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Abstract

An automotive system may comprise of a distributed ECU system. The tasks can be distributed
over different nodes in the network. The distributed tasks on different nodes may communicate
with each other. Thus the synchronization of these distributed tasks is an important constraint
for automotive software development. Moreover, the growing number of ECU’s inside the vehicle
has lead to an increase in demands for bandwidth and a need for high level of fault tolerance[1]
in the communication network. In order to facilitate ECU software development, a group of
automobile manufacturers, suppliers and tool developers have specified a standardized automo-
bile software, AUTOSAR (Automotive Open System Architecture)[2]. Also noteworthy is the
point that implementation of such a system adhering to an open standardized automotive soft-
ware architecture, such as an AUTOSAR greatly increases the usage of the design. Besides
the motivation of usability of the implemented system, the specification of AUTOSAR suggests
several operating system level features which can be utilized to synchronize the task execution
to a global time base of the network. In context to it, the choice of communication standard
deployed for a distributed network is also an important factor of consideration. One such com-
munication protocol is the Flexray protocol[3] that supports clock synchronization mechanism
for the local clocks at the nodes in the network to a calculated global time base. Apart from it
the Flexray communication architecture is time deterministic, fault tolerant and offers a higher
bus bandwidth compared to the existing communication protocols such as a CAN[4] or a LIN[5].
The realisation of such a system that supports adaptive clock synchronization during run time is
implemented in ARCTIC Studio[6] environment. The ARCTIC Studio environment supports a
C development environment that supports module plug-ins to facilitate efficient development of
AUTOSAR solutions. The layered software AUTOSAR architecture comprising of all the neces-
sary modules can be integrated with a Flexray communication stack to implement the system.
The testing of such a system is performed using simulators and debug analyzers, to ensure that
all timing properties are fulfilled.
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1 Introduction

The automotive industry has developed AUTOSAR standard, an open standardized automotive
software architecture in order to pave the way for innovative electronic system that aids in
improving performance, safety and friendliness in an automotive system. The project dealt with
adaptive real time scheduling of a distributed network in an AUTOSAR system. This goal could
be achieved by synchronizing the local clocks in the distributed ECU units to a global network
time base. The IP core used in the project was provided by ARCCORE AB with MPC5567[7]
processor provided by Freescale semiconductor as the central processing unit. The system was
implemented on ODEEP[8] and MPC5567EVB[9] development boards provided by QRTECH AB
and Freescale semiconductor respectively. An NXP Semiconductor designed Flexray transceiver
TJA1080[10] was used within the project for meeting the bus voltage level requirements.

1.1 Background

A distributed system is often implemented for achieving a synchronized behaviour. The algo-
rithms in real time vehicular processors are often executed in round robin manner. If the clocks
at every node are synchronized , algorithms designed for synchronous system can be employed
to execute in "round robin manner"[11]. For hard real time systems synchronization of individ-
ual clocks becomes even more important, where it is of utmost concern to preserve a logical or
temporal ordering of tasks in the system. Each processor node in a distributed system has its
own hardware clock, which can drift due to ageing or temperature variations. For distributed
systems in vehicles the following two problems can arise if the clocks are not synchronized:

• In a distributed system, the sensor data acquisition may be time bound and needed to be
carried out at fixed time points with respect to an algorithm that process this sensor data.
Also these algorithms may be processed in a set of different processors. This fixed timing
relationship cannot be maintained unless all clocks of the processors in the execution of
algorithms are synchronized. Similar problem can also arise for jobs that are waiting for
data to launch the vehicle control system actuators synchronously.

• There may exist a precedence relationship among tasks distributed on different processors.
Since the pre-run time scheduling algorithms which are commonly used to schedule tasks
on different processors run on individual clocks, the only way to guarantee the precedence
constraint is to maintain a good clock synchronization among processors.

In order to synchronize the logical clocks in a distributed system a slower processor is always
forced to jump forward which results in unfinished or unscheduled tasks with high utilization
factor which makes the system unpredictable. Also noteworthy is the point that moving the
clock back does not make any sense as a time stamp cannot occur before the cycle rounds of to
an initial value. Large number of synchronization messages exchanged in the system also results
in inefficient utilization of the system bus.

1.2 Customer

This project was part of master thesis in the master program of Embedded Electronic System
Design, for ARCCORE AB as the customer. Professor Jan Jonsson at Chalmers University Of
Technology acted as the examiner and supervised the project.
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1.3 Purpose

It was an intended to introduce a time deterministic communication behaviour between dis-
tributed ECU units in the network. Also noteworthy was the point that execution of tasks/instructions
on individual ECU units needed to be synchronous in order to reduce the jitter between the
communicating tasks. The purpose of this project was to implement a time deterministic bus
architecture which provided a global time base for a distributed ECU network unit, to which the
execution of communicating tasks could synchronize .

1.4 Project Materials

This section described the hardware and software utilities on windows 7 OS that were required
for the project:

• ODEEP development board provided by QRTECH. It supported two Flexray interfaces
with an onboard processor named MPC5567 produced by Freescale.

• MPC5567EVB development board provided by Freescale for MPC5567 processor support-
ing two Flexray interfaces.

• TJA1080 Flexray Transceivers, produced by NXP semiconductor for data transmission and
reception over the physical bus.

• An open source development platform called Arctic Studio with an Eclipse IDE for C/C++
code development. A source code comprising of the operating system kernel supporting
several I/O modules for various microcontrollers acting as the backbone code for the de-
velopment process.

• UDE[12], a platform to develop, test and maintain microcontroller software applications.

• WinIDEA iSYSTEM’s[13] integrated development environment, a tool for embedded soft-
ware development and testing .

• A power PC simulator tool[14] provided by Lauterbach inc.
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2 Goal

The project had certain compulsory goals that needed to be achieved in order for the project
to be considered as a success. There also existed another set of goals that were optional. They
were not critical to fulfil but represented features that added value to the system.

2.1 Compulsory goals

The scope of the project targeted at mixed criticality systems where a strict timing constraint
existed. Also the nature of task was assumed to be periodic in nature for the scope of the
project. Thus for such a system, their could exist a deviation from the periodicity of such a
periodic signal. The permissible limit for such deviation should be as low as possible within
defined limits. Hence a system which could detect the deviation if any, and adjust the task
accordingly was the primary goal of the project. In order to detect a deviation it was necessary
to introduce a notion of time into the system. The system comprised of a several distributed
ECU units connected over a bus subsystem. The project dealt with distributed systems, thus a
global notion of time at the bus level could help in task synchronization at distributed system
level. A jitter[15] was introduced in the system when the tasks at the local ECU units missed
the time stamp at which they were supposed to be executed. The choice of the bus protocol was
very crucial in the context of the project. The bus architecture was supposed to comprise of two
most important properties:

• It should provide a global sense of time to every ECU unit in the distributed system.

• It should provide time division multiple access to the ECU units in order to remove the
contention resolution[16] between the ECU’s competing for the bus. This feature shall
introduce a time deterministic behaviour in the system.

For a distributed system CAN has been the most widely used bus protocol for a distributed ECU
system. But it suffered from some drawbacks for achieving the intended goal:

• Bus access was event-driven[17] and took place randomly. Only one node out of several
nodes, was able to transmit based on bit-wise priority arbitration[18].

• Each node was driven by its own local clock and their was no notion of global time stamp for
the nodes in the distributed network. Thus a synchronous system was difficult to achieve
in the event of clock drift between different ECU units in the network.

In contrary to CAN bus protocol, Flexray or a Time triggered CAN protocol had following
advantages:

• Each node accessed the bus by time division multiplexing which made the distributed
system behaviour time deterministic.

• The protocol provided provision for clock synchronisation of local clocks over the distributed
network based on a global time base[19]. Thus it allowed for clock synchronisation over a
distributed network.

Of the existing proposed time triggered protocols, Flexray was preferred over time triggered
CAN as the MPC5567 supported a Flexray peripheral unit. The system implementation was
AUTOSAR compliant, which had the provision to schedule the tasks in a schedule table. The
notion of schedule table introduced, time stamps at which the tasks could be launched. These
time stamps could always be verified against a global time stamp derived from the bus archi-
tecture. In an event of drift between local ECU clocks and calculated global time, the schedule
table could be adjusted according to the derived global time base. Thus based on requirement
and motivation the compulsory goal was to :

3



• Implement and integrate a flexray bus architecture for the distributed network.

• Implement a AUTOSAR complaint OS schedule table, that could synchronize its execution
to the global time base.

2.2 Optional goals

Besides the compulsory goals there are also certain optional goals to increase the usability of the
system. These are:

• Generator code for generating Flexray interface configuration file

• Generator code for generating Flexray driver configuration

• Generator code for generating configuration files for explicitly synchronized OS schedule
table

These optional goals existed because a generator code made it possible to generate configuration
files required to initialize the data structures for OS schedule table and the Flexray communi-
cation stack. The generator code thus helped in making the system more generic as it could
generate different values for data structures type based on the system requirement.

