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Contact:

auguste@student.chalmers.se

frehells@student.chalmers.se

idebohn@student.chalmers.se

simnilss@student.chalmers.se

silvermo@student.chalmers.se

c©August Ekman, Fredrik Hellström, Veronica Ideböhn, Simon Nilsson and Johan Silvermo, 2015
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Abstract

In this report the connection between the partition functions for a two-dimensional model of ice

crystals and the Eisenstein series that appears when studying the quantum corrections of string theory

is studied. The report is mainly based on papers in which this link is briefly studied, and is meant to

act as an introduction to the subject matter for future research. The text is based on literature studies

combined with calculations to understand certain theories and to attain a deeper understanding of the

mathematics involved. The level of mathematics in the report is enough to follow the calculations,

without including anything insignificant. This is because the report is meant to appeal to both physics

students and researchers interested in the, so far, unexplored area of research. The project moves from

the crystals described by statistical mechanics to the realm of physics that is described by modular

forms and then further onto string theory. This link has not been researched yet, which makes it an

interesting subject to study.





Sammandrag

I denna rapport undersöks kopplingen mellan partitionsfunktionerna för en tv̊adimensionell modell av

iskristaller och de eisenstensteinserier som uppkommer när kvantkorrektioner studeras inom strängteori.

Arbetet baseras främst p̊a vetenskapliga artiklar där denna koppling studerats i korthet och är tänkt

att den ska agera som en introduktion för framtida forskning. Arbetet har baserats p̊a litteraturstudier

kombinerat med egna beräkningar för att n̊a en djupare först̊aelse för teorin. Niv̊an p̊a matematiken

i rapporten är tillräcklig för fysikstudenter, men begränsad till den grad s̊a att ingenting insignifikant

är inkluderat. Detta eftersom rapporten ska tilltala b̊ade studenter och forskare inom, det ännu out-

forskade, omr̊adet. Projektet rör sig fr̊an kristaller som beskrivs med hjälp av statistisk mekanik över

till modulära former och sedan utforskas en möjlig koppling till strängteorin. Denna koppling har inte

forskats p̊a innan, vilket gör den mycket intressant att studera.
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Part I

A Summary in Swedish





xi

Bakgrund

Tv̊a teorier som b̊ada revolutionerade fysiken under 1900-talet var kvantmekaniken och den allmänna

relativitetsteorin. Kvantmekaniken beskriver hur materiens minsta best̊andsdelar, elementarpartiklar-

na, bygger upp fysikens lagar, medan den allmänna relativitetsteorin främst förklarar gravitationen.

Kvantmekaniken har rönt stora framg̊angar d̊a den lyckats förklara ett flertal fenomen där den klassiska

fysiken ej är tillräcklig. Främst rör det sig om fenomen p̊a mycket sm̊a längdskalor, men kvantmeka-

niken har även varit oumbärlig för tillämpningar som lasern, transistorn och elektronmikroskopet [2].

Den allmänna relativitetsteorin publicerades av Albert Einstein år 1916. Genom att beskriva gra-

vitationen som ett resultat av att rumtiden kröks av materia och str̊alning, förenar den Einsteins

speciella relativitetsteori med Isaac Newtons gravitationsteori. Anmärkningsvärt nog har det visat sig

att den allmänna gravitationsteorin inte är förenlig med kvantmekaniken. En teori som lyckas förena

dessa b̊ada stöttepelare inom den moderna fysiken vore s̊aledes en enorm framg̊ang. En kandidat är

strängteorin, vilken har just detta syfte. Enligt denna är naturens mest fundamentala byggstenar ej

punktpartiklar, utan sm̊a vibrerande strängar [3]. För de allra flesta icke-klassiska fenomen inom fy-

siken är det tillräckligt med antingen en kvantmekanisk eller en allmänrelativistisk beskrivning. Ett

undantag är svarta h̊al, där effekter fr̊an b̊ade kvantmekaniken och den allmänna relativitetsteorin kan

observeras. En av nycklarna för att först̊a strängteorins beskrivning av svarta h̊al är de s̊a kallade

modulära formerna.

Modulära former är en klass av funktioner som sedan tidigt 1800-tal har varit av stor vikt inom

matematiken [4]. Initialt användes de främst för att studera elliptiska funktioner, men med tiden har

de visat sig ha avsevärt bredare tillämpningsomr̊aden än s̊a. Vid mitten av 1900-talet fann man att

modulära former kunde användas för att p̊a ett elegant sätt knyta samman tidigare åtskilda omr̊aden

inom matematiken, som geometri, talteori och representationsteori [4, 5]. Med tiden har modulära

former även visat sig ha ett flertal tillämpningar inom fysiken. Detta faktum är av stort intresse,

eftersom villkoren för att en funktion ska klassas som en modulär form inbegriper h̊arda krav p̊a dess

symmetriegenskaper. Inom fysiken spelar symmetrier en avgörande roll. Exempelvis säger Noethers

teorem att symmetrierna hos en teori fullständigt bestämmer dess konserverade storheter [6]. Dessa

ligger i sin tur till grund för teorins fundamentala lagar. I strängteorin dyker de modulära formerna

upp i kvantkorrektionerna för verkan som ger upphov till Einsteins ekvationer, vilka i sin tur beskriver

gravitationen. Det är just dessa korrektioner som gör den allmänna relativitetsteorin förenlig med

kvantmekaniken i strängteorin. Även inom strängteorin har de modulära formerna fler tillämpningar

än s̊a. Exempelvis kan de användas för att räkna mikrotillst̊anden i svarta h̊al, vilket i sin tur kan

användas för att bestämma deras entropi [5].

P̊a senare år har kopplingar till modulära former observerats inom ytterligare ett omr̊ade inom fysiken,

nämligen statistisk mekanik. Det är i partitionsfunktionerna för tv̊adimensionella modeller av vissa

kristaller, exempelvis is, som de modulära formerna dyker upp. En djupare först̊aelse av denna koppling

skulle kunna förklara varför de modulära formerna frekvent dyker upp i olika fysiktillämpningar. Det

har även potential att blottlägga ett djupg̊aende samband mellan kristaller och svarta h̊al, tv̊a objekt

som vid första anblick tycks vara helt avskilda fr̊an varandra.
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Syfte

Syftet med detta kandidatarbete är att identifiera och först̊a den roll de modulära formerna spelar

inom s̊aväl statistisk mekanik som strängteori. För att först̊a kopplingen mellan modulära former och

statistisk mekanik kommer tv̊adimensionella modeller av kristaller att studeras. Inom strängteorin kom-

mer kvantkorrektioner inneh̊allande modulära former att studeras. Slutligen önskar vi även undersöka

huruvida vi kan finna n̊agra samband mellan dessa, till synes, vitt skilda fält inom fysiken.

Uppgiftsformulering

Detta projekt inbegriper tre huvudomr̊aden: modeller av kristaller inom statistisk mekanik, modulära

former samt strängteori. Dels vill vi studera dessa omr̊aden separat, men vi är även speciellt intresserade

av sambanden dem emellan. Projektet kan s̊aledes indelas i tre delar, vilka illustreras i den schematiska

bilden i figur 1.

Figur 1: En schematisk bild över projektet. Initialt undersöks kopplingen mellan modulära former och kri-

staller. Detta följs av en studie av de modulära formernas roll inom strängteorin. Slutligen undersöks huruvida

det kan finnas n̊agon koppling mellan strängteori och kristaller. Detta är till skillnad fr̊an övriga punkter ett

tidigare helt outforskat omr̊ade.

En utförligare beskrivning av projektets tre olika delar ges nedan.

1. Den första delen av projektet best̊ar av att först̊a kopplingen mellan kristaller och modulära

former. Denna koppling uppenbarar sig vid studium av partitionsfunktionerna som uppkommer

i en tv̊adimensionell modell av främst iskristaller, vid namn sex-vertexmodellen. Ett naturligt

första steg är därför att först̊a sex-vertexmodellen samt studera vilka partitionsfunktioner den

ger upphov till. Nästa steg är studier av grupp- och representationsteori. Detta eftersom det i

m̊angt och mycket är p̊a dessa teorier som de modulära formerna vilar, och därmed kan först̊as

med hjälp utav. Slutligen kan de modulära formerna studeras mer explicit, varvid kopplingarna

till kristallernas partitionsfunktioner kan identifieras.

2. Nästa del i projektet är att studera kopplingen mellan modulära former och strängteori. Denna

koppling utgörs av kvantkorrektionerna – d.v.s. de termer som kan försummas d̊a man betraktar
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problemet klassiskt – till den verkan som ger upphov till Einsteins ekvationer, den s̊a kallade

Einstein-Hilbert-verkan.

3. Att de modulära formerna har kopplingar till s̊aväl kristaller som strängteori antyder att det kan

finnas n̊agot samband dem emellan. Detta, tidigare outforskade, samband skulle p̊a ett elegant

sätt kunna knyta samman strängteorins abstrakta värld med n̊agot s̊a konkret som statistisk

mekanik. I projektets sista del utreder vi därför likheter och skillnader i resultaten av studierna

i punkt 1 och 2 ovan.

Avgränsningar

Arbetet under projektet kan indelas i tre huvudsakliga delar: statistisk mekanik, en matematikdel

inneh̊allande gruppteori och modulära former och slutligen strängteori. Samtliga dessa omr̊aden är

mycket stora, och en utförlig utredning av dem alla vore omöjlig att åstadkomma inom projektets

tidsrymd.

Inom den statistiska mekaniken har vi valt att nästintill uteslutande fokusera p̊a de modeller av kri-

staller som uppvisar en koppling till modulära former. I denna del har vi varit som allra mest rigorösa

och viktiga resultat har i allmänhet härletts och motiverats ordentligt. När vi studerat gruppteorin har

vi avgränsat oss till att endast beröra omr̊aden som vi anser vara viktiga för först̊aelsen av kopplingen

mellan modulära former och de fysiktillämpningar rapporten tar upp. Eftersom modulära former har

starka samband med gruppen SL(2, R) har denna grupp prioriterats.

Även i behandlingen av strängteorin har vi, med f̊a undantag, valt att inrikta oss p̊a de delar där

kopplingen till modulära former dyker upp. Detta eftersom strängteori är ett stort och avancerat

forskningsomr̊ade, varför det vore omöjligt att n̊a en djupare först̊aelse av den under projektets löptid.

Att finna kopplingar mellan strängteori och kristaller är ett problem som aldrig har utforskats tidigare

och ligger s̊aledes p̊a forskningsniv̊a. Resultatet av dessa studier har därför presenterats i form av en

utblick i det sista kapitlet. Vi hoppas att denna ska fungera som en inspirationskälla och visa p̊a de

modulära formernas viktiga roll i forskningens framkant.

Metod

Arbetsprocessen har väsentligen best̊att av tre element: litteraturstudier, egna beräkningar samt

föreläsningar av v̊ara handledare Daniel Persson och Henrik Gustafsson. Litteraturstudierna har främst

använts som introduktion och inspiration till de olika ämnesomr̊adena. De egna räkningarna har

använts som en metod för att befästa de via litteraturstudierna erh̊allna kunskaperna, samt för

att härleda nya resultat och exempelräkningar där dessa saknats i litteraturen. V̊ara handledares

föreläsningar har berört ämnen som ligger nära deras egna forskningsomr̊aden, och de har d̊a kunnat

anpassa niv̊an och infallsvinkeln efter v̊ara kunskapsniv̊aer och projektets syfte. Det inbördes styr-

keförh̊allandet mellan dessa tre arbetsförfaranden har varierat under projektets olika delar.

Som en introduktion och fysikalisk motivering till den statistiska mekaniken, framför allt till sex-

vertexmodellen, användes i stor utsträckning boken Exactly Solved Models in Statistical Mechanics av
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Rodney J. Baxter [7]. För studier av kopplingen till modulära former var en rad artiklar av Benja-

min Brubaker, Daniel Bump och Solomon Friedberg till stor hjälp [8, 9, 10]. P̊a detta omr̊ade fanns

knappt n̊agra räknade exempel, s̊a här utgjordes en stor del av arbetet av att vi själva beräknade

partitionsfunktionerna för olika kristaller, och sedan jämförde v̊ara resultat med teorin. I denna del

av projektet ställde vi även höga krav p̊a att själva kunna först̊a och återskapa alla viktiga teoretiska

resultat.

Under den mer matematiska delen av projektet användes främst litteraturstudier och föreläsningar

av handledare. Vid de mer explicita studierna av modulära former var masteruppsatsen Eisenstein

Series and Instantons in String Theory av Henrik Gustafsson värdefull, främst vid beräkningen av

eisensteinseriens fourierutveckling [5]. Rörande grupp- och representationsteori har kandidatarbetet

Group Theory and Symmetries in Particle Physics av Saladin Grebović et al. varit en viktig källa till

information och inspiration [11].

I den sista delen av projektet, som behandlade strängteori, har v̊ar handledare Daniel Persson varit

till stor hjälp. Dels höll han en föreläsning om ämnet för oss och dels har vi kunnat studera hans

doktorsavhandling Arithmetic and Hyperbolic Structures in String Theory [3]. Även Henrik Gustafssons

masteruppsats var ånyo värdefull [5].

Resultat

Det första omr̊adet i detta arbete är statistisk mekanik. En central komponent i detta omr̊ade är par-

titionsfunktionen som definieras. Den ismodell som ska studeras definieras ocks̊a här tillsammans med

de viktiga randvillkor som kommer tillämpas p̊a alla kristaller i rapporten. Som exempel beräknas

partitionsfunktionen för ett par av de enklast möjliga kristallerna i denna modell. För att kunna

beräkna partitionsfunktionen för alla kristallerna i modellen definieras schurpolynomen vilka frekvent

återkommer som en viktig komponent genom rapporten. Ett teorem som ger ett uttryck för parti-

tionsfunktionerna för alla kristaller i modellen formuleras och bevisas. Det är i detta teorem som

schurpolynomen för första g̊angen spelar en viktig roll i rapporten.

Nästa centrala omr̊ade i detta arbete är gruppteori. I rapporten definieras grupper utifr̊an gruppaxi-

omen och ett enkelt exempel p̊a en grupp presenteras. Med detta definieras ocks̊a liegrupper som kan

ses som kontinuerliga grupper. Speciellt studeras liegruppen SL(2, R) som är den viktigaste gruppen

i denna rapport. Utifr̊an detta definieras liealgebror som är ett mycket viktigt koncept inom fysiken.

Liealgebror studeras vidare i avsnittet om strukturteori där vi tittar p̊a kommutatorer i liealgebran.

Speciellt förklaras Chevalley-Serrerelationerna och hur cartanmatrisen hänger ihop med dessa. Denna

matris inneh̊aller all information om den tillhörande liealgebran.

Inom fysiken l̊ater man oftast grupper representeras av matriser vilket förklaras i avsnittet om re-

presentationsteori. Det förklaras ocks̊a hur representationer används för liealgebror och speciellt ges

en representation för generatorerna av liealgebran sl(2, R). Utifr̊an en representation definieras rötter

och vikter vilka sedan används för att definiera karaktären av en representation. Med dessa verktyg

kan Weyls karaktärsformel formuleras, vilken är oerhört viktig inom fysiken. Det för detta arbete

mest intressanta resultatet fr̊an gruppteorin f̊as genom att använda Weyls karaktärsformel p̊a sl(2, R).
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Här visar sig schurpolynomen igen. Dessa schurpolynom motsvarar kristaller med tv̊a rader i sex-

vertexmodellen.

