
Reasoning About Loops Over Arrays
using Vampire
Loop Invariant Generation
using a First-Order Theorem Prover

Master’s thesis in Computer Science

CHEN YUTING

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden 2016





MASTER’S THESIS IN COMPUTER SCIENCE

Reasoning About Loops Over Arrays using Vampire

Loop Invariant Generation
using a First-Order Theorem Prover

CHEN YUTING

Department of Computer Science and Engineering
Computer Science-Algorithms, Languages and Logic (MPALG)

CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Göteborg, Sweden 2016



Reasoning About Loops Over Arrays using Vampire
Loop Invariant Generation
using a First-Order Theorem Prover

CHEN YUTING

c© CHEN YUTING, 2016

Master’s thesis 2016:05
ISSN 1652-8557
Department of Computer Science and Engineering
Computer Science-Algorithms, Languages and Logic (MPALG)
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

Chalmers Reproservice
Göteborg, Sweden 2016



Reasoning About Loops Over Arrays using Vampire
Loop Invariant Generation
using a First-Order Theorem Prover

Master’s thesis in Computer Science
CHEN YUTING
Department of Computer Science and Engineering
Computer Science-Algorithms, Languages and Logic (MPALG)
Chalmers University of Technology
University of Gothenburg

Abstract

The search for automated loop invariants generation has been popularly pursued due to the fact
that invariants play a critical role in the verification process. Invariants with quantifiers are
particularly interesting for these quantified invariants can be used to express relationships among
the elements of array variables and other scalar variables.

Automated invariant generation using a first-order theorem prover was first introduced by
the work of Kovács and Voronkov [KV09a] in 2009. This approach employs a theorem prover,
in our case the Vampire, as consequences inferencing engine and further to perform the symbol
elimination for invariant generation. The entire approach can be separated into two phases: first,
by performing static program analysis, one collects a set of static properties as static knowledge
about the program and its variables. Second, these properties are sent to Vampire to infer
invariants. This novel idea was further developed into a robust implementation introduced by
the work of Ahrendt et al. [AKR15]. Our research originated from the idea of enhancing the
existing implementation by adding in domain-specific theory. Particularly, we extended the work
of Ahrendt et al. [AKR15] with first-order array theory reasoning.

Using first-order array theory, we present an extension on the existing automated invariant
generation approach by this research. The extension aims at enhancing the reasoning process of
automated invariant generation for loop programs over unbounded arrays. In addition to the
extension on domain specific theory reasoning, this study also explored the enhancement of the
static program analysis phase by proposing new static properties over the indexing variables.
Experiment results compared with the previous implementation showed the improvement in
reasoning over previously unprovable examples. The improvement came from both domain specific
theory reasoning and the newly proposed static property.

Our study suggests the inclusion of domain specific theory can enrich the reasoning process
of a theorem prover, in our case the first-order theorem prover Vampire. This enhancement
can be further applied in program verification purposes such as automated invariant generation
and direct proof of correctness. Also, with the theory-specific reasoning, the first-order theorem
provers can deliver complex reasoning results containing quantifier alternation. We illustrate our
approach on a number of examples coming from program verification.

Keywords: Loop invariant generation, First-order theorem prover, Array theory, Static program
analysis, Vampire

Acknowledgements

I would like to first thank the supervisions provided by both professor Laura Kovács and
Simon Robillard, their guidance kept me from getting lost in the vest field of formal methods.
Special thanks to professor Wolfgang Ahrendt, for he inspired me with the lectures of formal
methods. Finally, I’d like to thank Hedy for her gentle company, thank you for withstanding my
temper and the continous encouragement throughout.

i



ii



Contents

Abstract i

Acknowledgements i

Contents iii

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Project Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Research Scope and Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.7 Research Impact in Society . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5
2.1 Formal Definition of Loop Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Correctness by Contract (Pre- and Post-conditions) . . . . . . . . . . . . . . . . . . 6
2.3 First-order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.1 First-order Logic Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 First-order Logic Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3 Array Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Automated Theorem Prover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 The First-Order Theorem Prover Vampire . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.1 Alternating Quantifier and Skolemization . . . . . . . . . . . . . . . . . . . . . . . 9

3 Literature Review 11
3.1 Verification of the Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Literatures of Invariant Generation using Vampire . . . . . . . . . . . . . . . . . . . 12
3.3 Other Approaches for Invariant Generation . . . . . . . . . . . . . . . . . . . . . . . 12

4 Program Analysis 13
4.1 Invariant Generation in Vampire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Preprocessing of Invariant Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Syntax: Simple Guarded Command Language . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Extended Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4.1 Assertion Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4.2 Extended Expression Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 Extracting Loop Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5.1 Static Properties of Scalar Variable . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5.2 Update Properties of Array Variable . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5.3 Array Non-update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5.4 Monotonic Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Reasoning with Vampire 20
5.1 Logical Inferences using Vampire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Vampire and the FOOL: Polymorphic Arrays . . . . . . . . . . . . . . . . . . . . . . 20
5.3 First-Order Reasoning about Array Properties . . . . . . . . . . . . . . . . . . . . . 21
5.4 Logical Inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.5 Symbol Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.6 Reaching Correctness in Different Ways . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.7 Overview of Invariant Generation Workflow . . . . . . . . . . . . . . . . . . . . . . . 23

iii



6 Results 24
6.1 Results of all test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Case study: swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Other Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Conclusion and Future Work 29
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

References 31

iv



1 Introduction

1.1 Background and Motivation

The correctness of a piece of code could be invaluable in the software-controlled modern days. To
be able to ensure the correctness and formally verify the desired properties has long been the goal
of the research communities of computer science. Yet the formal verification and its derivation
can be overwhelming and far too verbose for manual efforts. Ideally, one would like to employ a
program for automated verification process, as the step-wise concrete yet highly repetitive process
is what computers are particularly good at.

Let us further motivate our research project with one concrete example. Here is a small
imperative program with loop over arrays, written in Java-like syntax:

int [] A, B, C;

int a, b, c;

a = 0; b = 0; c = 0;

while (a < A.length) {

if (A[a] >= 0) {

B[b] = A[a];

b = b + 1; a = a + 1;

}

else {

C[c] = A[a];

c = c + 1; a = a + 1;

}

}

Figure 1.1: An imperative loop over three arrays. The program, which we referred as the
”partition” example , separates the non-negative values from the negative ones by element-wise
copying into two result arrays.

The program copies the non-negative integer values of array A into array B, and the negative
ones into array C. While the semantics of the program is rather trivial, the control over array
indices introduces the extra complexity. Furthermore, there exists another difficulty with the
loop: exactly how many iterations will be carried out? Given the unbounded nature of loops and
arrays, the loop iteration can be any arbitrarily big number. Although the termination problem
is not our focus here (the loop iteration can be infinite, in that case it does not terminate if given
infinite resources), one still wishes to establish some properties of the loop for the derivation of
correctness. Here are some properties of the loop above:

1. Each element of the array B, starting from B[0] to B[b-1], is a non-negative integer. The
value equals to one element in the array A.

2. Each element of the array C, starting from C[0] to C[c-1], is a negative integer. The value
equals to one element in the array A.

3. Each non-negative element of the array A equals to one of element in the array B.
4. Each negative element of the array A equals to one of element in the array C.
5. Any element with index beyond the final value of b and c is not updated at the end of loop.

These properties capture the algorithmic nature of the loop while expressing our semantics of
the program. Also, these properties are obeyed regardless the total iteration of loop, therefore they
all evaluate to TRUE without the knowledge of iteration count. One also refers these properties
as “loop invariants” given these properties do not change (always true) throughout the loop.
However, to draw the connection between the program with these invariants often requires
manual effort, demanding some insights of invariants extracting process itself and the semantics
embedded in these invariants. Given another program with the same computational intention as
the program above but with a different implementation, the invariants may no longer be true.

1



Therefore research efforts had been made aiming to provide an automated process of reasoning
these invariants without any pre-defined guidance of the user.

One of the automated invariants generation approaches has been developed by the research
team within our department. Using a first-order theorem prover, this approach is capable to derive
complex loop invariants with alternating quantifiers. The line of development of our existing
approach dated all the way back to 2009, when the work of Kovács [KV09a] first applied the
symbol elimination method on automated invariant generation. This method relies on an efficient
logical inferencing engine. In our case, it is one of the champions [SS04] in first-order theorem
proving, Vampire [KV13]. In the continuation of the initial work, Ahrendt et al. [AKR15] further
extended the idea to a more robust system. Not only can the new implementation generate
invariants for a given program, it is now also capable to prove the correctness given the pre-
and post-condition of the loop. Additionally, the new approach is interfaced toward real world
programming languages via a intermediate language called simple guarded command language.
Their work also included the translation tool from Java to the simple guarded command language,
together with the connection with the JML verification tool, KeY [Ahr+05].

1.2 Research Question

Automatic loop invariant generation using symbol elimination has been initially demonstrated
in the work of Kovács [KV09a]. This method was further improved in the work of Ahrendt et
al. [AKR15]. The approach utilizes first-order theorem proving for loop invariant generation.
With over half of the test cases listed in [AKR15] solved (11 solved out of total 20), this approach
for automated invariant generation shows promising potential. By building on the existing
implementation of [AKR15], this project aims at enhancing the automated reasoning
power of loops over arrays, hence improving the invariant generation. From the
previously failed test cases, we observed the theorem prover failing to provide the necessary logical
consequences for invariant generations. Instead of treating the array variables as uninterpreted
functions which take the indices as function arguments, we propose a novel approach, which
directly encode array operations as their original semantics. This new approach provides clear
distinction between reading and writing an array element. Additionally, the domain knowledge of
array operations are supplied via the axioms of first-order array theory. We wish to find out if
one can further extend the reasoning power of this existing system, particularly by extending
the theorem prover Vampire, with domain-specific theory reasoning. In our project, used first-
order theorem proving in combination with the polymorphic theory of arrays and improved this
combination for improving invariant generation.

1.3 Project Objectives

With the aim to incorporate array theory into the existing system and conduct experiments to
benchmark the resulting system, we listed the following research objectives:

• Study the first-order theories, especially the theory of array and understand how to reason
with the axioms of array theory.
• Study existing approach, and understand how the loop invariant generation works in the

current implementation, along with necessary details of Vampire.
• Utilize and incorporate the new Vampire branch, namely Vampire with FOOL [Kot+16].
• Incorporate the axiomatization of the array theory into the invariant generation process,

including the necessary implementation work.
• Conduct benchmark experiments with the same set of test cases as in Ahrendt et al. [AKR15].
• Enhance the static program analysis and propose new static properties for improving program

analysis in Vampire.

2



1.4 Research Scope and Aims

Our research aims at extending the existing method implemented by Ahrendt et al. [AKR15]
with array theory reasoning. Apart from implementation works on the extension itself, our work
is compared with the previous approaches by conducting the experiment over the same set of test
cases. The invariant generation aims primarily on imperative loops over unbounded arrays, written
in our simple guarded command language. Our simple guarded command language includes
two primitive types, the integer and the Boolean type. We do not incorporate sophisticated
paradigms such as object classes. This simple guarded language was developed with the existing
system along with a translation tool providing the translation from Java programs with loop
into this guarded command language. In our master project, we only focus on the invariant
generation process hence the project does not aim to improve the translation of Java programs.
However, since we do not alter the input syntax of the existing system, the translation between
simple guarded language and Java is expected to be reusable without any modification. The only
implication on the existing tool chain should be limited to the additional signatures accompanied
with the theory of array (namely select and store). These additional signatures can be included
in the invariants generated hence require additional care in the piping process.

