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Dynamics of Affective Information in English Novels
Using Information Theory to measure interaction patterns between fictional char-
acters
Kevin Jaquier
Department of Space, Earth and Environment
Division of Physical Resource Theory
Chalmers University of Technology

Abstract
A central hypothesis in psychology is that every human language, and therefore
every human culture, has an implicit theory of personality behind the meaning of
words. As the language evolves over time, so do these ideas about similarities and
differences between people. The increasing availability of digitised books creates
opportunities for studying this evolution, and perhaps gaining new perspectives on
how humans describe their peers across cultures.
Unfortunately, conventional approaches from contemporary personality theory rely
on assumptions that may not apply to this situation. Following previous work in-
spired by dynamical systems theory, we experimented with a model of personality
based on a feedback loop mechanism. In order to estimate how appropriate this
model would be in such settings, we automatically extracted sequences of emotions
about the characters of 150 classic English novels, and then used Information The-
ory to measure characteristics of temporal information patterns in those sequences
– namely entropy rate and transfer entropy.
We faced a number of challenges related to the extraction of good quality semantic
information, resulting in insufficient data to draw any solid conclusions from our
entropy estimates. As a guide for future work, we discuss how our purpose-built
natural language processing (NLP) program should be improved, in order to obtain
the desired data quality and reliable estimates of entropy rates. We also provide
suggestions for how more recent advances in NLP may be exploited while minimising
the sources of biases which can be problematic in this context.

Keywords: information theory, natural language processing, psychology, entropy,
emotion detection
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1
Introduction

Similarities and differences in how people think, feel and act, and the consistence of
these traits over time, is a subject of interest for social sciences. Personality Theory
seeks to make sense of this complexity and its implications. The emergence of new
data sources and computational methods has inspired researchers to compare known
personality dimensions across different cultural and historical contexts. However,
concerns have been raised about the appropriateness of some of the structures used,
as cultural and situational factors are often not properly addressed [1, 2].
Rather than reducing this complexity to single attributes (e.g. open, extroverted)
describing an assumed average personality across time and contexts, we explore in
this work a possible alternative based on Information Theory, where we attempt to
quantify the information produced by occurrences of certain emotional attributes
(e.g. joy, anger, valence) over time.
This approach requires fewer assumptions about how personality manifests over
time and situational contexts, while also reducing the dependence on preexisting
ethnocentric personality theories. The resulting information structure could provide
opportunities for more general and comprehensive personality models. The chal-
lenge, however, lies in the extraction of data of appropriate quality and size for such
qualitative analysis.

1.1 Basic definitions

Let us first clarify the meaning of some key psychology constructs that will be
discussed:

• Affect is the unconscious experience underlying feelings and emotions [3].
• Behaviour is the range of actions and mannerisms made by an individual [4].
• Cognition refers to mental information processing mechanisms such as thought,

attention or memory.
A theory of personality is “concerned with describing and explaining the observed
complexity of individual differences in the patterning of affect, behaviour, cognition
and desires over time and space” [5].
A situation or situational context refers to the sequence of events preceding the man-
ifestation of an affect, behaviour or cognition, and more specifically to the affective
content of those events, e.g. threat, reward, surprise etc.

1



1. Introduction

1.2 Personality across history and cultures

Much of the results from personality theory come from the lexical hypothesis, which
postulates that (1) important characteristics of individual differences eventually be-
come encoded in language, and (2) the most significant ones are likely to be expressed
as single words. Based on this assumption, psycholexical approaches consists in de-
riving the main dimensions of personality variation from language, usually based on
the meaning and usage of a large selection of words – a lexicon.
This line of research resulted in the identification of five universal factors underly-
ing most of the observed variations [6], interpreted as openness, conscientiousness,
extroversion, agreeableness and neuroticism. Referred to as the Five Factor Model
(FFM) or Big Five, this is the most widely used personality model in the literature.
However, the lexicons used to derive the FFM originate from a contemporary West-
ern context [7]. Some form of translation is required to reproduce such structure to
other corpora, which is prone to bias since word meanings differ across languages
and also change over time [8]. Although the FFM was successfully reproduced in
cross-cultural studies [9], the validity of such generalisation has recently been chal-
lenged [1] due to interpretation issues with commonly used personality questions,
both by the respondents and the survey authors. This confirms the high sensitivity
of psycholexical models to how the personality lexicon is constructed and used, and
motivates us to explore different approaches.
Being able to compare personality models across languages is critical for studying
how implicit theories of personality evolve over time, because of how the use and
meaning of words change. An ideal model would have to be generic enough to stay
relevant for any language or culture, yet retain a meaningful enough structure so
different languages would only vary in the parameters without requiring a complete
redesign of the model.

1.3 A new computational approach

The availability of large literary corpora and the recent progresses in Natural Lan-
guage Processing (NLP) allow for new experimentation with computational ap-
proaches, with two potential advantages over lexical approaches.
Rather than merely compiling personality-related terms, it is now possible to extract
high-level high-resolution semantic meaning from the text, such as “who does what
to whom and how?”. This requires moving from a lexicon to a language model, an
abstract representation of semantic meaning derived from a quantitative analysis of
language rather than manual annotations or surveys. Language models also have
the potential advantage of being reproducible to other languages without manual
translation [10, 11].

The idea suggested here is to use these high-level semantic meanings to capture
personality-relevant information in a principled way. More concretely, it means that
instead of using some pre-existing lexicon, an algorithm identifies relevant words
and semantic meanings in a text using a mix of syntactic and semantic features.

2



1. Introduction

Not only would such approach allow to extract emotions, behaviour or any rele-
vant characteristic of personality, but also the context in which they occur in the
text. Sample sequences of situations and behaviours may be used to experiment
with dynamical models of personality which include these aspects but lack valida-
tion from empirical data, such as work from Mischel and Shoda [12] and Read et
al. [13].

1.4 Dynamical systems and personality
The definition given in 1.1 makes it clear that any observation of affect, behaviour
or cognition should be contextualised with the current situation and the individ-
ual’s past interactions with his environment. Some alternatives to psycholexical ap-
proaches acknowledge the relevance of the sequence of situations and treat personal-
ity as a behavioural trend in relation to it, moving the formalism from static latent
variables to dynamical systems.
The shift to a dynamical perspective can shine new light on apparent inconsistencies
observed with current models [12], and phenomena of psychological change such as
age trends [14], cycles of inter-personal behaviour [15], bipolar depression [16] or
non-linear life transitions [17]. The effect of the situational context and environ-
ment on personality over time has also been recognised as an underdeveloped aspect
of the current state-of-the-art [18, 2, 19]. The NLP-based method described here
could eventually help characterise the range of environmental (or external) “states”
and their effect on subsequent behaviour, affect and cognition (internal states),
thereby depicting the “state space” of an individual-environment system and its
long-term dynamics. Such conceptualisation has already been formulated in pre-
vious work [12, 13, 20, 5], but empirical data is lacking for using such models in
practical applications.
Rather than assuming a specific model, we focus on the general structure of this
individual-environment system. We investigate the dynamical properties of sequen-
tial data from the text, such as temporal correlations, in order to validate the
relevance of this data source and inform the choice of an appropriate class of
model. Hence, data needs to be extracted as sequences of either numerical val-
ues or symbols, representing dimensions of psychological meaning, such as emo-
tions (e.g. joy, anger), relevant theoretical constructs (e.g. valence, agreeableness) or
possibly any data-driven abstract representation of semantic meaning (e.g. vector
embedding from a language model).

3



1. Introduction

1.5 Project purpose and scope
This project is an early step towards finding an appropriate abstraction level to
model personality as a dynamical system, in such a way as to provide statistical
methods for capturing personality characteristics from text, without depending on
language- or corpus-specific features, or on pre-existing personality dimension, for
the reasons previously described.
We attempt to translate the dynamical system perspective in terms of information-
theoretic concept, and to apply the corresponding statistical measures on a corpus
of English novels in order to investigate their potential for capturing personality-
relevant properties.
We proceed by developing a text mining method to extract psychological information
about the characters and their environment (other characters and entities), in the
form of symbolic sequences of emotion-related features. We then estimate some long-
term dynamical properties of these sequences, to determine the extent to which the
sequences representing a character’s state are (1) predictable (i.e. correlated over
time), and (2) affected by those representing the environment’s state (i.e. correlation
from/to specific features and entities). Information theory is particularly suited to
this kind of investigation, for reasons explained later in the Background chapter
(Section 2.5).
It must be emphasised that the subject of study are fictional characters, and thus
reflect cultural representations of personality rather than real people. However, the
methodology could also be applied to non-fictional sources such as diaries or biogra-
phies. This work focuses on fictional characters as a first step since large datasets
are easily accessible, and because insights on the information structure of novels
are also relevant to the study of cultural aspects of personality [9] and for literary
analysis [21, 22].

4



2
Theoretical Background

The reader may skip sections of this chapter depending on his background. Sec-
tion 2.1 gives an basic overview of contemporary Natural Language Processing, suf-
ficient for understanding the methods used here and the recent state-of-the-art. Sec-
tion 2.2 elaborates on the various concepts and models from psychology relevant
to this work. Sections 2.3 and 2.4 picture the specific research space in which this
project takes place. Finally, Section 2.5 provides the definitions of all concepts and
measures used in the analysis. It also serves as an introduction to Information The-
ory for unfamiliar readers, and should be comprehensible with elementary notions
of probabilities and asymptotic limits.

2.1 Natural Language Processing

Natural Language Processing (NLP) and Understanding (NLU) is a research area
concerned with the automated extraction and analysis of syntactic and semantic
information from text written in human (natural) language. Earlier work relied
on the use of formal grammars and heuristics for syntax parsing (“rule-based ap-
proach”), with semantic information usually compiled in manually constructed lex-
ical databases, such as WordNet [23].
Modern NLP, however, is characterised by the statistical approach. It is based on
distributional semantics [24], namely the hypothesis that two words have similar
meaning if the context in which they are used (i.e. the distribution of surrounding
words) is similar. This structure is encoded in an abstract vector space, or em-
bedding, used to formulate many NLP tasks as typical inference tasks in Machine
Learning (ML). The range of NLP tasks varies from low-level syntactic parsing
(e.g. Part-of-Speech tagging) to high-level semantic understanding (e.g. sentiment
analysis).
Recent breakthroughs followed the adoption of more advanced ML techniques and
architectures, such as notably Long Short-Term Memory (LSTM), Attention, Trans-
fer learning and Multi-Task Learning. While powerful, these techniques often require
large amounts of training data and computational resources, which is why simpler
rule-based models and lexical databases still remain useful.
The rest of this section introduces in more details the concepts and tasks relevant
to this project.

5



2. Theoretical Background

2.1.1 Word embedding and language models
Word vector embeddings are generated by language models such as Word2Vec [25].
It is a well known neural network language model, illustrated in Figure 2.1, that
predicts words from their immediate context. It became very popular because of its
availability, efficiency and ability to capture both syntactic and semantic regulari-
ties while preserving linear relations between word meanings. As an example from
the paper, vector(”King”) − vector(”Man”) + vector(”Woman”) is very close to
vector(”Queen”). This allows many NLP tasks to be formulated in terms of mapping
in vector space.
So-called “bag-of-word” approaches like Word2Vec average word frequencies with-
out considering their sequential order. As a result, they fail to capture sentence-
specific contextual information and distinguish between multiple word senses (poly-
semy). Another limitation is the inability to handle out-of-vocabulary words. More
sophisticated architectures such as flair [26] or BERT [10] overcome these limitations
by capturing temporal correlations between words or word parts.

Figure 2.1: Word2Vec model architecture (from the original paper [25]). The
CBOW (Continuous Bag-of-Word) architecture predicts the current word from its
context (surrounding words), whereas the Skip-Gram architecture does the oppo-
site: given the current word, it predicts the context.