Det sista stora omr̊ade som g̊as igenom fr̊an grunden i detta arbete är modulära former. Modulära

former är holomorfa funktioner p̊a det övre halvplanet som är invarianta s̊a när som p̊a en viss faktor

under transformation med ett element i gruppen SL(2, Z). Släpper man kravet p̊a holomorficitet och

istället inför att funktionen ska vara en egenfunktion till Laplacianen p̊a övre halvan av det komplexa

talplanet f̊ar man istället en maassform. Som exempel p̊a en s̊adan definieras eisensteinserier. Hur dessa

kopplar till övriga kapitel visar sig i dess fourierutveckling. I denna finns en faktor som kan skrivas som

ett schurpolynom. Dessa schurpolynom är desamma som fanns i karaktärsformeln för sl(2, R).

Som avslutning ges en liten inblick i strängteori. Detta avsnitt tar avstamp i allmän relativitetsteori

och visar hur Einstein-Hilbert-verkan ser ut. Fr̊an strängteori uppkommer kvantkorrektioner till denna

verkan och i dessa korrektioner dyker eisensteinserierna upp.

Slutsats

I denna rapport studeras till synes helt skilda omr̊aden av matematik och fysik. Vid närmare studier

visar sig dock likheter, främst i form av schurpolynom. Speciellt förv̊anande är kanske hur dessa

dyker upp i sex-vertexmodellen, en modell som inte visar n̊agot uppenbart samband med gruppen

SL(2, Z). Detta indikerar att det finns n̊agot slags samband mellan iskristaller och strängteori, ett

forskningsomr̊ade som är nästan helt outforskat. Denna rapport är tänkt som en utg̊angspunkt för

framtida forskning inom detta omr̊ade.
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Chapter 1

Introduction

Two theories that both revolutionized the world of physics in the 20th century were quantum mechanics

and general relativity. Quantum mechanics describes how the smallest units of matter, the elementary

particles, generate the laws of physics, whereas general relativity, most importantly, explains gravity.

Quantum mechanics has had great success in explaining different phenomena where classical physics

is not sufficient. These are mainly phenomena on very small length scales, but quantum mechanics

has also been essential in applications such as the laser, transistor and electron microscope [2]. The

theory of general relativity was published by Albert Einstein in 1916. By describing gravity as a result

of the curvature of spacetime caused by matter and radiation, it unites Einstein’s special theory of

relativity with Isaac Newton’s law of universal gravitation. Remarkably enough general relativity has

proven to be inconsistent with quantum mechanics. Hence, a theory that unites these two mainstays

of modern physics would be an enormous progress. One candidate, with this purpose, is string theory.

According to string theory, the most fundamental units of the Universe are not point particles, but

small vibrating strings [3]. For most non-classical phenomena in physics, either a quantum mechanical

or a general relativistic description is sufficient. Black holes are exceptions. There, one can observe

effects from both quantum mechanics and general relativity, making them particularly interesting in

string theory. One of the keys to understanding the string theoretical description of black holes are

the so-called modular forms.

Modular forms are a class of functions that since the early 19th century have played an important role

in mathematics [4]. Starting as a method of studying elliptic functions, they have also proven useful

in number theory and representation theory. This was for instance demonstrated by Andrew Wiles

when he, after seven years of work, managed to prove Fermat’s last theorem using modular forms,

in what has been referred to as “the proof of the 20th century” [12]. In later years, modular forms

have proven to have numerous applications in physics. This is very intriguing since a function needs

to have very intricate symmetry features in order to be classified as a modular form. Symmetries

are of great interest in physics. By identifying the symmetries of a theory, one can normally derive

multiple important results. For example, Noether’s theorem states that the symmetries define what

quantities are conserved, which in turn can be used to create the fundamental laws of the theory in

question [6].
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One of the most recent connections to modular forms has been observed in statistical mechanics.

Important work on the subject has been carried out by Benjamin Brubaker, Daniel Bump and Solomon

Friedberg. They observed a connection between modular forms and the partition functions of two-

dimensional models of certain crystals, such as ice. This is where this thesis takes its starting point,

with the primary goal to understand the mentioned connection. Repeatedly using ice as an example

we have been able to understand the so-called six-vertex model, which is a two-dimensional crystal

model. This model has been studied under different circumstances, e.g. in the presence of an external

electric field. Thereby we have been able to determine necessary boundary conditions and a condition

on the Boltzmann weights (the so-called free fermion condition) in order to derive an expression for

the partition functions which contains a Schur polynomial. Schur polynomials are a class of functions

with strong connections to a certain kind of modular form called the non-holomorphic Eisenstein

series.

In order for the connection between modular forms and the partition functions of the crystals to become

clear, a certain amount of mathematical background is required. The mathematical framework that

most effectively describes symmetries is group theory. In group theory, all symmetric objects, e.g.

functions, can be identified as the objects that stay invariant under all possible transformations. In

order to increase comprehensibility it is preferable to also introduce the companion of group theory,

representation theory, which gives a way of representing group elements, often as matrices. For this

reason we have devoted chapter 3 to the foundations of these two fields. However, since group theory

and representation theory are vast fields we have chosen to emphasize the areas with the deepest

relations to our subject, mainly the so-called Lie groups and their structure theory. We have also

focused our studies on the special linear group of order 2, SL(2, Z), since that is the group under

which the Eisenstein series are invariant.

After having been acquainted with the underlying theory, we are ready for more explicit studies

of modular forms in chapter 4. The emphasis will be on the earlier mentioned non-holomorphic

Eisenstein series and its Fourier expansion. Studying the coefficients of this expansion, the familiar

Schur polynomials will emerge. Thereby we can identify and investigate the connections between

modular forms and the earlier derived partition functions. For example we can determine for what

crystals – with respect to size and the choice of Boltzmann weights – the exact same Schur polynomials

emerges in the partition functions as in the Fourier expansion of the Eisenstein series.

As mentioned earlier, modular forms have proven to have connections to numerous fields in physics.

In the last chapter of this report we glance at the world of string theory, where the non-holomorphic

Eisenstein series once again plays an important role. More precisely it appears when studying the

quantum corrections to the Einstein-Hilbert action. The Einstein-Hilbert action is the action describing

Einstein’s equations, which in turn describe the curvature of spacetime by matter and energy [13].

According to general relativity, gravity is the result of this curvature. In addition, the Eisenstein series

can also be used to count the number of microstates in black holes, from which one can easily compute

their entropy [5]. Thus, one can understand the importance of the subject.

In conclusion, the primary purpose of this thesis is to identify and investigate the connection between

modular forms and a certain model of crystals known as the six-vertex model. In order to do this we

need a deeper understanding of group theory and representation theory. In addition, we want to briefly
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investigate certain areas of string theory, where the same kind of modular forms appear. By doing so

we hope to illustrate the importance of modular forms and their applications to physics.

Reader’s Guide

The report’s main goal is to obtain a self-contained theory, and seeing as the subject at hand stretches

over vast fields of both physics and mathematics, the extent to which all subjects have been covered

has been limited. The theory included is independent, and after having read chapter 2 readers familiar

with the group theory may skim through or go straight ahead to chapter 3. This should increase the

fluency in the text, and the results should appear more clearly, as well as the objective to connect

two different areas of physics. Nonetheless, chapter 3 is important to help the reader understand the

mathematics used in chapter 4 and 5, and should be studied if further understanding is desired.

Chapter 2 Statistical Mechanics and Crystals

Here, the partition functions of two-dimensional ice crystals in the so-called six-vertex model are

studied, since they will further ahead reveal connections to modular forms. Moving on, both a

field-free case and a case in which electric fields are present are studied and results are presented.

Lastly, the dependence of the rows and weights are discussed, and a few examples are included

to subsume the theory discussed.

Chapter 3 Group and Representation Theory

In this chapter the mathematical foundation is laid with a brief review of group theory before

moving onto the sl(2) Lie algebra and its structure and representation theory. The roots and

root space obtained when looking at the representation theory is then used in the Weyl character

formula.

Chapter 4 Modular Forms and Eisenstein Series

Modular forms are introduced and defined. This is then proceeded by a limitation of the the area

studied to the non-holomorphic Eisenstein series. Further, the Fourier coefficients are rewritten

as Euler products in order to show how they are connected to the partition functions in chapter 2.

Chapter 5 Intertwining results

Most loose ends from the previous chapters are tied together and the connections promised to

be delivered in the beginning are finally presented, as well as the promising direction of new

research in this research area.

Chapter 6 Conclusions and Future Direction

Here, the connection to string theory is discussed as well as how string theory might be connected

to the theory discussed in earlier chapters.
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Chapter 2

Statistical Mechanics and

Crystals

It is often impossible to exactly model large systems from the physical laws that govern the system’s

tiniest parts. An example would be to try to model the interactions and behaviour of every individual

molecule in a gas to determine how the macroscopic system will behave. Even ignoring uncertainties

arising from quantum physics, the necessary computing power far exceeds anything possible today.

However, we are rarely interested in the exact movement of every molecule of a macroscopic system.

We instead usually deal with thermodynamic properties such as temperature, entropy and pressure.

It is in this step between the microscopic and macroscopic world that statistical mechanics comes

in.

A central concept in statistical mechanics is the partition function which describes a systems statistical

properties. This chapter will begin by defining the partition function and make some observations

regarding this. As we will get a hint at, this object is of great importance in much of statistical

mechanics. We will then use this to study the six-vertex model. In the six-vertex model we have a

two-dimensional lattice where each vertex can be in six different configurations, hence its name.

Another important concept that we will introduce in this chapter is the Schur polynomials which

we will see can be used to calculate the partition function of a lattice in the six-vertex model. The

Schur polynomials were first studied in the areas of group theory and representation theory at the

beginning of the 20th century [14] and we will indeed find these again in chapter 3 when we study

these areas. As we will see in later chapters it is these polynomials that make up the connection to

modular forms.

2.1 The Partition Function

One of the most important concepts in statistical mechanics is without a doubt the partition function.

This is mainly because the partition function of a system contains information about almost all ther-

5
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modynamic properties of it, such as the free energy, heat capacity and entropy. A good introduction to

statistical mechanics and the partition function can be found in An Introduction to Thermal Physics

by D. V. Schroeder [15].

The expression of the partition function differs a bit depending on what kind of system is studied. One

type of system that shows up a lot is the so called canonical ensemble. A system can be approximated

as a canonical ensemble if it contains a constant number of particles, has a constant volume and is in

thermal contact with an environment at fixed temperature. An example of systems for which these

are almost always fair assumptions are crystals, which we are going to discuss in this thesis. For a

canonical ensemble, the partition function Z is given by

Z =
∑
s

e−Es/(kBT ) =
∑
s

e−βEs , (2.1)

where kB denotes Boltzmann’s constant, T the temperature of the environment, s labels the different

states the system can occupy and Es is the energy of the corresponding state. We have also introduced

the quantity β = 1/(kBT ).

Perhaps the most important formula in all of statistical mechanics is

P (s) =
1

Z
e−βEs (2.2)

which gives the probability of finding a system in a particular state s [15]. Another important use of

the partition function is to calculate the Helmholtz free energy defined as F = U − TS where U is the

total energy of the system and S is the entropy. The formula is

F = −kBT lnZ. (2.3)

This is important because of the simple connections between F and other interesting thermodynamic

properties such as the entropy S, the pressure P and the chemical potential µ, in accordance with

S = −
(
∂F

∂T

)
V,N

, P = −
(
∂F

∂V

)
T,N

, µ = −
(
∂F

∂N

)
T,V

(2.4)

where V is the volume of the system, N is the number of particles and T is the temperature.

Now study two systems with partition functions Z1 and Z2 and sets of states {s1} and {s2} respectively.

The partition function of the combined system is then

Z =
∑
s1

∑
s2

e−β(Es1+Es2 ) =
∑
s1

e−βEs1
∑
s2

e−βEs2 = Z1Z2. (2.5)

As we can see, the combined partition function is simply the product of the partition functions of its

constituent systems.

The factor e−βEs is often referred to as the Boltzmann weight of a state s. The Boltzmann weights

are often simply denoted ws. Using this notation the partition function can be rewritten as

Z =
∑
s

ws. (2.6)
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2.2 The Six-Vertex Model

The six-vertex model is a model that is used to study certain crystals containing hydrogen bonds. The

most common example is ice, but it is also used to study ferroelectric materials such as KH2PO4 [7].

In this thesis, the six-vertex model in two dimensions will be studied. The six-vertex model can be

used in three dimensions as well, but then it is only exactly solvable in very special cases [7]. Exactly

solvable here meaning that the partition function of the system can be found analytically.

In the two-dimensional six-vertex model of ice the oxygen atoms are often thought to form a square

lattice – the model is for this reason sometimes called square ice. It is well known that each oxygen

atom binds to two hydrogen atoms covalently. In the six-vertex model, it is assumed that the angle

between these two bonds is either 90 ◦ or 180 ◦. Since oxygen has a considerably higher electronegativity

than hydrogen, the electrons that are shared between the O- and H-atoms in a covalent bond will be

attracted more by the O-atom than by the H-atom. As a consequence they will be located closer to the

oxygen atom than to the hydrogen atom, which means the O-atom has a slightly more negative charge

than the H-atom. Because of this, the edges of the O-atoms that do not bond covalently to an H-atom

will bond to an H-atom in another molecule via a so called hydrogen bond (a type of dipole-dipole

bond). Since the lattice is square, these bonds too must have the bonding angle 90 ◦ or 180 ◦.

We now understand how a two-dimensional ice crystal may look according to the six-vertex model.

An example can be found in figure 2.1(a).

(a) (b) (c)

Figure 2.1: An example of a possible state for an ice crystal in the two-dimensional six-vertex model. The

state is illustrated with three different denotations. (a) shows the orientation of the H2O-molecules. (b) shows

the orientations of the dipoles. The arrows are pointing towards the positive charge. (c) shows a model where

an arrow pointing down or to the right in figure (b) corresponds to a positive spin and an arrow pointing up

or to the left corresponds to a negative spin.

We will now introduce two other denotations of an ice crystal in the six-vertex model. First, we

mark the four hydrogen bonds surrounding each oxygen atom as an arrow from the negative to the

positive charge. The crystal in the example above will then look like figure 2.1(b). Note that at each

vertex there must be two arrows pointing in and two pointing out. This rule is known as the ice rule

and is a consequence of each O-atom bonding two H-atoms covalently (which yields inward-pointing

arrows) and two with hydrogen bonds (outward-pointing arrows). Simple combinatorics shows that
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this can be done in six different ways (all of which are represented in figure 2.1(b)), hence the name

six-vertex model. We now introduce the third denotation by letting arrows pointing down or to the

right correspond to a plus sign, and letting arrows pointing up or to the left correspond to a minus

sign. The plus and minus signs can be said to correlate with spin [9]. In this notation, the crystal in

our example will look like figure 2.1(c)1. The six possible vertex configurations are illustrated in the

lattermost notation in figure 2.2.

Figure 2.2: The six possible vertex configurations in the six-vertex model.

Let us now comment on the approximations that are made when using the two-dimensional six-vertex

model to model ice crystals. The most crucial approximations are effectively two. The first one is

made when studying a plane of the ice crystal. The molecules in an ice crystal are not arranged in

distinct planes as, for example, the atoms in graphite are. In reality, each molecule has a different

orientation than all its neighbours. The second approximation is made when it is assumed that the

bonding angle between the two hydrogen bonds is either 90 ◦ or 180 ◦. In reality, this bonding angle is

always 109 ◦ [17]. These approximations may at first sight seem rough, but the six-vertex model has

proven to constitute a realistic model of ice in numerous applications [7]. One explanation of this is

that the real bonding angle 109 ◦ lies in between 90 ◦ and 180 ◦, so when we construct a large lattice

using the six-vertex model the mean bonding angle will usually not be far from the value for real

ice.