1.5 Delimitations

Loop invariants can be coupled with the properties of sophisticated data structures as the program
traverses through the data structure, resulting in sophisticated and domain specific invariants. In
this master project, we focus on the primitive data structure, namely the arrays, and explore
associated properties regarding the invariant generations. This project is conducted with the
following delimitations in mind:

• We focus on the partial correctness on imperative programs with simple loop; only terminating
programs are considered and we do not explicitly check for termination of the input programs.

• Simple loops are imperative loop without nesting. In addition, in our input syntax, only
while loops are accepted.

• The program syntax is based on the simple guarded command language, same as the syntax
introduced in [AKR15]. This syntax contains limited syntactical language constructs; program
constructs such as if b then t else s are not supported yet. However, the conditionals
can be captured using the guarded statements.

• The arrays studied in our project are limited to one dimensional arrays, meaning nested
arrays (multi-dimensional arrays) are not considered. However, the unbounded nature of
arrays is within the scope of this study.

1.6 Contributions

Our contributions in this master thesis project are listed as follows:

• As the foundation of our implementation, we extended the work of Kovács and Robillard
[KR16] by including the array theory reasoning. For the explanation on implementation
details, one can refer to Chapter 5 of this report.

• Comparing to the work of Kovács and Robillard [KR16], we also extended the static property
in the program analysis phase. The detail explanation can be found in Chapter 4 program
analysis. Specifically, we propose a new static property, the monotonic indexing, which can
be found in Section 4.5.

• From the implementation perspective, we utilized the infrastructure of the latest Vampire
branch by Kotelnikov et al. [Kot+16] for the polymorphic array implementation. Details re-
garding this infrastructure can be found in Chapter 5. Our contribution to the implementation
can be found in Section 5.3.

3



• Our implementation is experimented with the same set of test cases as in Ahrendt et al.
[AKR15]. The result shows the improvement in reasoning power with array theory. All
experiment results can be found in Chapter 6, while detail examination over the generated
invariants can be found in Section 6.2 and Section 6.3.

1.7 Research Impact in Society

In modern days, more and more equipments are controlled by software code. Software is reputable
for its consistency over countless iterations of operation, it does not get tired or bored over the
repetitions; nor does it automatically sense the subtle issues during and between these iterations.
Occasionally, these subtle issues get aggregated and lead to catastrophic events. The chain of
trust collapses like a domino toppling its neighbor, unexpected behaviour for a small piece of
code with unforeseen corner cases results in total failure of a system. Apart from the direct cost
of damage, it is extremely difficult to hold anyone responsible for the loss.

Unlike other linear imperative program constructs, imperative loops are difficult for human
to reason syntactically. Yet the regular and iterative behaviour is what we seek in a software
controlled system. The practicality of iterative programs are not replaceable by other means,
hence one must be able to provide an assurance that these programs perform as intended. Luckily,
the iterative nature bears large similarity with inductive mathematic reasoning. The bridging
between formal deductions and computer programs requires careful joints.

Our research aims at easing the need of manual annotations by providing automated process
of invariant finding and further derivation of correctness. Yet the automation does not completely
waive the responsibility of programmer for the assurance of correctness. An example would be
the pre- and post-condition of the program, a set of suitable pre- and post-conditions, hence the
assumptions and the intentions, must be provided by the programmer. Apart from providing
the intentions of the program, it is also crucial for the programmer to pay extra care to the
communication with others. The vague intention of a piece of code and misunderstanding can be
yet another source of bugs.

We hope that the research result of our project can help the work of programmers as well as
raise the awareness of responsible coding. The correctness may be automatically verified but to
sustain the correctness over time requires more than just automated verification.

4



2 Preliminaries

2.1 Formal Definition of Loop Invariants

In order to further explore the idea of automated loop invariant generation, one must first formally
define the notion of loop invariants.

Figure 2.1: Flowchart of a simple while-loop program. The rectangles represent program state-
ments while the rounded rectangles represent the properties hold in particular program state.

Figure 2.1 shows a simple imperative loop program (found at the upper right corner) with the
flow of program execution. The loop invariant P can be defined as follows:

1. P holds before the very first iteration of the loop, even before the first evaluation of loop
condition.

2. After the loop condition gets evaluated, the loop invariant P still holds; in case of loop
condition gets evaluated to true, the loop body S is executed, otherwise the loop terminated
with P & not B holds.

3. After the execution of loop body S, loop invariant P still holds.

Summarizing the definitions above would lead to one conclusion: the loop invariant holds prior
to the first iteration of the loop and holds before and after each loop iteration. Finally, the
loop invariant still holds after the last iteration of the loop. This formulation makes the loop
invariants constantly true regardless of the actual number of iterations carried out. It is this
particular consistency of the loop invariants which one can leverage during the formal verification

5



of a program with loops. More precisely, this definition of loop invariant is also called the
inductive invariant in the literature, for it connects the post-condition of the loop and it is used
in correctness reasoning.

2.2 Correctness by Contract (Pre- and Post-conditions)

To reason about the correctness of a given program one must provide the notion of correctness.
A functionally correct program should achieve certain desirable properties while avoiding other
undesirable ones. These properties need to be formally specified as the formal specifications,
written in a formal language such as the first-order logic. The desirable outcomes are specified
as the post-condition of the program, which must always hold for a program to of the program.
Post-conditions can be used for describing the intended behaviour of a program so it performs the
intended computation. On the other hand, pre-conditions can lift the restriction of the program
by stating a condition assumed to be true prior to the program execution. In case of violation of
pre-conditions, the program specification becomes undefined and no longer required to satisfy the
post-conditions after its execution. Together, the pre- and post-conditions form a verification
contract, which is used in formal verification of programs.

2.3 First-order Logic

Extending the notion of correctness by contract, one can observe that the connection between
the contracts (the assumptions and the intentions) and the program must bridged by a form of
formalization, preferably a language in which the desired assertions can be easily expressed. This
formalization must be formal for the reasoning procedure to be sound, while the expressiveness
of such formalization must be adequate for expressing the properties of interest. In the field of
theorem proving, one often resolve this formalization problem using different forms of logic. In
our case, Vampire reasons in the classical many-sorted first-order logic. In this following section,
we briefly introduce the first-order logic and relevant theories to our research.

2.3.1 First-order Logic Language

Also known as the predicate logic, the language of first-order logic consists of:

• Variables: an unbounded set of variables, often denoted with lowercase letters x, y, z, ....

• Logical symbols: a set of predefined symbols, capturing logical operations such as conjunc-
tions, disjunctions, implication, and quantifications. These symbols are part of the basic
syntax of first-order logic and does not change their semantics under different interpretations.

– Logical connectives: logical connectives similiar to propositional logic, including =
(equality), ∨(logical or), ∧(logical and),¬(logical negation), ⇒(implication), etc.

– Quantifiers : quantifier (∀ or ∃) takes a variable name and a first-order formula to form
a quantified first-order formula. The inclusion of quantifiers is the critical difference
from the propositional logic, making first-order logic expressive enough for stating 1) a
property holds for all possible values; or 2) the existence of particular element with
specific properties.

• Other symbols: Apart from quantifications with quantifiers, first-order logic also extends
propositional logic with the nonlogical symbols, which capture the abstraction of functions.

– Predicates: also known as the relation symbols, predicate symbols come with their
arity (≥ 0) and return either true or false based on the arguments applied. Predicate
symbols are often denoted with uppercase letters P (x), Q(x, y), ....

– Functions: function symbols come with their arity (≥ 0) and often denoted with
lowercase letters f(x), g(x, y), ....

6



– Constants: a special case of function symbols, specifically describing the functions
with arity 0.

A first-order logic term can be formulated from: 1) variables, 2) constants, or 3) expressions
such as f(t1, t2, ...tn) (well-typed function application) where f is a function symbol with arity n.
Examples of first-order logic term are listed as follows:

f(t1, t2, ...tn)

3 + 4− x = 0

f(3 ∗ x) = g(x)

First-order logic formulae can be built from atomic formulae (predicate symbols with well-
typed arguments applied) with logical connectives. We show few examples of first-order logic
formulae here:

∃x ∈ Z. ∀ y ∈ Z. x > y

∀x ∈ human. isMortal(x) ∧ bornEqual(x)

The interpretation maps every term without free variables to an value element in the domain.
The interpretation gives the semantics to both the interpreted function symbols and the interpreted
predicate symbols. On top of the interpretation is the structure. A first-order logic structure
consists of the following:

• Set of sorts. (i.e. booleans, integers, arrays of integers); In our particular case, Vampire is a
many-sorted first-order logic theorem prover.

• Set of function symbols with their corresponding function types and arities. Constants can
be regarded as the function with 0 arity and has a fixed sort.

• Set of predicate symbols with their corresponding types and arities.

• An interpretation maps each sort in the signature to the domain of the sort. As the
convention of the common rules of first-order inferences, all domains are assumed to be
nonempty sets.

A formula A with free variables (variables not quantified by any quantifier) is satisfiable if
and only if there exists structure I such that A holds in I.

2.3.2 First-order Logic Theories

With the interpretation defined, we move on to the axioms: a collection of formulae defined to be
valid. The axioms effectively restrict the interpretations, only those interpretations which make
the axioms valid are considered. This approach of classifying sets of interested interpretations
is called axiomatic approach. Another way to describe interested interpretations classes is via
the theories. First-order logic theories are interpretations in which some function symbols are
interpreted with a fixed semantics. One common example is the theory of equality, works on the
interpretations which the = symbol is interpreted as equality relation between two terms. On the
theory level, one considers only the semantics of nonlogical symbols. A set of nonlogical symbols
can therefore be called as the signature of the theory. Given a signature S, a first-order logic
theory T consists of a set of axioms (without free variables) based on the nonlogical symbols in S.
The formula A is said to be valid if and only if for all structures which satisfy the axioms of T
also satisfy A.

Some theories such as theory of equality can be axiomatized by a set of axioms (reflexivity,
symmetry, and transitivity). This process of defining the theory via a set of axioms is known as

7



axiomatization. While some theories can be axiomatized into a concise form, not all theories can
be finitely axiomatized (there exists no describable set of axioms), such as the theory of natural
number.

Being more expressive than the propositional logic, classical first-order logic can describe
many programming related properties while still perserve feasible computation complexity during
automated logical inferences. Extending the propositional logic by the capacity of expressing
objects in domain of interest, first-order logic contains both the abstraction over functions and
the variable quantification. However, this extension on expressiveness comes with a tradeoff in
the general decidability problem. While propositional logic is a decidable logical system, the
first-order logic is semi-decidable. A logical system L is decidable if there exists an effective
method M which can:

• If given an arbitrary formula A, one can use the method M to decide whether A is a theorem
under L.

By effective method, we meant a method which always terminates and produces only correct
results. However, in a semi-decidable logical system L′:

• There exists a method which can generate theorems under L′.

• However, given an arbitrary formula A, one cannot find an effective method to check whether
A is a theorem under L′.

First-order logic belongs to the later group of logical system, there exists no effective way to check
for the validity of arbitrary formula. Still, there are some well founded first-order theories which
are decidable under the fragments of first-order logic.