6



2. Theoretical Background

2.1.2 Low level tasks
The first task in any NLP pipeline is tokenisation, which consists of segmenting a text
into tokens (e.g. words, punctuation), and sometimes also into spans (e.g. sentences,
compound names, noun phrases). Many tasks can be implemented as classification
tasks on single tokens, such as the ones below. These consist in extracting syntactic-
level features from documents, and are typically used as part of a more complex
NLP pipeline to achieve some purpose.

• Part-of-Speech (POS) tagging: determining the grammatical role of a
given token, e.g. noun, adjective, verb etc.

• Dependency Parsing (DP): representing sentences as a syntactic depen-
dency tree, where each token points to its parent (e.g. subject and object
point to the verb), and the sentence parent is the main verb. See example in
Figure 2.2.

• Name Entity Recognition (NER): detecting entity names and classifying
them into pre-defined categories (person, location, organisation etc.).

Autonomous 

ADJ

cars 

NOUN

shift 

VERB

insurance 

NOUN

liability 

NOUN

toward 

ADP

manufacturers 

NOUN

amod nsubj compound

dobj

prep

pobj

file:///C:/Users/kevin/Desktop/dep.html

1 sur 1 04.11.2019 à 19:26

Figure 2.2: Example of Dependency Parsing (DP) and Part-of-Speech (POS)
tags. Arrows illustrate syntactic dependency relations from parent to child with
the corresponding relation type. Since every token must have a parent (the root is
its own parent), the task is implemented as a token classification task. POS tags are
also shown under the corresponding words. From spaCy’s documentation1.

The advantage of such low-level tasks is that pre-trained models with decent perfor-
mance are widely available, at least for the English language. Since these features
are typically combined into more complex algorithms, NLP applications are usually
structured as a pipeline. A pipeline is a sequence of single-purpose tasks that use
the accumulated outputs (e.g. lower-level features) of the previous ones to generate
new output (e.g. higher-level features).

1https://spacy.io/usage/linguistic-features#dependency-parse
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2. Theoretical Background

2.1.3 High level understanding tasks
The recent successes in applying advanced ML architectures to NLP has led to
breakthoughs in addressing non-trivial higher-level tasks. Those typically require a
certain level of understanding and interpretation at the semantic level.
Coreference resolution consists in binding words or expressions that refer to
the same thing or person (referent). For example: “My sister has a dog. She loves
him”. “She” refers to “My sister” and “him” to “a dog”. The problem is more
complex than merely resolving pronouns. Consider the following example (indices
represent distinct referents): “Although he 1 was playing with it 2, Alice and Bob 3
said they 3 could not hear his 1 guitar 2”. The referent can occur before (1 and 3)
or after (2) the reference, or include another referent (2), or the reference can have
multiple referents (3), or even be ambiguous (1). Some of the difficulties related to
coreference resolution are currently unsolved problems. This includes collapsing the
different names of a person or character (e.g. “John Doe”, “John”, “M. Doe”), or
dealing with plural pronouns or group membership (e.g. “they”, “their”) [27].
Semantic Role Labelling (SRL) refers to the identification and classification
of predicate-argument structures. For example: “The keys 1,2, which were needed 1
to access the building 1, were locked 2 in the car 2”. This sentence contains two pred-
icates, or verbs: “needed” and “locked”, respectively with the arguments (“the keys”,
“to access the building”) and (“the keys”, “in the car”), corresponding in both cases
here to the agent (who) and a modifier (why, where).
Semantic frame induction, slots-filling and event extraction are variants where typ-
ically only a set of predefined predicate and related arguments (frames) are consid-
ered, based on the needs of the tasks or on databases such as FrameNet2.
Sentiment analysis consists in classifying the general sentiment expressed in a
sentence or document, typically positive or negative. As illustrated on Figure 2.3,
sentiment is distinct from emotion as it reflects an acquired predisposition rather
than a momentary affect. The difficulty of the classification task lies in ambiguities
such as negations or irony. Emotion detection is typically associated with sentiment
analysis [3]. Psycholexical approaches are commonly used in this context [28] by
simply matching the words with a lexicon.

2.1.4 Other Machine Learning concepts
Supervised learning describes the process of fitting “a function that maps an
input to an output based on example input-output pairs.” [29]. In classification tasks,
very common in NLP, the classifier function maps sample tokens to discrete labels
or annotations. The set of examples, or gold standard, represents the contextual
knowledge required to accurately reproduce the mapping, and is often built through
a tedious manual process.
POS tagging, for instance, is a typical supervised learning task: labels (e.g. noun,
adjective) are derived from a theory of grammar and provided explicitly in the gold
standard ; whereas language modelling is unsupervised: by trying to predict e.g. the

2Available online on https://framenet.icsi.berkeley.edu/fndrupal/
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2. Theoretical Background

next word given the previous ones, all the contextual knowledge contained in the
words, which also includes POS information, gets encoded into the representation
model.

Unsupervised learning does not rely on previous knowledge, but aims instead at
capturing patterns. For example, by learning faithful representations of the data,
or by automatically extracting the most relevant features from the inputs. It can
be mixed with supervised models to provide better input features (representation
learning), or to improve the generalisation of a model trained on a restricted la-
belled dataset to a larger non-labelled dataset (semi-supervised learning). Learned
representations are helpful for implementing complex high-level supervised learning
tasks with relatively few annotated samples [30], by using the compressed represen-
tation as input. This is the essence of transfer learning, which allows large generic
models like BERT [10] to be re-used by changing only the output layer. When in-
troduced, BERT outperformed multiple state-of-the-art task-specific classifiers with
the same model, while using much less labelled data. BERT also uses the attention
mechanism to dynamically adapt the representation of a specific token occurrence
based on the surrounding tokens.

Multi-task learning architectures are designed to optimise the representation
(i.e. language model in NLP) across multiple tasks simultaneously. This approach
improves generalisability, which is particularly important for transfer learning.

Knowledge distillation is a technique for reducing model size by training a smaller
model to reproduce the output of a larger one [31]. It is useful for compressing a
large composite model resulting from transfer learning, or for expanding a smaller
set of annotations into a bigger one.

2.1.5 State-of-the-art overview
Language modelling is an exceptionally active field of research at the time of writing,
and is quickly pushing progress on many NLP tasks. The state-of-the-art in many
tasks is characterised by the combination of transfer learning with an attention-
based language model [10], further improved with multi-task learning [32]. An in-
teresting property of such language models is that all common lower or higher level
NLP features seem to be integrated and optimised across the different levels of
abstraction [33], despite never being explicitly encoded in either the model struc-
ture or the data. These breakthroughs enabled the tackling of increasingly complex
higher-level tasks such as text summarising, question answering or common sense
reasoning [34, 35]. However, despite the many promising applications, important
limitations apply, as discussed in 2.1.6.

Probabilistic Graphical Models (PGM) are a common alternative to deep neural
networks in NLP. A Bayesian PGM is a directed graph of inter-dependent random
variables encoding knowledge and uncertainty as a probability distribution, with
parameters fit to empirical data using Bayesian inference. A typical approach in
NLU tasks is to represents words as the output of a generative model that explic-
itly includes the relevant latent variables, such as sentiment or semantic role. This
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makes interpretation straightforward compared to black-box neural network mod-
els. Learning is unsupervised: annotations are not required, although they can be
added as additional features.
There are other kinds of PGM but Bayesian models are commonly used in NLP.
PGMs have been applied with varying levels of success to event detection and frame
induction [36, 37, 38], sentiment analysis [36], language modelling [39], Semantic
Role Labelling and character persona modelling [40].

2.1.6 Current issues in Natural Language Processing
As in other areas of Machine Learning, the use of deep neural networks comes with
non-negligible issues, essentially due to two important limitations. Firstly, their
black-box structure makes them hard to interpret. This recently led to concerns
about their effectiveness for practical NLU applications, as they are prone to learn
shallow heuristics that perform well on benchmarks but systematically fail in more
subtle cases [41, 42, 27].
Another practical limitation is the large model size, requiring considerable com-
putational resources for both training and execution, as well as large amounts of
annotated data. Although this can be drastically reduced with transfer learning [30]
and distillation [31], the linguistic resources required for training the initial model
are still out of reach for many languages other than contemporary English.
These limitations complicate the adoption of modern NLP models outside the do-
main of common large corpora, composed mostly of English news, social media and
web content. Despite recent efforts [43, 44, 45], good quality resources and models are
still lacking at the moment to address the specific challenges of non-contemporary
literature [27].

2.2 Psychological meaning and models

2.2.1 Factor-based models of personality
Factor Analysis (FA) is a dimension reduction technique often used in psychology
research, which decomposes the sample variance into a fixed number of uncorrelated
and normally distributed latent variables or factors. FA has been used in psyc-
holexical studies to determine the main dimensions of inter-individual variation in
personality, based on the lexical hypothesis, as mentioned in Section 1.2.
This line of research originated in seminal work from Allport and Odbert [46]. They
built a lexicon of English personality trait names, classified in different categories
then mapped onto a smaller set of scales for self-report studies [7]. These studies
led to a consensus about the Five Factor Model (FFM) [6], also known as the Big
Five. Each factor represents a spectrum along a specific, relatively stable personality
trait, the meaning of which is interpreted from the words most/least associated with
it.
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The five factors are defined as follows:
1. Openness: interest for new ideas or experiences
2. Conscientiousness: self-discipline, orderliness
3. Extroversion: enthusiasm, social engagement
4. Agreeableness: compassion, politeness, cooperativeness
5. Neuroticism: emotional instability, tendency towards negative emotions

Other well-known models based on a similar methodology include MBTI [47] and
HEXACO [48].

As previously discussed, one limit of such purely lexical model is the assumption
that the manifestations of these traits are not affected over time by the situational
circumstances. One would expect a more comprehensive model to make the relation
between one’s past and present environment and one’s current personality more
explicit. Indeed, the effects of an individual’s environment over time on his/her
personality has been stressed in multiple empirical studies. Twin studies suggest
that 40% of individual differences are explained by genetic factors, leaving 60%
to environmental influences [49]. While the importance of the situational context
in which the traits manifest is recognised, the structure and long-term effects of
situation characteristics is not well understood [2, 19]. Traits tend to stabilise over
time [14], but major life events can also induce permanent change [50, 19].

As mentioned in 1.2, in addition to the complexity left unaddressed by the fac-
tor model, the validity of FFM outside of Western populations has recently been
questioned [1]. This further motivates a more behavioural approach focused on cor-
relations across time and situations, rather than on specific dimensions that depend
on linguistic interpretations, which this work aims at exploring.

2.2.2 Dynamical Systems Theory in Psychology
Dynamical Systems Theory has been used in many areas of psychology. Here we
are interested in formalising a system of quantifiable interactions between the state
of the individual and that of his external environment. Personality would then be
conceptualised as the average trend of the former.
Mischel and Shoda [12] proposed the mostly theoretical Cognitive-Affective Per-
sonality System (CAPS), a feedback loop structure between situation “inputs” and
behaviour “outputs”, the latter being determined by an internal (mental) network
of mediating processes. The specifics of these internal processed are left open, but
the model illustrates the recurrent nature of the interaction between situations and
behaviours.
Modelling the internal cognitive processes that determine behaviour has been an
objective in multiple research areas of psychology and cognitive science. The most
empirically relevant approach to personality theory is perhaps Reinforcement Sen-
sitivity Theory (RST), based on Jeffrey Gray’s seminal work on the biology and
evolution of brain-behavioural systems [5]. This behaviourist approach models cog-
nitive processes as computation from stimulus to behaviour based on three interact-
ing processes that mediate responses to punishments and rewards. These processed
are described in Table 2.1.
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System’s name Reacts to Controls
Behavioural Activation (BAS) Rewards Approach / Arousal
Flight-Flight-Freeze (FFFS) Punishment Fight / Flight / Freeze
Behavioural Inhibition (BIS) Goal Conflicts Inhibition / Arousal

Table 2.1: Mediating processes in Reinforcement Sensitivity Theory, one of the
notable dynamical models of personality. Each system reacts to a certain type of
stimulus and controls a certain type of behaviour. The response is “computed” from
the activation level of these behaviour types.

