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ABSTRACT

The orientation and movement of an excavator arm needs to be estimated by
the use of accelerometers and gyroscopes positioned along the arm. Know-
ing this information allows the development of multiple new applications for
heavy construction equipment, such as load indication of the mass in the
bucket and map integration using GPS. Further, the arm may be used to
measure the construction site and this time consuming task could therefore
be simplified. The performance of two different distributed filter implemen-
tation, extended Kalman filter and unscented Kalman filter are evaluated
in terms of roll and pitch, angular velocity and acceleration estimates. The
implementations represent orientations using quaternions and make use of
the geometry of the excavator to achieve a better estimate of the system.

The applicability of the proposed algorithm has been thoroughly demon-
strated on a representative model. Similar performance are seen in both
implementations, and both filter estimate the system parameters within the
range of usage. For the last inertial measurement unit in line, mounted on
the bucket of the excavator with a total arm length of more than 10 m, the
root mean square error is as low as 0.63°and 0.05°angles for pitch and roll
respectively during simulated working conditions.

However, the implementations differs in computational load as the motion
model of the extended Kalman filter make use of a small angle approxima-
tion and because of the different methods used in propagating the mean and
covariance in the two filter implementations. For implementation on embed-
ded systems the extended Kalman filter using small angle approximation is
recommended for its ease of use and low computational cost.
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1
Introduction

In the process of automating heavy machine equipment, there is a need to achieve
a better description of the system in real time. This thesis evaluates different
distributed filtering implementations on an excavator model, based a system of
inertial measurement units mounted on the machine and along the arm.

1.1 Background and motivation

Heavy construction equipment becomes more integrated with automation control, allow-
ing easier operation of the machine and even fully controlled equipment. This requires
more information about the state of the machine, such as the accelerations, velocities
and positions of an excavator arm. With the knowledge of the position and orientation
of the machine, the information can be incorporated with maps to simplify the opera-
tion and give information about critical areas in the surrounding such as pipelines and
electrical lines.

Machine control projects aiming in automating certain tasks of the machine may be
developed using the information about the state of the machine. Functionality such as
weight estimation is possible by knowing the pressure in the cylinders and the accelera-
tion, velocity and position of the excavator arm.

A system of inertial measurement units (IMUs) mounted on an excavator are used
to estimate the position, velocity and acceleration of the excavator arm. The absolute
position may be measured with GPS to a fixed point on the machine, and the relative
position of the specific part is calculated by translating over its own geometry. This
method required knowledge about the orientation and position of interconnecting parts,
that may be measured by IMUs.

An IMU consist of an accelerometer that measures the experienced acceleration and
a gyroscope which gives output about the observed rotational velocity. Together these
two sensors measure 6 degrees of freedom, which can fully express the orientation of the
unit.

1



1.2. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

The accelerometer and gyroscope have different uncertainties, which makes it difficult
to trust any of the sensors. All types of accelerations are detected by the accelerometer,
therefore difficulties arises in estimating the orientation relative gravity during motion.
The rate gyroscope have some zero-offset that changes over time, expressing rotations
even at rest. Other factors such as temperature may also affect the sensors. Estimation
theory seeks to fuse the sensors to reduce the uncertainties and get a better estimate of
the orientation. On a single machine, there may be between 5 to 7 IMUs connected in a
network. These can work independently, or in a network to achieve the satisfied results.

1.2 Problem statement

The current Attitude and Heading Reference System (AHRS) does not deliver estimates
of the state of the system accurate to the degree that is needed. Estimation of the
orientation, angular velocity and angular acceleration needs to be improved to reach the
aspired precision of the developed applications.

1.3 Aims and objectives

The objective is to develop an algorithm for sensor fusion that will increase the orien-
tation estimate of each node of an array of IMUs. Accurate estimates of the angular
velocity and angular acceleration of each IMU needs to be delivered. The concept is to
be implemented on the existing hardware, and benchmarked against current Attitude
and Heading Reference System (AHRS) algorithm.

The aim of the fusion algorithm is to estimate the orientation, velocity and acceler-
ation of each node accurately, and the position of the end node using the knowledge of
the system of linkage better than the current AHRS.

1.4 Concept overview

The filter implementation are based on Bayesian statistics, that aim to construct the
probability density function (PDF) of the state estimates by using all available informa-
tion. The system of IMUs communicate with each other to make the system adaptive to
changes in acceleration and velocity, and give a more accurate estimate of the orientation
of the system. By mounting the system of IMUs in the plane of an excavator arm and
using the information of linkage system, the IMUs use the information of other IMUs
to estimate their orientation, velocity and acceleration. Mounting the IMUs in this way
results in the same roll of all IMUs. Further, using the estimates of the angular accel-
eration and angular velocity allows the IMUs to predict the experienced tangential and
centrifugal acceleration of other IMUs using the length of link in the rigid body system.

A figure of a part of the system is shown in Figure 1.1. An IMU is mounted on
the beginning of the stick, in such a way that it will have the same roll as the other
IMUs mounted on the excavator arm and be able to predict the acceleration of the IMU

2



CHAPTER 1. INTRODUCTION 1.5. THESIS OUTLINE

mounted on the bucket. Using the knowledge of the length of the stick li, the IMU
mounted on the stick may predict the experienced acceleration of the IMU mounted on
the bucket.

xi

yi

xi−1

yi−1

li

Figure 1.1: An excavator arm with an IMU mounted on the stick and one on the bucket

An extended Kalman filter (EKF) and an unscented Kalman filter (UKF) implemen-
tation are evaluated that use the predicted measurements of other sensors. Shown in
Figure 1.2 is how the received predicted acceleration, and the estimated roll of the ex-
cavator arm, are incorporated in the filter implementations. The filter implementations
are initialized with an initial state with corresponding state variance matrix, followed
by the Kalman prediction step of the internal state vector. The measurement step uses
the information of the measurements from the sensors, and the information from the
system of IMUs to incorporate the information about the roll of the excavator arm and
the predicted acceleration of the IMU. Using the a posteriori estimate of the state, the
IMU predicts the acceleration of its neighbour IMU with the corresponding certainties
and broadcasts all the information on the CAN bus. Only the first IMU estimate the roll
angle of the excavator arm, and will therefore not receive any information about the roll
of the system. The distributed system of IMUs, estimating the experienced acceleration
and roll of other sensors is shown to be both very responsive and adaptive.

1.5 Thesis outline

This thesis begins with a short introduction in Chapter 1, where the problem is formu-
lated and an overview of the concept is shown. Study of previous literature and work is
described in Chapter 2. Chapter 3 introduces the necessary theoretical knowledge used

3



1.5. THESIS OUTLINE CHAPTER 1. INTRODUCTION

IMU loop CAN bus

Initialize filter

Predict evolution of internal state Estimated roll of IMU

Measurement update of internal state

Broadcast internal statePredict acceleration of next IMU

Estimated acceleration of IMU

Broadcast predicted acceleration

Figure 1.2: An illustration of the different steps in the filter implementations

in this report. The theory is applied on the specific system in Chapter 4 and Chapter 5.
In Chapter 4 is the system modelled, and information regarding the specific sensors, mi-
crocontrollers and communication is described. The filters are described in Chapter 5,
where the filtering technique and the models are linked. Following are the results pre-
sented in Chapter 6, that are discussed in Chapter 7. The ending Chapter consists of
the concluding ideas in Chapter 8.

4



2
Existing systems and

Related work

Following are the related work and publications that have been performed in
the field of study. Different filtering techniques and different representation of
angles are analyzed, together with the corresponding motion and sensor models.

There have been tremendous amount of research on IMU and AHRS over the last cou-
ple of years. Mainly due to the low price of microelectromechanical systems (MEMS),
and the integration of MEMS in mobile devices allowing everyone to have their own
AHRS and inclination unit in their cell phone. AHRS have for a long time been used
in airplanes and naval applications, where tracking the orientation and position is of
high importance at all times. Most recently, there have been a great interest among
academics and hobbyist to construct Quadracopters for which knowing the orientation
is of high importance.

Madgwick et al. have constructed an orientation filter for IMUs that incorporates
tri-axis accelerometer, tri-axis gyroscope and optionally a tri-axis magnetometer. A
quaternion representation is used in the filter implementation, effectively avoiding any
risk of singularity and allowing the gyroscope to be represented as a quaternion derivative
and integrated in the sensor frame. The accelerometer and magnetometer data is used
in a gradient-descent algorithm to compute the direction of the gyroscope measurement
error as a quaternion derivative. The combination of the gradient descent algorithm and
the raw output from the gyroscope is integrated by the Runge Kutta integration method
for quaternions, and converted into the Euler angles to represent roll, pitch and yaw in the
world frame. The filter has gained much of its popularity by its easy implementation and
low cost of computation power making it exceptional for microcontrollers and embedded
systems. In the publications [18, 19] the authors present results matching the ones of
EKF with root mean square error (RMSE) errors below 0.8° for static measurements
and below 1.7° for dynamic RMSE. The filter assumes the acceleration in the world

5
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frame to be the true gravity, which in practice is seldom true. Once the sensor is in
motion, there will be other accelerations detected by the accelerometer causing a flawed
estimation of the gravity, yielding incorrect data to the filter. The lightweight filter does
not estimate other state parameters than the quaternion.

Sabatini estimates the orientation of a rigid body by the use of a quaternion based
EKF. A tri-axis accelerometer, gyroscopes and magnetometer are used to provide the
necessary data. The sensors are modelled with individual scaling factor, bias and noise.
The bias and scale factor are known to be functions of environmental conditions, which
is especially true for low cost MEMS gyroscopes. Bias of the gyroscope tend to change
with temperature, which is even seen during the warm-up period [27], and may continue
to do so dependent on the surrounding temperature. The gyroscope measurements are
used as inputs to the motion model, which is integrated to present a quaternion of
the orientation. The measurement model is constructed by the accelerometer and the
magnetometer, for which the orientation of the gravity and the orientation of north are
rotated to the sensor frame by the estimated quaternion. Running the filter at 25 Hz
yields RMSE errors in the magnitude of 1.01° and 1.19° in roll and pitch respectively
[27]. Although the applications are for studies of the human arm motion, no care is
taken to model the movement of the human motion making the filter unable to detect
external accelerations.

In robotic orientation estimation, Roan et al. investigate the use of accelerometers
and gyroscopes instead of the rotational encoders traditionally used on robot arms.
The research compares the complementary filter (CF), the time varying complementary
filter (TCF) and an EKF expressed in Euler angles with the encoder value given by
the robot. The CF and TCF are implemented by passing the calculated angle from the
accelerometer through a low pass filter and the corresponding integrated angle from the
gyroscope through a high pass filter. The constant for the cut off frequency can either
be fixed for the CF or varying when other motions are detected on the accelerometer as
implemented in the TCF. The motion model for the EKF makes use of the geometry of
the robot arm. Since the robot is limited to only rotational joints, the angles can easily
be solved by rotation matrices in Euler angles to form a model of the accelerometer and
the gyroscope.

Results show that the TCF and CF exceeds the result of the EKF in the links closer
to the body, whereas the EKF shows better results in the links further away. Although
the authors have used the geometry when modelling the motion model, no model for the
motion accelerations is proposed. It is however, proposed to make use of the coupled
kinematic to find the motion accelerations to better estimate the joint angles.

