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Abstract 
With the rapid development of today, developers are getting more dependent on the ability of easy 

and fast deployment into production. A cloud introduces the possibility of running ones system in a 

scalable and adaptive environment providing easy access with extensive maintenance possibilities. 

Extending with the possibility of having highly scalable resources available at any given time, for a 

reasonable cost, is a strong argument for considering cloud solution for anyone working with new 

development. However, the act of migrating a locally developed system, or adapting a system for 

cloud migration might introduce unexpected complications not initially considered. Migration is a 

term describing the process of adopting an existing application to be run in an unfamiliar 

environment. It is an important process for ensuring successful deployment in a well-defined 

manner, and may involve complicated steps adopting the system to the new environment. A cloud 

often qualifies as such an environment where applications are hosted in a virtualized off-site system.  

The contribution of our work is two-fold; studying the effects of migrating and implementing 

tests aimed for the cloud, and comparing cloud based services to their local counterparts. This has 

been conducted by developing and migrating an application named Track and Trace to a cloud. The 

results of this report provide valuable considerations as well as practical examples of solutions on 

problems encountered during development and migration. Migrating an application to a cloud is 

complicated by the fact that a cloud environment in many aspects has different properties than a 

local environment. It complicates data consistency, software modularity and testing due to the 

distributed nature of a cloud. The main difficulty in migrating an application to a cloud is to be aware 

of its peculiarities and to develop the application avoiding these problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Cloud, IaaS, Amazon EC2, distributed system, migration, MongoDB, database, message 

queue, testing, Selenium, Enfo Zystems 



v 
 

Preface 
This is a 30p Master Thesis report for the Department of Computer Science and Engineering at 

Chalmers University of Technology. The proposed work was initiated by the company Enfo Zystems 

with intentions of developing and testing a new module in an upcoming system. Fredrik Hilmersson is 

the assigned supervisor at Enfo Zystems and the examiner at the Department of Computer Science 

and Engineering is Elad Michael Schiller. 

Both Daniel Arenhage and Fabian Lyrfors have contributed equally in completing the assigned 

task by Enfo Zystems as well as gathering information for the written report. Together they have 

written the report based on experiences gathered while working with developing the module as well 

as from material from research papers and technical literature. 

Software utilized in this project 

Amazon Linux AMI 64-bit  http://aws.amazon.com/amazon-linux-ami/ 

Apache ActiveMQ 5.5.1  http://activemq.apache.org/ 

Apache Camel 2.9.1  http://camel.apache.org/ 

Grails 1.3.7   http://grails.org/ 

IBM WebSphere MQ 7.0.1  http://ibm.com/software/integration/wmq/ 

Java 1.6.0 JDK   http://www.oracle.com/technetwork/java/  

Maven 3.0.3   http://maven.apache.org/ 

Microsoft Office 2010  http://office.microsoft.com/ 

Microsoft Windows 7 Enterprise x64 http://www.microsoft.com/ 

MongoDB 2.0.4  http://www.mongodb.org/ 

Selenium WebDriver 2.0  http://seleniumhq.org/ 

Spring Security 3.1.0  http://static.springsource.org/spring-security/site/ 

SpringSource Tool Suite 2.8.1 http://www.springsource.com/developer/sts/ 

VMware Player 3.1.4  http://www.vmware.com/products/player/ 

 



6 
 

Table of Contents 

Abstract .......................................................................................................................................iv 

Preface ........................................................................................................................................ v 

1. Introduction ............................................................................................................................. 8 

1.1 Our contributions .......................................................................................................................... 9 

1.2 Purpose ........................................................................................................................................ 10 

1.3 Problem description .................................................................................................................... 10 

1.4 Related work ............................................................................................................................... 10 

1.5 Scope ........................................................................................................................................... 11 

1.6 Report outline.............................................................................................................................. 11 

2. Technical background ............................................................................................................. 12 

2.1 Integration ................................................................................................................................... 12 

2.1.1 Integration architecture ........................................................................................................... 12 

2.2 Cloud computing ......................................................................................................................... 13 

2.2.1 Infrastructure-as-a-Service ................................................................................................... 13 

2.2.2 Platform-as-a-Service ........................................................................................................... 13 

2.2.3 Software-as-a-Service ........................................................................................................... 14 

2.2.4 Amazon EC2 .......................................................................................................................... 14 

2.3 Database ...................................................................................................................................... 14 

2.3.1 ACID properties .................................................................................................................... 14 

2.3.2 Relational database .............................................................................................................. 15 

2.3.3 NoSQL database ................................................................................................................... 15 

2.4 Testing ......................................................................................................................................... 16 

2.4.1 Unit testing ........................................................................................................................... 16 

2.4.2 Integration testing ................................................................................................................ 16 

2.4.3 System testing ...................................................................................................................... 16 

2.4.4 End-to-end testing ................................................................................................................ 17 

2.4.5 Selenium WebDriver ............................................................................................................ 17 

2.5 JSON and BSON ........................................................................................................................... 17 

3. Method .................................................................................................................................. 18 

4. Case study system .................................................................................................................. 20 

4.1 Old Track and Trace ..................................................................................................................... 20 

4.2 New Track and Trace ................................................................................................................... 20 

4.2.1 Back end ............................................................................................................................... 21 

4.2.2 Front end .............................................................................................................................. 21 

 

 

 

 

 



7 
 

5. Results ................................................................................................................................... 23 

5.1 Cloud computing considerations ................................................................................................. 23 

5.1.1 Requirement considerations ................................................................................................ 23 

5.1.2 Services ................................................................................................................................. 24 

5.1.3 Performance and scalability ................................................................................................. 30 

5.1.4 Distributed systems and connectivity .................................................................................. 33 

5.2 Security ........................................................................................................................................ 35 

5.3 End-to-end testing ....................................................................................................................... 36 

5.3.1 Unit test ................................................................................................................................ 36 

5.3.2 Integration test ..................................................................................................................... 36 

5.3.3 System test ........................................................................................................................... 37 

5.3.4 User test ............................................................................................................................... 38 

5.4 Cloud testing ................................................................................................................................ 39 

5.4.1 General ................................................................................................................................. 39 

5.4.2 Considerations for cloud testing .......................................................................................... 39 

5.4.3 Test scenario for case study system ..................................................................................... 41 

5.4.4 Data input testing ................................................................................................................. 41 

6. Discussion .............................................................................................................................. 43 

6.1 Cloud services .............................................................................................................................. 43 

6.2 Testing ......................................................................................................................................... 44 

6.2 MongoDB migration plan ............................................................................................................ 46 

7. Conclusion .............................................................................................................................. 47 

7.1 Future work ................................................................................................................................. 48 

7.2 Extensions .................................................................................................................................... 48 

Bibliography ............................................................................................................................... 49 

Online references ....................................................................................................................... 49 

Appendix ................................................................................................................................... 51 

A. MongoDB ObjectID ....................................................................................................................... 51 

B. MongoDB architecture .................................................................................................................. 51 

C. Framework .................................................................................................................................... 52 

Grails framework ........................................................................................................................... 53 

Groovy ........................................................................................................................................... 53 

Apache Camel ................................................................................................................................ 53 

D. Amazon EC2 instances .................................................................................................................. 54 

 

 

 



8 
 

1. Introduction 
This report describes the observations during development and migration of a system named Track 

and Trace. It is a completely new developed system based on specifications from a prior similar 

system no longer fulfilling the requirements at Enfo Zystems. The intentions with developing a 

completely new system were to make it loosely coupled and scalable, developing it with no 

considerations to the old client/server model. 

The technical industry of today is bound by cost driven development and requires time 

efficient deployment. A lot of the systems today are implemented using a common client/server 

model which on many levels are hard to decouple and re-implement in a more well-structured and 

service oriented manner. Since the technical industry is continuously growing, it is faced with the 

problem of having consistency and compatibility issues when dealing with integration of different 

computer systems. Companies today does not always share a common architecture for handling data 

and are therefore dependent on running applications in specific environments or platforms. The act 

of migrating these systems, making it more service oriented and less dependent on point-to-point 

integrations is the process of decoupling systems and provide a platform-independent environment 

ensuring consistency between systems. 

Cloud computing is the concept of moving applications and services from a local environment 

to run in an abstract offsite environment. The cloud environment often provides scalable and 

virtualized hardware resources in order to remove some of the additional dependencies of having a 

locally running environment. This act of moving an application will from here on be referenced as 

migrating a system. 

Services and applications in general have traditionally been built with a simple client/server 

approach. Often the environment on which both the server and client are running in is known, and 

can be reasoned about, which lets the developer tweak the application and the environment to 

match. As a result of being built on the traditional client/server model they are often designed as 

hard-coupled systems. In terms of testing, the traditional way is a straightforward and standardized 

approach of building unit testing, integration testing and system testing for ensuring the soundness 

of the developed system. This way of testing has been applicable for the typical client/server module 

for a long time due to the distinct separation between the two entities. Today we are still dependent 

on these tests as they still play a key role in determining systems soundness as a whole. 

The problem with this traditional way of implementation is that it is not suitable when one 

wants a highly scalable and loosely coupled solution. A hard-coupled system requires costly 

hardware upgrades in order to increase its performance to cope with increased requirements, 

something that is not only complex but also time inefficient. The idea of providing easily adapted and 

highly scalable applications is something no longer applicable when developing in the commonly 

known client/server model. 

Clouds solves many of the traditional problems by providing an elastic, service oriented and 

efficient infrastructure supporting scaling. Many of the issues with having a system run as a common 

client/server comes from the difficulties in adaptability. A cloud introduces the possibility of dealing 

with ones applications in a service oriented manner which allows for easy reusability, replacement 

and addition of new functionality. A cloud offers the possibility of quick and effortless management 

of computing instances which gives the possibility to automatically adapting the system’s 

performance to the current workload. This requires an application running in an elastic cloud to be 

designed with modularity and distributed computing in mind, something that does not apply for the 
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client/server model. A more commonly known term for this is horizontal scaling and simply increases 

performance by addition of a cloud instance. 

1.1 Our contributions 
Together with the knowledge regarding problems with the commonly known client/server model and 

system requirements for the Track and Trace system, considerations and adaptations has been made 

in order to provide a loosely coupled and scalable application suitable for the cloud. The Track and 

Trace system, which is more elaborate explained in Case study system (chapter 4), is built with a 

cloud deployment in mind and uses the results from this report to make design decisions.  

A large portion of the result focuses on a message queue service provided by Amazon, called 

Simple Queue Service (SQS), and provides suggestions on how it can be used as a replacement for a 

traditional message queue. It has certain characteristics such as multiple deliveries and out-of-order 

deliveries which is uncommon in a local message queue and may be unacceptable for an application. 

Our report contributes to this area by providing simple, yet practical, suggestions for solving these 

problems. It discusses for example how unique identification numbers can be generated effectively 

in a distributed setting and how this fact can be used to solve the mentioned problems without using 

performance expensive distributed data sharing. 

The topic on scalability is also covered in later sections in the result chapter. To successfully 

harness the elastic properties of a cloud an application must be developed as modules. These should 

preferably not share any data but this is often not possible, which requires the use of distributed or 

network connected data structures. Performance and scalability (section 5.1.3) gives an overview of 

how an application can be modularized, provides performance measurements using Memcached as a 

distributed cache, and finally an explanation on how the Track and Trace application was 

modularized. The application is made into two major modules, the front- and back end, which is only 

sharing data via a database, and the development uses the performance measurements done in 

order to justify not to further modularize the back end. 

It is shown Storage and data resilience (section 5.1.2.3) how the performance in a cloud can 

differ from a local environment. The system is virtualized in order to allow multiple users to share the 

same hardware, which has a negative performance impact. Tests are done running the MongoDB 

database both in a local network and in the Amazon EC2 cloud. The results clearly showed that there 

are performance differences and also that the performance can vary over time, depending on the 

current system’s load. The virtualization also has the effect of hiding important details which can be 

important regarding the system’s performance. Not knowing for example the storage type (hard 

drive or solid state drive) makes it hard to reason about the cloud’s performance.  

The other large aspect of this report is the ability or possibility of providing a sufficient  test 

coverage for the complete case study system. Since the traditional way of testing still is a key part of 

any development in order to assure system soundness this is not something that is seen as a 

traditional problem. However, it presents new and interesting problems when traditional test 

implementations needs to be migrated to the cloud. This is something we experienced during our 

development and migration of the Track and Trace system. As described in section 5.4.2 (Extending 

cloud testing), with following subsections, we observed and describe that there are concrete 

differences in how one should approach testing for a cloud compared to the local environment. 

Isolating the problem and assumptions regarding performance are no longer reliable or predictable 

problems which leads to reconsiderations in implementation. 
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Our approach to provide a sufficient test coverage was to provide a level of automated end-to-

end testing. The idea of providing end-to-end testing is the ability of stating that a system is working 

as intended going from low level testing to high level testing. The way this was achieved during the 

development of the system described in Case study system (chapter 4) , was to separate the 

traditional low level testing from the suite of testing the user-level. For our case study system we 

have implemented four levels of test suites namely user test, integration test, system test and user 

test.  The implementations are described in section 5.3 with the intention of providing a high level 

view of providing end-to-end testing for the case study system. 

1.2 Purpose 
The purpose of this report is to study the effects and potential problems of migrating a distributed 

web-application to a cloud. A migration is the act of preparing and moving an application to a new 

environment, which in this case is a cloud. Our intention is to come to some conclusion in what 

potential affects that might follow with migration and what considerations that that should be taken 

into account. We also aim to conclude some of the differences in terms of testing, comparing the 

local environment to a cloud. 