One may also question the treatment of the edges of the crystal in figure 2.1. Is it really fair to assume

that the eight oxygen atoms at the edges all bond to four hydrogen atoms? Since this indicates that

there are H-atoms bonding to O-atoms with hydrogen bonds, without bonding covalently to another

O-atom, it is of course not a fully correct model. Nevertheless it is often a fair approximation since

the crystals we are going to work with almost always are much larger than the one in figure 2.1. Then,

the influence of the edge vertices on the total weight of the state will be negligible, and we can treat

the crystals as we did above. Furthermore, one can question whether we can choose every arrow at

the edges independently of all others. The answer is generally no, but the boundary conditions are

not always the same. They differ strongly depending on both which crystal one is studying and under

which outer conditions, e.g. applied electric or magnetic fields [7]. We will not discuss the boundary

conditions deeper for a general crystal, but they will turn out to be very strict and important for the

more specific case of the six-vertex model that will be discussed in the following sections.

1This notation with plus and minus signs is taken from articles by Brubaker et al. [9, 10, 16]. The remaining figures

in this chapter are to a varying extent inspired by figures from these articles.
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2.2.1 The Field-Free Case

We now want to associate an energy to each of the vertex configurations in figure 2.2. These energies

are of course determined by the bonding energies. It seems highly probable that under normal circum-

stances all vertices with a certain configuration have the same energy. This is also the case [7]. In this

context, “normal circumstances” usually means that no external electric field is applied to the crystal.

We define the energy of vertex i = 1, 2, ..., 6 from the left in figure 2.2 as εi. Earlier studies show that,

for ice, all vertex energies are equal [7], i.e.

ε1 = ε2 = ... = ε6. (2.7)

This seems logical due to the symmetries of the possible vertex configurations, see figure 2.1. For

ferroelectric materials such as KH2PO4, the relation of the vertex energies is instead

ε3 = ε4 = ε5 = ε6 > ε1 = ε2. (2.8)

Note that the vertices in figure 2.2 are pairwise symmetrical under the exchange of the plus and minus

signs. Vertex configuration 1 is symmetric with vertex 2, vertex 3 with vertex 4 and vertex 5 with

vertex 6. This fact indicates that, presuming no external electrical field is applied to the crystal, the

vertex energies must satisfy the relations

ε1 = ε2, ε3 = ε4, ε5 = ε6. (2.9)

Observe that this condition is satisfied by the weights of ice in equation (2.7), as well as the weights

of the ferroelectric materials in equation (2.8).

It is natural to assign a Boltzmann weight, wi = e−βεi , to each of the possible vertex configurations.

The total energy of a crystal consisting of ni vertices of type i (for i = 1, 2, ..., 6) is of course

ε =

6∑
i=1

niεi. (2.10)

From this we can conclude that the weight of a state with the energy ε as above must be

ws = e−βε = e−β(n1ε1+...+n6ε6) = e−βn1ε1 . . . e−βn6ε6 =

6∏
i=1

wnii , (2.11)

i.e. the product of the weights of all vertices. Let us now look at an example.

Example 2.1

Assume we want to calculate the weight of the ice crystal in figure 2.1.

First we need to identify how many vertex configurations of each type this state consists

of. We see that there is one vertex configuration of type 1, i.e. n1 = 1. In the same way

we identify that n2 = 3, n3 = 2, n4 = 1, n5 = 1 and n6 = 1. The weight of the state can

then be calculated using equation (2.11):

ws =

6∏
i=1

wnii =

6∏
i=1

e−βniεi = e−β(ε1+3ε2+2ε3+ε4+ε5+ε6). (2.12)
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Since this is an ice crystal we can use the fact that ε1 = ε2 = ... = ε6 to simplify this

expression. We obtain

ws = e−9βε1 . (2.13)

For a ferroelectric material, with ε3 = ε4 = ε5 = ε6 > ε1 = ε2, we would instead obtain

ws = e−β(4ε1+5ε3). (2.14)

Remark: In the example above, the weight of one state was calculated. We still have not calculated

any partition function, where we sum over all possible states. This is typically done for a given set

of boundary conditions, by first constructing all possible states (with respect to the ice rule), then

calculating their respective weight and finally summing these. This will be done later on, e.g. in

example 2.2 and 2.3.

2.2.2 Row Dependent Weights and Boundary Conditions

One of the stated goals of this thesis is to find the connection between partition functions of crystals

and modular forms. Earlier studies on the subject show that this connection does not exist for all

choices of weights and boundary conditions [9]. One choice of boundary conditions that – with a certain

choice of weights – yields a partition function in the desired form will be presented in definition 2.3.

But in order to understand it, two additional definitions need to be stated.

Definition 2.1: Let λ = (λ1, λ2, ..., λr, λr+1) be a vector with λ1, λ2, ..., λr ∈ Z and λr+1 = 0, where

λj ≥ λj+1 for j = 1, 2, ..., r.

Definition 2.2: The Weyl vector ρ is given by ρ = (r, r − 1, ..., 0).

As we will see in the following definition, the vectors λ and ρ together characterize a lattice with

corresponding boundary conditions. Since ρ is fully determined by λ, solely λ is however sufficient to

characterize the lattice.

Definition 2.3: For a given λ, construct a crystal C(λ) as follows:

(i) Let the crystal have λ1 + r + 1 columns labelled 0 to λ1 + r from right to left.

(ii) Let the crystal have r + 1 rows labelled 1 to r + 1 from top to bottom.

(iii) Place a minus sign at the right and a plus sign at the left of each row.

(iv) Place a plus sign at the bottom of each column.

(v) Place a minus sign at the top of each column numbered by an element in the vector λ+ ρ.

(vi) Place a plus sign at the top of the remaining columns.

The set of all possible states for a given vector λ is often denoted Sλ. The partition function corres-

ponding to a particular vector λ can be found by first identifying all possible states (i.e. the states
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in Sλ), then calculating the weight of each of these states and finally summing the weights. To do

this concretely we need the weights of the six possible vertices in the six-vertex model, wi. From now

on – in order to obtain partition functions in the desired form – we will work with vertex weights

which depend on the row of the vertex. The physical interpretation of this is that there must be an

external electric field applied to the crystal. Otherwise, all vertices of the same type would contribute

the same weight, independently of their position in the crystal [7]. To be rigorous, this argument only

holds under the fair assumption that the whole crystal has constant temperature, since the Boltzmann

weights are temperature dependent. The denotation of the different vertex weights is presented in

table 2.1.

Table 2.1: The possible vertex configurations in the six-vertex model. i denotes the row number of the vertex,

on which the Boltzmann weights may depend.

Ice

configuration

Boltzmann

weight
a

(i)
1 a

(i)
2 b

(i)
1 b

(i)
2 c

(i)
1 c

(i)
2

2.2.3 Two Basic Examples of Partition Functions

Now, let us take a look at a pair of basic examples on how to calculate the partition function that is

yielded for crystal configurations with some given vector λ.

Example 2.2

Assume we want to calculate the partition function of the crystal constructed by the

vector λ = (0, 0).

Insertion of λ = (0, 0) into definition 2.3 yields that all possible states must satisfy the

boundary conditions in figure 2.3.

Figure 2.3: The boundary conditions for λ = (0, 0).

Now we study the allowed vertex configurations according to the ice rule (see table 2.1)

and realize that there are two possible ways of completing this pattern. We call these

states x1 and x2 in accordance with figure 2.4.
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Figure 2.4: The two possible states for λ = (0, 0).

By studying the four vertices in each of these states we can now write down the weight

of the respective state as

w(x1) = b
(1)
1 c

(1)
2 c

(2)
2 b

(2)
2

w(x2) = c
(1)
2 a

(1)
2 a

(2)
1 c

(2)
2 ,

(2.15)

where the notation from table 2.1 has been used. The partition function is found by

summing these weights, which yields

Z(Sλ) = c
(1)
2 c

(2)
2

(
a

(2)
1 a

(1)
2 + b

(1)
1 b

(2)
2

)
. (2.16)

Let us now do the same calculation for a slightly larger lattice. We do this mainly because these two

examples will prove to differ, in a crucial way, when the connection to modular forms is studied.

Example 2.3

We now want to determine the partition function for the crystal yielded from the vector

λ = (1, 0).

First note that r = 1, in accordance with definition 2.1. After enforcing the boundary

conditions in definition 2.3 one arrives at the configuration in figure 2.5.

Figure 2.5: The boundary conditions for λ = (1, 0).

Very simple combinatorics then shows that there are three possible states satisfying the

ice rule, x1, x2 and x3, which can be seen in figure 2.6.
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Figure 2.6: The three possible states for λ = (1, 0).

We can now easily calculate the weight for each of these states. This yields

w(x1) = b
(1)
1 a

(1)
1 c

(1)
2 · c

(2)
2

(
b
(2)
2

)2
w(x2) = c

(1)
2 b

(1)
2 a

(1)
2 ·

(
a

(2)
1

)2
c
(2)
2

w(x3) =
(
c
(1)
2

)2
c
(1)
1 · a

(2)
1 c

(2)
2 b

(2)
2 .

(2.17)

The partition function is simply the sum of these weights, i.e.

Z(Sλ) =

3∑
i=1

w(xi) = c
(1)
2 c

(2)
2

(
a

(1)
1 b

(1)
1

(
b
(2)
2

)2
+ a

(1)
2 b

(1)
2

(
a

(2)
1

)2
+ c

(1)
1 c

(1)
2 a

(2)
1 b

(2)
2

)
. (2.18)

An example for an even larger lattice – with λ = (2, 1, 0) – can be found in appendix B.

2.3 The Connection to Schur Polynomials

In the preceding section, we learned how to calculate the partition function of a crystal configuration for

a given vector λ. One of the goals of this report is to find the relation between these partition functions

and modular forms. In order to do this, some constraints on the Boltzmann weights a
(i)
1 , a

(i)
2 ..., c

(i)
2 need

to be introduced. This will soon be done. But since the connection between the partition functions

and modular forms will be constituted by the so called Schur polynomials, we will begin by introducing

these.

Definition 2.4: The Schur polynomial sλ(x1, x2, ..., xn) corresponding to λ = (λ1, λ2, ..., λn) is

defined as

sλ(x1, x2, ..., xn) =
a(λ1+n−1,λ2+n−2,...,λn)(x1, x2, ..., xn)

a(n−1,n−2,...,0)(x1, x2, ..., xn)
, (2.19)

where

au(x1, x2, ..., xn) = det


xu1

1 xu1
2 ... xu1

n

xu2
1 xu2

2 ... xu2
n

...
...

. . .
...

xun1 xun2 ... xunn

 . (2.20)

for the vector u = (u1, u2, ..., un).
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Let us look at an example that will prove to be very useful later on.

Example 2.4

We claim that for λ = (k, 0) the corresponding Schur polynomial is

s(k,0)(x1, x2) = xk1 + xk−1
1 x2 + ...+ x1x

k−1
2 + xk2 =

k∑
i=0

xi1x
k−i
2 . (2.21)

From the definition of Schur polynomials we have

s(k,0)(x1, x2) =

∣∣∣∣∣xk+1
1 xk+1

2

1 1

∣∣∣∣∣∣∣∣∣∣x1
1 x1

2

1 1

∣∣∣∣∣
=
xk+1

1 − xk+1
2

x1 − x2
(2.22)

To show (2.21) we will use a proof of induction. Begin with the case k = 0, then

s(0,0)(x1, x2) =

∣∣∣∣∣x1 x2

1 1

∣∣∣∣∣∣∣∣∣∣x1 x2

1 1

∣∣∣∣∣
= 1 = x0

1x
0
2. (2.23)

So, equation (2.21) is satisfied for k = 0. Now assume that equation (2.21) holds for some

general value of k. Then

s(k+1,0)(x1, x2) =

∣∣∣∣∣xk+2
1 xk+2

2

1 1

∣∣∣∣∣∣∣∣∣∣x1
1 x1

2

1 1

∣∣∣∣∣
=
xk+2

1 − xk+2
2

x1
1 − x1

2

= xk+1
1 + x2

xk+1
1 − xk+1

2

x1 − x2
=

= xk+1
1 + x2

k∑
i=0

xi1x
k−i
2 =

k+1∑
i=0

xi1x
k+1−i
2 ,

(2.24)

which by induction shows that (2.21) holds for all values of k.

We will now introduce a different way to write a Schur polynomial that we will find useful later. First

use Leibniz formula for determinants which states that for a matrix A of dimension n

det(A) =
∑
σ∈SN

sgn(σ)

n∑
i=1

Aσ(i),i. (2.25)

Apply this to the numerator in the definition of the Schur polynomials. The elements of the matrix

can be written as xλi+n−ij , why

aλ1+n−1,λ2+n−2,...,λn(x1, x2, ..., xn) =
∑
σ∈SN

sgn(σ)

n∑
i=1

x
λσ(i)+n−σ(i)
i . (2.26)
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The denominator in the definition of the Schur polynomials is known as the Vandermonde determinant

and can be written as

an−1,n−2,...,0(x1, x2, ..., xn) =
∏
i<j

(xi − xj). (2.27)

The proof of this is rather simple but will not be written here. It can for example be found at [18].

Combining these two results we get the following lemma:

Lemma 2.1: Any Schur polynomial sλ(x1, x2, ..., xn) can be written in the form

sλ(x1, x2, ..., xn) =
∑
σ∈SN

sgn(σ)

n∑
i=1

x
λσ(i)+n−σ(i)
i

∏
i<j

(xi − xj)

−1

. (2.28)

With this alternative way of writing a Schur polynomial, a theorem on how the Boltzmann weights

should be chosen to obtain partition functions including a Schur polynomial may be stated and

proven.

Theorem 2.1: For a given λ, let Sλ denote the set of possible states according to definition 2.3 and

suppose that the Boltzmann weights of the vertices satisfy the so called free fermion condition

a
(i)
1 a

(i)
2 + b

(i)
1 b

(i)
2 = c

(i)
1 c

(i)
2 (2.29)

for all values of i. Then the partition function is given by

Z(Sλ) =

[
r+1∏
k=1

(
a

(k)
1

)λ1
c
(k)
2

∏
i<j

(
a

(j)
1 a

(i)
2 + b

(i)
1 b

(j)
2

)]
sλ

(
b
(1)
2

a
(1)
1

,
b
(2)
2

a
(2)
1

, ...,
b
(r+1)
2

a
(r+1)
1

)
, (2.30)

where sλ is the Schur polynomial corresponding to λ.

A proof of theorem 2.1 can be found in section 2.3.2.

One may wonder why it was necessary to introduce the free fermion condition in equation (2.29). In

the physical interpretation, this condition is important to guarantee exact solvability even in presence

of an external field [19]. This is absolutely necessary now that we are working with row-dependent

weights. The free fermion condition is also important in order for the connection to modular forms to

appear [8, 20]. The essence of the free fermion condition is that it is only satisfied by systems in which

there is no overlap between the wavefunctions of the fermions. Such fermions are called free, hence the

name of the condition [21]. For these systems, many quantum effects may be neglected, which makes

them exactly solvable [21, 22]. For an ice crystal it is mainly the electrons of the hydrogen and oxygen

atoms that need to be free. This may seem odd, since overlap of the wave functions of the electrons is

necessary in order for a covalent bond to arise [23]. For reasons well beyond the scope of this report,

this approximation is, however, often acceptable in the six-vertex model [24].