4



3 Theory

This chapter contains theory of AUTOSAR hierarchical stack architecture required to realise the
system. It also discusses in detail the Flexray communication architecture implementation and
integration to realise the time deterministic distributed system.

3.1 AUTOSAR

The AUTOSAR software architecture was developed by global companies in order to establish
a de-facto open industry standard for automotive and electrical domain. It facilitated software
development and its maintenance, independent of the existing hardware.

3.1.1 Layered software architecture

The AUTOSAR software stack had been designed such that the hardware independent software
layer could utilise the services of any hardware via the hardware specific software drivers. This
made the development of software stack independent of hardware specific configuration. The
three highest level of abstraction layers were Application Layer, RTE (Run-Time Environment),
and Basic Software.

Figure 1: Software layers on highest abstraction layer:Application, Runtime and Basic software.

3.1.1.1 Application layer

In AUTOSAR, an application comprised of several connected SWC’s. The SWC were constrained
to be atomic in nature. This implied that only one instance of a software component existed in
each ECU unit.

3.1.1.2 RTE

This layer provided functionalities of a real time operating system such as:

• Tasks

• OS layer Schedule Tables

• Interrupt service routines[20]

• Alarm
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• Resources

• OS services

All communication that occured between SWC’s and the layer below and/or between a SWC
with another SWC at the Application Layer was routed through the RTE. This layer supported
inter-ECU communication and intra- ECU communication either for communication between
SWC’s mapped on the different ECU or within same ECU(using e.g. FlexRay, CAN, LIN, etc.).
An OS layer Schedule Tables was important to this project in the following context:

• It supported expiry points which are statically defined time stamps at which configured
event or time driven tasks could be dispatched to the processor for execution.

• It supported explicit synchronization in which the schedule table was driven by an OS
counter. This Operating System counter was synchronized to an external synchronization
counter. The expiry points to be scheduled next could be delayed or released early in an
event when the drive counter was early or later compared to the synchronization counter.
In context to this project the external synchronization counter was the Flexray macrotick
counter received from the Flexray time base. A Flexray macrotick has been discussed in
detail in the timing hierarchy section of the chapter 3.1.2 Flexray communication structure.

The expiry points were released at statically configured offsets relative to the starting point of
the OS Schedule Table. The task sets defined within an expiry point has relative priorities within
themselves. Thus the highest priority task was always dispatched to the processor for execution
and could not be preempted by any other task until its execution was complete. Thus worst
case execution analysis[21] was a very important aspect because a lower priority task may never
be executed in an event the that next scheduled expiry point got released before lower priority
tasks could even get the processor for execution. This condition of starvation occured only when
the execution time of a higher priority tasks within an expiry point was greater than or equal to
the time interval between two consecutive expiry points. However this problem statement was
removed from the scope of the project by allocating sufficient OS counter ticks for the execution
of tasks defined in the expiry point. Noteworthy is the point that incrementation of OS counter
tick was indirectly governed by Flexray macrotick which has been discussed in the later sections
of implementation chapter. The generic structure of a schedule table is illustrated as below.

Figure 2: Structure of OS Schedule Table.

The OS Schedule Table comprised of following states:

• Stopped: The drive counter reached its maximum allowable value beyond which it rounded
off to initial value.
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• Waiting: The execution of a Schedule Table had been pre-empted by other higher priority
Schedule Table and was thus in a suspended state waiting for being dispatched again in a
queue.

• Running: The Schedule Table was running , but was not synchronized to the external
synchronization counter.

• Running and synchronous: The Schedule Table was running, and was synchronized to the
external synchronization counter.

Thus as discussed the above properties enabled the OS Schedule Table to synchronize the exe-
cution of tasks at OS level with respect to a global time base.

3.1.1.3 Basic software

The Basic Software was a standardized software layer and comprised of several layers. These
layers were: Services, ECU Abstraction, and Microcontroller Abstraction.

Figure 3: Layers of Basic Software: Services, ECU Abstraction, Microcontroller Abstraction and
Complex Drivers.

The MCAL (MicroController Abstraction Layer) contained internal drivers and made the
higher software layers independent of the microcontroller. The higher software layers were made
independent of ECU hardware layout by the ECU Abstraction Layer. It provided API (Applica-
tion Programming Interface) which acted as a wrapper function encapsulating the microcontroller
architecture.

3.1.2 AUTOSAR communication stack

The Basic Software layer comprised of sub modules, forming various functional groups. One
of these functional groups was the communication stack. The communication stack layer was
responsible for establishing a connection between the microcontroller at the bottom to the RTE
and also to the other SWC’s at the top.
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Figure 4: AUTOSAR communication stack; Communication Drivers, Communication Hardware
Abstraction, and Communication Services.

The implementation of communication stack was protocol dependent, e.g. Flexray, CAN,
LIN, etc. Our focus of implementation for this project was flexray communication stack whose
architecture was as follows:

Figure 5: AUTOSAR communication stack for Flexray.

The communication services layer in context to Flexray communication stack comprised of
Flexray State Manager, PDU router and the COM module. In order to simplify the project goal
a part of Flexray State Manager had been implemented while the PDU router and COM module
had been replaced by call back functions for multiplexing/demultiplexing the PDU data from the
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Flexray bus. The communication hardware abstraction layer comprised of Flexray Interface and
a Flexray Transceiver driver. The lower most layer comprised of a Flexray driver that initialized
and provided an interface to the Flexray communication controller from the software point of
view.

3.1.2.1 Flexray Interface

The Flexray Interface module provided interface as a part of communication system to the upper
layer modules, such as a PDU Router or a COM. However, it was possible to implement call
back functions which could be used for communicating with the tasks defined in upper OS layer.
Thus it simplified the system implementation by bypassing the upper layer modules, such as
a PDU Router or a COM. It is noteworthy to mention that the configuration of the Interface
module depended on the communication bus. The Flexray Interface did not access the hardware
directly, as the configuration relied on specific features of the communication system. Thus it
used the Flexray Driver modules to access the Flexray CC(s). Similarly the Flexray Interface
accessed the Flexray Transceiver(s), through specific Flexray Transceiver Driver module.

3.1.2.2 Flexray Driver

The Flexray Driver module initialized the Flexray CC and controlled its operation. The different
Flexray CC’s offered different hardware implementation features, thus a single Flexray Driver
module supported only one specific type of a Flexray CC.

3.1.2.3 Flexray Transport Protocol

The Flexray Transport Protocol was not incorporated within the scope of this thesis as the
message size had been constrained to be between 127 to 254 bytes. The Flexray Transport
Protocol segmented and performed reassembly of PDU’s only when the frame size was greater
than 254 bytes.

3.1.2.4 PDU Router

Depending on layer the PDU have different definitions which are as follows:

Table 1: The definitions of the different PDU’s
PDU Definition Description

I-PDU PDU of an upper layer module, e.g COM, DCM etc.
L-PDU PDU of the FlexRay Interface module
N-PDU PDU of the FlexRay Transport Layer.

The function of the PDU router was to statically route I-PDU’s based on the I-PDU identifier
thus eliminating the occurrence of dynamic routing during run-time. A PDU Router used the
module COM to provide PDU data to Flexray interface. For the sake of simplicity of the project
this module had been kept out of scope. The PDU data to and from the Flexray interface were
multiplexed/demultiplexed using call back functions to provide the services for the OS layer tasks
defined in the OS Schedule Table.

3.1.3 Flexray communication architecture

Flexray protocol was designed for vehicle network communication. The main motivations behind
development of Flexray communication architecture were as follows:

• More calculations and communication required to achieve comfort, safety and fuel efficiency.
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• Introduce coherency among the nodes of the network.

• A reliable fault tolerant protocol with higher bus bandwidth capability.

Flexray communication was capable of supporting both time and event triggered systems. A
time slot was assigned to every message according to TDMA (Time Division Mutiple Access
method)[22]. A communication cycle was divided into a static segment, a dynamic segment, a
symbol window, and a NIT (Network Idle Time) as below.

Figure 6: Division of flexray communication cycle.

3.1.3.1 Static segment

The static segment consisted of time slots of equal length, having same number of macroticks. A
macrotick is a Flexray timing unit, discussed in detail in Timing Hierarchy section. The number
of macroticks per time slot is defined by a global variable for the network. A Time slots could
be either a key slot or a non key slot. A time slot of the type key slot was used by a node to
transmit sync and startup frames, while a non-key slots were used for transmission of frames
on either one channel or both. The number of static time slots were the same for all nodes in
the network. As the timing characteristics of the static segment were precisely defined it was
possible to have a time-triggered communication between the nodes. The frame transmission
occured during a specific point of time, thus making it possible for all the nodes in the network
to have a knowledge about when the transmission and reception of a frame was supposed to
occur.