1.3 Problem description 
The act of migrating a distributed web application to a cloud introduces new obstacles in how one 

initially approaches implementation and planning for a new distributed setting. 

Considerations in terms of scalability, reliability and availability needs to be addressed in a 

more generic and well defined manner in order to have a complete and successful migration. 

Differences in services residing in a cloud compared to local services may also need to be addressed. 

Another important aspect is testability. How does one actually test an application living inside the 

cloud, is it possible to migrate current internal test-builds and how do we test the complete cloud 

application from outside the cloud? 

1.4 Related work 
In [1], the authors describe their experiences in migrating an open source software to a cloud 

environment. They very briefly describe decisions and observations providing the reader with not 

more than an slight idea of how their system have been modified in order to properly migrate to a 

cloud. With our report we try to extend the initial idea of presenting observations with providing 

concrete example and potential solutions to observations encountered. This provides the reader with 

a field of application and an easier way of producing future work. Finally, observing one large aspect 

separating our work from the work presented in [1]. The authors of [1] have not observed much 

literature (stated in paragraph 1, section 5) for developing and providing a system aimed for the 

cloud. They have therefore no solid foundation strengthening their claims regarding pre- and 

development work for developing an application that is migration friendly. 

The author of the paper [2] extensively covers the fundamentals of cloud computing as well as 

describes some of the key subjects that comes with studying cloud computing. In addition the author 

has performed some practical testing and measurements supporting some of his claims regarding 

system performance and capacity. However, the sections covering the aspects of moving systems to 

the cloud follows the same pattern of mostly describing techniques and literature relevant to the 

topic, and not so much how this actually can be performed. This is something that we have 

addressed by stating concrete results for a specific case study. In the future work the author presents 
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what have not been covered in the report. We took the liberty of trying to answer some the author’s 

proposed future work. 

1.5 Scope 
This report will focus on techniques and test methods relevant to the needs of Enfo Zystems. Our 

intentions are to provide a high level view of the migration process for the system described in Case 

study system (chapter 4). The report highlights services relevant to the system existent in the chosen 

cloud provider, namely Amazon EC2. 

1.6 Report outline 
The beginning of the report covers the technical background. Here we describe what different 

techniques and software that have played the major part during development and testing 

throughout the project. We also describe some of the concepts in defining a cloud based 

environment. 

The chapter following the technical background gives a general description of how we 

approached the project in terms of method. How we familiarized with the different environments 

and technologies and how we began our project work. 

The third part of this report gives a fairly brief description of our case study. The case study 

gives an overall description of the system re-implemented, in order to give an understanding in what 

kind of system we are trying to migrate. 

Following the case study we present our results in how different problems were, and 

potentially could be solved. In the results our main focus is to present a variety of considerations that 

should be taken into account when developing or choosing one approach over another. 

In the discussion part of the report we highlight some different aspects that we found 

interesting or that turned out to bring some potential problems in future development. We also give 

a general description of our “9-step-database-migration-plan” based on our own migration 

procedure. 

The last part of our report is our conclusion. Here we briefly state our conclusions based on 

our experiences throughout the project, and gives proposals for potential future work. 
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2. Technical background 
The technical background describes some of the techniques and software used during development 

and migration. This chapter aims at providing the reader with a basic technical knowledge of the 

different aspects that is relevant for better understanding the report. 

It explains the concept of integration where systems are decoupled to form a general view of 

the system. Next on is the core concept of this report, cloud computing, explaining the three cloud 

models broadly and narrows in on Amazon’s EC2 solution. Databases are an important part of the 

case study and both traditional relational databases and a new term NoSQL databases are explained 

along with important concepts. The last major part is explaining testing in general, with focus on 

techniques used to perform user tests in the case study. 

2.1 Integration 
One of the big challenges today with our continuously growing demands on scalability, availability 

and accessibility, is integration of new systems. Not only does integration today play a huge role in 

linking systems though different services, it is also plays a key role in being able to deliver a 

consistent and reliable environment with high availability for all parties, see [3]. 

The concept of using integration for increased availability is becoming more and more 

commonly used within large organizations. Larger organizations no longer need to rely on their own 

hard-coupled integrations between different services and applications; instead they can now rely on 

a third party organization that makes use of well-structured architectural standards such as a Service-

oriented architecture (SOA). This efficiently loosens the hard couplings and re-implements their 

previous connections as loose couplings through integration. For a more details description see [3]. 

2.1.1 Integration architecture 
The two most commonly used approaches for integrating applications today are point-to-point 

integrations or making use of a service bus. 

When using Point-to-point integration one usually refers to using a hard-coupled integration. 

One application is connected to some other applications which are dependent on the same protocols 

and formats in order to successfully communicate, explained in figure 1. 

 

Figure 1. Point-to-point integration 

This basically deviates from the idea of having a platform-independent environment and is often 

what integration companies today are trying to dissolve and implement in a loosely coupled 

architecture instead. As described in [4], a more sustainable approach is making use of a service bus 

for integration. 

The authors at [5] describes an Enterprise Service Bus, or ESB, as an architectural model for 

implementing a loose coupling for applications, services and clients in a platform, protocol and 

format independent environment. The ESB acts as a middleware messaging service and takes care of 

everything from routing to transformation of data. Services and applications connected to the ESB 

puts their messages on the bus which guarantees that the messages arrive correctly to the intended 

destination with the correct formatting for the recipient. A small illustration can be seen in figure 2. 
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Figure 2. Enterprise Service Bus connected to various applications and services 

2.2 Cloud computing 
Cloud computing is described in [6] as a general and rather diffuse term to describe services hosted 

in a remote location, such as an intranet or the Internet. This deviates from the traditional way of 

handling applications which is installed locally on each client, and services running on the local 

network. 

The term can be divided into three models; Infrastructure-as-a-Service (IaaS), Platform-as-a-

Service (PaaS) and Software-as-a-Service (SaaS), see [6]. These categories can be seen as a layered 

model where IaaS are the lowest level, then PaaS and on the highest level SaaS. The layers represent 

the services provided and the level of control a user has over the cloud. 

2.2.1 Infrastructure-as-a-Service 

In [7] the Infrastructure-as-a-Service (IaaS) model is described as the layer closest to the hardware. 

The user is responsible for managing the operating system and available resources, but the hardware 

and infrastructure is handled by the cloud provider. The real underlying structure of the cloud may 

be hidden as a way to form a generalized view of the system. This provides a well-defined 

environment which can be fully or partially independent of the underlying hardware and software. It 

can hide some technical details of the distributed nature of a cloud and give the user a view of a 

homogeneous system. 

IaaS gives the user the largest responsibility but also allows for running applications and 

services of one’s choice. 

2.2.2 Platform-as-a-Service 

In this model the user is provided a complete platform on which applications and services can be 

built. The authors of [7] describes that custom applications is restricted by the environment created 

by the host provider, regarding for example operating system, software libraries, programming 

language support and support services such as databases and web servers. 

PaaS can provide developers and administrators tools to administer and test applications 

running in the cloud. Administration can involve basic tasks such as starting and stopping existing 

applications, resource-, user- and permission management, and presentation of statistics and logs. In 

[6] the authors describe more advanced features that can include support for development, 

debugging, testing and deployment of new applications. Additional supported services may be 

offered, such as specialized databases, queue managers and file storage. Results (chapter 5) expands 

on this area. 

Compared to IaaS this model is less flexible but relieves the user of the maintenance of the 

operating system and included services. 
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2.2.3 Software-as-a-Service 

The Software-as-a-Service (SaaS) model is defined in [7] as the topmost layer in the cloud stack. It 

provides customizable applications to be used without any extra development from the user’s side. 

Such applications are often used to move from traditional local applications to use a similar 

application in the cloud. It does not require any installation or local storage for the end user as the 

application often runs in a web browser.  

SaaS is described in [8] as the most restricted of the three models, but relieves the user of 

almost all the maintenance work. The user can seldom install custom applications and are bound to 

the applications provided by the cloud host. 

2.2.4 Amazon EC2 

Amazon EC2 is a web-service aimed to provide a highly scalable and configurable cloud computing 

environment. It provides a highly configurable platform in the IaaS layer which gives the developer 

the flexibility of choosing his/her own operating system, cloud services and configurations. Initially 

launching ones EC2 instance, one is able to choose an instance type suitable for whatever 

requirements the system to be deployed requires. An Amazon EC2 instance comes with a variety of 

instance compositions such as high-memory or high-CPU in order to provide whatever necessities 

that might be required. In conjunction with Amazon EC2 one is able to utilize all other functionality 

supported by EC2 provided by Amazon such as Elastic Block Storage (EBS) for sustainable data 

storage, Elastic IP Addresses for providing static IP’s, Virtual Private Cloud (VPC ) for enhanced 

security and so on. [9] contains the full documentation on Amazon EC2. 

2.3 Database 
Next we describe conventional relational- and NoSQL databases, and how they differ. The MongoDB 

NoSQL database which is used in the project is introduced and functions such as sharding and 

replication is explained. 

2.3.1 ACID properties 

The ACID (Atomicity, Consistency, Isolation, Durability) concept stipulates four properties that 

databases shall conform to in order for a transaction to be processed reliably. Transactions are 

defined as an isolated read or write to the database. The following paragraphs describe the ACID 

concept with reference to [10]. 

The Atomic property states that any modification to the database is successfully committed or 

not committed at all. This follows an “all or nothing” rule and guarantees that no partial 

modifications can occur which leaves the database in an inconsistent state. 

The second property Consistency, states that any transaction must leave the database in a 

consistent state. Each database defines more rigorously how a state is defined. An example is 

validation of written data so that it conforms to the defined rules. 

Isolation states that transactions are isolated from each other and that one transaction should 

not interfere with another transaction. No transaction that affects the same data can be run 

concurrently since the outcome would be unpredictable. This can be solved by implementing a lock 

on the data if a transaction is modifying it. 

The last property Durability refers to the durability of data after a transaction. It states that a 

committed transaction shall be stored permanently in the database and not be lost due to 

application crashes or other unexpected shutdowns. 



15 
 

2.3.2 Relational database 

Relational databases are currently the most common database type. As described in [11], it stores 

data in well-defined tables and are built on the relational model theory. A table’s structure is 

predefined to contain certain data and constraints on what type of data, and which values, can be 

stored. Tables can also form relationships to indicate that data in one table references data in 

another table. Relationships are used to normalize tables, meaning that redundant data are removed 

from one table, and it instead makes use of a relation to the other table. Ideally there is no 

redundant data which makes updating the relationship trivial as the data is only stored once. 

Relational databases use the method of joining tables to return data from a table which 

references to another table. This is used to return one single view of a table when in reality it is 

divided into several tables. 

The common way of communicating with relational databases is by the language Structured 

Query Language (SQL). It is often used in interaction with the database and supports operations such 

as insert, update, delete and querying of data. 

Relational databases often adhere to the concept of ACID as described earlier, in section 2.3.1 

(ACID properties). 

For a more detailed description on relational databases and its concepts see [11]. 

2.3.3 NoSQL database 

The authors of [11] describe NoSQL databases as an umbrella term to describe databases which does 

not use SQL as query language. Many NoSQL databases also depart from the relational model theory 

used in relational databases, and may not support all of the ACID properties. A wide variety of NoSQL 

databases exist, ranging from simple key-value storage to complex databases with dedicated query 

languages and distributed storage. 

2.3.3.1 MongoDB 

In [12] MongoDB is defined as a NoSQL database which in some aspects is similar to common 

relational databases. It supports complex queries using its own query language similar to JSON 

(introduced  in section 2.5) and can use indexes to improve query performance. 

The author of [12] highlights that differences between MongoDB and relational databases are 

in many ways more profound than the similarities. Tables, which in MongoDB terms are called 

collections, does not have a fixed schema defining the contained data. Instead it stores each 

document, which is similar to a row in a relational database, in the BSON data format (introduced in 

section 2.5) to allow documents to contain arbitrary data structures and data types. 

There is no support for joining tables, which is in stark contrast to relational databases. The 

reasons are that the operation of joining tables can be costly for the database if the tables are big 

and that joins are hard to manage if the collection is distributed over several databases. The data is 

instead embedded directly into a document, much like in a relational database which has not been 

normalized. This information and more details on MongoDB schema design are found at [13]. 

In [14] it is stated that MongoDB is specifically built to scale well and make it easy to add 

additional storage and computational power. This is accomplished by the concept of sharding where 

data is automatically spread over several databases. To add more storage space an additional 

database is connected to the shard group and existing and new data is automatically evenly spread 

to all databases. Sharding also can accelerate certain queries where each individual database can 

process the query in parallel, see [15]. 
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In favor for speed MongoDB is not fully ACID compliant. In [16] the author explains that 

MongoDB supports simple atomic operations but lacks support for true transactional queries. 

Another way to increase speed is to use memory-mapped files to store and access both the database 

and the related journal file. This gives the end user less opportunity to tweak the amount of RAM 

memory available to MongoDB as this is handled by the operating system. The journal file is an 

optional but recommended feature to increase both the speed and durability. Entries written to the 

database is periodically written to the journal file instead of the main database file. Data is simply 

appended to the journal file which is fast, and then later written to the real database file. 

See Appendix A and Appendix B for a deeper explanation of MongoDB. 