RST predicts that observed personality traits are primarily determined by the sen-
sitivity and output of those systems. While it has the advantage of allowing formal
implementations and simulations, its relevance is questioned as those central sensi-
tivity characteristics are not available for introspection. Also, it is uncertain whether
this neural-level processing structure modelled after animal brains can appropriately
explain the complexity of psychological phenomena [5].
Read et al. [13] synthesised CAPS, RST, FFM and other work on neurobiology,
goal-based models and evolutionary approaches, into a neural network model with
a similar structure. Although more comprehensive than its predecessors, this model
was only evaluated qualitatively with manual parameter tuning, and thus remain
theoretical.
We may also mention Friston’s Free Energy Principle [51], stating that the internal
(mental / hidden) states of an organism encode a model of its environment, updated
through a Bayesian inference process. The feedback loop between internal and ex-
ternal states previously discussed is extended here with active inference. That is, the
system (here the individual) changes its configuration to affect both how it samples
(action) and encodes (perception) the environment. Hence, perception is not pas-
sive but has its own feedback loop. Again, this principle, while elegantly connecting
cognition, thermodynamics, Bayesian inference and Information Theory, is difficult
to evaluate empirically.
The takeaway is that these theoretical models of long-term affect and/or behaviour,
despite their lack of empirical relevancy, seem to agree on an environment-cognition
feedback loop. Importantly, feedback may go in any direction, including internal
feedback. But we expect most relevant information, as personality theory is con-
cerned, to come from the perception-cognition-action loop, to the extent that it is
measurable. Which, of course, is the core challenge.
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2.2.3 Emotional Brain Theory as information processing
Characterising the range of possible behaviours is a difficult and potentially in-
tractable problem in itself. However, it can be argued that behaviour reflects present
and past affect associated to environmental stimuli. Hence, we can expect correla-
tions over time between affect and behaviour. This is supported by the emotional
brain theory [52], which suggests that affect (the pre-conscious experience of emo-
tions) is the primary brain mechanism for guiding behaviour towards homeostasis,
in humans and many other living organisms. In other words, affect determines the
behaviour most likely to ensure survival.

Figure 2.3: The relation between affect,
feeling, emotions, sentiments and opin-
ion (taken from [3]). Affect is the um-
brella term for the underlying physiologi-
cal phenomena, preceding conscious iden-
tification. The conscious experience is a
feeling, and once recognised and identified
it becomes an emotion. It may then be ex-
pressed as such and/or internalised over
time as sentiments or opinions. Affects
and feelings are universal, whereas emo-
tions are cultural: their description and
manifestation is influenced by personal ex-
periences, culture and social norms. In
language, emotional words can then de-
scribe sentiments, opinions or feelings.

This does not mean that behaviour is
deterministic. But through mechanisms
of adaptation and reinforcement, the
situation-affect-behaviour feedback loop
can be seen as a circular information
processing system, where affect informa-
tion is at least partly preserved within
behaviour information.
This is why in this project we focus on
affect. Because in this view, behaviour
and cognition, the two other basic di-
mensions of personality, tend to mani-
fest consequences of affect. It simplifies
the problem of capturing behaviour and
cognition, but assumes that these are
predicted by affect. This is important to
keep in mind when interpreting the re-
sults in terms of personality structure.
To measure affect from text in this
work we use an emotion detection
method. This adds the assumption that
affect and emotion are also sufficiently
correlated, since they represent differ-
ent concepts and should not be con-
fused. Figure 2.3 illustrates the defini-
tion and relations of these constructs.
From now on we may refer to affect or
emotion interchangeably, since we focus
on emotion analysis.
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2.2.4 Situational context
One way to integrate the environmental (or situational) context in psychological
models is to identify general situation characteristics, such as positive or negative
valence, adversity, typicality or importance [53, 18]. Those are determined either
from the physical environment, or from the interaction with other individuals. It
should be noted that such characteristics are evaluative in nature, aiming to describe
a subjective psychological situation rather than an objective one [53].
Taxonomies of psychological situation are a relatively recent development, with two
notable psycholexical models. DIAMONDS (2014) [18] provides 8 dimensions: Duty
(D), Intellect (I), Adversity (A), Mating (M), Positivity (O), Negativity (N), Decep-
tion (D) and Sociality (S). Parrigon (2017) [53] identified 7 somewhat similar dimen-
sions across different methodologies, referred to as the CAPTIONmodel: Complexity
(C), Adversity (A), Positive Valence (P), Typicality (T), Importance (I), Humour
(H) and Negative Valence (N). Note the limitations discussed about psycholexical
approaches to personality also apply.
We intended to use the CAPTION model in this work, but unfortunately could not
get access to the full lexicon. However, this illustrate what the relevant dimensions
might be and how they could be measured in future work. Another model was
eventually used here as a replacement, as explained in Section 3.2.1.

2.3 Challenges of text mining for psychological
meaning

The most widespread text analysis tool used in personality research for extracting
psychological meaning is Linguistic Inquiry Word Count (LIWC)3, a proprietary
software consisting of counting word frequencies from various dictionaries of relevant
psychological constructs, such as affect, cognitive processes, needs etc., as well as
other grammatical features. Such tools are typically used to analyse the psychology
of the text’s author automatically. However, this approach is prone to bias due to the
selection and interpretation of words in the dictionaries used, and to classification
errors due to polysemy (words with multiple possible meanings), negations and other
qualifiers, irony and other artefacts of natural language.
Supervised learning methods have also been used for automated personality recog-
nition from text, or author profiling [54, 55], using diaries or social media status in
combination with personality surveys as training data. In addition to the shortcom-
ings of the underlying Five Factor Model, these models also tend to be biased due
to a lack of diversity in the training data, which can be difficult to notice at first
given their black-box nature [41, 27].
Lexical databases (e.g. WordNet [23]) and Latent Semantic Analysis are also com-
monly used for personality and emotion detection [56]. The former, requiring manual
construction, is subject to the same limitations as personality lexicons, and the latter
also lacks the resolution to overcome bias from language artefacts.

3https://liwc.wpengine.com/
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The core problem of these approaches comes down to finding how much contex-
tual knowledge needs to be attached to the text. This includes dictionaries, sym-
bolic or numerical annotations of lexicons, the training data used to fit a statistical
model, and the annotations in the case of supervised learning. A general methodol-
ogy for identifying the appropriate level of context is to use a common representa-
tion for lower and higher levels of abstraction, and identify information structures
(e.g. bursts, recurrent patterns) that only occur above a certain level [57, 58]. This
is why we chose in this work to investigate information-theoretic properties from
minimal semantic features.

2.4 Similar work
The purpose of this project being highly interdisciplinary, we found previous work
on similar problems scattered across different disciplines and using a wide range
of different methodologies. The trend, if there is any, goes towards task-specific
models, with a similarly purpose-built data extraction pipeline when sophisticated
NLP features are involved. So we chose to use elements of these previous work as
inspiration and to develop a custom pipeline, in order to avoid introducing unfamiliar
or inappropriate models.

2.4.1 Personality modelling
Much work has focused on predicting personality traits from language use, using
word count [59], various supervised learning approaches [60, 54, 61, 62], or unsuper-
vised approaches like FA [63]. Such approaches are popular in psychology research
and online user targeting. However, in addition to the methodological issues already
discussed in Sections 1.2 and 1.3, they are also subject to bias due to domain-specific
characteristics of the training data [64, 65] or the natural drift of word use towards
popular words [66].
There has also been attempts at measuring the personality of fictional charac-
ters. Flekova et al. [67] used available MBTI-based polls on the personality of pop-
ular book characters to evaluate text classifiers for extraversion (which correlates
well with the corresponding scale in FFM), applying various lexical and semantic
features. They reported that action and appearance was more predictive than direct
speech, consistent with other studies.
An unsupervised approach was implemented by Bamman et al. [40] using a hierarchi-
cal Bayesian model applied on discretised word embeddings, with author, prior word
distribution and character persona as latent variables. Evaluation was performed by
comparison with known relations of similarity (e.g. “Character X is more similar to
Y than X or Y is to Z”). They found no alignment of the resulting personas with
character types known in the literary analysis literature, but did find correlations
within literary genres, social categories and gender.
Johnson et al. [65] rated the personality of fictional characters from Victorian novels
using the FFM scales, in order to investigate the “implicit theory of personality and
human nature” embedded in literature. They concluded to a good agreement with
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modern personality psychology, but found an over-representation of trait agreeable-
ness, suggesting a bias towards cooperative behaviour and language.

More similar to dynamical approaches previously described, Narang et al. [68] mod-
elled user activity profiles as Gaussian Hidden Markov Model, with data from two
domains (academic publications and activity on a large online platform). They iden-
tified meaningful “archetypes” of behaviour with specific progression stages over
time.

2.4.2 Text understanding

Kim and Klinger [45] endeavoured to create a corpus of annotated novels, including
emotions and events linked to characters. They reported difficulties, in line with
previous work, due to the subjectivity of emotion interpretations leading to poor
agreement between annotators.
Zhang et al. [69] developed a complete NLP pipeline for generating animations
from screenplays, featuring the main entities, their environment, their actions and
additional information such as speed, distance or emotions. They first apply a text
simplification model so each sentence describes only one action. Then entities and di-
alogues are resolved using screenplay annotations and coreference resolution. Words
describing actions are mapped to a list of pre-defined animations, using their simi-
larity through WordNet [23]. Finally, Semantic Role Labelling is used to extract all
contextual information into a key-value store. The main limitation of this work is
its scope, as it is meant more as a productivity tool for artists than a rigorous data
mining method.

2.5 Information Theory

Many standard statistical methods rely on assumptions that often do not hold in
complex systems like human behaviour or natural language. Commonly assumed
properties include linearly correlated variables, thin-tailed probability distribution
with well-defined mean or memoryless processes. In contexts where such methods
fail, Information Theory provides measures to quantify similarities and interactions
between variables requiring minimal assumptions.
Shannon’s Theory of Information is a probabilistic theory of uncertainty, where
information is understood as surprise. An event, such as observing a system in a
certain state, or reading a certain message from a symbol string, is informative if
it is unexpected: there is nothing new to learn about an event that was already
predicted. Since information is a property of a probabilistic representation, it is
distinct from meaning, which is the context-specific interpretation of the message
or state itself [70].
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2.5.1 Basic notions
Given an observableX with a probability distribution P (X = xi) = pi, i = 1, 2, ..., n,
the Shannon information content of the symbol or state xi is4

I(xi) = logb

1
pi

(2.1)

With a base b = 2, information is given in bits and can be interpreted as the
minimum number of yes/no questions to ask to determine the state of the sys-
tem [71]. Any other base can be also used.
The central concept of information theory is entropy, which quantifies the uncer-
tainty about the state of a system by measuring the expected information gain from
an observation:

HX = E [I(xi)] =
n∑

i=1
pi log 1

pi

(2.2)

A fully deterministic model pi = 1, pj = 0∀ j 6= i has no uncertainty and therefore
produces no information: HX = 0. On the other hand, entropy is maximal when all
outcomes are equally likely: pi = 1

n
⇒ HX = log n. Complete disorder or randomness

thus imply maximal information gain on any observation.
Entropy is additive between independent information sources. This property is useful
for detecting correlations.