So what weights should be chosen to be more specific than the free fermion condition? A common

choice of weights is the following:

a
(i)
1 = 1, a

(i)
2 = zi, b

(i)
1 = ti, b

(i)
2 = zi, c

(i)
1 = zi(ti + 1), c

(i)
2 = 1. (2.31)
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Note that these weights satisfy the free fermion condition in equation (2.29). Theorem 2.1 then states

that for this choice of weights, the partition function can be written as

Z(Sλ) =
∏
i<j

(tizj + zi)sλ(z1, z2, ..., zr+1). (2.32)

There is not a physical interpretation of this particular choice of weights yet. Theoretically, one could

choose any set of weights that satisfies the free fermion condition. However, the set of weights given in

equation (2.31) has proven to imply especially interesting results, with deep connections to intriguing

areas in mathematics such as modular forms [8, 9]. This can be said to be a field where the mathematics

anticipate the physical interpretation.

In order to fully understand the connection to modular forms we will need some mathematical back-

ground that is presented in chapter 3 and 4. An explicit investigation of the relation between crystals

and modular forms is then carried out in chapter 5.

2.3.1 The Examples λ = (0, 0) and λ = (1, 0) Revisited

It is now interesting to confirm that theorem 2.1 is fulfilled by the partition functions we calculated in

example 2.2 and 2.3, for λ = (0, 0) and λ = (1, 0) respectively.

Example 2.5

For λ = (0, 0) we obtained the partition function

Z(Sλ) = c
(1)
2 c

(2)
2

(
a

(2)
1 a

(1)
2 + b

(1)
1 b

(2)
2

)
. (2.33)

We now want to show that, provided that the Boltzmann weights satisfy the free fermion

condition, this can be written in the form of equation (2.30) in theorem 2.1.

From the definition of λ, given in definition 2.1, it is obvious that λ = (0, 0) has λ1 =

λ0 = 0 and r = 1. Inserting this into equation (2.30) yields

Z(Sλ) =

[
2∏
k=1

c
(k)
2

∏
i<j

(
a

(j)
1 a

(i)
2 + b

(i)
1 b

(j)
2

)]
s(0,0)

(
b
(1)
2

a
(1)
1

,
b
(2)
2

a
(2)
1

)

= c
(1)
2 c

(2)
2

(
a

(2)
1 a

(1)
2 + b

(1)
1 b

(2)
2

)
s(0,0)

(
b
(1)
2

a
(1)
1

,
b
(2)
2

a
(2)
1

)
. (2.34)

Using definition 2.4 of the Schur polynomials we can rewrite the Schur polynomial in this

expression as

s(0,0)

(
b
(1)
2

a
(1)
1

,
b
(2)
2

a
(2)
1

)
=

∣∣∣∣∣b
(1)
2 /a(1)1

b
(2)
2 /a(2)1

1 1

∣∣∣∣∣∣∣∣∣∣b
(1)
2 /a(1)1

b
(2)
2 /a(2)1

1 1

∣∣∣∣∣
= 1. (2.35)

So, for λ = (0, 0), equation (2.30) in theorem 2.1 can be rewritten in the form

Z(Sλ) = c
(1)
2 c

(2)
2

(
a

(2)
1 a

(1)
2 + b

(1)
1 b

(2)
2

)
. (2.36)
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Since this is the exact same partition function as the one in equation (2.33), which was the

result from example 2.2, we can conclude that theorem 2.1 really is valid for λ = (0, 0).

We can also confirm that equation (2.32) is fulfilled if we insert the set of weights from

equation (2.31). Insertion of these weights into equation (2.34) yields

Z(Sλ) = (t1z2 + z1)s(0,0)(z1, z2), (2.37)

which can easily be seen to satisfy equation (2.32) with r = 1. However, since we showed

in equation (2.35) that the Schur polynomial

s(0,0)

(
b
(1)
2

a
(1)
1

,
b
(2)
2

a
(2)
1

)
= 1, (2.38)

independently of the choice of weights, this is preferably rewritten as

Z(Sλ) = t1z2 + z1. (2.39)

Remark: In this example, theorem 2.1 was fulfilled independently of the choice of weights. Thus,

we did not have to use the free fermion condition. This is a consequence of the Schur polynomial

being independent of the weights (we had s(0,0) = 1). As we have mentioned before, the free fermion

condition is necessary in order for the connection to modular forms to appear. And since this connection

is constituted by the Schur polynomials, no weight dependence for the Schur polynomials means that

the connection appears independently of the choice of weights. Thus, the free fermion condition is not

necessary. However, in the following example for λ = (1, 0) and other more complex examples, the free

fermion condition is crucial.

Example 2.6

For λ = (1, 0) we obtained the partition function

Z(Sλ) = c
(1)
2 c

(2)
2

(
a

(1)
1 b

(1)
1

(
b
(2)
2

)2
+ a

(1)
2 b

(1)
2

(
a

(2)
1

)2
+ c

(1)
1 c

(1)
2 a

(2)
1 b

(2)
2

)
. (2.40)

To show that this expression can be written in the form of equation (2.30) in theorem 2.1,

provided that the weights satisfy the free fermion condition, we note that λ = (1, 0) has

r = 1 and λ1 = 1. Insertion of this into equation (2.30) yields

Z(Sλ) = a
(1)
1 c

(1)
2 a

(2)
1 c

(2)
2

(
a

(2)
1 a

(1)
2 + b

(1)
1 b

(2)
2

)
s(1,0)

(
b
(1)
2

a
(1)
1

,
b
(2)
2

a
(2)
1

)
. (2.41)

Now we use the definition of the Schur polynomials to evaluate the Schur polynomial in

this expression. We obtain

s(1,0)

(
b
(1)
2

a
(1)
1

,
b
(2)
2

a
(2)
1

)
=

∣∣∣∣∣(b
(1)
2 /a(1)1 )2 (b

(2)
2 /a(2)1 )2

1 1

∣∣∣∣∣∣∣∣∣∣b
(1)
2 /a(1)1

b
(2)
2 /a(2)1

1 1

∣∣∣∣∣
=
a

(2)
1 b

(1)
2 + a

(1)
1 b

(2)
2

a
(1)
1 a

(2)
1

, (2.42)
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after some simple algebra. Insertion of this result into equation (2.41) yields

Z(Sλ) = c
(1)
2 c

(2)
2

(
a

(2)
1 a

(1)
2 + b

(1)
1 b

(2)
2

)(
a

(2)
1 b

(1)
2 + a

(1)
1 b

(2)
2

)
. (2.43)

This expression is not the same as the one in equation (2.40), which depends on that we

still have not used the free fermion condition. This condition tells us that all weights

must satisfy a
(i)
1 a

(i)
2 + b

(i)
1 b

(i)
2 = c

(i)
1 c

(i)
2 . Applying this on the product c

(1)
1 c

(1)
2 in the last

term in equation (2.40) tells us that equation (2.40) can be rewritten as

Z(Sλ) = c
(1)
2 c

(2)
2

(
a

(1)
1 b

(1)
1

(
b
(2)
2

)2
+ a

(1)
2 b

(1)
2

(
a

(2)
1

)2
+ a

(1)
1 a

(1)
2 a

(2)
1 b

(2)
2 + b

(1)
1 b

(1)
2 a

(2)
1 b

(2)
2

)
= c

(1)
2 c

(2)
2

(
a

(2)
1 a

(1)
2 + b

(1)
1 b

(2)
2

)(
a

(2)
1 b

(1)
2 + a

(1)
1 b

(2)
2

)
.

This is the exact same expression as the one in equation (2.43). Thus, we have shown

that the partition function for λ = (1, 0) can be written in the form of equation (2.30) in

theorem 2.1 if and only if the weights satisfy the free fermion condition.

We may also insert the common choice of weights given in equation (2.31), either directly

into equation (2.43) obtaining

Z(Sλ) = t1z
2
2 + z2

1 + z1z2(t1 + 1) = (t1z2 + z1)(z1 + z2), (2.44)

or into the more general formula given in equation (2.32) obtaining

Z(Sλ) = (t1z2 + z1)s(1,0)(z1, z2). (2.45)

These expressions are of course equal, since we have shown that equality for general

weights satisfying the free fermion condition above.

Remark: In both of the examples in this section we were able to work exclusively with arbitrary

weights satisfying the free fermion condition. Thus, one can question why it was necessary to introduce

the set of weights in equation (2.31). One reason has already been mentioned; it will make the

connection to modular forms more clear. Another reason is that the simplifications that this choice

entails, e.g. equation (2.30) simplifies to (2.32), is crucial when handling more complex systems. This

becomes obvious for the case λ = (2, 1, 0) which can be found in appendix B.

2.3.2 A Proof of Theorem 2.1

Before actually proving theorem 2.1 we need to introduce some identities, lemmas and corollaries that

will be used in the proof.

First we introduce the star-triangle identity which is the following identity between partition func-
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tions:

Z


R

S

T

τ

σ

β

α

θ

ρ


= Z


R

S

T

τ

σ

β

α

θ

ρ


(2.46)

where τ , σ, β, θ, ρ and α are fixed boundary conditions with values + or −. R, S and T can be viewed

as sets from which the weights of the corresponding vertex is chosen. S and T could for example

denote different rows. In this identity we have allowed a new set of configurations that are rotated

in regards to the other configurations. These new configuration will soon prove useful in the proof of

theorem 2.1.

The star-triangle identity is also known as the Yang-Baxter equation. This equation is very important

in many different fields of physics and mathematics. Some of these are quantum field theory, quantum

groups and C*-algebras [25]. Equation (2.46) is rewritten in a form more easily recognizable as the

Yang-Baxter equation in appendix A.

The identity does not hold for an arbitrary choice of weights, however in Schur Polynomials and the

Yang-Baxter Equation by Ben Brubaker, Daniel Bump and Solomon Friedberg [8] conditions are given

for S and T such that an R can be found so the identity is correct. We are satisfied by stating that

given weights S from row i and T from row j the identity holds for the set of weights R given in table

2.2. This is also shown in appendix A

Table 2.2: A set of weights for which the star-triangle identity hold.

j i

i j

+ +

+ +

a
(i)
1 a

(j)
2 + b

(j)
1 b

(i)
2

j i

i j

− −

− −

a
(j)
1 a

(i)
2 + b

(i)
1 b

(j)
2

j i

i j

− +

+ −

a
(i)
2 b

(j)
1 + a

(j)
2 b

(i)
1

j i

i j

+ −

− +

a
(j)
1 b

(i)
2 + a

(i)
1 b

(j)
2

j i

i j

+ +

− −

c
(i)
1 c

(j)
2

j i

i j

− −

+ +

c
(j)
1 c

(i)
2

Lemma 2.2: The expression

(a
(i)
1 a

(i+1)
2 + b

(i+1)
1 b

(i)
2 )Z(Sλ) (2.47)

is symmetric with regards to exchanging i and i+ 1.

Proof: Study a lattice as before but with slightly modified boundary conditions. Connect row i and

i+ 1 on the left side with a tilted vertex with weights chosen as above. Let the two leftmost edges of

this vertex have spin +. The only allowed configurations of this vertex is then with both right-hand

spin being + as well. An example can be seen below in a lattice defined by λ = (3, 1, 0) with a extra

vertex connecting rows i = 2 and j = 3
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3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

+

+

+

+ + + + + +

+ + + + + +

−

−

−
− − −

This lattice now has a partition function given by equation (2.47). Now apply the star triangle identity

and we get the following lattice:

1 1 1 1 1 1

2

3

2

3

2

3

2

3

2

32

3

+

+

+

+ + + + + +

+ + + + + +

−

−

−
− − −

This lattice has the same partition function as before. Repeat the star-triangle identity until the di-

agonal vertex reaches the right edge. We then have the following system:

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

−

−

+

+

+

+ + + + + +

+ + + + + +

−
− − −

The only allowed configuration of the diagonal vertex is now with all surrounding spins equal to −.

Notice that this configuration have the same weight as the one with all spins being + but with i and

j switched. Also notice how the row numbers of i and j have switched. Since the partition function is

still unchanged we have now shown the lemma. �

Corollary 2.1: The expression ∏
i<j

(a
(i)
1 a

(j)
2 + b

(j)
1 b

(i)
2 )Z(Sλ) (2.48)

is symmetric with regards to any pair of spectral parameters k and l.

Proof: Apply lemma 2.2 multiple times. �

Lemma 2.3: Study just one row of a lattice. Let the left edge have positive spin. Denote by m the

number of negative spins on the upper edge and m′ the number of negative spins on the lower edge.
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If the right edge has positive spin then m′ = m and if it has negative spin then m′ = m− 1

Proof: Since we are only working with one row we can neglect writing out the index specifying the

row. We try to fill the row from the left side. We are interested in the difference between the number

of negative spins on the upper and lower edge. By adding a weight c1 we change the rightmost spin

from negative to positive and by adding a weight c2 we change it from positive to negative. For each

c1 we add one negative spin to the lower edge and for each c2 we add one negative spin to the upper

edge. None of the other weights change the rightmost spin nor do they change the difference between

the number of negative spins between the upper and lower edge. We know that the leftmost edge has

positive spin. If the number of c1 is equal to the number of c2 the row must end with a positive spin

and there is the same amount of negative spins on the lower and upper edge. If we have one more of c2

than c1 the row must end with a negative spin and we have one more negative spin on the upper edge. �

With these results formulated and proven, we are now ready to prove the important theorem 2.1.

Proof of theorem 2.1: Begin by using the free fermion condition in equation (2.29) to make the

substitution c
(i)
1 = (a

(i)
1 a

(i)
2 + b

(i)
1 b

(i)
2 )/c

(i)
2 . The resulting partition function is then independent of

c
(i)
1 and we may thus take it to be 0. This makes it so that the only states we need to consider in

the calculation of the partition function are the ones that do not contain the vertex configuration

corresponding to c
(i)
1 .

With the choice of boundary conditions according to lemma 2.3 and that we do not need to look at the

states with a configuration c
(i)
1 we understand that each row has exactly one vertex with configuration

c
(i)
2 . This means that each term of Z(Sλ) contains the factor

r+1∏
i=1

c
(i)
2 . (2.49)

We find this exact factor in the formula we wish to show. For simplicity we let c
(i)
2 = 1 for the rest of

the proof.

An identity we soon will find useful is the following:

∏
i<j

(a
(j)
1 a

(i)
2 + b

(i)
1 b

(j)
2 ) =

∏
i<j

a
(j)
1 b

(i)
1

(
b
(j)
2

a
(j)
1

− b
(i)
2

a
(i)
1

)
=

r+1∏
i=1

(a
(j)
1 )i−1(b

(i)
1 )r+1−i

∏
i<j

(
b
(j)
2

a
(j)
1

− b
(i)
2

a
(i)
1

)
(2.50)

where we in the first equality have used the free fermion condition.

We now have Z(Sλ) as a function of a
(i)
1 , a

(i)
2 , b

(i)
1 and b

(i)
2 . Using that each row contains exactly one

vertex with configuration c
(i)
2 we conclude that all but one of the minus spins on the upper edge of the

row i are from vertices with the configurations a
(i)
2 or b

(i)
1 . From the boundary conditions we know

that on the top boundary the number of minus spins is r + 1 . Using lemma 2.3 we conclude that in

row i there are r + 1− i number of vertices with configuration a
(i)
2 or b

(i)
1 .

