
 
 

 

 

 

 

 

 

 

 

MASTER’S THESIS 

 

Compressed sensing – with applications 

to medical imaging 

 

HENG YANG 

 

 

 

 

Department of Mathematical sciences 

Division of Mathematics 

CHALMERS UNIVERSITY OF TECHNOLOGY 

UNIVERSITY OF GOTHENBURG  

Gothenburg, Sweden 2011



 

 

  



 

Thesis for the Degree of Master of Science 

 

Compressed sensing – with applications to 

medical imaging 
 

 

 

 

 

 

Heng Yang 

 

 

 

 

 

 

 

 

 

 

Department of Mathematical Sciences 

Chalmers University of Technology and Gothenburg University 

SE-412 96 Göteborg, Sweden 

Göteborg, June 2011 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mathematics Sciences 

Göteborg 2011 



 

Abstract 

 

Compressed sensing is a new approach for acquiring signals. It captures and represents signals 

and images at a rate significantly below Nyquist rate. In certain areas like magnetic resonance 

imaging (MRI), it is urgent to reduce the time of the patients’ exposure in the electromagnetic 

radiation. Compressed sensing breaks the canonical rules and effectively reduces the sampling 

rate without losing the essential information, so it has a wide application in medical imaging. In 

this project, three different recovery strategies - Orthogonal matching pursuit (OMP), 

Compressive Sampling Matching Pursuit (CoSaMP) and Model-based recovery will be explored to 

investigate the performance of algorithms on different MRI images. Peak Signal-to- Noise Ratio is 

used to measure the quality of reconstruction. 
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Notation 
                 Real numbers 

                 Real valued, finite length signal with length N  

             P-norm            
  

    
   

 

                  Quasi-norm                 

                 Cardinality of   

                Measurement matrix with size     

                Conjugate transpose of matrix 

                  Inner product 

                 Pseudoinverse of full-rank matrix  .              

                  Index set 

 

supp(x):=           
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1 Introduction 

1.1 Background 

1.1.1 The drawback of Nyquist sampling 

According to the Shannon/Nyquist sampling theorem, in order to reconstruct a bandlimited 

signal perfectly the sampling rate should be at least two times that of the signal bandwidth [3]. To 

be more specific, let      represent a continuous-time signal and      be the continuous 

Fourier transform of the signal     , we have: 

                   
 

  

 

The signal      is said to be bandlimited if there is a B, such that                     . Figure 

1.1 shows an example of a bandlimited signal     . The quantity 2B is called the Nyquist rate. The 

sufficient condition for signal      to be perfectly reconstructed from an infinite sequence of 

samples is the sample rate fs should be larger than 2B. If fs is less than 2B, aliasing will be 

introduced after reconstruction.  

 

 

Figure 1.1: An example the Fourier transform of a bandlimited signal     [3] 

 

While in reality, this sampling rate is still so high that too many samples should be achieved. 

Especially in the medical imaging modality, we need to reduce the time of the patients’ exposure 

in the electromagnetic radiation. So it is desirable to take as few samples as possible without 

losing essential information. It is interesting to notice that most signals in reality are sparse. 

When they are represented in some domain (such as the wavelet domain), they contain many 

coefficients close to or equal to zero. Compressed sensing acquires and reconstructs a signal 

applying the prior knowledge that it is sparse. It can capture and represents compressible signals 

at a rate significantly lower than Nyquist rate.  

1.1.2 The sparsity of signals 

Using mathematics to illustrate, we have a discrete-time signal   in    that can be represented 

in terms of an orthonormal basis of     vectors        
  as follows: 

http://en.wikipedia.org/wiki/Nyquist_rate
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where    is the coefficient sequence of  . For simplification, we can write (1) in matrix form as 

      (where   is the     column vector and   is the     matrix with    as 

columns). Signal   has a K-sparse expansion if only K of the entries in   are non-zero and 

       are zero. Real signals are often compressible which means the sequence of coefficients 

decays quickly. It means the large fraction of small coefficients can be thrown away without much 

perceptual loss.  

1.1.3 The inefficiencies of conventional data transform 

In traditional data acquisition, the first step is to acquire the full N-sample signal  ; then compute 

the coefficients       via       and only keep the K largest       while discarding the others. 

The values and locations of the K largest       should be encoded. This traditional signal 

acquisition processing divides the sampling and compression into two separate processes which 

samples a lot of unnecessary information. This inefficiency is more obvious when the number of 

samples N is large compared to K. Compressed sensing is a method to skip the sampling step by 

directly acquiring the compressed signal representation to overcome these inefficiencies. 

1.1.4 The introduction of compressed sensing 

In order to measure all the N coefficients of  , we consider the           column inner 

products   between   and collection of vectors        
 : 

                                                                    (2) 

where      is an     matrix.   is called an     measurement matrix with   
  as 

rows.   is fixed and does not depend on the signal  , so this process is non-adaptive. This is a 

great point since if we get a robust result from a measurement matrix  , we can apply this 

measurement matrix   to any kinds of signals without worrying about the stability. Figure 1.2 

illustrates the process of compressed sensing. 

 

 

Figure 1.2: Compressed sensing measurement process [4] 

The main task of this thesis is to investigate the algorithms about reconstructing the K- sparse 

signal       by the given measurement vector      , with     and       . 
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1.2 Purpose 

The purpose of this project is to explore the compressed sensing strategy to reconstruct images 

stably and efficiently by using as few measurements as possible. Three reconstruction methods 

Orthogonal Matching Pursuit (OMP), Compressive Sampling Matching Pursuit (CoSaMP) and 

Model-based algorithms will be illustrated and analyzed.  

