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Abstract
With the rapidly increasing computerization of vehicles, cyber security has more and
more become a very important aspect of modern automobiles. A vehicle consists of
a large number of electronic control units (ECUs), all connected by a network. The
ECUs and the communication between them need to be protected from illegal use
by vehicle owners as well as cyber attacks from malicious actors. This protection is
provided through the use of cryptographic techniques such as message encryption
and authentication. The operations and calculations related to cryptography can
be performed by the processor in the ECU itself, but that puts an additional strain
on the limited computational capabilities of the ECU. A hardware security mod-
ule (HSM) is a device that has hardware acceleration for cryptographic operations.
Using an HSM alongside an ECU to perform cryptographic operations could thus
offload the ECU, which means the computational power of the ECU can be used to
perform its regular duties.

In this thesis, we have evaluated the use of HSMs in a vehicle environment with
regards to performance. This included comparing the performance of an HSM ver-
sus a cryptographic solution implemented purely in software, as well as investigating
security and performance trade-offs of different HSM configurations. It was found
that using an HSM considerably improves performance of using cryptography, both
in terms of increasing the speed of cryptographic operations as well as offloading
the ECU CPU. Furthermore, it was also found that adding a message authetication
code (MAC) to messages in the Controller Area Network (CAN) protocol results in
a relatively large amount of overhead data, which consequently contributes signifi-
cantly to the bus load. This makes it an infeasible method to use in many cases.
However, according to our work using CAN-FD alleviates this problem considerably.
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1
Introduction

Vehicles are today becoming more and more complex as there is a growth of on-board
devices and advanced functions provided by the vehicle, such as connectivity-based
services and autonomous driving. There is an increasing need for more advanced
vehicle functionality in general, where many are related to connectivity. The mod-
ern vehicle provides much more than just a basic means of transportation. It is
connected to the outside world in several ways; through a user’s smartphone, to
remote servers, other vehicles and infrastructure devices.

In the future, the rise of connectivity will increase even more with new technologies
such as Vehicle-to-Everything (V2X), which for example includes Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I). But also other technologies such as cloud
computing, software over-the-air, and autonomous driving will impact the connec-
tivity aspect.

These general developments come with many implications. One significant implica-
tion is the increase of interfaces to the vehicle, which is particularly related to the
connectivity aspect. It is important to recognize how connectivity poses a challenge
to security, as more interfaces leads to more potential attack vectors.

Connected vehicles have various entry points (interfaces), which all are potential
points of attack. Attack paths can range from protocol attacks over-the-air to cryp-
tographic attacks on hardware level. It is important to note that all the possible
theoretical security threats are relevant and need to be addressed. These threats can
e.g., be categorized in different models such as confidentiality, integrity, availability
(CIA). Attack targets can for example be private data, to compromise safety and
access control. It is worth noting that damages can range from passenger safety to
damages of vehicle components and proprietary theft. Note that several different
types of attacks are applicable to this area. Security threats need to be minimized,
but this is often challenge and sometimes might be neglected to some extent. Thus,
security is relevant and will likely be even more son in the future.

The existing system architectures, technologies and research must keep up with
these challenges. The higher demand on security in vehicles is a challenge since a
vehicle is a very complex system and has limitations. For example, one important
limitation is real-time demands on communication, which is crucial for safety rea-
sons. Furthermore, there are some communication links which are relatively slow in
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1. Introduction

bandwidth and small in possible data payload size. Based on all this, many security
solutions might be unpractical as they could potentially generate too much overhead
(e.g., authentication through signatures).

The more critical the system and data, the more important it is with security mea-
sures, e.g., the use of dedicated hardware for security. One such hardware is a
Hardware Security Module (HSM), which has optimized cryptographic hardware
(crypto accelerators) and secured storage (cryptographic keys, counters, data).

A more general name for an HSM is Hardware Trust Anchor (HTA). Some of the
common features of an HTA are to protect sensitive data (e.g., cryptographic ma-
terial) in such a way that software can not manipulate it, as well as to provide
cryptographic functions that offload the host controller.

As stated earlier, a vehicle is a quite complex and restricted system. The question is
how well suited an HSM is for providing stronger and efficient security in a vehicle,
such as protection for the electronic control units (ECUs) in the in-vehicle network.
The ECUs are the backbone of the in-vehicle communication and function control.

Up to recently, the commercial solution is to use embedded software (e.g., a soft-
ware module) for providing the security in the in-vehicle network. For example, the
AUTomotive Open System Architecture (AUTOSAR) is one such embedded soft-
ware which can enable such functionality [1] [2]. It provides functionalities such as
cryptographic functionality, including handling the storage of cryptographic keys.
However, this solution creates additional load on the host controller. Without an
HSM, cryptographic operations need to be calculated with a software library and if
the software library is synchronous, the ECU will be blocked for the duration of the
cryptographic operation.

For the last ten years there has been extensive research on HSMs specifically for a
vehicle environment. The EVITA project [3] has defined a categorization of HSM
by profiles: HSM full, HSM medium, and HSM small. Particularly, the HSM full
provides features such as hardware accelerators for asymmetric cryptography, com-
plex block ciphers as well as providing the highest performance. The idea with an
HSM is to directly increase security, but also creating the prerequisites for stronger
security w.r.t. performance.

The EU-funded research project EVITA [3], in which several companies from the
auto-industry such as BMW, Infineon, ESCRYPT, and Bosch were involved, is rele-
vant to our work. The following quote (taken from the EVITA website [3]) describes
the objective of the EVITA project:

“Secure and trustworthy intra-vehicular communication is the basis for trustworthy
communication among cars or between cars and the infrastructure. Therefore, the
objective of the EVITA project is to design, verify, and prototype an architecture
for automotive on-board networks where security-relevant components are protected
against tampering and sensitive data are protected against compromise when trans-
ferred inside a vehicle.”
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EVITA has developed detailed guidelines for design, verification, and prototyping
of various security architectures for ECUs in the automotive industry. One such
guideline is that all critical ECUs should be equipped with a chip that contains a
dedicated HSM as well as the CPU. The EVITA project ended in 2012, and it was
out of the scope of that project to do further implementation and testing when it
comes to more real-life deployment.

The development of HSMs designed for vehicles have gotten so far that they are
commercially available. Furthermore, the automobile market is in a early phase
where some early adopters have started to integrate HSMs as a security solution for
their ECUs.

1.1 Purpose

The general goal of this thesis is to study and create the prerequisites for stronger
security in the in-vehicle network, especially the Controller Area Network protocol
(CAN) w.r.t. performance.

In more detail, the purpose of this thesis is to assess and evaluate the use of HSMs
as a cyber security solution for a vehicle environment in terms of performance. This
includes a comparison of using an HSM versus only using the ECU together with a
software cryptographic library.

This thesis also assesses limits on security in CAN communication with regards to
performance. This is done by comparing security versus performance trade-offs of
using an HSM. Since the CAN protocol has low bandwidth and small maximum
data payload size (8 bytes), there likely could be a restriction on security because
of this.

When it comes to which data that should be secured, the long-term goal is to effi-
ciently encrypt the CAN data payload for high priority security messages. However,
in our work we only perform encryption on arbitrary data outside of the CAN con-
text. Nevertheless, we do provide theoretical bus load calculations for CAN.

1.2 Research Questions

In this section, we specify the research questions for this thesis. The first two
research questions are the main focus of this thesis, whereas the third is of more
secondary focus.
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1.2.1 Research Question 1: What is the cryptographic per-
formance of an HSM and how does it compare to the
performance of executing cryptographic operations in
software?

We want to investigate possible performance gains when using an HSM in a vehicle.
In order to assess this, it is preferable to have a base case to compare the HSM to.
The most natural choice is to use a solution that performs cryptographic operations
purely in software (by the ECU). Therefore, as the base case, we chose to use
a cryptographic module implemented in software. More specifically, we use the
cryptographic library wolfCrypt, which is part of the wolfSSL embedded TLS library
[4]. The same platform – the AURIX microcontroller (refer to section 2.4.1) – is
used both for HSM and software cryptography.

1.2.2 Research Question 2: What are the security and per-
formance trade-offs of different HSM configurations?

We want to take different HSM configurations of varying security level and measure
the performance of these configurations in relation to each other. This way, we
can establish what limitations there are on security with regards to performance.
As an example, a certain security level may not be achievable if the performance
costs to sustain it are too high in relation to some set performance requirements;
for instance if the security level infers a bus load that exceeds a maximum allowed
bus load. Moreover, we also want to investigate whether there may exist a "sweet
spot" where the performance and security trade-offs are optimal.

To be more specific, when we say different HSM configurations, we are referring
to different combinations of parameters that make the security provided by the
HSM more or less robust. This includes using different key lengths, different cipher
modes, different algorithm combinations – e.g., using encryption alone versus using
encryption and MAC together.

1.3 Delimitations
In order to accomplish the main objectives of the thesis within the given time frame,
some delimitations have been made:

• Testing is not performed on a real vehicle: There is not any possibility
of doing any work on a real vehicle. Testing is limited to a testbed.

• Asymmetric encryption (incl. signatures) is not considered: There
are two versions of Infineon AURIX modules provided: AURIX TC299 [5]
and AURIX TC3xx [5]. Although the TC3XX provides hardware acceleration
for asymmetric encryption, there is no stable software stack available to be
able to work efficiently with the TC3XX. Working with the TC3XX would
thus require a considerably larger effort, which would take time away from the
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main objectives of the thesis.

• Securing external communication is not considered: In the scope of
this thesis, only security for internal communication was interesting to look
at. Therefore, external communication, such as communication to a back-end
server or V2V/V2E communication, is not considered.

• The work is restricted to the CAN protocol: There is some possibility
of using Ethernet instead of CAN as the communication protocol for in-vehicle
communication. But since CAN is much more established and also likely to
remain the de facto standard for in-vehicle networks for the foreseeable future,
we chose to only focus on CAN.

1.4 Thesis Contributions
This project has resulted in deeper knowledge when it comes to how effective the
use of HSMs is as a cyber security solution in a real vehicle environment.

We compare the performance of carrying out cryptographic operations in hardware
versus doing it purely in software, in order to establish the difference in performance
between the two methods. This provides guidance for which option to choose, not
only in a vehicle environment but also in general.

Furthermore, we investigate what effects the use of different cryptographic algo-
rithms and cipher modes have on performance, especially when it comes to bus load
and the CAN protocol. This can provide some insights as to what algorithms and
cipher modes are the most suitable to use, not only in a vehicle environment but
also in general.

Lastly, we also provide detailed methodology on how to test cryptographic perfor-
mance in general.

1.5 Disposition of the Thesis
The thesis is organised as follows:

• Chapter 1 - Introduction Contains an introduction to the thesis, the pur-
pose, the problem formulation, and the scope of the thesis.

• Chapter 2 - Background Provides background knowledge to the central
topics of this thesis. This includes specifics of an HSM, the AURIX microcon-
troller, vehicle infrastructure and more.

• Chapter 3 - Literature Overview This section provides an overview of the
literature related to the work done in this thesis. It also provides a description
of the research methodology that was used in order to find relevant literature.

• Chapter 4 - Method Describes the methods for answering the posed research
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questions, i.e., how to evaluate the performance of an HSM. It also includes a
methodology for how to conduct testing for performance. Lastly, this chapter
also contains information about how testing was actually performed and details
regarding the used testbed.

• Chapter 5 - Results This chapter consists of the results yielded from the
testing of performance, on the testbed.

• Chapter 6 - Discussion A discussion about the findings from the thesis
work.

• Chapter 7 - Future work This chapter consists of information about what
more work could be done on this topic in the future.

• Chapter 8 - Conclusion In this chapter the conclusions of the thesis are
presented.

• Appendix - A, B, C In these chapters extra details are provided regarding
A) Possible extension to our work B) Background knowledge C) Results. The
appendix acts as an additional source for more information.
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Background

This chapter introduces the most fundamental underlying concepts and technical
background of this thesis. The chapter is organized as follows. Section 2.1 gives a
brief introduction on what a hardware security module is. Section 2.2 explains the
main details of the Advanced Encryption Standard; the encryption algorithm used
in this thesis. Section 2.3 provides an introduction on the vehicle infrastructure and
its key components, such as the Electronic Control Unit and the Controller Area
Network. Section 2.4 describes the hardware used in this thesis, including which
specific microcontroller and HSM that are used. Section 2.5 describes wolfSSL/-
wolfCrypt; the software cryptographic library used in this thesis. Lastly, section 2.6
gives an introduction on the performance metrics that are considered in this thesis.

2.1 Hardware Security Module (HSM)

A Hardware Security Module (HSM) is a physical computing device which can pro-
vide functionality for cyber security purposes, including authentication, authoriza-
tion, data confidentiality and data integrity. One of the main functions of an HSM
is to provide secure management of cryptographic keys. This includes safe storage
of keys, which is made possible by encapsulating the keys in an isolated environment
which has mechanisms that prevent tampering.

Another vital function of an HSM is to provide hardware acceleration for various
cryptographic operations in order to increase the speed by which they are performed.
Typical cryptographic operations which could benefit from hardware acceleration
include key generation, encryption, decryption, signature generation and hash func-
tions.

An HSM can be used in a wide variety of environments which could benefit from
enhanced cryptographic functionality. This includes environments such as vehicles,
web servers, card payment systems, cloud infrastructure and more. An HSM could
come as a stand-alone device or plug-in card, or it could be built into other devices,
as in the case with some Infineon AURIX microcontrollers.
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2.2 Advanced Encryption Standard (AES)
The Advanced Encryption Standard (AES) is a standardized encryption algorithm
established by NIST in 2001. It replaced the Data Encryption Standard (DES) as the
de facto standard for encryption of electronic data. It is a symmetric-key algorithm,
i.e., the same key is used for both encryption and decryption. The algorithm comes
in 3 different versions: AES-128, AES-192 and AES-256; where the versions differ
in the key length used (128, 192 and 256 bits, respectively). The HSM studied in
this thesis uses AES-128 as its encryption algorithm.

The AES algorithm is a block cipher, meaning that it operates on data of fixed size,
i.e., blocks, where each block contains 128 bits. In order for the algorithm to be
applied to data of size larger than 128 bits, different so called modes of operation
have to be used.

2.2.1 Modes of Operation
In this thesis, we consider four different modes of operation. The choice was firstly
based on the prevalence of the modes, as we wanted to include commonly used
modes. But most important was to include modes of different security levels, so
that the choice of mode of operation could be used as a parameter in the securi-
ty/performance trade-off analysis. In this thesis, we also refer to mode of operation
as "cipher mode".

Electronic Codebook (ECB) Mode

The most basic mode of operation is the electronic codebook (ECB) mode, where
each block of data is simply encrypted/decrypted separately. This method has
a major drawback in that the same plaintext always gets encrypted to the same
ciphertext, which results in data patterns not being hidden efficiently. Therefore,
ECB is not recommended for use in cryptographic protocols.

In order to solve this problem, a so called initialization vector (IV) can be included
in the encryption process. An IV is basically an arbitrary number of some size. In
order for the usage of an IV to be secure, the number should be unpredictable. An
IV is therefore usually a randomly generated number. Note that the term nonce can
be used interchangeably with IV.

The technique of using a nonce/IV is utilized in several modes of operation, including
cipher block chaining mode and counter mode. When these modes are used; even
if identical blocks of plaintext are encrypted with the same key, they will result in
different blocks of ciphertext.

Cipher Block Chaining (CBC) Mode

In cipher block chaining (CBC) mode, a plaintext block is XORed with the preceding
ciphertext block before undergoing encryption. This way, a ciphertext block is not
only dependent on the corresponding plaintext block, but also on all previously
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encrypted blocks. An IV is used to XOR with the first block. If the IV is random
and unique, this method ensures that identical blocks of plaintext will be encrypted
into different blocks of ciphertext.

Counter (CTR) Mode

In counter (CTR) mode, a counter is used in the encryption process. The counter is
a value that has to be unique for each plaintext block that is encrypted. In general,
the counter is initialized to some value, then incremented by 1 for each subsequent
plaintext block. The initial counter is equivalent to an IV.

In CTR mode, the plaintext is not encrypted directly. Instead, the counter is en-
crypted; the ciphertext is then produced by XORing the plaintext with the encrypted
counter. For this reason, the counter has to be equal to the block size, i.e., 128 bits.
Just like for CBC mode, this method ensures that identical blocks of plaintext will
be encrypted into different blocks of ciphertext.

CTR can be shown to be at least as secure as CBC [6]. Therefore, in this thesis, we
consider CTR as more secure than CBC.

Even though CBC and CTR are more secure alternatives to ECB, they have some
drawbacks. One of them is that these modes do not protect the integrity of data.
For example, using a MITM attack, an attacker can corrupt a piece of ciphertext
without the recipient of the data being aware of the corruption. This problem is
solved by Galois/Counter Mode, a mode of operation that builds on CTR.

Galois/Counter Mode (GCM)

Galois/Counter Mode (GCM) is a mode of operation that extends CTR by also
including message authentication into the encryption process. This is done by adding
a message authentication code (MAC) to the encrypted data. This way, if some
ciphertext is corrupted in an MITM attack, this will be detected by the message
recipient, as the now corrupted data will not match the MAC. GCM is therefore
considered as the most secure mode of operation used in this thesis.

2.2.2 Unpredictability of Cryptographic Material
The security of AES does not only depend on aspects such as key length and choice
of block cipher mode of operation, but also on good cryptographic material, i.e.
unpredictable random numbers. This is where the TRNG comes into the picture.
In this section we give some background as to why unpredictability is relevant in a
security perspective, and to some extent also a performance perspective.

Randomness or unpredictability is required due to that it is vital when it comes
to making it harder to break the keys. For example, if we have a key generation
algorithm that has the unique ID number of the ECU (which could in reality be
neither completely obfuscated or secured) as input, which then apply padding and
increment it resulting in a unique 128-bit symmetric key that the ECU can use.
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This algorithm together with the assumption of unique input would in principle
guarantee uniqueness. However, it would be predictable. If one knows the unique
ID number of a given ECU together with knowledge how the algorithm functions,
then one could easily calculate the symmetric key. Thus, randomness is required in
a security perspective since it makes it harder for an adversary. The goal is to make
a brute-force search the only viable option for an adversary. This also applies to IVs
due to the same reasoning.

Note that the TRNG will not guarantee unique cryptographic material, i.e. it is
still possible that the TRNG will generate the same random number multiple times.
The TRNG only provides true random numbers, i.e. unpredictable numbers.

Generating good cryptographic material costs performance and the frequency of the
generation becomes a vital factor to consider. For example, if each communication
session between two nodes should have a unique symmetric key. Then when a
communication session is initiated, the node that initiated the communication needs
to generate a unique and preferably an unpredictable key. The node could fetch an
unpredictable number for the key from the TRNG, then proceed along with some
key exchange protocol so that both nodes have the key. However, this only occurs
when a new session of communication is initiated, or when session keys need to
be updated. Therefore, it is likely that the key update cycle time is relevant to
consider. If the performance cost of the TRNG or the overall performance would
be deemed to high, an alternative would be to use the same symmetric key for all
communication sessions or unique keys for some groups of nodes. In summary, the
number of unique keys and the key update cycle time is important for the TRNG
performance aspect.

2.3 Vehicle Infrastructure

The modern vehicle is a computer system with a high complexity level, and in general
it comes with some constraints in terms of performance. The whole vehicle network
is rather complex; there are many different communication protocols deployed (both
on a physical and virtual level), several subnetworks (aka. levels), gateways, and
many nodes in the network (e.g., different Electronic Control Units/Modules).

Thus, it is hard to fully comprehend in detail how a modern vehicle functions. This
is also one reason why security tends to become complex. Furthermore, the clear
common trend is that the number of functions/services are increasing along with
electrical components and devices. The possible security consequences are impor-
tant, especially for connected vehicles. A connected vehicle is usually connected
to some external networks (i.e., remote severs), in order to provide remote services
such as updates and diagnostics. In general this leads to higher potential security
threats to the internal network.
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2.3.1 Electronic Control Unit (ECU)
The most fundamental device in a vehicle is the Electronic Control Unit (ECU),
also known as electronic control module. An ECU has the primary function of
controlling one or more of the electrical systems in a vehicle. For example, the
ECU responsible for the engine functionality is called Engine Control Unit/Module
(ECM). The ECM controls a series of actuators on the engine, in order to perform
tasks such as optimizing engine performance based on some variables. The ECM
achieves this through reading values from a multitude of sensors. Then the ECM
needs to perform some interpretation e.g., using lookup tables, and based on that
adjust engine actuators.