2.3.3 Array Theory

Our research aims to experiment existing approach with the extension based on reasoning in
the theory of array. The theory of array is an first-order theory with only two axioms (more
accurately two axiom schemas for the underlying element type of the array). The signature of
array theory consists of two function abstractions over array operations:

• read (a.k.a select): The binary read function takes an array A of sort τ and an index p.
The read function then returns a value of sort τ which is the value of array A at position p.

• write (a.k.a store): The write function is a ternary function which takes an array A, an
element with matching sort, and the index position where new element is stored into. The
return value of write function is the modified array A’.

The axiom schemas are as follows:

• read-over-write: which states in case of reading the same position as writing, one can
directly return the written value.

∀a :arrayτ . ∀i, j : Index . ∀v : τ.

(i = j → select( store( a, i, v ), j ) = v ∧
(i 6= j → select( store( a, i, v ), j ) = select(a, j)

• extensionality : which states the two arrays are equal if they are element-wise equal.

∀a :arrayτ . ∀b : arrayτ

(∀i : Index . select( a, i ) = select( b, i ))→ a = b

8



2.4 Automated Theorem Prover

Theorem provers are programs which reason about the validity of the given conjecture, based on
the logical consequences derived from a given set of statements. The given statements are often
referred as the ”axioms” which are regarded as the ”truth” by the theorem prover. The logical
consequences are generated using the inference rules and hence they are inevitably true under
the axioms. Broadly speaking, the theorem provers can be categorized into two major camps:
the automated theorem provers (ATP) and the interactive theorem prover (ITP or sometimes
referred as a proof assistant). From the user perspective, the value of automated theorem prover
is the proof steps built by the theorem provers for the steps are the evidences of correctness. The
proof steps form a tree of inferences, which also referred as the derivation of the goal.

The notion of soundness makes sure the inference rules used produce only the correct logical
consequences. In other words, one can only trust the proof result of a theorem prover with sound
inferences. On top of soundness, another useful notion of theorem prover is called completeness. If
one theorem prover is complete, it is guaranteed to provide the proof if the proof exists, provided
with unbounded resources (including unbounded computation time).

Typically, one would use theorem prover to show a specific statement (called the conjecture)
is logically implied by of the set of axioms. One may also think the conjecture is the conclusion
drawn from the user and the theorem prover is there to judge whether the conclusion is reasonable
or not. The application area of conjecture proving can be directly associated with different fields
such as mathematic conjectures or the conjecture of solvable state of a Rubik’s cube (by providing
valid moves of the cube as the axioms, the theorem prover can tell whether a given state of a
cube can be solvable or not). However, the technology associated with ATP development has
also been shown to be applicable in other more general areas of interest: ranging from hardware
verification to program analysis.

The theorem provers (both ATPs and ITPs) can be further categorized by the language in
which the axioms and conjectures are written with. In the case of classical first-order logic, well
known theorem provers are E [Sch02], SPASS [Wei+09] and Vampire; whereas in the case of
higher order logic one can think of systems like Coq [The04], Isabelle/HOL [Pau94] and Agda
[Nor09].

2.5 The First-Order Theorem Prover Vampire

Vampire [KV13] is one of the automated first-order theorem prover. Specifically, it is a saturation-
based theorem prover using superposition calculus. The conjecture is proved by refutation.
By first negating the given conjecture and combining the negated conjecture with the axioms,
Vampire tries to show the unsatisfiability of the bundled first-order clauses (axioms + the negated
conjecture). This process is known as refutation because the negated conjecture is refuted by
the theorem prover. Vampire is sound, in other words, the logical consequences produced are
valid. However, the completeness of Vampire can be traded for other practical reasons, such
as limited resources strategy [RV03] or ignoring the large and heavy clauses. The outcomes of
a Vampire run can be either: (1) Refutation found with the proof steps of refutation process
shown, meaning the conjecture is satisfiable under the axioms; (2) Refutation not found but time
limit reached; (3) Saturation reached. The last outcome is rarely found in realistic problems, but
it means the search of proof has reached a point called saturation. A set of clauses S reaches
to its saturation closure,with respect to the inference system Inf , if for all inferences in Inf
the resulting conclusions still belong to the set S. In other words, one cannot produce any new
conclusion to add into the set S. The saturated outcome is only possible under a complete
strategy, and if such outcome is reached, the saturated set is a witness of satisfiability of the
original problem.

2.5.1 Alternating Quantifier and Skolemization

One of the special feature of Vampire is the capacity of efficiently handling formulae containing
alternating quantifier (∀i,∃j ⇒ ...). This is achieved via a process called Skolemization. This

9



process belongs to early stage of Vampire’s problem handling mechanism and we do not explicitly
alter this behaviour in our project. The idea behind Skolemization is using the Skolem functions to
replace the existential quantified clauses. This way, the formulae containing alternating quantifiers
still can be handled as if there exists only the one universal quantifier. The formulae without
existential quantifiers are called Skolem Normal Form. Coupled with the Skolemization technique
is the de-Skolemization, which recovers the existential quantifier in the formulae. De-Skolemized
formulae are more human readable comparing to the Skolemized ones. However, it is shown to
be beneficial for the goal of invariant generation in previous literature [KV09a] for keeping the
Skolelmization functions as it is during invariant generation.

10



3 Literature Review

3.1 Verification of the Loops

Pioneered by the work of Floyd and Hoare [Hoa83] [Flo67], researches in computer science have
been working on the verification of programs using formal methods. Verification is the formal
approach to show a program is correct. A program is considered correct only if it satisfies the
properties which deliver its intention. Like the proofs in math, the problem is twofold: one must
first establish a formal notion which is expressive enough to encapsulate the underlining logic
and then provide a systematic and reproducible proof using the formal notion. In [Hoa83], Hoare
showed the correctness of a program can be deductively constructed with axioms and inference
rules. Connecting formal logical assertions with the program constructs, one can reason about
the program with Hoare-style verification. The simplest formulation can be:

Q { B } R

where

• B denotes the program body.

• Q denotes the assertions before executing the program body B.

• R denotes the assertions after the execution of program body B. R can be seen as the
intention of the program.

This notion of combining logical assertions and program body was later widely adopted by the
formal verification community and known as the “Hoare triple”. On top of this notation, the
corresponding inference rules are also introduced, including rules of consequences, composition
and iteration. The concept of loop invariant was also introduced as loop invariants are needed
for reasoning about the correctness of the loop and used in the rules of iteration. Also, the
insightful idea of separating proof of partial correctness and proof of termination helps the focus
of verification of loops.

Apart from the deductive reasoning, there exists another branch of formal verification: model
checking. The verification processes work just like proofs as they connect the subject to its
correctness. However, since the program verification targets only programs which are to be
executed in computation machines (here we avoided the term “computers” for it is also an
interest of research to seek for verification over large clusters of parallel computation devices), the
“domain” of verification can be in favor of the prover. By exploring all the possible elements in
the domain, one can effectively ensure the specification of a program is respected. The possible
elements are corresponding to all the reachable states of a program. If a program satisfies its
specification, one can also say this program is a model of such specification.

Whether taking the model checking approach or the deduction based reasoning, the process
of program verification is verbose and tedious throughout most of the proof. This motivated
the search of automatic program verification, a program which checks the correctness of other
programs. This idea of automation collided head-on into the theory of computability as it is
in general not decidable; even just to create a program to determine whether another program
will eventually terminate is impossible in general, as stated by the famous halting problem. Yet
this hard boundary does not prevent researchers from devising automatic program verification
tools, the benefit of formally verified programs is simply critical as more and more technologies
depends on the control of programs. Emerson and Clarke [CES86] and Quell and Sifakis [QS82]
were the first to devise tools aiming to automatically check a program with its specification which
is encoded in temporal logic. Their works got around the computability problem by aiming
solely the finite-state fragment of all possible programs. This finite-state fragment effectively
constrained the subject programs such that automatic reasoning always terminates. However,
the finite-state fragment also limited the data types available. Only bounded data types can be
contained in this fragment. These tools took the model checking approach and basically iterate

11



throughout all reachable states of the program. The computation complexity inevitably grows as
the reachable states expand, this is a problem so-called state space explosion. This potentially
exponential growth hinders the use of model checking algorithms in larger examples, counter
measures such as bounded model checking by Clarke et al. and abstract interpretation by Cousot
and Cousot [CC77] are proposed.

3.2 Literatures of Invariant Generation using Vampire

While automated program verification is the ultimate goal, let us first focus on the automated
loop invariant generation. The idea of using a theorem prover for invariant generation was first
introduced in [KV09a]. The work in 2009 combines static program analysis techniques from
previous works, such as the Aligator [Kov08], with the first-order theorem prover Vampire. The
consequences generated can contain auxiliary symbols introduced for program states description
and should not be treated as valid invariants. This need leads to a technique called ”symbol
elimination” [KV09b]. The terms with auxiliary symbols are assigned with a large Knuth-Bendix
[KB83] ordering weight. Resolution theorem provers are geared toward performing inferences
with heavy symbol premises. This way, the heavy symbols can be removed from the search space
faster, leaving lighter search space and hence faster proof search. Although the weighting was
initially introduced for the purpose of efficiency, it also works well for the purpose of gradual
elimination of designated symbols. In [AKR15], this approach was further extended for general
syntax and better leveraging of the refutation proof system. Apart from these cited literatures,
our project also benefits directly from [Kot+16] for the polymorphic array implementation and
built-in array theories. The extensionality of array theory, which specifies the equality of two
arrays, is originated from the work of Gupta et al. [Gup+14].

3.3 Other Approaches for Invariant Generation

Automated invariant generation has long been a popular topic of research. Apart from using
theorem prover for logical inferences, other approaches are proposed under different reasoning
frameworks. Based on the abstract interpretation framework proposed by the work of Cousot and
Cousot [CC77], [Cou03], [FQ02], [Bla+03] infer the loop invariants by soundly approximating
the semantics of a given program. This approach focuses on the abstract domains, providing
invariants over different kinds of aims such as violation of specific properties (i.e. division by
zero).

Another approach for automated invariant generation is based on constraints. By solving
the constraints over a set of pre-defined templates, this approach transforms the inferencing
problem into a constraint solving problem. One of the representing work is by Gupta and
Rybalchenko [GR09]. This approach works with decidable logic fragments, and the templates
involving quantification is not fully supported.

Another interesting insight regarding invariant generation can be found in the work of Furia
et al. [FMV14] [FM10]. The intrinsic value of loop invariant is the connections to post-condition
during verification. Similar to the approach of a human user writing the loop invariants manually,
their approach mutates the post-condition and filter out the valid invariants from the mutations.
This idea of post-condition mutation was further extended in the tool DynaMate [Gal+14a]
[Gal+14b]. DynaMate represents the counterpart of our approach, instead of static analysis,
DynaMate utilizes the dynamic analysis for invariant generation. During the analysis, Daikon
[Ern+07] is used for invariant detection.

12



4 Program Analysis

4.1 Invariant Generation in Vampire

Using saturation theorem provers like Vampire, one can automatically generate loop invariants
which are logical consequences of properties discovered by the static program analysis. This novel
approach has been demonstrated both efficient in computation time and powerful in invariant
derivation by the works of [AKR15] and [KV09a] . Particularly, using Vampire as the logic
consequences generating engine provides the possibility of generating invariants with quantifier
alternations. As Vampire itself is a fully automatic theorem prover, the invariant generation
requires no user guidance such as templates. In this chapter, we introduce the hierarchy of
invariant generation using Vampire in system level, followed by detailed explanation of each
component steps.