2.4 Testing 
This section describes some of the most commonly utilized testing approaches. The intention is to 

provide some basic knowledge in the different testing methods related to the developed system 

described in Case study system (chapter 4). 

2.4.1 Unit testing 

Unit testing is the foundation on which larger system depends on for validating that a sub-part of the 

system is behaving as expected. The author of [17] describes that the basic idea is to separate and 

isolate a part of the system as much as possible in order to perform an expectancy test. The test itself 

should be considered as if it was run inside a black box separated from all other logic in order to 

determine if it actually performs as intended. In [17] a common method of how to do unit testing is 

to add assertion statements to the tested code. These statements compare the current program 

state to an expected, valid state. If the results differ the execution can be aborted and an error 

message logged. 

On larger system one can usually compose a series of unit tests, test each part by itself and 

makes sure that it is working correctly. When each part seems to work correctly, one can start 

integrating parts and build additional expectancy tests in order to validate that the components 

works as expected together. In [17] this is described as integration testing. 

2.4.2 Integration testing 

In [17] and [18] integration testing is described as the concept of weaving together one or more 

already existing and validated unit tests and testing how the separate components work depending 

on each other. It is usually conducted in the fashion that each sub-tested part is added iteratively, 

forming a group of components. These components are then tested as a group and will in the end 

make up the whole system. When the grouped test has been verified to work, one can draw the 

conclusion that all other sub-parts also are working as expected. This implies that the system now is 

ready for system testing. 

2.4.3 System testing 

Conducting system testing for a service or application is described in [17] as a crucial part in 

determining that a product lives up to the specified requirements. A common way of doing this is 

basically to compose a series of pin point test on the product testing e.g. performance, stress, 

reliability or security. According to [19] one is often very keen in reaching some conclusion to e.g. 

what environment the system has the highest performance, or what formatting that should be used 

considered to the systems load. 
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At the point of system testing one usually have a “finished product” that is placed in its 

intended environment. System testing is not so much changing the coding or application structure, 

but to test the system as a whole. 

2.4.4 End-to-end testing 

In [20] End-to-end testing is described as a set or series of tests that aims to assure functionally to 

some focused part of the system. It is a tool used when performing revision work on intermediate 

code that may affect multiple parts of the system. Having a set of tests reconstructing the same 

procedure can indicate that the system as a whole might experience failure since the new revision. 

In order to further describe end-to-end testing one could imagine a simple web-interface 

connected to a back-end running a database. A simple case would be, a user clicks the request 

button and a request is sent to the server. The server looks at the request and issues a query to the 

database for the requested data. The database in its turn collects the requested data and returns 

with a response to the server. The server looks at the data and applies correct formatting and returns 

to the client application. The requested data reaches the client application and is displayed to the 

user. Following this sequence of operations, one tests each sub-part along the way making sure that 

everything is working correctly. 

2.4.5 Selenium WebDriver 

Selenium is described in [21] as an open source tool suite for providing automated tests of graphical 

web-applications. It has high flexibility in providing support for many different languages as well as 

multiple browsers. The WebDriver interacts with a real web browser in order to test the graphical 

interface. Code is written to interact with the web browser’s DOM to simulate user input. Tests can 

then be written to compare the graphical data available in the web browser to the expected values. 

Selenium WebDriver is a well-supported API with aim to provide an interface for developing 

high-level graphical testing. It supports a variety of programming languages, each with their own 

benefits and libraries that might come in handy when developing graphical testing, see [21]. 

2.5 JSON and BSON 
JavaScript Object Notation (JSON) is defined in [22] as a text based, data-interchange format aimed 

to be easily readable. Even though its close relationship to JavaScript it is language independent 

given that there are support for almost every programming language and is easy to read/generate 

for both humans and computers. It is derived as a subset of JavaScript and makes use of being built 

on simple, well defined data structures. Its close relation to JavaScript makes it ideal to use in AJAX 

communication since JavaScript natively supports JSON format. 

BSON, or Binary JSON, is a binary format closely related to JSON, used mainly by MongoDB for 

storing documents, see [23]. It differs from JSON by discarding human readability and size in favor for 

fast computer parsing. BSON is supported in quite a range of language including object oriented-, 

scripting- and functional languages according to [24]. 
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3. Method 
This section describes the project workflow and how information to this thesis has been gathered. It 

covers the initial work of defining the project specification, development of the Track and Trace 

application and finally migration it to a cloud. Figure 3 describes our project workflow, having each 

iterative process provide information the final report. 

 

Figure 3. Project workflow 

For the project reviewed in this report we started by familiarizing us with the existing systems, 

development environment and related technologies at Enfo Zystems. As it was an existing 

development already, several frameworks and software were already chosen which required initial 

literature studies. The list of software included:  

 Oracle Java 6 

 SpringSource Groovy & Grails 

 SpringSource Tool Suite 

 Apache Camel 

 Apache ActiveMQ 

 IBM WebSphere MQ 

Software motivation 

Enfo Zystems provides the service of high quality integrations utilizing well-established enterprise 

software from companies such as Apache and IBM. The backbone of Zystems is built upon some of 

these software’s, requiring the new system to support these techniques. The choice of implementing 

the system using the framework Grails is grounded in Grails having a variety of plugin support for 

both Apache Camel and ActiveMQ. It is also a suitable framework based on the system requirements, 

and the compatibility having its roots in Java. Since Java plays a key role in developing integration 

solutions at Enfo Zystems, one key prerequisite for choosing new software is the support for Java. 

Both WebSphere MQ and ActiveMQ are solution software for implementing queue based 

functionality for the integrations. Enfo Zystems provides its service utilizing either of the two hence 

requiring the new system to support both technologies. Both technologies serve the same purpose 

with the difference of WebSphere MQ being close-source in comparison to ActiveMQ being open-

source with slight variance in support. 

Workflow 

The existing systems served as a specification for our development of the new system, and provided 

insight to how the already existing implementation was connected to the back-end technologies. 

In order to get an understanding of the shortcomings and problems with the old system 

developed by Enfo Zystems, we spoke to both users and customers about how the system could be 
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improved. With this information we were able to determine functional- and non-function 

requirements as well as an overview of system requirements. 

Theoretical studies have been carried out in order to strengthen development choices. A large 

part of the theoretical studies involved studying databases recommended by Enfo Zystems, 

especially reading best-practice recommendations, and how they behave in a cloud environment. 

The other large part of the studies was to learn about software testing in general, and cloud testing 

in particular. From this the choice of database could be done and some of the important differences 

in cloud testing was identified. 

During the planning and implementation phase of the system, considerations and best 

practices found during the theoretical studies laid as a foundation for developing a migration friendly 

system. The implementation phase consisted of building the system in an iterative manner, 

continuously implementing new ideas, adding new functionality and conforming to new 

requirements. Developing the new system involved dealing with message queues, distributed data 

and testing. Iteratively adding and removing functionality for these technologies and in parallel 

adapting the system to fit in a cloud environment, contributed with experiences and problems in 

developing the system which provided considerations and solutions for this report. 

The final part of this project consisted of migrating the system to a cloud. After finishing our 

development, we now had a system ready for deployment. This process involved configuring a cloud 

host, migrating the system and finally test that the requirements were met. During migration we 

encountered new problems not initially considered, which led to reimplementation and reevaluation 

of the current system. This presented new considerations and thoughts regarding migration and also 

practical examples presented in this report. In order to verify that the requirements for the system 

were met, we performed expectancy tests letting the system operate with intended relevant data. 

These results were then presented to Enfo Zystem in order to verify that the system operated at 

desired level. 
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4. Case study system 
This chapter covers the case study for the developed system on which the report is built. The 

intention with this chapter is to briefly describe the application developed at Enfo Zystems, in order 

to provide a basic understanding of the system that the report is referring to. 

The purpose of the system, named Track and Trace (TNT), is to provide an endpoint for saving 

and displaying logs. The system developed at Enfo Zystems is divided into two major parts, the back 

end which is responsible for saving new logs, and the front end which provides a graphical user 

interface. 

The old Track and Trace is an application developed by Zystems Baseline in order to provide 

easy access to log events and information regarding different transactions to their customers. The 

TNT applications gathers log events from a logging queue located in the ESB and is presented in a 

graphical interface to the client. The event is grouped as transactions, depending on some 

identification, and gives the client the possibility to follow their transactions as a series of events 

through the system. 

4.1 Old Track and Trace 
The old track and trace is around six years old and does no longer provide sufficient performance and 

usability to the growing clientele. It has severe problems with handling large volumes of data and 

therefore its design needs to be reconsidered. 

The major flaw in the old TNT was the way it queried its database. As the amount of stored 

data grew searches became increasingly slow as the database did not make proper use of indexes.  

One specific customer of the TNT generates around one million log events per day which was enough 

to make searches unusably slow. Neither the TNT application nor its database was built with 

scalability and deployment into a cloud in mind. As the system does not scale horizontally any 

performance upgrade requires the investment in more powerful hardware which is cost ineffective. 

4.2 New Track and Trace 
The new and improved Track and Trace aims to provide high performance, usability and scalability to 

all clients. It should be backwards compatible, supporting XML and JSON formatted data, in order to 

support clients developed for the old TNT. During our work we have developed a completely new 

track and trace system based in requirements received from Enfo Zystems. 

In order to provide higher performance a new database has been considered along with a new 

JSON data format. The user interface has been reworked with a new layout and better usability, 

providing extra functionality for efficient usage. 

The main method to allow for fast searches in log events amounting hundreds of millions of 

entries was to change the database. The database achieves this speedup in two ways; it adds indexes 

to important data fields and changes the database schema fundamentally. Customers of the TNT can 

choose which data fields are particular important to their needs and can add indexes to these to 

speedup searches on these. 

Both the system and the database have been built in order to scale better and be easier to 

migrate to a cloud than the old system. This has been made by dividing the systems into several 

modules in order to prepare it for a migration to a cloud. Each customer of the application can 

choose whether to install it locally or use a dedicated cloud instance. This allows customers handling 

sensitive data, or data regulated by laws, to be stored and handled locally. 
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4.2.1 Back end 

The primary purpose of the back end is to provide a common interface for saving logs to a database. 

It provides multiple endpoints used by systems wishing to save logs. Several endpoints exist due to 

their different nature and the need of the system sending the log.  

Message queues are a middleware between the logging system and the back end, and can 

provide guarantees on data consistency and order of delivery. This endpoint is used by systems 

which requires a high degree of data consistency and may afford the extra complexity of message 

queue infrastructure. They also support mechanisms to place messages on secondary queues, called 

dead letter queues, in case an error occurs in the main queue. This ensures that no logs are lost in 

case of for example a database error, back end application error or the main queue being full. 

The second endpoint uses simple HTTP requests to connect to the back end. This method is 

simpler than the message queue alternative and requires virtually no additional infrastructure. It 

provides no additional data integrity and requires the back end to be available at the time of 

delivery. This method of delivery is suitable to use where the delivery of a log is not crucial and the 

additional features and complexity of messages queues are not needed. 

In the process of saving logs, the back end must convert the received logs into a common 

format, suitable for storage in the database. The database used is MongoDB which natively supports 

JSON objects. The back end therefore converts all incoming logs into JSON format which can then be 

sent to the database. To improve performance and decrease latency of saving logs the back end does 

a minimal amount of error checking and other data processing. 

The second task of the back end is to temporarily save some data from each log in memory to 

periodically build statistics from the saved logs. This process is delayed to after saving a log, in order 

to reduce latency of each save. The nature of the statistics gathered makes it beneficial to save data 

in memory for a certain time before calculating the statistics and saving it to the database. 

Figure 4 describes the two tasks of inserting data and calculating statistics. Each of these tasks 

run in separate threads where the insertion of logs is triggered by incoming logs and the statistics 

calculation is executed periodically. 

 

Figure 4. The two major tasks of the back end; saving of logs and statistics generation 

4.2.2 Front end 

The very core of the front end is a HTTP interface where queries for data can be made. It accepts 

JSON formatted requests containing the data fields used in the database query and other database 

options. The queried data is then returned to the client formatted as JSON. This interface provides an 
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abstraction level towards the database and gives clients a simple way of querying data without caring 

about the underlying database. It also gives the front end the ability to limit access or filter certain 

data fields for different users. 

The data interface is separated from any graphical interface to give the flexibility of 

implementing different graphical interfaces using the data provided by the database. The front end 

also contains a graphical interface to provide a graphical representation of the saved logs. The 

interface gives the ability to search the logs, sorting, and to view statistics. The graphical interface 

provided to the browser only contains the bare minimum of HTML data and does not contain any 

data from the saved logs. The interface instead relies heavily on JavaScript both to query data using 

AJAX and to build the graphical HTML page from the data retrieved.  
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5. Results 
This chapter describes the results of studying the effects of migrating a distributed web-application 

to the cloud. The results cover two main areas; the effects of migrating and implementing tests 

aimed for the cloud, and implications of utilizing cloud based services. 

In Cloud computing considerations (section 5.1) we start by explaining what areas to take into 

consideration before migrating an application to a cloud. It describes requirements that should exist 

before a migration, how cloud services can differ to their local counterparts, and how these 

differences can be solved. 

How to implement testing for a cloud based system is still vague and unstandardized which 

leaves a lot of open options on how to properly implement and deploy a test environment. The 

following sections, End-to-end testing (section 5.3) and Cloud testing (section 5.4), describes a 

provision of sufficient tests for a cloud application, along with considerations and a basic practical 

solution for testing a cloud application externally. 

The results are based on theoretical studies as well as practical experiences in developing and 

migrating the system described in Case study system (chapter 4). 