Now take Z(Sλ) and make the substitution a
(i)
2 = −b(i)1 zi. Call the resulting function NSλ . Note

that Z(Sλ) = NSλ so each term of NSλ still corresponds to a specific state. In each term of NSλ the
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power of b
(i)
1 is now equal to r + 1− i. We may write

NSλ = N ′Sλ

r+1∏
i=1

(b
(i)
1 )r+1−i (2.51)

where N ′Sλ is a polynomial in the variables a
(i)
1 , b

(i)
2 and zi.

We know that the total number of columns is λ1 + r + 1. Using what we know of the number of

configurations a
(i)
2 , b

(i)
1 , c

(i)
1 and c

(i)
2 we conclude that the total number of vertices a

(i)
1 and b

(i)
2 in each

row is equal to λ1 + r + 1− 1− (r + 1− i) = λ1 + i− 1. Write

N ′Sλ = N ′′Sλ

r+1∏
i=1

(a
(i)
1 )λ1+i−1 (2.52)

where N ′′Sλ is a polynomial in the variables b
(i)
2 /a

(i)
1 and zi.

From our condition with ci1 = 0 we know that

a
(i)
2

b
(i)
1

= − b
(i)
2

a
(i)
1

= −zi. (2.53)

Using this we know that N ′′Sλ is a polynomial only in the variable zi.

Putting this together we have

Z(Sλ) = N ′Sλ

r+1∏
i=1

(b
(i)
1 )r+1−i = N ′′Sλ

r+1∏
i=1

(b
(i))r+1−i

1 (a
(i)
1 )λ1+i−1

= N ′′Sλ

r+1∏
i=1

(a
(i)
1 )λ1

∏
i<j

(a
(j)
1 a

(i)
2 + b

(i)
1 b

(j)
2 )

∏
i<j

(zj − zi)

−1

.

(2.54)

Then, rewrite this as

∏
i<j

(a
(i)
1 a

(j)
2 + b

(j)
1 b

(i)
2 )Z(Sλ) = N ′′Sλ

r+1∏
i=1

(a
(i)
1 )λ1

∏
i 6=j

(a
(j)
1 a

(i)
2 + b

(i)
1 b

(j)
2 )

∏
i<j

(zj − zi)

−1

. (2.55)

By lemma 2.2 the left hand side is symmetric with regard to the spectral parameters. Since the

denominator of the right hand side is antisymmetric and the other explicit terms are symmetric we

conclude that N ′′Sλ is antisymmetric.

The power of zi in a term of N ′′Sλ is equal to the sum of the power of a
(i)
2 and b

(i)
2 in the corresponding

term of Z(Sλ). As we recently stated, in each row there is exactly one vertex configuration c
(i)
2 . By

looking at the left and right spin of the admissible states we can conclude that all vertices left of c
(i)
1

have state a
(i)
1 or b

(i)
1 . Similarly we conclude that all vertices right of c

(i)
1 have state a

(i)
2 or b

(i)
2 . If we

know the positions of the weights c
(i)
1 in each row for a specific state we therefore know the power of

zi in the corresponding term in N ′′Sλ .

Since c
(i)
1 = 0, all negative spins for a state of a lattice must be in columns that stretch from the top

of the lattice and end in a vertex configuration c
(i)
2 . From the boundary conditions the indices of these
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Figure 2.7: A state of the lattice corresponding to λ = (3, 2, 0). The state corresponds to σ(i) = i

columns must be from the vector li = λi + ρi with 1 ≤ i ≤ r+ 1. That means that the column indices

of the c
(i)
2 -configurations can be written as lσ(i) where σ is a permutation in the symmetric group,

σ ∈ Sr+1. From σ we know all the positions of negative spins in columns for a specific state. This is

enough information to uniquely fill the rest of the spins in the lattice. In other words there exists a

bijection between σ and states of the lattice.

Using this we can write each term of N ′′Sλ as

±
r∏
i=0

z
lσ(i)
i . (2.56)

Since we know that N ′′Sλ is antisymmetric with regard to the spectral parameters we can write it

as

N ′′Sλ = ±
∑

σ∈Sr+1

sgn(σ)

r∏
i=0

z
lσ(i)
i . (2.57)

We now need to determine the remaining overall sign. To do this it is enough to determine the sign of

just one state. From how the partition function is defined we conclude that all terms in Z(Sλ) have

sign +. By looking at how N ′′Sλ is defined from Z(Sλ) we can see that a term changes sign once for

each configuration a
(i)
2 the state contains. Now study a state corresponding to σ(i) = i. For this σ we

have sgn(σ) = 1. An example of such a state with λ = (3, 2, 0) can be seen in figure 2.7.

Note how every column indexed by l only has spin + in the bottom part and only spin − in the upper

part with a configuration c
(i)
2 in between. All other columns only have spin +. Right of the c

(i)
2 -

configuration there are only spin −. This means that in a certain column where the c
(i)
2 -configuration

is in row i, the number of configurations a
(j)
2 are i− 1. Since there is exactly one c

(i)
2 -configuration in

each row the total number of a
(2)
2 -configurations is

r+1∑
i=1

(i− 1) =
1

2
r(r + 1). (2.58)

Using this we now have

N ′′Sλ = (−1)
1
2 r(r+1)

∑
σ∈Sr+1

sgn(σ)

r∏
i=0

z
lσ(i)
i . (2.59)
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Now study the term

∏
i<j

(zj − zi) =

r+1∏
j=2

j−1∏
i=1

(−1)
∏
i<j

(zi− zj) = (−1)
∑r+1
j=2(j−1)

∏
i<j

(zi− zj) = (−1)
1
2 r(r+1)

∏
i<j

(zi− zj). (2.60)

Combining equation (2.54) with (2.59) and (2.60) yields

Z(Sλ) =

r+1∏
i=1

(a
(i)
1 )λ1

∏
i<j

(a
(j)
1 a

(i)
2 + b

(i)
1 b

(j)
2 )

∏
i<j

(zi − zj)

−1 ∑
σ∈Sr+1

sgn(σ)

r∏
i=0

z
lσ(i)
i . (2.61)

Now apply lemma 2.1 and we get

Z(Sλ) =

r+1∏
i=1

(a
(i)
1 )λ1

∏
i<j

(a
(j)
1 a

(i)
2 + b

(i)
1 b

(j)
2 )s(λ1,λ2,...,λr+1)(z1, z2, ..., zr+1). (2.62)

To obtain the exact same formula as in theorem 2.1, we will use that λ = (λ1, λ2, ..., λr+1) and the

fact that equation (2.53) tells us that zi = b
(i)
2 /a

(i)
i . We also include the factor from equation (2.49)

that we, without loss of generality, neglected throughout the proof by letting c
(i)
2 = 1. Equation (2.62)

may then be rewritten as

Z(Sλ) =

[
r+1∏
i=1

(
a

(i)
1

)λ1
c
(i)
2

∏
i<j

(
a

(j)
1 a

(i)
2 + b

(i)
1 b

(j)
2

)]
sλ

(
b
(1)
2

a
(1)
1

,
b
(2)
2

a
(2)
1

, ...,
b
(r+1)
2

a
(r+1)
1

)
, (2.63)

which is in the exact same form as equation (2.30) in theorem 2.1. �



Chapter 3

Group and Representation

Theory

Group theory is utterly important for many physicists, as groups often represent symmetries of different

sorts in physical theories. Steven Weinberg is a physicist who won the Nobel Prize in Physics in 1979

together with Sheldon Glashow and Abdus Salam “for their contributions to the theory of the unified

weak and electromagnetic interaction between elementary particles, including, inter alia, the prediction

of the weak neutral current.”[26]. He famously said that “The universe is an enormous direct product of

representations of symmetry groups.”[27] which proves how crucial group theory is when using physics

to understand the universe.

This chapter mostly contains the mathematics needed to proceed to chapter 4 and onward. Seeing this

is a mathematics chapter and that the mathematics used is well-recognized, further reading can be

found in textbooks like Groups, Representations and Physics by H F Jones[28] or Mathematical Methods

for Physicists by Arfken, Weber and Harris[29]. The masters thesis Eisenstein Series and Instantons

in String Theory by Henrik Gustafsson [5] has also proven useful for the writing of this chapter. If

something particular stands out, then Wikipedia is a great place to find more information.

3.1 Definitions and Examples

Definition 3.1: A group is the set of objects or operations, called the elements, of G that may be

combined through an operation, ?, to satisfy the following four axioms:

1. Closure - for two elements in G, g and h, there exists a unique element k such that:

g ? h = k ∈ G

2. Associativity - for all elements g, h and k ∈ G, chosen arbitrarily, it follows that:

(g ? h) ? k = g ? (h ? k)

3. Unit element There exists a unique unit element e in G such that

25
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e ? g = g ? e = g, ∀g ∈ G

4. Inverse element Each element g in G has an inverse g−1 ∈ G where it follows that

g ? g−1 = g−1 ? g = e, ∀g ∈ G

It can also be useful to define what a subgroup is, as this will be of avail later.

Definition 3.2: Let H be a subset of G, H ⊆ G. Then it follows for H that:

1. The identity element, e, lies in H.

2. If h1, h2 ∈ H, then h1 ? h2 ∈ H

3. If h ∈ H, then h−1 ∈ H

All of these ramifications are somewhat self-evident as the subgroup H must fulfil the requirements of

a group, in definition 3.1.

Now, to get a better understanding of what a group is, let us have a look at an example.

Example 3.1

When looking at the equilateral triangle below, one can identify a group with six elements

that would leave the triangle unchanged.

bc

a

Figure 3.1: Equilateral triangle with symmetry axes a, b and c.

• The identity, e, leaving the triangle as it is.

• A rotation of 120◦(1/3 of a revolution) around the centre, C1.

• A rotation of 240◦(2/3 of a revolution) around the centre, C2

• An operation in which the triangle is reflected through axis a, Ca

• An operation in which the triangle is reflected through axis b, Cb

• An operation in which the triangle is reflected through axis c, Cc
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The multiplication table of the group is presented in table 3.1 below.

Table 3.1: Table depicting the products of the different elements, the rotations of an equilateral triangle. The

table entry on row a, column b is the product ab, CaCb = C1.

e C1 C2 Ca Cb Cc

e e C1 C2 Ca Cb Cc

C1 C1 C2 e Cc Ca Cb

C2 C2 e C1 Cb Cc Ca

Ca Ca Cb Cc e C1 C2

Cb Cb Cc Ca C2 e C1

Cc Cc Ca Cb C1 C2 e

In this group, the operation ? purports multiplication. Checking the axioms in defini-

tion 3.1:

1. Closure - looking at table 3.1, one clearly sees that no elements multiplied together

make a new element - the group is closed.

2. Associativity - take the example

C1 ? (C2 ? Ca) = C1 ? Cb = Ca = e ? Ca = (C1 ? C2) ? Ca

which applies to any combination of elements. This shows associativity of the group.

3. Identity element - only one element leaves another unchanged, in this example this

is e.

4. Inverse - as seen in Table 3.1 each element has its own, unique, inverse element.

This group is a Dihedral Group, D3 which also, in fact, is isomorphic to the cyclical group S3. Names

for the group elements in other literature include:

S3 = {( ), (1 2 3), (1 3 2), (1 2), (1 3), (2 3)}
D3 = {e, c, c2, b1, b2, b3}

Definition 3.3: A group G is Abelian if g ? h = h ? g, ∀g, h ∈ G.

Remark: The group in example 3.1 is not abelian.

3.2 Lie Theory

In example 3.1, the equilateral triangle served to show what symmetries within geometrical objects are.

The transformations left the object, here triangle, unchanged. Other types of groups reveal symmetries

within a theory. The so-called Lie groups are for example used in particle physics where the combination

of the three Lie groups, SU(3), SU(2), U(1) corresponds to the composition of the Standard Model.
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Other examples include the Poincaré groups which express physical symmetry in special relativity and

the Point groups which are used in chemistry to understand molecular symmetries.

Definition 3.4: A Lie group is an infinitely differentiable topological space that is locally Euc-

lidian obeying the properties of the group and that satisfies the condition of the group elements being

differentiable.

An example of a Lie group is the rotation of a circle - one can rotate it by any angle and regain the

same circle. The symmetries of the triangle, in example 3.1, were in contrast not continuous, but

required rotations of particular angle.

Example 3.2

Let v be a vector in R2. Use a matrix R(θ) to rotate v by the angle θ to get the vector

v′. Seeing a rotation of a vector does not change the length of that vector, the norm of

v and v′ must agree; vTv = v′
T
v′. It then follows that

v′Tv′ = (Rv)
T

(Rv) = v
T
RTRv = vT Iv = vTv. (3.1)

In order to keep the length of v constant through a rotation, we now have that R has

to be orthogonal, i.e. RTR =I. The representation of rotations in R2 is the rotational

matrix

R(θ) =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
, (3.2)

For this rotation, matrix is orthogonal which specifies that RTR = I ⇒ detR = ±1.

When restricting the matrices to those of determinant +1 the special orthogonal group

is defined. Since θ can take any value, the group is said to be continuous. It is then

concluded that this rotation lies in the SO(2) group. The 2 merely specifies that the

representation matrix is 2× 2.

There are many more Lie groups, such as the Euclidian space with addition Rn, and the General Linear

group, GL(n, R), consisting of n×n real matrices etc. However, the most interesting group which will

be the main focus henceforth is SL(2, R).

Definition 3.5: The group SL(n, R) is the Special Linear group and consists of all real n×n matrices

with determinant = 1.

A Lie algebra is a vector space together with a Lie bracket [x, y] which is a non-associative multi-

plication. In older texts, a Lie algebra is most often referred to as an “infinitesimal group” as it was

introduced to study the concept of infinitesimal transformations.

Definition 3.6: The Lie algebra that generates SL(n, R), sl(n, R), is defined as all traceless n × n
matrices and has the Lie bracket [X,Y ] := XY − Y X.



3.2. LIE THEORY 29

The Lie bracket will be defined in definition 3.7, shortly. We start off with an example:

Example 3.3

Let us look at the rotation matrix, viewed in example 3.2. Here we have a matrix R(θ)

where θ can take any (real) value. We can, for small rotations, use series expansion to

get the first order term

R(θ) =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
≈

(
1 −θ
θ 1

)
. (3.3)

This can be written as a combination of the identity matrix, I, and another matrix in

order to emphasize what the transformation does, i.e. a slight shift from the original

position.

R(θ) =

(
1 −θ
θ 1

)
= I +

(
0 −θ
θ 0

)
= I− iθT, (3.4)

where T is the matrix

(
0 −i
i 0

)
. (3.5)

Do keep in mind that this only applies to small rotations. However, if we wish to rotate

by a bigger angle, let us say φ, we can simply split the rotation into N smaller parts and

let N approach infinity when Taylor expanding, obtaining

R(φ) = lim
N→∞

(
I− iT φ

N

)N
= e−iTφ. (3.6)

As a matrix once again we regain the usual rotational matrix:

R(φ) = e−iTφ =

(
cos(φ) − sin(φ)

sin(φ) cos(φ)

)
. (3.7)

As we made many infinitesimal rotations from default, the rotational matrix was regained. Remem-

bering that the rotational matrix belongs to the SO(2, R) group, see example 3.2, we can categorize

the Lie algebra in the example.

Remark 3.1: Worth mentioning is that the matrix T is a generator of the SO(2, R) group, see

definition 3.8.

Remark 3.2: When dealing with the Lie algebra of a Lie group one uses lower case gothic letters.