The invariant generation process can be split into two main phases: the static analysis of
programs and the logical inferencing of loop invariants. The two phases are functionally separated,
hence it is possible to replace each phase with another equivalent process, such as replacing
Vampire with other provers or enhance the preprocessing with other domain-specific knowledges.
In the following chapters we will look into the detail of each phases separately. In Chapter 4, we
focus on the preprocessing phase of our system, namely the static program analysis and property
extraction, along with detailed introduction to our simple guarded command language and its
semantics. Specifically, we present the proposed new static property in Section 4.5.4.
In Chapter 5, we explain the logical inferencing process of Vampire and how one can reason about
imperative loops over arrays in the Vampire framework.

4.2 Preprocessing of Invariant Generation

Prior to the logical inferences with saturation theorem prover, one requires to analyze the given
program instance and create the logical equivalence of the program instance’s semantics using
the formal logic of the saturation theorem prover. In our particular case, Vampire performs logic
inferences on first-order logic formulae, hence we must be able to express the semantics using
first-order logic formulae. From the formulae formulated, Vampire can then infer more logic
consequences on its own, hoping to generate the loop invariants or the consequences implying
the post-conditions. This preprocessing step looks into the program instance and formulate the
relations between program variables and the program states using first-order formulae. This step
is often referred as program analysis in a correctness verification context (while program analysis
in general can also discuss the optimization of programs, we only focus on the program correctness
here). The goal of this preprocessing step is to automatically analyze and extract properties of
the given program. Program analysis can be performed either dynamically or statically. Unlike
dynamic analysis, our approach does not actually execute program statements, hence belongs to
static program analysis. The phase of program analysis includes static program analysis for the
properties extraction. The aim is to construct the connection between syntax (variable symbols)
and the semantics (the semantics of array index operations are captured by the static properties).
Specifically, our preprocessing can be further separated into the following tasks.

• Lex and parse the input program. In our implementation, we used standard C++ scanner
generator flex and parser generator Bison for the simple guarded command language. A
detailed definition of the syntax can be found in a later section.

• Formulate the pre- and post-conditions into first-order formulae if they are specified by the
user. These formulae are created as first-order formulas (using Vampire terms). Associate the
variable symbols with corresponding sorts while encode the program variables into extended
expressions. Extended expression language is an extension on the assertion language, which
helps us capturing the program state in which the update of a particular variable occurs.
More detailed introduction can be found in the later section of this chapter.

13



• Perform static analysis over the input program instance and extract static properties of the
variables. In our approach, we do not execute any part of the actual code from the input
program instance. These properties are encoded using the extended expressions.

• Bundle the extracted properties and send to theorem prover for invariant inferencing.

From the work of [AKR15], we learned that the formulated pre- and post-conditions can
be further exploited during later stage of invariant generation. Also, the program analysis
step described here can be extended with additional static property capture. One of our
contribution in this master thesis work is the extension of a new static property capture,
the monotonic indexing property which will be introduced in later section. The entire
program analysis and the idea of capturing static program properties can be implemented
as a stand-alone process; but in our approach, the program analysis shares the same code
base with Vampire itself, making the development more convenient. Finally, the type of
static properties captured can be adjusted as the different interests of program instances
one would like to analyze; in our case, these static properties are targeting the operations
and behaviors or array indices, allowing the logical inferences to reason about program
variables and the array indices.

4.3 Syntax: Simple Guarded Command Language

The input of our system is in a simple guarded command language. Differing from the famous
guarded command language discussed in the work of Dijkstra [Dij75], our simple guarded command
language is deterministic. We support both scalar variables and array variables with two primitive
types, int for the integers and bool for the booleans. Standard arithmetical functions symbols
such as +, - ,∗ , / and predicate symbols ≤ and ≥ are used. Given an array variable A, we denote
A[p] as accessing the array element of A at position p, corresponding to array read/select. The
loop consists of a loop condition and an ordered collection of guarded statements as the loop body.
A loop condition is a quantifier-free boolean formula, while each guarded statement consists of
a guard and a non-ordered collection of parallel assignment statements. The ordered collection
of guarded statement is checked in sequential order and each guard is assumed to be mutually
exclusive to other guards. Further, the non-ordered collection of parallel assignment statements
are assumed to respect the following rules:

1. In case of scalar variable assignment, there cannot exist two parallel assignments to the
same scalar variable within the collection.

2. In case of array variable assignment (which corresponds to array write/store), the same
position cannot be assigned to two values, i.e., if two array assignments A[i] := e and
A[j] := f occur in a guarded statement, the condition i 6= j is added to the guard.

Pre- and post-condition can be specified apart from the loop, using requires and ensures keywords
respectively. Conditions are boolean formulae over program variables and quantifiers are allowed.
Finally, all types must be declared upfront of the program.

The semantics of our simple guarded language is defined using the notion of state. Each scalar
and array variable is mapped to a value of correct type by the program states. In our setting, a
single program state corresponds to each loop iteration. Assuming n denotes the upper bound
of loop iterations, at any loop iteration i which 0 ≤ i < n, we have σi as the program state. σ0
and σn represent the initial state and final state of the loop respectively. Once the guard is valid,
the associated collection of parallel assignment statements will be applied simultaneously to the
program state. For example, executing the guarded statement

true -> x = 0; y = x;

in a program state where x = 1 holds will result in a new program state with x = 0 & y = 1.
The syntax of our simple guarded command language can be best explained by Figure 4.1.

All variables, including arrays and scalars, are declared upfront. The declaration is followed by
user specified pre-conditions using the keyword requires. In this example, all indexing variables
a, b and c are limited to be initialized with their values equal (value equality is denoted by ==)

14



to zero. The last scalar variable, alength, is limited to positive values only. The pre-conditions
are followed by the post-conditions, also user specified. The keyword for denoting post-conditions
is ensures. While in this particular example, both pre- and post-conditions are specified by
the user, their presences are not required for our approach to generate loop invariants. Our
approach can utilize these contracts to provide better user experience, such as invariant filtering
and direct proof of correctness. For further detail regarding the treatments of the pre- and
post-conditions, we refer to Section 5.5 of this thesis. While most numerical operations take
the usual representing syntax, logical implication uses the ==> syntax. Inside the loop body, each
guarded command starts with double-colon followed by the quantifier-free boolean guard. The
guard is separated with the collection of parallel assignments by ->. Finally, each assignment is
terminated by the semicolon.

int [] A, B, C;

int a, b, c, alength;

requires a == 0;

requires b == 0;

requires c == 0;

requires alength > 0;

ensures forall int i, 0 <= i & i < b ==> B[i] >= 0;

ensures forall int i,

exists int j, 0 <= i & i < b ==>

0 <= j & j < a & B[i] == A[j];

while (a <= alength) do

:: A[a] >= 0 -> B[b] = A[a]; a = a + 1; b = b + 1;

:: true -> C[c] = A[a]; a = a + 1; c = c + 1;

od

Figure 4.1: The running example of our thesis, partition, is expressed using our simple guarded
command language. The second guard true functions as the final conditional guard, similiar to
the otherwise construct found in other languages.

4.4 Extended Expressions

While the goal of invariant finding is to generate properties that hold at arbitrary iteration
of the loop (think of the definition of invariants), the process of reasoning and analyzing the
program instance could be improved with the help of indicators marking the program states.
These program states are the critical states in which variable values get updated. With this
intuition, we found the need to formulate a stronger language for describing the intermediate
program states. This language must be also capable to facilitate the expressions relating program
variable values in respect of the program state. With the extended language, which we called
the extended expressions, one can express richer properties of the loops. Still, it is important to
remind ourselves that the invariants we are after are meant to be the properties which hold at
arbitrary iteration of the loop. This explains the need of the symbol elimination technique we
used in our approach, which will be formally introduced in the next chapter. In this following
section, we first introduce the basic assertion language, which is followed by the introduction of
the extended expressions.

4.4.1 Assertion Language

The assertion language is meant to express the properties as classical first-order logic formulae,
hence one should be able to correlate the two without additional knowledge. For each scalar
variable v of type τ used in the program instance, we create two corresponding symbols in our

15



assertion language: v : τ and vinit : τ . The introduction of vinit : τ allows us to state the initial
value of a scalar variable, while the v : τ allows us to state the general value of v. Like the
interpretations in first-order logic, the interpretations in our assertion language also gives the
value of each symbol. In the assertion language, the interpretations depends on a given program
state α. Assuming the initial program state is represented by α0 and the final program state is
represented by αn, we can already know the following:

∀i, 0 ≤ i ≤ n⇒
vinit : τ of αi == v : τ of α0

(4.1)

An example of assertion language encoding can be drawn from the running example in Figure
4.1, since the value of a, b, c are assumed by the requires statements, one can translate the
assumptions into their initial values:

ainit = binit = cinit = 0

In the previous work [AKR15], the array variables are captured in our assertion language
using the function symbols of type Z→ τ , where Z stands for integers which is used to capture
the indexed access. This is no longer the case in our new implementation since we do not treat
the arrays as functions taking indices anymore. The array variables are now captured using the
same way as in scalar variables described above. This change also improves the readability in the
codebase since now all the variables are equally handled. Finally, since the assertion language
follows classic first-order logic, the pre- and post-conditions, which are in the first-order logic, are
trivially describable using the assertion language.

4.4.2 Extended Expression Language

In order to allow the theorem prover leverage on the findings of each program states and
draw invariant conclusion from these findings, we must enrich the underlying language for this
expressivity. In other words, the program state α described in the assertion language must
be incorporated into the extended expressions directly, making the reasoning possible without
additional interpretation needed. The extended expressions encode the program state directly into
the symbols. For each variable v of type τ , the extended expressions includes a function symbol
of type Z→ τ , where the first argument of the function denotes the program state. Although the
function type takes an integer Z, the actual implementation has a non-negative program state
limitation. The program state represents the number of iteration in which an update takes place.
vi denotes the application of the introduced functions, and is interpreted as the value of variable
v in the program state αi. In the previous implementation, array variables are expressed with an
additional arity denoting the index accessed. This is no longer in our new implementation as the
array is only accessed via select(array, index). Finally, the extended expressions includes an
additional symbol n, denoting the upper bound of loop iteration count. Notice the introduction
of iteration upper bound n does not correlate to a defined number of iteration limit, the symbol
n is introduced merely for the symbolical reasoning. One can substitute the symbol with another
such as final. Examples of extended expressions are listed as follows:

vi+1 = vi + 1

One can reason about the value of a variable between two program states. Two program states
(first iteration and last iteration) are given special symbols (init and n ). The following example
shows the final value of v remains the same as the initial value of itself.

vn = vinit

Following the semantics of extended expressions, the following equalities between the assertion
language terms and the extended expressions are naturally true:

16



vinit ≡ v0

vn ≡ vn

select( Ainit , p) ≡ select( A0 , p)

select( A , p) ≡ select( An , p)

Properties expressed using the extended expressions are called extended loop properties. These
extended loop properties are the central idea of the process symbol elimination, which will be
introduced in the next chapter. The idea is to first extract the static properties using this extended
expressions and then ask the theorem prover for logical consequences which can be expressed
in assertion language. Although the extended expressions can represent stronger properties, we
only regard those invariants in the assertion language valid. This is due to the fact that the pre-
and post-conditions are in the assertion language and the invariant in extended expressions can
describe properties of intermediate steps. With the extended expressions introduced, we now look
into the static property extraction and how the properties can be written in extended expressions.