Any rigid body may make use of the geometry to find a more suitable motion model
in order to find a better estimate. Trimpe & D’Andrea positioned several accelerometers
and gyroscopes in a cube, that was to balance on one of its corners. The relationship
between the placement of the accelerometer was used to find the introduced motion
accelerations, and better estimate the acceleration due to gravity. An optimal linear
estimator is proposed in the least square sense, if the knowledge of the system dynamics
is not used. All the accelerometers broadcast their information, and the filtering is

6
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performed individually in each sensor based on the information from the entire system.
Whether the technique is ready to be extended to moving bodies is unknown, although
it has shown satisfactory results in the study [31]. The estimation of the gravity vector
may be used as a basis for further filtering and fusion technique, for moving dynamic
bodies when incorporated with gyroscopes.

The research performed by Vihonen & Honkakorpi shows excellent results incorpo-
rating the rate gyroscopes, accelerometers and a dynamic motion model that integrate
the introduced motion accelerations. The setup consists of a multi body linkage assem-
bly with only rotational joints, and two IMUs positioned at each end-node of each rigid
link. Using Euler angles and rotational matrices, the relationship between each IMU
relative the previous IMUs is modelled using the angular velocity, angular acceleration
and the linear acceleration in each previous point. For this, the angle, the angular ve-
locity and the angular acceleration is estimated in each joint and fused by the principles
of the complementary filter. The author uses a PI-type CF which yields RMSE as low
as 0.06° , 0.09° ,0.14° for the first consecutive three joints using link lengths of 0.47 m.

The fact that Euler angles suffers from singularities renders them useless in some
applications. Further, using a linear filter such as the CF is not optimal when estimat-
ing angles and the nonlinearity the rotation causes. In [15], Kraft solves the estimation
problem of the orientation of a rigid body with accelerometer, rate gyroscope and mag-
netometer measurements with quaternions and an UKF to handle the nonlinear filtering.
The UKF is more accurate and less costly than the EKF, as no Jacobian needs to be
calculated [15]. Although in this application, there are several extensions to the original
UKF to deal with the unit quaternions and the difficulties of finding the mean rotation
of several quaternions which the author addresses and proposes solutions for. Results
are shown, but no numeric data as to how well the filter estimates the given orientation
is supplied.

The study of related work has analysed the sensor models, the motion models and
different filtering techniques. The different ways of expressing the angles have a big
impact on both the filter and the model, which may results in different accuracy of the
estimates. Following are the proposed filters, motion models and sensor models.

7
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3
Background Theory

The following Section describes general theory about the sensors, the commu-
nication between the sensors and the filtering techniques used. Each IMU is
constructed by sensors connected to a microcontroller, which in term communi-
cate with other microcontrollers and other systems through a CAN bus. A rigid
multi body system can be represented in different ways to find the model linking
the different bodies to each other. Further, the dynamic system of an excavator
is explained and related to the measurements of the sensors. However, a model
can never fully describe a system, therefore there are uncertainties relating to
both the measurements from the sensors and the dynamics of the excavator.
This requires mathematical estimators to find the best estimation of describing
the system, which are discussed in the section of estimation theory.

3.1 Sensors

Microelectromechanical systems (MEMS) have enabled the reduction in size of mechan-
ical sensors, and have increased their functionality drastically. The combination of cost,
size and performance allow the sensors to be used in a wide range of different products.
The automotive field have exerted the strongest push on micromechanical inertial sensor
technology, which have been used for passenger safety systems including airbags, vehicle
dynamics control, and navigation systems [14]. This has introduced a large demand in
volume, allowing the evolution of MEMS to happen. Today’s application of inertial sen-
sors covers a much broader spectrum where their small size and low cost have an even
larger impact [36].

Inertial sensors measure physical quantities of motion of a solid object. Acceleration
of one point of a body and its rate of rotation around three orthogonal axes provide a
full description of the body’s motion [14]. Other sensors, such as GPS or magnetometer,
can be incorporated to give an even better estimate of the orientation of the object [12].

9



3.1. SENSORS CHAPTER 3. BACKGROUND THEORY

3.1.1 Accelerometer

An accelerometer measures the proper acceleration. It measures the acceleration it
experiences relative to free fall. These types of accelerations are popular measures in
terms of the acceleration of gravity, where 1 g ≈ 9.82 m/s2. When held fixed in the
gravitational field the accelerometer will indicate 1 g upwards relative to a free falling
reference frame. Any acceleration introduced by motion will be indistinguishable from
acceleration caused by gravity. For the practical purpose of finding the acceleration of
objects with respect to the Earth, such as for use in an inertial navigation system (INS),
a knowledge of local gravity is required.

The proper acceleration measured is not necessarily the equivalence to the rate of
change of velocity in the reference frame. Instead, the accelerometer measures the ac-
celerations experienced by a proof mass attached in the sensor frame with respect to
the reference frame. An accelerometer at rest will measure the acceleration of gravity,
and an accelerometer in a turning car will measure the acceleration of the vehicle, the
centrifugal acceleration and the gravity.

There are a range of different types of accelerations to meet the multiple applications
they are used in. The highly sensitive accelerometers are components of INS for aircraft
and military systems. There are accelerometers used to measure and detect vibrations
and shocks, and accelerometers used in tablet computers and digital cameras to detect
the orientation of the product and rotate the screen thereafter. MEMS accelerometers
are available in a wide variety of measuring ranges, reaching up to thousands of g’s. The
designer must make a compromise between sensitivity and the maximum acceleration
that can be measured.

A MEMS accelerometer consist of a damped proof mass anchored to a fixed frame.
The anchoring can be modelled as cantilever beam with surrounding residual gas sealing
the device, having an effective spring constant K and a damping factor D. Any external
acceleration on the system will displace the proof mass, and the displace is measured
to give an indication of the external acceleration. A figure of a MEMS accelerometer is
shown in Figure 3.1a.

The mechanical equation for the system can be written shown in Equation (3.1),
where a is the acceleration in the world frame and ẍ is the acceleration relative the fixed
frame in the sensor [17]. Dẋ and Kx are the forces introduced by the damping and the
spring. Taking the Laplace transformation of the mechanical systems yields the result
in Equation (3.2).

F = ma = mẍ+Dẋ+Kx (3.1)

H(s) =
x(s)

a(s)
=

1

s2 + D
ms+ K

m

=
1

s2 + ωr
Q s+ ω2

r

, (3.2)

where ωr is the resonance frequency and Q the quality factor. For most applications,
the applied acceleration frequency is much smaller than ωr, making the mechanical
sensitivity of the device 1/ω2

r . The quality factor is Q = ωrm/D, for which [13] shows
the importance of a larger mass.
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There are single and multi-axis models of accelerometers, to detect the orientation
and motion in different directions. Most MEMS accelerometers operate in only one
direction and, by integrating several accelerometers perpendicularly a sensor measuring
in two or three axis may be achieved. Manufacturing error may cause misalignment
errors causing the respective axis not to be perpendicular. This is commonly referred to
as cross axis sensitivity in the sensors.

3.1.2 Gyroscope

The accelerometer is incapable of finding rotational rate of itself, therefore the gyroscope
is used. Together with the accelerometer, the rate gyroscope is widely used in INS,
robotics and entertainment electronics. Traditional rotating wheels, and precision fiber
optic and ring laser gyroscopes are all too expensive and too large to be used in most
modern applications. MEMS can reduce the fabrication costs and shrink the sensor size,
and allow the electronics to be integrated on the same silicon chip [36].

Modern MEMS rate gyroscopes use at least one vibrating mechanical element that
responds to the Coriolis force if its motion is disturbed by a forced rotation around a
sensitive axis. This way, there is no need of rotating parts that would require bearings.
The size of the Coriolis force generated represents a direct measure for the applied rate of
rotation [14, 17, 36, 35]. A figure illustrating a MEMS gyroscope is shown in Figure 3.1b.

(a) Accelerometer [9] (b) Gyroscope [37]

Figure 3.1: Mems sensors

Construction of MEMS rate gyroscope may cause geometrical imperfections in the
vibrating mechanical structure, and the sense electrodes causing an output signal even in
the absence of rotation [38]. The architecture of the rate gyroscopes are fabricated with
silicon, which is a temperature sensitive material and its physical characteristics vary
greatly with ambient temperature [38]. With an increased ambient temperature, the
Young’s module of the silicon material changes [35], causing inaccuracies in the output.
There are also thermoelectric effects where the difference in temperature introduces volt-
age differences, causing the sensor to give a bias output. The effect of temperature and
humidity may result in a permanent offset [25]. An important performance parameter
for vibratory gyroscope is its zero rate output [36].
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Inexpensive vibrating rate gyroscopes can be incorporated with accelerometer to give
an output that has six degrees of freedom, and can fully describe the motion of the sensor.
These can be produced with the MEMS technology to keep the costs low and the size
small, allowing the sensors to be mobile. Together with a microcontroller, they can act
as standalone embedded systems.

3.2 Microcontroller

A microcontroller is a single integrated circuit, similar to a computer, with a processor
core, memory and programmable input and output connectors. These units, as compared
with computers, are design to run in real time, in embedded applications.

The use of microcontroller simplifies communication with different sensors, as a mi-
crocontroller can communicate over inter-integrated communication (I2C), Serial Periph-
eral Interface bus (SPI bus). Between each other, the microcontroller may communicate
over the CAN bus. Microcontroller are widely used as smaller units in larger systems,
where the computational power differs greatly between the different applications.

3.3 CAN communication

Controller area network (CAN) is a communication standard among vehicles designed to
allow microcontrollers, and standalone devices to communicate over a network, without
the need of a host computer and intermediate connections. It was designed specifically for
automotive applications, but is now also used in other areas such as aerospace, maritime
and construction equipment. The protocol was officially released in 1986 and have been
revised several times since. Today, there are different standards used to meet the specific
criteria and demands. The CAN standard mainly used in vehicle components is CAN
2.0B1 which allows an extended frame with a 29 bit identification address as compared
to CAN 2.0A which allows an 11 bit address. The baud rate can be set to either 250
kbit/s or 500 kbit/s.

For the communication to function proper, each node requires a central processing
unit (CPU) that can decipher the messages and transmit itself. Several sensors can be
connected to the same CPU and share the resource to broadcast their information on the
network. Further, a CAN controller with a synchronous clock is necessary that acts as
a link between the CPU and the bus. The controller can store the serially received bits,
and forward these as an entire message once it is received. To protect the controller, there
is a transceiver that can convert the signal received on the bus to levels the controller
expects. There is usually some protective circuitry on the transceiver, to protect the
CAN controller and inner circuitry.

The messages are transmitted serially onto the bus and is sensed by all nodes. Every
node can send messages on the bus, but not simultaneously. The addresses are con-
structed by identification bits, which can have different levels of priority. A logical 1

1SAE J1939
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is recessive to the logical 0, making lower addresses (addresses starting with 0) more
dominant.

CAN devices send data across the network in packets called frames that consists of
an address, data and control bits. The frames begin with a dominant bit, the start of
frame bit, followed by the identification bits. The full layout of a frame can be seen in
Table B.1.