5.1 Cloud computing considerations 
Due to differences between a cloud - and a local environment one need to make sure the application 

to be migrated is compatible with the new environment, and that the cloud host fulfills the needed 

requirements. The following sections explain requirements that should be evaluated and also how 

and why cloud services differ compared to local services. It focuses on services provided in the 

Amazon EC2 cloud relevant to the developed system such as databases, message queues and file 

storage. 

The following section, Requirements (section 5.1.1), describes the need of describing 

requirements for the cloud. Its performance will due to being virtualized and shared between 

multiple users differ from a local environment. This makes it important to compile requirements and 

validate these in real cloud before commencing the migration process. The subsequent sections dig 

deeper into the technical details of how a cloud migration can affect ones application. A recurring 

topic is the effect of distributed services used in a cloud which gives rise to new problems not 

normally seen in local services. Suggested solutions are given for a client to overcome these 

problems by mimicking the behavior of local services. 

5.1.1 Requirement considerations 

As detailed in Cloud computing models (section 2.2), cloud services can be divided into three service 

models. Each of these models provides different levels of control over the system and as a result a 

higher level of administrative responsibility. Cloud hosting with the least amount of configuration 

and administration may only allow certain software or services to be used. The opposite is when a 

user is allowed to install and configure its own operating system and all related software. 

Before choosing cloud hosting provider one need to have carefully prepared requirements in 

regards to for example pricing, performance, supported software, included services and service level 

agreement. The exact requirements are dependent on the type of application that will be run. 

Several factors affect the technical requirements: 

 application characteristics such as memory, CPU, I/O, storage and network usage 

 amount of data sent and received from outside the cloud 

 services included 
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 supported operating systems and software 

 approximated user load 

 level of data security 

One should perform validation of the requirements before commencing a full migration. Especially 

performance measurements are important to conduct as the performance of a virtualized cloud may 

differ to the performance of dedicated hardware and may fluctuate as other users share the same 

hardware. 

The system described in Case study system (chapter 4) have several requirements; lots of 

RAM-memory, fast disk access, resilient data storage, pricing and support for custom applications 

and operating system. Most of these requirements have been compiled by studying the behavior of 

the application in a local environment when running a normal work load. The MongoDB database 

used is characterized by high memory usage to improve its performance, as explained in MongoDB 

(section 2.3.3.1) and Appendix A. To further improve the database performance and to provide data 

durability, fast and resilient disks are desirable.  

Only IaaS cloud’s supports running a custom operating system and custom applications, which 

limited suitable cloud hosts. Amazon EC2 was chosen as a candidate early on due to its good 

reputation and available services. It provides several different cloud instances aimed at different 

workloads, such as high memory instances which fulfilled our first requirement. The disk throughput 

and latency is dependent on the chosen instance type and storage type, but proved to be sufficient 

on a medium sized instance, which is further explained in Storage and data resilience (section 

5.1.2.3). Testing over a period of time showed that disk latencies of smaller instance types varied 

greatly and could interfere with our application. The data resilience was deemed to be sufficient as 

several disk devices can be configured to form a RAID array and the data is also automatically 

replicated by Amazon. 

5.1.2 Services 

This section describes services often found in IaaS and PaaS clouds, with focus on services provided 

in the Amazon EC2 cloud, and how they differ from similar services running in a local environment. 

NoSQL database, message queue and storage services are services relevant to the system described 

in Case study system (chapter 4). This section contains both solutions to problems experienced 

during migration of the system, and an elaboration about potential problem areas identified. 

5.1.2.1 Database 

A database service provided by a cloud host may have certain properties that one should be aware of 

before migrating an application to the cloud. One common characteristic is the property eventual 

read consistent when reading from a database. What this means is that a read may not yet reflect the 

latest write, but that the database guarantees that it will eventually reach a consistent state. 

Eventual consistency reads are used instead of strong consistency reads, where all databases agree 

on a state, to avoid an expensive synchronization mechanism to keep multiple databases 

synchronized. It would require distributed databases, such as replicas and shards, to synchronize the 

data at each write, which would negatively affect the performance and limit the scalability. 

Amazon provides two non-relational databases running in their cloud, SimpleDB, see [25] and 

DynamoDB, see [26], which supports both eventual read consistency and strong read consistency. 

MongoDB can also be configured to support these two consistency models. If reads from a replica set 

is allowed MongoDB uses the eventual read consistency, and otherwise strong read consistency. 
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Both Amazon’s services and MongoDB uses distributed databases to support data replication and 

sharding, and therefore have the eventual consistency property. 

When evaluating the cloud databases one must know if eventual read consistency is 

acceptable and compatible with the application to be migrated. It may be impossible to migrate an 

application to a different database if the application assumes consistent reads from the database. 

One should also investigate if the cloud database can be used in a local environment while 

developing the application. This can ease the development process and lower the cost of the cloud. 

In the system described in Case study system (chapter 4) the MongoDB database was chosen 

due to its features matching the requirements, its good reputation and unlike the databases from 

Amazon it has left the beta stage. The major database requirements regarding a cloud migration was: 

 reliable storage, both long and short term 

 scalable, both regarding storage space and performance 

 dynamic data structure, with index support 

The requirement above that influenced the choice of database the most is support for dynamic data 

structures. As explained in the technical background, Relational databases (section 2.3.2), relational 

databases often require the table to be fixed both in structure and data types, and known at creation 

time. This requirement by itself made NoSQL databases the most obvious choice due to their lack of 

a fixed data structure. MongoDB’s support for horizontal scaling by using shards, as further explained 

in Appendix B, made it a good match to use in a cloud environment. It integrates well with the idea of 

an elastic cloud which adapts seamlessly to the user’s need. 

While Amazon does not natively support MongoDB it is possible to run it as a custom 

application using Amazon EC2. MongoDB does not need any special configuration to run in a cloud 

environment but there are some things to take into consideration: 

 If the inserted data is unevenly distributed over multiple shards, a load balancer process is 

run periodically to even out the data. This process moves data over the network between 

MongoDB instances. One need to make sure this increase in network traffic and disk I/O does 

not negatively affect the overall performance. This is especially important if the low level 

storage and network architecture is not known. If the amount of data needed to be moved is 

expected to be high an eventual network traffic cost must be calculated for. This problem 

can be alleviated by choosing a good shard key, as explained in the official MongoDB 

documentation, see [27]. 

 Expanding the database storage space and performance is done by adding new shards. 

Similar to the bullet above, this makes use of the load-balancer and will temporarily degrade 

performance. Expanding capacity is most intuitively done when the maximum capacity is 

reached but in the MongoDB case this will put further strain on the system. It is therefore 

advisable to add a new shard well before maximum capacity is reached. 

 Both the database and journal file is written to disk at regular intervals. Care should be taken 

when choosing storage medium and file system for the cloud instance, to provide high 

random read and write performance and high IOPS. In the case of an Amazon cloud the EBS 

storage is suitable due to its high performance. More on this is explained in Storage and data 

resilience (section 5.1.2.3). 

The eventual read consistency of MongoDB is not a major problem for the application since the 

database is seldom read. A write to the database will in most cases have time to reach a consistent 
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state as reads happens infrequently. Objects saved in the database will only be updated for a short 

period of time after they are first created which gives distributed databases time to stabilize. Other 

data in the database, such as statistics, is generated periodically and therefore not consistent at 

every moment. The user is therefore made aware of that eventual consistencies can occur and that a 

short wait often clears the problem. 

In the case of MongoDB the eventual read consistency property is only applicable if the 

replication feature is enabled and a client is explicitly allowed to read from a potential inconsistent 

slave database. If the reader allows reads from slaves a warning message can be shown to the user to 

warn for the possibility of inconsistent data. This reads are not enabled in the application and the 

database is therefore strong read consistent. 

5.1.2.2 Message queue 

The application described in Case study system (chapter 4) relies heavily on message queues to 

receive its input data. This section studies the process of adopting an application to use the Simple 

Queue Service (SQS) queue solution provided by Amazon. 

The major obstacle in using SQS, or similar services, in our application, is to adopt existing 

systems to this queue platform. There already exist standard solutions for message queues which are 

well-supported, provides a multitude of additional features and are more enterprise oriented 

compared to SQS. These does not integrate in the cloud as seamlessly as native cloud services but 

can if needed be run as custom applications in the cloud. Adopting our application to use SQS would 

require invasive changes to multiple parts of the system. Both the back end consuming messages and 

the producers of messages would need to be changed in order to support this new queue service. 

This approach is infeasible since the message queues are a business critical part of the system, on 

which every other part relies, and therefore require intensively tested services and enterprise level 

support. Because of this the developed application have no support for SQS, nor have it been 

seriously considered, so this section explores SQS more theoretically. 

The SQS queue manager, more in detail described at [28], is hosted in the Amazon EC2 cloud 

and provides functionality normal to queue services but has several uncommon characteristics: 

 Inserted messages are guaranteed to be delivered at least once. This means that a client, 

when doing multiple reads from a queue manager, can receive the same message multiple 

times. This property is due to how the queue is distributed in order to improve performance 

and reliability. To guarantee that a message is to be delivered once, and only once, would 

require the queue manager to synchronize distributed queues. This distributed 

synchronization would decrease performance and increase complexity and is therefore often 

omitted. 

 Queues are not synchronized which can lead to a client receiving different answer from 

queue managers. 

 Messages are not guaranteed to be delivered in First-In-First-Out (FIFO) order. This property 

is similar to the one above and is due to the queues not being synchronized. 

Redelivering messages 

An application using SQS must be designed with the above bullets taken in consideration. If 

processing the same message more than once is an error the application should have some 

mechanism to detect a redelivered message. This mechanism is dependent on the nature of the 

messages read from the queue. An easy approach is to temporarily save data in a local cache to 
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uniquely identify a message. If the message has not been seen it is processed and added to the 

cache, otherwise it is a duplicate and therefore discarded. This method requires that a message can 

be uniquely identified, and may require the addition of a unique data field to each message. An easy 

approach is to use an incrementing counter which is inserted into each message and serves as a 

unique identifier. 

This method of keeping temporary data has four easily identifiable major drawbacks: 

 It requires that some data must be saved until one can be sure that no more duplicates of a 

message can be received. If messages are read from the queue at high speed the amount of 

saved data can pose a problem. 

 Multiple consumers may need to share a common data structure used to identify the 

messages received. 

 There must be a way to determine that no more duplicates can exist. 

 It makes distributed producers (writers) of messages more complex as the created 

identification number must be unique. 

Shared cache 

The first and second bullet is dependent on if distributed consumers (readers) are supported and the 

amount of data expected to be saved. One drawback using a distributed data structure is additional 

communication overhead as will be discussed in more detail in Performance and scalability (section 

5.1.3). In either case of a local or distributed storage, a fast data structure suitable to hold the 

required amount of data and with good read and write complexity shall be used. 

If the data is calculated to fit in memory, a key-value store such as a hash map, skip list or tree 

can be used. Distributed alternatives are databases optimized for key-value store, such as 

MemcacheDB, or pure caches such as Memcached. 

No more duplicates 

How the third bullet is solved is dependent on both the queue manager and how the application 

saves messages received from the queue. If a message is read and the queue manager indicates that 

no duplicates exist, the message can safely be removed from the temporary storage as it will never 

be seen again. If the queue manager does not support such functionality another simple approach is 

to save a temporary message for a limited amount of time and then remove it. This method might 

not be feasible as it does not in every case guarantee that a message is not delivered more than 

once. If a late message duplicate is received after the initial message have been removed from the 

temporary storage an erroneous delivery is made. If a message contains a timestamp this can be 

compared to the receiver's clock and when the time delta is large enough the message is deleted. 

The characteristics of the queue and the time delta used defines the probability of a message is 

incorrectly labeled as a duplicate. This method must therefore only be used if it is acceptable to lose 

old messages. The last method requires that the receiver can validate if the message is a duplicate by 

contacting an external source. If the temporary store does not contain the received message, an 

external store, for example a database is queried. This method is depends on that the receiver has 

access to such a database and is willing to accept the additional overhead when receiving new, never 

seen messages, by contacting an external source. 

Unique identification generation 

The last bullet is only relevant if the messages received do not contain any uniquely identifiable data. 

The creation of a unique identifier depends on if there can exist multiple distributed producers of 
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messages. If the producer(s) only exist locally a simple incrementing counter can be used, as 

mentioned earlier. This approach is still possible when dealing with distributed producers but might 

be unsuitable due to additional overhead of synchronizing the counter. Another approach is that 

each producer creates an identification number which has a high probability of being unique. This 

might be solved in a similar manner to how MongoDB generates its identification numbers (see 

Appendix A). The identification number is created in a way that does not require multiple producers 

to be aware of each other. 

FIFO ordering 

As SQS does not guarantee FIFO delivery an application requiring this property must implement it. 

This can be done by keeping track of every received message and if necessary sort the messages in 

the correct order. This requires that each message contains a field suitable for sorting, for example 

an incrementing counter. It can be implemented in a similar way to how a unique identification can 

be generated, as described earlier. One major problem with reading messages from the queue and 

not directly processing them is the possibility of data loss in case of an application crash or similar 

event. Queues, and similarly databases, often allow transactional operations which guarantee that 

no data is lost in case of an unexpected event. The problem with reading messages from the queue 

and storing them locally is that the messages are removed from the queue after they have been 

saved locally. In case of an application crash these messages are lost unless the client implements a 

persistent storage. 

