CHALMERS |) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

EXTENSION 1 EXTENSION 2
Colluding Colluding
with: with:
Threat: Malicious Threat:

EXTENSION 3
Colluding
with:
Threat: Suspicious

Collusion Attacks on Browser Extensions

Revealing hidden extensions colluding against

the user
Master thesis in Computer Systems and Networks

DZENAN BAZDAREVIC
MICHAEL DUBELL

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2017

MASTER’S THESIS 2017, DATXO05

Collusion Attacks on Browser Extensions

Revealing hidden extensions colluding against the user

Dzenan Bazdarevi¢, Michael Dubell

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Collusion Attacks on Browser Extensions
Revealing hidden extensions colluding against the user

DZENAN BAZDAREVIC
MICHAEL DUBELL

© Dzenan Bazdarevi¢ & Michael Dubell, 2017.

Supervisor: Pablo Picazo-Sanchez, Department of Computer Science and Engineer-
ing, University of Gothenburg

Examiner: Andreas Abel, Department of Computer Science and Engineering, Uni-
versity of Gothenburg

Master’s Thesis 2017, DATX05

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: Visualisation of set of extensions, some of them are colluding with each other
using malicious or suspicious domains or IP addresses.

Gothenburg, Sweden 2017

v

Collusion Attacks on Browser Extensions
Revealing hidden extensions colluding against the user

DZENAN BAZDAREVIC, MICHAEL DUBELL

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

Browser extensions have been created to extend and enhance web browsers in order
to improve the user experience. Because of this, browser extensions can access a
range of different resources that pose a great privacy risk for users. These sensi-
tive resources include users’ browser history, passwords and banking information.
Therefore browser extensions have become a great source of interest for those with
malicious intent. In order to obscure the intent behind a browser extension, a set of
extensions can be created that when analysed individually does not raise any suspi-
cion. However, by analysing the entire set of extensions, a relationship between each
extension can be revealed. Namely, each extension is extracting user information
under different sets of permissions, and relaying this data to a common external
server. Such extensions are said to be colluding, and possibly performing a collusion
attack. This form of attack is the focus of this research paper.

We propose a method for downloading and performing static analysis of the col-
lected browser extensions. The static analysis is based on regular expressions and
defined to match and extract domain names and IP addresses from the downloaded
browser extensions. In order to discover domains or IP addresses that are malicious,
Recorded Future’s threat intelligence is used to provide classification and informa-
tion behind each classification. Recorded Future collects data from technical sources,
open sources and closed sources. By combining their machine learning and natural
language processing, Recorded Future can identify, classify and predict events.

In this work, over 250,000 Mozilla Firefox and Google Chrome extensions have been
analysed by our proposed method and as a result, 1037 browser extensions have been
found to be possibly colluding. Recorded Future classified 131 domains as Malicious.

Keywords: Web Browser Extensions, Collusion Attacks, Web Security, Static Anal-
ysis.

Acknowledgements

This project was conducted as a master thesis project for Chalmers University of
Technology under the spring of 2017. The scope of this course is 30 credits (hp).
The master thesis was conducted at Department of Computer Science and Engi-
neering at Chalmers University of Technology, by students of Computer Science and
Engineering 300 hp and MPCSN, 120 hp.

Foremost, we would like to express our sincere gratitude to our supervisor Pablo
Picazo-Sanchez for his support of our MSc. research, his motivation, guidance and
enthusiasm.

Besides our supervisor, we would like to thank Steven Van Acker and Andreas Abel
for their inspiration and insightful comments.

DzZenan Bazdarevi¢ and Michael Dubell, Gothenburg, June 2017

vii

1

Contents

List of Figures
List of Tables
Introduction
1.1 Purpose
1.2 Problem definition
1.3 Methodology
1.4 Limitations
1.5 Related Work
1.6 Thesis Contributions
1.7 Disposition of the Thesis
Background
2.1 Browser extensions
2.2 Privacy
2.3 Collusion attacks
2.4 Recorded Future
System Design
Implementation
4.1 Downloading extensions
4.1.1 Mozilla Firefox extensions
4.1.2 Google Chrome extensions
4.2 Designing the analysis process
4.2.1 Generate extensions L
4.2.2 Staticanalysiso oL
4.2.2.1 Regular Expressions
4.2.2.2 Validating extracted addresses
4223 Savingdatao Lo
4.2.3 Threat analysis oL oL
4.3 Visualising collected data
Evaluation
5.1 Custom made colluding extension
5.2 Testing our Analysis o

xi

xiii

11

13
13
13
14
16
16
17
18
19
19
20
21

23
23
24

ix

Contents

6 Results
6.1 Extensions .

6.1.1 Mozilla Firefox extensions
6.1.2 Google Chrome extensions

6.2 Analysis . .

7 Discussion
7.1 Future work

8 Conclusion
Bibliography

A Evaluation

27
27
27
28
28

31
32

35

37

2.1
2.2

2.3

24

2.5

3.1

4.1
4.2

4.3
4.4
4.5
4.6

List of Figures

Potential privacy invasive sources.
A scenario showing a collusion attack using message passing between
two extensions. In step 1 the user has accessed a page where she
enters her log in details. Since extension A can read the page it can
extract the information, in this case the log in details. In the second
step, extension A passes the information to extension B through the
listener. Finally in the third step extension B can send the informa-
tion to an external server.
A scenario where three extensions with different privileges perform a
collusion attack. All three extensions communicates with the same
external server.
Examples of different sources Recorded Future collects information

[llustrates an overview of the system design. In step one, we execute
scripts that downloads extensions from Mozilla Firefox Add-ons and
Google Chrome Store. In step two, all extensions found on disk are
analysed by our analysis process. In the third step all extracted do-
mains are sent to Recorded Future’s API for threat analysis. In the
fourth and final step, the collected data is presented and visualised
in the custom made web interface.

Visualisation of FoxyDownloader’s execution flow
Visualisation of ChromeeDownloader’s execution flow. In step 1, ex-
tension links from the sitemap of Google Chrome store are saved to
a JSON file. In step 2, ChromeeDownloader reads the JSON file and
downloads all extensions to disk. In step 3, all extensions from disk
are read and a query is sent to the archive to see whether older ver-
sions exists. If found, a download link of the version is saved to a
JSON file. The last step, i.e., step 4, ChromeeDownloader uses the
new JSON file to download extensions from the archive.
Visualisation of the static analysis process.
Regular Expression examples.
Processing time of regex (a?)"a™ on string a™. [28].
A screenshot from the web application that shows some statistics.

21

X1

List of Figures

xii

4.7

4.8

6.1

6.2

6.3

A screenshot from the web application showing the domain informa-
tion page. A IP which has been classified as Very Malicious. 22
Malicious domains grouped by country. 22

Number of domains and IP addresses that were given classifications:

very malicious, malicious, suspicious, unusual from Recorded Future’s
threat analysis. 28
Number of extensions that used domains and IP addresses that were
given classifications: very malicious, malicious, suspicious from Recorded
Future’s threat analysis. Only domains and IP addresses also used

by other extensions are shown. 29
[llustrates the average usage of malicious, suspicious domains and IP
addresses in Google Chrome and Mozilla Firefox. The amount of
malicious domains in this circle diagram is 5.00% for Google Chrome

and 1.40% for Mozilla Firefox, this is illustrated with a darker shade

in the diagram. oo 29

1.1

3.1

0.1

0.2

6.1

List of Tables

Usage of web browsers in December, 2016 [8,9]. 2
Virtual Machine specifications 11
Evaluation of 10 random Google Chrome extensions and the accuracy

of the script. 25
Evaluation of 10 random Mozilla Firefox extensions and the accuracy

of the script. 25
Information about the downloaded extensions. 27

xiii

List of Tables

Xiv

1

Introduction

For many users, web browsers are the gate to the Internet. We use web browsers
to access services such as social media, e-mail or bank accounts. To increase the
browsing experience and to extend the functionality of the browser, almost all major
web browser vendors allow browser extensions to be installed. A browser extension
is a component that can extend the browser’s functionality. Normally, extensions
are not provided by the browser vendors, but by third parties. When an extension
is installed, it has access to some resources, such as open tabs, bookmarks and
cookies. These privileges are specified in a file called manifest. json [1, 2]. Some
extensions may even share the same privileges as the browser itself. A few examples
of privileges are allowing modifications of the HT'TP headers or modifying the web
page by changing the Document Object Model (DOM). Initially, the goal of the
browser extensions was to increase the browser experience for users, however, new
security and privacy issues have arisen since extensions are overprivileged and gain
access to information that they do not need [3]. When users browse the Internet,
sensitive information such as bank information and passwords are sent through the
browser. In other words the information is exposed to the browser and its extensions.
This type of information may be of interest to the get hold of. As a result, browser
extensions have been created to serve a malicious purpose [4]. These kind of browser
extensions can be created to, for instance, provide certain advertisements to the user,
steal data and track user’s behaviour. Often, users are not aware that their installed
extensions can execute malicious code [5].

There exist several different ways for browser extensions to attack its users, this the-
sis will focus on attacks performed by multiple browser extensions that are colluding
with external servers.

1.1 Purpose

The purpose of the project is to research whether there exist browser extensions that
are colluding with other extensions when performing malicious activity, meaning, if
they cooperate in some way by exchanging private information about users to an
external server. This form of attack is called Collusion attack.

1.2 Problem definition

Several browser extension systems provide an interface that allows an extension
to collude with other extensions installed on the system, in order to share objects

1. Introduction

[4, 6]. An example of this might be the following. Consider two extensions A
and B. Extension A has the privilege to collect anything from a web page while
extension B can use the network channel in order to communicate. If we analyse
them separately we can say that they are considered to be safe to use. However, if
extension B acquires the information collected by A, the extensions may be colluding
with each other. In this research we will focus on extensions that communicate with
the same external servers, to reveal collusion attacks. For instance, extensions A and
B may use the same external server(s) to store collected information or to exchange
information between each other.