3.4 Coordinate frames

Coordinate frames are used to express the position and orientation of a point relative a
reference. In this report the earth-centered earth-fixed (ECEF), east north up (ENU)
and body frames are studied. The ECEF frame rotates along the Earth and has its
origin at the centre of the Earth (hence Earth-fixed). The z-axis passes through the
north pole, but does not exactly coincide with the rotational axis of the Earth, and the
x-axis passes through the intersection of the equatorial plane and the reference meridian
[22]. The y-axis completes the right hand coordinate system in the equatorial plane.
Shown in Figure 3.2 are the coordinate system.

Z

Y

X

North

East

Up

ecef

ecef

ecef

φ

λ

Figure 3.2: The coordinate systems [33]

The ENU frame, is a local tangent plane (LTP), and used to represent attitudes and
velocities of objects near the surface of the Earth. This coordinate frame has its x-axis
pointing east, y-axis pointing north and the z-axis completes the right hand system by
pointing up [22]. Another common system is the north east down (NED) system, where
the x, y, and z axis lies along north, east and down to comply with the right-hand
system.

The body frame is a coordinate system usually located in the center of gravity of
an object. The rotation around the axis pointing in the forward direction is called the

13
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roll-axis, and the rotation around the transverse direction is known as the pitch-axis.
Rotations around the last axis that completes the right-hand system and points upwards,
are referred to as the yaw or heading of the system. The system is seen in Figure 3.3a.
The sensor centered coordinate system is used. It is a coordinate system aligned with
the measurement axis of the sensor, seen in Figure 3.3b.

yaw axis

roll axis

pitch axis

(a) Excavator frame (b) Sensor frame

Figure 3.3: The body and sensor frames

3.5 Expressing rotations

Rotations between different frames and coordinate systems can be represented in different
ways. Following are the rotation matrices that are mainly used when describing Euler and
Tait-Bryan angles, following with a section about quaternion representation of rotations.

3.5.1 Rotations

A rotation matrix is used to change a vectors’ orientation, not its magnitude. In 3-space,
the rotation around the x, y and z axis can be achieved using the rotation matrices seen
in Equation (3.3)[34].

Rx(ψ) =

 1 0 0

0 cosψ sinψ

0 − sinψ cosψ

 Ry(φ) =

 cosφ 0 − sinφ

0 1 0

sinφ 0 cosφ



Rz(θ) =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 R = RxRyRz (3.3)

It is important to notice that the order of rotation makes a difference. Hence, letting
the rotation of φ = 90° , results in a Ry that aligns the rotational axis of Rx and Rz. As
a result, one degree of freedom is lost.
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Euler angles are constructed by multiplying three consecutive rotation matrices, but
letting the first and last matrix be a rotation around the same axis. Tait-Bryan angles
describing commonly describing roll, pitch and yaw uses three different axis to describe
the orientation of one frame relative another.

3.5.2 Quaternions

Quaternions can be used to describe rotations. The main advantage over rotation matri-
ces is that the quaternions do not suffer from Gimbal lock. The convention is therefore
popular in describing the orientation of satellites and airplanes. Quaternions are de-
fined with a scalar (qw), with three imaginary vector components (qxi, qyj, qzk) [6].
The imaginary part has the properties seen in Equation (3.4). Following the multipli-
cation of imaginary numbers, the quaternion multiplication, ⊗ can be expressed as in
Equation (3.5).

i2 = j2 = k2 = −1 ij = −ji = k

jk = −kj = i ki = −ik = j (3.4)

q1 ⊗ q2 =


q1w −q1x −q1y −q1z
q1x q1w −q1z q1y

q1y q1z q1w −q1x
q1z −q1y q1x q1z




q2w

q2x

q2y

q2z

 (3.5)

A quaternion rotation around an axis e = [ex, ey, ez]
T with the angle φ is represented

in the following quaternion seen in Equation (3.6).

q0 = cos(φ/2) qxyz =
e

|e|
sin(φ/2) (3.6)

Rotating a vector p = [0, px, py, pz]
T is shown in Equation (3.7). The quaternion

inverse, q−1, is shown in Equation (3.8).

p′ = q−1 ⊗ p⊗ q (3.7)

q−1 =

(
qw

−qxyz

)
(3.8)

The derivative of a quaternion is shown in Equation (3.9) as expressed in [1, 16].
The rate of rotation is expressed in a quaternion using the three axes such that ω =
[0, ωx, ωy, ωz]

T .

q̇ =
1

2
q⊗ ω (3.9)
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3.6 Kinematics model

In the following section, the kinematic model describing how the state of the system
evolve in time is described. The Denavit Hartenberg (DH) convention is presented which
is commonly used in robotics, followed by a relative method of finding accelerations in
a rigid multi body system.

3.6.1 Forward position kinematics

The Denavit Hartenberg (DH) parameters are commonly used when representing kine-
matic models of robots. A robot with n joints, will have n + 1 links [11], where the
parameters are used to represent the position, and orientation relative two frames [4].
The Denavit Hartenberg (DH) parameters are regarded as the products of two rotations
and two translations, as seen in Equation (3.10). Forward kinematic can be described
from the base frame to each frame in the system, by going through each link up to the
specific frame.

Coordinate frames are attached to the joints between two links, such that the first
transformation is associated with the joint and the other associated with the link [30].
Joints can be modelled as either revolute or prismatic joints, to represent the relative
movement between the links in the system.

The DH representation is seen in Equation (3.10). The constants α and a are specific
for each joint in the system and are called link parameters [11]. a is the distance between
the axes zi−1 and zi, and α is the twist angle that screws the zi−1 axis into the zi axis.
Since each joint is defined with only one degree of freedom, i.e. can be only be either
prismatic or revolute, only one of the variables θ and d is variable and the other is fixed.
For a revolute joint θ, and for a prismatic joint d is used, where d is the distance between
the xi−1 axis and the xi axis. θ is the angle that screws the xi−1 axis into the xi axis.

i−1Ai = Transzi−1,diRotzi−1,θiTransxi−1,aiRotxi−1,αi

=


cos(θi) − cos(αi) sin(θi) sin(αi) sin(θi) ai cos(θi)

sin(θi) cos(αi) cos(θi) − sin(αi) cos(θi) ai sin(θi)

0 sin(αi) cos(αi) di

0 0 0 1

 (3.10)

The transformation between two adjacent frames can be expanded to go, link by
link, to any frame in the system. To find the orientation and position of the end frame
relative the base frame, multiplying consecutive DH parameters from the base to the
end node gives the satisfying result. This is seen in Equation (3.11) using only revolute
joints [24].

0An =0 A1(θ1)
1A2(θ2) ...

n−1An(θn) (3.11)
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3.6.2 Relative motion

The relative motion between two moving frames can be calculated by deriving the DH
parameters with respect to time. Using this method, the forward angular and linear
motion of any link in the system can be found[11]. The relative motion can also be
described in the local coordinate system [3]. Considering a point p, moving in coordi-
nate system xyz, can be expressed in the global coordinate system XY Z and the local
coordinate system as in Equation (3.12). The velocity expressed in the global coordinate
system then becomes as in Equation (3.13) when deriving Equation (3.12) with respect
to time.

rp/o = ro′/o + rp/o′ (3.12)

vp = vo′ + (vp)xyz + ω × rp/o′ (3.13)

Angular acceleration is expressed in α, and θ is the angular velocity in the global co-
ordinate system. The acceleration of the point p in the global coordinate system can
be achieved by deriving Equation (3.13) with respect to time as in Equations (3.14)
to (3.17).

ap =
d

dt
vp =

d

dt
vo′ +

d

dt
(vp)xyz +

d

dt
(ω × rp/o′) (3.14)

d

dt
(vp)xyz = (ap)xyz + ω × (vp)xyz (3.15)

(ap)xyz =
∂

∂t
(vp)xyz (3.16)

d

dt
(ω × rp/o′) = α× rp/o′ + ω × [(vp)xyz + ω × rp/o′ ] (3.17)

The acceleration of the point p can now be expressed as in Equation (3.18). For a
fixed rigid body system, with only revolute joints, the acceleration of a point p can be
expressed as in Equation (3.19) since (ap)xyz = (vp)xyz = 0, [3]. The acceleration of
the point p consists of the acceleration of the moving frame ao′ expressed in the global
coordinate system, the tangential acceleration of the point α× rp/o′ and the centrifugal
acceleration ω × (ω × rp/o′).

ap = ao′ + (ap)xyz + α× rp/o′ + ω × (ω × rp/o′) + 2ω × (vp)xyz (3.18)

ap = ao′ + α× rp/o′ + ω × (ω × rp/o′) (3.19)

3.7 Estimation theory

There are different techniques to estimate the state of a time varying system from which
noisy measurements are observed. The state of the system may refer to angles, acceler-
ations and positions that can be observed by measurements. The noise in the measure-
ments means that there is a certain degree of uncertainty. A function of the dynamic
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system may be formed, connecting how the state evolve as a function of time. Know-
ing that the dynamic system can not entirely be modelled deterministically the process
uncertainty is required[29]. The model of the state transition is therefore modelled with
some degree of uncertainty.

3.7.1 Bayesian statistics

Bayesian estimator aim to construct the posterior probability density function (PDF)
of the required state vector, given all the available information. This gives a complete
description state describing the system [28], and it allows tracking of object over time.
The recursive Bayesian filters provide a formal mechanism for propagating and updating
the posterior probability density function (PDF) as new measurements are received.

Dynamic estimation problem assumes two fundamental mathematical models; (i)
the state dynamics and (ii) the measurement equation. The dynamic model, seen in
Equation (3.20), describes how the state vector evolves with time. The xk−1 vector is
the previous state, uk−1 some input to the function fk−1 and vk−1 is the process noise.

xk = fk−1(xk−1, uk−1, vk−1) (3.20)

The formal Bayesian recursive filter consists of a prediction and an update operation.
The PDF of vk−1 is assumed to be known. Equation (3.20) defines a dynamic model,
where a known previous state p(xk−1|Zk−1) is propagated from the time k − 1 to the
time k through the dynamics function. Zk−1 denotes all the measurements received up
to zk−1 [28]. An equivalent probabilistic description of the state evolution is p(xk|xk−1)
which may be called the transition density, or the prior PDF. When f is linear, and v is
Gaussian so is the transition density [28].

Using a measurement equation seen in Equation (3.21), an equivalent conditional
PDF p(zk|xk) may be achieved.

zk = hk(xk, wk) (3.21)

The posterior PDF, p(xk|Zk), may be achieved as Equation (3.22) [28].

p(xk|Zk)︸ ︷︷ ︸
Posterior

= p(zk|xx)︸ ︷︷ ︸
Likelihood

p(xk|Zk−1)︸ ︷︷ ︸
Prior

/

Normalising denominator︷ ︸︸ ︷
p(zk|Zk−1) (3.22)

where p(xk|Zk−1)︸ ︷︷ ︸
Prior at k

=

∫
p(xk|xk−1)︸ ︷︷ ︸
Dynamics

p(xk−1|Zk−1)︸ ︷︷ ︸
Posterior from k-1

dxk−1 (3.23)

3.7.2 Kalman filter

The Kalman filter (KF) is one of the most important data fusion algorithm used today.
It was invented over 50 year ago by Rudolf E. Kálmán, and became popular due to its
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small computational requirement and status as the optimal estimator for one dimensional
linear systems with Gaussian noise [7].

Typical use of the Kalman filter (KF) include smoothing noisy data and providing
estimates and observations of the state of a system. Applications include everything
from financial data, to global positioning systems and smoothing the output from laptop
trackpads.