To give another example, a vehicle has crash sensors located around itself, which
informs the relevant ECU when a crash has occurred. Based on this input the ECU
can measure the current speed of the vehicle and decide to launch the airbags or
not. This is a safety critical function, and this whole process happens in a few
milliseconds.

Continuing on another safety related example, a vehicle is accelerating and suddenly
an ECU triggers the airbag. This situation could occur due to a malicious attack.
For example, unencrypted data between the ECU and the sensors can be read and
easily manipulated. In this case it is fully feasible for an attacker to create a spoofed
message that can result in triggering the airbag.

ECUs can differ greatly as they control a wide range of systems/functions. In other
words, the demands differ significantly and thus the ECUs differ greatly. Thus,
it is natural that different ECUs require different levels of security measures. For
example, authentication might not be necessary or worth to implement for every
single ECU and every type of message, as it is likely the case that the costs in terms
of performance would outweigh the gains in terms of security. Therefore, in the
bigger picture one need to take into account both the perspectives of performance
and security. Then based on the decided safety and security requirements choose
an appropriate level of security in relation to performance costs. For example, it is
most likely the case that not every message type in an in-vehicle network requires
message authentication, both in a security and safety perspective.

2.3.2 In-Vehicle Network (IVN)
This section provides an overview of an in-vehicle network (IVN). Note that since
most of the work done in this thesis is restricted to the delimited domain of an ECU,
the purpose of this section is primarily to provide a context for this work.

A modern vehicle contains a so called in-vehicle network, which consists of differ-
ent ECUs. As described earlier the ECUs are in fact responsible for most of the
functionality in the vehicle. Currently a modern vehicle can have well over a hun-
dred ECUs onboard. However, the normal case is usually a lower number. The
functionality that an ECU provides can, as described earlier, range from everything
from unlocking doors to more advanced features such as engine control, automatic
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brake systems and Advanced Driver-Assistance Systems (ADAS). Thus, there are
clearly different demands, in terms of performance, security and safety, on the ECU
depending on the functionality it is responsible for providing.

Vehicle functions are divided into many different systems and sub-systems in the
vehicle network. All these different systems are together responsible for providing
the passenger the different functionalities in a vehicle, such as infotainment, comfort,
safety and powertrain control.

To make it more complex, there can also exist local/private and global networks in a
domain. This creates several layers of communication. In Figure 2.1 a more detailed
illustration is shown, with emphasis on an arbitrary system/domain. Examples of
such systems/domains are e.g., the group of ECUs responsible for the powertrain
system. Other systems/domains are also applicable for this model. However, it
is worth noting that they might utilize a different communication protocol. This
abstracted system has CAN (FD) as its communication link/protocol in the arbitrary
domain. Furthermore, the ECUs of this arbitrary domain are connected to both
global CAN networks as well as local/private CAN networks. However, the specific
details may differ greatly between implementations and also depend on the sub-
network, such as powertrain, vehicle safety, comfort, infotainment and telematics.

Note that there are multiple other domains connected to the Vehicle Master Control
Unit (VMCU, see Appendix B.1), alternatively a Central Gateway, either trough
domain controllers (gateway units) or directly through the domain’s global networks.
For example, in this abstraction the arbitrary sub-network does not have a gateway.
Instead it is as Figure 2.1 shows; the domain’s global CAN networks are directly
connected to the VMCU. The VMCU in principle acts as a CGW. But the VMCU
can be assumed to have no security mechanisms, it only has a static routing table.
Furthermore, it is the VMCU that has the On-Board Diagnostics (OBD) contact.
For details on the functionality of the different nodes see Appendix B.1.

With the assumption of no security in the CGW and no domain controllers (gateway
units) in this model, there are no layers of security. Thus, in this model security
is primary based on the Telematic Gateway (TGW or TCU, see Appendix B.1)
capabilities. However, how advanced the TGW is can greatly vary. For example, it
might only have a basic firewall, no HSM, and no IDS/IPS.

12



2. Background

Figure 2.1: An illustration of a reality-based conceptual in-vehicle network. Em-
phasis is on an abstracted sub-network, for example powertrain. The Vehicle Master
Control Unit (VMCU) in principle acts as a central gateway for the in-vehicle net-
work.
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2.3.3 Controller Area Network (CAN)
CAN is a serial communication technology and is a robust vehicle bus standard
(i.e., nodes connected through a bus), that is especially known to be deployed for
reliable data exchange between ECUs in vehicles (in-vehicle network) and satisfies
the real-time requirements of target usage areas in vehicles. The communication
is done through messages, where each message can contain 64 bits of data and an
error correction code. The CAN bus is widely deployed in vehicles, e.g., to enable
networking between the ECUs and elsewhere. As normally with bus protocols, only
one node/device at a time can send data and everyone receives it. See Section B.2.1
for further details on CAN.

CAN Network

The structure of the CAN network is quite straightforward. The CAN network con-
sists of a number of nodes which are all linked via a physical transmission medium,
the CAN bus. The CAN network is usually based on a line topology with a linear
bus, to which a a number of ECUs are connected through their respective CAN
interface.

2.3.4 CAN FD
As the names implies; the main difference between CAN and CAN FD is the Flexible
Data-rate (FD). CAN FD supports dual bit rates. First, it has the nominal data-
rate (utilized during arbitration) limited up to 1 Mbit/s, as in the classical CAN
protocol. And secondly it has the flexible data-rate, which depends on the actual
network topology and its nodes. Nominally it can go up to 10 Mbit/s, but a more
realistic data-rate is lower. Still, it is a significant increase in bandwidth compared
to classical CAN. CAN FD also supports up to 64 bytes of data per data frame,
compared to classical CAN which only supports 8 bytes of data.

In more detail, CAN FD retains the standard CAN bus bandwidth during arbitra-
tion, and can increase the bandwidth for the actual data phase. The CAN FD will
return back to the nominal (arbitration) bandwidth, especially the normal bit time,
at the CRC delimited, before the receiver nodes send their ACK bits.

In conclusion, the CAN FD protocol has an adjusted CAN data frame, which enables
flexible larger data payloads, and flexible higher data-rates without requiring any
changes of the physical layer of CAN. Thus, ECUs with CAN FD can dynamically
switch to different data-rates and with different message sizes, both which can be
significantly better than classical CAN. So with CAN FD it is possible to have a
lower protocol overhead and higher efficiency in communication.

2.4 Hardware
In this section, background information is presented regarding hardware involved
in the project. It mostly involves the embedded devices and hardware tools in the
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testbed.

2.4.1 AURIX
In this thesis, a specific microcontroller of the brand AURIX is used. The AURIX
series is Infineon’s family of microcontrollers, designed for embedded, automotive
and industrial applications. It builds on Infineon’s TriCore CPU technology. In the
context of automotives, an AURIX microcontroller is commonly used as the main
computing unit in an ECU.

AURIX microcontrollers target a large variety of automotive applications, includ-
ing control of combustion engines, transmission control units, braking systems and
airbags.

AURIX microcontrollers are developed according to multiple industry standards,
including ISO 26262 (automotive standard) and IEC 61508 (functional safety stan-
dard). This ensures the functional safety and security properties of the microcon-
troller. For this purpose, the microcontroller hosts a wide range of hardware periph-
erals and safety mechanisms which aid in aspects such as safe computing, safe intro
chip communication, safe data and code storage and more. AURIX microcontrollers
also contain support for AUTOSAR.

The first generation of AURIX microcontrollers is called TC2xx. The different
models of the TC2xx series mainly differ in the number of cores they have, clock
frequency, memory size and peripheral set (including whether they have an HSM or
not). In this thesis the TC299TF is used, which is the most advanced model in the
TC2xx series, featuring three 32-bit super-scalar TriCore V1.6.1 CPUs running up
to 300 MHz, 8MB of flash memory as well as an HSM. It has support for a wide
variety of communication protocols, including Ethernet, CAN, LIN and CAN FD.

2.4.2 AURIX HSM - TC2xx
The production of the first generation HSMs of Infineon Technologies started in
2015. The HSM inside AURIX provides a robust response to many cyber security
requirements. For example, an important aspect is that it is highly flexible and pro-
grammable. To start off, the AURIX HSM functions as an anchor of trust through a
separated logical protection domain. It supports access control, data confidentiality,
integrity and authenticity needs (e.g. secured boot). All the following information is
complied only from public documentation [7] [5] [8] [9] [10]. Note that all the deeper
information and technical details are confidential, due to security and proprietary
reasons.

The integrated HSM in the 32-bit TriCore AURIX TC2xx is a medium EVITA
compliant HSM. A dedicated core for security functionality, which is fully detached,
provides a significant advantage, since it allows the creation of a trusted execution
environment with a separated domain. The HSM AURIX TC2xx series is a medium,
whereas the HSM AURIX TC3xx is a full.
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The HSM is designed to perform cryptographic operations and contains functions
such as a True Random Number Generator (TRNG) and an AES (128-bit) crypto
accelerator for encryption and decryption. The HSM has a 32-bit ARM Cortex-
M3 processor with 100 MHz CPU clock frequency. Furthermore, it supports AES
CMAC with a minimum rate of 25 MBytes/s. Thus, the HSM offloads the ECU’s
resources through its optimized hardware. For example, AES is computed through
embedded hardware accelerators, which are optimized for AES.

The hypothesis is that an HSM with its dedicated and optimized hardware has
better performance compared to a cryptographic software solution. In other words,
that cryptographic algorithms implemented in hardware should have lower latency
of cryptographic operations and higher throughput compared to a software solution.
These are vital performance aspects which need to be taken into consideration when
securing the CAN protocol. As one cannot disregard the risk of e.g., excessive delays
in the communication, or overloading the main CPU (ECU).

Other major features are to provide a secured storage primarily for cryptographic
keys. This includes a Memory Protection Unit (MPU) and the secure key storage
is in a separate HSM P/DFlash portion.

Other security aspects that are worth mentioning are that there is support for se-
cured boot and also protection on the AURIX debug interface (debugger protection).

Other more specific security requirements (for TC2xx) such as HASH or asymmetric
cryptography, can still be implemented in software (SHE and SW). Thus, a combi-
nation of hardware and software is a functional solution.

Different security demands implies the need for different specialized dedicated hard-
ware. Thus, it is important to understand what the security requirements for a
specific ECU is, in order to decide on what dedicated hardware is needed.

The main general goal of this project is to study and test how effective a solution
HSMs are for securing on-board communication (CAN). The security of the CAN
protcol can be improved using the AURIX HSM. The important security aspects
confidentiality, integrity, and availability (CIA) are not built into the protocol. Avail-
ability is the only aspect that is somewhat built in through the arbitration process
of the CAN protocol. However, it is not secure and can be broken by an attacker.
For example, a connected pirate device can relatively easily shut down the CAN bus
by continuously sending out high priority messages.

The use of an AURIX HSM can help in solving the overall security situation, but it
does not offer a complete solution. For example, one can use the HSM to encrypt
CAN messages and use CMAC to provide some authentication.

AES 128-bit Cryptographic Accelerator

AES is implemented and optimized in hardware for fast encryption and decryption
via 128-bit key length. The cryptographic accelerator operates on single 128-bit data
blocks (plaintext or ciphertext), or on a multitude of 128-bit data blocks. Thus, the
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AES algorithm performs cryptographic operations in blocks of 128 bits of data.

There are several supported block cipher modes of operations in AURIX HSM:

• Electronic Code Book (ECB)

• Cipher Block Chaining (CBC)

• 32 bit Counter (CTR)

• OFB (Output Feedback)

• CFB (Cipher Feedback)

• Galois Counter Mode (GCM)

• XTX (TCB - Tweaked Code Book based in XEX with CTS - Ciphertext
Stealing)

AES CMAC

Cipher-based Message Authentication Code (CMAC) is a block cipher-based mes-
sage authentication code algorithm. It is based on symmetrical encryption, like the
CBC-MAC algorithm. CMAC can be used to provide authentication. For example,
the secure boot of the HSM uses CMAC for tamper detection and prevention.

True Random Number Generator (TRNG)

TRNG is implemented and optimized in hardware. As the name implies it generates
random numbers. These random numbers can be used to generate cryptographic
keys and be used in different protocols (such as challenges and padding bytes) that
supports several different protocols. This TRNG is fully compliant with the AIS
20/31 standard.

Secured key storage in separate HSM P/Dflash portion

The HSM offers secure storage for keys, data, and counters in a separate HSM-
DFLASH (DF1) portion of 64 KBytes. It is worth noting that alternative secure
key storage is feasible in dedicated HSM-PFLASH sections.

A dedicated HSM Data Flash (DFlash) allows executing the TriCore (host/ECU)
application to fetch, read code/data from Program Flash (PFlash) while updating
secured non-volatile information. Furthermore, the segregation for the sensitive in-
formation stored in the HSM-DFlash can be enforced using exclusive access features,
which allows read/write access to the core only.

HSM Integration

The HSM is connected to the host device (TriCore/ECU) via the System Peripheral
Bus (SPB). There the HSM acts as a system on-chip and is a bus master. Further-
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more, there exists a firewall that helps in protecting the HSM’s internal resources
from unwanted access. Lastly, the program and data flash (P/DFlash) of the HSM
is shared with the host. But they can be protected through an exclusive access from
the TriCore and other masters accesses in the system.

2nd Generation HSM - AURIX TC3xx

The second generation of the HSM is TC3xx, of which the production was started
in 2019. It is a full HSM by the EVITA compliance. This means that it offers
both asymmetric and symmertric cryptographic accelerators. Thus, it is suitable
for both securing internal (on-board) and external communication. The central
improvements compared to the first generation is asymmetric cryptographic accel-
erators (PKC ECC 256-bit), HASH SHA-2, and a secure watchdog.

2.4.3 Debugger - Lauterbach TRACE32
The debugger consists of Lauterbach Power Debug module (generic, a universal
base module) and a debug cable for the specific case (in this case AURIX TriCore).
The debugger acts as a communication link between a PC (e.g., USB 3 or Ethernet
interface is possible with an adapter). [11]

Then there is software for the debugger which is Lauterbach TRACE32. It supports
debugging for up to three TriCore cores and all its auxiliary controllers, and has
both a GUI menu and a command line. TRACE32 has several vital features such
as High-Level-Language (HLL) Debugging, which includes debugging aspects such
as reading/writing to registers, memory, variables (incl. structs, linked lists) and
also provides the ability to use breakpoints and advanced stepping. Secondly, it
provides advanced breakpoints such as in software, on-chip, program and conditional
breakpoints. Note that there exist special debuggers with extended functionality.

Furthermore, the debugger has C/C++ debugging, AUTOSAR-OS aware debug-
ging, FLASH programming, access to all peripheral devices, and more. But most
importantly for our work is that it supports debugging of all auxiliary controllers
which includes HSM (Cortex-M debugger). Thus, the debugger enables direct access
and provides many debugging features.

2.5 wolfSSL/wolfCrypt
wolfSSL is a lightweight and portable SSL/TLS library written in the C program-
ming language. It is primarily targeted at IoT, embedded, and RTOS environments
because of its size, speed, and feature set, but it also works well in desktop, enter-
prise, and cloud environments.

wolfCrypt is a cryptographic library which serves as the cryptographic engine behind
wolfSSL. It is a subcomponent of the wolfSSL library. Multiple FIPS Certificates
have been issued for wolfCrypt, and it is used in millions of applications and devices
worldwide [4].
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wolfCrypt features many of the common cryptographic algorithms today. This in-
cludes hash functions such as SHA up to 512 bits, symmetric encryption algorithms
such as AES (including many cipher modes) as well as public key algorithms such
as RSA and various ECDH (Elliptic Curve Diffie-Hellman) variants.

In section 4.3.4 we elaborate on the features of wolfCrypt that motivated us to
choose it over other software cryptographic libraries that are available.

2.6 Performance and Metrics
The performance of an HSM can be measured in a variety of ways. In Chapter 3, a
collection of papers are presented which propose various metrics to use when eval-
uating the performance of HSMs and other related systems/modules. This section
provides an introduction to some of these metrics from a general viewpoint. In
Chapter 4, we explain more in depth how these metrics apply to the context of this
thesis.

2.6.1 CPU Load
CPU load refers the amount of computational work that the CPU performs or has to
perform, and is often calculated as an average over a period of time. CPU load can
be defined in two ways. One way is by how much time the CPU is used/is active,
and is measured as the percentage of time that the CPU is doing work. Another
way is by the number of processes using or waiting to use the CPU. For example, if
one process is using the CPU, the CPU load is 1 (or 100%). Whereas if one process
is using the CPU and a second process is waiting to use the CPU, the CPU load
is 2 (or 200%), and so on. For the context of this thesis, the first definition is the
most relevant, as we are not so concerned about the number of processes that are
currently active and wanting to use the CPU, but instead about how much the CPU
is utilized on average over a certain period of time.

A major objective of an HSM is to reduce the computational load on a system
by offloading cryptographic operations performed by the system onto the HSM.
Therefore, the CPU load of the offloaded system is a relevant metric to use when
evaluating the performance of an HSM.

2.6.2 Bus Load
In the context of computer architecture, a bus is a communication network through
which data can be transferred between multiple components. The bus load is then
the amount of data being transferred on the bus. Bus load can be measured as a
percentage of the maximum bus load, i.e, if half of the bus capacity is being used,
the bus load is 50%. In the context of an in-vehicle network and the CAN bus
specifically, the bus load is the amount of data currently being transferred on the
CAN bus.

The use of cryptographic mechanisms to secure messages is likely to result in an
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increase in message size. This could be due to, e.g, added padding from message
encryption as well as data overhead generated from using techniques such as MAC,
hashing and signatures [12]. In the context of a CAN bus, this increase in message
size will contribute to a higher bus load. Since a CAN bus has a limited capacity,
measuring differences in bus load when using different cryptographic techniques and
algorithms is thus a relevant metric to use in this thesis.

2.6.3 Memory Utilization
Memory utilization, or memory usage, simply refers to the amount of memory that
is currently being used. This could be memory usage for a process, a program or
the system as a whole, depending on the context.

When a system performs cryptographic operations, some amount of memory needs
to be allocated for this purpose. Thus, when cryptographic operations are offloaded
to an HSM, the system’s memory usage is likely to be affected. Although the memory
usage is likely to go down as a result of this, this may be counteracted by memory
that needs to be allocated in order for the system to be able to communicate with
the HSM. Moreover, different cryptographic algorithms require different amounts
of memory, as shown in [13], which needs to be accounted for as well. Therefore,
memory utilization is a relevant metric to use in this thesis.

2.6.4 Cryptographic Latency and Throughput
Cryptographic latency refers to the time it takes to perform cryptographic opera-
tions. More specifically, it refers to the time between when a cryptographic operation
is started until it is finished. As an example, encryption latency is the time it takes
to convert a piece of plaintext to ciphertext.

Cryptographic throughput is the rate at which cryptographic operations can be
performed. Whereas cryptographic latency refers to the time it takes to perform
a cryptographic operation on a single piece of data, cryptographic throughput is
more concerned with a continuous flow of data, and the rate at which cryptographic
operations can be applied to this data stream.

One of the main incentives of using a hardware security module is to speed up
the execution of cryptographic operations. Therefore, cryptographic latency and
throughput are key metrics for evaluating the performance of an HSM.

2.6.5 Communication Latency
In the context of a communications network, communication latency refers to the
the time it takes for a message to travel from one point to another in the network.
This time can be measured either as end-to-end – the time it takes for the message
to travel from source to destination – or round trip time (RTT) – the time it takes
for the message to travel from source to destination and then back to the source
again.
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Communication latency generally only accounts for message travel time, and does
not include any processing of messages that may be performed at the source and/or
the destination. Nonetheless, in the context of this thesis, it is more relevant to
include cryptographic latency in the calculation of communication latency. This
way, we can assess the overall effects that the application of cryptography has on
communication delay. Therefore, communication latency is a relevant aspect to
consider in this thesis.

Moreover, as stated earlier, applying cryptographic operations to messages may
result in an increase in message size. If the data overhead from cryptographic
operations is large enough, this may even result in a message having to be split up
into multiple messages. This is therefore another effect of cryptography which could
contribute to increasing communication latency.