5.1.2.3 Storage and data resilience 

The characteristics of storage in a cloud are both dependent on the actual hardware used and how 

the storage space is virtualized. A storage device may be shared between multiple users and should 

therefore not be able to be accessed as a raw device by the users. Instead it is virtualized to hide the 

low-level details, which have the effect that information that can be useful to the users is hidden. 

Information such as device types (hard drive or solid state drive), interface (SATA, SAN or SAS), block 

size, buffer size, IOPS and latency gives the user possibility to optimize the application and services 

used.  

Amazon provides three storage services with different properties. Instance storage are 

attached to most EC2 instances and is recommended to use for temporary or less important data, as 

it bound to the lifetime of an EC2 instance and is less rigorously replicated. Elastic Block Storage (EBS) 

is a block level storage suitable to store frequently changing data, such as databases. This data is 

replicated automatically and it is possible to use multiple EBS volumes to use replication, such as 

software RAID. This storage is network connected and as such limited by the internal network speed, 

but is optimized for low latency. Both the Instance storage and EBS employs the strong read 

consistency. The last storage service, Simple Storage Service (S3) differs from the rest by employing 

eventual read consistency, and a different pricing model. It is network connected but the speed is 

more limited than EBS, and may have higher latency. 

Durability and MongoDB 

The system in Case study system (chapter 4) is dependent on the underlying storage since it affects 

the MongoDB database. Data is written to a journal file, a database file and a log file which may pose 

a problem if the underlying storage uses hard drives, due to their high seek latency. Therefore one 

should use different hard drives, or at least different platters, to store the different files in order to 
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improve performance. Multiple EBS volumes are used in a software RAID 1+0 array to alleviate this 

problem by striping data to multiple hard drives. 

In order to reduce the impact of high disk latencies MongoDB does batch commits of data. 

Data written to the database are not immediately written to disk but instead kept in memory and 

periodically written. The direct result of this is that the durability property of ACID is violated as data 

may be lost in the short time period before being persisted to disk. The journal file can be set to 

synchronize to disk at intervals between 2-300 milliseconds, where one can choose if to prioritize 

write speed or data durability. To find a suitable write interval one must perform benchmarks in the 

cloud by applying load similar to the real application. MongoDB gives the connected client possibility 

to choose the level of data resilience at each write. This is called write concern and indicates how 

concerned the client is about the data being written successfully. One can influence both how data is 

flushed to disk and how many replicas must receive the data before returning. 

During testing of our application we have found that the level of write concern greatly affects 

the write performance in terms of writes per second. The default behavior (denoted NORMAL) is to 

not report errors in the database which can lead to data loss without the client ever noticing. Several 

different levels of write concern can be used to alleviate this by waiting for the database to 

acknowledge the write. The simplest and fastest form of safe write concern is that the database 

acknowledges the received data directly to the client without writing it (denoted SAFE). Another 

possible write concern is to let the client wait for the database to flush its buffers and write the data 

to disk (denoted FSYNC_SAFE). This guarantees that no data is lost but slows down write 

performance severely as data is only persisted periodically. The last studied write concern is only 

applicable if replicas are used (denoted REPLICAS_SAFE). It gives the possibility to wait for any 

number, or the majority, of the replica databases to acknowledge the write. The data are not flushed 

to disk but one instead relies on that at least one replica will successfully persist the data to disk. 

MongoDB performance 

The following performance data is measured on an Amazon EC2 instance (m1.medium) with a 

dedicated RAID 1 array using two EBS volumes for each of the data and journal files. It is running the 

complete back end, an Apache ActiveMQ queue and the MongoDB database on the same server. 

MongoDB uses the default journal flush interval of 100 milliseconds, has sharding disabled and 

replication enabled. The replication database consists of one additional instance also configured as 

described above. The last test (REPLICAS_SAFE) using replication uses an additional EC2 instance 

(t1.micro) to host the second replica set, configured as described earlier. Both these instances are 

described more in detail in Appendix D. 

Table 1 shows the performance measurements saving messages to the database in Amazon 

EC2: 

Write concern Messages per second 

NORMAL 2800 

SAFE 2080 

FSYNC_SAFE 25 

REPLICAS_SAFE 295 

Table 1.Insertion performance of MongoDB in Amazon EC2 
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Table 1 shows the performance of MongoDB database situated on Amazon EC2. Worth noting is that 

the NORMAL write concern most likely is skewed due to being CPU bound. On this test the CPU 

utilization was constantly 100%. 

The next test is done in a local environment in order to compare the difference in performance 

in the specific cloud. These tests are performed on ordinary customer grade computers, but using the 

same configuration as in the Amazon EC2 test. Table 2 shows the performance in a local 

environment: 

Write concern Messages per second 

NORMAL 8550 

SAFE 4920 

FSYNC_SAFE 24 

REPLICAS_SAFE 395 

Table 2. Insertion performance of MongoDB locally 

The both tests from Table 1 and Table 2 clearly show how MongoDB’s performance suffers from safe 

writes. The common denominator of the write concerns except NORMAL is the additional delay they 

introduce to the writing client; in all cases the client must wait for the database to acknowledge the 

write before resuming operation. We have identified the disk flush delay and network latencies as 

the two contributing factors for this performance impact. Both of these factors can be hard to reason 

about in a cloud environment since the underlying infrastructure is often hidden to the user. During 

the development and testing of our application we have found on several occasions that the default 

(NORMAL) write concern may lose data. It is therefore a must to use a write concern of at least SAFE. 

To make our application less sensitive to high latencies it uses several concurrent threads to 

write data to the database. As the limiting factor is the high latency and not the database throughput 

in itself this method allows for less time wasted on waiting for a response. Testing with three 

concurrent threads showed a close to linear increase in performance. 

5.1.3 Performance and scalability 

In order to better utilize the capacity of a distributed cloud the application must be designed to scale 

horizontally, which means that the application can increase its performance by adding additional 

cloud instances. This can be done by designing the application as modules where each module runs 

on its own cloud instance. The process of modularization for a cloud application is not the same as a 

local application. In a local environment fast in-memory data structures can be used, but this is not 

possible in a cloud since the application is distributed over multiple instances. To highlight the 

differences this section contains a comparison between different cache solutions. 

The module concept can be divided into (at least) two classes; either a module processes a 

sub-part of an algorithm, or there are multiple modules of the same type computing the same 

algorithm. These two algorithms are described further below. 

Divide and conquer 

The first class depends on the inner workings of the algorithm and requires it to be sufficiently 

parallelizable. The maximum speedup factor is limited by Amdahl’s law [29] which states that the 

speedup is limited by how much of the original serial algorithm can be parallelized. This means that 

there will be a point where it is not possible to parallelize the algorithm any further and that the 

system therefore does not scale beyond this point. Another issue is the additional overhead created 

by communication between modules. As each module only computes a fraction of the algorithm the 
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amount of communication between modules will be high. In a cloud environment the exact location 

of a module might not be known and suboptimal communication methods such as TCP or HTTP 

requests might be used instead of for example Inter-process communication (IPC) or shared memory. 

Parallel execution 

The second module class looks at the application at a higher level and creates modules that each 

executes the same algorithm but on different input data. This method is not dependent on how 

parallelizable the algorithm is but requires that the input data can be processed in parallel. This 

means that the input data must be possible to divide among several modules and that there are no 

internal dependencies between the input data. Given that there are no data dependencies this 

algorithm may scale towards infinity, by adding more modules. 

Two classes of modules are visualized in figure 5. 

 

Figure 5. Two classes of modularity 

One major obstacle when creating modules are the need to share data in a distributed environment. 

Modules running locally on a single computer can use optimized data structures and access methods. 

Multiple local modules can easily share a single thread-safe in-memory data structure with low 

communication overhead. A distributed system on the other hand may not have an obvious location 

where data can be shared. The idea of centralizing data goes against the concept of modularizing the 

system as it adds a potential bottleneck and may inadvertently serialize the algorithm. It may limit 

the performance growth potential unless the data storage in itself supports some form of sharding. It 

also adds a single point of failure to the system when multiple modules are dependent on a 

centralized node. Modules should ideally be designed as a shared-nothing architecture, where each 

module is independent of the others, to minimize the need of performance expensive 

communication. 

Distributed cache performance 

During the implementation phase of our application described in Case study system (chapter 4) the 

need for sharing data between modules emerged. This chapter explores the performance impact of 

using a distributed cache instead of simple in-memory data structures. 

The tests are performed on Amazon EC2 instances (described in Appendix D), using 

Memcached [30] as a distributed cache, and a thread-safe Java hash table implementation [31] as a 

local data structure. The cloud instances are running the Amazon Linux AMI (detailed in Appendix D). 

Both the operating system and the Memcached server use the default configuration, except that 

Memcached is given 1024 MB of object storage. 

Table 3 shows the Memcached server running on the same server as the client. 
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Type # Threads # Messages/Thread # Total messages Time [s] Messages / s 

Insert 1 500 000 500 000 75 6 667 

Read 1 500 000 500 000 74 6 757 

Insert 10 50 000 500 000 78 6 410 

Read 10 50 000 500 000 79 6 329 

Insert 100 5 000 500 000 85 5 882 

Read 100 5 000 500 000 82 6 098 

Table 3. Local Memcached server running in Amazon EC2 

Table 4 shows the Memcached server residing on one of the Amazon EC2 instances, and the client on 

the other instance. This clearly shows the large performance impact a distributed cache has, where 

the single threaded insert is almost eight times slower than the local Memcached server. These 

findings are similar in those of Storage and data resilience (section 5.1.2.3) where MongoDB 

displayed severe slowdown when used in a distributed configuration. 

The degraded performance is due to the increased latency introduced in the network 

communication. As both inserts and reads from the cache is done in serial the latency effects the 

dead time. This is somewhat alleviated by running several threads in parallel inserting or reading the 

cache, which makes the aggregated dead time less noticeable. 

Type # Threads # Messages/Thread # Total messages Time [s] Messages / s 

Insert 1 500 000 500 000 574 871 

Read 1 500 000 500 000 595 840 

Insert 10 50 000 500 000 209 2 392 

Read 10 50 000 500 000 291 1 718 

Insert 100 5 000 500 000 85 5 882 

Read 100 5 000 500 000 81 6 173 

Table 4. Network Memcached server running in Amazon EC2 

Table 5 shows the use of a local in-memory hash table. It circumvents the complexity and overhead 

of using a dedicated cache server but is limited to use in a single cloud instance. Unlike usage of 

Memcached this solution does not use TCP/IP connections but rather accesses the RAM memory 

directly. As RAM memory has higher throughput and latencies of many orders of magnitude lower 

than network connected solutions the findings in table 5 is expected. 

Type # Threads # Messages/Thread # Total messages Time [s] Messages / s 

Insert 1 500 000 500 000 0.75 666 667 

Read 1 500 000 500 000 0.28 1 785 714 

Insert 10 50 000 500 000 0.69 724 637 

Read 10 50 000 500 000 0.28 1 785 714 

Insert 100 5 000 500 000 0.65 769 230 

Read 100 5 000 500 000 0.25 2 000 000 

Table 5. Local in-memory Java hash table 

Performance and scalability for the case study system 

Our application is divided into several modules, of which the two biggest are the front- and back end. 

The need for sharing data is solved by using a database as persistent storage and simple HTTP 

requests between the modules for rare, less important data. The front end is not further 

modularized, but as it does not hold any important state or data there can exist several instances of a 

front end. This adds the possibility to utilize multiple front ends as load-balancers if necessary. 
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The back end on the other hand is divided into several modules: 

 read messages from a queue and saving them to a database 

 periodic statistics generation 

 periodic database cleanup rules update 

 periodic database cleanup 

The main work for the back end is to read messages from a queue and save them to a database. This 

in itself would be a perfect candidate for a module to concurrently run in several cloud instances. It is 

problematic due to how each saved message generates metadata, which is grouped into larger 

blocks and are dependent on earlier metadata. This metadata is made available to the statistics 

generation module(s), and would require the need for a distributed data structure if several modules 

should work in parallel. From the earlier findings the performance was sufficient but the added 

complexity of additional software was discouraging. Instead a simple thread-safe in-memory shared 

data structure was chosen which gives high performance but limits the modules to be running in a 

single instance. 

The statistics generation module uses the metadata generated by the module described 

earlier. Further modularization of this module is complicated by how the metadata is grouped 

together, which requires that chunks of the metadata are processed by a single module. Creating 

independent modules requires that the metadata resides in a distributed data structure where the 

data is already divided into the correct chunks, or that the data processed does not generate any 

module transcending metadata. This will lead to a more complex handling of metadata, both at 

insertion and retrieval of data. The added complexity of such a system was deemed to be infeasible, 

and this module does therefore not support distributed processing. 

The module which updates the database cleanup rules is responsible for periodically read a set 

of rules present in the database. It acts as a controller and handles the logic of scheduling tasks. This 

module does not share any data structures with the previous mentioned modules and are therefore 

a suitable candidate for modularization. Due to the nature of this module, care must be taken for 

using proper synchronization if several modules are concurrently running, in order to prevent a task 

from being scheduled multiple times. Although this module is possible to modularize it is deemed 

very unlikely to ever cause any performance problem due to its infrequent and lightweight workload. 

Each periodic database cleanup task is completely independent and does not keep any state at 

all. It is depending on the previous module to be scheduled but requires no intervention after this 

point. In addition it might run for long periods of time and be both computation and I/O intensive. 