X ⊥ Y =⇒ HX∪Y = HX +HY (2.3)

Many other information-theoretical measures are defined as the information gained,
or reduction of uncertainty, between a previous model P (0) and a new model P . This
quantity is called the Kullback-Leibler divergence, or relative entropy:

DKL(P (0)||P ) =
n∑

i=1
pi log pi

p
(0)
i

≥ 0 (2.4)

2.5.2 Information Dynamics
Recent research in complex dynamical systems has focused on mechanisms by which
information flows over time within and between individual components, as in the
firing of neurons in the brain [72] or the diffusion of information in social media [73].
Because of the dynamical nature of such patterns, information structures that do
not otherwise appear in static data can be revealed, such as new unexpected pat-
terns (information production), pattern reproduction and recurrence (information
storage) or interactions between components (information transfer).

4To be absolutely rigorous, we should write I(P (X = xi)) as it is a property of the probability,
not of the state itself. But this shorter notation is commonly used for simplicity.
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Information dynamics refers to information-theoretic concepts that focus on such
temporal information structures, in systems composed of parts that “interact to
create non-trivial computation where the whole is greater than the sum of the
parts” [74].
Consider an infinite sequence of states {x0, x1, x2, ...}, approximated by a Markov
process of order m, X(m). This means we assume that the next state xt depends
only on the m previous states (Markov property) [71]:

p(xt|xt−1, ..., xt−m, ...) = p(xt|xt−1, ..., xt−m) (2.5)

In such symbol sequences, we need to consider the temporal structure of informa-
tion, as it is spread across different time scales. This is captured by measuring
the probability distribution over blocks of length m. Using the shorthand notation
x

(m)
t = (xt, ..., xt−m+1), we define block entropy as follows:

H(m) =
∑

p(x(m)
t ) log 1

p(x(m)
t )

(2.6)

We can fully characterise the information structure of the underlying process only in
the limit of infinite block length. Given the temporal dimension, this structure now
has two aspects: entropy and complexity. Here entropy refers to the average rate of
information production: how frequently we observe new unexpected patterns, which
is associated with randomness ; and complexity can be seen as the extent to which
such patterns are preserved and re-occur, which can be described as information
storage [75].

Figure 2.4: Block entropy H(k) ap-
proaches an asymptotic line with slope h
representing the entropy of the sequence
or entropy rate, and an intercept η repre-
senting excess entropy, a measure of com-
plexity. Adapted from [70].

These concepts are formalised in the
asymptotic properties of block entropy
as a function of the length m. As shown
in Figure 2.4, H(m) increases monoton-
ically with m, approaching a line with
slope h called the entropy rate or sim-
ply entropy:

h(m) = H(m)−H(m− 1) (2.7)
h = lim

m→∞
h(m) (2.8)

= lim
m→∞

H(m)
m

(2.9)
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Complexity is characterised by the intercept of this asymptotic line, called the excess
entropy η. It can also be understood as the rate of convergence of entropy rate:

η(m) = H(m)−mh(m) (2.10)
η = lim

m→∞
η(m) (2.11)

These two complementary measures can be visualised on a complexity-entropy di-
agram to reveal the 2-dimensional structure representing the intrinsic information
processing embedded in different processes. This allows the comparison of different
kinds of system, and may provide clues for finding an appropriate class of model
given empirical data [75].

So far we focused on properties of single random processes, but we are also interested
in the interactions between processes. In information-theoretic terms, these manifest
as information transmitted from one to another, and it requires accounting for past
states of both processes.
Consider two processes X and Y and assume current and past states of Y have no
influence on next state of X [76]:

p(xt+1|x(k)
t ) = p(xt+1|x(k)

t , y
(l)
t ) (2.12)

We can use Kullback-Leibler divergence to measure the deviation from this assump-
tion. The resulting quantity represents the information flow from Y to X, as illus-
trated on Figure 2.5. It is called transfer entropy [76]:

T
(k,l)
Y→X =

∑
p(xt+1, x

(k)
t , y

(l)
t ) log p(xt+1|x(k)

t , y
(l)
t )

p(xt+1|x(k)
t )

(2.13)

In the limit of infinite k and l, transfer entropy generalises entropy rate to multiple
processes. It is worth pointing out that it measures an observed correlation and
should not be treated as evidence of causality [74]. It is better interpreted as the
extent to which observing a process helps predict another, even in the presence of
complex non-linear phenomena. Unlike other measures of correlation and mutual
dependence, transfer entropy is asymmetric: it also captures which of two variables
has more influence on the other.

Figure 2.5: Illustration of trans-
fer entropy (2.13).

Because reliably estimating T (k,l)
Y→X from data re-

quires a lot of samples (significantly more than
for HX(k) because of the condition on Y ), it is
common practice in the literature to perform a
test of significance in support of the null hypoth-
esis H0 of independence (2.12) [71]. A surrogate
distribution under H0 is obtained either ana-
lytically or using some sub-sampling technique,
while preserving the statistical properties of the
original data. We can then obtain a p-value of
the probability that our measurements are sam-
pled from this surrogate distribution.
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3
Methods

The information extraction procedure generates sequences of psychological states
from the text of a book, for every character identified as such, using universal low-
level features such as POS and DP. This was done by matching emotional words and
using dependency parsing to find the subject or object they refer to. The resulting
entity-predicate tuples were associated to either character or environment. These
sequences were then transformed into a symbolic form representing the occurrences
of emotional states throughout the book, for every character and its environment,
and every emotion feature. Finally, the information-dynamical formalism presented
in Section 2.5 was used to investigate the temporal structures and interactions of this
character-environment system. Because no similar analysis was found in the domain
literature, the validity of the approach was assessed by comparing the results to those
obtained with baselines representing only parts of the data extraction pipeline.
The method was applied on a corpus of 150 English novels published in txtLab’s
Novel450 dataset [77], comprising books from 98 authors written between 1770 and
1910.
This chapter is structured as follows: Section 3.1 presents the general methodol-
ogy ; Section 3.2.5 describes the important features used ; Section 3.3 elaborates on
how the data extracted is transformed into binary strings ; Section 3.5 details the
methods and challenges of entropy estimation from these strings ; finally, Section 3.6
explains the baselines used for validating the significance of the results. Limitations
and improvements are discussed in the next chapter, in Section 4.5.

3.1 Procedure overview
Given the concerns discussed in Section 2.1.6 about high-level black-box models in
NLP, and the limited scope of the project, we decided to perform the information
extraction with a custom heuristic algorithm using readily available lower-level NLP
models and psychological lexicons, rather than to train and evaluate a new task-
specific supervised model.
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The information extraction pipeline is the following:
1. Tokenisation: each document is split into tokens (words and punctuation).
2. Extraction of low-level linguistic features: Part-of-Speech (POS), De-

pendency Parsing (DP), Name Entity Recognition (NER), using existing pre-
trained models from the spaCy library1. Hypernyms (word meaning categories)
are also introduced from WordNet.

3. Coreference resolution: finding and resolving all mentions of the entities,
using a pre-trained model from the NeuralCoref library2.

4. Lexicon matching: lemma-based matching of tokens from psychological lex-
icons (NRC VAD and NRC Emotion).

5. Semantic parsing: heuristic based on DP and resolved entities to determine
semantic roles and generate semantic frames as tuples: (position, frame, frame
arguments).

6. Entity type classification: a heuristic to determine whether the entity is
classified as environment, person or unknown, based on NER, POS and hyper-
nyms.

7. Mapping semantic frame to discrete symbols: based on semantic roles
and psychological features in the frame arguments, resulting in sequences of
Stimuli (as analogy for information flow from environment to individual) and
Responses (as analogy for information flow in the opposite direction).

8. Binary representation: sequences are mapped to binary strings for every
character and feature.

The outcome of steps 1–5, exemplified in Table 3.1, was a sequence of predicate-
entities records (semantic frames) containing the position in the text, the predicate,
the name of the associated entities and their semantic role in the sentence (agent or
patient), and a discrete vector representation of the features (psycholexical emotion
dimensions) associated with the predicate. Additional processing (steps 6–8) was
done to obtain binary strings as shown in Table 3.2.
The relevant information-theoretic measures were then estimated from these binary
strings to investigate the questions formulated in the introduction (Section 1.5). The
analysis was done according to the following steps:

1. Single features analysis: estimation of block entropies (per sequence, char-
acter and document) and investigation of the complexity-entropy information
structure of each sequence.

2. Feature interaction analysis: estimation of transfer entropies between pairs
of feature categories (per pair of sequences, character and document) and their
statistical significance, group pairs by feature categories and find out which
have information transfer and under what conditions.

3. Validation: repeating the analysis with different baseline methods, i.e. the
same processing with some of the features or steps removed. Differences in the
resulting information structure would indicate information structure added by
these features or processing steps.

1Model en_core_web_sm, library version 2.1.3. URL: https://spacy.io/
2Model en-coref-md v3.0.0, library version 4.0. URL: https://github.com/huggingface/

neuralcoref
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Time Predicate Agent Patient VAD Emotion
4 fellow Joe - Valence, Dominance Trust
4 fellow Me - Valence, Dominance Trust
4 sufferer Joe - Arousal Fear, Sadness
4 sufferer Me - Arousal Fear, Sadness
9 confidence Joe - Valence, Dominance Trust, Joy, Fear
9 confidence Me - Valence, Dominance Trust, Joy, Fear
15 confidence Joe Me Valence, Dominance Trust, Joy, Fear
. . . . . . . . . . . . . . . . . .

Table 3.1: Example of extraction of semantic frames from the sentence “Joe and
I being fellow-sufferers, and having confidences as such, Joe imparted a confidence
to me, the moment I raised the latch of the door and peeped in at him opposite to
it, sitting in the chimney corner.” (from Great Expectations by C. Dickens). Each
row represents a semantic frame based on the occurrence of a predicate at a certain
position in the text (Time), associated to an agent and/or patient entity in the
sentence, and to binarised psycholexical features in the lexicons. Some predicates are
duplicated here because “Joe and I” is the subject hence both “Joe” and “I” (resolved
to “Me”) are agents, except in the last row (from “Joe imparted a confidence to me”)
where “Me” is patient with regard to the agent “Joe” and fills the second argument
of this predicate.

Time Subject Valence
(Stimulus)

Valence
(Response)

Joy
(Stimulus)

Joy
(Response)

. . .

4 NARRATOR 1 1 0 0 . . .
4 NARRATOR 0 0 0 0 . . .
9 NARRATOR 1 1 1 1 . . .
15 NARRATOR 1 1 1 1 . . .
. . . . . . . . . . . . . . . . . . . . .
4 Joe 1 1 0 0 . . .

. . . . . . . . . . . . . . . . . . . . .

Table 3.2: Example of symbolic representation corresponding to the example se-
mantic frames from Table 3.1. In this case the sequences for Stimulus feature and
Response features are the same because the predicates refer to both entities. En-
tropies are then estimated from each columns, with every new subject marking the
beginning of a new sequence (thus a new sample).
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3.2 Feature extraction

The main reason for the sophisticated NLP pipeline described here was to provide
a distinction between the state of a character and that of its environment. The
environment comprises other characters as well as locations, objects or anything
else mentioned in the text.
Doing this distinction reliably requires a high-level semantic understanding of the
text, beyond coreference resolution. This was implemented with a SRL heuristic
that associates each predicate (i.e. word matched in the lexicon) to its agent, and
patient if any. This is conceptually similar to previous work using typed dependency
relations [40]. Following the SRL, another heuristic algorithm was used to classify
the agents and patients found into either character or environment.

3.2.1 Lexicon matching (psycholexical features)

As discussed in 2.2.3, affect has a predominant role in determining short- and long-
term behavioural tendencies. This is convenient as the state space of affect is much
more restricted than that of behaviour or cognition. The open-ended complexity
of the task, namely determining the space of psychological states and how to infer
those states from text, was then reduced to an affect detection task.
Emotion (or affect) detection is far from a trivial endeavour and is subject to many
subtleties and open questions [45, 78, 79]. A psycholexical approach was used in this
work, consisting of matching words from the text with a lexicon. This is a common
approach so we considered it a good starting point. But of course, the limitations
of psycholexical approaches mentioned in Sections 1.2 and 2.2 also apply here, and
other approaches from the literature may be considered in future work.