1.3 Outline 

Chapter 1 gives a brief background of the thesis. Chapter 2 shows the idea of reconstruction and 

depicts the theory behind it. Chapter 3 emphasizes on the reconstruction algorithms of OMP, 

CoSaMP and Model-based, some experiments will be carried out as well. In Chapter 4, some real 

Magnetic Resonance Imaging (MRI) images will be tested for further investigation by using 

different recovery strategies. Finally, a conclusion will be made in Chapter 5. 
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2 How to do reconstruction 

2.1 Restricted isometry property (RIP) 

The main task of encoding is to transform the     K-sparse signal   to the     

measurement   by using a proper measurement matrix  . The sampling matrix   must map 

two different signals to two different sets of measurements, so all of the column submatrices 

(containing at most K columns) of   should be well-conditioned.  

Candѐs and Tao proposed a condition for the sampling matrix  . For all K-sparse vector  , an 

    matrix   has the K-restricted isometry property if  

                                   
       

            
                  (3) 

When    is less than 1, the inequalities (3) imply the all of the submatrices of   with K 

columns are well-conditioned and close to an isometry. If     , the sampling matrix   has a 

large probability to reconstruct the (K/2)-sparse signal    stably. 

This condition is called Restricted Isometry Property (shorted for RIP). The connection between 

RIP and Compressed Sensing is if     is sufficiently less than 1, all pairwise distances between 

K-Sparse signals must be well preserved in the measurement space which implies that    

            
            

                 
  holds for all K-sparse vectors    

and   . Because    and    are two different vectors and         
  are always larger than 

zero,           
  will never equal to zero. It can be said that the sampling matrix   should 

map two different K-sparse signals to different samples.  

So as to invert the sampling process stably and get a K-sparse signal  , we need to get a small 

restricted isometry constant    . However, it is computational difficult to check whether a matrix 

  satisfies the inequality (3). Fortunately, many types of random matrices have a good restricted 

isometry behavior, and they satisfy the restricted isometry condition with high probability. One of 

the quintessential examples is Gaussian measurement matrix   that the entries    of   are 

independent and identically distributed (i.i.d.) random variables from a Gaussian probability 

density function. An     i.i.d. Gaussian matrix has restricted isometry behavior with high 

probability if                where   is a constant [1] [2]. This also means K-spare or 

compressible signals with length N can be recovered with M random Gaussian measurements. 

In my project, I just pick a random matrix without checking its restricted isometry property. The 

random sampling matrix is regarded to have a good RIP behavior if the recovery signal is stable 

and approximately accurate. 

2.2 The idea of Reconstruction 

In order to achieve an optimal recovery algorithm, there are several requirements that should be 

satisfied. The requirements are illustrated as below: 

(1) Stability. The algorithm should be stable. That means when the signals or the measurements 

are perturbed slightly by noise, recovery should still be approximately accurate. 

(2) Fast. The algorithm should be fast if we want to apply it into practice. 

(3) Uniform guarantees. When acquiring linear measurements by using a specific method, these 
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linear measurements can apply to all sparse signals. 

(4) Efficiency. The algorithm should require as few measurements as possible. 

Now we want to reconstruct a K-sparse signal      by the     measurement vector   

  . Since the measurement matrix        and    , the system (2) is underdetermined. 

That means we have more unknowns than the equations. Theoretically, there are infinitely many 

   that satisfy Eq. (2). However, in our case the additional assumption is that   is K-sparse, and 

then there is often a unique    that will suffice to recover  . The best solution will be the 

sparsest vector that means it has the most zero coefficients. Consider the   -norm that counts 

the number of non-zeros entries, the reconstruction problem turns to be: 

                        
0~

~minarg xx
x

 , subject to xy ~                     (4) 

Unfortunately, the   -minimization problem is NP-hard [25][26]. It is computationally intractable 

to solve Eq.(4) for any matrix   and vector  . There are two families can be alternatively used to 

solve Eq.(4). One is the basic pursuit that is a convex relaxation leading to   -norm minimization 

[18], the other is greedy pursuit [9] such as Orthogonal Matching Pursuit (OMP) [15], Stagewise 

Orthogonal Matching Pursuit (StOMP) [19], and Regularized Orthogonal Matching 

Pursuit (ROMP) [22][23]. 

  -minimization approach 

As we discussed in section 2.1, in most cases if the RIP holds, the   -norm can exactly recover 

K-sparse signals and do a proper job to approximate the compressible signals with high 

probability using only                 i.i.d. Gaussian measurements. Then the Eq.(4) will 

change to be: 

1~

~minarg xx
x

 , subject to xy ~                    (5) 

Eq. (5) is equivalent to the linear programming 

                      


N

j

jv
2

1

min , subject to                               (6) 

where   is a positive real number of size 2N. The signal   is obtained from the solution    of 

(6) via           . So the   -norm minimization can be solved by linear programming problem. 

Interior-point methods [12], projected gradient methods [13] and iterative thresholding [14] can 

be used to solve the Eq. (6). 

The   -minimization approach can provide stability and uniform guarantees. But it doesn’t have 

linear bound on the runtime, it is not optimally fast. The basic pursuit is well developed and I am 

not going to talk too much about it. Greedy pursuit is the target I will focus on. 

Greedy pursuit 

Greedy pursuit is another approach to reconstruct the signal. It is an iterative signal recovery 

algorithm to calculate the support of the signal and it makes the locally optimal choice at each 

time to build up an approximation and repeats until the criterion is fulfilled. When we get the 

support   of the signal, the signal   can be reconstructed by       
  , where    is the 

measurement matrix   with entries indexed by   and     
  is the pseudoinverse of  . The 

pseudoinverse of a full-rank matrix   is defined by the formula             . 