We will analyse all extensions in the Google Chrome Web Store and in the Mozilla
Firefox Add-ons in order to determine whether there exist extensions that perform
collusion attacks. At the time of this writing there exist 18,461 extensions in Firefox
Add-ons and 135,909 in Chrome Web Store with almost 229,000 versions in total.
The reason why extensions for Google Chrome Store and Mozilla Firefox Add-ons
were chosen was because they are the most popular web browsers, as can be seen
in Figure 1.1. Also, extensions from Google Chrome Store might also be installed
on other web browsers such as Opera since it uses the same web engine as Google
Chrome. Furthermore, Mozilla is working on to provide support for extensions from
Google Chrome Store in Mozilla Firefox [7].

Web browser Google Internet Mozilla Safari
Chrome Explorer | Firefox

NetMarketShare | 56.43% [2084% | 12.22% | 347%

StatCounter | 62.66% | 9.89% | 14.95% | 5.10%

Table 1.1: Usage of web browsers in December, 2016 [8, 9].

We intend to detect collusion attacks by finding extensions that communicate with
the same servers. We will use Recorded Future’s Application Interface (API) to
determine if the external server(s) used by the extensions are malicious. Recorded
Future is described in more detail in section 2.4.

In the continuation of this paper, we will refer domain names and IP addresses as
addresses, unless specified otherwise.

1.3 Methodology

Due to the amount of information that needs to be checked, in the beginning we focus
on automatic detection of collusion attacks for the 50 most downloaded extensions.
The first step that was performed was static analysis of all files for all extensions
and storing the results in a database. The database contains the extensions’ name,
version, browser, author and domains. Once we deploy and check whether the
analysis has the expected behaviour, the process is automated and extended to
include all extensions.

1. Introduction

Finally, with the data we collected in the previous step, we used Recorded Future’s
API to investigate whether the servers used by the extensions are somehow linked
to other well-known attacks. Recorded Future is a company that focuses on threat
intelligence using machine learning and natural language processing. Recorded Fu-
ture collects data from a wide range of sources which allows them to predict certain
events [10] using their Al algorithms. With the help of their API which gives us
access to their intelligence platform, we can detect domains classified as threats.

1.4 Limitations

A major part of the analysis is to identify whether there exist extensions that use the
same external server for communication. The mere existence of a set of extensions
that share the same domains or IP addresses does not mean that the extensions
are necessarily colluding. FExtensions may be using popular Internet services for
their communication, however the possibility that such services are being used by
malicious extensions is still present.

Some limitations regarding the process for extracting domains and IP addresses
from the extensions exist. There are techniques that malicious extensions can use
in order to hide their true intention. Domains may be computed from a function
which means that it is impossible to detect and extract the domain statically by
regular expression matching. Also the malicious domain may be absent from the
code completely and retrieved only by querying a ”good” server. Another technique
that may be used is obfuscation. Obfuscated code is used to hide or to obscure
the true intent of a piece of code. Obfuscated JavaScript code can be created with
custom algorithms or with the help of popular tools available on the Internet.

With these limitations in mind, we cannot claim that an extension is safe or not.
There are many other low-level attacks that colluding extensions can make use of.
These attacks are not covered in this research. We can however, produce a risk value
that can give an indication to whether an extension is performing any malicious
activity, similar to what Recorded Future provides.

1.5 Related Work

Saini et al. [4] point out some weaknesses regarding the extension system for Mozilla
Firefox when handling JavaScript objects. They show that two legitimate extensions
can cooperate in order to achieve malicious goals. The current research for detect-
ing malicious behaviour in extensions focuses primarily on single extension as the
main source for attack. Because of this, they managed to perform attacks by using
multiple extensions that cooperate. The result was that the attacks were unde-
tectable by existing popular client side methods used to detect malicious behaviour
in extensions.

1. Introduction

Similar research was performed by Bauer et al. [6], they could demonstrate that
extensions can become less suspicious by spreading their required permissions over
several extensions. Each extension performs its specific task and communicates
with the other extensions over covert channels. These covert channels include the
number of open tabs, browser CPU utilisation, browser history or even the clipboard.
Extensions can send private information such as passwords or banking information
collected by one extension, to another extension with different permissions, that will
send the data to third-party servers.

Both of the previous mentioned works focuses on Collusion attacks that are per-
formed inside the web browser, this thesis however aims to detect a Collusion attack
where external servers act as a middle man. Also, Saini et al. [4] and Bauer et al. [6]
only prove that Collusion attacks can in principle be performed but they have not
found extensions that are actually performing this type of attack.

1.6 Thesis Contributions

We design and implement a platform to download, extract and analyse browser
extensions as well as visualising the results. The platform downloads browser exten-
sions from Google Chrome Store and Mozilla Firefox Add-on Store. The collected
extensions are then analysed by the static analysis process which extracts domains
and IP addresses that might be used for external communication. The extracted
addresses are further analysed by Recorded Future’s threat intelligence to identify
malicious domains and IP addresses.

The platform has successfully downloaded and analysed 279,250 browser extensions
while 505,322 addresses were extracted. As a result, 1,037 browser extensions were
found to be potentially colluding.

1.7 Disposition of the Thesis

The thesis is organised as follows: Chapter 2 provides background knowledge to
the topic of this work, for instance how a browser extension is built and the type
of functionality it can provide. In Chapter 3, a description of the overall system
design is given. Chapter 4 describes how the system was implemented, its different
components and the obstacles found during this process. Chapter 5 focuses on
evaluating the static analysis process and proving the accuracy of this process. In
Chapter 6, our findings and results are presented. The final chapters, Chapter 7
and 8, provide a discussion and a conclusion, respectively.

2

Background

To understand the privacy implications of extensions and their capabilities, some
background knowledge regarding the structure of browser extensions is required.
This section describes the basics of browser extensions, how they are built, how
they can interact with the user and finally how Recorded Future will be used to
identify and classify addresses as malicious.

2.1 Browser extensions

Browser extensions are small pieces of programs that can be installed in the user’s
web browser. The purpose of extensions is to enhance the browser experience for
users as well as personalise their browser. Extensions can modify or extend the
default browser functionality, e.g., an extension may be installed to block adver-
tisements on websites [11], add foreign language dictionaries or change the visual
appearance of the browser itself. Before installing extensions, users must usually ac-
cept the permissions required by the specific extension. In order for the extension to
interact with websites and customise the browser, the extension needs to specify the
permissions needed. An extension can specify a range of permissions without neces-
sarily needing them to function. By requiring unnecessary permissions, extensions
pose a great privacy risk for users. This will be discussed further in Section 2.2.

Extensions have the possibility to communicate with external servers as well as with
internal browser extensions. Consider an extension that blocks advertisements from
websites visited by the user. Assuming the extension uses a blacklist with a set
of advertisement companies, in order for the extension to update this list it would
need to contact an external server for an updated version. As mentioned, extensions
can communicate with other installed extensions by using an API provided by the
browser. One extension could potentially collect information under a specific con-
text, e.g., save the user’s login credentials for a specific site and send the information
to a second extension that may upload the data to an external server. Communi-
cation between extensions and servers are needed for advanced functionality that
enhances the user’s browser experience, however it can also be used for malicious
intent which will be discussed in Section 2.3.

In this paper, only the extensions provided by Mozilla Firefox and Google Chrome
Store will be examined. The difference between the two browsers in terms of ex-
tension structure is minimal. Both web browsers provide an API for the extension

© 00 N O Utk W N

= = =
N = O

2. Background

to utilise and information about the extension such as name, creator and required
permissions can be found in the extension’s manifest file. Both Firefox and Chrome
require their extensions to be developed in JavaScript, HTML, CSS and can be
downloaded from the respective extension store.

2.2 Privacy

Extensions can require a set of permissions in order to perform certain functions.
These functions include reading and writing into web pages as well reading users’
web history. In the case of Google Chrome extensions, developers can require access
to all websites which can bee seen in listing 2.1.

{
"name": "My extension",
"content_scripts": [
{
"Matches": ["*://*.x"],
"css": ["mystyles.css"],
"js": ["myscript.js"]
}
1
3

Listing 2.1: Chomre Content scripts, specified in the manifest.json

The above code snippet shows how a developer can specify a content script that
will be injected into every website visited by the user, as specified by the wildcard
(*) in the protocol, host and top level domain name. This allows malicious browser
extensions to intercept and modify web content in-transit for any website.

Other potential privacy invasive sources which Google Chrome extensions can access
can be seen in table 2.1. A complete list can be found in [12].

Sources Impact

Bookmarks Users’ bookmarks

Clipboard Read and write to users’ clipboard
Cookies Websites’ cookies
History A complete history of users’ Internet browsing

Figure 2.1: Potential privacy invasive sources.

Once an extension have acquired the necessary permissions, the extension can at
any point in time start behaving maliciously, e.g., stealing private credentials such

6

2. Background

as banking information or injecting advertisements in every web request as was seen
in 2016. A popular Google Chrome extension called Live HTTP Headers, used for
inspecting web requests, suddenly begun injecting unwanted advertisements into
every page for every user [13]. The extension was eventually removed from the
Google Chrome Store. Other examples of browser extensions spying and injecting
code into users’ browsers was shown by [14] in which a JavaScript library was used
to track internet users as well as collect their browser history. Within the top 7000
Google Chrome and Mozilla Firefox extensions, the library was used 42 times with
a total of eight million installations.

Extensions that require many permissions in order to function may arouse unwanted
suspicion, therefore developers with malicious intent can spread out the required
permissions over multiple extensions. By doing this, multiple malicious installed
extensions can collude with each other by transferring data collected with different
permissions. This is further discussed in Section 2.3.