Affect is expressed in language as emotions, which are not culturally universal. There
is no consensus on a universal classification of emotions, which is a reason why two
different lexicons were considered for this work.
The first is the NRC Emotion Lexicon [28], which comprises 141,820 words annotated
with 8 basic emotions (anger, anticipation, disgust, fear, joy, sadness, surprise, trust)
and their polarity (positive, negative), which is arguably the most comprehensive
English lexicon available for common emotions.
The second is the NRC VAD Lexicon, from the same author [80], containing 20,007
words classified along a three-dimensional spatial model of emotions and general
word meaning: valence (positive-negative dimension), arousal (active-passive dimen-
sion) and dominance (dominant-submissive dimension).
Both datasets were obtained through large-scale surveys using crowdfunded plat-
forms, allowing for a larger lexicon and wider demographic sample than commonly
used in other psycholexical studies.

Another reason for using the VAD lexicon specifically is the general word meaning
representation it provides, which is useful for characterising situations more com-
prehensively than with emotions which may not always apply well. See Section 2.2.4
for a more detailed discussion of the relevant dimensions of situation description.
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In the implementation, the words from the lexicon were matched to the document’s
words in a case-insensitive way, by comparing either the token’s raw text or its
lemma. The lemma is the base form of a word, for example: look (looking, looked,
...), produc (production, product, ...).

3.2.2 Entity merging

Because coreference resolution is not always sufficient for properly merging all men-
tions of an entity into the most relevant name, tokens corresponding to the same
entity were merged based on NER tags (e.g. “Mr. Smith”, “John Doe”), using a
function provided by spaCy3.

3.2.3 Semantic role labelling

This processing step was formalised as a semantic frame inference problem. Every
predicate, that is, every word matched in the lexicon, was associated to an entity
with the semantic role of agent, and possibly another with the role of patient.
For example, the sentence “Alice pets the dog. The dog is happy.” has two pred-
icates “pet” (agent: “Alice”, patient: “the dog”) and “happy” (agent: “the dog”,
patient: none). It’s also possible to have a patient but no agent, as in “The dog is
being pet”. Finally, it is also possible to have multiple agents or patients, e.g. “Alice
and her brother pet the dog” (agents: “Alice”, “her brother”).

Our implementation is based on as a custom two-pass heuristic algorithm using the
DP tree and the coreference graph. The pseudo-code is given in Appendix A.1. The
general idea is that certain DP relations are indicative of an agent role (e.g. noun-
subject), and that the parent-child relation in the DP tree is similar to an agent-
patient relation4. Hence, tokens identified as agent with regard to a root token can
be propagated downwards to the descendents.
A first “upward” pass assigns the appropriate agent/patient relationships, for ev-
ery coreference in the document with regard to the token’s ancestors in the DP
tree. Then the “downward” pass iterate through all the tokens and inherits agents
from its ancestors.
Additional checks were added so that whenever possible, only the closest and most
relevant agent (or patient) gets assigned, rather than all agents and patients from
the sentences.
This method assumes that the grammatical structure of the text can be framed as
a sequence of propositions about entities, and that the grammatical subject reflects
the actual agency relationship between an entity with regard to a proposition. This
is a rough approximation, and a fairly bold assumption. This limitation is one of the
aspects of the method discussed in Section 4.5 that would need to be investigated
in more detail.

3https://spacy.io/api/pipeline-functions#merge_entities
4For some DP relations this direction is reversed. For example, nsubj (noun-subject) points to

the root (i.e. the verb), rather than the opposite.
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3.2.4 Time resolution and sub-sentences
There are different ways to put the semantic frames extracted from the text into a
sequence that properly reflects its overall chronology and thus the temporal struc-
ture. Of course, not all novels follow a linear chronological structure, but recovering
the actual chronological structure of the narration would be beyond the scope of
this project, so we had to assume they generally do.

Another challenge, possibly more specific to literary artworks, is related to the
often long sentences, composed of sub-sentences separated by punctuations (“,”,
“;”) or conjonction words (“and”, “then”...), or dialogues (e.g. “’The weather is
nice’, he said”). Dialogue detection, and the proper handling of different narration
types (i.e. first-person or third-person perspective) are additional non-trivial NLP
tasks [27] and were not addressed in this work.

The problem then, if we intend to stay close to the semantic sequence and use the
sentence position as a unit of time, is that all the predicates and related semantic
frames of the sentence become merged together. So we decided instead to split
sentences into their sub-sentences and use sub-sentence position as a timestamp.
The Sub-sentence detection mechanism was implemented as part of the SRL algo-
rithm. When iterating the dependency tree upwards to get the ancestors of a given
token, the iteration stops if the root of the sub-sentence is reached, that is, a token
with a DP tag which is absent from a white-list of tags that represent relations
within a sub-sentence. The list is shown in table 3.3.

acl, advcl, amod, appos, attr, aux, auxpass, compound, conj, csubjpass,
dislocated, dobj, iobj, neg, nmod, nsubjpass, obj, obl, orphan, pobj, poss,
prep

Table 3.3: White-list of DP tags for relations within a sub-sentence. See reference
in Appendix A.3

3.2.5 Entity classification
Entities were classified into either character or environment. The environment of a
book character comprises non-person entities such as groups, locations, objects etc.,
as well as all other book characters. This means that the environment differs for
every character: each character is represented by one subject state sequence and one
environment state sequence (also for every lexical feature).

This classification was implemented as a rule-based heuristic using POS, NER and
WordNet [23]. Because the models used do not attempt to classify pronouns (e.g. he,
herself ) and common nouns (e.g. lord, girl), these were resolved using a manual
list of exceptions given in Table 3.4. The rules are illustrated as a flow-chart in
Appendix A.2. In some cases the entity a pronoun refers to may be ambiguous (e.g
they), and this may still not be resolved after coreference resolution. Such cases are
classified as Unknown.
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Category Words
Environment it, this, that, its, itself, something
Narrator (person) I, me, myself, my, mine, we, us, ourselves, our, ours
Reader (person) you, yourself, your, yours
Person he, him, himself, his, she, her, herself, hers, man, boy, sir,

woman, girl, madam, miss, lord, lady
Unknown they, them, themselves, their, these, those

Table 3.4: Words on the right were classified as the category on the left. Since this
is done on mentions of entities in the text, which are spans (one or more subsequent
tokens), the span’s root in the dependency tree was used for matching, in a case-
insensitive way.

3.3 Sequence processing

The feature extraction pipeline described above produced, for every book in the
corpus, a sequence of time-stamped semantic frames with a single word predicate,
an agent entity, and an optional patient entity. This was the first objective of the
work as formulated in Section 1.5. To get to the second part, which was the analysis
of the dynamical properties of character-environment interactions, the sequences of
frames were mapped onto binary strings on which information-theoretical measures
can be computed, as follows:

• Entity filtering: only entities occurring at least 100 times in the book were
selected. Others were replaced by a generic name corresponding to their cate-
gory (person, environment or other).

• Semantic to Cognitive Roles: semantic roles, i.e. agent and patient, indicate
active and passive forms which we use to denote mental state and perception
of the environment, respectively. Using a neurological analogy, we refer to the
latter as stimulus features, and the former as response features. Since this
depends on a given subject, semantic frames were reclassified that way for
every selected entity. Each semantic frame were labelled as response when the
entity matches the given subject and its role is agent, or as stimulus otherwise.

• Binarization: numerical values for psycholexical features associated to the
words in the corresponding lexicons were mapped to 0 or 1 using the average
of each feature as a cutting threshold.

• Time resolution: time in the sequence of semantic frames was represented
as the position within the document of the root token of the sub-sentence.

• Time alignment: the time-steps were used for ordering the sequence and for
aligning the different sequences from a same book. At a given time-step, the
symbol depends on the entity. When the entity was the subject, the symbol
for the corresponding feature category (stimulus or response) and feature di-
mension (e.g. valence, joy) was set to the feature’s binarised value, i.e. 0 or
1 ; otherwise, when the predicate occurring at this time-step was not related
to the subject, the symbol was set to 0, representing the absence of expression
of the feature dimensions.
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The resulting strings represent the occurrences over time of one of the psycholexical
features (valence, arousal and dominance for VAD ; anger, anticipation, disgust, fear,
joy, sadness, surprise, trust for Emotion), associated either to a given character of
a book, or to the environment of this specific character.

3.4 Block entropy analysis

From the previously described character-emotion strings, block entropy (Section
2.5.2) was estimated to measure the extent to which they produce recurring or novel
patterns over time.

Note: we mention the notion of time or temporal properties for the sake of concise-
ness, to refer to relative positions along the sequences, that is, along the book.

We were interested in the two dimensions of (univariate) information structure: en-
tropy rate h (2.7–2.9) and excess entropy η (2.11). The former represents the average
rate of information production, that is, novel patterns in the sequence ; while the
latter represents complexity in the sense of pattern recurrence or information stor-
age. See Section 2.5.2 for definitions.
Since these are asymptotic properties of block entropy H(k) (2.6), we looked at the
convergence of their finite-sample estimates (2.7, 2.10).
For this to happen however, sample sequences must be long enough.

3.4.1 Block entropy estimation

Estimating block entropy can also be difficult in practice, as it is defined for infinite
sequences. Here, every sample represents the occurrences of a single feature (e.g. fear,
joy) for a single character throughout a given book. The probability distribution Pk

of blocks of length k was estimated as the sample frequencies P̂k:

P̂k =
{
n(x(k)

i )
ck

}ck

i=1
Ĥ(k) = H(P̂k) (3.1)

Where n(x(k)
i ) is the number of occurrences of a given block x(k)

i in the book and ck

is the number of distinct blocks of length k occurring. Blocks that never occur do
not contribute to block entropy.

Entropy rate can be formulated asymptotically as either the difference (2.8) or the
time-average (2.9) of block entropy. The difference formulation was chosen in order
to preserve aggregate statistics over a given k:

ĥ(k) = Ĥ(k)− Ĥ(k −∆k)
∆k η̂(k) = Ĥ(k)− kĥ(k) (3.2)
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3.4.2 Finite sample effects
Since samples are finite, they may be too short to capture the whole range of possible
sub-sequences, a situation we refer to as undersampling. In such situation, there is
a critical length k∗ above which each blocks only occur once:

P ∗k =
{ 1
ck

}ck

i=1
Ĥ∗(k) = log ck (3.3)

Then block entropy Ĥ∗(k) only depends on the number ck of distinct blocks, which
either remain constant or decreases. This violates the property of monotonically
increasing block entropy, used to calculate entropy rate and excess. Therefore, the
sample estimate of such asymptotic properties are only reliable if they converge
within some length k < k∗.

