monopolar RHS2116 (Intan 

Technologies, 

USA) [38] 

20-500  192 1kHz & 16 bits 

ADS_BP [39] Bipolar ADS1299 (Texas 

Instruments, 

USA) [40] 

20-524 24 2kHz & 24 bits 

MyoAmpF4F5 Bipolar  DAQ Device NI 

USB-6212 

(National 

Instruments, 

USA) [41] 

20-1000 a500  5kHz & 12 bits 

 

 

The Cannon 2D/CTA series pin and socket connector (ITT Cannon, CA, USA) was 

used to connect the electrodes to each of the AFEs. Figure 11 shows a simplified version 

of each amplifier configuration to visualize the acquisition topologies for the different 

devices used.  
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Figure 11 The different amplifier topologies. A. Bipolar configuration. B. Monopolar configuration. C.  Software 
bipolar configuration, where the monopolar channels for corresponding electrode are subtracted with each other, 
to be comparable with the signals obtained by the bipolar configuration. 

3.4 Recording Sessions 
The signal from both iEMG and eEMG channels were acquired simultaneously. The 

volunteer had the electrodes implanted for roughly two weeks, where a total of three 

recording sessions were performed. Each recording session took approximately 1½ - 2 

hours. Three different AFEs were used to acquire the EMG signal, interfaced via the 

PC software BioPatRec [42]. A set of protocols were followed for every session and 

available in a separate document in details. 
Table 3 The date of each recording session performance and the days post-implantation. Date of implantation (DOI), 
date of ex-plantation (DOE) 

 Recordings performed 

 DOI  Session #1 Session #2 Session #3 DOE 

 24.06.2019 28.06.2019 01.07.2019 04.07.2019 10.07.2019 

Days post-op - 4 days 7 days 10 days 16 days 

 
  

A. B. 

C. 
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Table 4 Shows the schedule of which recordings were performed for each system during every session. The different 
recordings and computations were done to gather as much information as possible over the short period of the study. 

AFE ADS_BP ALC MyoAmpF4F5 

 Sessions 

Recording Session # #1 #2 #3 #1 #2 #3 #1 #2 #3 

MVC Recording x x x x x x x x x 

Ramp Recording  x   x   x  

PatRec Recording x x x x  x x  x 

Offline MPR x x x x x x x x x 

Real-time MPR x x x  x     

 
3.4.1 Impedance 
Every recording session started with a measurement of the impedance of the electrode’s 

contacts. The impedance was measured both manually and automatically. The manual 

measurement was performed by stimulating the electrodes with a single rectangular 

electric pulse with the amplitude of 150PA and width of 100Ps. The consequent voltage 

was displayed on an oscilloscope. The 1voltage differed from the perfectly rectangular 

shape provided as input, showing a charging rise profile typical of capacitive load. The 

rise and the peak values were of interest. The peak of the output voltage was measured 

from the oscilloscope and used to compute the resistance magnitude via Ohm’s law. 

Moreover, automatic impedance measurements were performed via a graphical user 

interface (GUI) in MATLAB (MathWorks, USA) designed for the ALC [37]. Thus, 

two sinusoidal stimulation waves were delivered to each electrode type contacts for 

separate impedance measurements while the generated voltage was measured 

automatically after. The two sinusoids were delivered at two different frequencies 

allowing for an estimate of both the imaginary and the real part of the contact 

impedance. An automatic measurement took around 30 seconds per contact. The 

manual and the automatic impedance measurements were compared to provide better 

insight.  

3.4.2 Recording Session for Amplitude Comparison 
The participant sat in front of a computer where the recording software was installed 

(BioPatRec and MATLAB R2019a). All movements were clarified and practiced 

during the first recordings session.  
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Ten movement classes were recorded in a randomized order: open/close hand, wrist 

flexion/extension, ulnar/radial deviation of the wrist, index/middle/ring finger flexion 

and flexion of distal phalanges of index/middle/ring fingers. Instruction on a GUI 

showed the intended movements for the participant as well as the time duration for both 

contraction and rest. Two different recording types were performed for the scope of the 

amplitude comparison, namely MVC and ramp recordings.   