3.1.3.2 Dynamic segment

All event-triggered communication between Flexray nodes occurred in the dynamic segment. A
communication slot in the dynamic segment is called a minislot. It is possible for a transmitted
frame in the dynamic segment to be of different length compared to the equal length of trans-
mitted frames in the static segment. A minislot in the dynamic segment contained an identical
number of macrotick defined by a global variable for the network. There existed no sync or
startup frames in the dynamic segment. The length of a dynamic slot was dependant on the
transmitted frame size. If no transmission occurred, the dynamic slot consisted of one minislot.
However during an ongoing transmission several minislots comprised of a dynamic slot. The
communication behavior in the dynamic segment is asynchronous such that some frames could
be prioritized over others. This meant that a node could use full bandwidth for the transmission
of higher priority frames , while a frame with lower priority was prohibited for transmission in
the current communication cycle.
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3.1.3.3 Symbol window

The symbol window could be used for transmission of a start up or a wake up symbol. A wake
up symbol is used as a power management tool to wake up a node, while in sleep mode. The
symbol window was optional for a communication cycle.

3.1.3.4 Network idle time

The NIT is a phase used for calculating clock divergence and clock correction between the nodes
in the network. Tasks such as error handling and updating counters could be performed if
required during this period.

3.1.3.5 Clock synchronization

Flexray is a time-triggered communication protocol, thus it required all nodes in the network to
have the same view of the time. Thus by having a global view of time all nodes can send and
receive data on the bus at correct global time stamps. However different nodes in the network,
have their own clock with different clock skew and offset, leading to their own interpretation of
global time. Thus FlexRay needs a clock synchronization algorithm. The following text discusses
the Flexray timing hierarchy and clock synchronization.

3.1.3.6 Timing Hierarchy

Flexray handles time in three different levels; the communication level, the macrotick level and
the microtick level. Microtick is the smallest unit of time, and the length of a microtick is given
as ’a’ number of clock ticks on the CC’s oscillator. The value of ’a’ is different for each node as
the oscillator rates is node dependant. The ’b’ number of microticks constituted a macrotick.
Within a cluster if all the nodes are correctly synchronized, then the number of macroticks
within a communication cycle for each node is the same. A ’c’ number of macroticks constituted
a communication cycle, such that if the clock synchronization is correct for all the nodes in the
cluster, then all the nodes in the cluster corresponded to same cycle number at any given time.

Figure 7: Flexray timing hierarchy.

3.1.3.7 Clock Calculation and correction

The global time is a time derived from events on the flexray bus. These events on the bus helps
the nodes to virtually interpret the sense of global time. However, some constraints needed to
be fulfilled in order to achieve it. The majority of all local clocks need to act correctly such that
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they do not deviate too much from all other clocks in the network. The clock of one node should
not drift more than 0.15% macroticks from the global time, thus implying that the difference
between the slowest and the fastest clock can not be greater than 0.3% macroticks. The clock
correction is done in two ways, rate and offset correction. The nodes which has been configured
as sync nodes, send the sync frames over the network. These sync frames are used for time
measurement. When a node receive a sync frame it compared the time of the arrival with the
time of the expected arrival. An offset correction is performed by scheduling the next execution
earlier or later compared to what otherwise would have been the case. This was achieved by
adding or removing macroticks from the network idle time. In order that local clocks on the
nodes “ticked” at the same rate, microticks were added or removed from a macrotick. Thus
a node corrected its local clock without affecting the number of macroticks within a cycle, by
making the macroticks either longer or shorter according to their local time.
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4 Development Environment

This section discusses some design decisions taken at software and hardware point of view to
assist the development involved in the project.

4.1 Software environment

The implementation of all the modules to be integrated into the system were developed according
to AUTOSAR 4.0 specification. The AUTOSAR OS architecture described different scalability
classes. The purpose of scalability classes was to help customize OS according to the requirements
of the user to maximize the processor usage. The scalability classes were numbered from SC1-
SC4. In order to support scalability class concept, from the software point of view several
conditional checks were implemented. These conditional checks validated the features to be used,
described within a scalability class. The version of operating system used in the project did not
support all the scalability classes. The Schedule table functionality supported scalability class 3
and 4 which was not supported by the version of OS used in the project. The implementation of
schedule table thus skipped the conditional checks for scalability classes and thus did not strictly
follow the AUTOSAR architecture guidelines.
The implementation of generator code in eclipse xpand editor, to generate the data structures
required for the initialization of Schedule table, Flexray Driver and the Flexray Interface was
an important aspect. These data structures were used when the code was compiled to give the
nodes the configured parameters. Thus besides the implementation of the required AUTOSAR
modules, the generator code for generating the C configuration file was equally important.

4.2 Hardware environment

The hardware setup was established using the following components:

• ODEEP QR5567 (Hardware platform)

• MPC5567EVB (Hardware platform)

• Flexray Channels (Two twisted pair cables)

• UDE (Debugger and Flasher)

• WinIDEA iSYSTEM’s (Debugger and Flasher)

• USB cables

• Ethernet cable

• PC

Figure 8: Hardware environment setup.
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As discussed in the earlier chapters, the hardware setup comprised of ODEEP and MPC5567EVB
development platform. The two boards were connected through two twisted pair cables acting
as two Flexray channels. Although the bus could be extended to add more nodes, but the scope
of the project had been restricted to only two nodes. The existing setup was sufficient enough
for two or more nodes to realise a distributed system communicating to each other in time deter-
ministic manner. In order to load new software on the two nodes two different Debugger/flash
programmers were used namely UDE and WinIDEA iSYSTEM’s. Both of them were connected
to the nodes with a JTAG interface, while connected to the PC through ethernet and USB cable
respectively. Each debugger was connected to two different PCs due to the constraint that it
was hard to debug the software for two different nodes at the same time on a single PC. The PC
accessed the UDE debugger/flash programmers through the ethernet cable via the LAN network,
while the WinIDEA iSYSTEM’s was accessed via the USB cable using a peer to peer network
connection.
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5 Implementation

This chapter describes the implementation of the different AUTOSARmodules. It covers relevant
data structures, functions, and modules of the Arctic Studio involved in the project.

5.1 OS Schedule Table

The implementation of this module was based on AUTOSAR operating system specification 4.1.
An OS schedule table comprised of several taskset. A taskset in an automotive real time system
could either be time or event triggered[23]. A time triggered taskset is one which is dispatched to
the processor at specific time stamps for execution, while an event triggered taskset is executed
only when a condition related to an occurrence of an event is set to true. The taskset could
have priorities within themselves such that a higher priority task may pre-empt an ongoing lower
priority task. In a safety critical application such as in automotive domain task pre-emption was
not a good solution. The worst condition being when a lower priority task always got starved and
never got enough processor time for execution in a uniprocessor system. Thus for such a system
where it was of utmost concern to assign a fair share of processor time for each configured task,
a schedule table provided a good solution. The task preemption was removed by explicitly time
multiplexing the task dispatching to the processor at specific time stamps called expiry points.
It had following features:

• A drive counter to drive the schedule table.

• A synchronization counter to which the drive counter explicitly synchronized.

The OS architecture was based on OSEK [24] real time systems. According to it the tasks were
assigned predefined priorities and made preemptive in nature. Further based on the task states
they were of two kinds:

• Basic task

Ready

Running

Suspended

Start Terminate

Pre-empt

Activate

Figure 9: Basic task state diagram.

The time triggered tasks were implemented as basic tasks. The task after execution were
terminated as they transitioned into suspended state. A task from suspended state if
activated made a transition to ready state. A task was considered for execution by the
processor only in ready state. The task was transitioned into running state from ready
state by issuing the "start" API. It was during the running state, a task was dispatched
for execution by the processor. A task in the running state could be terminated if a higher
priority task or a higher priority ISR got triggered. The resources if any associated with
the task were relinquished as soon as they were terminated.
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• Extended task

Ready

Running

Suspended

Waiting

Start

Wait

Terminate

Pre-empt

Activate

Trigger

Figure 10: Extended task state diagram.