3.5 Transfer entropy analysis
After investigating the information structure of single features, we looked for possible
interactions between them in the form of information transfer. In particular, we
were interested in interactions between environment (stimuli features) and subject
(response features).
The strength of these interactions represents the extent to which the environment-
subject feedback loop described in Section 2.2.2 is measurably represented in the
corpus, and whether this is a relevant model for extracting meaningful psychological
information from a corpus of novels.
Transfer entropy T (k)

Y→X (2.13) was used to measure how much information from the
current state of X comes from the past states of Y . As for block entropy, it is defined
for some finite history length k, and l respectively for Y which here will be l = k.
The additional condition on Y significantly increases the cost of its computation
in terms of computational time and required sample size. Thus, empirical measure-
ments from small finite samples are sensitive to noise, and can then give positive
values even for variables with no direct relationship [71]. For this reason a sta-
tistical significance test was also performed over these estimates, as described in
Section 2.5.2.
We used the implementations from the JIDT toolkit [81], which provides estimators
for transfer entropy and the surrogate distribution, the latter being inferred either
analytically or using permutation resampling. Transfer entropy was estimated by
applying its definition (2.13) on the frequency of configurations directly, as was
done for block entropy in Section 3.4, since this is the standard method for discrete
variables [81].
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3.6 Comparison with baselines
In order to ensure that the data processing and feature extraction does capture
meaningful information structure, the analysis was repeated with baselines repre-
senting a lower level of additional context added to the raw text. As discussed in
Section 2.3, this was used to determine what additional features (or “context”) were
needed to capture informational patterns.
The first baseline was no semantic role, consisting in the full application of the
method described in Section 3.1, but without the use of semantic roles (agent, pa-
tient) for classifying predicates into environment or subject. It is equivalent to simply
using the co-occurrence of an entity and a predicate within a sub-sentence as the
criterion to decide which entity the predicate relates to.
The second baseline, randomised subjects, replaces the entity in every frame (regard-
less of the semantic role) by a randomly selected one from the same document with
equal probability for every unique entity (including the one to be replaced). This
breaks the subject/environment classification, as well as any subject-specific tempo-
ral correlations at the level of semantic features. Therefore, any information structure
captured by the method that is also present using this baseline is a syntactic-level
feature of language, rather than of any higher-level semantic meaning.

30



4
Results and discussion

Sections 4.1–4.4 present and discuss the results. Then Section 4.5 provides a more
in-depth discussion of the limitations of the results and the implications for future
work.

4.1 Data extraction

4.1.1 Semantic role labelling
Looking at the extracted records revealed that the method did not cope well with
the complex language of novels. Below are the most common problems identified:

1. Missing entity (agent or patient or both)
2. Entity unresolved, e.g. “myself”, “her”
3. Irrelevant predicate (mostly matched by VAD), e.g. “is”, “have”, “nutmeg”,

“soap”, “tall”
4. Misleading entity, e.g. “his arms”, “Mr. Wopsle’s great-aunt”
5. Parsing issues, e.g. “her left hand” parsed as predicate “hand” with agent “her

left”
6. Wrong entity

In this qualitative evaluation of the samples, we saw that in most cases, the sentences
do not map well onto a meaningful sequence of predicates about entities. Usually,
either the predicate or the entity is directly relevant to a book character, but not
both. An accurate estimation of how many samples are concerned would require
an annotated dataset which we did not have, but the effects listed here clearly
occur frequently enough to conclude that this will have a significant impact on the
subsequent analysis.

These issues revealed our underestimation of the complexity of Semantic Role La-
belling. Even though we only focused on two semantic roles (agent and patient) and
two entity categories (entity and environment), we had to include numerous features
from pre-trained supervised models (DP, NER, POS, hypernyms, coreference reso-
lution, entity merging, lemma) as well as sophisticated heuristics (two-pass sentence
and sub-sentence parsing, rule-based entity classification, manually coded excep-
tions). Given the unconvincing results in term of data quality, this undermines the
initial argument that this approach would require less contextual knowledge and be
easier to interpret compared to training a custom state-of-the-art attentional model
as depicted in Section 2.1.5.
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As a consequence of the significant amount of noise and inaccuracies in the resulting
dataset, the results discussed in the following analyses may not properly reflect
information from higher levels of semantic meaning, which the method was designed
to capture. This also holds for the baselines methods.

4.1.2 Characteristic time scale
In order to interpret the number of words represented by a given history length k,
we attempt to estimate the expected number of tokens between every predicate.
An unintended consequence of splitting the text into sub-sentences, as described in
Section 3.2.4, is that it breaks the order in which predicates occur. Indeed, when fol-
lowing the dependency tree of a composed sentence, tokens may occur in a different
order than in the original text. As a result it produces artefacts on the distribution
of token positions, shown in Figure 4.1.
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Figure 4.1: Distribution of the number of tokens between every predicates (log
distribution left, log-log scale right), written dt as it is the difference in postition t
within the document. The disruption of the order of tokens leads to 3.11% of samples
with dt < 0. The overall distribution looks similar to a log-normal distribution, but
with a discontinuity at dt ∈ [−1, 1] and a left skew (visible in the tails on the left
plot). On a log-log scale, we also notice an asymmetry due to negative values having
lower frequency, suggesting a qualitatively different distribution for negative values.
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These artefacts break any attempt at fitting a statistical model on the whole dis-
tribution naively. The best approximation was obtained by fitting a log-normal
model1 on the positive values (96.889% of samples), giving an overestimated mean
of 〈dt〉 ≈ 7.049 (Figure 4.2). This model is still not a good fit, but serves as a very
rough approximation.
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Figure 4.2: Maximum-likelihood estimation of a log-normal distribution for the
positive values from Figure 4.1 (which represents 96.889% of samples). The model
fits the data poorly (notice the log scale), especially on the head of the distribution
where the discontinuity occurs.

1Maximum-likelihood estimator provided by the SciPy package, see https://docs.scipy.org/
doc/scipy/reference/generated/scipy.stats.lognorm.html.
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4.2 Corpus
The distribution of characters identified (subjects) across books is shown on Fig-
ure 4.3. The number of subjects per book ranged from 1 (The Frontiersmen) to 26
(Camilla, Vanity Fair).
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Figure 4.3: The number of distinct subjects matched per book.

The sequences extracted from the books, on which entropies have been estimated,
have lengths ranging from 4213 to 64,536 symbols, with distribution shown on Fig-
ure 4.4.
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Figure 4.4: The length of symbol sequences extracted from the books, that is, the
number of token matched, per subject.
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4.3 Block entropy

4.3.1 Initial results
Because aggregate statistics do not properly reflect individual block entropy curves
(illustrated in Figure 2.4), we focus on estimates of asymptotical properties, as
defined in Equation (3.2). We look for convergence to the “true” estimate.
Measurements for entropy rate ĥ(k) are shown on Figure 4.5. We clearly see here
that entropy rate is converging to 0 as k increases, in all cases. The only exception
is with NoSemRole where negative entropy rate is obtained at k > 40. Entropy rate
being zero or negative is evidence for undersampling (see 3.4.2). Excess entropy
is not shown, since in this case it simply converges by definition to block entropy
(which remain constant after convergence).
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Figure 4.5: Entropy rate ĥ(k) estimates distribution for increasing values of k,
compared by method (rows) and feature category (stimulus and response). All en-
tropy rate estimates converge towards 0, for all methods and feature category. This
behaviour is consistent across the whole distribution in all of the plots.

There is no sign here for an intermediate convergent value before entering the un-
dersampled regime. This implies that k∗ = 0, and therefore, no conclusion can be
made about these results because all data points unreliable.
Moreover, as evidenced by the lack of qualitative difference from the baselines, the
method does not seem to capture any meaningful pattern at the semantic level. This
is further confirmed by the absence of any distinct trend for response with regards
to stimulus.
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4.3.2 Alternative processing scheme
We investigated a possible remedy to the data processing which would allow to
properly capture temporal correlations. It sacrifices time-scale consistency between
sequences, which is only required for the computation of transfer entropy. This
alternative consists in the following modifications:

1. One major issue is that 0s in the sequence can encode either of two different
things: a low feature weight discretised as 0 ; or the matching of a word asso-
ciated with another entity, set to 0 for alignment (see Section 3.3). The latter
leads to long sequences of meaningless 0s. In this alternative, those are simply
removed from the sequence, leading to sequence of any size and not aligned
anymore.

2. Another issue is the encoding of the feature vector spaces (8-dimensional for
the Emotion lexicon, and 3-dimensional for VAD) as separate binary strings
for each dimension, rather than encoding the whole space with an alphabet
appropriate to the spatial distribution. In this alternative, we encode all combi-
nations of discretised features occurring in the lexicon as distinct symbols. The
alphabet then has up to 28 or 23 symbols for Emotion and VAD respectively.

We look at the longest sample as the best-case in undersampling behaviour. Note
that with this new processing samples are considerably shorter: the longest sample
has a length of 6000, instead of 64,536 previously.
Convergence is faster but entropy rate (Figure 4.7) still goes to zero. To ensure this
is due to undersampling, we compare the measured block entropy H(k) to that in
the undersampled regime H∗(k) (Figure 4.6). We see that with VAD we reach a
peak around k = 3, where we we have ĥ(3) = 1.996894 bits, before the effects of
undersampling start becoming visible. But such a short length is irrelevant as an
estimate of the asymptotic entropy rate. For Emotion, undersampling is visible from
the start. Indeed, since it uses more symbols, it requires longer sequence lengths for
reliable estimations.
These additional results confirm that undersampling occurs way before we see any
convergence of the entropy rate estimates to the asymptotic value. Therefore, we
cannot investigate the information structure from these measurements.
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Figure 4.6: Block entropy with alternative processing for the longest sample (sub-
ject NARRATOR from book Lorna Doone by R. D. Blackmore, with length 6000). The
same behaviour as in 4.5 is observed, that is, block entropy converges to a constant
and therefore the entropy rate is 0. But the convergence now occurs earlier (k ≈ 12
instead of k ≈ 50). Dashed line represent the difference from the undersampled
baseline: it increases with “true” block entropy and decreases with the effects of
undersampling. This quantity is equal to the Kullback-Leibner divergence of block
entropy from the undersampled regime.
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Figure 4.7: Entropy rate with alternative processing for the longest sample (as in
Fig. 4.6).
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4.4 Transfer entropy
Transfer entropy being more combinatorially expensive to measure than block en-
tropy, the limitations due to the relatively small size of books and computational
resource constraints are even more significant in this analysis. We saw already that
the symbolic representation used here did not afford the reliable estimation of asymp-
totic entropy rates due to undersampling. Therefore, any apparent information struc-
ture resulting from these measurements likely reflects noisy artefacts, and this is even
more the case for transfer entropy. We show some of the results anyways as baseline
for future work.
The goal here was to identify significant correlations between feature categories
(stimulus and response). First, we looked at the range and distribution of esti-
mated transfer entropy values T (k) depending on history length k and feature cate-
gories. Based on the test of significance described in Section 3.5, we excluded here
all samples with p > 0.05, and also those with p = 0 as they seem suspect.
The results shown on Figure 4.8 suggest that transfer entropy estimates are very low,
close to 0 for most samples. Differences are noticed mostly from k = 12, with stimulus
having higher extreme values. We also noted slightly higher values between stimulus
and unclassified predicates (other). This is consistent with our expectation since
stimulus is the aggregate of all entities but the subject, and hence should contain
more information and complexity. Temporal correlations within same-feature pairs
are less interesting since they likely reflect the same correlations already studied in
the block entropy analysis.
For other feature pairs, we could not identify any general trend or convergence,
due to the high variance between samples. Extrapolating from Figure 4.8 would be
unrigorous.
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Figure 4.8: Box-plot of all transfer entropy estimates with 0 < p ≤ 0.05, per feature
pair and history lengths k. This graph illustrates the distribution of the transfer
entropy estimates. It is not meant to be compared to Figure 2.4. Features classified
as other (unclassified predicates / semantic roles) follow a similar distribution (not
shown here), with estimates reaching T (k) ≈ 0.02 and a higher value with stimulus
compared to response.
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Given the inconclusiveness of this limited analysis, we investigate how the signifi-
cance of the estimates, rather than the values, is affected by the features and method-
ology used.
For p-value calculation, only the surrogate based on permutation resampling was
used, because the analytical surrogate distribution for discrete variables is defined
asymptotically for a large enough number of samples, and convergence is much
slower with a skewed distribution [81], which is the case here.
Figure 4.9 shows the p-value distribution for various history lengths k. The cumu-
lative distribution is used to highlight the differences at the edges of p = 0 and
p = 1. Estimates for k < 7 appear overconfident (many p = 0), and undersampling
is obvious at k ≥ 12. k = 7 gives a more balanced distribution, but as discussed
previously, at such history length the probability distribution of blocks has not yet
stabilised, even without the additional condition needed for transfer entropy.
Hence, these p-values are no evidence for any significant transfer entropy in the
asymptotic limit, only for correlations at length k ≤ 7 which may disappear when
considering longer ranges. This also means that the apparently higher estimates at
k = 12 shown in Figure 4.8 are unreliable.
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Figure 4.9: Cumulative distribution of p-values resulting from significance test
for transfer entropy between all pairs of feature sequences. Left: whole empirical
cumulative distribution ; right: only the interval 0 ≤ p < 0.1. Notice the impossibly
high frequency of p = 0 and the suspicious smoothness of the curve for k < 7. Also
note the absence of significance at k = 12. From there, only k = 7 seems like an
appropriate length.
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To compare the effect of features and methodologies on p-values, we measured the
relative frequency of samples with 0 < p ≤ 0.05, as a measure of the probability
of a relationship between a source feature and a target feature. Results are shown
on Figure 4.10. Overall, the probabilities are quite low, and particularly so in the
relations between stimulus and response, for all features and methods. This is hardly
surprising given the problems of the data extraction methodology.
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Figure 4.10: Proportion of samples with 0 ≤ p < 0.05 per method and feature
categories (stimulus / response), at k = 7. Feature category other representing
classification errors and ambiguities is not shown here, but doesn’t exceed a pro-
portion of 0.05 (with the exception of the pair other → response with VAD and
All/NoSemRole which slightly exceeds 0.10).