The KF is an efficient recursive filter that estimates the internal state of a linear
dynamic system, given a series of measurements. Measurements are usually noisy obser-
vations that are related to the estimated state through some dynamics. The estimated
state vector can be much larger than the given measurements.

The recursive algorithm work in a two step process; (i) a state transition prediction
and (ii) a measurement update. The state transition step predicts the estimates of the
next state, for which both the estimated state its estimated covariance are predicted.
The estimated state vector and its covariance are then corrected using the Kalman gain,
which is constructed using measurements from the system. This two step recursive
algorithm can run in real time using only the present input measurements, the previous
calculated state and its uncertainties.

The Kalman filter assumes that the state from the previous time k − 1 evolve

xk = Fk−1xk−1 +Bk−1uk−1 + wk−1, (3.24)

where xk−1 is the state vector at time k − 1, uk−1 is the input vector. Fk−1 is the state
transition matrix, and Bk−1 is the control input matrix at time k − 1. wk−1 is the vector
containing the process noise term for each parameter in the state vector, assumed to
be zero mean with covariance described by Qk−1. Measurements of the system can be
modelled

zk = Hk−1xk−1 + vk−1, (3.25)

where Hk−1 is the state matrix that maps the state vectors into the measurements
domain and vk−1 is the measurement noise term for each measurement. The vk−1 is
assumed to be Gaussian white noise with zero mean and variance Rk−1.

p(wk−1) ∼ N (0, Qk−1) p(vk−1) ∼ N (0, Rk−1) (3.26)

The KF work in a two step process with a state transition model and an measurement
update sequence. The state vector is assumed to follow the state transition matrix Fk−1
shown in Equation (3.27). From the state transition function the predicted a priori state
x̂k|k−1 can be estimated, shown in Equation (3.28)

xk = Fk−1xk−1 +Bk−1uk−1 + wk−1 (3.27)

x̂k|k−1 =E[Fk−1xk−1 +Bk−1uk−1 + wk−1] = Fk−1E[xk−1] +Bk−1uk−1

=Fk−1x̂k−1|k−1 +Bk−1uk−1 (3.28)
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The corresponding covariance matrix, the a priori covariance matrix Pk|k−1 is estimated
using the following derivation

ek|k−1 =xk−1 − x̂k|k−1 = Fk−1(xk−1 − x̂k−1|k−1) + wk−1 (3.29)

Pk|k−1 =E[ek|k−1 e
T
k|k−1]

=E[(Fk−1(xk−1 − x̂k−1|k−1) + wk−1)(Fk−1(xk−1 − x̂k−1|k−1) + wk−1)
T ]

=Fk−1E[(xk−1 − x̂k−1|k−1)(xk−1 − x̂k−1|k−1)T ]F Tk−1

+ Fk−1E[(xk−1 − x̂k−1|k−1)wTk−1] + E[wk−1(xk−1 − x̂k−1|k−1)T ]F Tk−1

+ E[wk−1w
T
k−1] (3.30)

The state error and process error are assumed to be uncorrelated, which gives the re-
sults shown in Equation (3.31). This yields the result shown in Equation (3.32), where
Pk−1|k−1 is the a posteriori covariance matrix at time k − 1.

Fk−1E[(xk−1 − x̂k−1|k−1)wTk−1] = E[wk−1(xk−1 − x̂k−1|k−1)T ]F Tk−1 = 0 (3.31)

Pk|k−1 = Fk−1E[(xk−1 − x̂k−1|k−1)(xk−1 − x̂k−1|k−1)T ]F Tk−1 + E[wk−1w
T
k−1]

= Fk−1Pk−1|k−1F
T
k−1 +Qk−1

(3.32)

Filter cycle

The filter is initialised with some state estimate x̂0|0 with a covariance matrix P0|0. The
Kalman filter estimates the a priori state vector x̂k|k−1 and its covariance matrix Pk|k−1
using the state transition matrix Fk−1.

x̂k|k−1 = Fk−1x̂k−1|k−1 +Bk−1uk−1 (3.33)

Pk|k−1 = Fk−1Pk|kF
T
k−1 +Qk−1 (3.34)

The update step handles the new information available at time k, where the a priori
estimate must be corrected with the new information which is handled by the Kalman
gain. The measurement model, together with the innovation matrix Sk and the a priori
state error, the covariance matrix Pk|k−1 is used to find the Kalman gain Kk, seen in
Equation (3.36). The Kalman gain is constructed to minimize the variance of the state
vector [8].

Sk = Hk−1Pk|k−1H
T
k−1 +Rk−1 (3.35)

Kk = Pk|k−1H
T
k−1(Sk)

−1 (3.36)

The Kalman gain is used to update the a priori prediction and its covariance matrix.
The gain is constructed to balance the noise levels of the sensor data, and the uncertainty
of the a priori estimate, by weighting their respectively uncertainties.

x̂k|k = x̂k|k−1 +Kk(zk −Hk−1x̂k|k−1) (3.37)

Pk|k = (I −KkHk−1)Pk|k−1 (3.38)
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The a posteriori state vector estimate and the covariance matrix Pk|k are the output of
the filter which are used in the next cycle. There are several applications and extensions
of the KF, such as the extended Kalman filter (EKF) and the unscented Kalman filter
(UKF) which are both better suited for nonlinear systems.

3.7.3 Extended Kalman filter

The extended Kalman filter (EKF) is a nonlinear version of the Kalman filter. Using the
first order Taylor expansion of the nonlinear system equations around the previous state,
allows the retrieval of the distribution a random variable with Gaussian distribution
through nonlinear functions. The approximation is acceptable if the signal to noise ratio
is low, or the nonlinearity is almost linear [2].

Similar to the KF, there is a process function f and a measurement function h
that propagates the state x̂k−1|k−1 one time step through the function f . Likewise, the
predicted measurement ẑk is found by propagating the predicted state x̂k|k−1 through
the function h.

Propagation of uncertainty by linearisation

Since the filter uses a state vector of estimates with corresponding covariances, the
covariance matrices needs to be update to the new time step. In order to propagate
an estimation x̂ ∈ Rn, with mean µx and covariance matrix Σx, the function may be
linearised [23].

y = f(x) ≈ f(µx) + F(x− µx) (3.39)

Where F is the Jacobian of the function f expressed as F = ∂f
∂x

∣∣
µx

. The estimated

vector ŷ will now have mean and a covariance matrix

µy = f(µx) Σy = FΣxFT (3.40)

Filter cycle

The recursive prediction-measurement cycle is shown in Equation (3.43) to Equation (3.51).
Similar to the KF, the EKF is split into one measurement update providing x̂k−1|k−1,
Pk−1|k−1 and a time update yielding x̂k|k−1, Pk|k−1.

A system described by the state transition function f with process noise wk−1, and a
measurement model h with measurement noise vector vk−1. wk−1 and vk−1 are assumed
to be uncorrelated white Gaussian noise with zero mean and covariances given by Qk−1
and Rk−1 respectively.

xk = f(xk−1, uk−1) + wk−1 (3.41)

yk = h(xk) + vk (3.42)

The filter is initialized with an estimate x̂0|0 with corresponding covariance ma-
trix P0|0. The predicted state vector, x̂k|k−1, with its corresponding covariance matrix,
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Pk|k−1, is found by linearising the state transition function around the estimated point,
shown in Equations (3.43) to (3.45).

x̂k|k−1 = f(x̂k−1|k−1, uk−1) (3.43)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1 (3.44)

Fk−1 =
∂f(x, uk−1)

∂x

∣∣∣∣
x=x̂k−1|k−1,uk−1

(3.45)

The predicted measurement is estimated using the predicted state vector, seen in
Equation (3.46). Linearising the measurement model around the predicted state, al-
lows the calculation of the Kalman gain seen in Equation (3.48). The predicted state
vector is updated using the Kalman gain, Equation (3.49) and its covariance matrix in
Equation (3.50).

ŷk = h(x̂k|k−1,uk) (3.46)

Sk = Hk−1Pk|k−1H
T
k−1 +Rk−1 (3.47)

Kk = Pk|k−1H
T
k (Sk)

−1 (3.48)

x̂k|k = x̂k|k−1 +Kk (yk − ŷk) (3.49)

Pk|k = (I −KkHk)Pk|k−1 (3.50)

Hk−1 =
∂h(x)

∂x

∣∣∣∣
x=x̂k|k−1

(3.51)

3.7.4 Unscented Kalman filter

The unscented Kalman filter (UKF) is based on the regular Kalman filter, but able to
handle nonlinear state transition and measurement models. To propagate the covariance
matrices, the filter implementation make use of unscented transform. This, as compared
with the EKF, does not require derivation of the models and thus the Jacobian does not
need to be calculated. Instead, it makes use of the method unscented transform, which
deterministically selects different sigma points each with a corresponding weight that
are propagated through the functions.

A system may have the following form, where xk is the state vector at time k, f is
the state transition function and h is the measurement model. The uncertainties wk and
vk are assumed to be zero mean and normally distributed.

xk = f(xk−1, uk−1) + wk−1 (3.52)

yk = h(xk) + vk (3.53)

Unscented transform

A minimal set of sample points are deterministically chosen and propagated through
the nonlinear function to capture the posterior mean and covariance to the 2nd order of
Taylor approximation [10].
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χ0,k−1 = x̂k−1|k−1 i = 0 (3.54)

χi,k−1 = x̂k−1|k−1 +
√

(n+ λ)Pk−1|k−1
i

∀i = 1,..,n (3.55)

χi,k−1 = x̂k−1|k−1 −
√

(n+ λ)Pk−1|k−1
i−n

∀i = n+ 1,..,2n (3.56)

λ = α2(n+ κ)− n (3.57)

The scaling factor α determines the spread of the sigma points around x̂k−1 and is usually

set to a small positive value, and κ is a secondary scaling factor.
√

(n+ λ)Pk−1|k−1
i

is the ith row or column of the matrix square root of (n + λ)Pk−1|k−1. The square
root can calculated using lower triangular Cholesky factorization, and the state vector
xk−1 ∈ Rn×1 and yk−1 ∈ Rm×1. The corresponding weight to the sigma points are
calculated in the following manner [5].

Wm
0 =

λ

n+ λ
(3.58)

W c
0 =

λ

n+ λ
+ (1− α2 + β) (3.59)

Wm
i = W c

0 =
λ

2(n+ λ)
∀i = 1,...,2n (3.60)

The β parameter adjust the weighting of the zeroth sigma point of the calculation of the
covariance, where β = 2 is optimal for Gaussian distribution [5]. The sigma points are
propagated through the nonlinear function as

χi,k = f(χi,k−1) ∀i = 0,...,2n (3.61)

The predicted state vector x̂k|k−1 of the transformed variable is given by the weighted
sum of the transformed sigma points shown in Equation (3.62). The predicted co-
variance is calculated using the corresponding weight to each sigma point, shown in
Equation (3.63).

x̂k|k−1 =
2n∑
i=0

Wm
i χi,k (3.62)

Pk|k−1 =

2n∑
i=0

W c
i [χi,k − x̂k|k−1][χi,k − x̂k|k−1]T (3.63)

Filter cycle

The UKF makes use of the unscented transform when estimating the mean and the
covariance, and as such no derivation of the nonlinear functions are needed to propagate
the respective variance. By deterministically selecting sigma points χi,k−1 using the
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previous state covariance P xxk−1|k−1, the prediction of the state vector x̂k−1|k and its
covariance matrix P xxk−1|k, is made using the chosen sigma points with its corresponding
weight for mean and covariance. The sigma points are further used to find the estimated
measurement ŷk with its corresponding covariance matrix P yyk .