4.5 Extracting Loop Properties

With the extended expressions, one can now express the variable value at a particular program
state. The next step is to statically examine the input program and try to extract useful
consequences from the program itself. We denote these consequences from static analysis the
loop properties. Loop properties came from mathematical observations of the updates made to
each variable. Properties of each variable are extracted and formulated in first-order formulae (in
our implementation, these properties are formulated as additional axioms for the theorem prover)
before sending to the first-order theorem prover. The properties extracted can be significantly
helpful for deciding the final invariant generation as certain static properties (and the form of
these properties) ease the work of the theorem prover. In this section, we overview the existing
static properties extracted and introduce the new static property added in this master project,
the monotonic indexing property. Asides from the static properties collected, if the user provides
the pre-conditions, the pre-conditions are directly translated into extended expressions. Since any
expression in the assertion language is also in the extended expressions with minor translation
needed. Here is a concrete translation example:

requires forall int i, 0 <= i & i < alength ==> A[i] > 0

is translated into the following property in extended expressions and added into the Vampire
problem instance:

(∀i)(0 ≤ i < alength⇒ select(A(0), i) > 0)

4.5.1 Static Properties of Scalar Variable

Given a scalar variable v, we call it increasing or decreasing if the following extended property
holds:

∀i ∈ iteration, 0 ≤ i < n⇒ vi+1 ≥ vi /* v is increasing */
∀i ∈ iteration, 0 ≤ i < n⇒ vi+1 ≤ vi /* v is decreasing */

For a scalar variable which is either increasing or decreasing, we also call it monotonic. This
analysis for monotonicity can be achieved via light-weight analysis, such as verifying that every
assignment to v is of the form v = v + e, where e is a non-negative integer.

Apart from monotonicity checking, a scalar variable is called strict if the following extended
properties holds:

∀i ∈ iteration, 0 ≤ i < n⇒ vi+1 > vi /* v is strictly increasing */
∀i ∈ iteration, 0 ≤ i < n⇒ vi+1 < vi /* v is strictly decreasing */

17



Since our guarded command language only supports integer sort for numerical scalars, we
further call an increasing scalar variable dense if the following property holds:

∀i ∈ iteration, 0 ≤ i < n⇒ |vi+1 − vi| ≤ 1 /* v is dense*/

These static analyses are geared toward reasoning about the relation between indices and the array.
However, some simple arithmetic properties can be derived by these analyses. The discovered
extended properties and the added static properties are summarized in the following table:

Table 4.1: Added static properties for scalar variables

if scalar variable v is ... we add the property ...

[increasing, strict, dense] ∀i, vi = v0 + i

[increasing, strict] ∀i, ∀j, j > i⇒ vj > vi

[increasing, dense] ∀i,∀j, j ≥ i⇒ vi + j = vj + i

[increasing] ∀i,∀j, j ≥ i⇒ vj ≥ vi

Finally, if a variable is never updated by the loop, one can simply treat it as a constant symbol
throughout all program states.

4.5.2 Update Properties of Array Variable

For the array variables, our approach analyzes the conditions which trigger the update of the
array at position p by the value v during iteration i. These predicates are denoted as updA(i, p, v).
Another more general predicate is denoted as updA(i, p), which states the update during iteration
i at index p with any value. These predicate conditions are then collected for the following
property of array variables:

• If the array A is only updated once throughout all possible program states, and the update
happens at index p with the value v, then this value is associated with the final value at
the same index during last iteration.

(∀i ∈iteration, j ∈ iteration, p ∈ index, v)

(updA(i, p, v) ∧ (updA(j, p)⇒ j ≤ i))⇒
select(A(n), p(n)) = v)

(4.2)

4.5.3 Array Non-update

Up until this point, all the previous static properties can be reused (with some translations) for
the new implementation. However, one of the previous property must be removed from the static
analysis. Given an array variable A which has not be updated at any location during iteration i,
the existing approach adds the following property:

∀j, A(i+ 1, j) = A(i, j)

A naive translation of this property into the new framework would look like the following:

∀j, select(A(i), j) = select(A(i+ 1), j)

However such property should not be added as it is already assumed in the theory of array.
Without any specific update via function store, the elements in an array are assumed to be
unchanged from one program state to the next. While most static properties of scalar variables
are directly reusable from previous work, the properties of array variables should be reconsidered
under the new reasoning framework.

18



4.5.4 Monotonic Indexing

The process of static analysis can be improved separately from the logical inferencing system.
This monotonic indexing property is one of the improvement we made in this master
project. The intuition behind this monotonic indexing property originated from the monotonicity
of indexing scalars. If a scalar variable is monotonic, the value of this scalar will only develop
into larger (in case of monotonic increasing) or smaller (monotonic decreasing) value in later
iterations. Therefore, once the update of this scalar variable occurs, the scalar variable will
never have the same value again. Combining with the strictness property, if the scalar variable is
strictly monotonic, we know for sure the variable will not hold the same value in later iterations.
Applying this knowledge to the array indices, we can learn more about the traverse of the array.

Suppose the array variable A is only accessed by indexing variable x throughout the entire
program, and the variable x is a monotonic variable, the monotonic indexing property can be
derived from the following derivation:

1. Assuming x is monotonic and strictly increasing. From the properties described above, we
know x has following property (expressed in the extended expressions) added during the
program analysis.

(∀α ∈ programstate) (∀β ∈ programstate)

(β > α⇒ xβ > xα)

2. Suppose the array A is updated by the program statement A[x] := val at iteration α. We
know for any iteration β > α⇒ xβ > xα. In other words, we never revisit array A at index
xα in later iterations. This means val is the final value of A[x], since there will not be any
update at the same location in later iterations. Hence one can safely assert the following
property:

An[xα] == Aα[xα] == val

given the array A is updated at index x at iteration α and the final iteration denoted by n.

This property can be further translated into array theory based property:

select(A(n), x(α)) == select(A(α), x(α))

The same derivation also hold for monotonic strictly decreasing, this property only relies
on the fact that the loop never revisit any index in later iterations. Hence this monotonic
indexing property is added for all array updates with uniquely-accessing monotonic strict
indices.

An example based on our running example partition can show this monotonic indexing
property in action:

while (a <= alength) do

:: A[a] >= 0 -> B[b] = A[a]; a = a + 1; b = b + 1;

:: true -> C[c] = A[a]; a = a + 1; c = c + 1;

od

In both branches of the guards, the scalar variable a is increased by one. Hence one can learn
that variable a is monotonic and strictly increasing. Further, we know that the array A is only
accessed by a. All of the premises of our monotonic indexing property is satisfied in this analysis,
hence the property is added to the array variable A.

select(A(n), a(α)) == select(A(α), a(α))

19



5 Reasoning with Vampire

5.1 Logical Inferences using Vampire

In the second invariant generation phase, we perform logical inferencing on the problem instance
produced by the static analysis step. With the theorem prover Vampire, one can perform logical
inferencing in following modes:

1. Allow Vampire to embark the consequence finding process on the problem instance, the
results are sound logical consequences, hence the valid invariants for the loop. This process
is referred as the symbol elimination as the auxiliary symbols such as symbols containing
extended expressions are eliminated by Vampire.

2. The invariants generated from the first operation mode can be large in quantity and may
not be of the interest to the user who is proving certain post-conditions of the loop. Hence
the user can, by invoking our system with a special operation option, apply a filter based
on the post-conditions to restrain the invariants inferred by Vampire.

3. Finally, based on the idea of refutation, the user can also directly supply the post-condition
to Vampire. If the post-condition is a logical consequence of the invariants generated,
including the intermediate ones expressed using extended expressions, Vampire can prove
the post-condition by refutation.

In the work of Ahrendt et al.[AKR15], the last two operation modes are introduced to extend the
original work of [KV09a]. Together with the user provided post-conditions, one can utilize the
result of the symbol elimination method or even constructing a novel automation for the proof of
correctness differing from the classic Hoare-rule based approach.

In this following chapter, we explain the logical inferences performed by Vampire and the
symbol elimination method for invariant generation. Vampire is a fully automatic first-order
theorem prover, hence it requires no user guidance during the theorem proving. This allows
our invariant generation approach to be fully automated, the user is not required to provide
any input or steer the generation during runtime. Also, Vampire is a logically sound inference
system. This means all logical consequences generated would be valid consequence of the result of
program analysis. Similar to other first-order theorem provers, the final performance of Vampire is
significantly affected by the input. Additionally, Vampire has a sophisticated internal architecture
for its unparalleled proving speed. This internal architecture is however subjected to the choice
of options provide to Vampire. As we describe the process of logical inferencing in Vampire, we
will also briefly explain critical concepts related to the choice of options.

5.2 Vampire and the FOOL: Polymorphic Arrays

At the time of the initiation of our project, one of the developing branches of Vampire has
been published in the work of Kotelnikov et al. [Kot+16]. This particular branch supports
the need of our previous implementation. The new introduction of first-class boolean variables
and polymorphic arrays made the foundation needed for our project. The FOOL branch aims
at mitigating the complexity of translation into first-order logic. This translation is normally
performed by the Vampire users, yet the translation process requires substantial background
knowledge of the internal Vampire operations. The result of the translation could significantly
affect the performance of Vampire, as theorem provers are highly sensitive to their inputs. Since
such a translation is so performance-critical, the reasonable solution is to let the theorem prover
choose how to translate the inputs itself. The FOOL branch provided different new expressions
such as if-then-else, let-in and the direct support of polymorphic arrays. The needed optimisations
during translation are built-in as part of the FOOL extension, including the optimisation over the
array axioms inclusion process. Our work benefits largely by these new features and optimisation.
Also, given the minimum implementation needed for our extension, our experience can be regarded
as one successful story of the FOOL branch.

20



5.3 First-Order Reasoning about Array Properties

Our main contribution to this new extension for the logical inference step is the translation from
previous encoding into array theory encoding. Previously, the array variables are encoded as
uninterpreted functions taking the indices as their argument. In the case of extended expression,
the additional argument representing the program state can be included. In the previous encoding,
one cannot explicitly express the differences between array reads and array writes. In our new
reasoning framework, arrays are encoded as constant symbols instead of function taking indices.
We also differentiate the operations of reading and writing in the program analysis phase. This
results in a clearer semantics of array operations and disambiguates the equalities from array
assignments. The concept can be more precisely explained using the following example:

• Previously, the array assignment of a[i] = b[j] at iteration k is internally encoded as:

equals( a(k+1,i(k)),

b(k,j(k)) )

where the function equals() creates internal equality over two terms for Vampire.

• Now with the array encoding, we represent the same array assignment statement as:

store( a(k+1),

i(k),

select(b(k),j(k)) )

The array theory axioms (read-over-write and extensionality) are automatically and optimally
added by Vampire once the select and store functions are invoked. The polymorphic array
introduced in the FOOL extension is more general than our guarded command language in terms
of array sorts. In our language, arrays are only indexed by non-negative integers and contains
either integers or booleans. But the more general underlining framework means possibility for
future extension of our guarded command language.

Another alternative approach is to insert the needed array axioms into Vampire directly, as
this alternative was used in the original work in [KV09a]. In the previous versions of Vampire,
the theories of integer arrays and arrays of integer arrays are coded internally using this approach.
Apart from providing less support for arrays of different sorts, this approach also lose the chance
of potential optimization. During the automated inclusion of axioms, Vampire optimally avoids
the axioms which are not necessary. For instance, the read-over-write axioms are not added in
cases where the store function never occurs.