They are intended to be run very infrequently and are not sensitive to high startup latency. Each task 

is run sequentially and is not possible to modularize further. These facts make a task suitable to be 

run at its own cloud instance. It the cloud host provides a truly elastic cloud a new cloud instance can 

be created and destroyed for each task invocation. This can lead to economical saving where only 

cloud instances which are used exist. 

5.1.4 Distributed systems and connectivity 

Systems externally connected to the cloud can and should be considered as a distributed system. In a 

distributed system where an application needs to gather data from different locations there are a 

few scenarios that might occur that one should keep in mind in consideration to architecture and 

connectivity: 

 Front- and back end might not be located at the same location or server. 
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 Firewalls and other gateway issues might arise when a non-local application is trying to 

access database or server applications from outside the local environment. 

 The local- and cloud environment might not have the same protocol support. 

Communication between systems is something that needs to be addressed early in order to avoid 

difficulties later in development. A general and good approach is making the application or system 

generic in sense of communication and data formatting. 

Having an application run in the cloud, there is interesting scenario in the way one deals with 

fetching information from other complementing distributed systems. The coming scenarios describes 

two different problems and possible solutions with consideration to system requirements of the 

application described in Case study system (chapter 4). 

 Internal system scenario 

 

Figure 6. Communication with internal system 

In the above scenario (figure 6) an internal system is connected to a local database and a cloud 

instance needs to request information from the internal system’s database. The internal system logs 

information and stores it in the database which is then is meant to be requested by the cloud 

application. Here the cloud application is dependent on a system outside the cloud which adds 

additional complexity in terms of connectivity and administration. The internal system might be 

located inside a company’s network which requires firewalls to be configured to allow the cloud 

application access. It also makes the cloud application dependent on the outside system in terms of 

availability. 

This was implemented as figure 6 shows by having the cloud application perform requests to 

the internal system directly. The internal system fetches the information and returns it to the cloud 

application. However, this is not an optimal solution when the system requires low latency towards 

the database. This type of implementation is an option when the number of requests from the cloud 

application to the external database is low and the additional overhead is acceptable, or that the 

data must not be located inside a cloud either due to legal or business reasons. 

This scenario was implemented to deal with infrequently used, non-critical local services 

running inside a company’s internal network. The solution does not provide sufficient performance 

when dealing with a system performing frequent queries to the database and that requires low 

latency communication. This problem is solved in the following scenario. 

 

Push information scenario 

This scenario describes a part of the system that requires high performance and low latency querying 

the database. Having the information stored on a local database in the cloud is not an issue due to 

legal or business reasons and therefore one can utilize the fact that the cloud database are more 

easily accessible by the cloud application. 
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Figure 7. Push information 

In the above figure 7, the system consists of the application, a communication service and a 

database. Instead of having the cloud application request information from the internal system, the 

internal system pushes all relevant information to the communication service in the cloud. The 

communication service will then store the information in the local cloud database which the cloud 

application is able to read. 

With this implementation one avoids all the complications of having to access secure locations 

inside company environments and instead one can define which providers that should be able to 

push information to the cloud application. A benefit of this approach is that the application is 

relieved of the responsibility of retrieving data from the internal system, and instead reads its local 

database which gives lower latency. As the database is local to the cloud application it can provide a 

higher level of consistency and availability compared to scenario 1. 

5.2 Security 
When evaluating the viability of a cloud based solution one need to take security into consideration. 

Comparing security in a cloud compared to a local network, one can not necessarily make the same 

assumptions. As both hardware, such as network infrastructure and storage, and software such as 

databases, may be shared between multiple users, steps need to be taken in order to prevent any 

third party from reading sensitive data. 

Internal network communication between cloud instances, which is normally done in a trusted 

local network, will in a cloud involve communication over untrusted networks. To secure this 

communication the use of encryption can be used. If the applications used does not natively support 

any form of secure communication the use of tunneling can be used. For example, two cloud 

instances connect using Secure Shell (SSH), and the applications are configured to communicate over 

the secure tunnel. This approach have the advantage of being transparent to the application, but 

adds increased CPU usage and a more complex network infrastructure. 

How data residing in shared cloud services is secured, such as in message queues or databases, 

is largely dependent on the service’s encryption support. The payload of a message placed in a 

message queue may be encrypted before it is placed on the queue, and later decrypted by the client 

reading the message. This approach may not work in a database if the content of the database 

should be queryable, unless special encryption support is natively available. If the data to be stored is 

sensitive the alternative to a database service is to administer a custom database which supports the 

needed level of security. To secure stored data, which may include databases, message queues and 

normal files, one can use a file system and operating system supporting full disk encryption. 

The system in Case study system (chapter 4) is moderately secured. The front end supports 

HTTPS (HTTP Secure, using SSL (Secure Socket Layer)) to provide authentication and encryption. A 

similar approach is used for the back end which uses SSL to authenticate both the client and back 

end. This requires both parties to share certificates which greatly improves security but adds 

additional administration work at first setup. This must be done as the back end does not validate the 
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received data and malicious input would be disastrous. The Amazon EC2 cloud provides an ingress 

filtering firewall to further secure the systems by limiting the access to the services. Securing the 

network communication between cloud instances or file storage has been deemed to not be 

necessary. 

5.3 End-to-end testing 
Providing automated end-to-end testing for the system described in Case study system (chapter 4) is 

possible considering a combined test environment combining traditional test methods such as unit 

tests and testing tools external to the cloud. This section describes the process of combining these 

difference approaches in order to provide a case sufficient level of end-to-end testing. 

In order to provide end-to-end testing for the web-application a lot of different aspects needs 

to be considered. The main idea is to iteratively build tests on top of each other until finally one is 

left with a system that has been tested from the bottom and up starting with unit testing and ending 

with user testing. Another possible requirement is that it should be able to run through these test 

automatically before every deployment which introduces some difficulties when one has to combine 

unit testing with user functionality testing. 

Figure 8 shows the whole suggested test process described in the following sections. 

 

Figure 8. End-to-end testing Track and Trace 

5.3.1 Unit test 

The unit tests has been implemented and designed in order to assure that specific components 

performs as expected in the sub-parts of the system. Components are extensively tested in sense of 

expectancy and utilize assertions in order to detect anomalies. If enough unit tests have been 

included, one can be certain that an error does not lie within the specific units but in the next level of 

integration. Unit testing is usually rather straightforward but there are some approaches where one 

could extend unit testing to a more advanced setting. 

 Test sequences that periodically execute application specific blocks or methods in order to 

verify that they still are behaving as expected. 

 Having precomputed test data or a preconfigured database for testing expectancy. 

 Pseudo-random stress functions during low latency periods in order to verify stability. 

As far as how extensive unit testing can become for any application, it is usually limited by size and 

complexity. 

5.3.2 Integration test 

Before integration testing starts one first have to make sure that all unit tests has passed as Ok. 

When all unit tests are finished, integration testing is started by combining different units which 

underlying functionality are intended to work together. These tests can be seen as a list of units and 
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are expectancy tested as a group. The following example is a function with intention of entering a log 

event into the database. 

 

Figure 9. Integration test example 

In figure 9 there are two separate unit tests, Unit 1 and Unit 2. These units are individually tested and 

needs to check Ok in order for the integration test Unit 1,2 to check Ok. A passed integration test 

does therefore not only guarantee the success of its sub-parts, the unit tests, but also that the 

module as a whole works as expected. 

In the example above the system validates that the message received at Unit 1 is in a valid 

JSON format, and therefore can be sent to Unit 2. Unit 2 in its turn validates message content. 

Running integration test Unit 1,2 will validate that the received message has been saved in the 

database as a valid JSON message. 

Iteratively one computes a series of these integration tests making up the whole system. By 

wrapping a complete test around all these integration tests one now have a well-defined structure in 

how to test the system as a whole. With this, one now have a complete series of tests making up the 

whole system which can be used in order to perform relevant system testing. 

5.3.3 System test 

System testing is the broad term of testing that a system conforms to the specified requirements. In 

this context a system refers to a system that has passed integration testing. This phase of testing can 

contain for example performance, load/stress, compatibility and scalability testing. 

Performing system testing provides information about the overall soundness of the system. 

The system described in Case study system (chapter 4) receives log events on a queue which is read 

and later inserted into the database, one wants as high throughput as possible going from queue to 

insertion in database. This is a crucial part since the clients utilizing the system are dependent on the 

information that is added to the queue to be available from the application with low latency. Figure 

10 describes how a message is fetched from the message queue to the back end service which 

performs a series of operations before saving the information to the database. The back end service 

examines every log event in order to distinguish anomalies or errors before passing the information 

to the database. 

 

Figure 10. From message queue to database 
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Data retrievement from the message queue to the back end service could be a potential choke point 

since it is the back end that is responsible to deliver the data to the database. This because, not 

before the back end has delivered the received message to the database can it fetch another 

message for processing. It is therefore periodically tested to detect if there are large variances in 

gathering data from the queue, as well as the time for a log event to be inserted in the database. In 

the scenario of a very high load there could be a delay in delivery to the database and with that a 

latency for the client to get up-to-date data from the application. 

Although both the back end and the database have very high performance the application is 

still dependent on the interaction between the two modules to ensure high performance. It is 

therefore important to test the complete system in order to obtain a realistic measurement of 

performance. 

5.3.4 User test 

When all prior tests are Ok, one moves on to the last step of end-to-end testing; to test the graphical 

interface of the application. To test the graphical user interface Selenium 2.0 WebDriver is used. The 

graphical interface testing is built in Java, using the Selenium driver, which makes it easy to integrate 

other techniques that might be useful for testing the application. The graphical user testing suite is 

separated from the rest of the test build and is run externally from the cloud. This makes it possible 

to provide a different aspect of testing, providing the possibility of validating and testing the system 

separated from cloud environment. By this methodology one is able to give a more concrete picture 

of how the complete exposed system is performing focusing on performance, stability and usability.  

The structure of writing browser tests is very straightforward. By using Selenium WebDriver 

one can manipulate the web browser to simulate user input by accessing the DOM object. The 

following is a basic procedure of how a graphical interface is tested: 

1. navigate to the desired page 

2. find the desired HTML element by for example, class name, tag name or id 

3. perform operations on that element or locate the next related element 

4. validate response 

When the above steps are performed from top to bottom without exceptions, the graphical interface 

are most likely working as intended. Since the graphical interface are dependent on the underlying 

functionality working properly, one can be sure that since the graphical test did not generate any 

errors, the underlying functionally also worked without error. If an error on for example a page 

redirect occurred due to some error in underlying functionally, Selenium will return an exception and 

an appropriate message are given to the console. By well-structured error messages one can get a 

good overview of how the system performed during the testing phase and maybe get a hint of what 

might have gone wrong during the run. 

When performing a query from the graphical interface, the database is expected to deliver 

correct data back to display for the client. By adding some functionality of making it possible to 

connect to the database within the Selenium test program, one can make sure that the information 

sent, and the information received corresponds to the appropriate entry in the database. 

Example test run 

In the beginning of the test program a connection to the database is made from within the test 

program. A query is passed to the database for a random log event which is returned and formatted 

appropriately in order to work within the Selenium test case. With the information received from the 
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database the program queries the same log through the graphical interface. The information 

returned to the graphical interface from the query is compared to the information earlier acquired 

from the database. If this information checks out as equal the program is working correctly and the 

Selenium program can continue with testing other functionality. 

5.4 Cloud testing 
There are distinct differences in testing comparing the local environment to the cloud. Testing a 

cloud is complicated by, and important due to, the distinct difference in the implementation 

environment. Security-, performance- and problem isolation testing are hard to implement as these 

areas may be out of control for the user. In the following section we will highlight observations made 

during the development and migration of the Case study system (chapter 4) in regard to 

implementing testing for a cloud environment. 

5.4.1 General 

Having an application run in a cloud environment in contrast to running it in the local has some 

differences in terms of testing. Testing a cloud application does therefore not end with testing only 

the actual application but also the underlying cloud infrastructure and the services it depends on. 

Testing, such as unit testing and similar, gives an indication that the application is behaving as 

intended before actual deployment in relation to the services to be used. Once the application 

resides in the cloud, a whole new set of aspects are presented in terms of performance, usability and 

usage intentions. A real issue in the cloud is testing the capability and reliability from within the cloud 

between different services from the cloud provider. Once the application resides within the cloud, 

one is bound by performance and reliability that comes with the cloud solution. Not only will the 

application probably be running in parallel with other applications on the same server, it will 

probably also be bound by the same hardware which might cause problems or concerns in form of 

security and reliability. 

5.4.2 Considerations for cloud testing 

Moving the application to the cloud will in some cases present some differences in how to 

implement a certain test or test case depending on the cloud environment. Some levels of testing are 

more migration friendly given that they are less dependent on the current environment. Unit tests 

are generally relatively easy to migrate since it usually only depends on very specific or small factors 

in order to compute, whereas integration and system testing are more sensitive to the execution 

environment. 

Migrating the system described in Case study system (chapter 4) presented some interesting 

considerations to keep in mind when initially developing ones test suite, alternatively at the actual 

migration. 

Load, stress and performance testing will no longer consider only the application itself. Since 

the application now is running within a cloud, additional aspects such as external communication 

need to be considered when determining systems soundness as a whole. Therefore it is interesting to 

produce some automated test cases, stress and load testing both the application itself from within 

the cloud comparing testing the complete cloud application from outside the cloud in order to 

determine possible bottlenecks more specifically. A more elaborate example of this is given in Case 

scenario (section 5.4.3). 