2.3 Collusion attacks

A collusion attack can be defined as two or more components that cooperate with
each other in order to achieve some malicious goal [4]. An example of this regarding
browser extensions may be: consider two web extensions A and B installed on the
same browser. Extension A’s functionality is to extract information from any web
page the user visits. Extension B can access the network channel and broadcast
and receive information from an external server. If the two extensions are analysed
individually, they may not arouse any suspicion. However, consider a scenario where
the two extensions can exchange information with each other. This might lead to
a problem since extension A can access sensitive information. It can for example
extract passwords or banking information from the user’s web page. If extension
B can acquire this information from extension A and send it to some external
server, both extensions are said to be preforming a collusion attack. An attack
that is performed with more than one extension is harder to detect and can pass
unnoticed [15]. Normally, security mechanisms that analyse malicious extensions
statically or dynamically only focus on a single extension which means that they can
not be used to detect colluding extensions. As previously mentioned, if an extension
requests too many privileges it may draw undesired attention to it. However by
splitting up the privileges among several extensions, the individual extension may
look less suspicious and thus harder to detect.

There exist multiple ways how extensions can cooperate when performing collusion
attacks. Web browsers have a feature rich API that extensions can utilise in order
to make network requests or access the local file system. In Google Chrome every
extension can send direct messages to other installed extensions. This feature is
available by default without needing any extra privileges [6]. This works by letting
extension B create a listener which is an event handler that waits for messages
sent to it. When extension A has collected information from the browser, it can

7

2. Background

send the information directly to the event handler created by B. The outcome is
that extension B have acquired information that it does not have access to with its
current privileges. This can be visualised in figure 2.2.

Extension A ——— Extension B

®

| @

@ Secure https://bank.example

®

Access your bank account.

External
server

John Doe

Log in

Figure 2.2: A scenario showing a collusion attack using message passing between
two extensions. In step 1 the user has accessed a page where she enters her log in
details. Since extension A can read the page it can extract the information, in this
case the log in details. In the second step, extension A passes the information to
extension B through the listener. Finally in the third step extension B can send the
information to an external server.

A different method is to share the information via shared states, for instance the
history or bookmarks. In order to access any shared states, the colluding extensions
need of course to have the necessary privileges.

Extensions can also use external servers to exchange information. Consider a sce-
nario where two extensions A and B are colluding. Both extensions gather differ-
ent sensitive information independently from each other and send it to an external
server. An example of this can be seen in Figure 2.3.

Indicates required permissions

(for the extension
v Web browser

External server

Figure 2.3: A scenario where three extensions with different privileges perform a
collusion attack. All three extensions communicates with the same external server.

2. Background

Extensions created by the same developer may cooperate more easily with each
other. A study [6] shows that 14.9% of the developers in the Google Chrome Store
publish multiple extensions. 70% of these developers have created extensions that
requires different permissions. The developer that required the most permissions,
i.e., the sum of all permissions from its extensions had published 6 extensions. The
amount of required privileges from each extension varied between 0 and 11.

2.4 Recorded Future

Recorded Future is a company that focuses on threat intelligence using machine
learning and natural language processing. Recorded Future collects data from a
wide range of technical, open, and closed sources which allows them to deliver threat
intelligence in real time. Figure 2.4 shows different types of sources Recorded Future
collects information from.

Technical ‘ Open ‘ Closed
Malware Infrastructure and Files Social Media Dark Web
Vulnerabilities Security Reporting Special Access
Phishing and Spam Black Hat Sites | Actor Engagement
Abuse and Infections Criminal Forums
Web Infrastructure
Vulnerabilities

Figure 2.4: Examples of different sources Recorded Future collects information
from.

Recorded Future’s machine learning technology allows them to predict certain events [10]
such as if an IP will become malicious in the future, even though such activity has
not been observed in the past. A visual presentation of Recorded Future’s intelli-
gence platform can been seen in Figure 2.5.

© 00 N O Utk W N

= =
N = O

2. Background

THREAT INTELLIGENCE POWERED BY MACHINE LEARNING #Recorded Future

RELEVANCE IN REAL TIME

Security Reporting
Black Hat Sites ~
Social Media

Threat Analysis
Vulnerability Prioritization

Threat and White Lists - Web Security Operati

q ecuri erations
Scans and Sensors Intelllgence N~ Net: yk Sp it
Malware Artifacts Engine etworksecurity

Dark Web
Special Access

Actor Engagement Machine Learning
and Natural

Language Processing

Incident Response
Forensics

Turns raw data into intelligence
Predicts potential risks
Highlights notable intelligence

Patented Technology
Over 20 billion data points
350 facts processed per second
8 years of historical holdings

Figure 2.5: Recorded Future’s intelligence platform visualised.

By using Recorded Future’s API that provides threat intelligence, we can detect
addresses classified as threats which can give an indication on which extensions that
may be colluding. Figure 2.2 shows the result from Recorded Future when querying
for google.com.

{
"data": {
"risk": {
"criticalityLabel":"None",
"rules":0,
"evidenceDetails":[],
"riskSummary":"No Risk Rules are currently observed.",
"criticality":0,
"score":0.0
}
}
X

Listing 2.2: Risk analysis from Recorded Future when quering domain
google.com.

The important fields for this work which can be found in figure 2.2 are evidenceDetails
and score. The field evidenceDetails provides the data that explains why a given
address has been classified as such. The score field gives an overall score for the
address between 0 - 100, where 100 is very malicious.

10

3

System Design

In order to download all the extensions provided by the Mozilla Firefox and Google
Chrome extension store, perform static analysis and visualising data, we built a
platform that includes the necessary components needed to achieve this goal. This
section presents the overall system design and describes its individual components
as well as how the results of the analysis are visualised.

The system has been built with the popular programming language Python [16]
(version 3.6). We chose Python because of its ease of development and its large
number of third-party libraries. Our system was run on a virtual machine with the
specifications shown in figure 3.1.

Operating System | CentOS 7

Memory 4 GB
Disk HDD 930GB
Processor Intel Xeon E3-1245 Quad-Core 3.4 Ghz

Internet bandwidth | 100mbit/s download, 10mbit/s upload

Table 3.1: Virtual Machine specifications

The virtual machine was hosted on a computer running VMware vSphere Hypervisor
6.5 [17].

The system design can be described in three different phases, the first phase involves
downloading all the extensions (and their previous versions) provided by the Mozilla
Firefox and Google Chrome extension store. This phase consists of two separate
download components, one that downloads extensions from Mozilla and one that
downloads extensions from Google. These separate components are needed because
Morzilla does not provide an API or a way to enumerate all their extensions easily.
Therefore it was necessary to build a program around Mozilla’s Add-on store in
order to correctly read and parse extensions provided by the store. Google however
provides a sitemap that makes it possible to easily enumerate extensions provided
by their store.

The download components are built using the Python multiprocessing [18] library
in order to achieve parallelism. This is preferable over using a single process to run
the software because of time. By using multiple processes the program can complete

11

3. System Design

more work in less time. Both components use a first in, first out FIFO queue to
store work.

The second phase is split into two parts, the first part performs static analysis of
the downloaded extensions to extract addresses found in the extension’s code. The
result of the static analysis is saved into a MongoDB server [19]. The second part
collects the extracted addresses from the database and sends them to Recorded
Future for threat analysis. Recorded Future performs their threat analysis using
machine learning to classify each address as well as to provide evidence for their
classification. The results are returned to our platform and saved to the database.

The third and final phase involves visualising the data stored in the database. The
visualisation is provided by a custom made web interface built on Flask [20] that
displays the data with numbers and graphs. By using the web interface it is very
easy to browse the results to find possible colluding extensions, domains/extensions
with highest threat score or find all domains used by any extension.

The entire flow of the system can be visualised in Figure 3.1.

Mozilla Firefox
Add-ons

—> | FoxyDownloader —\
@ Disk

—_— ChromeeDownl -—/ | @

Google Chrome
Store

Web interface «— MongoDB <« Analysis

°© | Jo

Recorded
Future’s API

Figure 3.1: Illustrates an overview of the system design. In step one, we execute
scripts that downloads extensions from Mozilla Firefox Add-ons and Google Chrome
Store. In step two, all extensions found on disk are analysed by our analysis process.
In the third step all extracted domains are sent to Recorded Future’s API for threat
analysis. In the fourth and final step, the collected data is presented and visualised
in the custom made web interface.

12

1

4

Implementation

This section describes how the system is implemented in detail and how each com-
ponent works.

4.1 Downloading extensions

Two separate programs for downloading extensions were implemented, one used
for Mozilla Firefox extensions and the other for Google Chrome extensions. The
programs are described in the following subsections.

4.1.1 Mozilla Firefox extensions

To download extensions provided by the Mozilla extension store, we developed a
program called FoxyDownloader. The implementation design follows a producer-
consumer paradigm, where one processor exists with the purpose of generating work
while there are multiple consumer processes that consumes work. When the program
is executed, the producer will begin by visiting the Most Popular Extensions page
at the Mozilla extension store [21]. This page will be referred to as the start page
for the remainder of this section. The start page contains all extensions ordered by
popularity. As of this writing, there exists 941 sub-pages with 20 extensions on each
page (the last page contains between 1-20 extensions), a total of 18,804 extensions
(not counting each extension’s previous versions). In order to extract download links
from each extension, FoxyDownloader uses Beautiful Soup [22] to parse the HTML
code for each page it visits.

The producer parses an extension by visiting the previous wversions page, which
contains all the released versions of an extension. The link to this page can be
found on the start page for each listed extension, this can be seen in listing 4.1.

<div data-version-supported="true" class="install featuredaddon
clickHijack" data-addon="1865" data-icon="https://addons.cdn.
mozilla.net/user-media/addon_icons/1/1865-32.png?modified
=1493199227" data-developers="/en-US/firefox/addon/adblock-plus/
developers" data-versions="/en-US/firefox/addon/1865/versions/"
data-name="Adblock Plus" data-min="38.0" data-max="*" data-is-
compatible="true" data-is-compatible-app="true" data-compat-
overrides="1[]">

13

SN

6

4. Implementation

<p class="install-button">
<a class="button add installer" data-hash="sha256:2
deb5616ae0ad17£d6345c6£8f8ec5bd8a8dblbdf8d8dad9995857ad2d
6454306" href="/firefox/downloads/latest/adblock-plus/

addon-1865-1latest .xpi?src=cb-btn-users">

Add to Firefox

</p></div>

Listing 4.1: Finding the previous versions page of an extension.