Greedy pursuit is extremely fast while it is not optimally stable and doesn’t have uniform 

guarantees. 
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3 The reconstruction algorithms 

3.1 OMP algorithm 

3.1.1 Description 

Orthogonal matching pursuit is a so called greedy algorithm for signal recovery. It was proposed 

by Mallat and Zhang [20] and analyzed by Gilbert and Tropp [9]. Suppose   is a K-sparse signal 

in   , and let         be a measurement matrix with columns          . Then the 

signal   can be represented by an M-dimensional measurement vector     . Since   has 

only K non-zero components,   can be regarded as a linear combination of K columns from  . 

So when we do the signal recovery, the most challenging part is to identify the location of the 

largest ideal signal  . It is important to determine which columns of   participate in the 

measurement vector  . OMP applies the greedy algorithm to pick the columns of   by finding 

the largest correlation between   and the residual of  . At each iteration, one coordinate for 

the support of the signal   is calculated. Hopefully after K iterations, the entire support of the 

signal   will be identified. 

Tropp and Gilbert gave a proof about the weak uniform guarantees about the OMP [15]. They 

showed that OMP can correctly reconstruct the K-sparse signal   from its measurements    

with probability exceeding      if   is an     Gaussian measurement matrix with   

            . Here   is a fixed constant between 0 and 0.36 and   is a constant. However, 

this guarantee is only for a fixed signal   not for all of signals. OMP may fail for some sparse 

signals. It is also unknown whether OMP works for compressible signals rather than sparse 

signals or succeeds when samples contain noise. 

The OMP algorithm has 4 major steps during each iteration: 

(1) Find the index    by choosing the largest correlation between      
 

 and the residual of  . 

(2) Unite the newly chosen index    with the index set             , and     with the 

matrix               . Here,    is an empty set. 

(3) Form the signal estimate    by using the least squares method which is to find the projection 

of   onto the range of   . It is easy to recognize that the residual         is always 

orthogonal to   . 

 

 

Figure 3.1: least square method 
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(4) Calculate the newly residual of    and then return to (1) if    . 

Since the residual    is always orthogonal to   , in the first step we will never pick one column 

twice. Once the support   of signal   is found, the approximation of signal    can be found by 

       
  . 

 

Algorithm 1: OMP 

Input: Measurement matrix  , measurement  , sparsity level K of the ideal signal   

Output: index set  , measurement estimate   , residual         

 

    ,     ,                                                        {Initialize} 

while     do 

1.       

2.                                            {identify index of largest correlation} 

3.                                                  {Augment the index set} 

4.                                                       {Augment the matrix} 

5.                                         {Signal estimate by least squares} 

6.                                                 {Update the new residual} 

end while 

 

3.1.2 Experiments 

Figure 3.2 illustrates the results of a simulation study on the impact of the number of 

measurements M on the performance of OMP recovery. A piecewise polynomial signal of length 

N=1024 is generated by random. The signal in a piecewise polynomial wavelet basis is K-spare 

and K is equal to 42. Figure 3.2(a) to (d) show the performances of OMP recovery from M=2K, 

M=3K, M=4K and M=5K noise free measurements respectively. The figure shows that as the M 

growing, the recovery results are more and more accurate. When M=5K, the recovery and 

original signal almost overlap with each other. 

 

 
(a)                                     (b) 
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                    (c)                                     (d) 

Figure 3.2: Example performance of OMP signal recovery. The red dotted line is the orignal 

signal, the green solid line is the signal recovery. (a) Signal recovery from M=2K samples. (b) 

Signal recovery from M=3K samples. (c) Signal recovery from M=4K samples. (d) Signal recovery 

from M=5K samples. 

 

Then let us study the behavior of OMP algorithm when the orignal signal is perturbed by noise. 

Here, the Peak Signal-to-Noise Ratio (shorted for PSNR) is used to measure the quality of 

reconstrucion. PSNR is a term of ratio between the maximum possible power of a signal and the 

power of corrupting noise. The PSNR is defined as: 

)(log10
2

10
MSE

MAX
PSNR I  

Here,   is a     signal and      is the maximum component of signal.     is the mean 

squared error and defined as: 











1

0

1

0

2)],(),([
1 m

i

n

j

jiKjiI
mn

MSE  

and   is an approximation of signal. Typical values for the PSNR are between 30 dB and 50 dB 

and acceptable values are considered to be about 20 dB to 25 dB. The higher PSNR is, the better 

recovery performance is. [11] 

Now, let us find out the stability of OMP by adding noise in the system. Noise will be added to the 

original signal and the measurements respectively. In the first case, original signal is perturbed by 

noise and the noise is also perturbed the measurements since the measurements are generated 

though the multiplication of signal and measurement matrix  . Figrue 3.3 gives the PSNR of 

OMP under perturbed signal. The noise power level is increased from 0 to 0.5 step by step. The 

red pentagram line shows the performance of the algorithm without noise. The results are 

acceptable when M is larger than 4K. From Figure 3.3 we can see when M=4K, the PSNR is 

around 22 dB. But when M grows to 5K, the PSNR suddenly increases to approximately 81 dB. So 

for the noise free case, when M is bigger than 5K, the recovery performance is really ideal. But as 

noise gradually adding to the signal, even we have a large size of M, the reconstruction effect is 

still bad. The PSNR for      with noise power level that is bigger than 0.2 is less than 20 dB. 

It is similar when we add noise directly to the measurements. Figure 3.4 shows the PSNR result 

with noise measurements and noise power level is increased from 0 to 0.5 with increasing step 
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0.1. The quality of reconstruction is very poor if measurements are interfered by noise. 

 

 

 

Figure 3.3: The stability tests of the OMP algorithm when random noise is added to the original 

signal. The noise is a random generated vector with the same size as the signal. The noise 

power level is increased from 0 to 0.5 step by step.  