A test case closely related to performance is to test an application's ability to scale 

performance wise. This is a valid test if the application is built to support scaling in a cloud. This test 
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can be run by generating high load on the application and measure the system’s response. These 

measurements can then be used to track performance changes related to system changes and also to 

compare different cloud hosts. 

If the process of migrating the application results in new or modified support services, a 

compatibility test can help to verify the soundness of the system. This test can be seen as an 

extension of normal integration testing but focuses more in the integration of external systems, such 

as different cloud based services. Even though a well-defined API is used to communicate with the 

services provided by the cloud host, unexpected changes to external system can break functionality 

of existing applications. This is especially true to systems which is out of control to the user, and only 

provided as “ready to use” services. The exact structure of a compatibility test is dependent on the 

system, but this test can generally contain logic that can be run periodically or if the cloud provider 

announces changes to its services. The test can verify that the API used is still valid by comparing 

results received from the service with an expected valid result. 

5.4.2.1 Security 

Security is always a factor, whether it is in the cloud or in a local server setup. However, dealing with 

security and access from within the cloud, there are less concrete factors stating that the user trying 

to access the service or application is a valid user, except for example a provided user name and 

password. In relation to the local environment running behind the security of firewalls and gateways 

of a company, where users of the local network is assumed to be trusted, the cloud does not have 

the same extensive protection for accessibility. In a more local setting one can take parameters into 

account such as IP subnets, domain, role and other parameters more concretely stating who you are 

and what rights you have to access the system. 

Testing that the cloud system provides sufficient security is a rather crucial part to monitor in 

order to be able to state that the application and the services behind it are secure. 

5.4.2.2 Performance 

Performance is a very wide concept applicable to almost all parts of a system. Still there are some 

distinct differences that cannot be found in a local setting. Performance testing can be performed as 

usual within the application, testing e.g. throughput for specific parts of the system. 

A new aspect that comes with a cloud application testing is the act of testing the actual cloud. 

All communication to and from the cloud is bound by the performance, accessibility and stability of 

the cloud provider, something that one as a mere customer of the cloud service has no control over. 

Since ones applications and services are virtualized and the real hardware might be distributed, this 

implies that you also are sharing physical hardware, memory and storage with other applications, not 

necessarily your own. Performing e.g. stress tests and other performance determining test 

methodologies against the cloud is therefore quite dependent on its overall state. This could possibly 

generate some diffuse results depending on the load during that time. This implies that 

measurements must be viewed over a larger time span in order to eliminate possible variances. 

5.4.2.3 Problem isolation 

An application running within the cloud is bound by whatever performance and availability that is 

provided by the cloud provider. An application depending on various services relies on the stability 

and accessibility of that specific service at any given time during run-time. 

Given the scenario that an application is utilizing a series of services which during a longer 

period of time has been working correctly. At some point the system crashes and through the error 
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reports one can determine that the problem has occurred in relation with one of these services. In a 

local scenario the problem can be easily isolated to that specific service or the sub-part of the system 

that utilizes that service. Isolating the same problem in a cloud environment is not quite as easy. 

Within the cloud, the service in question is not necessarily localized even within your own virtualized 

environment. Moreover the service could be utilized by a number of other applications in parallel, 

distributed and replicated from some centralized unit. This makes it extremely hard to isolate the 

actual problem and even harder to produce tests that could determine if it is the actual service, one’s 

own application or some other application that is the actual cause to the problem. 

5.4.3 Test scenario for case study system 

Given the scenario and application described in Case study system (chapter 4), testing of the 

deployed cloud application is done both from within the cloud in terms of application testing, as well 

as testing the exposed application services from outside the cloud using Selenium WebDriver. 

 

Figure 11. External and internal cloud testing 

Figure 11 describes the testing done with the system described in Case study system (chapter 4). The 

application itself contains all necessary tests briefly described in End-to-end testing (section 5.3) in 

order to show that the application is running as intended with expected results. The application is 

run with a debug build containing tests in application level and database. From outside the cloud 

another test program is run periodically from a server which runs the test script described in User 

test (section 5.3.4). The test program running the graphical testing script is also combined with data 

input testing as well as stress testing, testing the system during low load periods with intention of 

validating system performance. 

By this methodology one covers a few, but not all of the different aspects that are testing a 

cloud application. One aspect not considered in this model is cross service and cross cloud 

application testing, internally and externally, which is difficult to implement as a mere customer. In 

order to perform these kinds of test it is necessary for the cloud provider to have some form of 

support. 

5.4.4 Data input testing 

Interesting methods of executing system testing is the idea of data input testing, or fuzz testing. The 

idea is to test the parts of the system that is exposed to external systems which may not be trusted. 

The tests are done by generating random or semi-random data as input to the system and monitor 

the system’s response. Since most parts of the system are dependent on some form of input, this 

method of testing is applicable in most levels of system testing. 

Fuzz testing is favorable used in conjunction with other tests such as unit testing to provide 

more substantial test coverage. Our application used two forms of fuzz testing, both by generating 

semi-random to the queue and by the Selenium WebDriver to extend the testing of its graphical 

interface. The first test created syntactically correct data which in different ways differed from 

normal data and saved it to the input queue. It was used to successfully detect errors in the back end 
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which received and parsed the data. It highlighted the dangers of assuming a certain data format 

from data received from an external source. Performing fuzz testing using Selenium tested the front 

end. For example the logic parsing search queries was tested with unusual data which exposed 

several anomalies. 
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6. Discussion 
This chapter contains a discussion around the research method used and the results of this report. It 

will consolidate our results to discuss the findings, how they can be applied in other projects and to 

justify their validity.  

It also contains a step-by-step guide used in our project to migrate a MongoDB database from 

a local environment to a cloud. This guide is created from migration experiences and contains tips 

and guidelines for how to successfully migrate MongoDB while using features such as sharding and 

replication. 

The results can be naturally divided into two parts which will be discussed separately; the first 

part concerns services and how they are affected by a migration, and the second part discusses 

considerations for cloud testing. 

Worth noting is that these results are limited to the application developed in the case study. 

They do not cover any general case in migrating an application to a cloud, but instead focuses on the 

specific needs of the mentioned application. The characteristics and high level view of cloud services 

and testing described, is valid independent of the application. However, the solutions to the 

problems may only be applicable to our case. The possible solutions to the problems explained in 

Services (section 5.1.2) should not be seen as definite solutions to the problems. They are simply 

solutions given in order to raise awareness of how cloud services may differ from local services. 

Additional work needs to be done both to give solutions to general cloud computing problems and to 

examine individual cloud host’s services. 

6.1 Cloud services 
The major findings in the results concerning cloud services relates to the profound differences 

between local services compared to cloud services. In preparation for the development and 

migration process of our application it became clear that we needed to carefully consider which 

services was usable. 

MongoDB with its functionality suitable for an elastic cloud, such as sharding and replication, 

showed that one need to take both the application to be migrated and the cloud into consideration. 

The application may have to deal with the eventual read consistency property if using replication, 

which is an area where we have not presented any real solution but only how we avoided this 

problem. This problem was not very deeply studied as it did not affect our project, and it is possible 

to opt out of this behavior by disallowing reads from slave databases. One needs to be wary of this 

problem and thoroughly investigate if ones application can tolerate this property. 

MongoDB performance 

MongoDB was initially chosen mainly due to its good write performance and ability to scale 

horizontally. It was known from the beginning that MongoDB does not adhere to ACID in order to 

increase its performance. The results from the performance measurements done in Storage and data 

resilience (section 5.1.2.3) clearly shows how MongoDB’s performance declines when one requires 

safe writes. One often stressed benefit of MongoDB is its fast writes. This has been showed to be 

true only when using the default, unsafe configuration, which in our case provided unacceptable data 

security. 

The measurements presented are only valid for our application in the specific environments 

used. These results may therefore not apply strictly to an EC2 instance or clouds in general, but 

should be seen as a general hint. The techniques tested will due to their nature without doubt limit 
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the performance, regardless if tested in a cloud or locally. The actual performance numbers will differ 

in different environments but their ratio will most likely stay fixed. The application relies on a chain 

of services in addition to the MongoDB database, such as message queues and other applications. 

The chain is famously never stronger than its weakest link, and therefore our measurements could 

have been influenced by limited performance of external services. Even if the measurements could 

benefit from a larger sample it is our belief that these finding point in the correct general direction. 

The finding corresponds with our expected results. The introduction of latency when writing 

data to a database will evidently reduce a client’s performance. To reduce this performance impact 

we used several concurrent threads to write data which showed near linear performance increase. 

This is also to be expected since the database is more efficiently used. These finding are similar to 

other performance measurements in similar context. In [32] the author describes a simple test case 

inserting data using different write concerns. The environment in which this test was run in is 

unknown but the test clearly shows a similar pattern to our findings. 

Message queues and scalability 

The section on cloud based message queues highlights the differences between the traditional queue 

managers we used compared to the cloud based Amazon SQS. The solutions presented are mostly 

theoretical as none of them was implemented for the purpose of solving the complexities added by 

the cloud based queues. These solutions can still be considered to be valid as they are based on 

experiences developing other parts of the system as well as the internal working of the MongoDB 

database. The process of modularizing our application gave ideas on how solve the issues of cloud 

queues using concepts of distributed data structures and generation of identification numbers in a 

distributed system. 

An often advertised property of a cloud is its elastic or scalable structure which requires the 

application to be designed with these properties in mind. To enable an application to scale in a cloud 

environment it must be divided into modules which each are run on separate cloud instances. The 

process of parallelizing an application is already hard in the traditional local scenario, and is as shown 

in the results to be even more complicated in a distributed setting. It is no longer possible to use 

simple and fast local data structures since the application is distributed over multiple instances. As is 

shown in the result this has substantial performance implications, especially when used in a single 

threaded application. 

A proposal for future work would therefore be to research and generalize the process of 

modularizing cloud based applications. This way one could automatically analyze different 

modularization method’s potential. 

6.2 Testing 
Looking at the results presented in Results (chapter 5) one can draw the conclusion that migrating or 

implementing a test suite for the cloud is possible. The results presents a concrete case of 

implementing a running test build on a cloud environment as well as the ability of testing the cloud 

application as a whole externally from some other test program. Experiences during development of 

the system described in Case study system (chapter 4), presented some new and valuable 

considerations presented in the results. These considerations do not necessarily reflect a general 

case and could possibly be quite restricted to this specific system. However, some of the aspects are 

quite general which presents the possibility of adapting at least thoughts and considerations that 

could be valuable to keep in mind for any new, to be developed, distributed system. 
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Given the fact that the system have been successfully migrated and tested in a cloud 

strengthens the claims presented in the results, and also presents a concrete case overview of 

implementation which can be adaptable for other systems then the one presented in this report. The 

system has been practically tested with live data from within a production environment at Enfo 

Zystems, providing a lot of valuable both new considerations and re-considerations to earlier 

implementations. The build deployed were successfully tested with a test program implemented as 

described in Case scenario (section 5.4.3), running an implementation of a Selenium test program in 

parallel with data input testing verifying the solution. The research on fuzz testing (data input testing) 

can be expanded in order to better cover GUI testing or the case of a cloud solution. It can e.g. look 

at more specialized input tests aimed at common cloud based services or cloud hosts. 

Having practically tested the system showed that these implementations are easily adaptable 

to be tested automatically, especially user testing in parallel with fuzz testing. Given the nature of 

these tests, the input data can either be totally random or generated to resemble actual correct data. 

The response can then be monitored in order to detect errors such as null pointer references, 

memory leaks, format conversion errors and buffer overflows. However, there are uncertainties with 

fuzz testing in if it actually covers a large enough input space to be relied upon. If the input space is 

very large it is infeasible to test all combinations of data and it is therefore better to use semi-

random generation of input data to limit the test space. Unless every possible combination of inputs 

is executed the result of this test only serves as an estimate of the system’s resilience. Another 

disadvantage is that the tests do not necessarily present the shortest chain of events to reach an 

invalid state. It can therefore be hard to debug the problem if it depends on several data inputs.  

Some of the considerations presented in this report have not been strengthened by any 

practical solutions. Extending cloud testing (section 5.4.2) elaborates on the potential differences 

between a local and cloud environment without providing a potential solution or implementation 

example. However, these considerations are the result of observations made during migration and 

development, and are only intended to provide considerations for anyone planning on moving ones 

system to the cloud. 

Selenium WebDriver 

Selenium WebDriver brings some really interesting and valuable testing features to the web-

development sector with a well-defined API and easy usability. Still there are some convenience 

issues that should be addressed in sense of handling synchronized method calls. There is a 

workaround for the more advanced setting that allows you to make what is similar to a synchronized 

call. WebDriver is natively asynchronous and does not take latency issues into account. This will 

complicate things when writing operations that are dependent on prior information that might not 

have been returned due to latency. There is a workaround to this problem by wrapping the intended 

element fetch in an explicit wait block. This wait block in its turn is a function which periodically 

checks if the element has been returned, and not until the element has returned will the function 

return as result to the original fetch. This brings a lot of overhead to your written code and should be 

implemented in a more convenient way. 