The page that contains all the versions of an extension can contain multiple sub-
pages depending on how may versions there exist. Each version contains a download
link which the producer will find and place into a queue (to generate work) for the
consumers to consume. Once the producer has found all the download links for
every version of the current extension, it will move to the next extension found in
the start page. The producer will sequentially generate download links according to
the order on the start page.

Once the producer has begun producing work (download links for extensions), con-
sumers will begin pulling items from the queue and start downloading each extension
to disk. When the producer has generated all work it can, it will push the value
None x (amount of consumers) into the queue meaning that once each consumer
reaches the end of the queue they will receive the value None and terminate. The
entire flow of the program can be visualised in figure 4.1.

Most poprular
Extensions

/> Extension 7
Producer 1 Extension 2 ——(2)——> | Find download links

> Extension N

Download extension | <—(5)—— Consumer <—@)——| Placeinto queue

Figure 4.1: Visualisation of FoxyDownloader’s execution flow

4.1.2 Google Chrome extensions

In order to download all extensions from Google Chrome store we developed a
program to ease this process. The program is called "ChromeeDownloader.py” and
an example of its execution can be seen in Listing 4.2.

14

4. Implementation

(venv) $ python chromeedownloder.py run

2 T T I N

/N NN N L NN N
LT O T T ONY V]
(2 N N e 2 /A N2 W I

[!] 113548 extension(s) were found in file.

A g gy g g) g g g)) g g g) g) g) g) g))))]

Progress U T 111 1 1117 1 11 11 11 17 11 11 11 1111 71 11 11 11 11 11 11 11 1111 1111 11] 113548/113548 Done!

Listing 4.2: Execution of ChromeeDownloader.py. 113548 extensions were found
and successfully processed.

The program requires the help of a JSON file in order to download extensions. The
JSON file, named extensions. json, contains URLs to an extension’s detail page
on Google Chrome store. The JSON file is generated with help of a script [23]
which parses and collects information from the sitemap of Google Chrome store.
The sitemap is a XML file and contains URLs to every extension detail page on
Google Chrome store.

Once extensions. json has been generated, ChromeeDownloader can use this file to
begin downloading extensions. Since there exist several thousands of extensions and
downloading all of them with one process may take time, therefore multiprocessing
has been implemented in the program. The number of processes can be chosen
by the user and each process is downloading extensions independently from others.
Before a process starts downloading an extension, it needs to extract the id and
version number, this is done by collecting metadata from the extension’s detail page
on Google Chrome Store. The version of an extension is needed for identification
since there might exist a duplicate extension but with different version number.
Once this has been done the program can start downloading the extension. The file
type of the extension is CRX Package Format which is a ZIP archive but with an
extended header [24]. When the ZIP archive has been extracted, a file is created
that contains some information about the extension and the date it was downloaded.
This file can help to speed up the process and make the script more efficient if same
extension URL is found multiple times. In the beginning when the id and version are
extracted, the process reads the special file to check whether the extension is already
downloaded, if true it skips this extension and starts with next one. This file gives
and indication that the whole extension is present on the disk. In other words, it
can differentiate between a fully downloaded extension and a partially downloaded
extension caused by some error or by termination of the process by the user.

Google Chrome Store does not store previous versions of an extension, in order to get
the previous version they need to be downloaded from somewhere else. To overcome
this problem we used a repository archive [25] that contains previous extension ver-
sions from Google Chrome Store, however the repository was started in 2016 meaning
extensions before that date are not available. We implemented another script called
generate_links.py that collects every extension on the disk that was downloaded
from Google Chrome Store and then queries the archive for older versions. In the end

15

4. Implementation

the script will produce another JSON file called 01d_extensions. json that contains
download URLs for older versions. By changing the command to archive when ex-
ecuting ChromeeDownloader.py, the program can use old_extensions.json and
download extensions from the archive to the disk. A visualisation of the complete
execution flow can be seen in Figure 4.2.

® ®
Google Chrome Save extension
Store links to JSON file
Vg ’ T

L@ | e

Download 0
. . —_—> Save to disk
extension versions

Figure 4.2: Visualisation of ChromeeDownloader’s execution flow. In step 1, ex-
tension links from the sitemap of Google Chrome store are saved to a JSON file.
In step 2, ChromeeDownloader reads the JSON file and downloads all extensions to
disk. In step 3, all extensions from disk are read and a query is sent to the archive
to see whether older versions exists. If found, a download link of the version is saved
to a JSON file. The last step, i.e., step 4, ChromeeDownloader uses the new JSON
file to download extensions from the archive.

4.2 Designing the analysis process

Once all of the extensions have been downloaded, the system will begin analysing
the extensions. The analysis process can be described in three steps, generating a
list of extensions, static analysis and threat analysis. A visualisation of the analysis
process can be seen in Figure 4.3.

5 Save paths to
] <« Find extensions
g a JSON file fnd extenst
2
g
& l
" Ext'ract exte.nsmn e Extract domains ——> | Validate domains
5 information
>
©
c
©
L
5 l
(2]
Query all domains Save domains and
€« .
to Recorded Future extension

Figure 4.3: Visualisation of the static analysis process.

4.2.1 Generate extensions

The program begins from step 1, by generating a list of extensions to be analysed
from a folder containing all the extensions. It starts by letting the user enter a path

16

4. Implementation

which gives the program a starting point on where to look for extensions. Every
extension contains either a manifest.json or install.rdf file, by searching for
these files we can identify an extension and store it in a list. Once the program is
completed, every extension that was found will be stored in a JSON file.

4.2.2 Static analysis

The analysis process makes use of Python’s multiprocessing library in order to make
the program run faster. The program follows a producer-consumer design similar
to the previous components. In the analysis process the producer is responsible for
reading the paths from the previously generated JSON file and place them into a
queue. The consumers fetch the paths of the extensions from the queue and begin
extracting information such as name, version and author from its manifest file.

The process of extracting information from a manifest file has been heavily adapted
to the developers of the extensions. We noticed that many developers does not
follow the recommendation on how to write a manifest file, this problem occurred
mostly for extensions with install.rdf files. Some of the problems were comments
in JSON files, many developers wrote C/C++ styled comments in their JSON files
even though it is not supported in JSON [26], this led to the JSON parser failing.
Another problem was the syntax style in install.rdf files, we found that the XML
tags were written differently, for instance some had uppercase letters where they do
not belong and vice versa. According to the official documentation [27] information
in install.rdf should be written inside of XML elements (as can be seen in List-
ing 4.3) however, we have found multiple occurrence where the information were
written in the attributes of the element (Listing 4.4), in some cases developers used
both attributes and elements, i.e., some information was written in the element and
the other ones in the attribute. Still, there are occurrences where our parser fails
due to syntax errors. When this happens, information will be extracted from the
directory path since it contains a unique id and version number.

<Description about="urn:mozilla 1 <Description about="urn:mozilla
:install -manifest"> :install —-manifest">
<em:id>{id}</em:id> em:id="{id}"
<em:name>Ext name</em:name> em:name="Ext name"
<em:version>1.0.0</em:
version >
</Description>

em:version="1.0.0"
</Description>

Tt W

Listing 4.4: Information specified
Listing 4.3: Information specified inside XML attributes.

inside XML elements.

17

4. Implementation

4.2.2.1 Regular Expressions

The static analysis is performed by searching for addresses in the source code of
all files stored in an extension. In order match and extract addresses, regular ex-
pressions (regex) are used. Regular expressions are used to create search patterns
for finding a specific sequence of characters such as a phone number, URL or an
IPv4 address. Figure 4.4 shows how searching for a sequence of characters can be
expressed with regular expressions.

Regular Expression ‘ String ‘ Result
(\d{4}-\d{6}) | My number is 0750-346781 | 0750-346781
([A-Z]) Cozy Hawk Apple Logan | CHALMERS

Merry Ed Rogue Sun

Figure 4.4: Regular Expression examples.

Our initial regex pattern searched for domains and IP addresses in the follow-
ing format http(s)://www.domain.com, www.domain.com, domain.com, but this
pattern resulted in a large amount of false positives. Addresses classified as false
positives are addresses found in contexts that are not used in any form of commu-
nication or computation. An example of this could be a block of text presenting
some information which contains several addresses. While these addresses may be
of interest, it is impossible through static analysis to understand the purpose of
these addresses without manually analysing or performing dynamic analysis. This
is discussed further in Chapter 7.

To reduce the amount of false positives we constructed a regex pattern that searched
for addresses in the context of variables and functions, e.g.,

var domain = "www.dubell.io" or xhr.open("GET", "https://dubell.io");.
The updated regex yielded better results and reduced the amount of false positives.

With the updated regex, we noticed some problems. It performed well most of
the time but sometimes it lead to serious problems and affected the process’s per-
formance. The problem was the code format in some files. We found that many
developers uglifyed or minified their code which makes the code appear in one line.
When our regex found a line containing e.g., 50,000 characters, the process time
increased. In some cases, it took hours to find a match in a string with more than
100,000 characters. The reason why the process time increases with larger strings
is due to the fact that Python’s regular expression library called Re, is based on
recursive backtracking. The algorithm used by Re is simple but can be slow because
it can read a string multiple times before it finds a match [28]. If no match is found,
the regex must try all possible patterns before it gives up, which means that the
algorithm has a worst-case exponential complexity. An example of this problem can
be explained as follows: consider a regex (a?)"a™ ((a?)?a? is shorthand for a?a?aa)
which is used on string a”. The performance of the regex on the string is illustrated
in Figure 4.5. As can be seen the time increases exponentially the longer the string

18

4. Implementation

is. To match a string with the length of 29 characters takes little more than 60
seconds.