The MVC recording collected 3 seconds of MVC for each ten movement 

classes. Here, the subject was instructed to provide 100% of their contraction force 

while correctly performing the movement. The randomized movements were displayed 

in a GUI with a 3-second countdown between each contraction. These recordings were 

executed for each recording session for every system, either as a separate recording or 

from the ramp tracking recording. 

Ramp tracking recording was performed only once per AFE system. Each ramp 

recording started with collecting 3 seconds of minimum voluntary contraction (e.g., rest 

state). Consecutively, 3 seconds of MVC was performed for all movements similarly 

to the MVC recording aforementioned. The rest state and the MVC values were used 

to provide a reference for the next part, the ramp tracking. The reference was required 

to calculate and display a real-time visual feedback of the amount of muscular effort 

delivered by the subject. This feedback was then used to allow the subject to perform 

the movements with constantly increasing muscular effort represented by a guiding 

ramp, where the average effort increases in proportion between the rest state and MVC 

previously recorded.  During the ramp tracking recording the GUI continuously updated 

the muscular effort visual feedback. The subject was instructed to perform the 

movements with a muscular effort that stayed on or above the guiding ramp displayed 

in the GUI. Each movement was repeated three times, alternating 3 seconds of 

contraction with 3 seconds of relaxation. By slowly increasing the contraction force, 

these recordings can provide insight for proportional control and the summation of 

action potential as muscle contraction increases.  

3.4.3 Recording Session for Pattern Recognition Comparison 
A different type of recording, namely PatRec recording, was performed for the pattern 

recognition comparison. That entailed to executing all the movement classes, in 

randomized order, with a comfortable contraction force (around 60%).  
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Each movement was repeated three times, alternating 3 seconds of contraction with 3 

seconds of relaxation. 

3.5 The comparison: eEMG vs iEMG 
The signals acquired from every recording session were used for the comparison of 

eEMG and iEMG signals.  
Table 5 An overview of which computation was performed from which recording method. Note that the ramp 
recording was not used for obtaining the conclusion for this thesis. 

Calculations 
Recordings 

MVC PatRec 

RMS x  

SNR electrodes per device  x 

SNR mono vs. bi-polar x x 

Cross-correlation  x 

Offline MPR  x 

Real-time MPR  x 

3.5.1 EMG Amplitude 

3.5.1.1 Root Mean Square 

The RMS values were computed from the MVC recordings of each electrode and for 

individual movement (Equation 2.1), with MVC recording from every session for each 

separate AFE. The main interest was to see the difference between monopolar and 

bipolar acquired signals. Additionally, we calculated the software-differential 

measurements from the two poles for each electrode that the monopolar system, ALC 

acquired. For this reason, the monopolar measurements between the paired couples of 

contacts were subtracted (Figure 11C).  

3.5.1.2 Signal to Noise Ratio 

SNR is a statistical ratio that indicates the quality of the EMG signal by dividing the 

signal S with the noise N as in Equation 2.5. These vectors of S and N data were 

acquired in the previously mentioned recording sessions.  

For electrode type comparison for individual system, the PatRec recordings 

were used. To exclude the majority of artifacts and still contain the most relevant 

information, the signals were trimmed to 70% of the central contraction period. An 

identical process performed to extract 70% of the central rest state in-between 

contraction windows. The vectors were then concatenated in two different arrays, signal 

S and noise N respectively.  
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The RMS was computed for all the extracted data for each movement. Both arrays were 

squared, and the SNR was computed by substituting them in Equation 2.5. It is 

displayed on a logarithmic decibel scale due to the broad dynamic range of the signals 

and performed for each electrode for every movement for each system.  

To compare SNR between individual devices the values obtained from the 

MVC recordings were used. From the 3000 samples acquired for the repetition of each 

movement, the central 2000 samples were extracted and used with the central 2000 

samples from the resting-state.  