2.6.6 Key/IV Generation Time (TRNG Latency)
Key/IV generation time simply refers to how fast a cryptographic key or IV can
be generated. In general, generating a cryptographic key or IV involves the use
of a random number generator (RNG) – such as a TRNG – to generate a random
number, which then acts as the key/IV. With that in consideration, testing the
key/IV generation time of a cryptographic module which uses a TRNG to generate
random numbers (e.g., an HSM), is practically equivalent to testing the performance
of the TRNG of the module. Therefore, in the context of this thesis, this metric
could be further generalised to TRNG latency.

Secure cryptographic keys/IVs are essential when using cryptography. It does not
matter too much if the cryptographic algorithm is secure, if in fact the key/IV used
in conjunction with the algorithm is easily broken. If many keys/IVs need to be
generated though, this process could have a toll on the performance of a system.
Therefore, key/IV generation time (i.e., TRNG latency) is a relevant aspect to
consider when evaluating the performance of an HSM.

2.6.7 Key Update Time
Key update refers to the process of updating a cryptographic session key for com-
munication between two nodes. This could refer to both the initial process of estab-
lishing a session key, as well as the process of updating a stale session key. In either
case, it involves some extra communication between the nodes, in order for them to
agree on the new session key to use.

If the key update process is too inefficient, it could have too much of a negative
impact on communication and communication latency. Therefore, this metric could
be relevant to consider in this thesis.
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Literature Overview

In this chapter, we summarize literature which is related to the work done in this
thesis. This includes a section on related work, i.e., previously conducted research
that is similar to the work done in this thesis. This is followed by a section describing
the literature that was used for the purpose of eliciting which metrics to use in the
performance evaluation. But first in this section we provide a description of the
research methodology that was used in order to find relevant literature.

3.1 Research Methodology

As a source for finding research papers, Google Scholar was used as a search engine.
Google Scholar covers all major databases and portals for scientific publications in
the computer science field, including ACM Digital Library, IEEE Xplore, Springer-
Link, ResearchGate and more. Therefore we considered it to be a sufficient tool for
this purpose. For other types of literature, a lot was provided by Volvo, including
documents about HSMs, relevant ISOs etc.

In order to increase the chance of finding every piece of literature that was relevant
for this thesis, the literature study was done in a relatively structured way. The
first step of the research strategy was to identify the most relevant keywords and
keyword combinations and try many different permutations of these. As an example,
for the metrics research this included keywords such as "hardware security module
performance" and "vehicle can security performance". If these keywords did not
result in finding enough relevant literature, the scope of the literature search was
widened and more keywords were included.

For every keyword combination, the aim was to try and conduct the search quite
exhaustively. The general approach was to continue the search until the last circa
20 results in Google Scholar either were 1): completely irrelevant, indicating that
we had exhausted the relevant results of the keyword combination, or 2) contained
the same (or more irrelevant) information as in previously found literature. Some
combinations of terms gave no results, while some gave a subset/superset of results
of previous search term combinations. When relevant papers were found, we also
looked at the list of references the paper had, in order to see if any of the referenced
literature could be relevant for our thesis.
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In order to synchronize the literature search, each found publication was stored in a
shared repository on Google Drive. Furthermore, every keyword combination that
had already been searched for was noted in a document, along with how deep the
search was, i.e., how many of the results had been investigated. This would help us
for future reference, in case we wanted to continue the literature search at a later
date.

The process of deciding which papers were considered relevant was done in multiple
iterations, with both teams members participating in the process. At first, during
the search process, the papers were only looked at from an overview perspective.
This included quickly reading through the abstract to see if relevant keywords were
mentioned, as well as scrolling through the document looking for images, diagrams
and tables that seemed to contain relevant information. If a paper looked like it
could be relevant, it was added to the shared repository. After the search process
was done, each paper was then looked at more carefully. This included reading
through the abstract and the introduction more thoroughly, in order to establish
whether the paper truly was relevant or not. As a final step, some of the papers
were also checked with the supervisor to get his view on the relevancy of the papers.

3.2 Related Work

This section details previously conducted research that is similar to the work done in
this thesis. One particular research paper stands out in this regard, so therefore the
first subsection is completely devoted to this paper. The last subsection describes
other works that have some similarities with ours.

3.2.1 Wolf et al.

The most similar research to this thesis is the paper "Design, Implementation, and
Evaluation of a Vehicular Hardware Security Module" by Wolf et al., from 2011 and
is related to the EVITA project [14]. Their paper includes a performance analysis of
an HSM with regards to throughput of cryptographic operations. More specifically,
they compare the performance of the HSM with the performance of carrying out
the cryptographic operations in pure software.

Our thesis differs and expands from their analysis in several ways. Firstly, our
evaluation goes more in-depth when it comes to evaluating the performance. Wolf et
al. mainly focus on throughput, whereas we take into account additional parameters
such as CPU load and latency. Secondly, our thesis considers different combinations
of algorithms for security, i.e., different modes of operation. Lastly, and perhaps
most importantly, our work is more connected to real deployment in industry today,
especially considering the fact that we use a market-ready solution, in contrast to
Wolf et al. which implement their own HSM.
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3.2.2 Other Similar Research
Seol et al. propose a secure cloud architecture with a hardware security module,
which isolates cloud user data from potentially malicious privileged domains or cloud
administrators [15]. As part of their work, they analyse the performance of this
architecture by looking at the difference in data read/write throughput achieved
with and without cryptographic operations.

In [16], Samir et al. detail their implementation of a hardware security module for
IoT devices, which – depending on the available power resources – can adapt the
security level provided by changing the encryption modes that are employed. Besides
evaluating power usage, they also look at encryption latency and throughput of the
different encryption modes used.

Hupp et al. present a hardware security module for protecting distributed energy
resources on the modern electric grid [17]. As part of their evaluation of the HSM,
they look at the end-to-end latency of TLS packets sent in the grid when using the
HSM to perform cryptographic operations.

Lastly, in [18], Cifuentes et al. describe their implementation of a faux hardware
security module to be used for handling digital signatures in the DNSSEC protocol.
The HSM is not a traditional HSM, but is instead emulated on a distributed system
of inexpensive commodity hardware. In their paper, they evaluate the performance
of this HSM by looking at the speed by which it can generate signatures.

To summarize, these papers mostly differ from ours in that they do not put as much
emphasis on doing a performance evaluation of an HSM. Rather, the performance
evaluation has more of a secondary focus and deals with very few metrics. Further-
more, these papers do not base their research on commercial, market-ready solutions
such as an AURIX. Instead, they more or less do their own implementation of an
HSM, something which is especially true for Cifuentes et al., who base their work
on a solution using commodity hardware.

3.3 Metrics Research
In order to evaluate the performance of an HSM, we needed to define how perfor-
mance can be measured in this context. More specifically, which metrics that are
relevant to consider for this purpose. Therefore, we decided to do a literature study
in order to elicit relevant metrics for this thesis. In section 3.2 we have already
detailed the research done on performance evaluations of HSMs in vehicles and in
general, along with what performance aspects and metrics they touch on.

However, since the amount of literature that was found in this area was quite small,
it motivated us to broaden the scope of the literature search and include other
areas which could contain relevant information about performance evaluations in a
security context. These areas included in-vehicle network security in general (e.g.,
in CAN), cryptographic accelerators and encryption algorithms in general. The
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papers that were found in these areas (listed below) allowed us to not only find new
relevant metrics, but also to justify metrics we already were intending to include in
our performance evaluation.

3.3.1 In-Vehicle Network Security
The papers listed below provided us with additional insights to what metrics could
be relevant to use in the context of security performance in vehicles, although topics
may not be specifically related to HSMs.

Chen et al. do a performance evaluation of the use of encryption algorithms in in-
vehicle CAN [19]. Their paper includes an analysis of the end-to-end communication
latency overhead that is introduced by the use of cryptographic algorithms.

In [20], Woo et al. propose a security architecture for the lacking security in in-
vehicle CAN-FD. As part of their work, they investigate the performance of this
architecture by looking at aspects such as the execution time of cryptographic algo-
rithms as well as communication response time between ECUs.

In [21], the same authors demonstrate a wireless attack performed on a vehicle using
a malicious smarthpone application. As a countermeasure, they propose a security
protocol for CAN. Similar to [20], they evaluate the performance of the protocol
by considering aspects such as communication response time, key derivation and
update time as well as varying CAN bus loads.

Lu et al. propose another security protocol for CAN with low cost and high efficiency,
which they title Lightweight Encryption and Authentication Protocol (LEAP) [22].
In their paper, the performance of the protocol is evaluated, taking into consideration
aspects such as key update time, encryption speed, memory usage and payload size.

Lastly, the applicability of TLS to secure in-vehicle networks is investigated by Zelle
et al. [23]. As part of their analysis, the performance of applying TLS to in-vehicle
networks is evaluated by looking at the execution speed and throughput of various
cryptographic algorithms as well as the end-to-end latency of TLS communication.

3.3.2 Cryptographic Accelerators
Cryptographic accelerators differ from HSMs in that they (in general) do not provide
safe storage for cryptographic keys. But just like HSMs, they provide hardware
acceleration for cryptographic operations and should be relevant to investigate from
a performance evaluation aspect. The papers listed below provided us with some
relevant insights into what metrics could be used in a performance evaluation.

In [24], Zhang et al. present a common test framework oriented for cryptographic
accelerators. The framework includes multiple benchmarks for evaluating the per-
formance of cryptographic accelerators using OpenSSL. In their paper, they evaluate
the performance of some commercial cryptographic accelerators, where factors such
as signature generation speed, communication latency and host CPU utilization are
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taken into account. They also compare the performance of the cryptographic ac-
celerators with a baseline where the cryptographic operations are performed by the
host CPU.

In [25], Hung et al. investigate the performance of the Sun Crypto Accelerator
1000, which was used as a cryptographic accelerator in Sun Microsystems servers
[5]. In their paper, they look at performance aspects of this device, which include
encryption throughput and host CPU utilization.

Togan et al. present an implementation of a hardware cryptographic accelerator
using Field-Programmable Gate Array (FPGA) [26]. Included in their paper is an
assessment of the performance of this component, which considers metrics such as
cryptographic throughput with respect to different key sizes.

The IBM PCIXCC, a cryptographic co-processor for the IBM eServer, is described in
a paper by Arnold et al. [27]. As part of their work, they evaluate the co-processor’s
performance with respect to, e.g, cryptographic throughput and key generation time.

Lastly, a lot more papers were found in this area, which consider performance aspects
similar to those already mentioned. The papers are on cryptographic accelerators
in various contexts, including IPsec [28], IBM processors [29, 30], OpenSSL [31],
GPUs [32, 33], embedded CPUs [34], IoT [35], multi-core processors [36] and more
[37] [38].

3.3.3 Encryption Algorithms
Evaluating the performance of an HSM includes assessing how well the HSM executes
various encryption algorithms. We therefore looked into the topic of encryption
algorithms in general, which potentially could provide us with some insight into
how the performance of an HSM as a whole can be evaluated.

A lot of papers were found in this area, containing some relevant information about
the performance of encryption algorithms in different contexts, including embedded
systems [39–41], IoT [42–44], mobile devices [45, 46], wireless sensor networks [47,
48], smart grids [49], SSL [50], IPsec [51], cloud [52], mobile banking [53], RFID [54]
and more [13, 55–58]. Although the contents of these papers had some relevancy,
they did not provide any insights that previously mentioned papers had not already
done.

3.3.4 Other Areas
Other areas that were looked into were IoT security and web services security (WSS).
With regards to WSS in particular, there are some similarities between how web
services and ECUs communicate and how this communication can be secured. Al-
though some papers with some relevancy were found in these areas, they did not
provide as relevant information as that in other, previously mentioned areas.
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In this section, we detail the practical steps that are taken in order to answer the
posed research questions. Section 4.1 specifies some performance requirements set by
Volvo, in order to provide us a framework to work around. Section 4.2 introduces the
performance metrics that are used in this thesis, and describes the methodology for
exactly how performance is measured using these metrics. Lastly, section 4.3 details
how testing is performed, including what parameters are taken into account as well
as a description of the testbed used in this project. It also includes a motivation
as to why wolfCrypt was chosen as the software cryptographic library to use in this
thesis.

4.1 Performance Requirements
In order to have a framework to work around during the performance evaluation,
Volvo has provided us with some requirements they have on various performance
aspects of ECUs and the communication between them.

4.1.1 CPU Load
The CPU load of an ECU cannot exceed a certain value. This is in order to fulfill
real-time requirements that are set on an ECU. For example, there are some pro-
cesses in an ECU that execute at certain intervals. When these processes execute,
there needs to be a guarantee that necessary CPU resources will be available. Thus,
for safety reasons, the maximum allowed CPU load is 80-85%. Today, it is not
unusual for the CPU load on an ECU to lie between 50-60%, but it could also be
higher or lower than this. A limit has been set that the use of cryptography – for,
e.g., encrypting/decrypting messages – may not contribute more than an extra 5%
to the CPU load. This is in order to save room for other new possible features for
the ECU.

4.1.2 Bus Load
For the communication load on the CAN bus, there is not a specific limit to how
much the use of cryptography may add to the bus load. Nonetheless, it should
not contribute so much that the CAN bus capacity is maxed out. The maximum
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bandwidth of the CAN bus used in this project is 500Kbit/s. A rough limit is that
the bus load should not exceed 70-80%. Global CAN networks are usually heavily
loaded, while local subnetworks tend to have more margin.

4.1.3 Cryptographic Latency

When it comes to cryptographic latency, we need to consider that most messages
have certain timing requirements. More specifically, many messages are continuously
sent at specific intervals – or cycles, as they are called in the context of CAN. Dif-
ferent messages have different cycle times, which could range from 10ms to 5000ms.
Generally, the lower the cycle time, the more important the message is. A message
also has a timeout period, which denotes how long time a receiving node waits on a
message before it considers the message lost. These cycles and timeouts need to be
respected, especially for messages where timing is of high importance. Therefore,
the use of cryptography may not result in a latency that causes a disruption of these
aspects.

4.1.4 Other Requirements

For other metrics, no specific requirements have been set. In some cases it is deemed
that enough resources are available, therefore setting a limit on the metric is not
needed. In other cases, setting a limit is not applicable or not enough information
is available to be able to set a limit.

4.2 Metrics

In this section, we present the metrics used in the performance evaluation. For
each metric, we describe the method to measure performance using the metric. For
a basic introduction of these metrics, refer to Chapter 2. The metrics related to
research question 1, i.e., performance comparison between HSM and software, are
CPU load and cryptographic latency throughput. Hence, these metrics are used to
measure both HSM and software. Related to research question 2, i.e., security and
performance trade-offs, are the same as for research question 1, but also bus load
and TRNG latency, where the last two are only measured using the HSM.

For deciding which metrics to use, we first consulted with Volvo to elicit which
metrics they would find interesting for us to investigate. Furthermore, in order to
find additional metrics, we did a literature study where we looked for papers on
performance in HSMs as well as performance in similar contexts. The result of this
literature study can be seen in Chapter 3. From this literature, we chose metrics
based on how relevant they were for the context of this thesis. We also took into
account how recurring the metrics were in the examined papers. Some relevant
metrics had to be excluded, as measuring them was not possible.
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4.2.1 Bus load
In order to perform realistic practical measurements of the added bus load of different
scenarios, testing would need to be performed in an environment where the vehicle’s
normal, day-to-day bus load is present. The optimal choice would be to use a real
vehicle, or alternatively create an environment (testbed) representative of a real
vehicle, where the messages between components in the testbed mimics that of a
real vehicle. However, neither of these were an option; as testing in a real vehicle
was not possible and the testbed used in this project consists of only a single node,
and thus does not feature any communication.

The solution is to use a more theoretical method, where bus load is calculated by
analysing the added overhead data of cryptographic operations. If used together
with certain vehicle data, this can give a quite realistic approximation of the added
bus load of different scenarios. The vehicle data needed are:

• Values for CAN bus capacity, i.e., CAN bus bit rate

• Tables for cycle times of different messages that are sent on the CAN bus

Method Overview

In order to calculate bus load, we must first decide on two things: 1) which (cyclic)
message type we wish to secure using cryptography and 2) which cryptographic
operation we want to measure the bus load for. As mentioned in section 4.1.3, most
messages are cyclic. Because different message types have varying cycle times, they
contribute differently to the bus load. Therefore, the added bus load depends on
our choice of message type to secure.

As for the choice of cryptographic operations, the added bus load of different op-
erations varies as well, as they contribute with different amounts of overhead data.
The overhead data that gets added to a message needs therefore to be calculated.
Finally, together with values for CAN bus bit rate and message cycle times, the
added bus load of performing the cryptographic operation on the message type can
be calculated.

Calculating Bus Load

Thus the bus load is theoretically calculated, based on some assumptions regarding
the number of bits in a CAN frame and the bandwidth.

The bus transmit time for a single CAN frame can be calculated as:

Bus Transmit T ime = Number of bits

Bandwidth
, (s)

Then, the bus load can be estimated as:

Bus Load Estimate = Bus Transmit T ime

Cycle T ime
, (Percentage,%)
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Before providing concrete examples of how to calculate added bus load, we first give
an example of how bus load in general can be calculated using values for message
cycle time. Let us say we have a message (i.e., CAN frame) of 100 bits and that
the CAN bus bit rate is 500Kbit/s. The time to transmit 1 bit on the CAN bus is
1/(bitrate) = (1/(500 ∗ 1000))s = 2 ∗ 10−6s = 2µs. The time to transmit the entire
message is thus 100 ∗ 2µs = 200µs. If the cycle time for the message type is 100ms,
that means that for each 100ms time chunk, the message type will occupy the CAN
bus for 200µs. The resulting bus load of the message type is therefore

Bus Load = 100× 200µs
100ms = 0.2%

Now assume that a cryptographic operation increases the size of the message in the
above example to 150bits, i.e., an increase in 50%. The time to transmit the message
is now 150 ∗ 2µs = 300µs. The resulting bus load of the message type is then

Bus load = 100× 300µs
100ms = 0.3%

Increased bus load (%) = 0.3÷ 0.2 = 1.5 ≡ 50%

Added bus load (%) = 0.3%− 0.2% = 0.1%

Thus, the bus load resulting from this single periodic message type would be 50%
higher than without cryptography. The bus load would increase with 0.1 %. As-
suming the normal total bus load is 60%:

New total bus load = 60% + 0.1% = 60.1%

Increased total bus load (%) = 100× 0.001
0.6 = 1

6%

Note that in the examples above, we do not take into account aspects such as
maximum CAN frame size and CAN frame segmentation, i.e., when a message is so
large that it needs to be divided into multiple CAN frames.

In order to to calculate the resulting bus load for securing multiple types of messages
(and with different cycle times), we simply do the above calculations for each message
type and sum up the results.

Let us assume that we have already calculated the added bus load as 1.4% for some
cryptographic operations (e.g., generating a MAC) that result in some fixed size
overhead for every message type. Then, for example, for two different cycle times,
100 and 1000 ms, where the earlier is a total of 10 different message types, and the
later is 20, one can calculate it as:

Total bus load estimate = 10 ∗ 1.4 + 20 ∗ 0.14 = 16.8%

So in this example, some cryptographic overhead (e.g., a MAC) for these 30 different
message types would create an additional bus load of roughly 16.8%.
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4.2.2 Cryptographic Latency and Throughput
The process of performing a cryptographic operation does not only include the
execution of the operation itself. Instead, in order for the operation to be carried
out, some setup needs to done beforehand. This includes loading of data into buffers,
preparation of state variables etc.

Depending on which parts of the process that are taken into account, the measured
latency will be different. In this thesis, when it comes to the latency of performing
cryptographic operations, we distinguish between three types of latency:

• Cryptographic latency

• Setup latency

• Total latency

In order to define these latencies, we need to first give a brief overview of the program
flow for when a cryptographic operation is performed using the HSM, as well as how
latency is measured using timestamps.

Program Flow for HSM Cryptography

As mentioned in sections 2.4.1 and 2.4.2, the AURIX board has both a main CPU
(TriCore) as well a dedicated HSM CPU (ARM), both of which are involved in the
process of performing a cryptographic operation. Data is communicated between
them using intermediary buffers. The program flow for HSM Cryptography is shown
in listing 4.1. Steps 1-3 and 7 are executed on the TriCore, whereas steps 4-6 are
executed on the ARM.