60 —

40 —

Time (s)

20 —

0 | | |
0 10 20 30

Number of characters

Figure 4.5: Processing time of regex (a?)"a™ on string a”. [28].

To solve this problem we tried to find a regex algorithm with better time complexity.
We did find algorithms that are using finite automaton, however they were not fully
implemented and could not replace Python’s Re library completely. To overcome
this obstacle we used a beautifier to reformat the problematic files, however it did
create a new problem for us. The beatify scripts loads the file into memory during
its process, and may produce some issues if the beautifier is used together with
multiprocessing. We found that if multiple large files were beatified during the same
time, the memory would be filled up leading to a deadlock state in the program.

4.2.2.2 Validating extracted addresses

Performing static analysis by using regular expressions to extract addresses proved
to be difficult. This is because there are many patterns in the source code of the ex-
tensions that resemble the appearance of a domain name or an IP address. Therefore
it is necessary to validate extracted addresses and to remove any false positives.

Validating extracted domains and IP addresses are done in two steps. The first step
when validating domain names is to check whether its top-level-domain (TLD) is
valid. The last step is to query DNS resolvers for any resource records. If the DNS
returns any resource records such as A, AAAA, TXT or NS, then the domain has
been successfully validated. IP addresses are validated by first checking if the IP
follows the specification of a valid IPv4 address. Next step is to check if the IP
belongs to any private or reserved IP address spaces, if not then the IP is considered
validated.

4.2.2.3 Saving data

Once all domains and IP addresses have been extracted from the extension’s source
files, the results are stored in our MongoDB database. We use two collections, one

19

B W N -

© 00 N O U W N

e e e
T W N = O

4. Implementation

that keeps information about extensions and the other one that keeps information
about domains and IP addresses. By using this we prevent duplication of domains
in our database. Before any domain is saved, a database query is sent to check
whether the domain already exist in our database, if not the domain will be inserted
inside the domain collection. An example of domain object in the database can be
seen in Listing 4.5.

"_id" : ObjectId("5919bc7£f0aff0066£fe98736f"),
"name" : "google.com"

Listing 4.5: An example of an object an object in domain collection that contains
information about a domain.

When all addresses found for a given extension have been saved to the database,
we collect each domain’s Objectld and save them to the extension’s address list. An
example of an extension object in the database can be seen in Listing 4.6.

"_id" : ObjectId("58fd3d2a0aff00704727dd8e"),

"version" : "2.7.1-signed",

"name" : "Multi Dictionary Lookup",

"author" : "Nohup Technologies",

"browser" : "Mozilla Firefox",

"addresses" : [
ObjectId ("58£fd3d2a0aff00704727dd69") ,
ObjectId ("58fd3d2a0aff00704727dd64") ,
ObjectId("58e253300aff0074b529f7e2") ,

1,
"created_at" : ISO0Date("2017-04-24T01:47:54.962Z"),
"modified_at" : ISODate("2017-04-24T01:47:54.962Z")

Listing 4.6: An example of an object in the extension collection that contains
information about an extension.

4.2.3 Threat analysis

The last process is threat analysis from Recorded Future. This is done by read-
ing every object in the domain collection and extracting the name of address. The
address name is sent to Recorded Future via their API which returns a JSON ob-
ject containing their threat analysis. The threat analysis from Recorded Future is
appended to the address and stored under the key recorded future. When querying
Recorded Future multiple times, we can simply retrieve objects which do not include
this key. By doing this we prevent sending multiple requests for the same address to
Recorded Future. An example of how an address object looks after threat analysis
from Recorded Future can be seen in Listing 4.7.

20

© 00 N O Ut W N

= =
=]

4. Implementation

{
"_id" : ObjectId("5919bc7f0aff0066fe98736f"),
"name" : "google.com",
"recorded_future" : {
"criticalityLabel" : "None",
"criticality" : O,
"score" : O,
"evidenceDetails" : [1]
i
"modified_at" : ISODate("2017-05-19T09:39:35.682Z")
}

Listing 4.7: An example of an object in the collection that contains information
about a domain and threat analysis from Recorded Future.

4.3 Visualising collected data

The final step in the implementation process is to visualise the collected data. This
is done by creating a Flask [20] web application that interfaces with the database
server. Visualising the data involves writing database queries which returns the
desired results. Figure 4.6 shows how we visualise the overall statistics and figure
4.8 shows malicious domains grouped by country.

Ll Overall Statistics

Total Extensions Mozilla Firefox Extensions Google Chrome Extensions
279250 70169 208737
Clean Domains Suspicious Domains Malicious Domains
111910 396 131
Unusual Domains Unique domains Possible Colluding Extensions
5280 505322 1037

Figure 4.6: A screenshot from the web application that shows some statistics.

Every address found has their own detail page where information about the col-
lected address can be viewed. Figure 4.7 shows the evidence details for the received
classification.

21

4. Implementation

74.220.199.8 593c8cdb0aff0057d627b34d

Name: 74.220.199.8 Risk Score: 924.0
Risk Label: Used by: 213 extensions

Reason for classification
= Historical Threat Researcher

o 1sighting on 1 source: @DGAFeedAlerts. Most recent tweet: New banjori domain. Domain: https://t.co/RaxQuwAEeS IP: 74.220.199.8 NS: https:/ft.co/gTWeBLChSK
https://t.co/2kDAWPNDsd. Most recent link (Feb 8, 2017): https:/jtwitter.com/DGAFeedAlerts/statuses/820436373618810883

= Historical Multicategory Blacklist
s 19 sightings on 1 source: hpHosts Latest Additions. Most recent link (Apr 13, 2017): http:/fhosts-file.net/?s=www.iamamen.com
« Recent Positive Malware Verdict

s 1sighting on 1source: VirusTetal Comments. Most recent link (May 18, 2017):
hitps://www.virustotal.com/file/4ad7d2eae0e7201aa74507206d21205c699h1291d46ccadeac34c33a6971c 3 7/analysis/

« Phishing Host
o 10 sightings on 1 source: PhishTank: Phishing Reports (verified phish). IP Address reported as host of 10 active phishing URLs including
hxxp:/jhowdoeslifework.com/iha/addbd0e21482bd3c49bag108a7fc 33ba login.php?
run=_logi ion=c. 20 7 d 046880 e,
hoxxp: ifework iha/8972 , hxxp: fwr ideli p-admi ile/fi ile.dropbox/

+ Current C&C Server

o 1sighting on 1 source: Bambenek Consuiting C&C Blocklist.

Figure 4.7: A screenshot from the web application showing the domain information
page. A IP which has been classified as Very Malicious.

Viewing malicious domains grouped by country is also possible to view, as can been
seen in Figure 4.8. This gives an interesting indication to where most malicious
domains registered.

Malicious domains by country

W

Figure 4.8: Malicious domains grouped by country.

22

Tt o W N =

T W N =

O

Evaluation

Before performing the static analysis on the collected extensions, it is necessary to
evaluate the analysis process in order to reduce the amount of false positives and
verifying that addresses are being extracted.

The evaluation of the static analysis was performed in two phases. Phase one in-
volved creating two custom made extensions that are colluding. Phase two involved
choosing a total of 20 random extensions and performing both automatic and man-
ual analysis on the extensions. The extracted addresses from the automatic and
manual analysis are compared and the results are presented.

5.1 Custom made colluding extension

The first evaluation that was performed involved custom made extensions. Two
extensions were created that together performs a collusion attack. Their critical
code can be seen in Listing 5.1 and 5.2. As can be seen they both use the same
external server (i.e., domain dubell.io) for communication.

var targetPage = "https://dubell.io/about?chromyextension=true"

var x = new XMLHttpRequest ();
x.open("GET", targetPage);
x.send ()

Listing 5.1: Example of one of the custom made extensions.

document .body.style.border = "5px solid red";
var targetPage = "https://dubell.io/about?foxyextension=true";
navigator.sendBeacon(targetPage, "hello");

Listing 5.2: Example of one of the custom made extensions.

The extensions were then checked in our analysis process to see whether the collusion
could be detected. The result was that both extensions had received dubell.io
under its addresses, as can be seen in Listing 5.3

23

5. Evaluation

> db.domains.find ({"name": "dubell.io"}, {"name": 13})

L 7 _ade® g ObjeCtId("5938aa560aff00059dd60443"), "name" : "dubell.io
"}

>

> db.analysis.find ({"addresses": {$in: [0ObjectId("5938
aab60aff00059dd60443")1}}, {"name": 1})

{ "_id" : ObjectId("593c1fa70aff0057d3279388"), "name" : "
ChromyDownloader" 3}
{ "_id" : ObjectId("593c1faf0aff0057d627948b"), "name" : "

FoxyExtension" }

Listing 5.3: The result of the analysis process when processed on the custom made
extensions. Both extensions are using dubell.io for communication.

5.2 Testing our Analysis

As over 270,000 extensions were downloaded, analysing them all manually is an
unfeasible task. Therefore, we proceed to test how the previous automatic analysis
works by performing some (manual) tests over a randomly selected subset of the
extensions. Such analysis may give a slight indication on the behaviour of the
automatic process, and how it performs.

Before the analysis started, 10 Google Chrome extensions and 10 Firefox Extensions
were randomly selected from the extensions that were downloaded and available on
the disk. Every file of the extensions was manually examined and compared with the
automatic analysis. We focused on domains and IP addresses that were somehow
linked to an external communication, other domains were not considered. A short
summary of the result of the analysis can be seen Tables 5.1 and 5.2 and a detailed
result can bee seen in Appendix A.

24

5. Evaluation

Extension No. | Test (man- | Automatic | accuracy

ual analy- | analysis

sis)
Extension 1 6 7 85.7%
Extension 2 0 0 100%
Extension 3 5 2 40%
Extension 4 7 7 100%
Extension 5 10 9 90%
Extension 6 1 1 100%
Extension 7 0 0 100%
Extension 8 13 13 100%
Extension 9 15 14 93.3%
Extension 10 1 1 100%

Average accuracy: 90.90%

Table 5.1: Evaluation of 10 random Google Chrome extensions and the accuracy

of the script.