5.4 Logical Inferences

The logical inferencing step is carried out using the superposition inference system in Vampire.
While the actual Vampire inference system is parametrized over the selection functions and
ordering, the basic inference is defined using the superposition rules. Here is one simple example
of resolution:

A ∨B ¬A ∨ C
resolution

B ∨ C
with the underline representing selected terms from the selection function. The actual implemen-
tation requires an additional unifier over terms, further detail is referred to [KV13].

Superposition rules are meant for handling resolution between equalities, here we demonstrate
one of the superposition rule:

a = b ∨Q A[a] = c ∨ P
superposition

A[b] = c ∨Q ∨ P

21



More advanced resolution rules such as extensionality resolution are also implemented in
Vampire. In our project, the extensionality resolution is critical for the array theory reasoning. A
detailed description regarding extensionality resolution is referred to [Gup+14].

The logical inferences produce conclusions from the premises. These newly produced conclu-
sions are added to the search space of the proof. As the inference system continues, more logical
conclusions can be drawn from the search space. However, the growth of search space of first-order
logic formulae with equalities is very fast in reality. One requires a very well-organized inference
system (including well-behaved selection and ordering) and efficient redundancy elimination. As
mentioned, the inference system is actually parametrized over selection functions and ordering.
Vampire supports different selection functions and choose an appropriate one according to the
execution options from these selection functions. On top of these carefully crafted efficiency, Vam-
pire has yet another novel internal architecture called AVATAR [Vor14]. In AVATAR architecture,
resolutions are controlled not to resolve into heavy conclusions and some of the proof steps are
delegated to an internal SAT solver for further efficiency optimization. All these works contribute
to the award-winning [Sut14] speed of logical inferences.

5.5 Symbol Elimination

Running Vampire over the set of static properties can provide valid consequences via the logical
inferencing. However, as the static properties are expressed using the extended expression, so are
the logical consequences inferred. The loop invariants must be expressed only in the assertion
language. While one can seek for similiar inverse translation rules as we demonstrated in the case
of user-provided pre-conditions, the general translation from the extended expression into the
assertion language is not possible. This is because some of the symbols in extended expression have
no corresponding semantics in the assertion language. For the purpose of invariant generation,
we need a directed inference system to get rid of the symbols in the extended expression. These
technique is called the ”symbol elimination” and was first introduced in the work of Kovács and
Voronkov [KV09b]. The main idea is to make sure the conclusion drawn from the inference rule is
either (1) a conclusion without any premises or (2) the premises contains at least one undesirable
symbol. This way, the number of undesirable symbol would decrease as the inferences continue.
For the detailed theoretical regarding symbol elimination, we refer to [KV09b].

5.6 Reaching Correctness in Different Ways

With the possibility for expressing post-conditions in our simple guarded command language, the
verification of correctness is now more flexible. Figure 5.1 shows one of the verification methods
called invariant filtering. The idea is to continuously attempt to prove the post-condition with
the newly generated invariants in parallel to the actual invariant generation process (generated
invariants are indicated as I1 ∧ I2 ∧ ...In in the diagram) . If the post-condition is proved by
Vampire, the system can report on the subset of invariants which actually participated during
the proof. Otherwise, the inferences continue.

This approach can effectively reduce the total reported invariant and provide only the ”useful”
invariants based on the final step of relavant invariant filtering.

Another alternative approach toward proof of correctness is to directly prove the post-condition
from the set of intermediate extended properties. This approach would omit the symbol elimination
and perform the refutation proof directly. If one only seeks for the correctness under post-condition
without the need for explicit invariants, this approach provides a novel and alternative solution to
the classic Floyd-Hoare verification approach. Comparing to invariant filtering, the direct proof of
correctness is faster and can benefit from the fact that the extended properties are stronger than
the implied invariants. All proofs reachable by the invariant filtering should be also reachable by
this approach, while in some cases the converse is not true.

22



Figure 5.1: Flow diagram of correctness proving using post-condition as invariant filter, we refer
to this operation mode as the invariant filtering

5.7 Overview of Invariant Generation Workflow

Our approach, similiar to the origin approach from [AKR15], is illustrated by the flow diagram
shown in Figure 5.2. The entire approach is split into two phases by the dashed line with our
contributions highlighted with red fonts. Particularly, Figure 5.2 shows the operation mode of
direct proof. In this operation mode, the symbol elimination is omitted and Vampire will keep
producing the logical consequences until the post-condition is derivable or timeout. This diagram
also shows the two phases are decoupled and replaceable by other equivalent processes.

Figure 5.2: Entire workflow of our invariant generation workflow, based on the direct proof
operation option.

23



6 Results

In this chapter we present the experiment results from our implementation. In this first section,
we present the overall experiment result of all 20 test cases, the exact same set of test cases as in
[AKR15]. The numerical experiment results are followed by detail examination of critical proof
steps of the newly proved examples. Finally, this chapter ends with the generated invariants of
other test cases, showing the capacity of our approach.

All the results are collected using a computer with quad-core i7 CPU equipped with 16GB of
RAM. For better comparison, we have reproduced the same experiments as in previous paper
and listed the result here.

6.1 Results of all test cases

On the left side, the table shows the experiment result without array theory reasoning, while the
right table shows the final result after our array theory extension. All test cases are performed
with the time limit set to 300 seconds. This time limit ensures sufficient time for the harder
proofs. Other options such as splitting strategies are left as their default settings. The readings
∆direct stands for the required time for Vampire to directly proof the desired post-condition
from the extended properties, with unit in second. In the case where ∆direct reading is missing,
Vampire fails to prove the post-condition within the 300 seconds time limit and ends with
refutation not found. As none of the examples reach to saturation within our time limits, we
cannot formally conclude the answer to satisfiability. However, reaching to the saturation for
any of the test cases is virtually impossible in our particular application. Apart from required
proving time, the total number of created clauses is also featured in the table. In the cases
where ∆direct reading is missing, the created clauses count total created clauses within 300 seconds.

Table 6.2 shows the four newly proved test cases: copyPositive, partition, partitionInit, and
swap. These cases witness the enhancement in reasoning about arrays in loops of the new
implementation. While the newly proved cases show the improvement, the experiment also
showed all the previously provable cases are still provable in array theory reasoning. With these
two observations combined, we demonstrated the overall improvement over existing approach. By
reasoning in the domain specific theory, in our case the theory of array, the theorem prover is
capable of deriving much more complex invariants automatically.

Besides showing the improvement in reasoning ability, the two tables also provide a closer
comparison between two approaches. One can observe the general trend of less time used for
the invariant generation without array theory. In other words, the implementation of treating
array variables as uninterpreted functions has marginal advantage in computation complexity.
This observation can be witnessed by the fact that in all commonly provable cases the time
consumed in the original implementation are marginally shorter than the array theory reasoning
implementation. Also, the total number of created clauses agrees on such trend. However, in all
the commonly provable cases, both implementations manage to derive the post-condition as the
logical consequence within fraction of a second, making the new implementation still competitive
solution for automatic invariant generation.

Although the newly proved cases cannot be compared with the results of previous implemen-
tation in terms of computation complexity, we found a reference time from the work of Kovács
et al. [KV09a]. In the result section of [KV09a], the test case similiar to our partition took
56 seconds to generate the same invariant. This shows the agreement of increasing computation
complexity of array theory reasoning.

24



Table 6.1: Reasoning without array theory

Testcase ∆direct(sec) created clauses

absolute 0.374 2095

copy 0.057 495

copyOdd 0.208 1571

copyPartial 0.047 426

copyPositive 530669

find 412821

findMax 324456

init 0.052 415

initEven 430518

initNonConstant 0.117 909

initPartial 0.060 495

inPlaceMax 362783

max 0.348 2140

mergeInterleave 376322

partition 622830

partitionInit 488387

reverse 0.079 593

strcpy 0.048 373

strlen 0.019 139

swap 812284

Table 6.2: Test cases reasoning with array
theory

Testcase ∆direct(sec) created clauses

absolute 0.484 2614

copy 0.079 654

copyOdd 0.181 1098

copyPartial 0.104 800

copyPositive 46.238 89280

find 413352

findMax 398548

init 0.069 592

initEven 391735

initNonConstant 0.128 940

initPartial 0.069 593

inPlaceMax 530098

max 0.481 2634

mergeInterleave 543746

partition 97.519 210837

partitionInit 28.217 72989

reverse 0.098 733

strcpy 0.081 538

strlen 0.031 168

swap 11.218 61786

25



6.2 Case study: swap

int [] a, b, olda , oldb;

int i, alength , blength;

requires blength == alength;

requires i == 0;

requires forall int i, 0 <= i & i < alength ==> a[i] == olda[i];

requires forall int i, 0 <= i & i < blength ==> b[i] == oldb[i];

ensures forall int i, 0 <= i & i < blength ==> a[i] == oldb[i];

ensures forall int i, 0 <= i & i < blength ==> b[i] == olda[i];

while (i < alength) do

:: true -> a[i] = b[i]; b[i] = a[i]; i = i + 1;

od

In this section we look into one of the newly proved test cases, swap. The program takes two
integer arrays of equal length and element-wise swapping the two arrays. The pre-conditions
ensure equal length of the input arrays and keep a copy of the values inside each array (olda and
oldb). The post-condition for correctness of the loop checks if the element in the modified array
b is indeed element-wise equal to olda. This test case has rather straightforward semantics for
human reader, yet its algorithm heavily relies on the array operations select and store.

Some critical steps in the successful proof of correctness are contributed by the array theory
axioms, as shown in Figure 6.1. This shows the array theory derived inferences are indeed used
in the final proof by refutation. The previous implementation without array theory cannot prove
this example, this suggests the improvement in reasoning ability of the new extension. Also, the
steps show that complex invariant over array select and store with quantifier alternation can
be derived using our extension. The final step 63634. is a unification of AVATAR splitting.

38747. C1 $select(oldb ,sK6) = $select(a,sK6)

| $lesseq(alength ,$sum(-1,sK6))

<- {80, 185, 192, 194}

[subsumption resolution 38698 ,30268]

38749. C1 $lesseq(alength ,$sum(-1,sK6))

<- {19, 80, 185, 190, 192 ,194}

[subsumption resolution 38747 ,30169]

38750. 262 | 19 | ~80 | 185 | ~190 | ~192 | ~194

[AVATAR split clause 38749 ,30139 ,30132

,30125 ,30101 ,1660 ,307 ,38738]

63634. C0 $false [AVATAR sat refutation

48074 ,47723 ,371 ,180 ,186 ,30241 ,340 ,341 ,3414 ,

63200 ,339 ,38750 ,30127 ,30141 ,30134 ,381 ,208 ,

214 ,44449 ,309 ,1780 ,1681 ,330 ,48112 ,45944 ,48885 ,

51852 ,47081 ,3177 ,3247 ,332 ,323 ,48525 ,55659 ,331 ,

63319 ,1668 ,1696 ,316]

\caption{Critical proof steps in the test case \inlinecode{partition }.}

During our invariant generation, Skolemized functions are not de-Skolemized and kept in
original form for the entire derivation. Skolemization captures the alternating quantifiers, in the

26



demonstrated steps above, the Skolemization funciton sk6 is defined as:

Skolemising: sK6 for X0 in ? [X0 : $int] :

($select(olda ,X0) != $select(b,X0)

& ~$lesseq(blength ,X0)

& $lesseq(0,X0)) in formula 87.