TriCore :
1. Program start
2. Setup
3. Send request ( interrupt ) to ARM to perform crypto op

(await answer from ARM)

ARM:
4. Setup
5. Hardware accelerators execute crypto op
6. Send confirmation ( interrupt ) to TriCore that op has completed

TriCore :
7. Confirmation received and output of op can be retrieved

Listing 4.1: Program flow for performing a cryptographic operation using HSM

Latency and Timestamps

Latency is measured by taking two timestamps; one initial and one final. The
latency is then the difference between the timestamps. Depending on where in the
code/program flow the timestamps are taken, they will represent different latencies.
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How the timestamps are taken for the different latencies are shown in listing 4.2,
where "TS" stands for timestamp.

TriCore :
1. Program start
* TS_Initial Total latency
2. Setup
* TS_Initial Cryptographic latency
3. Send request ( interrupt ) to ARM to perform crypto op

(await answer from ARM)

ARM:
4. Setup
5. Hardware accelerators execute crypto op
6. Send confirmation ( interrupt ) to TriCore that op has completed

TriCore :
7. Confirmation received from ARM and output of op can be retrieved
* TS_Final Cryptographic latency
* TS_Final Total latency

Listing 4.2: Program flow for performing a cryptographic operation using HSM,
including timestamps)

Difference Between Latencies

The different latencies can be defined as follows. Cryptographic latency is the exe-
cution of the operation at the HSM CPU (including some setup at the HSM CPU
– more on this later) as seen by the TriCore (main CPU). Setup latency is the
setup that needs to be done at the TriCore. Total latency accounts for the whole
process, i.e, it is the sum of the cryptographic and setup latencies. Note that time-
stamps for setup latency are not included in listing 4.2, as setup latency simply is
the subtraction of cryptographic latency from total latency.

Cryptographic latency is a measurement of how fast a cryptographic operation can
be performed, and is thus the most relevant latency for this section. Total latency
and setup latency are related to CPU load; this correlation will be further explained
in section 4.2.4.

Cryptographic Latency Using HSM

With regards to measuring cryptographic latency using HSM, there are some im-
portant things to point out about the program flow and timestamps in listing 4.2.
Firstly, there is some setup (in software) that is performed at the HSM CPU each
time a cryptographic operation is performed (step 4). This can include configuration
of cryptographic keys, loading of data into hardware buffers etc. We stress that this
setup is not included in our defined setup latency, as setup latency is only concerned
with setup at the TriCore.

Secondly, it is important to note that the cryptographic latency does not only cor-
respond to hardware execution of the cryptographic operation. This is because the
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timestamps for cryptographic latency are taken at the TriCore. As a result of this,
setup time at the HSM CPU (step 4) will also be included in the calculations for
cryptographic latency.

It could be argued that these timestamps instead should be taken before and after
step 5. That way, the cryptographic latency would be representative of the "pure
hardware" speed of executing a cryptographic operation. This was first of all not
an option, as taking timestamps at the HSM CPU was deemed not possible (or at
least a very complicated task). But even if that would not have been the case, the
fact remains that in order for a cryptographic operation to be executed in the HSM,
this setup is a prerequisite. For that reason, it was ultimately considered relevant
to include this setup in the measurements for cryptographic latency, regardless of if
taking timestamps at the HSM CPU would have been possible or not.

Cryptographic Latency Using Software

The program flow in listings 4.1 and 4.2 correspond to when a cryptographic opera-
tion is performed using the HSM. If, on the other hand, a cryptographic operation is
performed using software, the program flow follows a similar but simpler structure.
The program flow for software cryptography – including timestamps – is shown in
listing 4.3. As opposed to listings 4.1 and 4.2, here each step is performed at the
TriCore.

1. Program start
* TS_Initial Total latency
2. Setup
* TS_Initial Cryptographic latency
3. Execution of cryptographic operation ( through function call to

software cryptographic library )
4. Cryptographic operation finished and output can be retrieved
* TS_Final Cryptographic latency
* TS_Final Total latency

Listing 4.3: Program flow for performing a cryptographic operation using software
(timestamps included)

The different latencies are defined in a similar way as for HSM cryptography. The
only difference is that the cryptographic latency now corresponds to executing the
cryptographic operation in the TriCore (through a function call to a software cryp-
tographic library), without any of the setup that was performed at the HSM CPU.

Cryptographic Throughput

Cryptographic throughput is calculated using cryptographic latency. The calcu-
lation process consists of first computing the cryptographic latency of performing
cryptographic operations (of the same type) on data of some size. Cryptographic
throughput can then be obtained by simply dividing the size of the data with the
computed cryptographic latency.
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4.2.3 TRNG Latency
The process of generating random numbers – to use as cryptographic keys or IVs –
is very similar to the process of performing cryptographic operations. The program
flow is similar to that in listing 4.2, with the difference being that instead of per-
forming cryptographic operations, the HSM hardware generates random numbers.
Measuring TRNG latency is therefore practically analogous to measuring crypto-
graphic latency, thus we refer to section 4.2.2 for any details about the process,
program flow, taking timestamps etc.

However, as opposed to cryptographic latency, TRNG latency is only to be measured
using the HSM. An equivalent measurement using software – in order to compare
the performance of HSM and software – will thus not be available. Even though the
used software cryptographic library offers functions for generating random numbers,
there is no guarantee that the quality of random numbers generated by software and
HSM are equivalent (most likely they are not), and comparing the quality would
have been a difficult and overly time consuming task. Therefore, a comparison of
TRNG latency for HSM and software was in the end discarded.

4.2.4 CPU Load
In this thesis, we are concerned with the CPU load that is added onto the AURIX
main CPU (TriCore) when cryptographic operations are performed. Calculating
this added CPU load is dependent on the time that the CPU spends on doing active
work related to the cryptographic operation.

CPU Load and Latency

As can be seen in listing 4.1: when a cryptographic operation is performed using
the HSM, the TriCore only does work in steps 1-3 and 7, whereas the HSM CPU
(ARM) takes over in steps 4-6. This means that the TriCore only has to spend
active time on the cryptographic operation process during steps 1-3 and 7, while it
is free to perform other – possibly unrelated – tasks during steps 4-6. Because this
active time is represented by the setup latency, setup latency is therefore used when
calculating the added CPU load.

When a cryptographic operation is performed using software, the TriCore is active
during the whole process, as can be seen in listing 4.3. Therefore, in this case, the
total latency is used instead.

Method Overview

The method for calculating added CPU load has many similarities with the method
for calculating bus load, as it also is a bit theoretical and makes use of values for
message cycle times. But just like the method for calculating bus load, this method
can give a quite realistic approximation of the added CPU load of different scenarios.

Just like for the bus load method, we must first decide which message type we wish
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to secure using cryptography. Again, we are interested in the cycle time of the mes-
sage type, as that will determine how often the CPU has to perform cryptographic
operations on the message type.

We also must decide on the cryptographic operation we want to measure the added
CPU load for, and calculate the latency for the operation (setup latency for HSM
or total latency for SW). This is because different operations have varying latencies,
which thus contribute differently to the CPU load. Finally, with the use of values
for message cycle times, we can calculate the added CPU load of performing the
selected cryptographic operation on the message type.

Calculating CPU Load

The formula for calculating the added CPU load from cryptographic operations is:

CPU Load = Latency

Message Cycle T ime
, (Percentage, %)

Note that the parameter latency is generally affected by the data size. In other
words, it takes much longer to encrypt a longer message instead of a shorter. Thus,
the CPU load estimate needs to be taken into a context of the data size. This will
be covered in more detail in Chapter 5.

Assume that it takes 50µs of CPU time to encrypt and decrypt a particular message
type. If the message type has a cycle time of 100ms, that means that for each 100ms
time chunk, the process of encrypting and decrypting the message will occupy the
CPU for 50µs. The resulting added CPU load is then:

CPU Load = 100× 50µs
100ms = 0.05%

Assume that the total CPU load is already 60%, then the increase would be:

New total CPU load = 60 + 0.05 = 60.05%

Increased total CPU load (%) = 100× 0.05
60 = 1

12%

Thus, in this case the added CPU load is 0.05%, whereas the relative increase from
the normal total CPU load is 1

12%.

Similar to the bus load example, if we want to calculate the added CPU load for
securing multiple types of messages (with different cycle times), we simply do the
above calculations for each message type and sum up the results.

As a concrete example, let us assume we have a set of message types, where there
are two different cycle times, 100ms and 1000ms. The earlier is a total of 10 differ-
ent message types, and the later is 20. Furthermore, lets assume we already have
calculated the CPU load estimates (including both encryption and decryption) for
the different cycle times, for some block cipher mode; 0.103 for 100ms, and 0.0103
for 1000ms (these values are taken from Table 5.2 in Chapter 5, for the mode CTR
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with data size 512). The result is then:

Total CPU load = 10 ∗ 0.103 + 20 ∗ 0.0103 = 1.236%

Thus, cryptography on these 30 message types would create an additional CPU load
of roughly 1.24%. In other words, if the CPU load is already 60%, it would be now
61.236% due to this cryptographic functionality.

In this example, only a single block cipher mode was used. However, as a short
reminder, it is possible that there can be multiple different modes used for the crypto-
graphic functionality. In other words, all the message types does not necessarily
need to be encrypted with the same block cipher mode. For example, it might be
motivated to utilize GCM just for some specific message type, where authentication
might be desirable. Meanwhile, the rest of the message types to be encrypted can
be done with CTR.

CPU Offload

Closely related to CPU load is CPU offload, which is a measure of how much the
HSM can offload the host CPU compared to when cryptographic operations are
performed in software. The CPU offload will be calculated in percentages and is
calculated as:

CPU offload = 100× (1− HSM CPU load

SW CPU load
), (Percentage,%)

Thus, if the resulting percentage is positive it means that the HSM offloads the
main CPU. Meanwhile, for negative percentage it is the reverse; that the software
actually has better CPU load than HSM.
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4.2.5 Summary of Latencies

Table 4.1 summarizes the latencies described in this section and the distinction
between them. Note that even though setup and total latency can be applied to
both HSM and SW cryptography, their usefulness is restricted to HSM and SW,
respectively.

Latency type Description Usefulness
Setup The time the CPU

has to spend on setup
before performing a
cryptographic opera-
tion

Used to measure the time that the ECU
CPU has to spend doing active work
when a cryptographic operation is per-
formed using the HSM, in order to cal-
culate CPU load

Cryptographic The time it takes
to perform a crypto-
graphic operation (ei-
ther by HSM or SW)

Used to compare the speed by which
the HSM and software perform a
cryptographic operation

Total Setup latency +
cryptographic latency

Used to measure the time that the ECU
CPU has to spend doing active work
when a cryptographic operation is per-
formed using SW, in order to calculate
CPU load

Table 4.1: Summary of latencies.

4.3 Testing

In order to perform meaningful testing, it needs to be done in a structured and
methodological way.

The general testing approach is illustrated in Figure 4.1. The idea is that there exists
a blackbox for cryptographic operations, where the blackbox has input and output.
This blackbox could in reality be either in an HSM (cryptographic accelerator) or
a software module running on the main CPU. However, conceptually one can think
that there is no significant difference between the two cases; a blackbox is going to
perform some cryptographic operations on some data (e.g., the payload of a CAN
frame).
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Figure 4.1: A conceptual illustration of the general testing method.

The conceptual idea is that input (either a single frame or batch of multiple frames)
are sent to a cryptographic blackbox/module, which can be either in an HSM or
software (SW) in a node. Then the module performs its cryptographic operations
and sends out its output. Note the differentiation of encryption and decryption; they
perform different cryptographic operations and thus they might have differences in
performance.

So the idea is to send some arbitrary plaintext/data of some fixed size to the HSM
for encryption, receive back the ciphertext, and then send the ciphertext back to
the HSM for decryption. Thus, encryption and decryption is done in the same
measurement. However, as described earlier, latency is measured at different points
in this process.

4.3.1 Parameters and Variables
The parameters relevant to the security configuration is key length and the block
cipher mode of operation (specially in this project: ECB, CBC, CTR, and GCM).
Another relevant parameter is using different algorithm combinations, such as using
only encryption versus using encryption and MAC together. However, this is only
possible with GCM, at least when utilizing the HSM. It was decided to not perform
testing for this due to the limited motivation and the time frame for this project.
Note that in this thesis we are only studying AES.

Since there are several different parameters, there are several combinations/con-
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figurations possible. Thus, it is vital for our work to reduce time-consuming and
redundant testing.

There needs to exist some default fixed configuration, in order to reduce the combi-
nations of configurations. For example, when testing cipher block mode of operation,
it needs to be the single free variable in a default configuration. As having multiple
free variables would increase testing significantly, so it needs to be avoided.

The default configuration in this project was quite easy to decide on. The crypto-
graphic accelerator of the HSM operates in the standard block size of AES; 128-bits.
Parameters such as key length and MAC (aka. tag) are implemented for that block
size. In other words, the cryptographic accelerator is configured for use only with a
key length that is 128-bits. Furthermore, the secure storage is implemented for keys
of that size.

Thus it is not possible to compare different key lengths (128, 196, 256-bits) between
the HSM and software. One could argue that this limitation of the cryptographic
accelerator is a limitation in terms of security. In this case one would need to
change the hardware to work with a larger key length or be flexible with key length.
Meanwhile, for software it is just a algorithm or a parameter that needs to be
changed.

Therefore, the only tested variables are the block cipher mode and data size. As
described earlier, this is due to the setup of the cryptographic accelerator. Data size
is an interesting variable to study, i.e. encrypting and decrypting several blocks in
sequence. Since e.g., it might be the case that software and the HSM significantly
differ in performance when it comes to different data sizes. Furthermore, it might
be the case that there is different growth rate in latency in regards to data size,
when it comes to different block cipher modes.

Note that it is not interesting, when it comes to testing, to look at data sizes
smaller than the block size or the sum of the needed blocks. Since padding would
be necessary, either by the user or automatically by the algorithm. Thus, in general
(both for HSM and SW), there is no performance gain to operate with smaller data
than the block size, 128 bits. Furthermore, it is redundant to perform measurements
at data sizes that are not multiples of the block size. Thus, the data sizes used in
testing are 16, 32, 64, 128, 256, 512, and 1024 bytes of data.

4.3.2 Testing on Testbed
Testing was quite simple to perform. The variables block cipher mode and data
size was automated to change with a script, which was run through the debugger.
More specifically, after the default run is done, then the script resets the code and
before execution starts, the script changes the testing variables. This process can
be repeated in a loop, in order to gather several measurements.

A total of ten measurements was taken for each data size and then a mean was
calculated for each metric. Thus, each presented metric related to HSM and software
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in Chapter 5 and Appendix C are the means. For example, when it is written just
total latency this is actually the mean for that case.

Meanwhile, for the TRNG twenty measurements were taken for each data size. The
metrics presented in Chapter 5 and Appendix C regarding TRNG are the means of
these twenty measurements. Note that data in this context means the size of the
true random numbers generated by the TRNG. The TRNG also operates with a
block size of 128-bits. Thus, data can only be generated in multiples of 128-bits.

Data extraction can be performed in several different ways. The starting way was
to manually read the variables through the debugger. Efficient data extraction was
done through the script, which reads all the desired variables, after the script is
done it outputs all the variables in a CSV-format as a text file. Through the CSV
format of the data, it can easily be imported into Excel for further analysis.

The idea was perform testing in several iterations of a testbed. However, in this time
frame, the project only finished the results of the first iteration. Thus, only the first
iteration will be detailed here. The further iterations are detailed in Future work
(see Chapter 7, Section 7.3). For example, the proposed testbed iteration II would
have actually had a CAN bus. Thus, communication protocols are also covered in
Future work (see Chapter 7, Section 7.3).

4.3.3 Testbed Iteration I

Testbed iteration I is the most basic setup for performing testing and also ensuring
correctness. An illustration of this testbed is shown in Figure 4.2. This first itera-
tion is really only a single node. A PC is connected trough a debugger (Lauterbach
TRACE32, see section 2.4.3 for the debugger) to an AURIX ECU with its HSM.
The PC only acts as a helping tool to control the target device and perform de-
bugging. Meanwhile, all the cryptographic operations is performed only within the
AURIX system. For example, arbitrary data is encrypted and then decrypted, but
never leaves the AURIX system in a normal communication sense. But through the
debugger and the PC there is read and write access to the AURIX system, which is
necessary for performing efficient testing.

Figure 4.2: An illustration of testbed iteration I, where the communication link
is a debugger. The debugger naturally also functions as a great tool in helping to
ensure functionality and enable efficient testing.
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4.3.4 wolfCrypt: Motivation for Choice of Software Crypto-
graphic Library

There were a number of reasons for choosing wolfCrypt as the software cryptographic
library to use in this thesis. First of all, it includes all the AES cipher modes that we
wanted to use in this thesis, which we considered as the first necessary requirement
in the choice of software cryptographic library to utilize.

Another important factor is that the available memory on the AURIX is quite small.
This means there are limitations on the size of the program code that can be loaded
into memory, which includes external libraries such as wolfCrypt. This problem is
mitigated by wolfCrypt, which not only features a relatively small code size and low
runtime memory usage, but also offers the possibility of customizing which features
are included during compilation. For example, it is possible to only include functions
for AES cryptography – which are only a fraction of the functions that wolfCrypt
offers. This can in turn substantially minimize the code size that is compiled and
consequently has to be loaded into the AURIX memory.

Lastly, yet another reason for choosing wolfSSL/wolfCrypt was the large amount of
available documentation as well as the simplicity of the API.
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5
Results

This chapter details the results of both the AURIX HSM solution (see Section 4.3.3
and Figure 4.2 for details), and the software solution, which is wolfCrypt (see Section
2.5). A comparison of the solutions is also provided, in regards to metrics such as
CPU load and cryptographic latency.

In this chapter we only include the most relevant results. For further details, such
as tables over the results, see Appendix C.

5.1 HSM
This section details the results of the performance evaluation of the HSM solution
(testbed iteration I). Note that both encryption and decryption were done in the
same testing function.

5.1.1 Latency
Figures 5.1 and 5.2 show a comparison of encryption latency and decryption latency
for the block cipher modes. An easy observation is that the cryptographic latency is
linear with respect to data size for all the block cipher modes. Furthermore, GCM
has the highest cryptographic latency, and also the highest growth rate with data
size, when it comes to encryption latency. Something that is harder to observe from
the two figures, is that decryption latency is generally slightly lower then encryption
latency.
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Figure 5.1: Encryption latency (HSM) vs data size for different cipher modes.
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Figure 5.2: Decryption latency (HSM) vs data size for different cipher modes.

Figure 5.3 illustrates how the setup latency develops with the data size. Since setup
latency is practically equal for all cipher modes, the diagram only has one curve,
which represents all the cipher modes.
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Figure 5.3: Setup latency vs data size.

5.1.2 Throughput

The throughput for encryption and decryption are shown in Figures 5.4 and 5.5.
An easy observation is that decryption throughput is generally higher compared to
encryption throughput. This is a logical observation based on what was observed for
cryptographic latency.

GCM has generally the lowest cryptographic throughput. However, for decryption
there was no significant difference for the highest data size, excluding CTR. Mean-
while, for encryption the throughput is almost the same for the modes ECB, CBC,
and CTR.
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Figure 5.4: Encryption throughput (HSM) vs data size for different cipher modes.
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Figure 5.5: Decryption throughput (HSM) vs data size for different cipher modes.

5.1.3 TRNG

The TRNG latency is shown in Table 5.1 and Figure 5.6. One quick observation is
that Total latency is relatively the same as TRNG latency. The difference is roughly
40 microseconds regardless of the generated data size. This is a logical result, since
the generated data size does not affect setup latency in this case. For example, no
data is needed to be sent to the HSM, in this case the TriCore only receives data.

Another easy observation, from Figure 5.6, is that the generated data size is linear
with the latency. This implies that there are no relative gains in latency for generated
different data sizes. Lastly, the lowest possible TRNG latency was average 300
microseconds, which is for generating 16 bytes.

Data in bytes Total latency (µs) TRNG latency (µs)
16 345 303
32 645 601
64 1230 1190
128 2430 2390
256 4790 4750
512 9540 9500
1024 19100 19000

Table 5.1: Table over latency for the TRNG.
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Figure 5.6: TRNG latency vs size of random data generated.

5.2 Software Cryptography
This section contains the results of the performance evaluation of the software so-
lution. The wolfCrypt cryptography library was used as the software alternative.

5.2.1 Latency
The cryptographic latency is shown in figures 5.7 and 5.8, where the earlier is en-
cryption and the later is decryption. An easy observation is that all the latency
metrics are linear with the data size, for all the modes.