Additional SNR calculation was performed to see the effect of crosstalk from a 

different perspective. Similar to the SNR described above with the main difference in 

a different classification of the noise vector N. The signal vector S was obtained from 

the targeted muscle while performing the ulnar deviation movement. The 

corresponding noise vector N for the SNR formula was not only the baseline as above 

but also the activation of the adjacent muscles, FDP and FDS as well as the antagonistic 

muscle ECU. These specified movements were used as input in Equation 2.5 - again to 

perform SNR calculations with the differently classified S and N’s. 

3.5.2 Crosstalk 
To quantify the crosstalk between neighboring muscles the cross-correlation function 

shown, in Equation 2.6, was used. This equation has been most commonly used to 

quantify crosstalk with surface electrodes [32]. The cross-correlation function 

correlates two signal sequences together by shifting the placement relative to the other 

and thus can indicate the similarity between the two. For this study, the activation of 

the targeted muscle was used and cross-correlated to the “noisy” movements, mainly 

the ones activating the adjacent muscles and the antagonistic muscle. A higher 

correlation value indicates increased crosstalk between the compared signals. 

3.5.3 Pattern Recognition Evaluation 
The offline and real-time MPR evaluation was performed using the modules available 

on BioPatRec software.  
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Figure 12 Schematic diagram of a typical MPR classifier, as the ALC system using the electrodes for this study, 
computes. Adapted from Farrell et al. [15].  

3.5.3.1 Offline Pattern Recognition 

The prior stored PatRec recordings were uploaded to the Pattern Recognition module 

of BioPatRec. The recorded EMG signals were window segmented, i.e., the signal was 

divided into 200ms overlapping windows with 50ms of overlap [29]. After the signal 

segmentation a set of features were extracted, as commonly done in pattern recognition 

problems to reduce the dimensionality of the data set. The feature extraction for MPR 

used the four-time domain Hudgin’s vectors [11]. The feature vectors were then 

randomly assigned to 40% testing, 20% validation, and 40% training sets [21]. The 

LDA classifier was trained in one-vs-one (OVO) topology. The classifier training was 

reiterated ten times, and the average offline accuracy was calculated. The accuracy of 

every system was extracted and graphically presented.  

Additionally, the interest was to evaluate the accuracy of each electrode 

separately. The signal treatment GUI provides the option to select the channels of 

interest to use for the MPR. Therefore, the same procedure as above was repeated for 

individual channels to present the difference in MPR accuracy graphically. 

3.5.3.2 Real-time Pattern Recognition 

The Motion Test, introduced by Kuiken et al. [31] and available in BioPatRec, was 

used for the real-time evaluation of the pattern recognition algorithm performance. 

During the Motion Test, a GUI requested the subject to perform movements. 

Moreover, the GUI informed the subject if a total of 20 correct classifications were 

obtained within the 10s timeout given to each trial. Each trial was performed with three 

randomized repetitions of all the movements included in the recording session. The 

Motion Test comparison was used to compare the accuracy, completion rate, 

completion time, and selection time versus each movement and each electrode 

recording method. The real-time accuracy for each electrode was computed to compare 

their performance acquired by the ADS_BP recordings. 
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4 Results 
4.1 Impedance Analysis  
The rise and the transient of the capacitive wave were documented for the manual 

impedance measurement. A stimulation pulse of 150PA was sent from the ALC and 

through the approximated modeled RC circuit of the body. The response of the 

stimulated pulse was visualized on an oscilloscope (Figure 13). By knowing the 

stimulation pulse and the voltage generated, the impedance of the circuit was obtained 

(Table 6). 

 
Figure 13 A screenshot from the oscilloscope during a manual impedance measurement. It displays the response of 

the rectangular pulse sent through the system; each box on the image represents 10mV. 

Table 6 The results from the manual and automatic impedance. All values displayed in :. The automatic impedance 

values are the average from both channels associated with that circuit. 