Extension No. | Test (man- | Automatic | accuracy

ual analy- | analysis

sis)
Extension 1 2 2 100%
Extension 2 11 11 100%
Extension 3 0 2 0%
Extension 4 1 1 100%
Extension 5 8 2 25%
Extension 6 4 4 100%
Extension 7 2 2 100%
Extension 8 2 2 100%
Extension 9 2 2 100%
Extension 10 14 14 100%

Average accuracy: 82.5%

Table 5.2: Evaluation of 10 random Mozilla Firefox extensions and the accuracy

of the script.

The accuracy is calculated by counting the total amount of domains found during
the manual and automatic analysis. The calculation can be expressed as card(AN
B) =+ card(A U B), where A and B represent the set containing the domains found
during the manual and automatic analysis, respectively.

The result from this evaluation shows that the automatic analysis process achieves
90.90% accuracy for Google Chrome extensions while it achieves 82.5% accuracy for
Mozilla Firefox extensions. Even though these results are promising, we are not in

25

5. Evaluation

the position of making claims about the general accuracy due to the low sample size
for our tests.

26

Results

6.1 Extensions

In total 279,180 extension versions were downloaded and used in the analysis process,
of these 70,154 were Morzilla Firefox extensions and the rest, 209,026, were Google
Chrome extension. A detailed list of this can be seen in Table 6.1.

Mozilla Firefox extensions

Number of extensions found from Mozilla 18,841
Firefox Add-ons
Number of downloaded extensions 15,819
Number of failed downloads 173
Number of previous versions 70,154
Elapsed time 371 minutes
Disk Space 70 GB
Google Chrome extensions
Number of extensions found from Google 113,548
Chrome store
Number of failed downloads 6,915
Number of downloaded extensions 106,633
Elapsed time 476 minutes
Number of downloaded versions 209,026
Disk Space 636 GB

Table 6.1: Information about the downloaded extensions.

6.1.1 Mozilla Firefox extensions

During the download of Firefox extensions, there occurred 4 unique errors from a
total of 173 errors. The errors include, HTTP Error 404: Not Found, HTTP Error
500: Internal Server Error, BadZipFiles and HTTP Connection: Mazx retries
exceeded. When comparing the amount of downloaded extensions with the amount of
extensions reported on Mozilla’s extension store, a large discrepancy was found. The
reason for this difference was because of the fact that there existed 3022 duplicate
extensions on their store.

27

6. Results

6.1.2 Google Chrome extensions

When downloading extensions from Google Chrome store, there occurred 6,915 er-
rors. The most commons error messages were HTTP Error 401: Unauthorised,
Could not extract version from detail page and Not found, they occurred
6,213, 577 and 87 times respectively. The first error message HTTP Error 401,
was produced due to that the extension requires the user to be signed in with her
Google account in order to download it. This requirement is normally present if
the extension costs money and must be bought. The second error message is due
to parsing problems, meaning the program could not extract information from the
page. However, wrong pages were parsed since the links were redirected to another
page pointing to G Suite Marketplace. The third and last error occurred when the
Google chrome store returned HTTP status 404, which means the specific extension
could not be found.

6.2 Analysis

All extensions were analysed and 505,322 domains and IP addresses could be ex-
tracted from 190,479 extensions. No domains or IP addresses were found from
the remaining the 88,771 extensions. Of the extracted domains, only 117,717 were
given a classification from Recorded Future. Recorded Future’s threat analysis also
showed that 111,910 domains and IP addresses were not considered to be any threat.
However, the remaining did receive a classification which is illustrated in Figure 6.1.

Very Malicious | 3
Malicious] 128
Suspicious j 396
Unusual 5280
L L L L L)
0 1000 2000 3000 4000 5000 6000

Figure 6.1: Number of domains and IP addresses that were given classifications:
very malicious, malicious, suspicious, unusual from Recorded Future’s threat anal-
ysis.

173,433 extensions used a domain or IP address that can be found in other exten-
sions. A total of 17,046 extensions used unique domains, i.e., domains only found in
those particular extensions. Of those extensions that used a domain or IP address
also used by other extensions, 109,972 of them used a domain that was given a
classification from Recorded Future. Most of these extensions used domains or IP
address that was classified as None or Unusual, the numbers were 87,454 and 88,091

28

6. Results

Very Malicious | 0

Malicious 1037

Suspicious 13897

0 3000 6000 9000 12000 15000

Figure 6.2: Number of extensions that used domains and IP addresses that were
given classifications: very malicious, malicious, suspicious from Recorded Future’s
threat analysis. Only domains and IP addresses also used by other extensions are
shown.

respectively. The remaining extensions used domains with a different classification,
which can be seen in Figure 6.2.

Of the malicious domains used by multiple extensions, 948 could be found in Google
Chrome extensions. The remaining 89 domains were used by Mozilla Firefox exten-
sions. Similar proportion can be seen with the suspicious domains, in which 11,899
were used by Google Chrome extensions and 1,962 by Mozilla Firefox extensions.
On average, domains with the classification Malicious and Suspicious did occur
more frequently in Google Chrome, if compared with the total amount of extensions.
This is illustrated in Figure 6.3.

32.2%
FIREFOX

67.8%
CHROME

Figure 6.3: Illustrates the average usage of malicious, suspicious domains and IP
addresses in Google Chrome and Mozilla Firefox. The amount of malicious domains
in this circle diagram is 5.00% for Google Chrome and 1.40% for Mozilla Firefox,
this is illustrated with a darker shade in the diagram.

From our results we can conclude that the amount of possible colluding extensions
is 1,037, which is 0.37% of all extensions that we analysed.

29

6. Results

30

/

Discussion

Before this research we did not know if there existed browser extensions performing
collusion attacks via external servers. The goal of this research has been to uncover
potential colluding browser extensions and to give an indication to which extensions
and domains are malicious. In order to achieve this goal, a platform was developed
for downloading and performing static analysis on browser extensions, as discussed
in Chapter 4. Recorded future’s web intelligence engine was used for classifying
domains and IP addresses, their platform was discussed in Chapter 2.

During the implementation phase we identified some limitations and obstacles.
Recorded Future allows us to classify addresses and provides evidence for its classi-
fication. However, one can not claim with 100% certainty that a specific domain or
IP is clean or malicious. If an address has been classified as clean, that means that
Recorded Future has not recorded any malicious activity regarding this address.
The specific address could still be malicious, Recorded future has just not collected
any sightings for it. Similarly if an extension is found to be colluding via a domain
which has been classified as suspicious or malicious, this particular domain could
be part of a popular online service that has been used by other malware and thus
been classified as malicious. Nevertheless, Recorded Future does provide evidence
for its classification and can thus give an indication to why a domain has received
a particular classification. Other limitations were found during the static analysis
process, that proved to be difficult.

When performing the static analysis, regular expressions are used to find patterns
that match domain names and IP addresses. This works fine in general but in the
case of this research, the goal is to find addresses used in the context of external
communication. With regex, one can define many patterns that look for addresses
in different contexts, e.g., variable definitions and during function calls. While this
method works, there is a chance some addresses will be disregarded because they
were specified in a format that was not anticipated. There is also the possibility that
valid addresses will be matched, but are not used for any communication. These
could be addresses specified in a random string.

Since browser extensions are dynamic and event driven, it is difficult to understand
the behaviour of an extension with a high degree of certainty, simply through static
analysis. Browser extensions can be triggered in many different ways, a few of these
ways include activating when a specific website is being visited or during a specific

31

7. Discussion

time during the day. These types of extensions are very hard if not impossible to
analyse correctly through static methods.

Other methods that could be used to accurately detect addresses used in communi-
cation include dynamic analysis and Artificial Intelligence (AI). Dynamic analysis
involves running the browser extension in a controlled environment and analysing its
behaviour. This method allows researchers to identify how browser extensions may
interact with external servers. However as previously mentioned, browser extensions
can be programmed to only execute under set of pre-determined parameters, e.g.,
time of day.

Another option would be to use Al. By training an AI on multiple extensions to
learn when an address is correct, i.e., being used for external communication, the
analysis process to could possibly with a higher degree of certainty detect the correct
addresses. This method could potentially be combined with dynamic analysis. By
analysing an extension’s behaviour and monitoring its input/output, an Al can per-
haps learn how communication with external servers look like. Understanding how
and when a specific browser extension is executed is vital, for performing analysis
with high accuracy.

Dealing with obfuscation is also an important aspect. While our analysis process
can deal with some obfuscation techniques, it is not enough. There exists infinitive
different ways to obfuscate a piece of code. Simply trying to detect certain ob-
fuscation methods are not enough. To overcome obfuscated code when performing
an analysis of a browser extension, pre-compiling the code would compute all the
values, functions and therefore "remove' the obfuscated code. This method would
greatly contribute to the field.

7.1 Future work

We believe there is much research to be done when performing analysis of browser
extensions. As discussed in the previous section, areas that could greatly improve
future research include:

e Dynamic Analysis
e De-obfuscation techniques
o Artificial Intelligence methods

Expanding the analysis process to support more browser extension stores such as
the Windows Store, in order to analyse more browser extensions would offer greater
insight to the types of threats that are present for each store. Modern browser ex-
tensions are increasingly becoming more cross-platform, meaning browser extensions
developed for Google Chrome will work in Mozilla Firefox and vice verse.

In addition to our work, we would like to develop an extension that users can install
in their browser to find out if any of their other installed extensions are colluding.

32

7. Discussion

This would be done by hosting our platform online in order for the extension to
query the platform for information. By providing this service users can see which
of their extensions are communicating with malicious servers. This would also be
useful in the event of an extension turning malicious in the future by introducing
malicious servers, one the browser extension has received a great deal of users. The
platform would be constantly analysing extensions and would detect this change.