Furthermore, GCM has the highest cryptographic latency, which is significantly
higher. This is due to a higher growth rate with data size. Another observation is
that there is no significant difference in cryptographic latency for the other block
cipher modes.
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Figure 5.7: Encryption latency (SW) vs data size for different cipher modes.

0

200

400

600

800

1 000

1 200

1 400

1 600

1 800

0 100 200 300 400 500 600 700 800 900 1000 1100

La
te

n
cy

 (
µ

s)

Data size (bytes)

Decryption latency (SW)

ECB CBC CTR GCM

Figure 5.8: Decryption latency (SW) vs data size for different cipher modes.

Figure 5.9 illustrates how the total latency develops with the data size. It is clear
that the latency of GCM grows faster and also has higher initial latency than the
rest of the modes. Meanwhile, all the other modes are relatively the same This
is not an absurdity, since the modes are fairly similar when it comes to the per-
formed cryptographic operations. This can also be observed when looking at the
cryptographic latency in Figures 5.7 and 5.8.
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Figure 5.9: Total latency vs data size for different cipher modes.

5.2.2 Throughput

The throughput for encryption and decryption are shown in Figures 5.10 and 5.11.
Clearly the throughput is roughly stable after 256-bytes in data size.
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Figure 5.10: Encryption throughput (SW) vs data size for different cipher modes.
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Figure 5.11: Decryption throughput (SW) vs data size for different cipher modes.

5.3 Comparison
In this section we present our main comparison metrics: CPU load, CPU offload,
and difference in cryptographic latency.

5.3.1 CPU Load
In Table 5.2 there is a summary of all the estimated CPU loads, where the cycle
time is ten milliseconds. A quick observation is that higher data size leads to higher
CPU load, both for the HSM and software. Still the effect was more significant for
the software solution, i.e., software has higher growth rate with data size. Thus,
HSM is significantly better at larger data sizes.

Mode Data in bytes HSM CPU load (%) SW CPU load (%)
ECB 32 0.54 0.57
ECB 512 1.04 4.08
CBC 32 0.53 0.61
CBC 512 1.03 4.38
CTR 32 0.53 0.51
CTR 512 1.03 4.26
GCM 32 0.54 2.49
GCM 512 1.03 16.4

Table 5.2: CPU load for performing cryptography on a single message type with
cycle time 10ms.

An observation, is that for the lowest data size (32 bytes), both HSM and wolfcrypt
CPU load are fairly equal, excluding GCM. It is clear that GCM is significantly
more demanding for SW, for both small and large data sizes.
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Since the setup latency was assumed to be relatively the same for all the block cipher
modes, the HSM CPU load is based only on the results for one of the block cipher
modes. In other words, here the HSM CPU load is not impacted by the block cipher
mode. The focus is instead on comparing how the data size affects the CPU load
estimate. Graph illustrations for CPU load can be found in Appendix C, see figures
C.4 and C.5 for SW and figure C.1 for HSM.

5.3.2 CPU Offload
CPU offload is summarized in Table 5.3. It is clear that the HSM is significantly
better at larger data sizes. Still, for the smallest data size of 16 bytes, it was actually
the case that software is slightly better when it comes to CTR.

The biggest difference was GCM, which is clearly significantly more demanding for
software. Even for the smallest data, the CPU offload was roughly 78%, and for the
largest it is roughly 94%, which is quite a large CPU offload.

Mode Data in bytes CPU offload (%)
ECB 32 5.02
ECB 512 74.6
CBC 32 12.3
CBC 512 76.5
CTR 32 -4.4
CTR 512 75.8
GCM 32 78.5
GCM 512 93.7

Table 5.3: CPU offload between HSM and software (wolfCrypt). A positive per-
centage indicates that the HSM is more efficient.

5.3.3 Difference in Cryptographic Latency
Only taking CPU offloading into account does not give the whole picture, since
offloading can be done through any extra peripheral with a CPU, e.g., having an
extra ECU to perform cryptographic operations (SW). A significant benefit with
an HSM is that it comes with a cryptographic accelerator. Thus, an HSM comes
with the purpose of providing better cryptographic latency compared to software.
Therefore, it is interesting to also study the difference in cryptographic latency.

The difference in cryptograhic latency between HSM and SW is calculated as:

Latency Difference = HSM Latency − SW Latency, (s)

Figure 5.12 illustrates how the difference in cryptographic latency, between HSM
and software, changes with data size, for the modes CTR and GCM. Note that the
lines for GCM encryption and decryption are very close to each other (the same
applies for CTR encryption and decryption).
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Figure 5.12: Difference in cryptographic latency between HSM and SW with re-
spect to data size, for cipher modes GCM and CTR.

An easy observation is that the difference in cryptographic latency for GCM grows
much faster, in favor of the HSM, compared to CTR. GCM also has higher difference
in cryptographic latency for the smallest data size. Thus, at the largest data size of
1024 bytes, the difference between GCM and CTR is quite significant. This implies
that the HSM is much faster in cryptographic latency for GCM. Furthermore, the
same also is true for CTR. However, the growth rate is smaller compared to GCM.

Something that is harder to spot in this diagram is that for the lowest data size of 16
bytes, software with CTR mode is actually slightly better in cryptographic latency
(the data points are a little below zero in the diagram, see Appendix C, Section
C.3).

5.4 Bus Load
CAN is the most common bus protocol in vehicle infrastructure. However, it has
some drawbacks. For example, the bandwidth is limited compared to other proto-
cols. Furthermore, the protocol is small in data payload size. Thus, the CAN bus
protocol will likely act as bottleneck.

To start off, naturally a CAN data payload smaller than the block size will be
padded. This means that at least two CAN frames need to be sent in every trans-
mission. So in the worst-case scenario it is a doubling in overhead. Furthermore,
naturally with the use of a MAC for the data, the overhead increases. Since for the
HSM the only MAC size is the block size, which leads to an additional two CAN
frames (a 16-byte MAC in data payload).

Therefore, it is interesting to also look at CAN FD (see Appendix B.2.2), which
is an improved version of CAN (only changes in the protocol). CAN FD comes
with the improvements of flexible data payload and also flexible data-rate. Thus, in
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CAN-FD it is possible to send a large message, i.e. larger than 8 bytes), in a single
CAN-FD frame and also at overall higher bandwidth compared to CAN. These two
aspects will likely increase performance drastically, especially for larger messages.

Bus load is estimated here in a theoretical way, and is based on some reasonable
assumptions; bandwidth, number of bits in a CAN frame. In the first section, a
concrete example is given regarding added bus load due to a 16 byte MAC (GCM),
in a worst-case scenario when it comes to the maximum possible number of bits in
a CAN frame (bit-stuffing). In the second section, the most equivalent example is
given for CAN FD instead.

5.4.1 CAN
Assume that the maximum bandwidth on CAN is 500Kb/s, this will be used as the
bandwidth for calculating the bus transmit time. Note that in reality the average
bandwidth could be lower depending on the circumstances. The standard CAN
frame size is 125 bits, and with CAN extended (larger arbitration field in the CAN
frame, see Appendix B.2.1) there are additional 18 bits in the header. Furthermore,
there occurs bit-stuffing, where the worst-case is one extra bit for every fifth bit.
Thus, (125 + 18)/5 = 28.6 Thus, the assumption is that in a worst-case scenario
there are 125 + 18 + 28.6 ≈ 171 bits in a CAN frame. Now all the needed variables
are done, so now one can calculate the bus transmit time, for a single CAN frame:

Bus Transmit T ime = Number of bits

Bandwidth
= 171

5E + 5 = 3.42E−4 s

As explained earlier the assumption is that there exists both some set of messages
that are periodic, and some that are non-periodic. The periodic message types are
sent with a cyclic time, which usually can range from one microsecond to several
seconds.

Then, the bus load, with a cycle time 10ms, can be estimated as:

Bus Load = Bus Transmit T ime

Cycle T ime
= 100× 3.42E−4

0.01 = 3.42%

It is trivial that the bus load estimate is linear with the cycle time. Thus, it is
preferred in a performance perspective to only increase the overhead for message
types with a longer cycle time, since this would not have the same effect on the bus
load.

However, this is a question that needs to be answered from message type to message
type. In general a faster cycle time implies a higher priority. However, a higher
priority does not necessarily mean that a message type is safety- or security-critical.
Therefore, every single message type needs to be analyzed if a MAC (and encryption)
is worth the performance consequences.

This bus load estimate is only for a single arbitrary message type, and also for a
single CAN frame. Now the approach is that one can use this for estimating the
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additional bus load for using the MAC of 16 bytes in GCM. More specifically, sending
the MAC in a message would create an overhead of 16 bytes of the MAC itself (2
CAN frames), and also another two CAN frames for segmentation and padding. So,
in total the overhead due to a 16-byte MAC is 4 CAN frames. Thus, the final result
is that the additional bus load is 4 ∗ 3.42 = 13.68%, with a cycle time of 10 ms, for
a single message type.

Bus load estimate MAC = 3.42× 4 = 13.68%

The general absolute worst-case scenario is where the data to be encrypted is only
1 byte. Then due to AES it will be padded to 16 bytes, meaning two CAN frames.
Furthermore, with a 16-byte MAC there will be two CAN frames for the MAC itself,
but also two CAN frames for segmentation and padding. Thus, the overhead from
the MAC is in total four additional CAN frames. In this situation, encryption and
a MAC comes with a significant performance cost.

Note that one can calculate the total additional bus load for several different message
types in regards to cycle time (described earlier in Chapter 4).

For example, for two different cycle times, 100 and 1000 ms, where the earlier is a
total of 5 different message types, and the later is 10:

Total bus load = 5 ∗ (4 ∗ 3.42) + 10 ∗ (4 ∗ 0.342) ≈ 82%

(Notice that this is specifically for a MAC of size 16 bytes, which is the size utilized
in GCM)

So in this example, having the GCMMAC for these 15 different message types would
create an additional bus load of roughly 82%. This is a relatively high additional
load.

5.4.2 CAN FD
The way it works with CAN FD is that one can have both flexible bandwidth and
data payload. This enables the possibility of sending the whole MAC (16 bytes),
and higher bandwidth when sending the data payload. Thus, for this calculation
one needs to split the CAN FD frame into two parts, since one needs to calculate
for two different bandwidth; arbitration and CAN FD.

The arbitration speed is used to calculate the transmission time for sending bits in
the header field, and the footer field. Meanwhile, a higher bandwidth (CAN FD)
can be used when sending the data phase of the CAN FD frame.

Theoretical calculation example:

Note that in CAN the worst-case is that there is one bit-stuffing bit for every fifth
bit in the CAN frame.

Assumptions:
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• Bits with arbitration bandwidth:

header + footer = (17 + 18) + 12 =⇒ 47 + 47
5 ≈ 56bits

• Bits with CAN FD bandwidth:

(4 ∗ 8 bytes in total data payload; 16 byte MAC)

data phase = 27 + data payload = 27 + (4 ∗ 64) =⇒ 283 + 283
5 ≈ 340bits

• Thus, in worst-case the total number of bits in this CAN FD frame is 396

• Maximum bandwidth with CAN: 0.5 Mb/s

• Maximum bandwidth with CAN FD: 1 Mb/s

Transmission time (CAN FD, normal bandwidth) = 396
5E + 5 = 7.92E−4 s

Bus load (CAN FD, normal) = 100× 7.92E−4
0.01 = 7.92%

Transmission time (Header + footer) = 56
5E + 5 = 1.12E−4 s

Transmission time (Data phase) = 340
1E + 6 = 3.4E−4 s

Transmission time (CAN FD) = (1.12E−4) + (3.4E−4) = 4.52E−4s

Bus load (CAN FD) = 100× 4.52E−4
0.01 = 4.52%

The result is summarized in Table 5.4. The first row is for when having CAN FD
but still with the normal bandwidth of 0.5 Mb/s.

Case Transmission time (s) Bus load estimate 4 frames (%)
Total (normal band-
width, with CAN FD
format)

7.92E−4 7.92

Rest: Header and
footer

1.12E−4 1.12

Data phase 3.40E−4 3.40
Total (CAN FD):
Data phase + Rest

4.52E−4 4.52

Table 5.4: Bus load estimate with CAN FD, with the cycle time set to 10 ms.
Note that this is specifically for the overhead due to a 16 byte MAC.

The second row is the calculation of the CAN FD frame that needs to sent with
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the arbitration/normal bandwidth. The third is for the data phase of the CAN FD
frame, which can be sent with a higher bandwidth. In this case it is assumed to be
1 Mb/s. However, it might be possible to achieve even higher bandwidth depending
on some parameters. Then the final result with CAN FD is shown in the last row,
which just the sum of the previous two.

This can be compared to the earlier theoretical example with CAN, which was
4 ∗ 3.42 = 13.68%. Meanwhile, with CAN FD (normal bandwidth, but flexible data
payload) it was 7.92%. The performance gains in percentage:

Performance increase (%) = 100× (1− 7.92
13.68) = 42.11%

In other words, there is a 42% better bus load with just adopting the CAN FD
protocol and still maintain the arbitration bandwidth.

The full CAN FD protocol has a bus load increase of 4.52%. The performance gains
in percentage:

Performance increase with CAN FD (%) = 100× (1− 4.52
13.68) = 66.95%

In other words, with regards to the overhead that comes as a result of using GMAC
(16 bytes) for a single arbitrary message type with cycle time of 10 ms, the bus
load is roughly 67% better with CAN FD compared to CAN. Note that we only
calculated the bus load resulting from the MAC, but in reality in CAN FD you
would most likely send the whole message, including the MAC, in a single CAN FD
frame. Furthermore, it is likely the case that the efficiency of CAN FD compared
to CAN only would increase with larger data payloads.
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Discussion

In this chapter, we include various aspects that are relevant to discuss in this thesis.
Most importantly, sections 6.1 and 6.2 relate the results in section 5 to the research
questions posed in this thesis. Additionally, section 6.3 details various limitations
with the testing that was performed. Lastly, section 6.4 describes metrics that could
have been relevant to include in this thesis, but that for different reasons were not.

6.1 Research Question 1
The first research question was: What is the cryptographic performance of an HSM?
The main focus was to compare the HSM solution with a software solution, where
the choice was wolfCrypt. This comparison should give a fairly justified evaluation
regarding the HSM solution. The layout of this discussion is structured around
the relevant metrics. At the end a summary is given regarding the findings and
conclusions.

6.1.1 CPU Load and Offload
Firstly, an interesting observation was that there was no significant difference in CPU
load for all block cipher modes for the HSM. This was not the case for software. This
is a logical observation since the CPU load for the HSM is based on the setup latency,
which is rather fixed in our testing in the different modes. Meanwhile, the CPU load
for software is based on the total latency, which thus includes cryptographic latency.
The second observation was that higher data size leads to higher CPU load. But
the growth rate was much lower for the HSM compared to software (see Table 5.2
for the CPU load estimates).

To clarify, the reason that there is a CPU load increase on the ECU with the HSM
is that there still occur some operations on the ECU, e.g., initial communication
with the HSM and some handling of the data before sending it to the HSM. That
is why a higher data size has more impact on the CPU load.

The biggest difference in CPU load between HSM and SW was for the block cipher
mode GCM. In detail it was for the HSM it was 0.54% for 32 bytes and for SW it
was approximately 2.5%. This is just a difference of roughly 2%. The CPU offload
for 32 bytes is roughly 78%. Meanwhile, with 512 bytes it was approximately 1%
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for HSM and 16% for SW in CPU load. The CPU offload is roughly 94%.

So, for a 16 times larger data size, the GCM CPU load (SW) grows with almost
seven times. But for the HSM it was roughly a doubling in CPU load. This is
a logical result since as stated earlier, for software, the CPU load metric includes
cryptographic latency, which is amplified by data size. Meanwhile for the HSM it is
setup latency, which is primarily sending and receiving the data size.

A first conclusion is that for the CPU load with HSM, the choice of block cipher
mode is not a significant factor, i.e. there is no significant difference in CPU load for
all block cipher modes. This is logical since for setup latency there is no significant
difference in latency for all block cipher modes. A second conclusion is that higher
data size leads to higher CPU load, both for the HSM and software. But the growth
rate is significantly higher for software. This is due to that all the cryptographic
operations are performed on the TriCore for software, which is reflected in CPU
load.

It is also clear that GCM is especially more demanding for software compared to
the HSM. This is shown by that software has significantly higher CPU load for the
smaller data sizes (compared to the other modes) and also higher growth rate.

CPU offload is summarized in Table 5.3. A conclusion is that the HSM offloads the
TriCore for almost every data size here. The only exception was CTR for smaller
data sizes of 32 bytes (as well as 16 bytes as shown in Appendix C). The reason
for this exception is that the setup latency for CTR (HSM) is larger than the total
latency for CTR (SW). This is something that could be due to insufficient testing,
since the differences are so small. Otherwise, this could be due to that the difference
is negligible for software and HSM in this case.

Another conclusion is that CPU offload grows with data size in favour for the HSM.
Thus, the HSM is decisively preferred when it comes to larger data sizes, in the
perspective of CPU load. For example, for CBC, the CPU offload is approximately
12% for 32 bytes, and for 512 bytes it is approximately 76% in CPU offload. It is
reasonable to assume that there exists some maximum possible CPU offload.

This can not be explained entirely by offloading the TriCore. Simply looking at
offloading does not explicitly give a complete sense of overall effectiveness. In order
to achieve this it is necessary to look at difference in cryptographic lateny between
software and the HSM.

Reflection on Performance Requirements

As mentioned earlier in Section 4.1 in Method, there exists already a CPU load on
the ECU. Thus, in our work it is assumed that there is already an average CPU
load of 50 to 60% on the ECU. Furthermore, there exists a maximum CPU load,
due to real-time demands, which is assumed to be around 80 to 85%. This leaves
a range of roughly 20-30 % for increasing the CPU load. However, this is not
purely dedicated to cryptographic functionality but also to other new functions. In
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conclusion, a reasonable limit for this cryptographic functionality could be in the
range of increasing the CPU load with 5-10 %.

Thus, with the CPU load (HSM) being 1.03% for 512 bytes and cycle time 10ms,
there is some room for having several messages types with this fast cycle time. For
example, with a cycle time of 1000ms, one could encrypt and decrypt roughly 970
message types (10%/(0.0103%) ≈ 970 message types), without generating too much
in CPU load.

Meanwhile, for software the CPU load estimate was 4.26% (CTR, 512 bytes, cycle
time 10 ms). The corresponding example here would be maximum roughly 235
messages types, that could be encrypted and decrypted (10%/(0.0426%) ≈ 235).
Thus, it is clear that the HSM is preferred when it comes to CPU load. If the goal
is to perform AES cryptography on as many message types as possible, then the
HSM is the obvious choice when it comes to CPU load.

6.1.2 Cryptographic Latency
The first thing that is worth to conclude is that generally for the HSM, decryption
was actually slightly faster than encryption (although a rather negligible difference).
This is something that was not observed for software in our results, where encryption
and decryption latency was about the same. This is something that is hard to see
from the figures in Chapter 5, but can be observed easily from the calculated metrics
in Appendix C. The only conclusion that can be drawn here is that the HSM does
have some intrinsic attribute that makes decryption faster than encryption. What
that attribute might be is something that would require in-depth knowledge about
the intrinsic functionality of the HSM.

Most symmetric block ciphers, including AES, will take about the same latency
(within some measurement error) for encryption and decryption, when it comes to
operating on a single block (e.g., 128 bits). However, when it comes to operating
on multiple blocks, parallelization is possible. For example, CBC encryption must
be done sequentially for the blocks (i.e., encryption can not be parallelized), while
decryption can be parallelized (XOR step). However, CTR can be parallelized in
both encryption and decryption.

Another interesting aspect was that GCM was the only block cipher mode that dif-
fered in cryptographic latency, both for the HSM and software. The other modes
ECB, CBC, and CTR was almost the same in cryptographic latency (with some mi-
nor exceptions). It was expected that GCM would have significantly higher latency,
since when writing the code for GCM (HSM) it was evident that there were many
more cryptographic operations being done.

The most likely reason that the other modes has negligible difference in crypto-
graphic latency, is that the block cipher modes are so similar in their design, i.e.
their operations. This was also the case for software, but there was slightly more
variance in cryptographic latency between the selected block cipher modes. In con-
clusion, based on the results the difference in cryptographic latency between the
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modes ECB, CBC, and CTR is somewhat negligible, both for the HSM and soft-
ware, but mostly for HSM.