For example, the Lie algebra of SL(2, R) is written as sl(2, R). The R merely describes the fact that

there are only real numbers in the group.

Looking at (3.4) in example 3.7 one clearly sees that the infinitesimal step away from the identity is

iTφ. This then gives us the following Lie algebra:

so(2, R) = {iTφ, φ ∈ R and T as defined in example 3.3} (3.8)
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As the case with Lie groups, Lie algebras also have axioms that define whether of not they fulfil the

requirements of being called a Lie algebra. The axioms follow in definition 3.7.

Definition 3.7: A Lie algebra is a vector space g over some field F with the Lie bracket [·, ·] : g×g→ g.

The Lie bracket satisfies the following axioms:

1. Bilinearity - ∀ scalars a, b in F and ∀ elements x, y, z ∈ g it follows that:

[ax+ by, z] = a[x, z] + b[y, z],

and [z, ax+ by] = a[z, x] + b[z, y],

2. Alternating on g

[x, x] = 0,∀x ∈ g

3. The Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, ∀x, y, z ∈ g

Let g be a Lie algebra with generators x, y. If these generators exist in the smallest subalgebra of g,

then they are the elements of said Lie algebra. As for the sub groups, the subalgebras must be closed

under the Lie bracket, i.e.:

Example 3.4

Let h be a subspace of g. In order for h to be a subspace, it must be closed. I.e.

[x, y] ∈ h

for all x, y ∈ h

3.3 Structure Theory

Lie algebras can be divided into different classes, depending on the structure of the algebra. In this

section, the different classes are described and discussed. But before continuing, let us take a look at

the definitions of structure constants and generators, they will come in handy later.

Definition 3.8: The generator of a Lie algebra is defined as the elements of a Lie algebra g if the

smallest sub algebra containing the elements is g itself.

As stated earlier, the matrix T in example 3.3 is for instance a generator for SO(2). Also, we later see

that the generators of sl(2,R) for instance are the Chevalley triples in equation (3.13).
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Definition 3.9: The structure constant, fabc, of a Lie algebra describes how the Lie bracket

combines two generators of a given Lie algebra as a linear combination of generators in that Lie

algebra.

Let T i ∈ g

[T a, T b] = fabcT c (3.9)

The Lie brackets of the elements are completely determined by the structure constants and the group

structure of the Lie group is therefore also effectively determined by the structure constant.

Examples in which these terms, among others, appear can be found in section 3.3.3.

3.3.1 Different Lie Algebra Classifications

When classifying a Lie algebra, one looks at the structure constants of said Lie algebra. The structure

constants outline the commutator relations. It can be very useful to, via change of basis or through

transformation, change all commutators to a standard form simultaneously. By looking at these

standard forms, one can find the Lie algebra’s structure. The different kinds of structures are found

below:

1. Abelian The Abelian Lie algebra is that in which the lie bracket vanishes, [a, b] = 0, ∀a, b ∈ g,

this is the trivial Lie bracket. The bracket vanishes as the generators commute. All Abelian Lie

algebras are n-dimensional, with the trivial lie bracket and are of the form tn.

2. Nilpotent For a nilpotent Lie algebra g, the lower central series terminates. This means that

∃gi = 0 ∈ g. The lower case series is the series of descending subalgebras.

Definition 3.10: The lower central series is defined as:

g > [g, g] > [[g, g], g] > . . . (3.10)

Without going into too much detail, an important characteristics of all nilpotent Lie algebras are

that they are solvable, which is useful as it is much easier to prove that a Lie algebra is nilpotent

than solvable.

3. Solvable A Solvable Lie algebra has a derived series which terminates.

Definition 3.11: The derived series is defined as:

g ≥ [g, g] ≥ [[g, g], [g, g]] ≥ [[[g, g], [g, g]], [[g, g], [g, g]]] ≥ . . . (3.11)

Moreover, all nilpotent algebras are solvable, but on the contrary all solvable algebras are not

nilpotent.

4. Simple A Lie algebra which lacks non-trivial ideals, defined below, and is not abelian is said to

be simple. A direct sum of many simple Lie algebras combines to a semisimple Lie algebra.
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Definition 3.12: Let I be a subspace of g, I ⊆ g, which satisfies

[g, I] ⊆ I (3.12)

Then I is said to be an ideal of the Lie algebra g.

5. Semisimple As mentioned above, a direct sum of simple Lie algebras add up to a semisimple Lie

algebra. A semisiple Lie algebra’s only ideals are {0} and g.

The representation of a semisimple Lie algebra can be fully reduced. A fully reduced represent-

ation is in fact a direct sum of irreducible representations.

The main objective of this report lies within the semisimple and simple Lie algebras as they contain

the Lie algebra sl(2, Z). The sl(2, Z), or sl2(Z), algebra is in fact found to be a central part of special

relativity, general relativity and super symmetry. To gain a better understanding of this central group

and its connection to both crystals and, later on, modular forms and sting theory, the structure of the

group must be studied. This is done in the following section through the Chevalley-Serre relations and

the Cartan matrix.

3.3.2 The Chevalley-Serre Relations and the Cartan Matrix

Take r sets of generator triplets that each span sl(2, R)

(ei, fi, hi), i = 1, 2, ..., r (3.13)

and interact via the Chevalley relations

[hi, hj ] = 0

[hi, ej ] = Aijej

[hi, fj ] = −Aijfj

[ei, fj ] = δijhj

(3.14)

where Aij is an r-by-r matrix containing integers, called the Cartan matrix. The Cartan matrix holds

all information about the corresponding Lie algebra. This yields an infinite-dimensional Lie algebra as

[ei, ej ] and [fi, fj ] are unconstrained, which is undesirable. Thus, additional constraints are required.

By utilizing the adjoint action, adX(Y ) = [X, Y ] (the adjoint action is defined more thoroughly in

definition 3.14 on page 36) we create the Serre relations
ad1−Aij
ei (ej) = 0

ad
1−Aij
fi

(fj) = 0.

(3.15)

The definition of adpei(ej) = [ei, [ei, ...[ei, ej ]]...] is p commutators. This reduces the number of dimen-

sions of the Lie algebra from infinity to a finite dimension.
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3.3.3 Dynkin Diagrams

The Dynkin diagrams are a very useful way to visualize simple Lie algebras. In the simple Lie algebras

the rank, that is the r in (3.13), determines the number of dots in the Dynkin diagram and the lines

between the dots show how the different Lie algebras are connected. From this we see that the Dynkin

diagrams contain all the vital information on the Lie algebra and from this, the Cartan matrix can

be read. As seen previously, the Cartan matrix is the starting point from which one constructs the

Chevalley-Serre form of the Lie algebra.

All simple Lie algebras are categorized into different classes using Dynkin diagrams. The Dynkin

diagrams are the same as the Chevalley-Serre representation but in another format. The components,

the dots, are the sl(2) Lie algebras and has a set of the triplets in (3.13). The line, or lines, between

each dot is the summation relation among them given by the Cartan matrix.

An

Figure 3.2: Dynkin diagram of the simple Lie algebra sl(n+ 1). Here, n is the number of components.

A few examples of different Lie algebras and their Dynkin notation are listed in table 3.2

Table 3.2: Table of a few Lie algebras and their Dynkin notation.

An sln+1, the special linear Lie algebra

Bn so2n+1, the odd-dimensional special orthogonal Lie algebra

Cn sp2n, the symplectic Lie algebra.

Dn so2n, the even-dimensional special orthogonal Lie algebra.

All Lie algebras can be constructed by directly adding simple Lie algebras and divided into the four

families above, An, Bn, Cn and Dn, except five exceptions: E6, E7, E8, F4, and G2. Although these

families are interesting, they will not be studied further as the main focus of this thesis lies on the the

sl(2) Lie algebra which belongs to the A1 family. Two examples follow below to conclude this section

on one note. First, here is an example dealing with sl(2, R).

Example 3.5

Let (e, h, f) be the Chevalley basis for the Lie algebra sl(2, R). Here we see that the

rank = 1 since we only have one set of Chevalley triples,
[e, f ] = h

[h, e] = 2e

[h, f ] = −2f.

(3.16)

Seeing the Chevalley relations in (3.14) describe how the Cartan matrix interact with the

basis, one finds that the matrix can be described by a 2 or by 2I. The Serre-relations

does not help here as ad1−A11
e1 (e1) is nonsense as ad−1 does not mean anything. We can
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then conclude that [e, e] = 0 and that the same goes for h and f , so no new commutators

are created. The dimension of sl(2, R) is then 3. Since the rank is 1 the Dynkin diagram

would consist of just one dot.

A1:

To illustrate the procedure for a lie algebra with a higher rank we will now study sl(3, R).

Example 3.6

For sl(3, R) the Chevalley triples (e1, h1, f1) and (e2, h2, f2) make up the basis. Here,

we have the rank= 2 due to the two sets of Chevalley triples. For this Lie algebra, the

Cartan matrix A is found, for this representation, to look like this:

A =

(
2 −1

−1 2

)
. (3.17)

The Chevalley relations then give us:

[h1, e1] = 2e1

[h1, f1] = −2f1

[h1, f2] = −A12f2 = f2

[h1, e2] = A12e2 = −e2

[e1, f1] = 0

[h1, h2] = 0

(3.18)

However, now the commutators containing the same kind of generators, such as [e1, e2],

are not constrained. This is fixed using the Serre relations in (3.15):

ad1−A12
e1 (e2) = 0 (3.19)

⇒ ad2
e1(e2) = [e1, [e1, e2]︸ ︷︷ ︸

e3

] = 0 (3.20)

Since [e1, e2] in the equation above is unconstrained, this creates a new generator. We

define e3 := [e1, e2]. In the same way, we find that f3 := [f1, f2] also belongs to the Lie

algebra. Now, we have explored all different combinations of generators and found that

there are 8 generators of sl(2, R), namely:

{h1, h2, e1, e2, e3, f1, f2, f3} (3.21)

This means that the dimension of sl(3, R) is 8. Here, the Dynkin diagram would be two

dots connected by one line:
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A2:

A great way to define a Lie algebra dots and lines is through the Chavalley-Serre representation. The

Chevalley-Serre representation contains the same information as the Dynkin diagrams, but expressed

in a different manner. This is as important to the representation of Lie algebras, but the Chevalley-

Serre representation will be more useful when studying the important Weyl character formula in

section 3.5.

3.4 Representation Theory

In short, a representation is a mapping of an abstract group or group element to a set of linear

operators acting on a vector space, which respects the multiplication table of said group. In physics,

representations – often matrix representations – are studied and not “actual groups”. Consequently

the subject is crucial to understanding the Universe. This reduces abstract problems to linear algebra;

a widely more understood subject [30].

Definition 3.13: A representation of a Lie group G is a group homomorphism and consists of a

realization Π and a module V which the realization acts on,

Π : G→ GL(V ).

For all g1, g2 ∈ G : Π(g1)Π(g2) = Π(g1g2).

Note in the definition above that Π(g1)Π(g2) is normal matrix multiplication while g1g2 = g1 ? g2 uses

the group operation of G. The definition of a representation of a Lie algebra is analogous but denoted

with lower case letters, for example π.

Example 3.7

Here follows two examples of representations.

1. The trivial representation

We can define a trivial representation of a Lie group G on a one-dimensional complex

vector space C by

Π : G→ GL(1,C)

Π(g) = I

for all g in G, where I is the identity element of C. For the Lie algebra g we can

define the trivial representation as

π : g→ gl(1,C)

π(x) = 0

for all x in g.
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2. The defining representation

Let G be a Lie group. Then the defining representation of G is

Π : G→ Π(G) = G ⊂ GL(n,C).

For SU(3) the defining representation would be all unitary 3 × 3 matrices on C3

with the determinant 1. This is analogous for a Lie algebra.

Before a third representation is mentioned another definition is needed.

Definition 3.14: Let G be a Lie group and g its Lie algebra. We define the mapping

Ad : G→ GL(g)

by the formula

Adg(t) = gtg−1, g ∈ G, t ∈ g. (3.22)

Additionally we define the Lie algebra homomorphism

ad : g→ gl(g)

by

adx(y) = [x, y], x, y ∈ g. (3.23)

This is called the adjoint action.

With definition 3.14 we can construct the adjoint representation of G (Ad) with the module being

the vector space formed by the Lie algebra or of g where the module is the Lie algebra itself. This

representation is very important, as it can be used to derive the Lie algebra of a Lie group [11].

Definition 3.15: If a representation is bijective it is called faithful.

Definition 3.16: Let G be a group and Π a representation of G on the vector space V , with the

non-trivial subspace W 6= V , W 6= {0}. If such a subspace exists that is invariant, i.e. satisfies

Π(gi)w ∈ W for all gi ∈ G and w ∈ W , then the representation is reducible. If no such subspace

exists it is irreducible.

Remark 3.3: The trivial representation from example 3.7 is an irreducible representation, as the one

dimensional vector space C has no non-trivial subspaces.

Definition 3.17: Let G be a Lie group, Π a representation of G acting on V and Σ a representation

of G acting on W . A linear map

ϕ : V →W

is called a morphism of representations if

ϕ(Π(g)v) = Σ(g)ϕ(v) ∀g ∈ G, v ∈ V. (3.24)

If ϕ is invertible it is called an isomorphism of representations. If an isomorphism exists between V

and W they are said to be isomorphic, or equivalent.
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3.4.1 Representation Theory for sl(2, R)

The group SU(n) is the special unitary group in n dimensions. The defining representation for SU(2),

for example, would be all 2 × 2 unitary matrices with the determinant 1. If we then define the

matrices

T1 =
1

2
iσ1, T2 =

1

2
iσ2, T3 =

1

2
iσ3 (3.25)

from the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(3.26)

any matrix U of the group SU(2) can be parameterized as

U = ea1T1+a2T2+a3T3 , a1, a2, a3 ∈ R. (3.27)

Subsequently the Lie algebra can be expressed as su(2) = RT1 ⊕ RT2 ⊕ RT3 = spanR(T1, T2, T3). By

allowing complex linear combinations of the T matrices the general unitarity is lost but they instead

span sl(2,C) – as all T matrices are traceless and sl(2,C) = {X ∈ C2 : tr(X) = 0}.

Within sl(2,C) there are three linear combinations of the T operators that are of particular interest.

Here they are denoted

e = T2 − iT1 =

(
0 1

0 0

)

f = −(T2 + iT1) =

(
0 0

1 0

)

h = −2iT3 =

(
1 0

0 −1

)
.

(3.28)

This is a representation of the generators in section 3.3.2 – thus the same notation. These operators

satisfy the Chevalley relations for sl(2, C)

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f. (3.29)

Remark 3.4: From this we see that the Cartan matrix for sl(2) is a one-dimensional matrix containing

only the element 2, which was used in example 3.5.

With them a triangular decomposition of sl(2,C) can be formed and (e, f, h) is therefore called the

Chevalley basis. Both the Chevalley basis and its commutators are real, hence sl(2,R) is easily obtained

by only allowing real linear combinations.

3.4.2 Triangular Decomposition

A Lie algebra can be decomposed into its so-called triangular decomposition which proves helpful in a

number of cases.
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Definition 3.18: The triangular decomposition of a Lie algebra:

sl(n, R) = spanR(f1, f2, ..., fi)︸ ︷︷ ︸
Lower triangular= n−

⊕ spanR(h1, ..., hk)︸ ︷︷ ︸
Diagonal= h

⊕ spanR(e1, e2, ..., ei)︸ ︷︷ ︸
Lower triangular= n+

= n− ⊕ h⊕ n+ (3.30)

Here, the different Chevalley-Serre generators are divided into three different compositions: n−, h and

n+. Here, the n− are the lowering generators, the n+ are the raising generators and the h are the

level generators. They are called this due to the fact that they are either upper- or lower triangular or

neither. Also, the roots of fi ∈ n− and ei ∈ n+ combined with hi ∈ h are either positive or negative,

respectively.