 Manual Impedance 

Days Post-op  0 (DOI) 4 7 

 

IM 

Rise 1467 667 800 

Transient 2200 1000 1133 

EP Rise 1200 1000 1133 

Transient 2133 1533 1333 

 Automatic Impedance 

IM  1369 1274 1316 

EP  1504 1110 1208 
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4.2 Amplitude Analysis  

4.2.1 RMS Analysis  

From the MVC recordings, the RMS peak values were obtained (Table 7). The peak 

values were compared between the electrodes for the ADS_BP and ALC systems. The 

amplitude of the peaks corresponds to the gain that the systems provide where each 

AFE had different characteristics (Table 2), and the values were not normalized.  
Table 7 The peak RMS values from acquired MVC signals. All values displayed are in PV (standard deviation). 
The standard deviation is only applicable to the ALC measurements since one MVC recording was obtained with 
the ADS_BP. Note, the MVC values of the MyoAmpF4F5 were not viable for comparison. 

Systems ADS_BP ALC bipolar 
 Recording electrodes 
Movements eEMG iEMG eEMG iEMG 
Open Hand 

69.76 18.31 
447.27 
(63.79) 

416.08 
(61.94) 

Close hand 
39.59 15.29 

502.98 
(111.58) 

450.58 
(99.60) 

Flex Wrist 99.83 
19.60 

381.60 
(100.18) 

301.42 
(83.07) 

Extend Wrist 
18.23 13.13 

452.55 
(52.90) 

396.52 
(46.23) 

Ulnar Deviation 
14.43 7.18 

266.91 
(51.70) 

248.46 
(53.60) 

Radial Deviation 
6.27 6.54 

223.33 
(46.72) 

218.45 
(46.41) 

Index Finger Flexion 
11.72 12.69 

214.29 
(41.26) 

222.86 
(49.60) 

Middle Finger Flexion 
14.26 7.89 

345.07 
(89.44) 

333.74 
(89.05) 

Ring Finger Flexion 
22.36 10.33 

367.99 
(80.04) 

341.86 
(75.52) 

Flexion of Distal Phalanges 
16.28 8.41 

293.88 
(110.48) 

276.67 
(101.03) 

 

4.2.2 SNR Analysis 

The main objective was to compare the SNR from the two types of electrodes. The SNR 

values for each electrode and the individual systems, ADS_BP and ALC (Figure 14). 
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Figure 14 A. The SNR values between movements for each bipolar channel obtained by the ADS_BP system  
B. The SNR values between movements for each monopolar channel obtained by the ALC system. 

To be able to compare the AFEs displayed in Figure 14, the software bipolar version 

was computed from the ALC recordings. The SNR comparison can be visualized in 

Figure 15. 

 
Figure 15 The SNR values compared between bipolar system for every movement, for ADS_BP and ALC. 

4.3 Crosstalk 
The cross-correlation function was used to correlate the targeted muscle with the 

signals from the adjacent muscles as well as the targets muscle antagonist. The results 

for those selective movements for every system are shown in Figure 16. 
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Figure 16 Cross-correlation value Rxy between all three systems, as can be observed. The targeted signal was 
compared with the adjacent muscles and the antagonist muscle. Note the significantly more crosstalk from the 
MyoAmpF4F5 recording compared with the ADS_BP and ALC_bipolar. 

A different approach to evaluate crosstalk was through SNR analysis. The same signals 

as used for in the cross-correlation function, namely the activation of the targeted 

muscle FCU compared with rest, the activation of the adjacent muscles (FDS, FDP) as 

well as the activation of the antagonistic muscle (ECU) was executed. The eEMG and 

iEMG recordings were compared between systems for selective movements.  
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Figure 17 The SNR comparison between selected movements for ADS_BP and ALC_bipolar to show a different 
perspective of crosstalk. The signals acquired from the FCU were compared with the activation of different muscles. 
The y-axis displays the SNR values in dB, and thus if the signal is smaller than the baseline, it results in negative 
values. As can be determined when the targeted muscle was compared with the antagonistic muscle while performing 
the Radial Deviation movement. Note that the MyoAmpF4F5 recordings were not included. 

4.4 Myoelectric Pattern Recognition Accuracy 
4.4.1 Offline MPR Accuracy 

The offline accuracy for both eEMG and iEMG was computed using the acquired 

PatRec recordings (Figure 18). 