We see a small but consistent difference (∼2–10%) when subjects are randomised,
but only when the source and target features are of the same category. Because
randomising subject also randomises the agent and subject of a predicate, it affects
the stimulus / response classification and can change their relative distribution,
which explains this apparent shift from stimulus samples to response samples.
A small effect is also visible with the removal of semantic roles, although it is tiny
(less than 2%). While these observations may indicate small differences between
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methods to some extent, the size of these effects is not significant enough to provide
evidence that the processing done in this work produces any information relevant
to personality.
The important takeaway here is that our doubts about the ability of the methodology
used to capture higher-level meaning are only reinforced. One should be careful not
to extrapolate from the very small effect sizes obtained in these results. At best, it
could suggest that future work may use much simpler text processing methods, such
as word-entity co-occurrence detection, but with a greater focus on the features used
(psycholexical dimensions or other).

4.5 Limitations and improvements

4.5.1 Feature selection
In addition to the limitations and issues already mentioned, it must also be noted
that the baselines used to validate whether the method extracts any semantic-level
information do not address its ability to extract the lower-level information.
For instance, the benefit of parsing and iterating sub-sentences is not clear, given
how it obscured the interpretation of time scales. It seemed necessary to avoid mixing
together all entities and predicates within long sentences. But verifying this formally
by implementing a baseline first would have allowed us to evaluate whether it was
worth the additional complexity.
The same can be said for all lower-level features introduced here. Each feature,
such as word lemma or POS and DP labels, requires a dedicated model, which
adds complexity to the processing pipeline. As the results obtained made clear, such
complexity may not be necessary and increases the difficulty of interpretation of the
results and the likelihood of erroneous artefacts.
Hence, we stress the importance of performing the analysis on the simplest possible
baseline first, e.g. raw text, and then add features progressively and evaluate how
each affects the relevant properties being measured, e.g. entropy rate. This prevents
premature optimisation and minimises the complexity of the processing steps.

4.5.2 Evaluation of custom NLP pipeline
The insufficient investigation of feature relevance would be less problematic if the
semantic role labelling performance had been formally evaluated. This is another
important shortcoming of the methodology used here, as evidenced by the amount
of erroneous outputs and the lack of qualitative difference with the baselines.
We tried to get around the complexity of black-box semantic-level models by focusing
on a small subset of SRL. While the methods used are typical of processing pipelines
before the advent of deep attention-based language models [33], achieving successful
extraction of semantic information is still far from straightforward even with recent
models. Natural Language Understanding entails many open research problems, so
developing tailor-made solutions requires more careful choices and evaluation than
what was possible within the scope of this project.
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For this reason, it is critical to leverage existing models whenever possible, regard-
less of their size. This suggestion complements the previous one in that it gives us
a chance to identify the most useful features. Further optimisations for simplicity
and performance can be added later. The task of labelling agent/patient roles or
stimulus/response may be framed as a typical NLP classification task, allowing us
to use transfer learning to adapt an available state-of-the-art model to this task (see
Section 2.1.5). Decent performance may be achieved with relatively little annota-
tions [30], and further improved by fine-tuning the language model on the corpus, or
re-using the language model or even the classification layer of some state-of-the-art
classifier for a similar task. Apart from SRL and other high-level NLU task, existing
datasets may also be leveraged for emotion classification [45].
The advantage of deep neural network approaches is the vast literature available for
improving the effectiveness of classification, training, representation, interpretation
and generalisability. In particular, knowledge distillation [31, 82], semi-supervised
learning and multilingual word embedding [10] are worth considering for reducing
the need for corpus-specific annotations, and hence facilitating cross-corpus com-
parisons.
Regardless of the type of NLP models used, instead of using their primary output
features for information extraction, we may also investigate information structures
emerging from their internal features. This is especially relevant for unsupervised
language models as it removes the need for annotated corpora.

4.5.3 Choice of corpus
As highlighted by the results presented in Section 4.1.1 and the challenges discussed
in Section 3.2.4, a corpus of literary English does not make for an easy benchmark
for a first attempt at the kind of data extraction we attempted here. The language
can be particularly complex, and using models trained on contemporary English
without fine-tuning is likely to produce more erroneous artefacts, in addition to the
language bias issues mentioned in Section 1.2. Implementing a working pipeline first
on contemporary texts may facilitate its formal evaluation, giving a solid baseline
upon which to improve for a literary English application.

4.5.4 Potential of probabilistic modelling
As mentioned in Section 2.1.5, the possible solutions are not limited to deep neu-
ral networks, but also include various kinds of generative probabilistic models,
e.g. PGM. There is a broad literature of applications of such models to tasks relevant
to computational literary analysis [38, 83, 36, 37].
Considering the initial motivations formulated in Section 1.2, PGM would seem
an appropriate approach as it affords an explicit representation of the expected
invariant structure of personality models. The undersampling issues we faced in
the estimation of entropies could also be addressed by a careful choice of prior,
such as the distribution all words and predicates in the text. The possibility to add
explanatory variables from manual annotations, as done with supervised models,
also provides a welcomed flexibility.
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4.5.5 Numerical entropy estimation
Numerical estimation of entropy is a complex topic subject to active research [71].
There is no one-size-fits-all solution. Direct estimation by applying Equation (2.2)
on probabilities from frequency measurements, as was done here, generally overes-
timates the true entropy [71]. The entropy rate estimator defined in Equation (3.2)
is also known to consistently overestimate the true value [84].
The performance of entropy rate estimators depends not only on sequence length,
history (block) length and alphabet size, but also on correlation lengths and therefore
on entropy rate itself. It has been suggested to adapt the estimation approach based
on a first rough estimate of entropy rate [84]. Other estimators include Lempel-
Ziv complexity [84] and Bayesian methods, incorporating priors about either the
probabilities or entropy itself [71].
Transfer entropy estimators are usually based on existing techniques for mutual
information. It is an open research problem and it is recommended to use available
software packages [71].

4.5.6 Temporal correlations under critical length
The bound k∗ on history length can be found analytically, as described in [84], or
by performing the analysis on artificially-generated data from a k-th order Markov
chain and looking at the variation of information structure for increasing k.
In situations where longer range temporal correlations are inaccessible or cannot reli-
ably be estimated, as was the case here, the asymptotic information-theoretic cannot
be estimated either ; however, we may still investigate the contributions of shorter
correlation lengths to the total information structure. This can be done by decom-
posing the total correlation information into contributions from all lengths [70].

4.5.7 Complete transfer entropy
Transfer entropy as used in the project is referred in the literature as the apparent
transfer entropy TXj→Xi

between two elements of a multivariate system X. It does
not account for the possible influence of other elements.
A more accurate measure is the complete transfer entropy TXj→Xi|X[ij] , which mea-
sures the influence of Xj on Xi conditioned on every other variable Xk, k 6= i, j. We
may also consider the collective transfer entropy TY→Xi

of the joint process Y =
(X1, ..., Xn) ⊂ X [71] on a single element Xi.
The downside of these more comprehensive measures of information transfer is the
increased data requirements due to the additional conditions. They were not con-
sidered here since the sequence lengths were already too limited.
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4.5.8 Sequence processing
With the alternative processing described in Section 4.3.2 we attempted to reduce
correlation lengths by removing unnecessary 0s and recover information from the full
feature space by merging the feature dimensions together. But since this increases
the alphabet size, it also substantially increases the minimum sequence length for
reliable estimation. One may want to try removing unnecessary 0s without merging
the features in order to obtain the most reliable estimates possible, at least for
individual features.
The binning of the original real-valued features into binary values is another crit-
ical part of good entropy estimation from continuous measurements. More sophis-
ticated methods have been used in the literature, such as nearest-neighbour algo-
rithms [71]. In order to select the appropriate binning scheme, a closer look at the
distribution of feature vectors within the feature space would be helpful.
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5
Conclusion

In this project we explored a possible application of information theory with litera-
ture data for a semantic-level analysis of the interactions between book characters.
We attempted to extract information from a corpus of English novels such as to
obtain a symbolic representation of the sequence of emotions associated with the
entities. We then looked for information structure related to these entities and their
interactions, by measuring entropy rates and transfer entropies, seeking evidence
for complex temporal correlations as well as psychologically-relevant interactions
between certain categories of entities.
We described and implemented a methodology that would, in principle, avoid im-
portant sources of bias found in previous work at the intersection of psychology and
natural language processing. But the complexity of the processing needed to make
this approach viable was underestimated. As a result, the data quality obtained was
insufficient for our analysis, likely due to a large number of erroneous artefacts from
the processing.
We also came across challenges related to the estimation of entropy rate and transfer
entropy from short symbol sequences with potentially long-range temporal correla-
tions. Consequently, we were unable to draw any conclusions about the asymptotic
information properties.
The implication for future work in this direction is that considerations about the
various sources of biases in NLP and psycholexical models should be put aside for
now, in order to investigate more closely which semantic-level features (1) allow
the extraction of enough informative data samples and (2) capture psychologically
relevant information structure. The focus should be on ensuring that appropriate
statistical estimators can be applied, and on leveraging state-of-the-art language
models, using Semantic Role Labelling or event/frame detection and coreference
resolution only if necessary.
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Glossary

affect The unconscious experience underlying feelings and emotions[3]. xi, 1, 3, 8,
12–14, 24

attention Mechanism used in Machine Learning for adaptive weighting, inspired
by the homonymous cognitive mechanism and representing a kind of temporal
and/or spatial memory. 5, 9, 31, 42

baseline Reference for evaluating the performance of a model, or in the case of
this work, for measuring the effect of a certain feature or parameter on the
outcome of an experiment. We may refer here to the baselines for the baseline
processing methods used for this comparison. 21, 22, 30, 32, 35, 42

behaviour In psychology, the range of actions and mannerisms made by an in-
dividual. Not to be confused with the notion of behaviour used in complex
systems theory, where it usually refers instead to qualitative properties of a
system observed under certain conditions[4]. 1, 3, 11–13, 16, 24