Another inconvenience is that the DOM object is reset each time a web page is refreshed or 

redirected. This means that data must be manually retrieved from the DOM object before it is reset, 

which adds additional repetitive code. References to HTML elements must be re-queried after a page 

is reloaded. 
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Even though WebDriver has some unfinished quirks it is still a good testing methodology for 

web-applications. Given that the web-application also resides in the cloud, one can still run the test 

case on the cloud-server which can give you indications of other errors in the environment. Given the 

scenario that something goes wrong while testing the application from outside the cloud; an 

administrator could run the test program from within the cloud checking if the error is generated by 

the actual application. If no error is found from the internal test, one can start wondering if the 

problem might be located elsewhere in communication between the cloud and workstation. 

6.2 MongoDB migration plan 
The method of migrating a database from a local environment to a cloud host is largely dependent 

on the database used. This section discusses the steps of migrating a local MongoDB database to a 

cloud. As discussed earlier MongoDB provides functionality such as sharding which suits excellent in 

a cloud environment. 

This migration plan has been compiled from several successful deployments of MongoDB 

databases onto Amazon EC2 instances. 

1. Evaluate and define metrics related to the cloud instance such as performance, storage, 

durability and pricing. Determine if database features such as replication shall be used. 

2. Choose if the database application should be provided as a service by the cloud host or 

administered by you. Evaluate if any special software version or configuration is needed, and 

confirm they are compatible with the cloud chosen. Verify the cloud provides the needed 

level of reliability and uptime. 

3. Prepare the database infrastructure. Create documentation of the cloud instances related to 

the database. Create configuration scripts and start the needed amount of cloud instances. 

4. Configure the cloud system and software. Assign static host names to all instances 

participating in a shard or replica set. 

5. Set up a test database in the chosen cloud and assure it meets the requirements from step 1. 

Use test cases that as close as possible simulates real system load, for most reliable 

measurements. Go back to step 2 if the performance is not satisfactory. 

6. Evaluate live data and choose a good shard key based on the access pattern and data 

distribution of existing data. The key cannot be easily changed and it is therefore vital this 

choice is well thought-out. 

7. Create a metric used to determine if a new shard needs to be added. This can involve 

database performance or storage space. As adding a new shard temporarily puts additional 

strain on the database a new shard must be added well in time before the database reaches 

its hard limit. 

8. Enable database sharding from the start, even if it is not immediately used. This allows 

expansion of both database performance and storage space while increasing the database 

infrastructure. 

9. If using replication the applications using MongoDB must be made aware of this. As the 

replicas are eventually consistent with the master database their content may differ. An 

application querying MongoDB must explicitly allow reads from replica databases to indicate 

it allows eventual consistency reads. 
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7. Conclusion 
The purpose of this report is to evaluate and highlight considerations for migrating a distributed web-

application to the cloud. Our develpoment of the system named Track and Trace has laid as a 

foundation to results and observations presented in this report. It addresses differences between 

services provided in a cloud in relation to their local counterparts, and how the implementation of a 

test suite might need to be reconsidered when migrated to the cloud. This report provides the reader 

with knowledge about some of the aspects of cloud migration, focusing considerations in terms of 

scalability and testability. 

Migrating an application with the intentions of utilizing the elastic properties of a cloud, 

considerations in terms of application’s scalability need to be taken. The design of the application 

must be reviewed to determine its modular- and parallelizability potential. This is important in order 

to assure that the design actually will scale as expected in a cloud environment. In order to assure 

scalability, care must be taken in order not to limit the application in a distributed environment. 

Modules should therefore minimize the amount of shared data and dependencies as communication 

in a distributed system can be costly in terms of performance. As the performance tests have shown 

in Performance and scalability (section 5.1.3) the usage of network connected data structures can 

severely limit the performance. We therefore conclude that the primary target for modularization 

should be modules which shares no, or seldomly, data with other modules, or can make use of 

multiple concurrent connections to a network storage in order lessen the impact the network has on 

the performance. The Track and Trace application developed, on which this report is built upon, was 

made into two separate modules. When reviewing performance measurements of network data 

structures it became clear that this was not a viable solution. 

Services within a cloud and services running in a local environment will not necessarily behave 

in the same fashion. The ability for a service to scale performance-wise is a necessity in order to 

assure that it will be able to adopt the elastic properties of a cloud. The cloud provider might 

therefore need to change the service in order to support scaling, which gives a different behavior 

compared to a local service. The database MongoDB, described in Database (section 5.1.2.1) will if 

used with the replication feature have the eventual read consistency property which is uncommon in 

local services. One need to investigate if this is an acceptable property prior to commencing a 

migration. The Amazon SQS queue manager, described in Message queue (section 5.1.2.2) does not 

guarantee that distributed queues are synchronized and therefore have some unusual properties. A 

message can be delivered more than once and out-of-order, which requires the client to take 

measurements to correct this behavior. The can add additional data to each message or store 

temporary messages locally, in order to identify it uniquely or to allow it to be sorted in the correct 

order. This report provides simple, yet practical, suggestions for solving these problems. It discusses 

for example how unique identification numbers can be generated effectively in a distributed setting 

and how this fact can be used to solve the mentioned problems without using performance 

expensive distributed data sharing. 

Having developed and migrated a complete system with the intention of adapting it to a cloud 

environment we conclude that in order to assure sufficient test coverage in the cloud, one does not 

necessarily need to reconsider existing test cases but rather expand them in order to cover newly 

introduced aspects in the new cloud environment. While unit tests often does not require any major 

change, integration and system testing usually need reevaluation or expansion in order to cover the 

new aspects. This should be done as performance, security and services utilized in a cloud 

environment might differ greatly compared to a local environment. 
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Providing a level of end-to-end testing for the complete system is possible with some 

adaptation for the case study system. The main problem solved was the ability of combining low 

level testing such as unit testing with the high level testing that is user testing, and perform it in a 

automated fashion. This was solved by separating the user testing from the rest of the test suits and 

construct a externally running test program triggering internal test cases externally from the cloud. 

As this worked for our system we claim that it is also possible with adaptation for any system sharing 

the same type of loosely coupled architecture. 

Having specified the actual use and intention of the application in a detail, with a good idea of 

requirements for the finally deployed cloud application one will have an easier transition in migrating 

an application from the local setting to the cloud. As always, specification and research are key 

elements for any development to be successful which are hard during the planning phase. However, 

having shared some of these experiences in this report, we hope that some considerations can be 

evaluated even at an early stage of a new project. 

7.1 Future work 

The migration process has given us an insight to the potential problems migrating an application to a 

cloud. One must take care to understand how an application can be affected by utilizing cloud based 

services and how these new complications can be solved. Cloud services, compared to local services, 

display different behavior due to their distributed and elastic properties. To validate that the 

migrated application still works as expected one should make use of integration- and system testing. 

Although the results in this report reflect a single case of migration, many of the 

considerations and solutions presented can be used in other contexts. If an application is to be 

migrated to a cloud, whether it uses cloud services or not, the finding are general enough to be used 

as guidelines for future work. 

7.2 Extensions 
The general approach of this report highlights a few, but far from all approaches in dealing with 

migration to a cloud. Interesting future work within this field would be to have a more specific 

approach, concentrating on one field of application. One interesting field would be to investigate 

effectiveness in scaling for the different database and storage solutions supported by the cloud 

provider. Another proposal for future work would be to research and generalize the process of 

modularizing cloud based applications. This way one could automatically analyze different 

modularization method’s potential.  
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Appendix 

A. MongoDB ObjectID 
ObjectID is the default data type used as an ID by MongoDB and is used to identify an object. It does 

not have any property that guarantees uniqueness of documents but instead gives a high probability 

of uniqueness. Each ObjectID is most often created by the application, or rather the driver, inserting 

new documents into a database, but the database will create such an ID if it is missing. 

 
Figure 12. ObjectID structure showing the four different fields. Based on [33] 

As seen in figure 12 an ObjectID consists of four parts, totaling 12 bytes. 

 Timestamp. UNIX timestamp representing the number of seconds since January 1, 1970 

(UTC). 

 Machine. The first three bytes of the MD5 hash of the machine host name, MAC/IP address 

or virtual machine ID. 

 PID. Process or thread identifier of the process generating the ObjectID. 

 Increment. Incrementing or random number. 

As none of the fields by itself is unique, MongoDB relies on the fact that the possibility of a collision is 

very small. Both the machine ID and PID will most likely differ between multiple clients accessing the 

database. 

Both the timestamp and increment field must be in big-endian to ease the process of inserting 

new documents. Due to how the indexes are created using a B+ tree it is more efficient to insert 

values with increasing order. It requires less computations and less amount of the index to be 

available in RAM memory. Another result of storing the timestamp in the most-significant-bytes is 

the possibility to order documents by insertion time without using a special timestamp field. 

B. MongoDB architecture 
The architecture of a MongoDB database is dependent on the features used. The simplest 

configuration is a single database but addition of sharding and/or replication adds additional 

complexity. 

 

MongoDB consists of several processes, see [34]. 

 Daemon: The core MongoDB process, running the mongod executable. Handles database 

management, replication and in simple configurations connection to clients. 

 Sharding controller: Only used in sharded configurations. Running the mongos executable. 

Front end for clients to connect to instead of the mongod processes. Handles routing and 

coordination of the sharded mongod processes in order to give clients the view of a single 

system. 

 Config server: Only used in sharded configurations. Running a special configuration of the 

mongod process. Holds metadata related to the shaded data. Is connected to the mongos 

processes in order for them to route reads and writes to the correct mongod process. If used, 
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there must be either one or three config servers to support the distributed locking 

mechanism used. 

 Arbiter: Optionally used together with replication. Running a special configuration of the 

mongod process. Used when the number of replication nodes are even and an additional 

node needs to be added in order to break the symmetry and allow voting. Voting happens 

when the master replication node is found to be unreachable and a new one has to be 

elected. 

In the simplest case only a daemon process is used. It handles all database management and does 

not provide sharding nor replication. Clients connect directly to this process. 

Adding sharding complicates the architecture somewhat. There is no change from the client’s 

perspective as the details are hidden by the sharding controller. One or more sharding controller can 

coexist and are each connected to the daemon processes and config servers. The sharding controller 

uses the metadata from the config servers to route client requests to the correct daemon processes. 

The shard controller updates each config server if the database needs to be balanced by moving 

excess data between two daemon processes. This is done using a distributed locking mechanism in 

order to guarantee consistency. 

Replication is the only feature that requires the client to know about the underlying 

architecture. Normally a client only knows about one daemon or shard controller to connect to, but 

to provide redundancy one or more replica sets must be given to the client if using replication. How 

the client connects to the replication sets are driver dependent but the most common method is to 

connect to them in the order they are defined. If a connection cannot be established to the first 

replica set the driver moves to the next. 

A figure representing an architectural overview of a MongoDB system using both sharding and 

replication can be seen in figure 13. The three upper boxes represent shards, which is replicated to 

the boxes below. Notice the absence of an arbiter since the number of replica nodes is odd. 

 

Figure 13. MongoDB architecture using sharding and replication [31] 

C. Framework 
This is an extension to the technical background describing the framework used when developing the 

application. This section does not have any concrete connection to the results of the report; it is 

strictly included in interest of sharing additional information in what techniques that have been used 

when developing the application. 
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Grails framework 

The Grails framework is defined by [35] as a stable and powerful framework for building dynamic and 

consistent Java applications. It is built on the Groovy programming language with all its benefits and 

also makes use of being built on top of Spring which introduces a lot of possibilities of integrating 

other new components (topology presented in figure 14). Grails works out of the box with a standard 

development environment supporting Java applications with possibilities to integrate all libraries and 

plugins one might need in one's environment. Grails has a lot of powerful features built in such as 

easy use of scaffolding, CRUD and database connectivity for a wide range of components as well as a 

ready to use web server for easy commence. 

 

Figure 14. Grails is built on top of Groovy [36] 

Groovy 

Grails is built on the dynamic language Groovy which is an object-oriented language built for the Java 

Virtual Machine (JVM), see [35]. Groovy provides an easy to use language with its core in Java, with 

additional features from languages such as Ruby and Python. Groovy deviates from Java in being very 

compact in its syntax and supporting some interesting features such as closures and dynamic typing. 

Since Groovy has its core in Java it can therefore use all features existent in Java including all Java 

libraries for high usability. With this it is also interpreted as Java byte code when compiled and can 

therefore be used in any Java environment. 

Apache Camel 

Camel is an integration framework providing a powerful route-builder with aim to glue 

communicating end-points together. With its own integration language camel provides powerful 

features for defining complex routes and integrating these routes into one's web-applications. A key 

principle of camel is that it does not assume anything in terms of what format or volume of data that 

is to be sent within the route. It brings a high level of abstraction which gives the system the 

possibility of using the same API regardless the form of communication or type of data. This 

information and a more detailed documentation are found in [37]. 

Camel makes use of so called “Bean Binding”, see [38], in order to bind its route to a designated end-

point for processing. Since the data is passed in whatever format it was initially sent, the data can 

just be forwarded to the designated end-point and from there be processed in whatever fashion 

suitable. Camel is well compatible with Spring, see [38], and is therefore very suitable for integration 

with Grails framework which also provides support for Camel with corresponding plugins. 
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D. Amazon EC2 instances 
This section lists the technical specification of the Amazon EC2 instances used in this report. The 

operating system used is Amazon Linux AMI (64-bit) [39]. The following list is based on Amazon’s 

official documentation found at [40]. 

Medium instance (m1.medium) 

 3.75 GB RAM 

 2 EC2 Compute Units 

 410 GB instance storage 

 64-bit platform 

 Moderate I/O performance 

Micro instance (t1.micro) 

 613 MB RAM 

 Up to 2 EC2 Compute Units 

 64-bit platform 

 Low I/O performance 

 