χi,k = f(χi,k−1, uk−1) x̂k|k−1 =
2n∑
i=0

Wm
i χi,k (3.64)

Yi,k = h(χi,k) ŷk =

2n∑
i=0

Wm
i Yk (3.65)

The corresponding covariance matrices P xxk|k−1, P
yy
k , and the innovation matrix are given

by the equations shown in Equations (3.66) and (3.67). The covariance matrix of the
measurement error is calculated in a similar manner, using the covariance weight and
the sigma points of Y.

P xxk|k−1 =
2n∑
i=0

W c
i [χi,k − x̂k|k−1][χi,k − x̂k|k−1]T (3.66)

P vvk = P yyk +Rk (3.67)

The cross correlation matrix between the observations and the state prediction is
given by Equation (3.68). Knowing the cross correlation matrix, allows the calculation
of the Kalman gain Kk shown in Equation (3.69).

P xyk =
2n∑
i=0

W c
i [χi,k − x̂k|k−1][Yi,k − ŷk]T (3.68)

Kk = P xyk (P vvk )−1 (3.69)

The estimated state vector x̂k|k and the updated covariance matrix P xxk|k are given by

Equations (3.70) and (3.71).

x̂k|k = x̂k|k−1 +Kk (yk − ŷk) (3.70)

P xxk|k = P xxk|k−1 −KkP
vv
k KTk (3.71)

Similar to the other recursive two step Kalman filter implementations, the filter continues
to estimate the state at time k+1, and once the measurements are achieved the predicted
state and its covariance is corrected.
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4
Modelling of the system

A model is seldom complete, and will therefore consists of flaws. However,
some models are more accurate than others, and they are therefore crucial for
the entire solution to work well. In the following Chapter, different models
are described in how the system evolves in time and how the sensors can be
represented.

4.1 State vector

The state of a mechanical system completely describes the system at a particular time.
This is to be modelled, using a state vector describing only the variables needed. There
is a need to describe the orientation, the angular velocity and the angular acceleration.
Further, the bias of the gyroscope needs to be estimated to complete the possibly flawed
measurements of the gyroscope.

The orientation is represented by a quaternion q =
(
qw qx qy qz

)
. This avoids

the problem when two axes align, known as the Gimbal lock. The angular velocity is

estimated in the body frame of the sensor, and is described by ω =
(
ωx ωy ωz

)
.

The angular acceleration and the bias of the gyroscope are both estimated in the body

frame and represented by α =
(
αx αy αz

)T
and b =

(
bx by bz

)
. Thus, the

state vector x ∈ R13x1 is shown in Equation (4.1).

x =
(

q ω α b

)T
(4.1)

4.2 Excavator model

The model of the excavator describes how all the links are connected, and how the
inclinations, velocities and accelerations in each link affect each part of the system. The
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excavator is modelled using the Denavit Hartenberg (DH) parametrization as seen in
Table 4.1.

Table 4.1: Parameters for Denavit Hartenberg

# Joint ai αi di θi

1 Rotation between platform and house px π/2 0 θ1

2 Rotation between the house and first boom l1 0 pz θ2

3 Rotation between the first boom and the second boom l2 0 0 θ3

4 Rotation between the second boom and stick l3 0 0 θ4

5 Rotation between the stick and the bucket l4 0 0 θ5

The table shows the parameters used for the DH parametrization of an excavator. There
are solely rotational joints, going from the platform of the excavator to the end node of the
bucket.

An excavator can be constructed in several ways. In this report, an excavator is
modelled on wheels, with a rotational axis between the platform and the house. The
boom is in two parts, followed by a stick and a bucket. As such, there are five revolute
joints with the joint angles θi=1..5. The parameters li=1..4 corresponds to the length of
the first and second boom, stick and the bucket respectively. The parameter px and
pz corresponds to the translation from the revolute joint between the house and the
platform, and the position of the joint between the first boom and the house.

A Volvo excavator can be seen in Figure 4.1a. The specific excavator is on wheels,
and have a boom in two parts, a stick and a bucket. A model of an excavator is seen in
Figure 4.1b.

(a) Volvo EW140D

l1

l4 x0 y0

z0

xenu yenu

zenu

x1

y1z1

x2

y2
z2

x3

y3z3

l2

x4

y4

z4
l3

x5
y5

z5

(b) Excavator model

Figure 4.1: A real excavator with the model of an excavator
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4.2.1 Prediction of acceleration of the next sensor in line

The acceleration experienced in a rigid multi body system can be calculated. Knowing
the acceleration and rotations in one point, the accelerations in a fixed body can be
calculated in the local coordinate system by the method shown in Section 3.6.2. This
acceleration can be rotated to the ENU coordinate system using the quaternion math
shown in Section 3.5.2.

Imagine two sensors mounted on an excavator arm in the points i and i+ 1 as seen
in Figure 4.2. Between the two sensors is a revolute joint, in a point ~ri from the first
sensor and ~ri+1 from the second, expressed in their respective coordinate systems. The
acceleration is the same in point R no matter if its expressed in the coordinate system
of i or in the one of i+ 1.

yenu

zenu

xenu

xi
yi

i

~r

R

xi+1

yi+1

i+ 1

~ri+1

Figure 4.2: The acceleration in a fixed body system can be calculated using the known
state

Knowing the linear acceleration aii, the angular acceleration αi and angular velocity
ωi in point i express in the coordinate system of i, the linear acceleration in point R can
be calculated using the equation shown in Equation (4.2). Knowing the quaternion qi
that rotates the coordinate system i into the ENU coordinate system, the acceleration
can be expressed in the local tangent plane (LTP).

aiR = aii + ωi × (ωi × ~ri) +αi × ~ri (4.2)(
0

aenuR

)
= qi ⊗

(
0

aiR

)
⊗ q−1i (4.3)

To find the acceleration in the point of i + 1 expressed in the coordinate system of
i + 1, the same equations may be used. Knowing the quaternion qi+1 that rotates the
coordinate system i+1 into the ENU coordinate system, the conjugate of the quaternion
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can be used to find how the ENU coordinate system rotates into i+ 1.(
0

ai+1
R

)
= q−1i+1 ⊗

(
0

aenuR

)
⊗ qi+1 (4.4)

ai+1
i+1 = ai+1

R + ωi+1 × (ωi+1 × ~ri+1) +αi+1 × ~ri+1 (4.5)

In the case when there are no rotations and the system is standing still, there should
only be the gravity present in the point.

4.2.2 Common roll in the excavator arm

The arm of the excavator moves in a plane, hence positioning the sensors along the arm
aligns them in the plane of the arm. This yields the same yaw and roll of all sensors.
A quaternion can not directly describe the roll, but needs to be converted to the Tait-
Bryan angles. The Tait-Bryan rotations can be express as the rotations of quaternion
(Section 3.5.2) in the following way

(
0

p′

)
=q−1 ⊗

(
0

p

)
⊗ q =

(
01x3

Q

)(
0

p′

)
(4.6)

p′ =RzRyRxp (4.7)

Q =RzRyRx, (4.8)

where both Q ∈ R3x3 and RzRyRx ∈ R3x3, and all the elements in Q needs to equal
the elements in RzRyRx. This shows that sin(φ) = 2(qyqz + qwqx). Assuming that the
roll will be within +/- 15 °, the approximation sin(x) ≈ x can be made for small angles.

sin(φ) = 2(qyqz + qwqx) −→ φ ≈ 2(qyqz + qwqx) (4.9)

A similar relationship can be found by investigating the yaw of the excavator arm.

4.3 Physical sensor

The system is equipped with two types of sensors that measures physical (derived)
quantities. The sensor used in the application is the MPU-6050 from Invensense. It is a
microelectromechanical systems (MEMS) sensor, combining 3 axes accelerometer and 3
axes rate gyroscope in one unit.

4.3.1 Accelerometer

The accelerometer is constructed by separate MEMS sensors, each consisting of a sep-
arate proof mass, and their axes are not perfectly perpendicular. For this reason, the
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measurements in the body frame may be a combination of the perpendicular axes. Ac-
celerometer is modelled in the body frame as seen in Equation (4.10).

am
b = Saab + ba + vacc (4.10)

The Sa may be used to indicate the scaling of the sensors and the cross-axis correlation.
These are ideally identity matrices I3×3 but may contain both correlation between the
axes and different scaling for the different axes. The ab is the true acceleration in the
body frame, ba is an offset. The vacc is the sensor noise.

The full scale range of the digital output is adjustable between ±2,4,8,16 g, where
the digital output is 16 bits. The scale of the accelerometer is chosen to ±2 g to be
within the working range for the application, yet output a good resolution.

Thermal changes affects the accelerometer, and make may alter the scaling and zero
offset. Subjecting different accelerometer units to an increase in temperature yields the
results seen in Figure A.1.

The distribution of the sensor measurement, for a fixed sensor measuring solely grav-
ity, can be seen in Figure 4.3. The standard deviations of the distribution on the three
axis is approximated to be σx = 0.020 m/s2, σy = 0.020 m/s2 and σz = 0.028 m/s2.
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Figure 4.3: Distribution of noise

Observation model for the accelerometer measurements

Acceleration in the local plane, the ENU frame, is measured in the body orientation of
the accelerometer. The measurement of the acceleration is compared with the actual
acceleration in the same coordinate frame, the body coordinate frame. Therefore, the
real acceleration in the point of measurement needs to be rotated to the body frame
using the quaternion state.

(
0

am
b

)
= q−1 ⊗

(
0

aw

)
⊗ q + vacc (4.11)

vacc ∼ N (0, σ2acc) (4.12)
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The accelerometer is assumed to be calibrated and ba and Sa are therefore neglected.

4.3.2 Gyroscope

The rate gyroscope measures the angular velocity in the body frame of the sensor.
When the gyroscope is rotated, the Coriolis effect causes a vibration that is detected
by capacitive pickoff. The resulting signal is amplified and filtered to produce a voltage
proportional to the angular rate. The voltage is further digitized using the chips 16-
bit analog to digital converter. The full scale of the MPU-6050 can be adjusted to
±250,500,1000,2000 degrees per second. The scale of the gyroscope is chosen to ±500
deg/sec. This gives a relatively good resolution given the digital 16-bit output, and a
range that is within the application. Gyroscope are modelled in the body frame as seen
in Equation (4.13).

ωm
b = Sgωb + bg + ng (4.13)

The Sg may be used to indicate the scaling of the sensors and the cross-axis correlation.
Ideally, Sg would be an identity matrices I3×3. The gyroscope is modelled as ωb which
is the angular velocity in the body frame, bg a slow varying offset and vgyro the sensor
noise.

The sensors are subjected to thermal drift and have a zero offset between ±20 degrees
per second. This can be calibrated for, but problem arises when the ambient temperature
changes. Subjecting gyroscope units to changes in temperature shifts the zero offset seen
in Figure A.2.