While de-Skolemization can arguably produce more human readable invariants, the Skolem
functions are kept in Skolemized form for better reasoning ability. For the technical details we refer
to the orignal paper in 2009 [KV09a], in which the reason for not performing de-Skolemization
during the reasoning was first introduced and motivated.

With our approach, the system can automatically generate the following loop invariants:

! [X2 : $int] : ($select(oldb ,X2) = $select(a,X2) |

~( $less(X2,blength) & $lesseq(0,X2)))

which can be further de-Skolemized into more human-reader friendly form:

∀i ∈ Int , oldb[i] = a[i] ∨ ¬((i < blength) ∧ (0 ≤ i))

by applying the rule of inference on the righthand side of OR, one can further derive:

∀i ∈ Int , (0 ≤ i < blength) ⇒ oldb[i] = a[i]

6.3 Other Invariants

Apart from the case study swap, we also demonstrate other invariants generated from the newly
proved cases in this section.

Figure 6.1: Test case partition.

int [] A, B, C;

int a, b, c, alength;

requires a == 0;

requires b == 0;

requires c == 0;

requires alength > 0;

while (a <= alength) do

:: A[a] >= 0 -> B[b] = A[a]; a = a + 1 ; b = b + 1;

:: true -> C[c] = A[a]; a = a + 1; c = c + 1;

od

In this test case, our system can automatically derives the following invariant:

∀ int i, (0 ≤ i ∧ i < b⇒ (B[i] ≥ 0)∧
(∃ int j, 0 ≤ j ∧ j < a ∧B[i] == A[j]))

27



Figure 6.2: Test case copyPositive.

int [] a, b;

int i, j, alength , blength;

requires blength <= alength;

requires i == 0;

requires j == 0;

while (i < blength) do

:: b[i] >= 0 -> a[j] = b[i]; i = i + 1; j = j + 1;

:: true -> i = i + 1;

od

In this test case, our system can automatically derives the following invariant:

∀ int k, 0 ≤ k ∧ k < j ⇒ a[k] ≥ 0;

Figure 6.3: Test case partitionInit.

int [] A, B, C;

int a, b, alength;

requires a == 0;

requires b == 0;

requires alength >= 0;

while (a < alength) do

:: A[a] == C[a] -> B[b] = a; a = a + 1; b = b + 1;

:: true -> a = a + 1;

od

In this test case, our system can automatically derives the following invariant:

∀ int i, 0 ≤ i ∧ i < b⇒ A[B[i]] == C[B[i]];

28



7 Conclusion and Future Work

7.1 Conclusion

The inclusion of array theory in loop invariant generation has shown to be improving the invariant
reasoning ability. In our experiment results, the test case swap works as the witness of such
improvement comparing to the previous implementation. As the nature of swap is heavily
dependent on the array operations select and store, the array theory pays off for the derivation
of correctness. Apart from the improvement brought by the array theory, we also demonstrated
that the process of invariant reasoning can be enhanced by the static program analysis. The
monotonic indexing property we introduced helps the theorem prover by dropping the additional
premises dealing with index bounds. This makes the theorem prover’s task much simpler hence
the successful proof of test cases such as partition and partitionInit. This experiment result
shows the light-weight static analysis can be simple yet critical in the later logical inference process.
Crafting the suitable static properties can be non-trivial. In our case the monotonic indexing
property was devised after observing the additional premises during inferencing steps, which lead
to difficulties for the theorem prover to derive the post-condition. These static properties are
largely originated from a mathematical context. A single proper property can be crucial for the
loop verification. It is very interesting to further explore more static analyses and experiment
with their impact on other problem instances.

The improvement in reasoning power is certainly promising, however, we also observed marginal
increase in both reasoning time and the internal clauses generated for the set of already proved
cases. Comparing to the implementation back in 2009, the test case partition takes around
twice as much computation time to derive, however, the new approach now directly handles the
array operations. Despite the fact that most of the proving time required are longer than the
standard timeout for Vampire in the newly proved cases, the result still indicates improvement in
invariant reasoning, especially with the array-specific invariants.

On top of the enhanced reasoning power, we also found the encoding based on the array
theory could benefit the human readability of the proof steps. Instead of equality over two general
array terms, the new proof step clearly indicates the difference between reading from an array
and writing into an array. This improvement gives a much better trace for user to examine the
derivation.

Lastly, in this experiment we showed the idea of using a theorem prover for automated invariant
generation is promising. The capacity to derive complex invariants including both quantifier
alternations and domain specific theory reasoning can be used to ease the manual efforts needed
for loop annotation. Particularly, our approach requires no user guidance nor any predefined
templates of invariants.

7.2 Future Work

1. Boolean array test cases and experiments: with the foundation of FOOL and the
polymorphic arrays, boolean arrays can be incorporated into our array theory reasoning
approach. Due to project time limit, we have not yet included test cases containing boolean
arrays. In the future work, boolean array can be used to explore interesting properties such
as partial sortedness of the array. Furthermore, since Vampire with the FOOL extension
already support first class boolean reasoning, it is interesting to experiment with the boolean
array invariants.

2. Vampire with SMT solvers: The AVATAR structure of Vampire makes it possible to
delegate satisfiability problems to a SAT solver. This structure enables the superposition-
based Vampire to reason about logical consequences much faster hence solving the problem
within the time constraint. Furthermore, the AVATAR structure can accomodate other types
of solvers such as SMT solvers. Despite the fact that Vampire has built-in approximation
of arithmetic axiomatization, complex properties involving arithmetic require dedicated

29



solvers. Problems involving arithmetic properties such as even / odd indices can possibly
benefit from the arithmetic reasoning ability of SMT solvers such as Z3.

3. More language constructs: Apart from the polymorphic arrays, the paper of Vampire
and the FOOL [Kot+16] also introduced the entire first-class boolean and corresponding
constructs into the latest Vampire branch. Among the constructs introduced, the ”if then
else” construct can be directly benefiting program analysis. Our input language syntax
can be extended with the condition construct and internally mapped to the new feature
from the FOOL infrastructure. This would also mean new static properties can be explored
specifically for the condition construct.

30



References

[Ahr+05] W. Ahrendt et al. The KeY tool. Software and System Modeling 4.1 (2005), 32–54.
url: http://www.springerlink.com/index/10.1007/s10270-004-0058-x.

[AKR15] W. Ahrendt, L. Kovács, and S. Robillard. “Reasoning About Loops Using Vampire in
KeY”. Lecture Notes in Computer Science. 20th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning, LPAR 2015, Suva, Fiji, 24-28
November 2015. Springer Berlin Heidelberg, 2015, pp. 434–443. isbn: 978-3-662-48898-
0. doi: 10.1007/978-3-662-48899-7_30. url: http://dx.doi.org/10.1007/978-
3-662-48899-7_30.

[Bla+03] B. Blanchet et al. “A static analyzer for large safety-critical software”. Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation 2003, San Diego, California, USA, June 9-11, 2003. ACM. 2003,
pp. 196–207. doi: 10.1145/781131.781153. url: http://doi.acm.org/10.1145/
781131.781153.

[CC77] P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints”. Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages, Los
Angeles, California, USA, January 1977. ACM. 1977, pp. 238–252. doi: 10.1145/
512950.512973. url: http://doi.acm.org/10.1145/512950.512973.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. ACM Trans. Program.
Lang. Syst. 8.2 (1986), 244–263. doi: 10.1145/5397.5399. url: http://doi.acm.
org/10.1145/5397.5399.

[Chu36] A. Church. An unsolvable problem of elementary number theory. American journal
of mathematics 58.2 (1936), 345–363.

[Cou03] P. Cousot. “Verification by Abstract Interpretation”. Verification: Theory and
Practice, Essays Dedicated to Zohar Manna on the Occasion of His 64th Birth-
day. Springer, 2003, pp. 243–268. doi: 10.1007/978-3-540-39910-0_11. url:
http://dx.doi.org/10.1007/978-3-540-39910-0_11.

[Dij75] E. W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Derivation of
Programs. Commun. ACM 18.8 (1975), 453–457. doi: 10.1145/360933.360975.
url: http://doi.acm.org/10.1145/360933.360975.

[Ern+07] M. D. Ernst et al. The Daikon system for dynamic detection of likely invariants.
Science of Computer Programming 69.1–3 (Dec. 2007), 35–45.

[Flo67] R. W. Floyd. Assigning meanings to programs. Mathematical aspects of computer
science 19.19-32 (1967), 1.

[FM10] C. A. Furia and B. Meyer. Inferring Loop Invariants Using Postconditions. 2010.
doi: 10.1007/978-3-642-15025-8_15. url: http://dx.doi.org/10.1007/978-
3-642-15025-8_15.

[FMV14] C. A. Furia, B. Meyer, and S. Velder. Loop invariants: Analysis, classification, and
examples. ACM Computing Surveys 46.3 (2014), 34:1–34:51. doi: 10.1145/2506375.
url: http://doi.acm.org/10.1145/2506375.

[FQ02] C. Flanagan and S. Qadeer. “Predicate abstraction for software verification”. Confer-
ence Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Portland, OR, USA, January 16-18, 2002. ACM. 2002,
pp. 191–202. doi: 10.1145/503272.503291. url: http://doi.acm.org/10.1145/
503272.503291.

[Gal+14a] J. P. Galeotti et al. Automating Full Functional Verification of Programs with Loops.
2014. url: http://arxiv.org/abs/1407.5286.

[Gal+14b] J. P. Galeotti et al. “DynaMate: Dynamically Inferring Loop Invariants for Automatic
Full Functional Verification”. Proceedings of the 10th Haifa Verification Conference
(HVC). Ed. by E. Yahav. Vol. 8855. Lecture Notes in Computer Science. Tool paper.
Springer, Nov. 2014, pp. 48–53.

31

http://www.springerlink.com/index/10.1007/s10270-004-0058-x
http://dx.doi.org/10.1007/978-3-662-48899-7_30
http://dx.doi.org/10.1007/978-3-662-48899-7_30
http://dx.doi.org/10.1007/978-3-662-48899-7_30
http://dx.doi.org/10.1145/781131.781153
http://doi.acm.org/10.1145/781131.781153
http://doi.acm.org/10.1145/781131.781153
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://dx.doi.org/10.1145/5397.5399
http://doi.acm.org/10.1145/5397.5399
http://doi.acm.org/10.1145/5397.5399
http://dx.doi.org/10.1007/978-3-540-39910-0_11
http://dx.doi.org/10.1007/978-3-540-39910-0_11
http://dx.doi.org/10.1145/360933.360975
http://doi.acm.org/10.1145/360933.360975
http://dx.doi.org/10.1007/978-3-642-15025-8_15
http://dx.doi.org/10.1007/978-3-642-15025-8_15
http://dx.doi.org/10.1007/978-3-642-15025-8_15
http://dx.doi.org/10.1145/2506375
http://doi.acm.org/10.1145/2506375
http://dx.doi.org/10.1145/503272.503291
http://doi.acm.org/10.1145/503272.503291
http://doi.acm.org/10.1145/503272.503291
http://arxiv.org/abs/1407.5286


[GR09] A. Gupta and A. Rybalchenko. “InvGen: An Efficient Invariant Generator”. Computer
Aided Verification, 21st International Conference, CAV 2009, Grenoble, France, June
26 - July 2, 2009. Proceedings. 2009, pp. 634–640. doi: 10.1007/978-3-642-02658-
4_48. url: http://dx.doi.org/10.1007/978-3-642-02658-4_48.