Example 3.8

The triangular decomposition of sl(3, R) is

sl(3, R) = spanR(f1, f2, f3)︸ ︷︷ ︸
Lower triangular=n−

⊕ spanR(h1, h2)︸ ︷︷ ︸
Diagonal=h

⊕ spanR(e1, e2, e3)︸ ︷︷ ︸
Lower triangular=n+

= n− ⊕ h⊕ n+ (3.31)

When using this definition one can find the so-called roots of a representation, which will be defined

in the following section. These root and weights can then be used in order to characterize the different

groups which will become clear later on, in section 3.5.

3.4.3 Roots and Weights

Using a set of r Chevalley-Serre bases the following definition can be made.

Definition 3.19: Let h ∈ spanR(hi) = h, i = 1, ..., r and

[h, ei] = αi(h) ei (3.32)

where αi : h→ R. These αi(h) ∈ R are called simple roots.

Definition 3.20: Let h ∈ h, x ∈ spanR(ei) = n+, i = 1, ..., r and

[h, x] = α(h) x (3.33)

where α : h→ R. Then α(h) is called a root.

Claim: Taking multiple commutators of ei’s correspond to summing the simple roots.

The proof will be given for the case with two commutators, for readability. The general proof is,

however, obtained by simply repeating this proof for all commutators.
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Proof for two commutators: Use the Jacobi identity on [h, [ei, ej ]]. This yields:

[h, [ei, ej ]] = −[ei, [ej , h]]− [ej , [h, ei]]

= [ei, [h, ej ]]− [ej , [h, ei]]

= αj(h)[ei, ej ]− αi(h)[ej , ei]

= (αi(h) + αj(h)) [ei, ej ]

(3.34)

�

From definition 3.19 and 3.20 one can construct so-called root spaces.

Definition 3.21: The root space Φ of some representation of a Lie algebra is defined as the set of

all roots of said representation, i.e. Φ = {α1(h), α2(h), ..., αn(h)}, where αi(h) are the roots.

Definition 3.22: The simple root space Φ+ is defined as the set of all simple roots of the repres-

entation of the Lie algebra. Note that Φ+ is a subset of Φ.

With the roots, a lattice can be built since all the roots are integers. An example of the roots of

sl(2, R) is presented in order to make the idea of what roots are more tangible.

Example 3.9

For sl(2, R) we have rank = 1. This means that the i describing the number of different

Chevalley-Serre generators is i = 1, so we have only one set of Chevally-Serre generators.
[h, e] = 2e

[h, f ] = −2f

[e, f ] = h

(3.35)

The simple root in this case is α(h) = 2. However, the root −α(h) also exist, although it

is not a simple root, defined in definition 3.20 above.

Are there any other roots for this representation? Well, when investigating whether α+α

is a root one sees that this would have to correspond to xα+α which is generated by

[e, e] = 0, so 2α cannot be a root. The root lattice that is formed from these roots is

therefore the even integers on the real axis, Q = Zα(h):

−α α0

The root system for this representation of sl(2, R) is thus given by Φ = {−2, 2}, whereas

the simple root space is given by Φ+ = {2}.

The root system calculated in the example above will prove to be of great importance when studying

the so-called Weyl character formula in section 3.5.1.
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Definition 3.23: Let (π, V ) be a representation of sl(2, C) and v ∈ V satisfies

π(h)v = λv, (3.36)

i.e. is an eigenvector with eigenvalue λ ∈ C. Such a vector is called a weight vector and λ its weight.

This definition can, naturally, be restricted to the real case, thus applying to sl(2, R).

Lemma 3.1: Any representation (π, V ) can be decomposed as

V =
⊕
λ

Vλ, (3.37)

where Vλ ⊂ V contains all weight vectors of weight λ, i.e.

Vλ = {v ∈ V : π(h)v = λv}. (3.38)

This is called a weight decomposition.

3.5 Characters of Representations and the Weyl Character

Formula

As mentioned before, there are many ways to represent a given Lie algebra. One way to distinguish

these representations from each other is to study their so-called characters. This is most effectively

done with the use of the Weyl character formula. But before being able to state this crucial formula,

we need to introduce a few more concepts.

As we saw in lemma 3.1, any module V of a representation of sl(2, C) can be decomposed as

V =
⊕
λ∈Λ

Vλ, (3.39)

where Vλ denotes the subspace of V which consists of all vectors of weight λ and Λ is the set of weights

in V .

Definition 3.24: The highest weight λh of a vector space V is defined as the weight that satisfies

Re(λh) ≥ Re(λ′) for all weights λh, λ
′ ∈ Λ. The corresponding vectors vh ∈ Vλh are called the highest

weight vectors of V .

Lemma 3.2: Let vh ∈ Vλh be a highest weight vector of a vector space V representing sl(2, C) and

let

vk =
fk

k!
vh, k ≥ 0. (3.40)

Then

hvk = (λh − 2k)vk

fvk = (k + 1)vk+1

evk = (λh − k + 1)vk−1

(3.41)

where e, f and h denotes the generators of the Lie algebra.



3.5. CHARACTERS OF REPRESENTATIONS AND THE WEYL CHARACTER FORMULA 41

Theorem 3.1: Let Vn be a finite vector space spanned by the basis {v0, v1, ..., vn} defined in lemma 3.2

and define the action of the generators as

hvk = (n− 2k)vk

fvk = (k + 1)vk+1, k < n

fvn = 0

evk = (n+ 1− k)vk−1, k > 0

ev0 = 0.

(3.42)

Then Vn is an irreducible representation of sl(2, C), which is often referred to as the irreducible

representation of highest weight n.

In accordance with the theorem above one can always find an irreducible representation from a vector

space V representing sl(2, C). This is done in terms of its highest weight λh (denoted n in the theorem).

We denote this representation as V (λh). An important remark is that there are similar ways of doing

this for other Lie algebras than sl(2, C). In fact, one can find an irreducible representation of some

highest weight n for all semi-simple Lie algebras [31].

Now, define Z[Λ] as all linear combinations of the base elements {eλ, λ ∈ Λ} with integer coefficients.

These base elements are so-called formal exponentials which satisfy the multiplication rule eµeλ = eµ+λ.

Z[Λ] is a type of mathematical object called a ring.

Definition 3.25: Define the character of a representation V (λ) as the element in Z[Λ] given by

χλ =
∑
µ∈Λ

mλ(µ)eµ, (3.43)

where mλ(µ) denotes the dimension of Vµ in this representation.

Remark: Since a representation consists of both a realization and a module (often a vector space),

it would be more correct to talk about “the character of the module of a representation” but one

normally is not so precise.

Before stating the Weyl character formula we need to introduce the denotation

ελ(µ) =

1, if µ = λ

0, otherwise.
(3.44)

We also need to define the reflection σ in a root α(h) as well as the important Weyl group.

Definition 3.26: Let E be a finite, real vector space with an inner product (· , ·). The linear map

E → E known as the reflection in α ∈ E of some β is then given by

σα(β) = β − 2(β, α)

(α, α)
α. (3.45)

Note that when E is a one-dimensional vector space – e.g. the one spanned by the roots of sl(2, R)

in the representation used in this thesis – the inner product in equation (3.45) turns into common

multiplication.
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Definition 3.27: For a root space Φ, the corresponding Weyl group is given by the set {σα : α ∈ Φ}.

Remark: In these two definitions, and henceforth, we denote the root α(h) simply as α, although

this denotation earlier has been used for the linear map from h to R that the root α(h) corresponds

to.

We are now ready to state the important Weyl character formula, which holds for irreducible repres-

entations.

Theorem 3.2: Weyl character formula states that all irreducible representations satisfy the relation( ∑
σ∈W

sgn(σ)εσρ

)
∗ χλ =

∑
σ∈W

sgn(σ)εσ(λ+ρ), (3.46)

where λ denotes the highest weight of the representation, sgn denotes the sign function,

ρ =
1

2

∑
α∈Φ+

α (3.47)

is the Weyl vector and ∗ denotes the convolution given by

f ∗ g (µ) =
∑

ν+θ=µ

f(ν)g(θ). (3.48)

For a proof of Weyl character formula, see e.g. [32].

3.5.1 Applying the Weyl Character Formula to sl(2, R)

What can we learn from the Weyl character formula when applying it to sl(2, R)? The representation

of sl(2, R) that consequently has been studied in this report is the one that is generated by the

matrices

e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)
. (3.49)

As we saw in example 3.9, sl(2, R) has only one simple root and that is α = 2. Thus, equation (3.47)

for the Weyl vector yields

ρ =
1

2

∑
α∈Φ+

α = 1. (3.50)

We now need to find the Weyl group of this representation, which in accordance with definition 3.27

is given by the set {σα : α ∈ Φ}. We learned from example 3.9 that the root space of sl(2, R) is given

by Φ = {−2, 2}, so using definition 3.26 we now want to calculate the reflections of some β in the two

roots. Since the vector space spanned by the roots of sl(2, R) is one-dimensional in our representation,

equation (3.45) yields

σα(β) = β − 2βα

α2
α = −β. (3.51)

Thus we see that the reflection σα is independent of the root α. Hence σ−2(β) = σ2(β) = −β. Since

the product of two group elements must always belong to the group – see the definition of a group,
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given in definition 3.1 – we are also allowed to perform multiple reflections. Performing two reflections,

we obtain

σα
(
σα(β)

)
= σα(−β) = β. (3.52)

So this map turned out to correspond to the identity element e. This is good, since a group must

always contain the identity element (again, see definition 3.1). It is easy to realize that an even number

of reflections in some weight α always returns the original element, i.e. σ2n
α (β) = β whereas an odd

number of reflections yields σ2n+1
α (β) = −β, if n ∈ N. Hence the Weyl group W of this representation

of sl(2, R) contains only two elements and is given by W = {e, σ}, where σ(β) = −β. Since these two

elements correspond to the identity respectively a change of the sign, one may – when representing

the elements in the Weyl group with numbers – rewrite this as W = {1,−1}.

We are now ready to apply the Weyl character formula, which was given in Theorem 3.2. Since we

know that ρ = 1 and W = {1,−1}, the left hand side of the Weyl character formula can be simplified

to

LHS =
( ∑
σ∈W

sgn(σ)εσρ

)
∗χλ =

(
sgn(−1)·ε−1·1+sgn(1)·ε1·1

)
∗χλ =

(
ε1−ε−1

)
∗
(∑
n∈Z

mλ(n)εn

)
, (3.53)

where we in the last step used two properties that are proven in [32] but not will be proven here.

The first one being that Λ = Z for our representation of sl(2, R) (this is a consequence of the roots

being integers and is not too hard to prove) and the second one being that we can replace the formal

exponential in the definition of χλ with an ε under the reigning conditions. Now, let us evaluate the

right hand side of the Weyl character formula. This yields

RHS =
∑
σ∈W

sgn(σ)εσ(λ+ρ) = ελ+1 + ε−λ−1. (3.54)

Before equating the left and the right hand side, we want to evaluate them for some integer k. It need

to be an integer since Λ = Z and λ ∈ Λ. This yields

LHS(k) =
∑
p+q=k

(ε1 − ε−1)(p)
(∑
n∈Z

mλ(n)εn(q)
)
, (3.55)

by the definition of the convolution. Since (ε1 − ε−1)(p) = 0 unless p = −1 (which implies q = k + 1)

or p = 1 (which implies q = k − 1), one obtains

LHS(k) =
∑
n∈Z

mλ(n)
(
εn(k − 1)− εn(k + 1)

)
= mλ(k − 1)−mλ(k + 1). (3.56)

Evaluation of RHS in equation (3.54) for the same integer k gives

RHS(k) =
(
ελ+1 + ε−λ−1

)
(k) =


1, if k = λ+ 1

−1, if k = −λ− 1.

0, otherwise

(3.57)

Equating equation (3.56) and (3.57) one obtains

mλ(k − 1)−mλ(k + 1) =


1, if k = λ+ 1

−1, if k = −λ− 1.

0, otherwise

(3.58)
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Note that if k 6= ±(λ+ 1), then mλ(k− 1) = mλ(k+ 1). Letting k = λ+ 3, λ+ 5, ... respectively, this

relation yields

mλ(λ+ 2) = mλ(λ+ 4) = mλ(λ+ 6) = .... (3.59)

Instead letting k = −λ− 3, −λ− 5, −λ− 6, ... respectively, one obtains

mλ(−λ− 2) = mλ(−λ− 4) = mλ(−λ− 6) = .... (3.60)

For k = ..., λ− 2, λ, λ+ 2, ... respectively, one obtains

... = mλ(λ− 3) = mλ(λ− 1) = mλ(λ+ 1) = mλ(λ+ 3) = ... (3.61)

Now note that there are an infinite number of entries in equation (3.59), (3.60) and (3.61). Since we

are only studying finite-dimensional representations of Lie algebras, all entries in these three equations

must equal zero.

There are still some choices of k in equation (3.58) that haven’t been evaluated. First, let k =

−λ+ 1, −λ+ 3, ..., λ− 3, λ− 1. This gives us

mλ(−λ) = mλ(−λ+ 2) = ... = mλ(λ− 2) = mλ(λ). (3.62)

Please note that since λ is finite, this equation has a finite number of entries. Now letting k = λ+ 1,

equation (3.58) yields

mλ(λ)−mλ(λ+ 2) = 1. (3.63)

Since we know from equation (3.59) that mλ(λ + 2) = 0, then mλ(λ) = 1. Equation (3.62) then

yields

mλ(−λ) = mλ(−λ+ 2) = ... = mλ(λ− 2) = mλ(λ) = 1. (3.64)

We have now calculated mλ(n) for all possible arguments n and we can conclude that

mλ(n) =

1, if n ∈ {−λ, −λ+ 2, ..., λ− 2, λ}

0, otherwise.
(3.65)

Note that we did not need to use the case k = −λ − 1 in equation (3.58), but that it simply yields

mλ(−λ− 2)−mλ(−λ) = −1, which agrees with our result.

Inserting the result from equation (3.65) into the definition of the character χλ, given in definition 3.25,

one obtains

χλ =
∑
µ∈Λ

mλ(µ)eµ = e−λ + e−λ+2 + ...+ eλ−2 + eλ. (3.66)

Using what we learned from example 2.4 we may write this as the Schur polynomial

χλ = s(λ,0)(e
−1, e). (3.67)

This equation fully characterizes the representation of sl(2, R) we are consequently working with in

this report, i.e. the one generated by the matrices e, f and h in equation (3.49). It is easy to realize

that the same character formula applies to sl(2, C) (in the representation used throughout this thesis).

This formula will prove to be crucial, for example in section 5.1 where its connection to modular forms

will be investigated. But first, a chapter introducing modular forms is needed to proceed.



Chapter 4

Modular Forms and Eisenstein

Series

Modular forms are, roughly speaking, complex-valued functions with a discrete symmetry. They have

applications in many fields of mathematics, such as number and group theory, as well as appearing

frequently in string theory. Famously, they were a key in proving Fermat’s last theorem [33]. A

generalization of modular forms are so-called automorphic forms.