Difference in Cryptographic Latency

The conclusion here is that HSM is more effective in the aspect of cryptographic
latency, and the difference grows in favour of the HSM with data size. Thus, the HSM
(cryptographic accelerator) is significantly more effective compared to software when
it comes to larger data sizes. Another interesting conclusion was that the difference
in cryptographic latency for GCM had much higher growth rate compared to the
rest of the modes. Thus, GCM was the mode that the HSM was significantly better
at.

The only exception observed was that CTR (SW) for smaller data size (16, 32 bytes)
was actually faster or even to the performance of the HSM.

6.1.3 Cryptographic Throughput
Firstly, both HSM and software has an increase in throughput (encryption and
decryption) for the lower data sizes. However, for software the throughput growth
stagnates after 256-bytes, see figures 5.10 and 5.11. Meanwhile, for the HSM the
throughput growth does not stagnate and the throughput is significantly higher
when compared to software, see figures 5.4 and 5.5.

The block cipher modes ECB, CBC and CTR have roughly the same throughput,
for HSM respective software. The reason for this is that they have roughly the same
cryptographic latency in HSM or software. The reason for this has been explained
earlier. Furthermore, it is clear that GCM has significantly lower throughput for
software compared to the other modes. This was the case for the HSM also. This
was expected since GCM is the most complex block cipher of the ones studied in
our work, due to it being an authenticated encryption mode.

6.1.4 Summary
The purpose of this comparison was to give a fairly good understanding of the
possible performance gains with HSM. The overall conclusion to this first research
question is that the HSM provides better performance, both in CPU load and cryp-
tographic latency. This was especially true for the block cipher mode GCM, which
was significantly more demanding for software, mainly due to higher growth rate in
cryptographic latency.

6.2 Research Question 2
The second research question was: What are the security and performance trade-
offs of different HSM configurations? Here the main idea was to study how different
HSM configurations of varying security levels would differ in performance. Such
relevant security parameters were key length, block cipher mode, MAC and IV.
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However, due to restrictions (as detailed earlier in Chapter 4), key length could
not be studied. Furthermore, the parameters MAC, and IV could only be studied
to a lesser extent. The layout of this discussion is also structured around relevant
metrics; bus load, cryptographic latency, and TRNG latency. At the end a summary
is given regarding findings and conclusions.

6.2.1 Bus load
The idea here was to study how stronger security affects bus load. For example,
adding some overhead such as a MAC in a message. As detailed in Chapter 4 MACs
were quite limited for symmetric cryptography in the HSM. In principle, the only
thing worth studying was regarding the MAC generated in GCM, which was fixed
in size (128 bits). This was done in Chapter 5, both in the context of standard
CAN, but also in CAN FD. This was something that was decided to be relevant
rather early in the project. The hypothesis was that a MAC of 16 bytes would be
rather infeasible in practice with CAN. This is because CAN is a relatively slow
bus, and with limited data payload size (leading to overhead, e.g., segmentation).
Therefore, it was interesting to look at CAN FD, which has the purpose of fixing
those drawbacks.

Note that we could have studied different MAC sizes since our calculations are
theoretical. The reason this was not done is that there is no real motivation for this
since such MAC sizes would not be feasible with the HSM.

CAN

The most important conclusion here is that having a 16 byte MAC (GCM, HSM)
is rather demanding for CAN, and would not be feasible in practice. This is due to
that the additional bus load is estimated to be approximately 14%, for a cycle time
of 10ms. Note that this was calculated for the worst-case scenario when it comes to
the number of bits in a CAN frame. So, for example, an additional bus load of 5%,
would only result in having a 16 byte MAC for roughly 37 message types, with the
cycle time 1000ms. Thus, in order for this to be feasible, one can only have a MAC
in messages types with slow cycle time.

CAN FD

The corresponding theoretical calculations for CAN FD resulted in an additional
bus load estimate of approximately 4.5%, for a 16 byte MAC, with the cycle time
10ms. The difference in percentage points is thus roughly 9% in additional bus load
for the MAC. This is equivalent to roughly 67% better performance in regards to
bus load.

For example, an additional bus load of 5% would result in having a 16 byte MAC
for roughly 110 message types, with the cycle time 1000ms. So, in our theoretical
example, CAN FD has roughly a 67% increase in the number of message types that
can include a MAC of 16 bytes. Thus, adding security through a MAC would be
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more feasible with CAN FD but still create some significant additional bus load,
thus not entirely feasible in practice.

It would be interesting to study how the MAC size affects the bus load in practice.
Note that CAN FD bandwidth was assumed to be 1Mb/s, which is double the as-
sumed normal CAN bandwidth. However, CAN FD (and CAN) has the possibility
of achieving much higher bandwidth. There is some difference where both the prac-
tical and theoretical limit on bandwidth is for CAN FD. One commonly advertised
number is 5Mb/s. Cable length is a main factor for the bandwidth, because longer
cables are a constraint on higher bandwidth. For example, trucks and buses utilizes
fairly long cables (10-20 meters). Typical bandwidths in this context for CAN are
250 kbit/s or 500 kbit/s. This is the motivation for the assumed CAN bandwidth
of 500 kbit/s. However, a feasible CAN FD bandwidth in this context is more un-
certain. Therefore, a modest assumption was made that the CAN FD bandwidth
would be the double of the normal CAN bandwidth.

It is interesting to study optimizations when it comes to MAC in regards to bus
load. One easy thing is to do a compromise; only those message types that from a
security-perspective need to have a MAC, should have a MAC. In other words, not
every message type in a network needs to use GCM.

Reflection on Performance Requirements

Looking back at the performance requirements for bus load (in Section 4.1 in
Method). The assumed max limit of the bus load is assumed to be around 70
to 80% (due to real-time demands). Furthermore, some global CAN links are as-
sumed to be quite sparse in available bus load to use. But there still exists some
communication links such as local subnetworks, which are deemed to have at least
some room for additional bus load.

The resulting additional bus load with CAN (as detailed earlier) is not really feasible
with this limitation. CAN FD would be more in line with this limitation since it
has a 67% performance increase compared to CAN, when it comes to a MAC size of
16 bytes. Still, within this limitation, it is reasonable that one could have a MAC
for only a limited set of message types, preferably with a slow cycle time.

Thus, the conclusion is that the security trade-off with performance is quite signifi-
cant, when it comes to bus load. This is due to the high overhead resulting from the
MAC (GCM). This together with the assumption of already limited available bus
load, means that it is reasonably only a limited number of message types, preferably
with slow cycle time, that can have a MAC. Software is likely more flexible where
for example other MAC schemes are possible and MAC size is more flexible. Using
both HSM and software is fully supported and feasible for real practice. However,
it would increase the complexity of the security solution.
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6.2.2 Cryptographic Latency and Throughput
The most important trade-off between security and performance when it comes to
cryptographic latency, is the block cipher mode GCM. In our results, GCM was the
only mode that had higher cryptographic latency. This is expected as GCM is the
only authenticated encryption mode, meaning that GCM includes generating and
verifying a MAC. The trade-off is then that GCM provides better security than the
other modes but at higher performance cost.

6.2.3 TRNG Latency
In testing, the IV and the key had fixed values, i.e., not fresh values from the
TRNG. In a real setting one would want to use fresh values from the TRNG or at
least pseudorandom, to use for the key and IVs. It is vital to use good cryptographic
material (true random numbers) in order to ensure good security.

It is important that the key and IV are unique and that the generation of them
is unpredictable, i.e. randomness is required. Uniqueness is required since if a key
or IV is reused or accidentally the same as another used, then an adversary could
potentially break the cipher.

An IV has different security requirements than a key, and the requirements differ
between some modes. In most cases, it is important that an IV is never reused under
the same key, i.e. the IV needs to be a cryptographic nonce (an arbitrary number
which is single use). For example, in CBC reusing an IV leaks some information
about the first block of plaintext, and about any common prefix shared by the two
messages. Therefore, in CBC mode, the IV must be unpredictable (either random
or pseudorandom) at encryption time. In particular, for any given plaintext, it must
not be possible to predict the IV for that plaintext in advance of the generation of
the IV. A common example of this is the previously common practice of re-using
the last ciphertext block a message as the IV for the next message. This was for
example used in SSL 2.0, search TLS CBC IV attack (aka. BEAST attack) for more
information.

For CTR, reusing an IV causes key bitstream re-use and this breaks security. This
effectively means that the resulting bitstream, which is XORed with the plaintext,
is dependent on the key and IV only.

As explained earlier, the security requirements vary depending on block cipher mode.
In general it is important that the IV is unpredictable and not reused (unique) under
the same key. It is recommended to review relevant IV security requirements for
specific block cipher modes before practical use, e.g. NIST provide such recommen-
dations.

The larger problem arises when looking at the possible frequent use of IVs. If one
needs, for example, to call the TRNG every time an encryption occurs, then the
TRNG latency that would be added to total latency would be quite significant.
This could potentially have quite a significant impact on overall performance since
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it would occur every encryption.

A sample test showed that the added latency to the total latency was roughly 380
microseconds. This sample test was simply fetching an IV from the TRNG and then
perform encryption and decryption with some arbitrary block cipher mode. Then
take the difference between this and the normal case where the IV is "hard coded".

From the Table 5.1, it can be concluded more exactly that it roughy takes 300
microseconds for the TRNG to generate a 128 bit random value. Note that this does
not include any related operations performed on the ECU, which can be calculated
as the difference between the total latency and the TRNG latency, it is roughly 40µs
regardless of the size.

This is a relatively high additional latency, especially for smaller data sizes. The
TRNG latency here is fixed, and will thus become less significant of the total latency
for larger data sizes. Furthermore, the TRNG latency was linear with data size.
Thus, there are no real performance gains for generating larger data sizes. Lastly,
it is worth mentioning that the TRNG can work in parallel with the cryptographic
accelerator in the HSM.

In conclusion, the security trade-off with performance could potentially be enor-
mously significant. It depends on the frequency and how good (security implica-
tions) the cryptographic material (keys and IVs) needs to be. The most important
factor is if it is necessary for security that the IV needs to be unpredictable or not,
for the used block cipher mode. There are possible optimizations and compromises
in this area.

A compromise could for example be that session keys should only be updated at
software updates of the TriCore, or some other rather infrequent period. Meanwhile,
for IVs, it could be that they are pseduorandom, which would make them more
predictable, but would lead to better performance. One implementation could for
example be inputting a true random number in a software algorithm that generates
a new IV. This would lead to a doubling in the number of generated IVs.

Lastly, a possible optimization would be the use of a cryptographic material (true
random numbers) pool. Since the TRNG can work in parallel with the cryptographic
accelerator in the HSM, one could think the TRNG could continuously fill a pool
of cryptographic material that could be for later use. This would lead to more
efficient performance as the number of cryptographic operations that are needed
when encryption is performed would be fewer. At least from the perspective of the
user of the ECU it would be seen as a performance gain. This is the main motivation
of this solution, since it would mean a decrease in the total latency for encryption,
as now the ECU could directly fetch an IV from memory, instead of calling on
the TRNG. However, this would incur a higher memory usage. Furthermore, this
would also lead to lower security, as such a pool would likely need to be stored in
software (since the HSM has quite limited secured storage), which would make it
more vulnerable.
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6.2.4 Summary
The intention of this research question was to gain an understanding of the possible
trade-offs between security and performance.

The most important conclusion here is that the MAC generated in GCM (HSM)
results in quite a significant additional bus load, making it infeasible in practice
to be used for CAN. However, for CAN FD it is more feasible since CAN FD has
significantly higher performance in this aspect with 67%. However, since the MAC
size is so large, it would still only be a limited set of message types that could use
a MAC, preferably those that have a slow cycle time.

The next interesting conclusion is regarding TRNG latency, which is relevant when
it comes to security and performance regarding keys and IVs. The conclusion here
is that there could potentially be quite a trade-off in performance. As for example,
generating IVs for every encryption would imply an additional latency of at least
350 microseconds. This is quite large compared to the cryptographic latency, and
this would occur quite frequent. Thus, having unpredictable IVs would result in
significantly worse performance. The same applies for keys, but there key cycle
update time and the number of session keys are the relevant parameters.

The only significant concluded trade-off between the block cipher modes is regarding
GCM, which has a higher cryptographic latency. This is logical, since GCM is the
only authenticated encryption mode (generates and verifies a MAC).

Another aspect worth mentioning in this research question is regarding the security
possibilities of the HSM. More specifically, the fact that the HSM operates only in
AES-128. Since the key length and MAC are restricted to a size of 128 bits, there
is a limitation on security on the hardware level of the HSM. In other words, it is
not possible with the HSM to achieve a higher degree of security by using aspects
such as longer key length or larger MAC, at the cost of performance (i.e. longer
computation time).

More detailed, it is substantially difficult or unpractical to make key length different
to the default 128-bit key length. For example, the AES cryptographic accelerator
is optimized for 128-bit keys, and the secured storage is also optimized for 128-
bit keys. Thus, one could argue that this is a trade-off between performance and
security, in favour of performance. This is a limitation that software is likely more
flexible around, i.e. implementing AES-256 is more feasible in software. Note that
AES-128 still enables relatively good security, it is just question of how far one wants
to increase security.

6.3 Limitations with Testing
In this section we discuss various limitations related to the testing performed in this
thesis. This includes limitations with the program code, the software cryptographic
library that was used as well as the testbed that was used in this thesis.
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6.3.1 HSM Code
There are some limitations with how the HSM code was implemented, as detailed
below.

Data Verification

As part of the setup code for the HSM, we have included some additional code that
is used to verify that the data was encrypted/decrypted correctly. This basically
consists of comparing the initial (unencrypted) data with the final data that has
gone through both encryption and decryption. The purpose of this code was to
ensure that the cryptographic operations performed by the HSM worked as they
should, something which was important in the beginning stages of testing. Ulti-
mately though, this piece of code could be considered redundant, and as a result,
adds an unnecessary extra latency to the measured setup latency.

The reason for why this code was not removed is the following. First of all, this code
occupies just a small fraction of the setup code. Therefore, we did not consider it to
contribute significantly to the setup latency. Secondly, we also note that this type
of verification code would likely need to be present anyways in code written for real,
industrial purposes. Along with other additional code that is likely to be included,
the latency added from real industrial code might therefore actually be higher.

Hardcoded Data

As part of the HSM code, a lot of hardcoded data was used. For example, the same
piece of data was always used for encryption – if a larger data size was needed this
data was simply replicated. Additionally, cryptographic keys and IVs were fixed and
always the same. As a result, this may have contributed to the measured latencies
not being reflective of real-world scenarios, where more variable data would be used.
In reality, these latencies would likely be higher since more setup probably would
need to be performed.

Lacking Example Code and Documentation

In order to write the HSM code, we had to use example code that was provided to
us from Infineon, as no real production code for the HSM was available. Because
the example code was rather incomplete – for example, not all cipher modes were
implemented – we had to supplement it with code from the technical specification for
the AURIX. Since also this code was quite incomplete – and written in pseudocode
on top of everything – we were limited in the code that we were able to write. As
a result of this, there were some optimizations to the code that we were not able to
do.

Firstly, when using GCM encryption in general, the possibility exists of including
some plaintext data along with the encrypted data – this data is called additional
authenticated data (AAD). The integrity of the AAD is thus protected by the MAC
that is created during GCM encryption. An example of when this could be useful
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is for message headers; the payload of the message may need to be encrypted, but
the header should remain in plaintext. In this thesis though, using AAD is not
that relevant as we only want to encrypt data and create a MAC for the encrypted
data. However, the pesudocode that was available for GCM required that some
AAD was included – more specifically, 3 blocks of 128 bits each. This thus adds
some additional latency to the measured cryptographic latency for GCM. It should
be noted though that when encrypting large data sizes, this added latency becomes
negligible.

Another optimization that could have been made is the fact that the HSM can run
in a pipelined mode. In pipelined mode, data can be loaded into the HSM while the
HSM is still performing encryption/decryption, thus increasing the performance of
the HSM. Again, the available documentation did not provide enough guidance as
to how to properly implement pipelined mode.

We note that if enough time had been available, it may have been possible to im-
plement these optimizations. We did however not consider it to be worth the time
of trying to do this.

6.3.2 Software Cryptography
There are some limitations with how software cryptography was used in our work.

Multiple Cores

Even though the AURIX offers three CPU cores, the example code provided only
allowed for the use of one core. As some cipher modes – ECB and CTR – can make
use of parallel execution and multiple cores, this could have potentially increased
the performance of software cryptography when using these modes. It should be
noted though that it is unclear whether wolfSSL/wolfCrypt would have been able
to make use of this.

MICROSAR Security

As for the choice of software cryptography solution to use in this thesis, the initial
plan was to use MICROSAR security by Vector [2], which is a software cryptography
solution that is commonly used in vehicles today. Due to unforeseen delays though,
the prerequisite tools needed in order to work with MICROSAR could not be pro-
vided, and therefore it could not be incorporated into the thesis. Since MICROSAR
security is specifically designed to be used in vehicle environments and ECUs, had it
been used instead of wolfSSL/wolfCrypt we could have potentially seen an increase
in the performance of software cryptography.

TRNG latency Using Software

As mentioned in section 4.2.3, TRNG latency was not measured using software due
to the relative difficulty and potential time consumption of the task. Had more time
been available, a measurement comparable to the one done using the HSM could
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possibly have been done in software as well. That way, TRNG latency could have
been included in research question 1.

6.3.3 Testbed
Initially, the plan was that testing would be performed on more advanced testbeds
than the one that was ultimately used in this thesis. However, because of time
constraints, this was not possible. As a result, some adjustments had to be made in
this thesis.

The plan was to include communication latency as a metric in this thesis, which
is basically the end-to-end latency of a message (from sender to receiver). This
was not possible though, as that would require a testbed which allowed for CAN
communication.

Furthermore, had a testbed with CAN communication been available, it would have
been possible to measure bus load using a tool called CANalyzer. Instead, a more
theoretical method for measuring bus load was used. It should be noted though that
this theoretical method would have been used anyway; using a CANalyzer would
just have contributed with some complementary results, which may or may not have
been useful.

Refer to section 7 for illustrations on how these more advanced testbeds would have
looked like.

6.4 Excluded Metrics
In this section we discuss metrics that we for different reasons (as described below)
decided not to include in this thesis. These are metrics that could have been relevant
in a different or broader context. Therefore, we include them as future work in
section 7.

6.4.1 Communication Latency
The initial plan was to include this metric in the thesis, but this would have required
a testbed consisting of multiple nodes connected by a (CAN) network. It turned out
that there was not sufficient time to introduce this kind of testbed into the project.
Therefore, this metric had to be excluded from the thesis in the end.

6.4.2 Memory Utilization
The intention was to include this metric as well in the thesis. It was unclear however
whether it would be possible to find an effective method of measuring this metric
as there were some unknown factors with regards to memory allocation, and the
metric was not interesting enough to invest too much time into this. Therefore, we
decided to ultimately exclude this metric.
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6.4.3 Key Update Time
Since this metric has more to do with communication performance rather than the
performance of the cryptographic module itself, we considered it to be out of scope
for this thesis, as we are only concerned with evaluating the performance of the
HSM. However, had we done a broader investigation of security in vehicles, this
could have been a metric relevant to consider.

6.4.4 Heat Production and Power Consumption
It is reasonable to assume that the use of an HSM may have some effect on heat pro-
duction and power consumption of a system. These are aspects that therefore could
be worth considering. However, these areas were not considered to be relevant to
look at. Firstly because these metrics would have been hard to measure. Secondly,
the size of the AURIX is relatively small compared to other vehicle components.
Since there is a wealth of both cooling and power resources available for the power-
train ECUs, heat production and power consumption would not have been an issue.
If we, on the other hand, had investigated ECUs that were more power-constrained
and had limited cooling, this metric could have been more relevant to include.
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Future Work

This chapter details some work that was not realized within the timeframe and some
interesting areas of possible future work.