BERT Bidirectional Encoder Representations from Transformers[10]: a deep neural
network language model based on the Transformer architecture, with multiple
attention layers encoding syntactic- and semantic-level features. Considered
the first truly successful application of Transfer Learning in NLP. 6, 9

black-box In Machine Learning, a black-box model is a model for which we only
know what the inputs and outputs represent. The model produces outputs
based on a composition of abstract functions parametrised from the train-
ing data. Thus, understanding and interpreting what the model does is often
difficult. 10, 14, 21, 42

cognition In psychology, mental information processing mechanisms such as thought,
attention or memory. 1, 3, 12, 13, 24

coreference In Natural Language Processing, coreference resolution refers to the
task of associating different mentions of the same entities in a text (e.g. “John
Doe”, “John”, “M. Doe”). I, III, 8, 16, 22, 24–26, 31, 47

correlation length the length in time of a temporal correlation. 44, 45

distillation Machine Learning technique consisting of training a smaller model to
reproduce the output of a larger one. 9, 10, 43

DP Dependency Parsing. xiii, I, IV, 7, 21, 22, 25, 26, 31, 42
dynamic Dynamical systems are systems which change over time according to some

rules. Here the term dynamical loosely refers to systems, models or observables
of such nature. We also refer to Information Dynamics which is the area of
Information Theory concerned with these systems. v, 3, 4, 11, 16–18, 21, 27
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Glossary

embedding In Natural Language Processing, a word-vector embedding is a lan-
guage model representing word meaning in an abstract vector space. 3, 5, 6,
15, 43

emotion The experience of affect as understood and expressed through a certain
individual and cultural context. v, xi, 1, 3, 8, 11, 13, 14, 16, 21, 22, 24, 28,
43, 47

entity In Natural Language Processing, an entity is a person, group of persons,
location, brand or anything that can have a proper name. II, III, 4, 7, 16, 21,
22, 25–27, 30, 31, 42, 47

environment Refers here to everything that surrounds an individual, used inter-
changeably with situation. 3, 4, 11–14, 16, 21, 22, 24, 26–31

FA Factor Analysis. 10, 15
feedback loop When the output of a system is fed back to itself as an input, it

becomes a dynamical system: it produces some behaviour over time. This also
occurs more generally when any two parts of a system are mutually affecting
each other. v, 11–13, 29

FFM Five Factor Model. 2, 10–12, 14, 15
fine-tuning Additional training of a pre-trained model in order to increase its per-

formance in a specific domain, or after an alteration such as Transfer Learning.
43

frame In Natural Language Processing, a semantic frame is a task-specific record
representing semantic knowledge extracted from a certain position in the text.
xiii, II, 8, 10, 22, 23, 26, 27, 30, 47

generative Generative models represent a data distribution, and can be sampled
to produce new data, or used as a representation layer for other inference
models. PGM are an example. 9, 43

hypernym In the WordNet database[23], represents the relation between a more
general meaning (synset), e.g. animal, and another meaning which is a more
specific instance of the former, e.g. dog. III, 22, 31

language model Abstract representation of semantic meaning based on distribu-
tional semantics i.e patterns of word co-occurrence. 2, 3, 6, 8–10, 42, 43,
47

lemma Base form of a word, e.g. look (looking, looked, ...), produc (production,
product, ...). 22, 25, 31, 42

LIWC Linguistic Inquiry Word Count. 14
LSTM Long Short-Term Memory. 5

memoryless A memoryless process or system is one for which the current state
predicts the next state, regardless of past states, and can be represented as a
first-order Markov Chain. A kth-order Markov Chain with finite k represents
a process which is memoryless beyond the past k states. 16

ML Machine Learning. 5, 8, 10

NER Name Entity Recognition. 7, 22, 25, 26, 31
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Glossary

NLP Natural Language Processing. v, 2, 3, 5–10, 15, 16, 21, 24, 26, 43, 47
NLU Natural Language Understanding. 5, 9, 10, 42, 43

PGM Probabilistic Graphical Model. 9, 10, 43
pipeline Sequence of single-purpose functions, each fed the outputs of the previous

ones as input. In Natural Language Processing, these typically consist in an-
notating the text with features, sometimes based on previously added labels.
15, 16, 21, 42, 43

POS Part-of-Speech. xi, III, 5, 7–9, 21, 22, 26, 31, 42
predicate Here refers to a word in the text which expresses some information about

an entity. xi, I, II, 8, 21–23, 25, 27, 30–32, 38, 42, 43
prior In Bayesian statistics, the prior distribution represents our current knowledge

before an observation. 15, 43, 44
psycholexical An approach for assigning psychology-related meanings to words,

such as emotions or personality traits, usually by the manual (or survey-based)
selection and annotation of a lexicon, followed by some form of dimensionality
reduction. II, 2, 3, 8, 10, 14, 22–24, 27, 28, 42, 47

response In Neuroscience, a response is a neurological signal produced by the brain
as a reaction to a stimulus. Here used loosely as an analogy for any observable
characteristic of an individual’s mental state (affect, behaviour or cognition),
implying a reaction to a situation. 11, 27, 29, 35, 38, 39, 41, 43

RST Reinforcement Sensitivity Theory. 11, 12

semantic role In Natural Language Processing, the role of a token (or token span)
in a sentence, e.g. active subject (agent), passive subject (patient). xi, I, II, 9,
22, 25, 27, 30, 39

semi-supervised Semi-supervised Learning refers to the use of both a supervised
model, often trained on a restricted dataset, and an unsupervised representa-
tion obtained from a much larger unlabelled dataset, to improve and generalise
the performance of the supervised model on the larger dataset. 9, 43

sentiment Conscious emotional predisposition about something or someone, e.g. trust
in government, fear of technology. xi, 5, 8–10, 13

situation In Personality Theory, a situation represents a feature of the surrounding
environment which may affect the manifestations of an individual’s personality
trait. For example, a social gathering or a relationship conflict. 1, 3, 11, 13,
14, 24

SRL Semantic Role Labelling. 8, 10, 16, 24, 26, 31, 42, 43, 47
stimulus In Neuroscience, a stimulus is a physiological signal triggering a reaction

(response) in the brain. Here used loosely as an analogy for any information
perceivable by an individual about his/her environment. 11, 13, 27, 29, 35,
38, 39, 41, 43

sub-sentence Long sentences, common in the corpus used here, may be composed
of multiple sub-sentences linked by commas or specific words (e.g. and, then).
xiii, I, II, 26, 27, 42

supervised Supervised Machine Learning consists in fitting a model to reproduce
given outputs (or labels) associated to a training set of input samples. 8, 9,
14, 15, 21, 31, 43
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Glossary

surrogate In statistical significance testing, the surrogate distribution is the dis-
tribution under the null hypothesis. 19, 40

temporal correlation In Information theory, a correlation between the current
state of a random process and its state at a given time delay in the past. By
temporal correlations, we usually refer here to the entire information structure
in the temporal dimension, which emerges from such correlations along the
entire spectrum of time delays. 3, 6, 30, 36, 38, 44, 47

token Basic unit of information in Natural Language Processing, representing words
(or word parts), punctuation or task-specific control values. xi, I, 7, 9, 22, 25,
27, 32, 34

transfer learning Reusing part of a trained model as a feature extraction layer
for a new model, significantly speeding up its training. 5, 9, 10, 43

unsupervised Unsupervised Learning refers to applications of Machine Learning
where data labelling is not necessary for fitting the model, e.g. representation
learning, generative models, cluster analysis, word-vector embedding. 8–10,
15, 43

VAD Valence Arousal Dominance. 22–24, 28, 31, 36, 41

WordNet Lexical database of English word meanings, represented as synsets (unique
identifiers of word meaning) and organised in a hierarchy of hypernyms (synsets
representing broader categories)[23]. III, 14, 16, 22, 26
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A
Appendices

A.1 Semantic parsing heuristic
Below is the pseudo-code for the two-pass heuristic algorithm used to parse the
dependency tree of sentences (given by the DP model), identify sub-sentences and
determine semantic roles.

Data: Document (list of tokens) D = {w0, w1, ..., wn}, entities E, resolved
coreferences C ⊂ E ×D

Result: Relations Ragent, Rpatient ⊂ E ×D
// Find agent and patient relations
foreach coreference (e, wi) ∈ C with head wh do

if dep(wh) ∈ {nsubj, csubj, poss, expl} then
Ragent := Ragent ∪ {(e, parent(wh))};

end
foreach ancestor wa of wh (under sub-sentence root) do

break if ∃ (x,wa) ∈ Ragent;
Rpatient := Rpatient ∪ {(e, wa)};

end
end
// Associate remaining tokens to the closest agent
foreach w ∈ D, @ (x,w) ∈ Ragent do

foreach ancestor wa of w (under sub-sentence root) do
Ragent := Ragent ∪ {(e, w)∀ (e, wa) ∈ Ragent};
break if any;

end
end

Algorithm 1: Semantic parsing heuristic. Some optimisations are omitted for
clarity. Notably, only the subset of predicate words P ⊂ D needs to be resolved.
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A. Appendices

Figure A.1: Propagation of semantic roles through the dependency tree. Original
sentence on top with numbers indicating positions in the text (time-steps). Upward
arrows correspond to the first pass which propagates agent/patient relationships
upwards, and downward arrows to the inheritance pass that associate tokens to the
agent/patient entities from their ancestors. Circles represents sub-sentences, with
their root in red. Predicate, i.e. words matched from the lexicon of psycholexical
features, are highlighted in yellow.

The schema on Figure A.1 illustrates how the semantic roles are applied on the
dependency tree. Table A.1 shows the expected semantic frames from the example
sentence.

Time Predicate Agent Patient
4 fellow Joe -
4 fellow I -
4 sufferer Joe -
9 confidences Joe -
9 confidences I -
16 confidences - me

Table A.1: Expected semantic frames resulting from the parsing of the example
sentence on Figure A.1. Predicates are later replaced by the psycholexical features
and entities classified according to rules explained in appendix A.2.
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A.2 Entity classification rules
This flow chart represents the heuristic algorithm used to determine if a given entity
mention (as given by the coreference resolution model) refers to a book character
(PERSON) or another kind of entity (e.g. organisation, country, object...). In the latter
case, it is categorised as ENVIRONMENT.
The coreference model gives a list of clusters of entity mentions, each cluster cor-
responding to an entity with one mention being labelled as the main one. Because
sometimes the main mention is still inappropriate, the heuristic is applied on each
mention and the final decision is made by selecting the most frequent decision.
Special entities Narrator and Reader are categorised as PERSON.

'PROPN'

'NOUN'

'DET',
'PRON'

POS

Not found

'person.n.01'

Hypernyms

'PERSON'

'NORP', 'FAC', 'ORG', 
'GPE', 'LOC', 'PRODUCT',

'EVENT'

Entity
type

PERSON ENVIR-
ONMENT UNKOWN

Look up in exceptions

he hehim Mr. Tyrold Tyrold

Mr. Tyrold

Figure A.2: Entity classification rules. On top: cluster of entity mentions. Each
mention is classified based on its POS tag. Proper nouns (PROPN) are complemented
with the POS tag, and other nouns with WordNet hypernyms (testing for per-
son.n.01 being one of the hypernyms). Undecided cases are set to UNKNOWN.

III



A. Appendices

A.3 Universal Dependency Labels Reference

Label Description
acl clausal modifier of noun (adjectival clause)
advcl adverbial clause modifier
advmod adverbial modifier
amod adjectival modifier
appos appositional modifier
aux auxiliary
case case marking
cc coordinating conjunction
ccomp clausal complement
clf classifier
compound compound
conj conjunct
cop copula
csubj clausal subject
dep unspecified dependency
det determiner
discourse discourse element
dislocated dislocated elements
expl expletive
fixed fixed multiword expression
flat flat multiword expression
goeswith goes with
iobj indirect object
list list
mark marker
nmod nominal modifier
nsubj nominal subject
nummod numeric modifier
obj object
obl oblique nominal
orphan orphan
parataxis parataxis
punct punctuation
reparandum overridden disfluency
root root
vocative vocative
xcomp open clausal complement

Table A.2: Universal DP tags provided by the spaCy package, not including ad-
ditional language-specific tags. From the reference documentation1.

1https://spacy.io/api/annotation#dependency-parsing-universal
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