 

 

 

Figure 3.4: The stability tests of the OMP algorithm when we add noise to measurements. The 

noise is a random generated vector with the same size as the signal. The noise power level is 

increased from 0 to 0.5 step by step. 
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3.1.3 Conclusion 

From the results Figure 3.3 and 3.4, it is easy to draw a conclusion that OMP can achieve a really 

ideal result without interuption of noise when M is big. But this algorithm is not stable. When the 

signals or the measurements are perturbed slightly by noise, recovery is not accurate any more. 

3.2 CoSaMP algorithm 

3.2.1 Description 

CoSaMP, short for the Compressive Sampling Matching Pursuit, is a new reconstruction algorithm 

based on OMP (Orthogonal Matching Pursuit). CoSaMP was first put forth by Needell and Tropp 

in 2009 [24].  

As in the case of OMP, identifying the K largest components in signal   is the most important 

target. According to the restricted isometry property, by giving a sampling matrix   with the 

restricted isometry constant     , the   -norm of the largest K entries of vector        

is close to the   -norm of the largest K entries of the K-sparse signal  , therefore,   can be 

called the proxy of signal  . Here,    is the conjugate transpose of matrix  . The proxy   can 

be obtained by applying the matrix    to the measurement  . In order to identify the location 

of the largest K components of  , it is enough to find out the location of the largest K 

components of the proxy  . 

At each iteration, the algorithm first selects the largest 2K components of the signal proxy   and 

adds the index of these components to the support set. Next using the least squares, we can get 

a signal estimation  . The sparse signal   can be obtained by keeping only the largest K 

components of the estimation   to make it sparse. This is called pruning. 

Needell and Tropp established the following result that for an arbitrary signal   with noise 

samples       , CoSaMP produces a 2K-sparse signal approximation    that satisfies 

               
       

  
                                                                                                            

where    is a best K-sparse approximation of  ,   is an     sampling matrix with 

restricted isometry constant      . Further,         refer to positive constants. 

This result illustrates without the interrupted of noise, CoSaMP can recover an arbitrary signal 

with high precision. What is more, the performance of recovery reduces gracefully if we add 

noise in the samples. The   -norm of 2K-sparse signal approximation    that is produced by this 

algorithm is comparable with the   -norm of the best K-sparse approximation   . 

 

The CoSaMP has 5 major steps during each iteration: 

(1) Find the proxy of the current samples’ residual. 

(2) Locate the largest 2K components of the proxy and unite with the index of the current signal 

approximation. 

(3) Estimate the signal on the merged set of components by using the least squares. 

(4) Choose the K largest components as the signal approximation to prune the signal estimation 

(5) Update the samples’ residual. 
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Algorithm 2: CoSaMP 

Input: Measurement matrix  , measurement y, sparsity level K of the ideal signal x 

Output: K-sparse estimate    , index set  , signal estimation   , residual         

 

    ,     ,     ,                                                 {Initialize} 

While (halting criterion false) do 

1.       

2.                                                        {Find the proxy} 

3.                                    {Identify index of largest 2K components} 

4.                                                 {Augment the index set} 

5.        
   ;                                {Signal estimate by least squares} 

6.                                              {Prune the signal estimation} 

7.                                              {Update the new residual} 

end while 

return        

 

3.2.2 Experiments 

Same setup as for the OMP algorithm, we generate a signal of length N=1024 by using Matlab to 

implement. The recovery results with different size of M are displayed in the Figure 3.5. As 

compared with the OMP algorithm, the performance of CoSaMP is not as accurate as OMP 

algorithm. When M is equal to 2K or 3K, the recovery results oscillate up and down. What’s more, 

it is easy to see that, when M=5K the reconstruction by OMP is almost exact while the result of 

CoSaMP has a little deviations by comparison to the original signal. 

 

 

 

 
(a)                                    (b) 
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(c)                                    (d) 

Figure 3.5: Example performance of CoSaMP signal recovery. The red dotted line is the orignal 

signal, the green solid line is the signal recovery. (a) Signal recovery from M=2K samples. (b) 

Signal recovery from M=3K samples. (c) Signal recovery from M=4K samples. (d) Signal recovery 

from M=5K samples. 

 

 

Figure 3.6：The stability tests of the CoSaMP algorithm when random noise is added to the 

original signal. The noise is a random generated vector with the same size as the signal. The 

noise power level is increased from 0 to 0.5 step by step.  

 

Figure 3.6 and 3.7 show the performances of recovery of CoSaMP algorithm when we add 

random noise in signal and measurements respectively. If the original signal is perturbed by the 

noise and the noise power level is less than 0.1, the PSNR is more than 20 dB when M is bigger 

than 5K. But if the noise power level is more than 0.1, the result is not good no matter how big M 

is. The performance of CoSaMP is better if we add noise to the measurements. The recovery 

results are acceptable if the noise power level is not more than 0.2 for M is bigger than 4K. 

CoSaMP is more stable than OMP algorithm. If the signal or the measurements is interrupted by 

little noise, we can still get an approximately accurate result with a large M. 
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Figure 3.7: The stability tests of the CoSaMP algorithm when random noise is added to the 

measurements. The noise is a random generated vector with the same size as the signal. The 

noise power level is increased from 0 to 0.5 step by step.  

 

Now let us compare the PSNR of OMP and CoSaMP and the results are given in Figure 3.8. 

Without the noise, the recovery results by OMP are much more accurate than the results by 

CoSaMP. For example, the PSNR of OMP is around 78 dB when M=5K while the PSNR of CoSaMP 

is about 32 dB. Figure 3.9 shows the comparison about runtimes between these two algorithms. 