The distribution of the sensor measurements with no rotation is seen in Figure 4.4.
Approximating the distribution using a normal distribution indicates a standard devia-
tion of σx = 0.040 deg/s σy = 0.038 deg/s σz = 0.036 deg/s.
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Figure 4.4: Distribution of noise

Observation model for the gyroscope measurements

The gyroscope are modelled using a slow varying bias, bg and a normally distributed noise
vgyro. The slowly varying bias changes over time, and is modelled using the normally
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distributed change rate of nb with standard deviation σbias.

ωm = ω + bg + vgyro (4.14)

ḃg = vb (4.15)

vgyro = N (0, σ2gyro) (4.16)

vb = N (0, σ2bias) (4.17)

4.4 State transition model

The state evolve in time, and are expected to follow the following model seen in Equa-
tions (4.18) to (4.22). The quaternion derivative is expressed in Section 3.5.2, and the
derivative of the angular velocity is the angular acceleration. The process noise wq, wω,
wα and wb are expected to be normally distributed.

qr =
(

0 ωx ωy ωz
)T

(4.18)

q̇ =
1

2
q ⊗ qr +wq (4.19)

ω̇ = α+wω (4.20)

α̇ = wα (4.21)

ḃ = wb (4.22)

where

wq ∼ N (0,Qq) wω ∼ N (0,Qω) (4.23)

wα ∼ N (0,Qα) wb ∼ N (0,Qb) (4.24)

4.5 Communication

The IMUs communicate with each other over a controller area network (CAN). This
comes with limitations since there are restrictions in how much can be transmitted
between the IMUs.

Knowing that the CAN is running on 500 kbps, and each frame being maximum
135 bits a maximum of 500 kbps/135 bits/frame = 3703 frames/second can be trans-
mitted. The filter to runs at 100 Hz, mean it has a cycle time of 10 ms. The maximum
if 3703 frames/ second gives 37 frames/cycle. With five sensors in the network, the
possibility of 37 frames/5 sensors = 7 frames/(sensor and cycle).

In order to achieve the required resolution, each float needs to be represented by
a minimum of 2 bytes. This results in 7 frames/(sensor and cycle) × 8 bytes/frame ×
1 float/ 2 bytes = 28 floats/(sensor and cycle).

Information needs to be communicated at different times, such as settings during the
start up and different debug frames at other times. On a cycle basis, the orientation, the
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angular velocity and the angular acceleration of the sensor needs to be communicated.
The orientation can be transmitted as a Tait-Bryan angles or as a quaternion. Finally,
the predicted acceleration at a point of the next sensor with corresponding uncertainty
needs to be communicated on the bus. A suggestion for what data are to sent is seen in
Table 4.2.

Table 4.2: The data to be sent over CAN

Description Number of floats

Quaternion 4

Angular acceleration 3

Angular velocity 3

Predicted acceleration 3

Covariance matrix of p. acceleration 9

Sum 22
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5
Proposed filters

In the following chapter, the extended Kalman filter (EKF) and the unscented
Kalman filter (UKF) are explained further and related to the models of the
system.

5.1 Extended Kalman filter

The extended Kalman filter (EKF) is implemented as described in Section 3.7.3 with an
additional term to the innovation matrix. The transition model propagates the state vec-
tor from one timestep to the next. The quaternion evolves by constructing a quaternion
derivative of the angular velocity, which is integrated in discrete time.

The EKF is implemented with the state vector shown in Equation (5.1). The state
transition model describes how the state vector evolve in time. An observation model,
using both the state vector and the predicted acceleration received from another IMU,
maps the state vector into the observations of the system. The roll of the first IMU is
used as a measurement of the roll of the entire system IMUs.

x =
(

q ω α b

)T
(5.1)

5.1.1 State transition model

The state transition model propagates the previous estimated state, x̂k−1|k−1, one timestep
forward to predict x̂k|k−1. A function describing how the quaternion, angular velocity,
angular acceleration and the bias of the gyroscope evolve in time needs to be formed.
The function f that takes the previous state vector as an input, and propagates the
state to form the predicted state one timestep forward needs to be constructed, shown
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in Equation (5.2).

x̂k|k−1 = f(x̂k−1|k−1) =


q̂k|k−1

ω̂k|k−1

α̂k|k−1

b̂k|k−1

 (5.2)

The quaternion derivative is estimated, and integrated to form the predicted quater-
nion at time k given the estimation at time k−1 [1]. The addition of the derivative may
cause problems, as the quaternion is not subjected to addition and subtraction, and will
not stay a unit quaternion. As such, the quaternion needs to be normalized after each
iteration not to diverge.

q̂r =
(

0 ω̂xk−1|k−1 ω̂yk−1|k−1 ω̂zk−1|k−1

)T
(5.3)

˙̂qk|k−1 =
1

2
q̂k−1|k−1 ⊗ q̂r (5.4)

q̂k|k−1 = q̂k−1|k−1 + ˙̂qk−1|k−1∆t (5.5)

Angular velocity, acceleration and drift of the gyroscope are propagated using the models
in Section 4.4 expressed in discrete time.

ω̂k|k−1 = ω̂k−1|k−1 + α̂k−1|k−1∆t (5.6)

α̂k|k−1 = α̂k−1|k−1 (5.7)

b̂k|k−1 = b̂k−1|k−1 (5.8)

5.1.2 Observation model

The observation model maps the predicted state vector into the observations of the
system. This way, the distribution of the predicted state vector and the observation of
the system can be combined to form an estimate with a lower variance of the system.

The accelerometers sense all types of accelerations, meaning that they sense gravity
as well as centrifugal and tangential acceleration. During motion the observed acceler-
ations will not be limited to solely gravity. As such, the system of sensors predict the
distribution of likely acceleration in a point near the location of neighbouring IMUs to
allow the filter to have better understanding of the external accelerations. The covari-
ance matrix of the predicted acceleration is propagated through the linearised prediction
function to find the probability density in the body frame. Since the distribution of the
predicted acceleration is not additive, an extension to the innovation matrix needs to be
formed.

From a sensor closer to the house, a sensor receives the predicted acceleration dis-
tribution âenu ∼ N (µâ, σ

2
a). Further, the predicted acceleration in the ENU coordinate

system is rotated to the body coordinate system, as described in Section 4.3.1. The
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measurement model of the accelerometer is seen in Equation (5.9), where abr consists of
the centrifugal and tangential acceleration experienced due to the lever arm between the
joint and the sensor. abr = ω̂k−1 × (ω̂k−1 × r) + α̂k−1 × r, where r is the distance be-
tween the joint and the sensor and ω̂k−1 and α̂k−1 are the a posteriori estimated angular
velocity and angular acceleration respectively of the sensor.

(
0

âb

)
= q̂k|k−1

−1 ⊗

(
0

µâ

)
⊗ q̂k|k−1 +

(
0

abr

)
(5.9)

ω̂ = ω̂k|k−1 + b̂k|k−1 (5.10)

êr = 2(q̂yk|k−1q̂
z
k|k−1 + q̂wk|k−1q̂

x
k|k−1) (5.11)

The measurement model of the gyroscope shown in Equation (5.10), is modelled similar
to that of the system in Section 4.3.2. The roll is estimated using the estimation of the
quaternion, seen in Equation (5.11), for all IMU but the one mounted closest to the
house.

ẑk = h(x̂k|k−1) =

 âb

ω̂

êr

 (5.12)

5.1.3 Improving the innovation matrix

The innovation matrix Sk, is the covariance matrix of the measurement error. The
measurement function h is linearised

zk =ha(xk,a
enu) + vk (5.13)

≈ha(x̂k|k−1, â
enu) +

∂ha(x,a)

∂x

(
xk − x̂k|k−1

)
+

∂ha(x,a)

∂a
(aenu − âenu) + vk (5.14)

By letting

Hx =
∂ha(x,a)

∂x
Ha =

∂ha(x,a)

∂a
(5.15)

ẑk = h(x̂k|k−1, ˆaenu) (5.16)

zk − ẑk = Hx

(
xk − x̂k|k−1

)
+Ha (aenu − âenu) + vk (5.17)

The innovation matrix Sk is found by

Sk =E[(zk − ẑk) (zk − ẑk)T ] ≈ (5.18)

E[Hx

(
xk − x̂k|k−1

) (
xk − x̂k|k−1

)T
HT
x ]+ (5.19)

E[Ha (aenu − âenu) (aenu − âenu)T HT
a ] + E[vkvk

T ] (5.20)
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Since the state error and the acceleration error is assumed to be uncorrelated, as well
as the measurement noise with the predicted acceleration and the state vector.

E[
(
xk − x̂k|k−1

)
(aenu − âenu)T ] = (5.21)

E[
(
xk − x̂k|k−1

)
vk

T ] = E[(aenu − âenu)vk
T ] = 0 (5.22)

The covariance of the predicted state is Pk|k−1, and the estimated covariance matrix
of the predicted acceleration A. The measurement error is assumed to be known and
expressed in R.

Sk = HxPk|k−1H
T
x +HaAH

T
a +R (5.23)

Given the measurement model ha(q,a) = q−1 ⊗

(
0

a

)
⊗ q, Ha is found to be

Ha =

 qw
2 + qx

2 − qy2 − qz2 2 qw qz + 2 qx qy 2 qx qz − 2 qw qy

2 qx qy − 2 qw qz qw
2 − qx2 + qy

2 − qz2 2 qw qx + 2 qy qz

2 qw qy + 2 qx qz 2 qy qz − 2 qw qx qw
2 − qx2 − qy2 + qz

2


(5.24)

5.2 Unscented Kalman filter

The implementation of the unscented Kalman filter (UKF) make use of the fact that
a unit quaternion is used, therefore one element is always dependent on the other such
that qw =

√
1− ||qxyz||.The state vector that describe the system is

x =
(
qx qy qz ω α b

)T
(5.25)

5.2.1 Sigma points

The process noise is added before the sigma points are propagated through the dynamic
function, described in [5, 15]. Rather than using additive noise, noise quaternions are
formed are multiplied with the estimate, making the quaternion remain unit quaternion
throughout the entire filtering. By letting ζ describe the distribution of the sigma points,
noise quaternions can be formed.

ζ = [ γ
√
Pk +Qk ] =

[
ζqxyz ζω ζα ζb

]
(5.26)

The matrix square root
√
Pk +Qk can be found by using lower triangular Cholesky fac-

torization. The multiplicative quaternion noise is found by letting ζqw =
√

1− ||ζqxyz||.
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The sigma points can now be found in the following manner, where ζi is the ith row of
the matrix square.

X 0
k−1|k−1 =


q̂k−1|k−1

ω̂k−1|k−1

α̂k−1|k−1

b̂k−1|k−1

 (5.27)

X ik−1|k−1 =


ζiqk−1|k−1 ⊗ q̂k−1|k−1

ω̂k−1|k−1 + ζnω

α̂k−1|k−1 + ζnα

b̂k−1|k−1 + ζnb

 ∀i ∈ 1..n (5.28)

X ik−1|k−1 =


ζ(i−n)q

−1
k−1|k−1 ⊗ q̂k−1|k−1

ω̂k−1|k−1 − ζnω
α̂k−1|k−1 − ζnα
b̂k−1|k−1 − ζnb

 ∀i ∈ n+ 1..2n (5.29)

5.2.2 State transition

The state transition function describes how the state evolve in time. The estimated
angular velocities can form quaternion to describe this motion, and multiplied with the
estimated quaternion using quaternion multiplication (Section 3.5.2) to find the predicted
quaternion.