The event triggered tasks were implemented as extended tasks. The extended tasks had an ad-
ditional state called waiting . They remained in the waiting state for an event bit to be set to
true. In the event it was evaluated to true it transitioned to ready state. An extended task was
then executed by the processor by using "start" API that caused a state transition from ready
to running state.
A schedule table was a set of such basic and extended tasks. Several subsets of these tasks were
made, that were configured to be triggered at specific time stamps called expiry points. An im-
portant constraint according to the AUTOSAR architecture was that within such a subset, it was
the basic task that was given higher priority over extended tasks. Thus time triggered tasks were
given higher priority over event triggered tasks. Such an implementation constraint had clear
implications on reducing the response time[25] of a time triggered tasks, while trying to accomo-
date event triggered system in the system whose probability was less likely to occur. In order
to ensure some degree of predictability in the system for a distributed automotive architecture,
a schedule table was calculated for all the allocated task prior to the system implementation.
Thus keeping in mind the above discussed AUTOSAR constraint of allocating higher priority to
time triggered over event triggered tasks, a smart implementation at system level would be to
allocate highly probable event triggered tasks as standalone tasks to the expiry points to reduce
their response time.
The scope of the project was not in the context of choosing tasksets for the expiry points as it
was already taken care by the system designer based on worst case execution of the individual
task and factors such as cost of task preemption. An important issue addressed in this project
was the clock skew within the ECU and an event of clock drift in a distributed system. These
two factors contribute to timing related issues that degraded the performance of the distributed
system, as the system suffered from factor such as clock aging. In reference to the context a pos-
sible solution would be a system that could detect a clock drift and adjust the task dispatching
according to whether the drift was on negative or positive side. The AUTOSAR 4.1 specifications
provided an insight on explicit synchronization of the schedule tables.
The drive counter for schedule table could be repeatedly synchronized to an external counter.
Based on the calculation the schedule table drive counter could be adjusted to the synchro-
nization counter. For such a system three factors decided the stability and effectability of the
system:

• How stable was the external synchronization counter.
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• How often the drive counter was synchronized to the external synchronization counter.

• With how much time unit the drive counter could be moved forward or backward in an
event of drift between the two counters.

An important constraint was that the resolution of drive counter ticks should be either equal
to or a multiple of synchronization counter for the predictability of the system. A schedule
according to the AUTOSAR specifications had following state transistions:

Running

Stopped

Next

End

NextStart
Stop

Previous

Figure 11: Schedule table state transistion.

Thus based on above discussions and AUTOSAR specifications, following API’s had been
implemented:

• StartScheduleTableSynchron(): This API checked the schedule table configurations and
asserted the code to abort the system to make it stop in a hook routine , whenever an
errorenous condition was encountered. If the assertion were not met the schedule table was
updated to contain the first expiry point from the expiry point list.

• SyncScheduleTable(): This API read the time unit of the external synchronization counter
and based on the drift calculated between the drive and synchronization counter it shifted
the next expiry point either forward or backward based on whether the drive counter was
faster or slower compared to the synchronization counter.

• GetScheduleTableStatus(): This API provided the current state of the schedule table.

• ScheduleTableFunction(): This API based on the current index of the expiry point counter
sequentially dispatched the configured time and event triggered task for execution. After
the task had been executed it updated the expiry point counter index to the next available
expiry point.

A schedule table comprised of a data structure that needed to be initialized for compilation of C
code into binary file. An example of data structure that needed to be initialized for the schedule
table is given below:

typedef struct osSchTbl {
char* name;
TickType duration;
Bool repeating;
ApplicationType applownerld;
uint32 accessingApplMask;
struct Oscounter * counter;
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const struct osSchTblAutostart * autostartPtr;
struct osScheduleTableSync * sync;
struct osSchTblAdjExpPoint * adjExpPoint;
uint32 id;
int expire_curr_index;
TickType expire_val;
ScheduleTableStatusType state;
struct osSchTbl *next;
SA_LIST_HEAD(alist,OsscheduleTableExpiryPoint) expirePointList
SLIST_ENTRY(osSchTbl) sched_list;
}
osSchTblType;

The initialization of data structures was done using C configuration files. These C files were
generated by xpand editor generator code written in the Arctic studio eclipse tool. The next
chapter gives a close insight in the configuration of development environment. The generator
code takes values configured in the xml setting and does loop unrolling[26] to generate data
structures based on the number of data structure required. Below is an example of generator
code developed for schedule table in the eclipse development environment:

GEN_SCHTBL_EXPIRY_POINT_HEAD( « tableIt.Countero» ) {
«FOREACH table.OsscheduleTableExpiryPoints AS expiryPoint ITERATOR expirylt
«IF
expiryPoint.osScheduleTableTaskActivations.OsscheduleTableActivateTaskRef.size >0 -»
«IF expiryPoint.OsscheduleTableEventSettings.size > 0-»
GEN_SCHTBL_EXPIRY_POINT_w_TASK_EVENT(« tableIt.Countero
expiryPoint.osScheduleTblExpPointoffset.value
«ELSE-»
GEN_SCHTBL_EXPIRY_POINT_W_TASK(« tableIt.Countero
expiryPoint.osScheduleTblExpPointoffset.value-»)
«ENDIF-»
«ELSE-»
GEN_SCHTBL_EXPIRY_POINT_W_EVENT(« tableIt.Countero
expiryPoint.osScheduleTblExpPointoffset.value-»)
«ENDIF-»
«ENDFOREACH-»
«IF table.osScheduleTableAutostart.shortName.length > 0-»
GEN_SCHTBL_AUTOSTART(
tableIt.countero
«IF table.osScheduleTableAutostart.OsscheduleTableAutostartType.isSYNCHRON()-»
«table.osScheduleTableAutostart.OsscheduleTableStartValue.value.orError("0
sScheduleTableStartValue is unset")»### THESIS_2014
«ELSE-»
SCHTBL_AUTOSTART_«table.osScheduleTableAutostart.OsscheduleTableAutostartType.va
lue.orError()-»
«table.osScheduleTableAutostart.OsscheduleTableStartValue.value.orError("0
sScheduleTableStartValue is unset")»,
«ENDIF-»
OSDEFAULTAPPMODE
)
«ENDIF
«ENDFOREACH /* END TABLE DATA */-»
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The drive counters for schedule table could be of three types:

• Hardware: An external crystal oscillator circuit drove the schedule table. the resolution
achieved is as high as few nano or pico seconds.

• Software: An autonomous software counter having a resolution of a few micro seconds.

• OS Tick: The schedule table was driven by periodic OS ticks with a resolution obtained in
few micro seconds.

The project used software based drive counter to drive the schedule table. Noteworthy is the
point that this counter was not autonomous and was incremented only when a certain specific
condition was met. The external synchronization counter was derived from Flexray time base
having resolution as high as few nano seconds. Thus clearly emphasizing that an autonomous
software counter incrementing at a rate of few microseconds would never be able to catch up
a counter running at nano second scale under the notion that every tick for both the counters
corresponded to the same time step. The schedule table was implemented as non repetative thus
making it necessary to invoke the API to start the schedule table whenever required.

5.2 Flexray communication stack

The OS schedule Table synchronized to the macroticks of the Flexray module. The key idea of
the schedule Table implementation was to write the data generated by the tasks defined in the
expiry points at the configured physical buffer in the Flexray memory partition. As discussed
in the previous chapter, the choice of Flexray was due to its time deterministic nature and
clock synchronization algorithm. This algorithm ensured all the ECU’s in the network to achieve
clock synchronocity even in the event of clock drift by adding additional microtick as discussed in
previous chapters. The MPC5567 processor used in the project comprised of a Flexray peripheral
unit. In order to implement the Flexray communication setup it was necessary to configure
the hardware unit. A Flexray version 2.1[27] was used for the project. The Flexray protocol
comprised of a protocol engine. It was this protocol engine that maintained the operation and
behaviour of a Flexray controller. The operation of a protocol engine was based on large number
protocol variables. These variables were configured according to the specifications of Flexray
version 2.1. In this context a Flexray protocol calculator had been written in C language that
calculates the protocol variables and configures the hardware protocol registers. An example of
such a structure contained in Flexray driver[28]comprising of protocol variables is given below:

typedef struct {
uint32 Fr_CtrlIdx;
Fr_AbsoluteTimersConfigType *Fr_CCAbsoluteTimersConfigPtr;
Fr_Fifo Fr_FifoPtr;
boolean Fr_IsLeadingColdstarter;
uint32 Fr_PKeySlotId;
boolean Fr_PKeySlotonlyEnabled;
boolean Fr_PKeySlotUsedForstartup;
boolean Fr_PKeySlotUsedForSync;
uint32 Fr_PSecondKeySlotId;
boolean Fr_PTwoKeySlotMode;
Fr_ChannelType Fr_PwakeupChannel;
uint32 Fr_PwakeupPattern;
Fr_ChannelType Fr_PChannels;
Fr_AbsoluteTimerType *Fr_AbsoluteTimerPtr;
boolean Fr_PAllowHaltDueToClock;
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uint32 Fr_PAllowPassiveToActive;
uint32 Fr_PClusterDriftDamping;
uint32 Fr_PDecodingCorrection;
uint32 Fr_PDelayCompensationA;
uint32 Fr_PDelayCompensationB;
boolean Fr_PExternalSync;
boolean Fr_PFallBackInternal;
uint32 Fr_PLatestTx;
uint32 Fr_PMacroInitialoffsetA;
.
.
.
}Fr_ControllerType;

An important factor to be considered while writing the protocol calculator was the condition of
overflow that occurred due to shift operation on the operand. This led to a value that was not
large enough to hold the variable value leading to an overflow and hence a computation of wrong
PCR[7] values. Thus such a condition was removed by using a 64 bit integer value safe enough
to hold any computed value.