 

 
Figure 18 Displays the offline class-specific accuracy obtained from each AFE using the PatRec data from relevant 
recording sessions. The legend indicates the mean value; the central red line is the median value. The boxplot edges 
show the 25th, and 75th percentile and the whiskers show the range of values that are not considered as outliers. 
Outliers are indicated with a red ‘+’ symbol. A. The CS MPR accuracy obtained with the ADS_BP system. B. The 
CS MPR accuracy obtained with the ALC system. C. The CS MPR accuracy obtained with the MyoAmpF4F5 system 

The offline accuracy obtained from the MVC recordings was used to compare the 

systems collectively, and the error percentage displayed in Figure 19. 

A. B. 

C. 
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Figure 19 The average offline accuracy displayed as the error percentage [100-Accuracy]. Thus, when no bars 
are visible, the accuracy was 100%. Note that the MyoAmpF4F5 has a significant error in determining rest. 

4.4.2 Real-time MPR Accuracy  

The results from the Motion Test (Figure 20), included the real-time accuracy with the 

associated information on selection time, completion time, and the completion rate 

acquired by the ADS_BP.  

 
Figure 20 The result from the Motion Test obtained with ADS_BP from each electrode. A) The real-time accuracy 
per movement. B) The time it takes to select the movement, the red dotted line shows the minimum time for the 
algorithm to select the movement. Since the signals are split into 200ms windows with 50ms overlaps, then the 
least amount of time is 200ms. C) The completion time shows how quickly 20 correct classifications were made; 
the red dotted line displays the minimum amount of time to reach a decision 200ms + 19*50ms = 1,15s. D) The 
completion rate displays how often the algorithm can reach the right decision within the time frame given, which 
was 10s. 

A. B. 

C. D. 
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Figure 21 The real-time accuracy between the ADS_BP and the ALC. The boxplot displays the 25th and 75th 
percentile and the whiskers the standard deviation of the range of the data.  
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5 Discussion 
This chapter is meant to summarize and discuss the main findings and obstacles 

encountered during the development of this study.   

5.1 Problems with a percutaneous interface 
Proper attachment of the percutaneous connector needs to be revised for patient 

comfort, and especially to minimize the strain that can be subjected to the percutaneous 

wires. A silicone sheath provides a protective layer around the wires of the electrodes. 

After the placement of the electrodes during surgery, it is essential to validate that the 

sheaths are covering the wires.  

 
At eleven days post-surgery problems were observed with the impedance measurement. 

Investigating further fourteen days post-surgery it showed that one electrode was not 

recording EMG activity. No accident or other misfortune was correlated to this turn of 

events; however, it was assumed that the wire must have broken because of the 

percutaneous placement. Due to this, no more recordings were acquired since the 

objective was to compare both electrodes. On the DOE at Sahlgrenska University 

Hospital, an X-ray image was taken to see the placement of the electrodes - before the 

removal surgery. The removal of the bandage revealed that the intramuscular electrode 

was no longer located within the muscle, but instead it protruded from its original 

placement. The electrode was, most likely, pulled out via the percutaneous wires or 

rejected from the muscle. Therefore, the cause of no signal was due to the electrode not 

being located inside the muscle anymore.  

 
Figure 22 An X-ray image on the DOE. The blue arrow points to the epimysial electrode that was still correctly 
placed on the muscle. The orange arrow points to the intramuscular electrode, and it displays that the electrode was 
not where it was supposed to be; the electrode protruded the skin and lay inside the bandages that covered the 
incisions. 
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5.2 Comparison and Evaluation 
The objective of this study was to compare the eEMG and iEMG electrode types 

regarding SNR, crosstalk, and MPR accuracy. An additional aspect was comparing 

the performance of the electrodes between different AFEs.  

 

The RMS peak values were compared between electrodes for selective movements for 

the ADS_BP and ALC systems. The unexpected similarity between the peak amplitude 

for the target movement with the implanted muscle and the amplitude in the 

antagonistic movement (Table 7) requires further analysis.  