CoSaMP recovery is extremely fast. When M=5K, CoSaMP needs less than 0.2 seconds to do the 

reconstruction but OMP requires more than 1.5 seconds. So if we only need an acceptable result 

and require more about the cost of calculation, CoSaMP algorithm is a better choice. 

 

Figure 3.8: The comparison about performance of two algorithms 
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Figure 3.9: The comparison about runtime of two algorithms 

3.2.3 Conclusion 

Compared with OMP, CoSaMP algorithm can’t achieve such a high PSNR as OMP in the noise free 

case. But CoSaMP has its own advantages. It is more stable when noise interrupts the signal. The 

recovery result is acceptable if the noise is not too high and measurements are large. The 

calculation is extremely fast.  

3.3 Model-based compressive sensing 

3.3.1 Description 

As we discussed before, in order to get the robust reconstruction, we need       

          measurements. As a matter of a fact, modern wavelet image coders not only focus on 

the fact that most of wavelets coefficients are small, but also exploit the fact that the locations of 

the small part of large coefficients have a particular structure. One of the structured sparsity 

models that have the large wavelet coefficients on a rooted, connected tree structure[17], the 

other ones that account for the large coefficients are clustered together[7,8]. Based on the 

structural dependencies between the locations and values of signals, Baraniuk and Duarte [21] 

proposed a new signal acquisition method called model-based recovery. If the inter-dependency 

structure among the coefficients is considered in the process of reconstruction, fewer 

measurements will be required to offer the robust recovery. This is the foundation of 

model-based compressive sensing. 

Structured sparse signals 

A structured sparsity model    [5] is defined as 

                     
  
    , s.t.             

         
                   (7) 

where      denotes the entries of   equaling to the set of indices            
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and           
  contains all the allowed support with      .    represents the 

complement of the set  .  

   is the union all the K-dimensional subspaces and the signals from    are called 

K-structured sparse. 

Model-based Restricted Isometry Property 

For all     , an     matrix   has the   -restricted isometry property if  

                               
     

       
        

     
                (8) 

Blumensath and Davies [10] quantified the number of measurement M required for 

reconstruction to have   -restricted isometry property and pointed out that for any     and 

positive constant  , a random     i.i.d. sub-Gaussian matrix   has the   -restricted 

isometry property with probability at least      , if 

                             
 

    
              

  

   

                       (9) 

By substituting     
 
 
         , inequality (9) can be used for the bound of standard RIP. 

As we know,    is much smaller than  
 
 
  since    arises from the structure imposed. So 

the number of measurements needed that satisfied the   -RIP is much fewer than that of the 

standard RIP. 

Structured compressible signals 

Richard [5] defined the algorithm to obtain the best K-term structured sparse approximation of   

by 

                                            
                              (10) 

If the    error about the best K-term structured sparse approximation    and signal   is 

                               
            

       , 

then   

   
                

So the set of structured compressible signal is define as  

             
                     

     is called an  -structured compressible signal under the structured sparsity model   . 

The value of   is selected by minimizing the distance between    
    and     . 

Enlarged union of subspaces 

The enlarged union of subspaces is defined as 

  
          

 

   

               

It is easy to show that      
  and   

     . 

        is the algorithm to obtain the best approximation of   in the enlarged union of 

subspaces and defined as 

              
     

 
        

Rooted tree structure 

In a rooted tree, there is a unique path linking any two nodes. For a node  , all nodes that lie 

from   to the root are called ancestors of  ; all nodes that lie from   away from the root are 
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named descendants of  . The parent of   is the ancestor that links directly to   and the child 

of   is the node that has   as its parent. A node can have several children but only one parent. 

Nodes without children are called the leaves. The parent of   is denoted as     . 

Wavelet coefficient tree 

The subspace of functions in       of the form 

              
     

 

 

is denoted   , where          is the scaling functions at scale    . The dilated, translated and 

normalized scaling functions are                  . So every function       can be written 

as 

                  

 

  

The general multiresolution analysis gives that a function   is said to be a wavelet if the detail 

space    spanned by the functions        complements    in    [6]. Wavelets        

should be a Riesz basis for   . So any       can be decomposed as         , where 

      is an approximation of    and       contains the lost details.  

The detail spaces    are defined as the set of functions of the form 

           

 

        

                     is the dilated and translated wavelets. 

According to the above, any function           can be decomposed as           , where 

      and      .  

The decomposition            is not unique. There are many ways to choose the wavelet 

  in the corresponding detail spaces   . Here, a special orthogonal wavelet basis- Daubechies 

wavelet is used in the simulation.  

We say that   has p vanishing moments if for       we have 

         
  

  

   

This means   is orthogonal to any polynomial of degree p-1. Daubechies wavelets (dbN) are 

defined to have the maximum number of vanishing moments. Daubechies orthogonal wavelets 

db1­db10 are widely used in practice. For instance, db1 refers to the Haar wavelet and it has one 

vanishing moment. The index number N refers to the number of vanishing moments. The number 

of coefficients is twice of the number of coefficients. So db1 has 2 coefficients.  

Figure 3.10 shows the scaling functions and wavelet functions of db1 to db6. The scaling 

functions and wavelet functions become smoother and smoother as the increasing of N. db1 is 

suitable for encoding polynomials of one coefficient so it can be used to encode constant signal 

components. db2 can encode constant and linear signal components and db3 is good at encoding 

constant, linear and quadratic signal components. 

In my thesis, db2 is used in the simulation. 
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Figure 3.10: Scaling functions and wavelet functions of db1 to db6 

 

Now consider a signal   at a finest scale I, we can write       as 

                                                

       

 

 

    

                

 

 

by repeating the decomposition            until a certain level   . 