void protocol_operationcalculater(void){
uint64_t temp;
int i;
for( i=0;i<31;i++){
switch ( i ) {
case 0:
protocol_buff[0]=((FrIf_ClusterConfig.FrIf_GdActionPointOffset-1)<<10)|FrIf_ClusterConfig.FrIf_GdStaticSlots;

// Code
break;

case 1:
protocol_buff[1]=(FrIf_ClusterConfig.FrIf_GMacroPerCycle -FrIf_ClusterConfig.FrIf_GdStaticSlots)&0x3FFF;

// Code
break;

case 2:
protocol_buff[2]=(FrIf_ClusterConfig.FrIf_GdMinislot -FrIf_ClusterConfig.FrIf_GdMiniSlotActionPointOffset - 1)<<10|(FrIf_ClusterConfig.FrIf_GNumberOfStaticSlots);

// Code
break;

case 3:
temp=FrIf_ClusterConfig.FrIf_GdMiniSlotActionPointOffset-1;
protocol_buff[3]=(FrIf_ClusterConfig.FrIf_GdWakeupRxLow)<<10|((temp<<5)&0x03E0)|(FrIf_ClusterConfig.FrIf_GColdStartAttempts);

// Code
break;

case 4:
protocol_buff[4]=(FrIf_ClusterConfig.FrIf_GdCasRxLowMax - 1)<<9|(FrIf_ClusterConfig.FrIf_GdWakeupRxWindow);//FrIf_GdWakeupSymbolRxWindow

// Code
break;
case 5:
protocol_buff[5]=(FrIf_ClusterConfig.FrIf_GdTssTransmitter)<<12|(FrIf_ClusterConfig.FrIf_GdWakeupTxActive)<<6|(FrIf_ClusterConfig.FrIf_GdWakeupRxIdle);//gdWakeupSymbolTxLow

// Code
break;

case 6:
protocol_buff[6]=((((FrIf_ClusterConfig.FrIf_GdSymbolWindow-FrIf_ClusterConfig.FrIf_GdActionPointOffset + 1)<<7)&0x7F10)|Fr_PbControllerPtr.Fr_PMacroInitialOffsetA)&0x7FFF;
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The AUTOSAR specified that it was more preferable to implement a wrapper function that
encapsulated the driver function for the concerned hardware. This kind of implementation strat-
egy generalised the upper layer to call the lower layer function without taking into account the
hardware specific constraints imposed by the hardware architecture. This kind of design decision
with the above strategy had an advantage at the user application level, but it also implied a con-
straint on implementation with additional lines of code in terms of development strategy. Thus
in reference to the project it was necessary to implement data structures and their corresponding
C configuration files to initialize them. It was these data structures, which were utilized by the
wrapper functions and the driver function for configuring the Flexray controllers and making
them to communicate with each other at the network level. An example of data structure for
Flexray interface[29] is as follows:

typedef struct
FrIf_ControllerType const* FrIf_ControllerPtr;
FrIf_JobListType const* FrIf_JobListPtr;
float32 FrIf_GdCycle;
float32 FrIf_GdMacrotick;
float32 FrIf_MainFunctionPeriod;
uint32 FrIf_MaxIsrDelay;
uint32 FrIf_SafetyMargin;
uint16 FrIf_GMacroPerCycle;
uint16 FrIf_GNumberofMinislots;
uint16 FrIf_GNumberofstaticslots;
uint16 FrIf_GdNit;
uint8 FrIf_ClstIdx;
uint8 FrIf_GColdStartAttempts;
.
.
.
}FrIf_ClusterType;

An important point to be mentioned in the context of Flexray interface was that, it comprised of
data structures which were configured as global parameters, implying that they were the same for
every node participating in the Flexary cluster. An example of xpand generator code developed
for Flexray interface according to the AUTOSAR specification 4.0 is as follows:

«LET FrIfConfig.FrIfClusters.first() AS cluster »
const FrIf_JobListType FrIf_JobList_«cluster.shortName»_Ptrconfig =
{
.FrIf_JobPtr = &FrIf_JobPtr_«cluster.shortName»_config[0],

.FrIf_NbrOfJobs = «cluster.FrIfJobList.FrIfJobs.size»,

.FrIf_AbsTimerRef = &FrIf_AbsTimerConfig[0]
};
/** Cluster configruation Only one cluster supported **/
const FrIf_ClusterType FrIf_ClusterConfig =
{
.FrIf_ControllerPtr = &FrIf_«cluster.shortName»_ControllerConfig[0],
.FrIf_JobListPtr = &FrIf_JobList_«cluster.shortName»_Ptrconfig,
.FrIf_GdCycle = «cluster.FrIfGdCycle.value.or( 0.000024)»,
.FrIf_GdMacrotick = «cluster.FrIfGdMacrotick.value.or(0.000006)»,
.FrIf_MainFunctionPeriod = «cluster.FrIfMainFunctionPeriod.value.or(0)»,
.FrIf_MaxIsrDelay = «cluster.FrIfMaxIsrDelay.value.or(10240000)»,
.FrIf_SafetyMargin = «cluster.FrIfSafetyMargin.value.or(10240000)»,
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.FrIf_GMacroPerCycle = «cluster.FrIfGMacroPerCycle.value.or(8)»,

.FrIf_GNumberOfMinislots = «cluster.FrIfGNumberOfMinislots.value.or(0)»,

.FrIf_GNumberOfStaticSlots = «cluster.FrIfGNumberOfStaticSlots.value.or(2)»,

.FrIf_GdNit = «cluster.FrIfGdNit.value.or(2)»,

.FrIf_ClstIdx = «cluster.FrIfClstIdx.value»,

.FrIf_GColdStartAttempts = «cluster.FrIfGColdStartAttempts.value.or(2)»,

.FrIf_GCycleCountMax = «cluster.FrIfGCycleCountMax.value.or(63)»,

.FrIf_GListenNoise = «cluster.FrIfGListenNoise.value.or(2)»,

.FrIf_GMaxWithoutClockCorrectFatal = «cluster.FrIfGMaxWithoutClockCorrectFatal.value.or(15)»,

.FrIf_GMaxWithoutClockCorrectPassive = «cluster.FrIfGMaxWithoutClockCorrectPassive.value.or(15)»,

.FrIf_GNetworkManagementVectorLength = «cluster.FrIfGNetworkManagementVectorLength.value.or(0)»,

.FrIf_GPayloadLengthStatic = «cluster.FrIfGPayloadLengthStatic.value.or(127)»,

.FrIf_GSyncFrameIDCountMax = «cluster.FrIfGSyncFrameIDCountMax.value.or(2)»,

.FrIf_GdDynamicSlotIdlePhase = «cluster.FrIfGdDynamicSlotIdlePhase.value.or(0)»,

.FrIf_GdIgnoreAfterTx = «cluster.FrIfGdIgnoreAfterTx.value.or(0)»,

.FrIf_GdMiniSlotActionPointOffset = «cluster.FrIfGdMiniSlotActionPointOffset.value.or(1)»,

.FrIf_GdMinislot = «cluster.FrIfGdMinislot.value.or(2)»,

.FrIf_GdStaticSlots = «cluster.FrIfGdStaticSlot.value.or(4)»,

.FrIf_GdSymbolWindow = «cluster.FrIfGdSymbolWindow.value.or(0)»,

.FrIf_GdSymbolWindowActionPointOffset = «cluster.FrIfGdActionPointOffset.value.or(1)»,

.

.

.

For the Flexray protocol several physical buffers were configured that were associated to specific
static slots. These physical buffers were configured in the Flexray memory partition, which was
a set of contiguous memory location. The size of each physical buffer was on the choice of the
user application depending on the frame size that needed to be send over the network. Each
buffer size was allocated a 32 byte size in this implementation. It was of utmost importance to
choose the base address such that the allocated buffer space did not fall into the ROM memory
address, which if occurred caused the processor to throw an exception and abort execution. The
Flexray protocol also supported FIFO implementation for dealing complex scenarios, which was
evaded in the project for the sake of simplicity of the project.

5.3 Interaction with other modules

The ODEEP and the MPC5567EVB development board comprised of two TJA1080 Flexray
transceiver. The data frames in the configured buffers were multiplexed to and from the physical
bus through the Tx and Rx pins of the transceiver respectively. The basic purpose of the
transceiver was to provide voltage transition to Flexray physical bus levels. The bus was a
differential bus with voltage ranging by 0.5 volts above and below a mean voltage of 2.5V. Also
noteworthy was the point that the transceiver could operate in three different modes:

• Transmission mode

• Receive mode

• Normal mode(Tx and Rx mode)

In order to achieve a state transition of the transceiver into normal mode it was required to set
several of its pins either at high or low voltage according to the specification.
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5.3.1 Port module

The MPC5567 processor comprised of several collection of configurable physical electrical con-
nection called pads which formed a port. Based on the physical layout of the ODEEP and
MPC5567EVB board these ports were configured for the required voltage . It was during the
bootup[30] state of the operating system, these ports were clamped to the configured voltage
which set the transceiver into the normal mode. The following pins of the transceiver were set
by configuring the corresponding ports:

• Flexray Bus Guard Enable: This pin was configured low.