 

The SNR comparison of the iEMG and eEMG was individually evaluated for ADS_BP 

and ALC for every movement (Figure 14). For all movements except the Ring Flex 

obtained by ADS_BP - the eEMG recordings outperformed the iEMG recordings. The 

iEMG2 contact from the ALC had significantly lower values than the rest of the 

contacts, which could indicate improper placement of the distal contact of the 

intramuscular electrode. This consideration might invalidate the finding of eEMG 

higher SNR values. 

Moreover, for the sake of comparison the SNR values were computed also from 

the MVC recordings. To furtherly enrich the comparison, software-bipolar 

measurements of the ALC were calculated (Figure 15). For most of the movement 

classes, the SNR values obtained from the ALC were higher than from the ADS_BP, 

and, consistently with previously mentioned results, the eEMG provided higher SNR 

than the iEMG.  

Note: Due to complications with the MyoAmpF4F5, the data from MVC recordings 

were not deemed valid and therefore not included for the MVC-SNR comparison. 

 

The crosstalk was evaluated using the cross-correlation function (Equation 2.7). It 

outputs the correlation value Rxy and the higher the value, the more are the similarities 

between the compared signals. A function Rxy equal to 1 indicates zero lag between the 

autocorrelated signals. The objective was to quantify the crosstalk between the 

implanted electrodes and the neighboring muscles (Figure 16). It was assumed that the 

iEMG recordings would produce a lower Rxy value, due to the placement inside the 

targeted muscle.  
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The values obtained from the ADS_BP and ALC showed similar values (>0.1) when 

the targeted signal was compared to the different movement classes. From the 

MyoAmpF4F5, the Rxy was close to 1, which indicates that the signals compared were 

almost identical. This result points out the stronger noise character for this device, 

which ultimately invalidated these recordings for any reasonable comparison. Note: 

The smallest crosstalk was expected from the FCU vs. rest. However, this was not clear 

from the graph. Thus, it is suggested to reevaluate these metrics in future studies.  

The additional approach to evaluate the crosstalk (Figure 17), did not provide a 

clear conclusion. The signals produced by the FCU were similar in amplitude as the 

noise movements, thus dividing the signals as per  Equation 2.5 computes a very low 

number. By converting the results to dB scale a number lower than one outputs a 

negative number, therefore if the noise is stronger than the signal, the dB value acquired 

is negative. 

 

The MPR offline accuracy used the PatRec recordings to evaluate how effectively the 

movements were classified per system (Table 8).  
Table 8 The average offline CS-MPR accuracy for all systems. 

Class-Specific MPR accuracy [%] 

ADS_BP ALC MyoAmpF4F5 

eEMG iEMG eEMG1 eEMG2 iEMG1 iEMG2 eEMG iEMG 

78,4% 71,8% 69,7% 72,6% 69,4% 68,2% 90,7% 69,4% 

 

The MyoAmpF4F5 CS accuracy showed very high values for the movements but the 

lowest accuracy for the rest movement. That reveals how misconceiving the offline 

accuracy can be – therefore, the real-time accuracy MPR accuracy is necessary to 

determine the usability. An overview of the comparison between the systems (Figure 

19) shows how uncorrelated the MyoAmpF4F5 recordings are compared to the 

ADS_BP and ALC. 

 

The MPR real-time accuracy was obtained by using the Motion Test and the 

recordings were obtained with the ADS_BP to compare the two electrode types and not 

to compare systems (Figure 20). The eEMG produced higher accuracy, the average 

62.7% for eEMG and 47.2% for iEMG.  
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The selection time and completion time between the electrodes were consistent, but as 

can be shown the completion rate for the eEMG is significantly higher than for the 

iEMG.  

Out of interest, the ADS_BP and ALC systems were compared to the averaged 

real-time MPR accuracy, and the results showed that the ADS_BP had an average 

accuracy of 54.3% and the ALC 47.5%.  

5.3 Recordings 
The GUI in BioPatRec provided valuable information during the recording sessions and 

offered the possibility to repeat the movement if any undesired artifacts were visualized. 

However, when the different AFEs were compared, it displayed significant differences. 