Xq,k|k−1 = Ω(ω̂k−1|k−1)⊗Xq,k−1|k−1 (5.30)

Xω,k|k−1 = Xω,k−1|k−1 + Xα,k−1|k−1∆t (5.31)

Xα,k|k−1 = Xα,k−1|k−1 (5.32)

Xb,k|k−1 = Xb,k−1|k−1 (5.33)

The quaternion Ω is formed by letting the total angular rotation be the norm of the
estimated angular measurements, and the axis of rotation the corresponding vector ωx,
ωy and ωz.

Ω(ω̂k−1|k−1) =

 cos(|Xω,k−1|k−1|∆t/2)
Xω,k−1|k−1

|Xω,k−1|k−1|
sin(|Xω,k−1|k−1|∆t/2)

 (5.34)

There are different ways of finding the weighted sum of the quaternion. Using the
weighted sum of the quaternion does not give the exact mean as quaternions are not
closed for addition and subtraction. However, assuming small distances between the
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rotations the weighted sum of the propagated quaternions yields an approximate so-
lution, although the quaternion needs to be normalised to remain of unit size. The
other parameters in the state vector are summed in the normal method using the weight
corresponding to each sigma point.

q̂k|k−1 =

∑
WiXq,k|k−1

|
∑
WiXq,k|k−1|

(5.35)

The predicted covariance of the predicted state vector is also calculated using quaternion
multiplication as the quaternion is not closed for addition and subtraction. To find the
predicted covariance, quaternion multiplication is used in the following manner.

Λq = Xq,k+1|k ⊗ (q̂k+1|k)
−1 (5.36)

Λω = Xω,k+1|k − ω̂k+1|k (5.37)

Λα = Xα,k+1|k − α̂k+1|k (5.38)

Λb = Xb,k+1|k − b̂k+1|k (5.39)

(5.40)

Using only the vector part (qxyz) of Λq to form λq, the predicted covariance is found
using

Pk|k−1 =

2n∑
i=0

Wi

[
λq Λω Λα Λb

]
i

[
λq Λω Λα Λb

]T
i

(5.41)

5.2.3 Observation model

The observation model maps the predicted sigma points to the observations. Acceleration
at the sensor position in the east north up (ENU) frame, will consist of mainly gravity
but also centrifugal and tangential acceleration. The sensors communicate the estimated
acceleration at the point of the sensor in the ENU frame âenu, where âenu ∼ N (µâ, σ

2
a).

The accelerometer is used in the measurement equation, where the acceleration mea-
surement is given by (

0

Y i,ak

)
= X (i)−1

q,k|k−1 ⊗

(
0

µâ

)
⊗X (i)

q,k|k−1, (5.42)

where X (i)−1
q,k+1|k is the quaternion conjugate of the ith sigma quaternion and Y i,ak+1 is the

corresponding measurement. Given that there are uncertainties in the predicted acceler-
ation âenu, these needs to be incorporated in the model. This could be accomplished by
incorporating the distribution of the predicted acceleration when choosing sigma points,
or by a linearising the observation model of the accelerometer as in the EKF implemen-
tation. Since the implementation is dependent on the computational cost to be able to
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run in real time on embedded systems and estimates of the experienced acceleration are
achieved at a later time, the latter is chosen for this implementation.

The mean of the estimated measurements are found by the summation of the propa-
gated sigma point with their corresponding weight, as seen in Equation (5.43). Further,
the estimated acceleration is improved by the estimated tangential and centrifugal ac-
celeration between the joint and the IMU, shown in Equation (5.44).

ŷk =
2n∑
i=0

Wm
i Yk (5.43)

ŷak = ŷak + abr (5.44)

Similar to the EKF implementation, abr = ω̂k−1 × (ω̂k−1 × r) + α̂k−1 × r. r is
the distance between the joint and the sensor and ω̂k−1 and α̂k−1 are the a posteriori
estimated angular velocity and angular acceleration respectively of the sensor.

As such, the quaternion estimate q̂k|k−1 is used together with the covariance matrix
of the predicted acceleration, with the linearisation of the measurement equation Ha

as expressed in Section 5.1.3. Monte Carlo simulations indicates very small differences
between the simulated variance, estimated variance from the the linearized model and the
unscented transform (Figure C.1) [20]. The observation model describing the gyroscope,
and the roll is seen in Equations (5.45) and (5.46).

Yωk = X (i)
ω,k|k−1 + X (i)

α,k|k−1∆t (5.45)

Yrk = 2
(
X (i)
qy,k|k−1X

(i)
qz,k|k−1 + X (i)

qw,k|k−1X
(i)
qx,k|k−1

)
(5.46)

Calculation of the covariance matrix for the measurement equation is seen in Equa-
tion (5.47), and the cross correlation matrix of the state transition model and the mea-
surement model is seen in Equation (5.48).

P yyk|k−1 =
2n∑
i=0

Wi

[
Yak − ŷ−k

]
i

[
Yak − ŷ−k

]T
i

(5.47)

P xyk|k−1 =

2n∑
i=0

Wi

[
λq Λω Λα Λb

]
i

[
Yak − ŷ−k

]T
i

(5.48)

The innovation matrix P vvk is seen in Equation (5.49), and the Kalman gain is computed
as in Equation (5.50).

P vvk = P yyk +HaAH
T
a +R (5.49)

Kk = P xyk (P vvk )−1 (5.50)

The estimated quaternion is given by

q̂k|k = δqk ⊗ q̂k|k−1, (5.51)
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where the correction step of the quaternion is found by using the vector part of the
quaternion to the form scalar part shown in Equation (5.53).


δqxyz

δω

δα

δb

 = Kk(yk − ŷk) (5.52)

δqw =
√

1− ||δqxyz|| (5.53)

δqk = [ qw δqxyz ] (5.54)

The vector yk is composed of the measurement of the accelerometer, the gyroscope and
the estimated roll of the arm. Empirical studies shows that the covariance of the roll
does not change significantly in the region of interest, and is estimated to a fixed value.
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6
Results

The results are based on the simulated data of an representative excavator model,
and evaluated on the state estimate of orientation, angular velocity and angular
acceleration as compared with the true reference.

6.1 Evaluation platform

The performance of the different filters are evaluated in Matlab®based on generated
data from Simulink®. The evaluation platform is implemented in Simulink using Sim-
Mechanics. Each link of the excavator is assign a geometry, and movement is simulated
resulting in data on acceleration, velocities and orientations.

The excavator is mounted on wheels, which are modelled as a parallel spring and a
damper system. Hence, when the excavator arm is extended a resulting motion is seen
throughout the entire machine. Between the wheels and the house of the excavator is
a rotating platform, allowing the house and arm to rotate relative the platform. The
arm of the excavator consists of a boom in two parts, a stick and a bucket. All the
joints in the arm are one degree revolute joints. An illustration of the model is shown
in Figure 6.1.

Five sensors are positioned on the machine. The first sensors is mounted on the
house, the second on the first boom, the third sensor is mounted on the second boom.
Following in the same plane is the fourth sensor mounted on the stick and the fifth
sensor mounted on the bucket. To reduce introduced accelerations due to rotations, the
sensors are positioned as close to the joints as possible. Because of technical reasons, it
is believed that the distance between a sensor and a joint can not be smaller than 0.5
m.

The system is modelled in the local east north up (ENU) frame, with gravity of
g = 9.82m/s2. The accelerometers sense the gravity as well as the tangential and
centrifugal acceleration due to movement. The gyroscopes sense the angular velocity in
the body frame, and are modelled with a moving zero-offset.
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Figure 6.1: Excavator model in Simulink with sensors positioned along the arm

The accelerometer measurement am is modelled by the centrifugal acceleration ac

and the tangential acceleration at and the gravitation g. The measurement noise na
are comes from samples drawn at random from the normal distribution N (0, σ2a) with
σa = 0.02g m/s2.

am = ac + at + g + na (6.1)

na ∼ N (0, σ2a) (6.2)

The modelled gyroscope measures the angular velocity ω, which is bias by the angular
random walk b and measurement noise nω. The measurement noise is drawn at random
from the normal distribution N (0, σ2g) and the rate of change of the angular random
walk disturbance nb is drawn at random from N (0, σ2b ). The standard deviation of the
normal distributions are σg = 0.2s deg/s and σb = 1e − 6 deg/s2. The initial value
of the drift b0, the zero offset of the gyroscope, is drawn at random from the normal
distribution N (0,1).

ωm = ω + b+ nω (6.3)

bk+1 = bk + nb∆t (6.4)

nω ∼ N (0, σ2g) (6.5)

nb ∼ N (0, σ2b ) (6.6)
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The references of the true state is given by the simulation platform, where the orientation
of the link, the angular velocity and the angular acceleration are provided by Simulink.
The simulated excavator performs movement in all joints, and moves in a digging pattern
where angular velocities of 60 °and angular accelerations of more than 100 °are recorded.
The excavator is modelled as in Section 4.2, where the geometry parameters set to
px = 1.50 m, pz = 0.5 m, and the lengths of the excavator arm to l1 = 4.00 m, l2 = 3.00
m, l3 = 3.00 m and l4 = 1.00 m.

6.2 Comparison of the filters

The function of the filter implementation is to provide accurate orientation estimates,
with accurate estimates of the angular velocity and acceleration of linkage. With back-
ground of this, the filter implementations are evaluated based on their accuracy to es-
timate the state vector. The bias of the gyroscope is a measure of how well the imple-
mentation would handle drift in the gyroscope, and is considered necessary to estimate
accurate angular velocities and acceleration and is therefore included in the evaluation.

Different quaternion representation can describe the same orientation in roll, pitch
and yaw (e.g. q describes the same rotation as q), therefore the quaternion is converted to
the Tait-Bryan representation before comparison. The most important angle to evaluate
is the pitch of each link. The yaw angle is not considered, as the integration of solely
gyroscope is not considered accurate. Other sensors, such as magnetometer and GPS,
can estimate the heading of the machine more accurately.

Evaluated parameters

� Angular velocity

� Angular acceleration

� Zero offset of gyroscope

� Pitch and roll

Further, the computational load will be considered since the system is to be implemented
on microcontrollers. The two filter implementations have been evaluated in Matlab®and
there are therefore no information on how long the computation time is for one itera-
tion of the filter implementations. However, the computation time in Matlab®will be
considered when comparing which implementation requires more processing power.

6.2.1 Evaluation of angular velocity, acceleration and bias compensa-
tion estimation

The two filters are implemented in different manners, requiring different estimates of
the process noise, see Chapter 5. Therefore, not only are the filter implemented using
different quaternion representation but their respective process noise are different. The

43



6.2. COMPARISON OF THE FILTERS CHAPTER 6. RESULTS

different noise levels combined with the different models result in different accuracy when
estimating the state parameters of the system.