• Flexray Tx: This pin was configured high.

• Flexray Rx: This pin was configured low.

• Flexray Tx Enable: This pin was configured low.

5.3.2 Module configuration unit

The ODEEP and MPC5567EVB board comprised of a crystal oscillator with 16 and 40 MHz
frequency respectively that clocked the board. The Flexray protocol engine however needed to
be clocked at 120 MHz. Thus it clearly implies that the clock needed to be translated to a higher
frequency. The frequency translation was governed according to the following equations:
Fsys=Fref∗ (MFD+4)

(PREDIV+1)∗2RFD [7], where Fref was the oscillator frequency, 16 and 40 MHz for ODEEP
and MPC5567EVB board respectively.

Table 2: Equation variables for different boards
Equation variables ODEEP MPC5567EVB

MFD 11 2
PREDIV 1 1
RFD 0 0.

Thus using the following parameters the protocol engine was made to clock at 120 MHz
according to the Flexray 2.1 specification.

5.3.3 Flexray state manager

According to the Flexray protocol a Flexray controller had following state transitions:
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Figure 12: Flexray controller state transition.

As the board was provided the supply voltage the Flexray controller went into default config
state. If for the controller its MCR[7], PCR’s and the individual message buffers in the Flexray
memory partition were initialized without any discrepancy, it could be made to transistion into
ready state by writing the POCR[7]. The ECU’s for this project were configured to never go into
sleep mode. A sleep mode was referred to an ECU state in where it went into power saving mode.
Thus for any further operation the ECU needed to be woken up by sending wakeup pattern bit.
Since the ECU never went into wakeup mode thus it was unnecessary to send a wakeup pattern
so as to switch it over into ready state from sleep mode. The startup of the Flexray cluster
was a complex process. The necessary condition to start a Flexray cluster with n nodes was to
have atleast two working nodes called coldstart nodes. It was during this startup phase atleast
two coldstart nodes exchanged sync and startup frames so as to synchronize their respective
clocks and have a global sense of time for the entire cluster. These sync and startup frames were
exchanged during predefined static slots configured in the PCR. A provision of fault tolerance
from babbling idiot failure[31] of a Flexray controller was provided by setting an inhibitor bit
high. It was this inhibitor bit that prevented the Flexray controller from sending unwanted
frames on the bus and disturbing an ongoing communication. Thus a leading coldstart node first
set this inhibitor bit low by writing "startup" command to the POCR and then started sending
the sync and startup frames . After receiving the frames for few cycles the nonleading coldstart
nodes sent its startupframes leading to a transition from startup state to normal active state
for both the communicating controllers. After achieving the normal active state the controllers
could send and receive the data frames between each other. The Flexray state manager was[32]
the module that called all the API’s in sequential manner to achieve the required state transition
of the Flexray controller to normal active state. The implementation of Flexray state manager
was tricky in the sense that not every coldstart trial caused a successful "startup". Thus it was
necessary to read the protocol state of the controller after every trial and if not successful to reset
the controller to start the process again till a successful "startup" of the cluster was achieved.
An example of Flexray state manager developed is as follows:
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void Fr_SmStateInit(void){
int cnt=0;
Fr_CCRegisterPtr = (volatile uint16*) Fr_DriverSpecific[0].Fr_BaseAddress;
ISR_INSTALL_ISR2("Flexray",FR_ISR,FLEXRAY_PRIF,2,0);
/*
* Initializing the Flexray Interface and Flexray Driver
*/
Fr_Init(&Fr_ConfigPtr);
FrIf_Init(&FrIf_Config);
while(cnt<1000000){
cnt++;
}
cnt=0;
if(!FrIf_ControllerInit(Idx.FrCtrlIdx)){
//Fr_CCRegisterPtr[FR_GIFER]=0x00C0;
cnt=0;
while(cnt<1000000){
cnt++;
}
cnt=0;

Fr_SetWakeupChannel(Idx.FrCtrlIdx,0);
while(cnt<1000){
cnt++;
}
//Fr_SendWUP(0);

if(Fr_PbControllerPtr.Fr_IsLeadingColdstarter==TRUE){
cnt=0;
while(cnt<10000){
cnt++;
}
cnt=0;
FrIf_AllowColdstart(Idx.FrCtrlIdx);
.
.
.
}

5.3.4 Interaction of OS schedule table with Flexray communication stack

An ISR was installed in the system to facilitate the implementation of this project. It was
installed to asynchronously trigger a specific function whenever certain flags of PIFR0[7] were
set. As discussed in the previous sections that the drive counter of the schedule table rather
being autonomously driven by the OS tick was incremented only when a condition evaluated to
be true. It was within this function attached to the ISR, that the schedule table was started at
the beginning of each Flexray communication cycle. The tasks associated with the first expiry
point generated and wrote the data into the buffer from which it was scheduled to be transmitted
over the bus according to the preconfigured Flexray macrotick value. It was during this ongoing
transmission that the timer configuration was set for the next scheduled expiry point in the timer
registers of the Flexray controller. Thus after timer being set for the next expiry point it was
necessary to trigger the expiry point by incrementing the schedule table drive counter, so that
the data was written to the buffer locations before it was scheduled to be transmitted over the
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bus. After the transmission of current generated data and expiration of the timer , the process
was repeated till all the expiry points were triggered and the schedule table came to a halt.
An important consideration while performing synchronization to the Flexray macrotick counter
was to ensure the length of the schedule table to be either equal to or a multiple of Flexray
macrotick cycle counter. This constraint was indirectly achieved by incrementing the drive
counter regulating the dispatching of the expiry points just before the the scheduled Flexray
macrotick. The next adjacent expiry point was similarly triggered just prior to the next scheduled
macrotick. Thus such an implementation enabled the OS Schedule Table length equal to the
Flexray macrotick cycle length in an event when the the number of scheduled transmission over
the bus were equal to the number of expiry points in a Flexray communication cycle. Also
noteworthy was the point that the adjacent expiry point triggering could be synchronized to
the Flexray macrotick such that in an event that the schedule table was behind the macrotick
count, the release of the expiry point could be scheduled earlier by some finite macrotick. Thus
reducing the release jitter induced in the system by the task, which occured if released at a time
stamp beyond the offset time at which it was originally expected to be earlier released.

5.3.5 Call back functions

A Flexray frame comprised of several PDU’s. These PDU’s comprised of payload data. The
payload could be either meant for an application in the application layer or an OS layer task of
the BSW layer. These PDU’s were mapped to upper layer tasks using their PDU Id. The mapping
of PDU’s to the corresponding application layer could be performed using additional AUTOSAR
layer called PDU router[33]. However adding an additional layer caused system implementation
to become more complex. Also noteworthy is the point that in an event of implementing a
time deterministic system such as intended in this project, it should be of utmost concern to
reduce the code structure to as minimal as possible within the critical section. The critical
section for this implementation corresponded to the ISR function implemented. The processing
of PDU’s through PDU router caused an additional latency in processing the PDU’s fetched to
and from the bus leading to an increase in their processing time. Due to the lack of any worst
case execution time measurement tool during the course of the project, it was of utmost concern
to remove additional layers that adds to the complexity of the implemented code and hence an
increase in their processing time. A solution to remove PDU router was to implement a call back
function. These call back functions retrieved the PDU’s from the buffer location indicated by
transmit and receive API. The retrieved PDU data could then be accessed by the application
layer or the OS tasks directly without the need to call the PDU router layer.
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6 Configuring the development environment

This section deals with how the Flexray configuration, and the contributory AUTOSAR modules
were setup in the ARCTIC Studio tool.

6.1 Arctic studio BSW builder

The ARCTIC studio tool contained a plugin called BSW builder. An arctic core repository was
provided that contained the C source code containing the API’s for the modules provided by
the BSW builder. The BSW builder provided containers through which parameters of the xml
files could be configured. These container values were then used by the xpand editor code in
the eclipse development environment to generate C configuration files. It was always possible to
generate the files without using BSW builder but at the cost of very long development time. An
example of BSW plugin is provided as below:

Figure 13: The Arctic studio environment with BSW builder plugin.

All the necessary plugins for the required modules were selected from the BSW plugin and
configured as described below:

6.1.1 OS

This plugin was used to configure the OS level features. In the scope of this project it was
necessary to generate data structures for following submodules:

• OS schedule table

• Drive counter for OS schedule table

• Event for event triggered tasks

• OS level taskset comprising of both basic and extended tasks
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The OS schedule table comprised of five expiry points and seven OS level tasks. All the event
triggered tasks were configured as extended tasks while time triggered tasks were configured as
basic tasks. One of the task was configured as "AUTOSTART" task. An "AUTOSTART" task is
one which is triggered automatically by the OS . This task was used for calling all the API’s that
initialized the schedule table and the Flexray communication stack. An example of configured
OS plugin is provided as below:

Figure 14: The Arctic studio environment for OS BSW plugin.