33

7. Discussion

34

3

Conclusion

There exists different types of collusion attacks regarding browser extensions. In
this paper, a particular from of collusion attack was investigated which are browser
extensions performing collusion attacks in collaboration with external servers. In
order to detect these browser extensions, a platform was developed to download
and perform static analysis on all extensions provided by the Mozilla Firefox and
Google Chrome store. Recorded Future’s threat intelligence was used for classifying
domains and IP addresses extracted from extensions. The proposed method found
1,037 potentially colluding extensions and 131 domains and IP addresses classified
as malicious by Recorded Future.

The method has however, shown to have some limitations. The static analysis is
based on regular expressions which searches for domains and IPs in the context of
communication. Domains and IPs can be specified in several different ways and
can also be obfuscated in order to hide the address. As a result, static analysis
in combination with regular expressions have proven to be difficult to with 100%
accuracy find addresses used in external communication. Regular expressions are
based on creating search patterns, meaning there might exist a domain specified
in a way that the search pattern did not anticipate. Therefore, addresses used
in external communication might be disregarded. Similarly, by creating a more
relaxed regular expression, addresses not used in external communication might be
extracted, producing a false-positive.

Regular expressions, although very good for finding patterns, is not the ideal tool
for statically analysing browser extensions. When using regular expressions, it is
necessary to create a balance between matching false-positives and addresses being
used in external communication. However, despite these limitations, the results of
this research has proven the existence of possible colluding extensions and provided
a great starting point for future research.

Protecting against colluding browser extensions can be very difficult for the average
internet user. This is due to the fact that the browser does not inform the user when
extensions collect private information and send them to an external server. Browsers
could force a more granular permission model which allow users to grant permission
to specific actions made by extensions, such as sending data to a specific server.
Other countermeasures include providing the user with a complete history of an
extension’s activity, which would include events such as collecting information from
web pages and transmitting the data to an external server. This kind of activity
could reveal malicious intent which would help detecting colluding extensions.

35

8. Conclusion

36

[11]

[12]

Bibliography

Google Chrome, Manifest file format, 2017-03-16, [Online]. Available: https:
//developer.chrome.com/extensions/manifest.

——, Permission warnings, 2017-03-16, [Online]. Available: https://developer.
chrome.com/extensions/permission_warnings.

L. Liu, X. Zhang, G. Yan, S. Chen, et al., “Chrome extensions: Threat analysis
and countermeasures.”, in NDSS, 2012.

A. Saini, M. S. Gaur, V. Laxmi, T. Singhal, and M. Conti, “Privacy leakage
attacks in browsers by colluding extensions”, in Information Systems Security:
10th International Conference, ICISS 2014, Hyderabad, India, December 16-
20, 201/. Proceedings, Springer International Publishing, 2014, pp. 257-276.
F. Schaub, A. Marella, P. Kalvani, B. Ur, C. Pan, E. Forney, and L. F. Cranor,
“Watching them watching me: Browser extensions’ impact on user privacy
awareness and concern”, in NDSS, 2016.

L. Bauer, S. Cai, L. Jia, T. Passaro, and Y. Tian, “Analyzing the dangers posed
by chrome extensions”, in Communications and Network Security (CNS), 201}
IEEE Conference on, IEEE, 2014, pp. 184-192.

M. D. Network and individual contributors, What are webextensions?, Mar.
2017. [Online]. Available: https://developer .mozilla.org/en-US/Add-
ons/WebExtensions/What_are WebExtensions.

NetMarketShare, Desktop top browser share trend. [Online]. Available: https:
//www.netmarketshare.com/.

StatCounter, Top & browsers on dec 2016. [Online]. Available: http://gs.
statcounter.com/#desktop-browser-ww-monthly-201612-201612-bar.
Recorded Future, Patented technology: Web intelligence engine, 2017-02-21,
[Online]. Available: https://www.recordedfuture.com/web-intelligence-
engine/.

Raymond Hill, Ublock origin - an efficient blocker for chromium and firefoz.
fast and lean. 2017-05-21, [Online]. Available: https://github.com/gorhill/
uBlock.

P. K. Akshay Dev and K. P. Jevitha, “Stride based analysis of the chrome
browser extensions api”, in Proceedings of the 5th International Conference on
Frontiers in Intelligent Computing: Theory and Applications : FICTA 2016,
Volume 2, S. C. Satapathy, V. Bhateja, S. K. Udgata, and P. K. Pattnaik, Eds.
Singapore: Springer Singapore, 2017, pp. 169-178, 1SBN: 978-981-10-3156-4.
DOI: 10.1007/978-981-10-3156-4_17. [Online|. Available: http://dx.doi.
org/10.1007/978-981-10-3156-4_17.

37

https://developer.chrome.com/extensions/manifest
https://developer.chrome.com/extensions/manifest
https://developer.chrome.com/extensions/permission_warnings
https://developer.chrome.com/extensions/permission_warnings
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/What_are_WebExtensions
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/What_are_WebExtensions
https://www.netmarketshare.com/
https://www.netmarketshare.com/
http://gs.statcounter.com/#desktop-browser-ww-monthly-201612-201612-bar
http://gs.statcounter.com/#desktop-browser-ww-monthly-201612-201612-bar
https://www.recordedfuture.com/web-intelligence-engine/
https://www.recordedfuture.com/web-intelligence-engine/
https://github.com/gorhill/uBlock
https://github.com/gorhill/uBlock
https://doi.org/10.1007/978-981-10-3156-4_17
http://dx.doi.org/10.1007/978-981-10-3156-4_17
http://dx.doi.org/10.1007/978-981-10-3156-4_17

Bibliography

[13]

38

Eric Capuano, When browser extensions go rogue, 2017-02-21, [Online|. Avail-
able: https://blog.ecapuano.com/when-browser-extensions-go-rogue/.
M. Weissbacher, These browser extensions spy on 8 million users, 2016.

A. Saini, M. S. Gaur, V. Laxmi, and M. Conti, “Colluding browser extension
attack on user privacy and its implication for web browsers”, Computers €&
Security, vol. 63, pp. 14-28, 2016.

Python, Welcome to python, 2017-04-24, [Online]. Available: https://www.
python.org/.

VMware, Free VMware vSphere Hypervisor, free virtualization (esxi), 2017-
04-24, [Online]. Available: http://www . vmware . com/products/vsphere-
hypervisor.html.

The Python Standard Library, Multiprocessing — process-based parallelism,
2017-04-26, [Online]. Available: https://docs.python.org/3.6/1library/
multiprocessing.html.

mongodb, Mongodb for giant ideas | mongodb, 2017-04-24, [Online]. Available:
https://www.mongodb.com/.

Flask, Welcome | flask (a python microframework), 2017-04-24, [Online|. Avail-
able: http://flask.pocoo.org/.

Mozilla, Mozilla addons - most popular extensions, 2017-05-16, [Online|. Avail-
able: https://addons.mozilla.org/en-US/firefox/extensions/7sort=
users.

Leonard Richardson, Beautiful soup, 2017-05-16, [Online]. Available: https:
//www.crummy . com/software/BeautifulSoup/.

mdamian, Github - mdamien/chrome-extensions-archive: Archive all the chrome
extensions. [Online]. Available: https://github . com/mdamien / chrome -
extensions—-archive.

Google Chrome, Crz package format, 2017-04-25, [Online|. Available: https:
//developer.chrome.com/extensions/crx.

D. Marié, Chrome extensions archive, 2017-05-28. [Online]. Available: https:
//crx.dam.io/.

D. Crockford, “The application/json media type for javascript object notation
(json)”, 2006, RFC 4627.

Mozilla Foundation, Install manifests, 2017-05-16, [Online]. Available: https:
//developer.mozilla.org/en-US/Add-ons/Install_Manifests.

R. Cox, Regular expression matching can be simple and fast, Jan. 2007. [On-
line]. Available: https://swtch.com/~rsc/regexp/regexpl.html.

https://blog.ecapuano.com/when-browser-extensions-go-rogue/
https://www.python.org/
https://www.python.org/
http://www.vmware.com/products/vsphere-hypervisor.html
http://www.vmware.com/products/vsphere-hypervisor.html
https://docs.python.org/3.6/library/multiprocessing.html
https://docs.python.org/3.6/library/multiprocessing.html
https://www.mongodb.com/
http://flask.pocoo.org/
https://addons.mozilla.org/en-US/firefox/extensions/?sort=users
https://addons.mozilla.org/en-US/firefox/extensions/?sort=users
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://github.com/mdamien/chrome-extensions-archive
https://github.com/mdamien/chrome-extensions-archive
https://developer.chrome.com/extensions/crx
https://developer.chrome.com/extensions/crx
https://crx.dam.io/
https://crx.dam.io/
https://developer.mozilla.org/en-US/Add-ons/Install_Manifests
https://developer.mozilla.org/en-US/Add-ons/Install_Manifests
https://swtch.com/~rsc/regexp/regexp1.html

A

Evaluation

A. Evaluation

IT

The following formula was used to calculate the accuracy for the test:
card(AN B) + card(AU B)

A represent the set of domains found in the manual analysis while B represent the set found in
the automatic analysis. If AN B = AU B then the accuracy for the test is 100%. The accuracy is
decreased if false positives is found in the manual analysis and if domains are present in automatic
analysis but missing in the manual test.

1 Evaluation of Google Chrome Extensions

10 random Google Chrome Extensions have been selected and manually analysed and compared
with our script.