EKF estimates

The EKF estimates the angular velocity accurately, with a lower noise level than that
of the measurements. Seen in Figure 6.2, the angular acceleration is observed well, but
delay by 0.11 seconds. However, neglecting the delay of the estimate, the observation
of angular acceleration is very accurate with a low noise level. In the short simulation,
the uncertainty of the zero offset of the gyroscope is increased to allow the algorithm to
estimate the zero offset within the time span. The filter estimates the drift quickly for
all three axis of the gyroscope, and can from the time the drift is estimated accurately
estimate the angular velocities.
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Figure 6.2: Angular estimates of EKF implementation

UKF estimates

Little difference is seen in comparing the estimates of the EKF with the ones of the UKF
implementation. Similar to the EKF implementation, the uncertainty regarding the zero
offset of the gyroscope are increased to model larger changes in the zero offset estimate.
This results in an estimate with larger variance, which allows the filter implementation
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to accurately estimate the zero offset in a short time span. A figure of the angular esti-
mations are seen in Figure 6.3. Once the drift of the gyroscope is accurately estimated,
the estimated angular velocities are accurate and delivered with less noise than that of
the measurements. The observed angular accelerations are accurate, but delayed by 0.08
seconds. The lower delay in the observations could be explained by the slightly higher
variance of the angular acceleration estimates, making the system brisk for changes.
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Figure 6.3: Angular estimates of UKF implementation

6.2.2 Evaluation of quaternion estimate

The quaternion estimates are converted to Tait-Bryan angles using the equivalent rota-
tion matrices described in Section 3.5.2. Seen in Figure 6.4 are the angles of roll and
pitch corresponding to sensors 1,3,4 and 5. The first sensor is mounted on the house
and experiences mainly gravity. Other accelerations are not evident thanks to the rel-
ative short lever arm. The roll and pitch for both the EKF and UKF implementation
corresponding to the first sensor are shown in Figure 6.4a.

The first sensors propagate the expected acceleration to the joint of the next link,
where the second sensor is attached. Further, expecting to have the same roll throughout
the entire arm, the roll of the first sensor is communicated to the entire system of sensors
as it is the most accurate roll estimate.

The second sensor propagate the expected acceleration at the joint connecting the
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links where sensors 2 and 3 are mounted. In this excavator model, it is the joint between
the first and the second boom of the excavator arm. The third IMU uses the informa-
tion about the expected acceleration and estimated roll of the system, to estimate its
state vector. The estimated angles for the EKF and UKF implementation are shown in
Figure 6.4b for the third IMU in line.
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Figure 6.4: Results for sensor

Similar to the previous sensors, the fourth IMU receives information about the roll
from the first IMU, and the expected acceleration from the previous IMU. The roll and
pitch for the two filter implementations are shown in Figure 6.4c for IMU 4 and in
Figure 6.4d for the fifth IMU mounted on the bucket.

Error in the estimates

The error of the estimates are evaluated based on the RMSE and peak absolute error
(PAE) shown in Equations (6.7) and (6.8). Since both implementations starts from a
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poor initial state estimate1, both implementations are allowed 40 seconds to estimate
the orientation, angular velocity and acceleration, and the bias of the gyroscope. As
such, the error measurements are calculated from t = 40 to t = 80.

Erms =

√∑n
i=0(θ − θ̂)2

n
(6.7)

Epa = max
i∈0,..n

(
||θi − θ̂i||

)
(6.8)

The error measurements of the roll for each IMU are shown in Table 6.1. The error
measurements are very low, indicating a very good estimate for both EKF and the
UKF implementation. However, the PAE is higher even from the first unit for the UKF
implementation, indicating an error that have been propagated throughout the arm. As
a result, the UKF shows poorer estimate for every unit and the complete system.

Table 6.1: Error measures for the roll

IMU # RMSE EKF RMSE UKF PAE EKF PAE UKF

1 0.044575 0.065868 0.105450 0.224818

2 0.049456 0.093597 0.093965 0.323034

3 0.051201 0.094496 0.107997 0.353893

4 0.058504 0.093837 0.140772 0.318587

5 0.045031 0.083805 0.091595 0.276536

Shown in Table 6.2 are the error measurements for the pitch of each IMU. The first
IMU implemented with the UKF algorithm indicates a more accurate estimate than the
EKF implementation, when observing the RMSE even if the PAE is higher.

Unit two, three and four indicates a better pitch estimate for the EKF implementation
both in term of RMSE and PAE. Surprisingly, the last IMU implemented with UKF
estimates the pitch better in terms of the error measurements. Visual figures of the
error over 40 seconds are shown in Figures 6.5a to 6.5e.

6.2.3 Computation time

The matrix inverse of a 7 × 7 matrix needs to be computed in every iteration of the
EKF implementation, whereas the UKF implementation uses 27 sigma points that are
propagated through both the state transition model and the observation model. Further,
the Jacobian of both the state transition model and the observation model needs to be
evaluated on every iteration of the EKF implementation. Given the simplified state
transition model, it is found that the EKF implementation is evaluated in roughly 1/3
of the time compared with the UKF implementation when both filters are evaluated in
Matlab®.

1All IMUs are initiated with the state q = [1 0 0 0], ω = [0 0 0],α = [0 0 0] and b = [0 0 0]
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Figure 6.5: Error in roll and pitch for the IMUs in the system
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Table 6.2: Error measures for the pitch

IMU # RMSE EKF RMSE UKF PAE EKF PAE UKF

1 0.043370 0.037026 0.098173 0.107770

2 0.099701 0.122752 0.355002 0.342053

3 0.142804 0.340670 0.301684 0.631387

4 0.188284 0.312224 0.479953 0.519715

5 1.054196 0.627550 3.665617 2.231611

6.3 Prediction of acceleration

Prediction of the acceleration in the position of the next sensor works well. Shown in
the Figures 6.6a and 6.6b are examples of how the predicted acceleration behaves in the
EKF and UKF implementation respectively. From the figures it can be interpret that
using only the gravitation as a known source of acceleration may not always be sufficient
when there is a strict requirement on orientation estimates. The acceleration in the ENU
frame is shown in the top row, where it can be seen that the accelerations in the local
plane are around zero and the largest acceleration is gravity, perpendicular to the local
plane. Accelerations, other than gravity, are large enough to disturb the estimation of
orientation relative gravity and can therefore not be neglected. Seen in the figures on
the lower row are the accelerations in the body frame of the accelerometers. The system
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Figure 6.6: Results for sensor

of IMUs that aid the estimation of the state vector in a distributed system is not solely
improved by the aid in predicted acceleration. Since the uncertainty corresponding to
the predicted acceleration is communicated, the filter implementations becomes adaptive
in involving the measurement from the accelerometer.
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7
Discussion

The two implementations uses different state vectors, and state transition func-
tions considering the quaternion representation. Following discussion addresses
advantages and the issues related to the implementation and possible improve-
ments for future applications.

7.1 Discussion

The two filters implementations behaves different in different regions, and it is difficult
to name one of them better than the other. It is clear that the result differs, and that
there are many more configurations and parameters that can be fine-tuned to possibly
improve the estimates. The filter needs to be adjusted for the application, and depending
on the adjustments different parameters can be estimated more accurately.

The two implementations uses different state transition models, therefore different
state transition uncertainties are used. For this reason, it can be seen that the UKF is
more brisk in detecting angular acceleration but at the same time estimates an angular
acceleration with higher variance. Since the UKF implementation does not estimate the
covariance of the scalar part of the quaternion, it may lose some degree of accuracy when
estimate the full internal system. Further, some implementation such as assuming that
all the sensors are positioned in a plane may be too naive. Given the huge mass an
excavator may hold, at a distance of 10 m from the body of the excavator, it is likely
that the roll is different throughout the arm.

There are no caution, or change detection implementation, that would notice if some-
thing in the system breaks. Fault are propagated from one sensor to the next, resulting
in a worse estimations than may otherwise have been estimated. The same goes for
mounting errors, or if one sensor is subjected to a collision (which is likely given the
environment).

Other sensors can be incorporated in the system. Signals to the hydraulics can be
used as inputs to the model and thus achieve an more accurate prediction of how the
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system evolves in time. GPS data or magnetometers may be used to receive an estimation
of the yaw of the machine, to align all the IMUs in the same plane.

7.2 Future recommendations

The distributed system, as it is now, can accurately predict the gravity when there are no
external acceleration in the system. However, it is believed that using solely the gravity
vector rather than using predicted gravity vector would improve the system further, as
there would actually be no uncertainty about its direction or magnitude. For this, it is
recommended to implement some change detection that may detect when the system is
subjected to external accelerations or solely gravity and can switch between the using
the predicted acceleration when the system is subjected to external accelerations and
solely the gravity vector when no other accelerations are detected.

Since the system of IMUs will be mounted on excavators and other heavy construction
equipments, the IMUs are subjected to an environment where material may hit the IMUs.
If any of the IMUs is misaligned, it may predict the wrong acceleration of other IMUs
and thus propagating the error along the arm. For this, error detection is of highly
recommended to detect error such as this.
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8
Conclusion

The two filter implementations show an overall very similar behaviour in esti-
mating state vector. Since both implementations fulfil criteria of accuracy, the
extended Kalman filter is suggested for its ease of use and low computational
cost.

The performance of a distributed extended Kalman filter (EKF) implementations and a
distributed unscented Kalman filter (UKF) are evaluated, for the use on estimating the
orientation, velocities and accelerations of the linkage of heavy construction equipment.
A simulation platform consisting of inertial measurement units (IMUs) positioned on an
excavator is constructed, on which the two implementations are evaluated and compared
to the true reference of the platform, where five IMUs are positioned on different strategic
positions on an excavator.

The system of IMUs work in a system, so that each IMU predicts the experienced
acceleration of another sensor in the system, together with the covariance matrix of the
prediction. To make the system consistent with the filter algorithms, the covariance
related to the predicted acceleration are propagated using linearization for the EKF
implementation and unscented transform for the UKF implementation. Both imple-
mentations indicate an adaptive system, that can accurately estimate the orientation,
angular velocities and angular acceleration of an excavator arm using IMUs.

However, given that both implementations fulfils the criteria of estimating the orien-
tation within a certain degree, the EKF is suggested for use for this application. Its ease
of use and low computational cost makes it advantageous over the UKF implementation.
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Thermal dynamics of sensors
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Figure A.1: Thermal drift of the accelerometer. The rate of change over temperature can
be described by (ax ay az)T = (0.0003 − 0.00 − 0.0016)T × T + b where b is some offset.
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Figure A.2: Thermal drift of the gyroscope. The rate of change over temperature can be
described by (ωx ωy ωz)T = (0.0984 − 0.0431 − 0.0167)T × T + b where b is some offset.
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B
Can communication

Table B.1: Table over frame format of J1939 extended, CAN2.0B

Field Bits Purpose Standard

Start of frame 1 Identifies the beginning of a message 0

Identifier A 11 First part of the address

SRR 1 Substitute remote request 1

IDE 1 Identifier extension bit 1

Identifier B 18 Second part of the address

RTR 1 Remote transmission request

ro, r1 2 Reserved bits 0

DLC 4 Data length code, number of bytes in data

Data field 0-64 Data field, 0-8 bytes

CRC 15 Cyclic redundancy check

CRC delimiter 1 Used for error detection 1

ACK slot 1 Transmitter sends ACK for received message 1

ACK delim 1 Must be recessive 1

EOF 7 End of frame 1

Showing the general layout of a data frame of the CAN protocol. The message can contain
between 0-8 bytes of data. Sequences of 5 bits of the same type requires the addition of an
opposite type of bit by the transmitter. This yields a maximum of 135 bits in one frame, if using
8 bytes of data and requires the maximum of additional bits due to the 5 consecutive bits of the
same type [21].
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Monte Carlo Simulation
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Figure C.1: Comparison between different ways of propagating the covariance of the ex-
pected acceleration, with Monte Carlo simulation of 10000 points
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