E.g., the recordings from the ADS_BP and MyoAmpF4F5 seemed to be inverted 

(Figure 23). Due to time limitations and that it exceeded the scope for this thesis, the 

reasoning behind this was not obtained. Note that all connections were doubled checked 

to assure that everything was connected properly.  

 
Figure 23 Performing open hand movement with the ADS_BP and the MyoAmpF4F5 systems. The blue and red 
graphs were eEMG and iEMG recordings, respectively. The x-axis was shifted to distinguish the two signals easily. 

It was notable that the volunteer was not able to always maintain MVC during the 3-

second contraction (Figure 24), where the initial samples show a larger amplitude as to 

the rest of the recording. 
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Figure 24 MVC recording while performing the ulnar deviation movement. 

The recordings with the MyoAmpF4F5 proved to be challenging. The recordings were 

subjected to a significant amount of noise while performing the movements with the 

adjacent muscles and the antagonistic movement (Figure 25).  

 

 
Figure 25 PatRec recordings obtained with the MyoAmpF4F5. A. The flex hand movement. B. The extend hand 
movement 

 
5.4 Limitations 
The scope of this thesis was limited to implantable muscle-based electrodes, where the 

EMG signals were obtained from one muscle of one able-bodied volunteer.  

 

In this study, the movements were selected in an attempt to activate specific muscles 

selectively. In general, it is objectively challenging to activate single muscle selectively. 

Indeed, analyzing the results revealed that, most likely, for some movements single 

muscle activation was not reached. 

 

 

A. B. 
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Different placements of the implanted electrodes result in different stresses on the 

design. Epimysial electrodes are located outside the muscle; therefore, it is submitted 

to less mechanical stress than the intramuscular electrode, which could result in a longer 

lifetime of these electrodes. This was not considered in the scope of this thesis.  

 

The cross-correlation function for the evaluation of crosstalk has been reported to be an 

insufficient measure for that evaluation [43]. In the literature, this is still the most 

common way, and no alternatives are available; therefore, it was deemed as a 

comparison metric for this thesis. A different approach shall be considered since the 

results presented were inconclusive. 

 
5.5 Future Work 
For future work on this comparison, a few obstacles need to be overcome. Firstly, an 

implanted reference under the skin is required, so the different impedance between the 

implanted electrodes and the reference is not as significant. That modification could 

potentially solve the problems with the ADS_BP and the MyoAmpF4F5. This will need 

to be addressed before continuing collecting the data. 

 
The MyoAmpF4F5 circuit needs to be re-evaluated and the gain adjusted for optimal 

results. It has a variable gain from 50-5000, and for this study, the gain of approximately 

500 was used without exploring other options. Problems related to the amplitude of the 

noise will need to be addressed. It seemed as the amplitude of the signals had to reach 

a certain threshold above the noise level to trigger visible contractions among the noise, 

the strong contractions thus managed to scale the noise level down. For the lower 

amplitude noise induced movements the amplitude did not manage to reach that 

threshold. 

 
The intramuscular electrodes must be secure in place by an anchoring mechanism and 

sutures to prevent from migrating out of the muscle.  

 
It is essential to recruit more volunteers to determine the statistical significance of the 

electrodes comparison. 

 
The possibility of using electrical stimulation should be explored to try to isolate the 

EMG signals to the muscles of interest. 
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6 Conclusion 
The main objective of this study was to compare the SNR values acquired by each 

muscle-based electrode. The eEMG electrodes provided slightly higher SNR than the 

corresponding iEMG recordings. The values varied between the systems that acquired 

the signals, but the eEMG performed consistently better. The remaining objectives used 

as performance metrics for this comparison revealed that the crosstalk between the 

adjacent muscles was inconclusive. The MPR accuracy for both offline and real-time 

performance revealed that on average, the eEMG outperformed the iEMG. The 

comparison within the acquisition systems regarding MPR accuracy deemed the 

ADS_BP as the best performing.  The developed framework is potentially suitable for 

further research in additional subjects. Further work using the methods developed is 

essential to reach conclusive results.  
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Appendix I 

Simplified electrical diagrams three AFEs used. 

 

ADS_BP 

 

ALC
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