Since       as       and      as    , the wavelet representation of   is given by 

[6] 

        

   

       

Using a matrix to illustrate,      where   is a matrix containing the wavelet functions as 

the columns and                               
 

 is a vector with the wavelet coefficients as 

the components. The vector   can form a rooted binary wavelet tree with      as the root of 

the tree. Figure 3.11 shows the wavelet coefficients tree. 

If a coefficient        and its parent              as well, the coefficients that satisfy this 

property will form a connected subtree. Then the definition of the structured sparsity model    

is 

           

   

                    

Here   is the index set. In order to recover the tree based signal, we need to solve the optimal 

problem as follows: 

                             
             

                                 (11) 
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      Figure 3.11: Binary wavelet tree 

 

The structured sparsity model    and optimal problem (11) are similar to the structured sparsity 

model    and algorithm       . Condensing Sort and Select is an Algorithm (CSSA) that can 

solve the optimal problem (10) and (11). Because    is K-sparse, we need to find K largest 

absolute value of wavelet coefficients      to get the optimal value of signal  . 

The CSSA algorithm 

If we refer to      as the value of node   and      as the kernel of linear program, the 

Condensing Sort and Select Algorithm (shorted for CSSA) [16] is a greedy algorithm to find the 

maximum value of         . The kernel should satisfy the nonincreasing constraint that is 

              . 

 

Before given the algorithm of CSSA, the notations are given in table 1: 

Table 1: notations 

     The value of node  . 

  The kernel value. 

  The volume of kernel. 

  The volume counter. 

     Root of the tree 

 

The algorithm of CSSA is as follows: 

(1) Use                         to find the node    that has the largest data value of 

all of the nodes with       . 

(2) If          ,       is set to be 1. While if          , we merge    with       to 

form a larger supernode   by  

     
              

 
  

and      is the supernode value (SNV) of the supernode  .  

Supernode can also contain several nodes. Let      denote the number of internal nodes 

the supernode   has and      denote the kernel value, its SNV is 

     
 

    
     

   

 

(3)  If         is still equal to zero, we continue to merge nodes into supernodes until we get  

                         

with           , then the kernel of    can be set to 1. Update the volume of counter to 
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          . Return to (1) if    . 

Algorithm 3: CSSA 

Input: value of nodes     , tree,      

Output:   

                                                

                                                                   {Initialize} 

while     do 

1.                                            {identify the largest supernode} 

2. If            

                         ;                    {update the kernel value} 

3. else            

Merge    and       into a single supernode                       {condense} 

end if 

end while 

 

 

Model-based signal reconstruction algorithm 

As we have already known, the model-based signal recovery algorithm is based on the CoSaMP 

algorithm, so we can get the model-based algorithm by replacing the best K-term sparse 

approximation step in CoSaMP with a best K-term structured sparse approximation. In this way, 

at each time we merely search    subspaces of    that are significantly fewer than  
 
 
  

subspaces of     in the conventional recovery algorithms. Fewer measurements are needed to 

keep the robust of algorithm. 

Baraniuk and Duarte gave the proof of performance of structured sparse signal recovery. By given 

a noise measurement       , the signal estimation     of structured sparse signal      

obtained from iteration   satisfies 

                        

As the growing of the number of iteration, the   -error is becoming smaller and smaller. In the 

absence of noise, the model-based algorithm can recover a structured sparse signal with high 

accuracy. 

 

The Model-based algorithm has 5 major steps during each iteration: 

(1) Find the proxy of the current samples’ residual. 

(2) Obtain the best approximation of the proxy in the enlarge union of   
  and unite the index 

of the best approximation with the index of the current signal approximation. 

(3) Estimate the signal on the merged set of components by using the least squares. 

(4) Choose the best K-term structured sparse approximation of the estimation as the signal 

approximation to prune the signal estimation 

(5) Update the samples’ residual. 
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Algorithm 4: Model-based  

Input: Measurement matrix  , measurement y, sparsity level K of the ideal signal x, structured 

sparse approximation algorithm   

Output: K-sparse estimate    , index set  , signal estimation   , residual         

 

    ,     ,     ,                                                 {Initialize} 

While (halting criterion false) do 

1.       

2.                                                        {Find the proxy} 

3.                                 {Prune residual estimate based on structure} 

4.                                                 {Augment the index set} 

5.        
   ;                                {Signal estimate by least squares} 

6.                                              {Prune the signal estimation} 

7.                                               {Update the new residual} 

end while 

return        

 

3.3.2 Experiments 

By using the same method as OMP to generate a test signal with length N=1024, Figure 3.12 and 

3.13 give the stability tests of Model-based algorithm with different power levels of noise. 

Compared with OMP and CoSaMP algorithms, Model-based recovery is much more robust. Even 

with noise, the results of recovery are satisfactory, especially when the noise interrupt the 

measurements. That means it is possible to get an approximately accurate reconstructed signal 

with an interference sample. 

 

Figure 3.12：The stability tests of the Model-based algorithm when we add random noise to the 

original signal. The noise is a random generated vector with the same size as the signal. The 

noise power level is increased from 0 to 0.5 step by step.  
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Figure 3.13：The stability tests of the Model-based algorithm when random noise is added to 

the measurements. The noise is a random generated vector with the same size as the signal. 

The noise power level is increased from 0 to 0.5 step by step. 

 

Figure 3.14 depicts the experiment about the performance of CoSaMP and Model-based 

algorithms without noise. It is easy to see that M=2K is far fewer than the requirement of 

CoSaMP to recover the signal accurately. On the contrary, model-based recovery using M=2K can 

get a pretty good result. 

Figure 3.15 illustrates how the number of measurements M affects the PSNR of two algorithms. 

Model-based recovery achieves good recovery at M=3K while CoSaMP gets this performance at 

M=5K. It is not difficult to tell that comparing with CoSaMP, Model-based recovery uses 

significantly fewer measurements to offer the same stability.  