7.1 Vector MICROSAR Security

MICROSAR is the AUTOSAR (AUTomotive Open System ARchitecture) solution
from Vector, i.e., embedded software for ECUs. MICROSAR consists of its runtime
environment, which is called MICROSAR.RTE, and its Basic Software Modules
(BSW). They cover the entire AUTOSAR Classic standard. Furthermore, they also
provide useful extensions. [2] AUTOSAR is a open and standardized software archi-
tecture for automotive ECUs. It is a global development partnership of automotive
parties, with many different levels of partnership. [59] [1] [60]

It was of high interest to perform a comparison of HSM and a software solution. In
this thesis the software used was wolfCrypt. The original idea was to use Vector
MICROSAR Security as the software solution, with its software module Crypto
(SW). The plan was that a separate team would, in parallel with our work, integrate
MICROSAR Security for the TriCore. However, it got delayed and the decision was
made to instead focus on some open-source solution, since the implementation work
effort was deemed too large for ourselves. Still, MICROSAR Security is of interest
to compare with as the software solution, thus it is left as future work. The reason
MICROSAR is interesting to use as a comparison when it comes to the software
solution, is because it is on an industry-standard level and would likely be the
competitor to the use of an HSM.

7.2 TRNG (SW)
The TRNG of the HSM was evaluated. But a software-based TRNG was not eval-
uated due to the time frame. However, such a comparison is still of interest since
it would enable a study of how much better hardware-based TRNG is compared
to software (algorithms). Note that the performance of the software-based TRNG
would be based on one particular algorithm, and that there likely exists different
algorithms.
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7.3 CAN

It would be interesting to study practical use of the HSM, i.e. applying encryption
on some CAN data payloads. This would involve some necessary operations such as
extracting the data payload, perform cryptographic operations, and then inserting
it back into its CAN frame. However, this would require a more advanced testbed.
Furthermore, such a testbed would enable studying communication latency, which
is a metric of interest.

The idea here was to create some arbitrary testing CAN frames along with arbitrary
data payloads (8 bytes). The testing CAN frames is only doing a setup of the fields
in the frame, in order to ensure correct functional CAN communication. Note that
it is CAN extended that would have been utilized here since it is what we have used
in our theoretical work.

7.3.1 Testing - Testbed Iteration II

In this intended second iteration of the testbed there exists a CAN communication
link. The design is illustrated in figure 7.1. Note that in a sense there exists two
CAN nodes. However, the CAN dongle (see Appendix B, Section B.3 for more
information on CAN dongle) is not a genuine CAN node, but it can still send and
receive CAN frames.

Figure 7.1: Design of testbed iteration II, where the addition is a CAN dongle.

7.3.2 Testing - Testbed Iteration III

Testbed iteration III has an addition of a second AURIX ECU with an HSM. The
design is illustrated in figure 7.2. Now one can for example, try to simulate some
encrypted standard communication between TCM and ECM.
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Figure 7.2: Design of testbed iteration III, which is a continuation of the previous
iteration. Now there exists in a sense an actual CAN bus in the testbed, since there
are two AURIX nodes.

7.3.3 CAN FD
Testing on the testbed with CAN FD would be interesting since it would give a
better insight of the performance difference. The only difference between CAN and
CAN FD is in software, not in the physical layer. Thus, given that there needs to
be no changes in the physical layer, it should be relatively easy to integrate CAN
FD in the testbed. The only requirements are that the ECUs and the CAN dongle
have CAN FD support.

7.4 Asymmetric Cryptography
It would be interesting to study the asymmetric cryptographic performance of an
HSM, such as the AURIX TC3xx. One reason is that with asymmetric cryptography,
it is possible to perform e.g., signatures.
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8
Conclusion

The aim of this work was to do a performance evaluation of an HSM from two
different viewpoints: 1) comparing the performance of HSM versus SW and 2)
investigating security and performance trade-offs of different HSM configurations.

When it comes to the first point, the performance of an HSM was compared to the
performance of using a standard cryptographic library (wolfCrypt to be precise) on
the ECU. It was concluded that using an HSM provides a considerable improvement
of performance, both in terms of providing lower cryptographic latency (and thus
higher throughput) as well as offloading the ECU CPU. The difference in crypto-
graphic latency grows with data size in favour of the HSM, especially for the block
cipher mode GCM. This means that the HSM has significantly higher growth rate
with data size for cryptographic throughput, e.g., the HSM can achieve as much as
four times higher throughput compared to SW. With regards to CPU offloading, for
a data size of, e.g., 512 bytes, the HSM offloads the ECU CPU between approxi-
mately 75 to 94 % depending on the block cipher mode, with GCM being the cipher
mode that benefits the most from the HSM offloading.

With regards to security and performance trade-offs of different HSM configurations,
the only variable of the different configurations was the utilized block cipher mode,
as it was not possible vary any other factor, e.g., key length. The conclusions
vary depending on which performance aspects that are taken into consideration. If
bus load is not considered, the difference in performance between the different block
cipher modes are minor. GCM does for example have a lower encryption throughput
than other block cipher modes, but other than that the results are quite similar.
Therefore, in this case, there is no clear motivation for not utilizing GCM since it
provides a significantly higher degree of security due to the authentication aspect of
GCM, which the other modes do not have.

When it comes to bus load however, the trade-offs can potentially be quite signif-
icant. For example, GCM includes the use of a MAC (to be precise GMAC) of
size 128 bits. The result is that for a single message CAN frame there will be an
overhead of four CAN frames (where two are for the MAC itself). Although adding
a MAC to the encrypted data provides message authentication, it does come with
a high bus load cost. In conclusion, using GCM (i.e. incl. GMAC, otherwise it is
CTR) is somewhat infeasible in many cases such as when the available bus load is
limited or when any larger number of messages need to be encrypted.
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Nonetheless, GCM could still be applicable if only a small fraction of messages need
to be encrypted, such as messages that require higher security and preferably are
sent less frequently. Additionally, if CAN-FD is utilized instead of CAN, the bus
load can roughly be decreased by 67 % when compared to CAN, according to our
theoretical estimates. This is because with CAN-FD, the data payload can be sent
at a significantly higher bandwidth. Furthermore, segmentation is avoided since in
CAN-FD the whole overhead from the addition of the MAC can be sent in a single
CAN-FD frame. In conclusion, the use of CAN-FD makes it significantly more
feasible to use GCM (and MAC:s in general).

Lastly, another conclusion is regarding TRNG latency, which is relevant when it
comes to security and performance regarding unpredictable keys and IVs. The
conclusion here is that there could potentially be quite a significant trade-off in
performance, i.e., unpredictability of keys and IVs comes at a significant cost. The
frequency of generating keys is likely significantly lower than generation of IVs.
Therefore, the performance constraints likely lies on the latter. For example, having
the TRNG generate IVs for every encryption would imply an additional latency of
at least 350 microseconds, which is a relatively significant part of the then resulting
total latency. Thus, having unpredictable IVs would result in significantly worse per-
formance. If high performance is vital, then alternative methods need to be utilized
that do not provide the same level of randomness.
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A
Extensions

There are several different possible extensions to the main work that could be done
if time is available.

Here are some possible extensions in no order:

• Study & compare key distribution schemes in regards primary to
performance: If there are key distribution schemes or similar in literature,
preferably where they also provide source code, then it is possible to do a
evaluation on the testbed comparing each of them. This evaluation could
consist further of safety and usability for vehicles (trucks in this case), e.g.,
how long does it take to start the truck if you first need to exchange new
session keys etc.

• Study & compare authentication methods in regards primary to
performance: If there are more authentication schemes or similar available
in literature, preferably where they also provide source code, then it is possible
to do a evaluation on the testbed comparing each of them. Since it would be
quite interesting to see the effect on average bus load when adding different
signatures schemes. Testing could just be on a downsized testbed with e.g.,
three HSMs connected through CAN and/or Ethernet, and simulate some of
the traffic based on the specifications about the busload and apply just a
few uses cases for comparing security aspects. (better to use TC3xx in this
extension)

• Using the HSMs to implement back-end communication in the ve-
hicle with e.g., TLS or IPsec: E.g. It is possible increase performance in
applications that for example uses SSL/TLS with HSMs. Since the RSA op-
erations can be offloaded to the HSM instead of the host CPU. Furthermore,
a HSM can support Elliptic-curve cryptography (ECC) to mitigate the prob-
lem when performance at longer key sizes is becoming increasingly important.
(better to use TC3xx in this extension)

• Comparison of HSM medium (TC2xx) and HSM full (TC3xx): Since
AURIX TC3xx has access to hardware accelerators for asymmetric cryptogra-
phy and hashing, while not TC2xx has it. It could also be interesting to com-
pare that performance of using asymmetric cryptography in hardware (TC3xx)
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versus using software (TC299), i.e. how effective the use of those hardware
accelerators are.

• Testing the possibilities of using HSMs for something that involves
remote communication like V2V, V2V, or V2X: It could be interesting
to study and analyse the testbed connected to some external device/network.

• Transitioning to a real vehicle: One could transfer the work done on
the testbed to an actual real functioning vehicle, although this feels quite
unrealistic with regards to the time frame of this project.
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Background

B.1 Nodes

Telematic Control Unit (TCU)

The telematic control unit (TCU), aka. Telematic Gateway (TGW), is an on-board
embedded system, which controls all external communication for the vehicle. This
includes functions such as wireless tracking, remote diagnostics, software updates.
In principle, all communication between the vehicle and the Original Equipment
Manufacturers (OEMs) servers. But it is also responsible for other forms of exter-
nal communication such as Vehicle-to-everything (V2X), which can e.g., be over a
cellular network. [61] [62]

V2X is a vehicular communication system that incorporates other more specific
types such as Vehicle-to-Infrastructure (V2I), Vehicle-to-Vehicle (V2V), and more.
There are some main motivations for V2x, such as increasing road safety, higher
traffic efficiency, energy savings, etc. In V2X there are two types of underlying
communication technology; WLAN-based, and celluar-based. V2X is part of the
increasing external communication and thus increasing the security threats (attack
surfaces) on vehicles.

In order to provide all these functionalities a TCU provides multiple different ex-
ternal communication interfaces. This can include for example GSM, GPRS, WiFi,
WiMax, LTE, WLAN, and etc. The TCU usually also contains a GPS unit for
tracking the vehicle, in terms of its latitude and longitude coordinates.

In summary, a TCU is a vital component responsible for all external communication
of the vehicle. Furthermore, it also acts as a important security device (similar to
a border router/firewall). The TCU shields the in-vehicle network from malicious
external communication. Usually the TCU only allows secure communication with
authenticated servers. However, the degree of security on TCU can vary in regards to
e.g., firewalls, intrusion-detection system (IDS), intrusion-prevention system (IPS),
and more.
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Gateway Unit (GW) (or Domain Control Unit)

In a vehicle it is a good practice to utilize gateways internally. This is in order
to create isolation between the different systems. Thus, it creates more layers of
security. These gateways can also provide functionality and perform management
of their domain. In this case they are usually referred to as domain control units,
as they are dedicated units with the purpose of managing their respective domain
networks.

The distributed vehicle architecture, together with the increasing software size and
complexity, create challenges. For example, security, hindering development, incom-
patibility between hardware and software, and nodes not easily upgraded or scaled.
In summary, there is a need for increased scalability, flexibility and reusability.

A different electrical/electronic (E/E) architecture is part of the solution to these
problems [63] [64]. This architecture is a more model-based approach that disperses
the ECU landscape in the vehicle, through for example domain controllers. Fur-
thermore, it is worth to note that one trend is to have a fewer number of high
performance ECUs that are responsible for a wider range of functionality, instead
of having several low performance ECUs that are responsible for a narrow range of
tasks. Thus, this architecture suggests different levels of ECUs/nodes. The alleged
benefits are greater network capacity, higher performance through domain architec-
ture, increased security, increased scalabliity, and etc. [63] Thus, one possibility is
to have ECUs of the same risk category contained in the same domain.

Central Gateway Module (CGW)

The Central Gateway (CGW) is a important communication security node of a
vehicle. As the name implies it functions as the central gateway in the in-vehicle
network. In a networking perspective one can regard the CGW as a internal router
and the TCU as the border router. [65] [66]

The CGW allow secure data transmissions between the different domains (i.e., the
different ECU networks) and the connection to the TCU. Furtermore, the CGW
provides naturally also physical isolation. But it can also provide strong security
mechanisms, such as firewall, HMS, Intrusion Detection System (IDS) to protect
the in-vehicle network. With the CGW one does not need to fully rely on the
TCU for providing security for external communication. For example, if malicious
communication bypasses the firewall of the TCU, the CGW will act as a secondary
layer of security, with its firewall.

Vehicle Master Control Unit (VMCU)

The Vehicle Master Control Unit (VMCU) in principle functions as a CGW. The
VMCU acts a central node for communication, uniting all the electrical components
of the vehicle. Thus, in a way the VMCU can be thought of as the electronic brain
of the vehicle. However, it does not provide any strong security mechanisms.
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B.2 Communication Protocols
As described in section 2.3.2, there are many different (network) systems and sub-
systems in the vehicle network. The IVN is a complex heterogeneous network; there
are typically multiple communication links/protocols such as Ethernet, CAN, LIN,
and etc. All these protocols naturally comes with their different characteristics. The
most common buses in vehicles are CAN and LIN, but there is also Media Oriented
System Transport (MOST) and FlexRay. However, the latter two are relatively
newer and therefore they are not currently that widely deployed in practice. These
four buses differ from one another in terms such as architectures, access control,
bandwidth, error protection, and etc. The Table B.1 summarizes some key aspects
of the different bus protocols.

Thus, each communication protocol is deployed where they are the most optimal
choice. Ethernet is e.g., mostly used more back-end in the IVN, i.e., gateway to
gateway communication. The bus protocols LIN, CAN, and FlexRay are mainly
used for control systems. Whereas MOST is used more for telemetric applications.

Still all these different systems need to be able to communicate both internally
and externally. Internally means that communication is within the system itself,
e.g., the powertrain system has a dedicated communication network (usually CAN,
but FlexRay is also a possibility). Externally means communication to the outside
world, in this case outside for each respective system. Continuing on the powertrain
system, it has indirect communication to remote servers (the Orginal Equipment
Manufacturers). Furthermore, external communication also includes communication
between the different systems. In other words, in order to provide e.g., functionality
(could also be due to lack of communication barriers), communication can occur
between the different systems.

This can be natural communication, but it can also be malicious communication.
The same applies with the case with the remote servers. Note that this is generally
the case for all the different systems in the vehicle, and that the isolation principle
is important as always.
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Bus type LIN CAN FlexRay MOST (150)
Application Low-level

Communication
Systems

Soft Real-Time
Systems

Hard Real-Time
Systems
(X-by-wire)

Multimedia,
Telemetrics

Control
Architecture

Single-Master Multi-Master Multi-Master Multi-Master

Bus Access
Control

Polling CSMA/CA
CSMA/CR

TDMA
FTDMA

TDM
CSMA/CA

Bandwidth ca. 20 KBit/s 1 MBit/s 10 MBit/s 150 MBit/s
Data Bytes
per Frame

0 to 8 0 to 8 0 to 254 0 to 384

Physical Layer Electrical
(single wire)

Electrical
(twisted pair)

Optical,
Electrical

Mainly Optical,
Electrical

Error
Protection

Parity Bits
Checksum

Parity Bits
CRC

Bus Guardian
CRC

CRC
System Service

Table B.1: Summary of different vehicle bus systems (information gathered from
numerous sources).

Ethernet
Ethernet has many use cases in the IVN, e.g., with its high bandwidth it is excellent
for transmission of large amounts of data. Thus, it is a good solution for applica-
tions such as autonomous driving, driver assistance systems (ADAS), infotainment,
and data backbones. Furthermore, it is used for things such as measurements, cal-
ibration, diagnostics, etc. For more details see the Vector’s page on automotive
Ethernet. [67].

Local Interconnect Network (LIN)
Local Interconnect Network (LIN) is a low-speed master-slave (aka. single-master)
time triggered protocol. It is (vehicle) bus on single-wire (plus ground) with a
relatively slow bandwidth (aka. data rate) of up to circa 20 KBit/s. A LIN cluster
consist thus of one master and can have up to 16 slave nodes. The time triggered
scheduling comes with guaranteed latency time. The data length in the LIN protocol
goes up 8 bytes (it can be 2, 4, or 8 bytes). Lastly, LIN supports error detection
and checksums. See Table B.1 for summarized details on LIN, and for even more
details see the Vector E-learning module LIN [68] and CSS Electronics quick intro
[69].

Currently one can regard the LIN bus protocol as a supplement to the CAN bus.
The LIN bus offers a lower performance and costs, but also still has some reliability.
So if one is looking for a low-cost option, where neither speed or fault tolerance are at
a critical level, then LIN is the way to go. Thus, common applications are electrical
windows, door-looking, wipers, air condition, different sensors, etc. In conclusion,
a LIN bus is typically used as a low-cost alternative if the full functionality of the
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CAN protocol is not required.

Media Oriented System Transport (MOST)
The Media Oriented System Transport (MOST) was developed back in 1998 under
the leadership of BMW and DaimlerChrysler (since 2007 it is named Daimler AG).
MOST is a serial high-speed bus that is targeted toward transmitting all possible
automotive multimedia applications such as audio, video, telecommunication sys-
tems, etc. The MOST bus thus features a very high bandwidth through use of fiber
optic cables. See Table B.1 for summarized details on MOST, and for even more
details see Vector’s page on MOST [70].

FlexRay
FlexRay is a fault-tolerant and high-speed communication protocol that is targeted
toward higher safety-related applications. This protocol is multi-channel and can
operate either in single or dual channel mode. Each channel has a maximum band-
width of 10 MBit/s. So by fully utilizing the dual-channel mode a FlexRay network
can achieve speeds significantly faster than the maximum standard CAN bus data
rate. Ideal use cases for FlexRay are e.g., data backbones, distributed control sys-
tems (e.g., powertrain), safety-critical applications (x-by-wire), i.e., timing critical
applications. See Table B.1 for summarized details on FlexRay, and for even more
details see the Vector E-learning module FlexRay [71].

B.2.1 Controller Area Network (CAN)
CAN is a serial communication technology and is a robust vehicle bus standard
(i.e., nodes connected through a bus), that is especially known to be deployed for
reliable data exchange between ECUs in vehicles (in-vehicle network) and satisfies
the real-time requirements of target usage areas in vehicles. The communication is
done through messages, where each message can contain 64 bits of data and some
error correction code etc. As normally with bus protocols, only one node/device at
a time can send data and everyone receives it. Here is a short introduction to the
CAN protocol (for more information see [72–75]).

The are several advantages of CAN, both from itself and the fact that it is a bus.
To begin with, the recent history of vehicles is heavily characterized by an intensive
electrification. This is due to a number of reasons, but the primary one is regarded
as the long growth of customer wishes for more functionality or services in a modern
vehicle. In the begin of the electrification of automobiles, independently operating
ECUs were sufficient to operate electronic functions. However, it became soon clear
that coordination of ECUs could improve vehicle functionality significant. The data
exchange between the ECUs so far was implemented by convention, which was a
physical communication channel. However, for every signal to be transmitted there
needed to be a physical communication channel, so it was a scalability problem,
and thus also a cost problem (in terms of wires, which has in itself cost, but also
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their weight and volume). This lead to intensive wiring effort just in order to enable
limited data exchanges in the network.

This situation is the motivation for the vehicle bus system, i.e., serial bit exchange
of data through a single communication channel, the bus. Development of the CAN
bus started as early as 1983 at Robert Bosch GmbH. However the protocol became
officially released a few years later and the first actual vehicle incorporating the
CAN bus was released in 1991, which was the Mercedes-Benz W140. Still today,
the CAN bus is widely deployed in vehicles, e.g., to enable networking between the
ECUs in the powertrain.

CAN Network

The structure of the CAN network is quite straightforward. The CAN network con-
sists of a number of nodes which are all linked via a physical transmission medium,
in this case the CAN bus. The CAN network is usually based on a line topology
with a linear bus, to which a a number of ECUs are each connected through their
respective CAN interface.

Physical Layer

On the physical layer of the CAN bus all the nodes are connected to each other
through a physically conventional (usually a Unshielded Twisted Pair - UTP) two-
wire bus, which is the physical transmission medium and where the symmetrical
signal transmission occurs. The two wires together communicate one bit at a time;
CAN-low and CAN-high. It is the voltage between the two wires that decides
whether a logical 1 or 0 is on the bus. If the voltage difference is equal to zero then
it is a logical 1, and if the voltage difference is over 2V then it is a logical 0. One
can think it as one has connected a multimeter between the two wires, in order to
measure the value on the bus.

Furthermore, the wires are connected with resistors, so if they are left floating, the
potential difference between them will be evened out to 0V (i.e., logical 1 on the
bus). So if one does nothing, there will be a logical 1 on the bus (since the voltage
evens out by itself). However, if one does "pull-up" CAN-high and "pull-down" CAN-
low, there will be a logical 0 on the bus. In summary, the bus has only two states,
it is never floating.