6.1.2 FrIf

This plugin was used to configure the Flexray interface. The corresponding plugin comprised
of containers to configure the variables at Flexray cluster level and parameters to to configure
Flexray frame structure. An important property about Flexray frame structure important to be
mentioned is the communication operation type parameter. The communication operation type
parameter were of the following types:

• Decoupled transmission: This operation implied that data needed to be written to the
physical buffer for transmission.

• Prepare LPDU: This implied that an LPDU needed to be prepared.

• Receive and indicate: This implied that the upper layer was needed to be informed of the
received data.

• Receive and store: This implied that the received data was needed to be stored at the
configured memory location.

• Tx confirmation : This implied that it was necessary to notify that an event of successful
transmission was always needed to be notified.

For the scope of the project, eleven data frames were configured to be transmitted over physical
bus. An example of FrIf BSW plugin is as follows:
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Figure 15: The Arctic studio environment for FrIf BSW plugin.

6.1.3 Fr

This plugin comprised of containers that were used to configure the hardware specific values to
set up a working Flexray communication stack. A Flexray plugin is as follows:

Figure 16: The Arctic studio environment with Fr BSW plugin.

6.1.4 MCU

This plugin comprised of containers that were used to configure the clock related parameter for
the ECU. It was in this plugin the parameters MFD, PREDIV, RFD were configured according
to the requirement.
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Figure 17: The Arctic studio environment with MCU BSW plugin.

6.1.5 Port

This plugin was used in the project to initialize the Flexray transceiver with correct pin voltages
according to the specification. Also noteworthy was the point that Flexray Tx pin was set to
Flexray mode. Thus by setting the Tx pin to Flexray mode, the Flexray controller could enable
the Tx pin when required, while disabling the pin when not required during ideal transmission
time. An example of Port plugin is as follows:

Figure 18: The Arctic studio environment with Port BSW plugin.
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6.1.6 ECUM

This plugin was used to configure the ECU in always "active mode" by setting the boolean for
sleep mode to be false. An "active mode" is one in which the ECU never goes into power saving
mode and keeps the processor busy in some dummy loop which does not have any instruction
to be executed. While in the sleep mode the processor though being clocked disables the power
consuming computing unit by disabling the input for a gated clocked architecture.

Figure 19: The Arctic studio environment with BSW builder plugin.

6.1.7 ECUC

This plugin was used to define the PDU’s in the system. Considering the scope of the project
ten PDU’s had been configured with five PDU’s each for Tx and Rx respectively.

Figure 20: The Arctic studio environment with ECUC BSW plugin.
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7 Test and verification

This section deals with test and verification strategy employed in the context of the project. The
implementation was broken down into two different modules. :

• OS schedule table

• Flexray communication stack

Also noteworthy is the point that the scope of implementation of these two modules were at
software and hardware levels respectively. Owing to this property, the test and verification for
software module comprising of OS schedule table could be easily performed on a simulator. The
choice of a software simulator was motivated by the fact that a software simulator provided
hardware platform independance. Also an OS schedule table was located in the BSW layer of
AUTOSAR layered architecture, beneath the application layer. Its implementation thus should
be generic, independent of hardware architecture of the processor. Power PC simulator tool
provided by lauterbach inc. was used as simulator for validating the schedule table.

7.1 Test and verification of OS schedule table

Feature and functional testing was performed for OS schedule table which is described in detail
below.

7.1.1 Feature testing

Following schedule table features were validated:

• OS Schedule table Id.

• OS Schedule table length ≤ Drive counter length.

• Schedule table synchronization strategy.

• OS schedule table minimum shift ≤ Delta

• OS schedule table miximum shift ≤ Delta

7.1.1.1 Schedule table Id

The C configuration file for OS schedule table comprised of a parameter "OS_SCHED_COUNT_MAX"
which gave the number of OS schedule tables configured. The schedule table Id was compared
to check that a valid schedule table was passed to a schedule table API. If the schedule table Id
was invalid the program execution went into an error hook comprising of an infinite loop.

7.1.1.2 OS schedule table length

A driver counter rounded off to an initial starting value. Thus it was necessary to have a schedule
table length to be always less than or equal to the drive counter. If this condition was encountered
to be false the program went into error hook and the processor execution was halted.

7.1.1.3 OS schedule table min max shift

As discussed in the previous chapter that based on the state of the synchronization counter the
drive counter adjusts itself. Every expiry point is seperated by finite length called delta. Based
on whether the schedule table is late or early compared to the synchronization counter the next
expiry point is scheduled early or delayed accordingly. An important point to note was that the
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next expiry point could not be moved forward to previous elapsed time until the next execution
cycle occurred. While it could not also be delayed to a point beyond the adjacent neighbour of
the next expiry point. Hence it was necessary to keep the schedule table min or max shift to be
always less than delta between the expiry points. Thus if the computed delta was found greater
than OS schedule table min max shift at any time instant an error hook was called to halt the
processor execution.

7.1.2 Functional testing

The functional testing comprised of implementing a test C file for schedule table that triggered
the schedule table and executed all the expiry points till it came to a halt. The preliminary
aspect of testing involved validating the release of trigger points at correct time stamps. Both
the drive and synchronization counter were incremented using software counter. The dummy
code comprised of creating asynchronocity between the two counter to validate that the schedule
table could adjust its expiry points at run time by calculating the jitter between the two counters.
Also noteworthy is the point that the relative priority between the tasks in the expiry point was
carefully assigned as the event triggered tasks were never terminated always waiting for an event
thus in such a scenario if a time triggered task was assigned a lower priority it could have never
prempted the task and would have suffered from starvation. An example of test code ment for
functional testing is as follows:

for(;;){
LDEBUG_FPUTS("Main Task starts\n");

/***List of Schedule table connected to the counter ***/
SLIST_FOREACH(sched_obj,&c_p->sched_head,sched_list){
sched_obj->expire_val=Os_SchTblGetInitialOffset(sched_obj);
if( !StartScheduleTableSynchron(sched_obj->id) && !SyncScheduleTable(sched_obj->id,c_p_sync->val) ){
/**Bare minimum number of lines of code should exist to reduce the overhead on schedule-table processing**/
while(sched_obj->state!=SCHEDULETABLE_STOPPED){

exp_id=sched_obj->expire_curr_index;
IncrementCounter(COUNTER_ID_DriveCounter);
/**This code lines has been added to create deviation**/
#if 0
if(Os_CounterGetValue(c_p)%2==0){
IncrementCounter(COUNTER_ID_SynchroCounter);
}
#endif
/**In order to compute the deviation and state of the table Running or Running & Synchronous**/
if(c_p->val==1)
SyncScheduleTable(sched_obj->id,0);
else
SyncScheduleTable(sched_obj->id,c_p->val);
/** Computes the expire value, state and executes the task and events**/
/** Also the updation of value , state and only after the occurance of an expiry point **/
if(Os_CounterGetValue(c_p)==sched_obj->duration){
sched_obj->state=SCHEDULETABLE_STOPPED;
}
Os_SchTblfunc(sched_obj,c_p);
/*
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7.2 Test and verification of Flexray communication stack

As previously discussed, a Flexray communication stack comprised of a Flexray interface and a
Flexray driver . It was the Flexray driver that lay beneath the microcontroller abstraction layer
in an AUTOSAR architecture that directly communicated with the hardware of the Flexray
peripheral unit. The test and verification focused on correctly initializing the Flexray hardware
controller. The verification of Flexray peripheral registers was done with the assistance of a
hardware debugger. The hardware debugger comprised of either a UDE or WinIDEA iSYSTEM
for debugging the values allocated to the special function registers of the Flexray peripheral
unit. The Flexray controller had several transitional states , before eventually reaching the
normal active state. The following registers were of utmost importance to be debugged for a
successful state transition:

• MCR
The MCR was a 16 bit register in which the clock select and the prescaler bit fields decided
the clock rate of protocol engine and the bus bandwidth respectively. This two bit fields
constrained all the participating nodes of the cluster to have similar clock rate of either 40
MHz or 120 MHz . The bus bandwidth could vary from 0.71 to 10 Mbps. However it was
necessary to configure all the nodes to have similar prescaler bit value. A discrepancy in
which it could lead to the communication failure of the cluster.