By using the same class of signals, the recovery time of Model-based and CoSaMP algorithms are 

compared empirically and the results are illustrated in Figure 3.16. In general, Model-based 

recovery is slower than CoSaMP. The best benefits of model-based recovery are obtained at 

M=4K. Around this area, Model-based algorithm yields much higher PSNR than CoSaMP and the 

computational times of two methods are comparable. 

 
(a) The original signal of length N=1024 
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(b) Signal recovery from M=2K=126 samples 

 

(c) Signal recovery from M=4K=252 samples 

 

(d) Signal recovery from M=6K=378 samples 

Figure 3.14：The comparison about CoSaMP and Model-based algorithms. (a) is the original 

signal with length N=1024. The signal is K-sparse in wavelet basis and K=63. (b), (c) and (d) are 

the comparisons of reconstruction with different size of M. Left column is the result of 

Model-based algorithm and right column is the result of CoSaMP algorithm. 
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Figure 3.15: The comparison about performance of Model-based and CoSaMP algorithms 

 

Figure 3.16: The comparison about runtime of Model-based and CoSaMP algorithms 

 

Now, Figure 3.17 and Figure 3.18 give the comparisons of stability and recovery time of OMP, 

CoSaMP and Model-based algorithms. With the noise free measurements, OMP can achieve a 

really high PSNR when M is larger than 5K. But as we have discussed in section 3.1.2, OMP 

recovery is very unstable. If the signal or measurements are disturbed by noise, the recovery is 

not accurate any more even with a large M. When M is less than 4K, Model-based algorithm can 

get the highest PSNR comparing with the other algorithms. From the Figure 3.17, the running 

time of Model-based algorithm will decrease as the increasing of the size of M. This is because 

for small M, the restricted degrees of freedom make it harder for the algorithm to reach the 

stopping criteria, so it needs more iteration and thus a longer running time. In general, CoSaMP is 

the fastest algorithm. This is due to the fact that CoSaMP uses the simple K-term approximation. 
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This algorithm picks the largest K components each time instead one component in OMP 

algorithm and the CSSA step in Model-based recovery is more computational. 

Comparing Figure 3.17 and 3.18, the near perfect point Model-based algorithm obtains is around 

M=4K. The recovery error of Model-based approach at this point is smaller than the other 

algorithms and the running time is acceptable. 

 

 

Figure 3.17: The comparison about performance of three algorithms 

 

Figure 3.18: The comparison about runtime of three algorithms 
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3.3.3 Conclusion 

From the above discussions, Model-based algorithm can recover a signal accurately with fewer 

measurements. This approach is more stable. When the samples are interfered by noise, it is 

possible to reconstruct the signal properly. The recovery time is much faster than OMP but a little 

slower than CoSaMP. Overall, Model-based algorithm is a costless, effective and efficient one. 
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4 Experiments on MRI Images 
In this chapter, the algorithms mentioned above will be tested by series of real 2D medical 

images. These images are provided by MRI scanner. MRI stands for Magnetic Resonance Imaging 

and is also known as spin imaging. MRI makes use of the property of Nuclear Magnetic 

Resonance (NMR) to image nuclei of atoms inside the body and this technique is widely used in 

medical imaging to visualize detailed internal structures. The main problem is that MRI scanner 

requires a huge number of measurements to reconstruct an image, so it will take a long time of 

scanning.  Comparing to X-ray and CT (Computed Tomography ), MRI does not expose the 

patient to the hazards of ionizing radiation. But the long time scanning is still harmful and will 

bring a lot of discomfort to the patient. Compressed sensing can significantly reduce the number 

of samples, so it is broadly used in medical image processing.  

Since OMP is very unstable, it is not accurate if the signal is perturbed slightly by noise. This 

algorithm is also slow so it is quite expensive compared with the other algorithms, therefore it is 

not practical in reality. In this part, we only test CoSaMP and Model-based algorithms and 

compare their performances for different types of images. All of the test images in this thesis are 

of size          . But due to the limited data processing capability of my computer, I resize 

the image to be one quarter of the original one and the new images are of size        . 

Because the size of images is small, neither the resolution of test images nor the quality of 

reconstructed results is good. But it is not difficult to tell the difference when we change the 

sample size M and compare the performance by using different methods. 

Head 

First, an example of head image recovery is given in Figure 4.1. This type of image is not smooth 

and there are a lot of details in the image. In this figure, both PSNR are not higher than 20 dB 

until     . Even     , both PSNR of this image are not higher than 23 dB, so the recovery 

qualities for both algorithms are very poor. More samples are needed to reconstruct this type of 

image. 

 

 
M=3K, PSNR=17.31dB                     M=3K, PSNR=13.84dB 

http://en.wikipedia.org/wiki/Nuclear_magnetic_resonance
http://en.wikipedia.org/wiki/Nuclear_magnetic_resonance
http://en.wikipedia.org/wiki/Computed_tomography
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M=5K, PSNR=21.15dB                     M=5K, PSNR=20.17dB 

 
M=7K, PSNR=22.8dB                      M=7K, PSNR=22.88dB 

Figure 4.1: Example of Model-based and CoSaMP recovery on images. The left column is 

Model-based recovery and the right column is CoSaMP recovery. 

 

Figure 4.2: Performance of Model-based and CoSaMP recovery on a 2D head image. 

Brain I 

The following is the test results of brain (horizontal view of a head which is cut into two pieces). 

This type of image is quite smooth in the centre, but it has a bright circle which is quite different 
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from the other parts. Model-based recovery can achieve a very good PSNR when      while 

the PSNR of CoSaMP recovery is not acceptable for     . But the PSNR of CoSaMP is 

increasing very fast as   grows. From the curve in Figure 4.4, the PSNR of CoSaMP is higher 

than Model-based recovery when   exceeds     . 