Architecture

If a CAN node sends a logical 0 (as the way described earlier), and a other CAN
node sends a logical 1 (doing nothing), then the final result on the bus will be a
logical 0. Logical 0 is the so called dominant bit, i.e., if any CAN node sends 0, then
the bus value will be 0. Meanwhile, logical 1 is the so called recessive bit, i.e., only
if all the CAN node "sends" 1, then the bus value will be 1.

A common thought experiment on this a number of people are sitting so that they
can neither see or hear each other. However, everybody can see one electric light
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that is lit. Everybody also has a button, that when pressed will turn off the electric
light, as long as the button is pressed. Thus, one is able to see through the electric
light if at least one person (i.e., anybody) is pressing on their button (i.e., the light
is off), or if nobody has pressed (i.e., the light is on). However, one cannot conclude
who or how many has pressed. The corresponding case in CAN; when the electric
light is lit is equivalent to that there is a logical 1 on the bus (recessive), and when
the light is off, there is a logical 0 on the bus (dominant). In conclusion, this is a
functioning bus communication protocol.

This is the basic protocol. When a CAN node wants to send out a message on the
bus, they first "turn off the electric light" a certain time. After this the sender can
send bits out on the bus by "turning the lamp on and off" during carefully balanced
times. However, there is a common problem here, what if multiple CAN nodes want
access to the bus? There is clearly a risk that multiple CAN nodes try send out bits
at the same time. This leads to collision on the bus, which in turn will distort the
bus value, i.e., result in incorrect bus values.

Arbitration (Bus Collision) - Priority

Thus, collision handling is necessary. Here the concept is that e.g., every node has
a unique 4-bit ID-number, where the more important the node is, the lower the
ID-number it has is. Each CAN node will start its message with its ID-number. If
a CAN node notices that another node with lower ID-number is writing, it will stop
sending, since it has lower priority. In conclusion, the CAN-node with the highest
priority, i.e., lowest ID-number, will get its message written on the bus.

CAN Frame

Every message on the CAN bus is packaged in a frame, see Figure B.1 and Table
B.2 for details on the different fields. In (standard) CAN there is a 11-bits ID (in the
"Arbitration Field") that functions exactly the same as the earlier described concept
for handling bus collision (priority system) with 4-bit ID-numbers. The node with
lowest ID-number will get their message written to the bus, as they have higher
priority. Thus, CAN has a sophisticated system for giving priority access to the
bus, so that an urgent message can be sent before routine messages.

Furthermore, it is clearly important that two nodes never try to send with the same
ID-number. It is a common practice that ID-numbers is a fusion of a message type
(message-ID) and a unique ID of the node (sender/node-ID). For example, if the
message type is sent first, it will first decide the priority, and the sender-ID will only
decide on priority if several nodes are writing with the same message type.
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Figure B.1: The standard (data) CAN frame, with its fields, bit length, and
possible bit states. (taken from [76])

Error Protection

A Cyclic Redundancy Check (CRC) is sent with each frame, so that the receivers
can detect faulty bits. Each receiver is expected to write a logical 0 to the bus under
the ACK-bit if the node has received a faultless message. The sender node can thus
detect if nobody has successfully received its message. This handles cases such as
when there is no other node on the bus (no receiver). In this case the sender node
can resend the message until it is confirmed that somebody at least has received it.
However, it will not detect that somebody has received and some have not received
it. Back to the thought experiment, one could think of it as "press your buttons
(turn off the light) if you have received the message". In this situation one can only
understand if nobody has received the message.

CAN Extended

As shown earlier, in a standard CAN frame there is a 11-bit identifier field. However,
there exists a so called extended CAN frame version, which has 29 identifier bits.
Table B.3 represents a CAN extended frame. The lightgray cells in the second
column highlights the differences compared to the standard CAN frame, which is
shown in Table B.2. The most significant difference is adding a second identifier field
with 18 bits. This allows a significantly larger ID space. However, the downside is
that the frame becomes longer, which can affect the bus load.
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Field Name Sub-Field Length
(bits)

Purpose

Start Of Frame SOF 1 Denotes the start of frame on CAN Bus
(must be dominant, 0)

Arbitration Field Identifier 11 A ("unique") identifier which represents
the Message Priority (Arbitration) on
CAN bus

Arbitration Field RTR 1 Remote Transmission Request (RTR):
Differentiate between Remote Frame (0)
or Request Frame (1)

Control Field IDE 1 Identifier Extension bit (IDE): Denotes
the frame format: Standard (0) or Ex-
tended (1)

Control Field R0 1 Reserved bit (must be dominant, 0)
Control Field DLC 4 Data Length Code (DLC) denotes the

data length on the CAN Bus (0-8 bytes)
Data Field D0-D8 64 Data Payload
CRC Field CRC 15 Cyclic Redundancy Check (CRC)
CRC Field CRC Delimiter 1 Must be recessive (1)
ACK Field ACK 1 Acknowledgement by receiving node.

Transmitter sends recessive (1) and any
receiver can respond with a dominant (0)

ACK Field ACK Delimiter 1 Must be recessive (1)
End Of Frame EOF 7 Indicates end of current frame

(must be recessive, 1)

Table B.2: Table of a standard CAN Frame, with its main fields and sub-fields with
bit length (here maximum frame size is 108 bits, without bit stuffing). Furthermore,
a short summary of the purpose or denotation of the sub-fields. (inspired from
Wikipedia [77])
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Field Name Sub-Field Length
(bits)

Purpose

Start Of Frame SOF 1 Denotes the start of frame on CAN Bus
(must be dominant, 0)

Arbitration Field Identifier A 11 A ("unique") identifier which represents
the Message Priority (Arbitration) on
CAN bus

Arbitration Field SRR 1 Always recessive, 1
Arbitration Field IDE 1 Identifier Extension bit (IDE): Denotes

the frame format: Standard (0) or Ex-
tended (1)

Arbitration Field Identifier B 18 Decides the Message Priority (Arbitra-
tion) on CAN bus (Extended)

Arbitration Field RTR 1 Remote Transmission Request (RTR):
Differentiate between Remote Frame (0)
or Request Frame (1)

Control Field R0 1 Reserved bit (must be dominant, 0)
Control Field R1 1 Reserved bit (must be dominant, 0)
Control Field DLC 4 Data Length Code (DLC) denotes the

data length on the CAN Bus (0-8 bytes)
Data Field D0-D8 64 Data Payload
CRC Field CRC 15 CRC
CRC Field CRC Delimiter 1 Must be recessive, 1
ACK Field ACK 1 Acknowledgement by receiving node.
ACK Field ACK Delimiter 1 Must be recessive, 1

End Of Frame EOF 7 Indicates end of current frame (must be
recessive, 1)

Table B.3: Table over a Extended CAN frame (maximum frame size is 128, without
bit stuffing). The arbitration field is extended to two identifier fields, A and B, which
together form a 29-bit identifier. The lightgray color of different cells illustrates
changes compared to standard CAN frame. (inspired from Wikipedia [77])
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B.2.2 Controller Area Network Flexible Data-rate (CAN
FD)

The CAN protocol has been around for a long time and has enjoyed wide popularity.
However, with increasing challenges from modern technology the CAN protocol is
pressured [78].

For example, with the increase in vehicle functionality comes a higher demand in
data. But also an increasing demand on higher security in the IVN. In short, data-
rate is becoming more important in the IVN. Meanwhile, the CAN network is limited
to 1 Mbit/s in bandwidth, which will restrict implementations of significantly high
data-producing applications. Furthermore, the CAN protocol is a much smaller
bus compared to e.g., FlexRay, MOST and Ethernet. The CAN protocol has the
problem of having a substantial overhead, since each CAN data frame can only have
up to 8 bytes of data.

The problem with increasing the classical CAN frame, e.g., up to 64 bytes of data,
is that with the slow data-rate it becomes clearly a problem that the bus might
be blocked for too long. A longer message takes longer to transmit, and in CAN
there is no delays or interruptions when a message is being transmitted. In other
words, longer messages on a slow bus means that there is risk at delaying critical
higher-priority messages. This is a situation that is important to avoid in vehicles,
since there exists many different critical higher-priority messages, which can be vital
for safety.

One would think that simply also increasing the bandwidth would solve the problem.
However, it is not that quite simple. The problem is of the "arbitration" (bus collision
handling) in CAN. When two or more nodes want to transmit data simultaneously,
then arbitration will determine which node will take priority and gets to send their
message, without delay. Meanwhile the other nodes will stand by during the data
transmission. This is the bus collision handling, as described earlier in section 2.3.3.

During this arbitration there exists a "bit time", which provides a sufficient delay
between each transmitted bit to allow every node on the network to react. This is
necessary in helping to avoid any misunderstanding between the nodes during the
arbitration. But in order to be certain that a bit reaches every node on the CAN
network within the bit time, there exists a limit on the length of the CAN bus (i.e.,
the physical wire). Increasing the bandwidth during the arbitration would lead to
a significantly shorter length of the CAN network. This is a problem since in many
cases there is no marginal for the length. For example, trucks (which are naturally
rather long) have long CAN buses (circa 10-20 meters). But with longer buses the
bandwidth needs to slower. There exists online calculators (both for CAN and FD)
for bit timing parameters, which are needed to ensure a reliable CAN network [79,
80].

However, after arbitration (bus collision handling) is finished, the successful higher-
priority node will proceed with its data transmission. Now there is only one node
"driving" the bus and here it is possible to increase the bandwidth. But before the
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ACK, when multiple nodes acknowledge receiving the correct data frame, the band-
width needs to be reduced back to the nominal data-rate. In conclusion, with the
conditions it is only possible to increase the bandwidth during data transmissions.

One solution to this overall situation is CAN FD. The CAN FD protocol is relatively
new and does not change the CAN physical layer. It was pre-developed by Bosch
and was officially released in 2012. Then CAN FD went through standardization
and is currently its own standard (ISO 11898-1).

As the names implies; the main difference between CAN and CAN FD is the Flexible
Data-rate (FD). CAN FD supports dual bit rates. First it has the nominal data-rate
(utilized during arbitration) limited up to 1 Mbit/s, as there is in the classical CAN
protocol. And in second it has the flexible data-rate, which depends on the actual
network topology and its nodes. Nominally it can go up to 10 Mbit/s, but a more
realistic data-rate is lower. Still, it is a significant increase in bandwidth compared
to classical CAN and can in many cases be a multiple of bandwidth gain.

CAN FD also supports up to 64 bytes of data per data frame, and as recalled
classical CAN only supports 8 bytes of data. So, CAN FD enables reducing the
protocol overhead and increasing efficiency.

Furthermore, CAN FD comes with an improved version of CRC and a so called
protected stuff-bit counter. Thus, CAN FD comes with better reliability in terms
of error protection compared to classical CAN.

Lastly, it is worth mentioning that it is possible to mix classical CAN ECUs with
ECUs that use CAN FD, under certain conditions. Thus, a smooth transition to
CAN FD is not that far-fetched. A gradual introduction of CAN FD nodes is fully
feasible, instead of doing a full complete change of all the nodes into CAN FD.

In conclusion, the CAN FD protocol has an adjusted CAN data frame, which en-
ables flexible larger data payloads and flexible higher data-rates, without doing any
changes on the physical layer of CAN. Thus, ECUs with CAN FD can dynamically
switch to different data-rates and with different messages sizes, both which can be
significantly larger than classical CAN.

Furthermore, CAN FD retains the standard CAN bus arbitration, and increasing
the bandwidth to a shorter bit time only when the arbitration process is finished.
Then CAN FD will return the nominal (arbitration) bandwidth, i.e., the normal bit
time, at the CRC delimiter, before the receiver nodes send their ACK bits.

For more details on CAN FD there are many papers and resources available online
[78] [81] [73] (Chapter 6).
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B. Background

B.3 Hardware

CAN Dongle
A CAN dongle functions almost the same as a real basic CAN node; it can receive
and send CAN traffic. In this thesis there are two CAN dongles available.

The first one is Kvaser USBCAN Professional. It provides two high speed CAN bus
interfaces through a single USB connection. Thus, with the USB interfaces it can
be used with any PC USB (2) port. The bus interfaces supports both CAN and the
extended version. [82]

However, there exists a newer version called Kvaser USBcan Pro 2xHS v2. The main
upgrade is a significantly higher bit-rate and that it supports CAN FD. [83]

The second one is Vector CANcase 1630A which is more advanced CAN dongle,
compared to the Kvaser USBcan professional. For example, it has higher bit-rate
and supports CAN FD. [84]

XV





C
Results

C.1 HSM

Data in bytes Total latency Enc. latency Dec. latency Active latency
16 68.9 10.8 6.16 51.9
32 73.1 11.8 7.52 53.8
64 81.4 14.3 10.2 57.0
128 98.4 19.3 15.6 63.5
256 132 29.2 26.1 77.0
512 200 49.0 47.2 104
1024 335 89.0 89.3 157

Table C.1: ECB, µs

Data in bytes Total latency Enc. latency Dec. latency Active latency
16 70.4 11.3 7.25 51.9
32 74.2 12.3 8.43 53.5
64 82.8 14.9 11.1 56.7
128 99.9 20.0 16.5 63.4
256 134 30.3 27.0 77.0
512 202 50.7 48.2 103
1024 339 92.0 90.4 157

Table C.2: CBC, µs
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C. Results

Data in bytes Total latency Enc. latency Dec. latency Active latency
16 70.6 11.4 7.46 51.8
32 74.5 12.5 8.58 53.4
64 82.7 14.8 10.9 56.9
128 99.1 19.9 15.9 63.3
256 132 29.9 25.7 76.8
512 198 49.9 45.2 103
1024 331 90.1 84.3 157

Table C.3: Metrics for latency of the block cipher mode CTR (HSM). The unit
for the metrics are in µs, with three decimals.

Data in bytes Total latency Enc. latency Dec. latency Active latency
16 77.9 15.4 10.7 51.8
32 82.2 16.5 12.2 53.5
64 90.7 19.3 14.7 56.7
128 109 25.2 19.8 63.6
256 144 37.0 30.1 77.0
512 214 60.3 50.5 103
1024 355 107 91.3 157

Table C.4: Metrics for latency of the block ciper mode GCM (HSM). The unit for
the metrics are in µs, with three decimals.

Data in bytes Enc. throughput Dec. throughput
16 1480 2600
32 2700 4260
64 4480 6280
128 6630 8200
256 8770 9820
512 10400 10800
1024 11500 11500

Table C.5: ECB, kB/s
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C. Results

Data in bytes Enc. throughput Dec. throughput
16 1420 2200
32 2610 3800
64 4290 5750
128 6410 7750
256 8450 9480
512 10100 10600
1024 11100 11300

Table C.6: CBC, kB/s

Data in bytes Enc. throughput Dec. throughput
16 1410 2140
32 2570 3730
64 4320 5850
128 6430 8050
256 8560 9950
512 10300 11300
1024 11400 12100

Table C.7: Throughput of the block cipher mode CTR. Note that the unit is kB/s
for throughput here.

Data in bytes Enc. throughput Dec. throughput
16 1040 1490
32 1940 2630
64 3310 4360
128 5070 6460
256 6930 8520
512 8490 10100
1024 9530 11200

Table C.8: Throughput of the block cipher mode GCM. Note that the unit is kB/s
for throughput here.
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Figure C.1: CPU load vs message cycle time using HSM cryptography. The data
size is 32 and 512 bytes.

TRNG - Throughput

In Table 5.1 one can also see that it is clear that throughput, based on TRNG
latency, is roughly around 53 kB/s regardless of the data size. Thus, there are no
performance gains for calling the TRNG to generate large amounts of random data
all at once. See Figure C.2 for throughput based on TRNG latency. Furthermore,
it is worth noting that the TRNG can work in parallel with the cryptographic
accelerator.

Data in bytes TRNG throughput
16 52.9
32 53.2
64 53.8
128 53.6
256 53.9
512 53.9
1024 53.8

Table C.9: Throughput of the TRNG, kB/s
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Figure C.2: Illustration of how TRNG throughput changes with the amount of
random data generated. It is clear from the diagram that there is no real significant
difference in throughput for different data sizes.

C.2 WolfCrypt

Data in bytes Total latency Enc. latency Dec. latency Setup latency
16 45.3 6.50 6.70 32.0
32 56.6 12.1 12.2 32.3
64 82.0 23.8 23.7 34.5
128 127 45.6 45.8 35.5
256 221 90.4 90.2 40.3
512 408 180 179 49.3
1024 783 359 357 67.3

Table C.10: ECB SW, µs

Data in bytes Total latency Enc. latency Dec. latency Setup latency
16 47.9 7.11 7.42 33.4
32 61.0 13.1 13.8 34.1
64 88.6 25.8 26.4 36.4
128 137 48.5 50.1 38.0
256 237 95.5 98.4 43.0
512 438 189 196 53.4
1024 840 376 390 73.8

Table C.11: CBC SW, µs
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Data in bytes Total latency Enc. latency Dec. latency Setup latency
16 38.6 7.19 6.37 25.0
32 51.2 13.2 12.4 25.7
64 77.6 25.9 24.3 27.4
128 126 49.0 48.3 29.2
256 226 97.0 95.9 33.4
512 426 192 192 42.1
1024 827 384 383 60.5

Table C.12: Metrics for latency of the block ciper mode CTR (SW). The unit for
the metrics are in µs, with three decimals

Data in bytes Total latency Enc. latency Dec. latency Setup latency
16 202 83.9 82.7 35.9
32 250 107 106 36.9
64 342 152 151 38.9
128 526 243 242 40.7
256 899 427 426 46.1
512 1640 793 792 55.8
1024 3130 1530 1530 76.4

Table C.13: Metrics for latency of the block ciper mode GCM (SW). The unit for
the metrics are in µs, with three decimals

Setup latency is illustrated in Figure C.3. This is not that interesting for this project
context. However, it might be worth for the bigger picture. Interestingly, there is
differences between all the modes, but they all have the same development with data
size. Clearly GCM has the highest setup latency, and CTR has the lowest.

Cycle time (ms) CPU load (%)
1 5.34
10 0.534
100 0.0534
1000 0.00534
10000 0.000534

Table C.14: CTR, CPU load estimate (32-bytes).
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Figure C.3: Comparison of the different block cipher modes in regards to the
metric Setup latency (SW). Clearly there are some differences in the setup latency
between the modes.
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Figure C.4: CPU load vs message cycle time for different cipher modes using SW
cryptography. The data size is 32 bytes.
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Figure C.5: CPU load vs message cycle time for different cipher modes using SW
cryptography. The data size is 512 bytes.

Cycle time (ms) Bus load 1 frame (%) Bus load 4 frames (%)
1 34.2 137
10 3.42 13.7
100 0.342 1.37
1000 0.0342 0.137
10000 0.00342 0.0137
100000 0.000342 0.00137

Table C.15: Bus load estimate for a single arbitrary message type with the cycle
time 10 ms. As seen here and through the formula, the bus load estimate is fully
linear with the cycle time.
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C. Results

C.3 Difference in Cryptographic Latency

Data in bytes HSM
enc.
latency

HSM
dec.
latency

SW
enc.
latency

SW
dec.
latency

Diff.
enc.
latency

Diff.
Dec.
latency

16 11.4 7.46 7.19 6.37 -4.16 -1.09
32 12.5 8.58 13.2 12.4 0.707 3.80
64 14.8 10.9 25.9 24.3 11.1 13.4
128 19.9 15.9 49.0 48.3 29.1 32.5
256 29.9 25.7 97.0 95.9 67.1 70.2
512 49.9 45.2 192 192 143 146
1024 90.1 84.3 384 383 294 298

Table C.16: Difference between HSM and SW in cryptographic latency, for the
block cipher mode CTR. Note that the unit is µs.

Data in bytes HSM
enc.
latency

HSM
dec.
latency

SW
enc.
latency

SW
dec.
latency

Diff.
enc.
latency

Diff.
Dec.
latency

16 15.4 10.7 83.9 82.7 68.5 71.9
32 16.5 12.2 107 106 90.4 93.5
64 19.3 14.7 152 151 133 136
128 25.2 19.8 243 242 218 222
256 37.0 30.1 427 426 390 396
512 60.3 50.5 793 792 733 741
1024 107 91.3 1530 1530 1420 1430

Table C.17: Difference between HSM and SW in cryptographic latency, for the
block cipher mode GCM. Note that the unit is µs.
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