• PCR
The PCR registers comprised of several 16 bit registers. Each register comprised of bit
fields that were used by the protocol engine for its correct functioning according to Flexray
specifications 2.1. As discussed in the previous sections the cluster comprised of atleast two
coldstart nodes that exchanged syncronization and startup frames to successfully coldstart
cluster. In the light of this context few points were important with respect to proper
functioning of the Flexray MAC layer. The synchronization and startup frames comprised
of CRC header field which if found incorrect was discarded by the MAC layer. The CRC
header field to be concatenated to the startup frame was taken from protocol configuration
register 18. Thus it was necessary to compute the header correctly. Also noteworthy is
the point that a leading coldstart node was configured to send the frames in the static slot
prior to the non coldstart node. In an event of discrepancy to meet these two conditions a
communication failure was encountered for the Flexray cluster. A CRC header calculater
for the verification of CRC header is as follows:

#define CRC_HEADER_POLY 0xb85
#define CRC_HEADER_IV 0x1a
#define CRC_HEADER_LENGTH 11
#define CRC_HEADER_DATA_LENGTH 20
unsigned int crc_header_ref(unsigned int data) {
unsigned int shiftreg = CRC_HEADER_IV;
int i;
int bit;
for(i = CRC_HEADER_DATA_LENGTH-1; i >= 0; i--) {
bit = ((shiftreg >> (CRC_HEADER_LENGTH-1)) & 0x1) ^((data >> i) & 0x1);
shiftreg <<= 1;
if(bit)
shiftreg ^= CRC_HEADER_POLY;
shiftreg &= (1 << CRC_HEADER_LENGTH)-1;
}
return shiftreg;
}
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unsigned int create_header(unsigned int frame_id,unsigned char payload_length,unsigned char sync_bit,unsigned char startup_bit) {
return (sync_bit << 19) |(startup_bit << 18) |payload_length |(frame_id << 7);
}
unsigned int crc_header(unsigned int frame_id,unsigned char payload_length,unsigned char sync_bit,unsigned char startup_bit) {
return crc_header_ref(create_header(frame_id, payload_length,sync_bit, startup_bit));
}

• POCR
The state transitions for the controller were made by writing the protocol command bit
field. However for a successful transition it was necessary to monitor the busy bit flag in
the register. A write operation was unsuccessful if the busy bit flag was raised. Thus the
busy bit flag needed to be monitored before a write operation. However while testing the
Flexray module initialization this check point was evaded by implementing the dummy
waiting loops for sufficiently large time within which the busy flag was cleared.

• PIFR1
A illegal state transition if any was indicated by the illegal protocol command flag in
the register. Thus it was necessary to monitor this bit flag after performing every write
operation in protocol operation command bit field. Also noteworthy is the point that their
were timer related flags in this register to indicate the expiry of a configured timer. It is
these flags that assisted in the logic implementation in the ISR as discussed in the previous
chapter.

• PSR1
This register was used to debug the startup process of the Flexray cluster. This register
comprised of bit fields that comprised of bit flag that indicated a successful startup of the
flexray cluster. In the event of a startup failure the controller performed a retry based on
the number of coldstarts attempts indicated by the certain bit fields. Thus based on the
number of startup attempts and the flag fields a controller was initiated to be reset when
the startup failed.

7.3 Unit level testing

The individual buffers configured for data frames were implemented as non queued buffers. A
non queued buffer is one such that in an event of write operation to the buffer the old data gets
overwritten. Thus to avoid any overwriting of the buffer and loss of data frame due to it, the
static slots for individual buffers were configured for every third static slot. Under the assumption
that the latency of transmitting the data buffer on the bus being atmost a slot period, it was
certain to reach in the time period of at the most two consecutive static slot period after the
data was latched on to the bus. The receiving node was configured to read the buffer at every
third cycle. Thus by transmitting and receiving the data every third cycle a data was assured
to be never overwritten before being read by the receiving node. Also noteworthy is the point
that if the transmitting node was unable to write a data to the individual buffer, a null frame
was transmitted. Thus a jitter induced, when the expiry point lagged behind in writing the
buffer before the scheduled transmission time was, estimated by incrementing a global variable
called jitter. Every null frame transmission lead to an increment of this jitter value. Thus giving
a proportionate measure such that higher the jitter in the system higher was the jitter valued
achieved.
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8 Results

The integration testing approach went along in two different directions. One of them was towards
Inter-ECU synchronization while the other was in the direction of Intra-ECU synchronization.
In the Inter-ECU an attempt was made to trigger the schedule table, compute data by the tasks
and then multiplex it over the bus to be transmitted to the destination node. While in the Intra-
ECU synchronization and attempt was made to read the Flexray macrotick and synchronize the
schedule table accordingly before triggering an expiry point.

8.1 Inter-ECU synchronization

An ISR was used to trigger the schedule table which itself could suffer from run time latency. In
order to accomodate this latency and add jitter tolerance, a maximum ISR delay of 500 Flexray
macrotick was allocated. Also similar to the OS schedule table their existed time stamps in the
Flexray peripheral at which the configured buffers were supposed to multiplex the data on to
the physical bus. However if the buffer were not written in time with the data and the time
stamp expired a null frame was transmitted. In order to accomodate latency for schedule table
processing and writing the data into the buffer an additional 500 Flexray macrotick were added
to accomodate the latency in processing the OS layer tasks. However the additional macrotick
added were not sufficient enough for the data to be written to the buffers prior to the expiry of
the time-stamp due to following overhead:

• Schedule table processing

• Context switching of tasks

• Task processing

• Background OS ISR’s

8.2 Intra-ECU synchronization

The OS schedule table was driven by an OS counter, whose tick frequency was of 1 ms. The
Flexray macrotick frequency derived from the oscillator frequency calculated to be of 25 ns. A
Flexray cycle was of 5000 macrotick length corresponding to a duration of 0.125 ms. Clearly
eight Flexray communication cycle corresponds to one OS tick. The schedule table has been
choosen to be of 50 ms/400 cycle length respectively. Also an important feature to be noted
was that, the schedule table were equidistant. Each expiry point within the schedule table could
have a min/max shift of 5 ms about its mean position. The API to read the Flexray macrotick
was called after the triggering of the expiry point, such that in an event of deviation between the
OS tick and the macrotick count, the next scheduled expiry point could be adjusted. Under the
worst case assumption that every expiry point suffered from a maximum deviation, that is each
expiry point needed to be adjusted by 5 ms, it could be easily deduced that the jitter reduction
in the system could be achieved to be ≤ 0.05.
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9 Discussion

The software computational speed always lost to the hardware speed. The reason being software
counters at the higher layers were a derivative of hardware clocks. Several hardware clock
ticks constituted the software counter tick. Thus by the time stamp a software tick clocked to
a specific value, the hardware clock used to advance to much higher values compared to the
software clock. The Flexray peripheral clock turned out to be too fast compared to OS counters.
This difference in the clock rates severely deteriorated the performance in reference to the Inter-
ECU synchronization. While the difference in clock rates in the Intra-ECU communication was
compensated by deriving the time scale concluded from several hardware clock cycles. The OS
environment imposed a strict constraint of implementing the OS counter tick as the drive counter
for schedule table. A alternative solution of driving the schedule table with a hardware counter
would have been a possible solution. However such a solution would have forced the schedule
table to be very close to the hardware layer instead of being a part of OS layer. In the context of
Flexray peripheral, the start up state was very important. The Flexray protocol however does
not discuss in detail about the API calls to be taken care of in the context of parent and child
coldstart nodes. In the project the flaw in understanding the API calls in the startup state led to
an unnecessary delay in the project timeline. The Flexray startup state was inferred as behaving
like an Ethernet protocol performing contention resolution, which was not the case in reality. In
the context of physical layer it was very important to understand the transceiver operation being
explicitly controlled by the Flexray controller rather than being statically controlled by the pin
voltages, which is the normal case in CAN based bus architecture.
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10 Conclusion

As discussed in the previous section the difference in the counter speed for the clocks caused
a race around condition between the software and the hardware. Also to be noted that the
processor MPC5567 used during the project comprised of a single core. A single core ECU was
not sufficient for Inter-ECU communication. A multi-core processor would have been a possible
solution in the context of current anomaly. However it was also necessary to keep in mind a
complete knowledge of worst case execution time of individual tasks in the schedule table along
with the overhead cost caused due to context switching and task pre-emption. The future scope
of the project can be extended in the context of deteriorated performance of the Inter-ECU
communication. A p-thread processing of schedule table, running on several cores could be a
possible solution. However writing to the memory if shared would also impose a strict usage of
semaphores to ensure mutual exclusion in order to remove chances of memory corruption. The
implementation can be made even more predicatable by turning off all the OS ISR’s which caused
a lot of timing unpredictability in the system. In reference to the hardware another interesting
feature would be look into processor architecture that supports configuring and installing user
defined hardware interrupts. Such hardware interrupts could be set at specific Flexray macrotick
check points for synchronization of schedule table in order to achieve better predictability of the
system. Also hardware fault tolerance can be added into the system by enabling both the Flexray
channels. Software redundancy can also be implemented by enabling several redundant copies
of static slots in the static segment of Flexray communication cycle.
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11 Appendix

11.1 Flow charts

Figure 21: Flexray startup sequence.[32]
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Figure 22: Flexray frame transmission sequence.[29]
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Figure 23: Flexray frame receive and indicate sequence.[29]
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