[Gup+14] A. Gupta et al. “Extensional Crisis and Proving Identity”. Automated Technology
for Verification and Analysis - 12th International Symposium, ATVA 2014, Sydney,
NSW, Australia, November 3-7, 2014, Proceedings. Springer, 2014, pp. 185–200. doi:
10.1007/978-3-319-11936-6_14. url: http://dx.doi.org/10.1007/978-3-
319-11936-6_14.

[HKV11] K. Hoder, L. Kovács, and A. Voronkov. “Invariant Generation in Vampire”. Tools
and Algorithms for the Construction and Analysis of Systems - 17th International
Conference, TACAS 2011, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3,
2011. Proceedings. 2011, pp. 60–64. doi: 10.1007/978-3-642-19835-9_7. url:
http://dx.doi.org/10.1007/978-3-642-19835-9_7.

[Hoa83] C. A. R. Hoare. An Axiomatic Basis for Computer Programming (Reprint). Commun.
ACM 26.1 (1983), 53–56. doi: 10.1145/357980.358001. url: http://doi.acm.
org/10.1145/357980.358001.

[KB83] D. E. Knuth and P. B. Bendix. “Simple word problems in universal algebras”.
Automation of Reasoning. Springer, 1983, pp. 342–376.

[Kot+16] E. Kotelnikov et al. The vampire and the FOOL (2016), 37–48. doi: 10.1145/
2854065.2854071. url: http://doi.acm.org/10.1145/2854065.2854071.

[Kov08] L. Kovács. “Aligator: A Mathematica Package for Invariant Generation (System
Description)”. Automated Reasoning, 4th International Joint Conference, IJCAR
2008, Sydney, Australia, August 12-15, 2008, Proceedings. Springer, 2008, pp. 275–282.
doi: 10.1007/978-3-540-71070-7_22. url: http://dx.doi.org/10.1007/978-
3-540-71070-7_22.

[KR16] L. Kovács and S. Robillard. “Reasoning About Loops Using Vampire”. Proceedings
of the 1st and 2nd Vampire Workshops. Vol. 38. 2016, pp. 52–62.

[KV09a] L. Kovács and A. Voronkov. “Finding loop invariants for programs over arrays
using a theorem prover”. Fundamental Approaches to Software Engineering, 12th
International Conference, FASE 2009, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009.
Proceedings. 2009, pp. 470–485. doi: 10.1007/978- 3- 642- 00593- 0_33. url:
http://dx.doi.org/10.1007/978-3-642-00593-0_33.

[KV09b] L. Kovács and A. Voronkov. “Interpolation and Symbol Elimination”. Automated
Deduction - CADE-22, 22nd International Conference on Automated Deduction,
Montreal, Canada, August 2-7, 2009. Proceedings. 2009, pp. 199–213. doi: 10.1007/
978-3-642-02959-2_17. url: http://dx.doi.org/10.1007/978-3-642-02959-
2_17.

[KV09c] L. Kovács and A. Voronkov. “Interpolation and symbol elimination”. Automated
Deduction–CADE-22. Springer, 2009, pp. 199–213.

[KV13] L. Kovács and A. Voronkov. “First-Order Theorem Proving and Vampire”. Computer
Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg,
Russia, July 13-19, 2013. Proceedings. 2013, pp. 1–35. doi: 10.1007/978-3-642-
39799-8_1. url: http://dx.doi.org/10.1007/978-3-642-39799-8_1.

[Nor09] U. Norell. “Dependently Typed Programming in Agda”. Proceedings of the 4th
International Workshop on Types in Language Design and Implementation. TLDI
’09. Savannah, GA, USA: ACM, 2009, pp. 1–2. isbn: 978-1-60558-420-1. doi: 10.
1145/1481861.1481862. url: http://doi.acm.org/10.1145/1481861.1481862.

[Pau94] L. C. Paulson. Isabelle - A Generic Theorem Prover (with a contribution by T.
Nipkow). Vol. 828. Lecture Notes in Computer Science. Springer Science & Business
Media, 1994. isbn: 3-540-58244-4. doi: 10.1007/BFb0030541. url: http://dx.doi.
org/10.1007/BFb0030541.

[QS82] J. Queille and J. Sifakis. “Specification and verification of concurrent systems in
CESAR”. International Symposium on Programming, 5th Colloquium, Torino, Italy,

32

http://dx.doi.org/10.1007/978-3-642-02658-4_48
http://dx.doi.org/10.1007/978-3-642-02658-4_48
http://dx.doi.org/10.1007/978-3-642-02658-4_48
http://dx.doi.org/10.1007/978-3-319-11936-6_14
http://dx.doi.org/10.1007/978-3-319-11936-6_14
http://dx.doi.org/10.1007/978-3-319-11936-6_14
http://dx.doi.org/10.1007/978-3-642-19835-9_7
http://dx.doi.org/10.1007/978-3-642-19835-9_7
http://dx.doi.org/10.1145/357980.358001
http://doi.acm.org/10.1145/357980.358001
http://doi.acm.org/10.1145/357980.358001
http://dx.doi.org/10.1145/2854065.2854071
http://dx.doi.org/10.1145/2854065.2854071
http://doi.acm.org/10.1145/2854065.2854071
http://dx.doi.org/10.1007/978-3-540-71070-7_22
http://dx.doi.org/10.1007/978-3-540-71070-7_22
http://dx.doi.org/10.1007/978-3-540-71070-7_22
http://dx.doi.org/10.1007/978-3-642-00593-0_33
http://dx.doi.org/10.1007/978-3-642-00593-0_33
http://dx.doi.org/10.1007/978-3-642-02959-2_17
http://dx.doi.org/10.1007/978-3-642-02959-2_17
http://dx.doi.org/10.1007/978-3-642-02959-2_17
http://dx.doi.org/10.1007/978-3-642-02959-2_17
http://dx.doi.org/10.1007/978-3-642-39799-8_1
http://dx.doi.org/10.1007/978-3-642-39799-8_1
http://dx.doi.org/10.1007/978-3-642-39799-8_1
http://dx.doi.org/10.1145/1481861.1481862
http://dx.doi.org/10.1145/1481861.1481862
http://doi.acm.org/10.1145/1481861.1481862
http://dx.doi.org/10.1007/BFb0030541
http://dx.doi.org/10.1007/BFb0030541
http://dx.doi.org/10.1007/BFb0030541


April 6-8, 1982, Proceedings. 1982, pp. 337–351. doi: 10.1007/3-540-11494-7_22.
url: http://dx.doi.org/10.1007/3-540-11494-7_22.

[RV03] A. Riazanov and A. Voronkov. Limited resource strategy in resolution theorem proving.
J. Symb. Comput. 36.1-2 (2003), 101–115. doi: 10.1016/S0747-7171(03)00040-3.
url: http://dx.doi.org/10.1016/S0747-7171(03)00040-3.

[Sch02] S. Schulz. E - a brainiac theorem prover. AI Commun. 15.2-3 (2002), 111–126. url:
http://content.iospress.com/articles/ai-communications/aic260.

[SS04] G. Sutcliffe and C. B. Suttner. “The CADE ATP System Competition”. Automated
Reasoning - Second International Joint Conference, IJCAR 2004, Cork, Ireland,
July 4-8, 2004, Proceedings. Springer, 2004, pp. 490–491. doi: 10.1007/978-3-540-
25984-8_36. url: http://dx.doi.org/10.1007/978-3-540-25984-8_36.

[Sut14] G. Sutcliffe. The CADE-24 automated theorem proving system competition - CASC-
24. AI Commun. 27.4 (2014), 405–416. doi: 10.3233/AIC-140606. url: http:
//dx.doi.org/10.3233/AIC-140606.

[The04] The Coq development team. The Coq proof assistant reference manual. Version 8.0.
LogiCal Project. 2004. url: http://coq.inria.fr.

[Tur36] A. M. Turing. On computable numbers, with an application to the Entscheidungsprob-
lem. J. of Math 58.345-363 (1936), 5.

[Vor01] A. Voronkov. How to optimize proof-search in modal logics: new methods of proving
redundancy criteria for sequent calculi. ACM Transactions on Computational Logic
(TOCL) 2.2 (2001), 182–215. doi: 10.1145/371316.371511. url: http://doi.acm.
org/10.1145/371316.371511.

[Vor14] A. Voronkov. “AVATAR: The Architecture for First-Order Theorem Provers”. Com-
puter Aided Verification - 26th International Conference, CAV 2014, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014.
Proceedings. Springer. 2014, pp. 696–710. doi: 10.1007/978-3-319-08867-9_46.
url: http://dx.doi.org/10.1007/978-3-319-08867-9_46.

[Wei+09] C. Weidenbach et al. “SPASS Version 3.5”. Automated Deduction - CADE-22, 22nd
International Conference on Automated Deduction, Montreal, Canada, August 2-7,
2009. Proceedings. Springer, 2009, pp. 140–145. doi: 10.1007/978-3-642-02959-
2_10. url: http://dx.doi.org/10.1007/978-3-642-02959-2_10.

33

http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1016/S0747-7171(03)00040-3
http://dx.doi.org/10.1016/S0747-7171(03)00040-3
http://content.iospress.com/articles/ai-communications/aic260
http://dx.doi.org/10.1007/978-3-540-25984-8_36
http://dx.doi.org/10.1007/978-3-540-25984-8_36
http://dx.doi.org/10.1007/978-3-540-25984-8_36
http://dx.doi.org/10.3233/AIC-140606
http://dx.doi.org/10.3233/AIC-140606
http://dx.doi.org/10.3233/AIC-140606
http://coq.inria.fr
http://dx.doi.org/10.1145/371316.371511
http://doi.acm.org/10.1145/371316.371511
http://doi.acm.org/10.1145/371316.371511
http://dx.doi.org/10.1007/978-3-319-08867-9_46
http://dx.doi.org/10.1007/978-3-319-08867-9_46
http://dx.doi.org/10.1007/978-3-642-02959-2_10
http://dx.doi.org/10.1007/978-3-642-02959-2_10
http://dx.doi.org/10.1007/978-3-642-02959-2_10

	Abstract
	Acknowledgements
	Contents
	Introduction
	Background and Motivation
	Research Question
	Project Objectives
	Research Scope and Aims
	Delimitations
	Contributions
	Research Impact in Society

	Preliminaries
	Formal Definition of Loop Invariants
	Correctness by Contract (Pre- and Post-conditions)
	First-order Logic
	First-order Logic Language
	First-order Logic Theories
	Array Theory

	Automated Theorem Prover
	The First-Order Theorem Prover Vampire
	Alternating Quantifier and Skolemization


	Literature Review
	Verification of the Loops
	Literatures of Invariant Generation using Vampire
	Other Approaches for Invariant Generation

	Program Analysis
	Invariant Generation in Vampire
	Preprocessing of Invariant Generation
	Syntax: Simple Guarded Command Language
	Extended Expressions
	Assertion Language
	Extended Expression Language

	Extracting Loop Properties
	Static Properties of Scalar Variable
	Update Properties of Array Variable
	Array Non-update
	Monotonic Indexing


	Reasoning with Vampire
	Logical Inferences using Vampire
	Vampire and the FOOL: Polymorphic Arrays
	First-Order Reasoning about Array Properties
	Logical Inferences
	Symbol Elimination
	Reaching Correctness in Different Ways
	Overview of Invariant Generation Workflow

	Results
	Results of all test cases
	Case study: swap
	Other Invariants

	Conclusion and Future Work
	Conclusion
	Future Work

	References