1.1 Extension number 1

Random integer 24292
Extension name Code Climate
Extension version 620

Found domains & IP addresses

Manual analysis Automatic analysis

docs.codeclimate.com docs.codeclimate.com
api.codeclimate.com api.codeclimate.com
codeclimate.com codeclimate.com
github.com github.com
api.segment.io api.segment.io
notify.bugsnag.com notify.bugsnag.com
gmail.com
Total: 6 ‘ Total: 7

Accuracy: 85.7%

A. Evaluation

1.2

1.3

Extension number 2
Random integer 123247
Extension name Smart TOC
Extension version 0.3.5

Found domains & IP addresses

Manual analysis ‘ Automatic analysis
None ‘ None
Total: 0 ‘ Total: 0

Accuracy: 100%

Extension number 3
Random integer 39522
Extension name So Sanh Gia - Ma Giam Gia
(SoSanh24h.Com)
Extension version 5.85

Found domains & IP addresses

Manual analysis ‘ Automatic analysis
www.sosanh24h.com www.sosanh24h.com
sosanh24h.com sosanh24h.com

go.sosanh24h.vn

go.masoffer.net

giamgiachotui.com

Total: 5 ‘ Total: 2

Accuracy: 40%

ITT

A. Evaluation

IV

1.4 Extension number 4

Random integer 144129
Extension name StopAll Ads
Extension version 1.0.91

Found domains

& IP addresses

Manual analysis

Automatic analysis

www.stopallads.com

www.stopallads.com

malwaredomains.com

malwaredomains.com

stopallads.s3.amazonaws.com

stopallads.s3.amazonaws.com

easylist.stopallads.org

easylist.stopallads.org

www.fanboy.co.nz

www.fanboy.co.nz

adblockplus.org

adblockplus.org

www.tweakingtechnologies.com

www.tweakingtechnologies.com

Total: 7

Total: 7

Accuracy: 100%

A. Evaluation

1.5

1.6

Extension number 5

Random integer 7138
Extension name US AirForce Tab
Extension version 1.0.1

Found domains

& IP addresses

Manual analysis

Automatic analysis

www.facebook.com

www.facebook.com

twitter.com

twitter.com

plus.google.com

plus.google.com

www.pinterest.com

www.pinterest.com

www.linkedin.com

www.linkedin.com

www.reddit.com

www.reddit.com

ssl.google-analytics.com

ssl.google-analytics.com

happyhey.com

happyhey.com

www.happyhey.com

www.happyhey.com

www.google-analytics.com

Total: 10

‘ Total: 9

Accuracy: 90.0%

Extension number 6

Random integer 104366
Extension name Button Google Smart
Extension version 0.1

Found domains & IP addresses

Manual analysis

‘ Automatic analysis

blog.google

‘ blog.google

Total: 0

‘ Total: 0

Accuracy: 100%

A. Evaluation

VI

1.7 Extension number 7

1.8

Random integer 181365
Extension name Cursor Sparkles
Extension version 1.1

Found domains & IP addresses

Manual analysis

‘ Automatic analysis

None

‘ None

Total: 0

‘ Total: 0

Accuracy: 100%

Extension number 8
Random integer 102445
Extension name thinkContext
Extension version 1.0.1

Found domains & IP addresses

Manual analysis

Automatic analysis

schema.org

schema.org

www.thinkcontext.org

www.thinkcontext.org

twitter.com

twitter.com

www.facebook.com

www.facebook.com

developer.mozilla.org

developer.mozilla.org

adsonar.com

adsonar.com

msn.com

msn.com

doubleclick.net

doubleclick.net

overture.com

overture.com

ad.doubleclick.net

ad.doubleclick.net

plus.google.com

plus.google.com

www.bing.com

www.bing.com

linl.thinkcontext.org

linl.thinkcontext.org

Total: 13

Total: 13

Accuracy: 100%

t

A. Evaluation

1.9 Extension number 9

Random integer

110228

Extension name

Better Destiny.gg

Extension version

1.71

Found domains

& IP addresses

Manual analysis

Automatic analysis

schema.org

schema.org

api.overrustle.com

api.overrustle.com

www.destiny.gg

www.destiny.gg

downthecrop.xyz

downthecrop.xyz

api.betterttv.net

api.betterttv.net

strawpoll.me

strawpoll.me

www.strawpoll.me

www.strawpoll.me

www.overrustle.com

www.overrustle.com

www.destiny.gg

www.destiny.gg

destiny.gg

destiny.gg

twemoji.maxcdn.com

twemoji.maxcdn.com

cdn. jsdelivr.net

cdn. jsdelivr.net

9inevolt.github.io

9inevolt.github.io

ts.downthecrop.xyz

ts.downthecrop.xyz

www.reddit.com

Total: 15

Total: 14

Accuracy: 93.3%

1.10 Extension number 10

Random integer 98393
Extension name AnimeClick.it
Extension version 2.2

Found domains

& IP addresses

Manual analysis

‘ Automatic analysis

www.animeclick.it

‘ www.animeclick.it

Total: 0

‘ Total: 0

Accuracy: 100%

VII

A. Evaluation

2 Evaluation of Mozilla Firefox Extensions

10 random Mozilla Firefox Extensions has been selected and manually analysed and compared with

our script.

2.1 Extension number 1

Random integer

31494

Extension name

Contextual Google Image Search

Extension version

1.1.1-signed.1-signed

Found domains & IP addresses

Manual analysis

‘ Automatic analysis

wWw.google.com

WWW.google.com

www.mozilla.org

www.mozilla.org

Total: 2

‘ Total: 2

Accuracy: 100%

2.2 Extension number 2

Random integer 68890
Extension name Classic Theme Restorer
Extension version 1.6.0

Found domains & IP addresses

Manual analysis

Automatic analysis

www.camp-firefox.de

www.camp-firefox.de

github.com

github.com

forums.mozillazine.org

forums.mozillazine.org

developer.mozilla.org

developer.mozilla.org

addons.mozilla.org

addons.mozilla.org

piro.sakura.ne. jp

piro.sakura.ne. jp

dummy .addons.mozilla.org

dummy.addons.mozilla.org

caligonstudios.com

caligonstudios.com

ithinc.cn

ithinc.cn

www.mozilla.org

www.mozilla.org

WWW.W3.0rg

WWW.W3.0rg

Total: 11

Total: 11

Accuracy: 100%

VIII

A. Evaluation

2.3

2.4

Extension number 3
Random integer 43801
Extension name mangareader
Extension version 2.2.0

Found domains

& IP addresses

Manual analysis

‘ Automatic analysis

http://wuw.mangareader.net/

http://mangafox.me/

Total: 0

‘ Total: 2

Accuracy: 0%

Extension number 4
Random integer 47116
Extension name TagMyGift
Extension version 0.0.13

Found domains

& IP addresses

Manual analysis

‘ Automatic analysis

staticmagick.in

‘ staticmagick.in

Total: 1

‘ Total: 1

Accuracy: 100%

IX

A. Evaluation

2.5 Extension number 5

Random integer 18740
Extension name SejaPremium
Extension version 0.0.27

Found domains & IP addresses

Manual analysis

‘ Automatic analysis

WWW.sejapremium.com.br

WWW.Sejapremium.com.br

upsto.re

upsto.re

uploaded.net

underseo.com

uploaded.net

solus.sejapremium.com.br

lumos.sejapremium.com.br

aqua.sejapremium.com.br

Total: 8

‘ Total: 2

Accuracy: 25%

2.6 Extension number 6

Random integer

29920

Extension name

letaljc

Extension version

initial.rev43.1-signed.1-signed

Found domains & IP addresses

Manual analysis

Automatic analysis

icdn.pro

icdn.pro

www.mozilla.org

www.mozilla.org

WWW.W3.0rg

WWW.W3.0rg

mozilla.org

mozilla.org

Total: 4

Total: 4

Accuracy: 100%

A. Evaluation

2.7

2.8

Extension number 7
Random integer 22783
Extension name Choosy

Extension version

1.1.1-signed

Found domains

& IP addresses

Manual analysis

‘ Automatic analysis

icdn.pro icdn.pro
www.mozilla.org www.mozilla.org
Total: 2 ‘ Total: 2

Accuracy: 100%

Extension number 8
Random integer 14703
Extension name Rikaichan Japanese-Russian Dictionary
File
Extension version 2.01.160101

Found domains

& IP addresses

Manual analysis

‘ Automatic analysis

polarcloud.com

‘ polarcloud.com

www.mozilla.org

‘ www.mozilla.org

Total: 2

‘ Total: 2

Accuracy: 100%

10

XI

A. Evaluation

XII

2.9 Extension number 9

Random integer

58946

Extension name

SmileySidebar

Extension version

1.3.4.1-signed.1-signed

Found domains

& IP addresses

Manual analysis ‘

Automatic analysis

www.mozilla.org

www.mozilla.org

www.kolobok.us

www.kolobok.us

Total: 2

Total: 2

Accuracy: 100%

2.10 Extension number 10

Random integer

69592

Extension name

Surfmark Toolbar

Extension version

3.6.1-signed.1-signed

Found domains

& IP addresses

Manual analysis

Automatic analysis

surfmark.uservoice.com

surfmark.uservoice.com

twitter.com

twitter.com

www.facebook.com

www.facebook.com

ad.doubleclick.net

ad.doubleclick.net

blog.surfmark.net

blog.surfmark.net

www.yahoo.co

www.yahoo.co

search.yahoo.co

search.yahoo.co

www.google.co

www.google.co

use.typekit.com

use.typekit.com

typekit.com

typekit.com

lab.arc90.com

lab.arc90.com

surfmark.uservoice.com

surfmark.uservoice.com

WWW.W3.0rg

WWW.W3.0rg

www.mozilla.org

www.mozilla.org

Total: 14

Total: 14

Accuracy: 100%

11

	List of Figures
	List of Tables
	Introduction
	Purpose
	Problem definition
	Methodology
	Limitations
	Related Work
	Thesis Contributions
	Disposition of the Thesis

	Background
	Browser extensions
	Privacy
	Collusion attacks
	Recorded Future

	System Design
	Implementation
	Downloading extensions
	Mozilla Firefox extensions
	Google Chrome extensions

	Designing the analysis process
	Generate extensions
	Static analysis
	Regular Expressions
	Validating extracted addresses
	Saving data

	Threat analysis

	Visualising collected data

	Evaluation
	Custom made colluding extension
	Testing our Analysis

	Results
	Extensions
	Mozilla Firefox extensions
	Google Chrome extensions

	Analysis

	Discussion
	Future work

	Conclusion
	Bibliography
	Evaluation