 
M=3K, PSNR=17.02dB                    M=3K, PSNR=12.55dB 

 
M=5K, PSNR=24.07dB                     M=5K, PSNR=23.11dB 

 

 
M=7K, PSNR=25.01dB                      M=7K, PSNR=26.14dB 

Figure 4.3: Example of Model-based and CoSaMP recovery on images. The left column is 

Model-based recovery and the right column is CoSaMP recovery. 
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Figure 4.4: Performance of Model-based and CoSaMP recovery on a 2D brain image. 

Knee 

On the whole, the knee image is quite smooth and doesn’t have a lot of curves. The main trend 

of PSNR is similar as the first type of brain. Both PSNR are growing fast as M increases and the 

PSNR of CoSaMP is bigger than Model-based at the end when   is larger than   . The qualities 

of recovery are good when     . 

 
M=3K, PSNR=19.33dB                      M=3K, PSNR=15.33dB 

 
M=5K, PSNR=23.96dB                      M=5K, PSNR=22.97dB 
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M=7K, PSNR=25.08dB                     M=7K, PSNR=25.82dB 

Figure 4.5: Example of Model-based and CoSaMP recovery on images. The left column is 

Model-based recovery and the right column is CoSaMP recovery. 

 

Figure 4.6: Performance of Model-based and CoSaMP recovery on a 2D knee image. 

Lumbar 

There are some clear objects in the lumbar images and these objects are very smooth. According 

to the Figure 4.7 and 4.8, Model-based recovery achieves quite good results and the PSNR of this 

algorithm is more than 20dB when     . The PSNR of CoSaMP recovery is very low at     , 

and it can get a comparable PSNR when     . Finally, the quality of CoSaMP algorithm 

exceeds Model-based at     . Model-based algorithm does a quite good job on this type of 

image. 
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M=3K, PSNR=20.39dB                      M=3K, PSNR=16.70dB 

 
M=5K, PSNR=24.56dB                      M=5K, PSNR=23.93dB 

 
M=7K, PSNR=26.33dB                      M=7K, PSNR=26.63dB 

Figure 4.7: Example of Model-based and CoSaMP recovery on images. The left column is 

Model-based recovery and the right column is CoSaMP recovery. 
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Figure 4.8: Performance of Model-based and CoSaMP recovery on a 2D lumbar image. 

Brain II 

This is the second type of brain image and it is the vertical view of a head which is cut into two 

pieces. The top of this image is quite smooth but the bottom part is rough. The results of the 

experiments are illustrated in Figure 4.9 and 4.10. The PSNR of both algorithms are not more 

than 20dB until     . We need a large size of samples to recovery this type of images. 

 
M=3K, PSNR=17.08dB                     M=3K, PSNR=12.87dB 

 
M=5K, PSNR=21.61dB                     M=5K, PSNR=21.09dB 
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M=7K, PSNR=23.18dB                     M=7K, PSNR=23.72dB 

Figure 4.9: Example of Model-based and CoSaMP recovery on images. The left column is 

Model-based recovery and the right column is CoSaMP recovery. 

 

Figure 4.10: Performance of Model-based and CoSaMP recovery on a 2D brain image. 
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5 Conclusion 
The traditional process of image compression is quite costly. It acquires the entire signal at 

beginning, then does the compression and throws most of the information away at the end. The 

new idea of image compression combines signal acquisition and compression as one step which 

improves the overall cost significantly.  

The process of new image compression is to find a measurement matrix             

and multiply it with the signal      that we want to compress in order to get   linear 

measurements     .   is the compressed sample that we wish to get. Since    , the 

system is underdetermined if we want to reverse the process and reconstruct the signal  .  In 

theory, there are infinitely many   that satisfy this system, so it seems impossible to reconstruct 

the signal. Fortunately, most of signals in reality are spare or spare under some basis (e.g. 

wavelets). If we can find the location of those non-zero entries, we can reconstruct the signal 

uniquely.  

In this thesis, we discussed three reconstruction algorithms and compared the advantages and 

disadvantages of them. Peak Signal-to-Noise Ratio (PSNR) is used to measure the quality of 

recovery. PSNR is a ratio between the maximum possible power of a signal and the power of 

corrupting noise. The higher PSNR value is, the better recovery performance is. 

Orthogonal matching pursuit (OMP) is lacked in stability guarantees. Even it can achieve very high 

PSNR when the size of measurements   is large in the noise free case, it is not accurate any 

more if the signal or measurements are perturbed by noise. Since the algorithm picks the optimal 

entries one by one, it is very slow. So OMP is not an ideal algorithm in reality. Compressive 

Sampling Matching Pursuit (CoSaMP) is fastest among these three algorithms. The property of 

stability of CoSaMP is better than OMP. When noise is added to the signal, the PSNR is acceptable 

if we have a large size of measurements  . Model-based algorithm is the most stable algorithm. 

Though the experiments in 1D and 2D, it is not difficult to tell model-based algorithm can offer a 

robust recovery by using fewer measurements comparing to CoSaMP. By testing the MRI images, 

both algorithms can provide satisfactory results when the images are smooth. But when the 

images are rough or have a lot of details, the recovery results are not good. This kind of images 

needs more measurements to reconstruct the images. 

 

Table 2: The comparison of three algorithms 

OMP  Not optimally fast. 

 Lacked in uniform guarantees. 

 Not stable. 

 PSNR is very high without noise. 

CoSaMP  Need a lot of measurements. 

 Fastest. 

 Uniform guarantees. 

 Possible to be stable. 

Model-based  Fast. 

 Uniform guarantees. 

 Large possibility to be stable.  

 Need fewer measurements.  
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