A slight variation of the modular forms are the Maass forms. They have a symmetry similar to modular

forms, but differ in some properties. In this chapter, we will study a certain Maass form, namely the

non-holomorphic Eisenstein series, and connect it to previous subjects in this report through Schur

polynomials by studying its Fourier expansion. The focus of this chapter will only be to show the

results needed to make the connection. The discussion will be left to chapter 5.

4.1 An Introduction to Modular and Maass Forms

For the definition of a modular form, consider a matrix in SL(2, Z) acting on the upper half of the

complex plane, H = {z ∈ C| Im z > 0}, through the action

γ(τ) =
aτ + b

cτ + d
, γ =

(
a b

c d

)
∈ SL(2, Z), τ ∈ H. (4.1)

The domain H is closed under this action, that is, the image of τ with Im(τ) > 0 also has a positive

imaginary part, which can be seen from

Im(γ(τ)) = Im

(
aτ + b

cτ + d

)
= Im

(
(aτ + b)(cτ̄ + d)

(cτ̄ + d)(cτ̄ + d)

)

= Im

(
adτ + bcτ̄

|cτ + d|2

)
=

Im(τ)

=1︷ ︸︸ ︷
(ad− bc)

|cτ + d|2
=

Im(τ)

|cτ + d|2
,

(4.2)

45
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where ad− bc = 1 since γ =

(
a b

c d

)
∈ SL(2, Z) implies that det(γ) = ad− bc = 1.

We are now ready to define a modular form.

Definition 4.1: A holomorphic modular form of weight k is a holomorphic function f : H → C
satisfying the condition

f(γ(τ)) := f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ). (4.3)

We note that the action of the matrices T =

(
1 1

0 1

)
and U =

(
−1 0

0 −1

)
and the condition above

imply the properties

f(T (τ)) = f(τ + 1) = f(τ), so f is periodic in the real part (4.4)

f(U(τ)) = f

(
−τ
−1

)
︸ ︷︷ ︸

=τ

= (−1)kf(τ), which requires even k for f 6= 0. (4.5)

The automorphic forms previously mentioned differ from modular forms in that they may be symmetric

under the action of other groups than SL(2,Z).

Remark 4.1: The only modular form of weight k = 0 is the zero function.

An example of a modular form is the holomorphic Eisenstein series.

Example 4.1

The holomorphic Eisenstein series of weight k ≥ 2 is given by

Ek(τ) =
∑′

(m,n)∈Z2

1

(mτ + n)k
, (4.6)

where the primed sum indicates that the origin (m,n) = (0, 0) is excluded. Let us confirm

that this series transforms as required by definition 4.1 under the previously defined action

of SL(2, Z):

Ek(γ(τ)) = Ek

(
aτ + b

cτ + d

)
=

∑′

(m,n)∈Z2

1(
maτ+b
cτ+d + n

)k
= (cτ + d)k

∑′

(m,n)∈Z2

1(
(am+ cn)︸ ︷︷ ︸

=m′

τ + (bm+ dn)︸ ︷︷ ︸
=n′

)k . (4.7)

We have a bijection between all pairs of integers (m,n) and (m′, n′) sincem′ = am+ cn

n′ = bm+ dn
⇔

m = dm′ − cn′

n = an′ − bm′
(4.8)
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where we have used that ad− cb = 1. Note that (m,n) = (0, 0) corresponds to (m′, n′) =

(0, 0). We therefore obtain

Ek(γ(τ)) = (cτ + d)k
∑′

(m′,n′)∈Z2

1

(m′τ + n′)k
, (4.9)

which is what we wanted to show.

For our purposes, however, a variation of modular forms called Maass forms are more interesting.

Definition 4.2: A Maass form of weight 0 is a function f : H→ C which satisfies

f

(
aτ + b

cτ + d

)
= f(τ), with γ =

(
a b

c d

)
∈ SL(2, Z), (4.10)

while also being an eigenfunction to the Laplacian on H:

∆Hf(τ) = λf(τ), (4.11)

where

∆H := y2

(
∂2

∂x2
+

∂2

∂y2

)
. (4.12)

This definition drops the requirement that f is a holomorphic function, and instead demands that it

is an eigenfunction to the Laplacian on H. Just as the modular forms, all Maass forms are periodic in

the real part as the definition requires

f(T (τ)) = f(τ + 1) = f(τ), (4.13)

again with T =

(
1 1

0 1

)
. This periodicity implies the existence of a Fourier expansion for the Maass

forms. In the coming sections we will study the coefficients in this expansion for a certain Maass form:

the non-holomorphic Eisenstein series.

4.2 Properties of the Non-Holomorphic Eisenstein Series

We begin by defining the object we intend to study, the non-holomorphic Eisenstein series. We will

use the convention that primed sums leave out the origin.

Definition 4.3: The non-holomorphic Eisenstein series with z = x+ iy ∈ H and s ∈ C is given by

E(z, s) =
∑′

(m,n)∈Z2

ys

|mz + n|2s
. (4.14)

This series converges for Re(s)> 1. Compare this to the holomorphic Eisenstein series in example 4.1,

which is similar except for the explicit y-dependence.
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In order to show that this is indeed a Maass form, the conditions given in definition 4.2 must be

verified. That it is invariant under the action of SL(2, Z) is demonstrated below:

E(γ(z), s) = E
(
az + b

cz + d
, s

)
=

∑
(m,n)∈Z2

ys/|cz + d|2s

|maz+b
cz+d + n|2s

=
∑′

(m,n)∈Z2

(
ys/|cz + d|2s

)
|cz + d|2s

| (ma+ cn)︸ ︷︷ ︸
=m′

z + (mb+ dn)︸ ︷︷ ︸
=n′

|2s

=
∑′

(m′,n′)∈Z2

ys

|(m′)z + (n′)|2s
= E(z, s),

(4.15)

where the second to last step is similar to the end of example 4.1 where we showed the bijection

between pairs of integers (m,n) and (m′, n′). Note that this series has weight 0, meaning it is wholly

invariant under the action of SL(2,Z).

That it is an eigenfunction to ∆H will not be shown here, but a proof may be found in [5]. The

corresponding eigenvalue can, however, be identified in the relation

∆HE(z, s) = s(s− 1)E(z, s) (4.16)

as s(s− 1).

To determine the coefficients of the Fourier expansion of the non-holomorphic Eisenstein series, we

will use so-called Poisson resummation. To make the coming calculations easier to follow, this result

will be proven in this section.

Theorem 4.1: With f : R→ C being a Schwarz function (for our purposes, we need only note that this

requirement guarantees convergence properties) with a Fourier transform f̂(k) =
∫∞
−∞ f(x)e−2πikxdx.

Then, ∑
n∈Z

f(n) =
∑
k∈Z

f̂(k). (4.17)

This is known as Poisson resummation.

Proof: Define the function F as

F (x) :=
∑
n∈Z

f(x+ n).

This function is clearly periodic, with F (x) = F (x + 1), and can thus be written as a Fourier

series:

F (x) =
∑
k∈Z

cke
2πikx. (4.18)

The coefficients for this series are calculated as follows:

ck =

∫ 1

0

F (x)e−2πikxdx =

∫ 1

0

∑
n∈Z

f(x+ n)e−2πikxdx

=
∑
n∈Z

∫ 1

0

f(x+ n︸ ︷︷ ︸
=x′

)e−2πikxdx =
∑
n∈Z

∫ 1

0

f(x′)=x′)e
−2πikx′dx′

=

∫ ∞
−∞

f(x′)e−2πikx′dx′ = f̂(k).

(4.19)

So, we have

F (x) :=
∑
n∈Z

f(x+ n) =
∑
k∈Z

f̂(k)e2πikx, (4.20)
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and with x = 0 this gives the desired result:∑
n∈Z

f(n) =
∑
k∈Z

f̂(k). (4.21)

�

4.3 Fourier Expansion of the Non-Holomorphic Eisenstein Series

We want to find the Fourier expansion of the non-holomorphic Eisenstein series given by

E(z, s) :=
∑′

(m,n)∈Z2

ys

|mz + n|2s
. (4.22)

This expansion exists since the Eisenstein series is periodic in x→ x+1, as demonstrated in [4.4]. The

purpose of this is to find a connection to crystals by identifying Schur polynomials in the coefficients of

this expansion. We will first calculate the y-dependence, using only the fact that the Eisenstein series

is an eigenfunction to the Laplacian. We will then calculate the s-dependence using the explicit form

of the series, given in [4.22].

4.3.1 The y-dependence of the Fourier Coefficients

We wish to write the series as

E(z, s) =
∑
n∈Z

an(y)e2πinx. (4.23)

As mentioned before, the Eisenstein series is an eigenfunction to the Laplace operator ∆ = y2(∂2
x+∂2

y),

with the eigenvalue s(s− 1). Hence it satisfies the equation ∆E(z, s) = s(s− 1)E(z, s). Applying this

to (4.23), we obtain

y2

(
−4π2

∑
n∈Z

n2an(y)e2πinx +
∑
n∈Z

a′′n(y)

)
= s(s− 1)

∑
n∈Z

an(y)e2πinx. (4.24)

Separating the equation into two parts, one with n = 0 and one with n 6= 0, and noting that the

coefficients preceding e2πinx must be equal for all n, we get the following differential equations:

y2a′′o(y) = s(s− 1)ao(y) n = 0 (4.25)

y2(a′′n(y)− 4π2n2an(y)) = s(s− 1)an(y) n 6= 0 (4.26)

It is easy to verify that differential equation (4.25) has the solution a0(y) = C1(s)ys + C2(s)y1−s. To

solve differential equation (4.26), we will use the substitutions t = 2π|n|y and an =
√
yfn(t).

We finally get

t2f ′′n (t) + tf ′n(t)−
(
t2 +

(
s− 1

2

)2
)
fn(t). (4.27)
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This is known as the modified Bessel differential equation of order s − 1
2 , having the known solu-

tion

fn(t) = An(s)Ks−1/2(t) +Bn(s)Is−1/2(t), (4.28)

where Ks−1/2 and Is−1/2 are modified Bessel functions. However, the Is−1/2(t) part will be neglected,

since we will let n→∞, in turn implying that t→∞, a limit in which Is−1/2(t) is divergent.

4.3.2 The s-dependence of the Fourier Coefficients

We have now found the y-dependence of the Fourier coefficients, and the Fourier expansion expressed

in terms of an and y is

E(z, s) = C1(s)ys + C2(s)y1−s +
√
y
∑′

n∈Z
an(s)Ks−1/2(2π|n|y)e2πinx. (4.29)

The arguments made thus far apply generally to all modular forms1, since we have only used periodicity

and the fact that the Eisenstein series is an eigenfunction of the Laplace operator. In order to find

the dependence on s, we will need to return to the expression for the Eisenstein series found in (4.23).

First, we will rewrite the sum, separating the m = 0 terms, aiming to manipulate the rest of the sum.

All sums are over Z unless otherwise specified. The convention of primed sums excluding the origin

(which is simply 0 when summing over all integers) will once again be used. We obtain

E(z, s) :=
∑′

(m,n)∈Z2

ys

|mz + n|2s
=
∑′

n

ys

|n|2s
+
∑′

m

∑
n

ys

|mz + n|2s

= 2ζ(2s)ys +
∑′

m

∑
n

ys

|mz + n|2s
,

(4.30)

where ζ(s) is the Riemann-Zeta function. For the intended rewriting of the sum for m 6= 0, we will

use the Gamma function Γ(s), defined as

Γ(s) =

∫ ∞
0

e−xxs−1dx = εs
∫ ∞

0

e−ε/t

ts+1
dt (4.31)

where we made the substitution x = ε/t. This gives

1

εs
=

1

Γ(s)

∫ ∞
0

e−ε/t

ts+1
dt. (4.32)

Letting ε = π|mz + n|2 and summing over n, we thus get∑
n

1

|mz + n|2
=

πs

Γ(s)

∫ ∞
0

dt

ts+1

∑
n

e−
π
t |mz+n|

2

dt

=
πs

Γ(s)

∫ ∞
0

dt

ts+1
e−

π
tm

2y2
∑
n

e−
π
t (mx+n)2dt,

(4.33)

where we in the last step used that z = x + iy, separating the y-dependent parts from the sum over

n.

1apart from the fact that our eigenvalue to the Laplacian, s(s + 1), would have to be replaced with an arbitrary

number.
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We will now use Poisson resummation, found in theorem 4.1, which states that∑
n

f(n) =
∑
k

f̂(k), (4.34)

where f̂ is the Fourier transform of f . Applying this to f(n) = exp(−πt (mx+ n)2), we can write the

sum over n from (4.33) as ∑
n

e−
π
t (mx+n)2 =

∑
k

√
te−πk

2t+2πikmx, (4.35)

where we on the right-hand side sum over the Fourier transform of the function in the left-hand

sum. Inserting this back in (4.33) and prime-summing over m, for the moment leaving out the factor

preceding the integral, we get∑′

m

∫ ∞
0

dt

ts+1
e−

π
tm

2y2
∑
k

√
te−πk

2t+2πikmx =
∑
k

∑′

m

e2πkmx

∫ ∞
0

dt

ts+1/2
e−πk

2t−πtm
2y2

=
∑′

m

∫ ∞
0

dt

ts+1/2
e−

π
tm

2y2 +
∑′

k

∑′

m

e2πkmx

∫ ∞
0

dt

ts+1/2
e−πk

2t−πtm
2y2 .

(4.36)

Solutions to the two obtained integrals can be determined for Re(s) > 1/2, required for convergence.

The solutions are ∫ ∞
0

dt

ts+1/2
e−

π
tm

2y2 =

(
1

πm2y2

)s−1/2

Γ(s− 1/2), (4.37)

for the first one, and ∫ ∞
0

dt

ts+1/2
e−πk

2t−πtm
2y2 = 2

∣∣∣∣ kmy
∣∣∣∣s−1/2

Ks−1/2(2π|km|y) (4.38)

for the second one.

Returning to (4.30), using the information found in (4.33), (4.36) and the integral solutions found

above we have that

E(z, s) = 2ζ(2s)ys +
ysπs

Γ(s)

(∑′

m

(
1

πm2y2

)s−1/2

Γ(s− 1/2)

+ 2
∑′

k

∑′

m

e2πikmx

∣∣∣∣ kmy
∣∣∣∣s−1/2

Ks−1/2(2π|km|y)

)

= 2ζ(2s)ys + 2
√
πy1−sΓ(s− 1/2)

Γ(s)

∞∑
m=1

1

m2s−1

+ 2
√
y
πs

Γ(s)

∑′

k

∑′

m

∣∣∣∣ km
∣∣∣∣s−1/2

Ks−1/2(2π|km|y)e2πikmx.

(4.39)

However, since our aim is to find the coefficients in (4.29), which told us that

E(z, s) = C1(s)ys + C2(s)y1−s +
√
y
∑′

n

an(s)Ks−1/2(2π|n|y)e2πinx, (4.40)

we will substitute n = km and sum over n and m to get the required form. Given that k = n/m ∈ Z,

we should sum only over the m which are divisors of n, denoted m|n. Looking only at the sums in the
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last term of (4.39), we get

∑′

k

∑′

m

∣∣∣∣ km
∣∣∣∣s−1/2

Ks−1/2(2π|km|y)e2πikmx =
∑′

n

∑
m|n
m>0

∣∣∣ n
m2

∣∣∣s−1/2

Ks−1/2(2π|n|y)e2πinx. (4.41)

Lastly, we will introduce the divisor function σs(n) (also called the instanton measure, for reasons we

will understand in chapter 6) as

σs(n) :=
∑
m|n
m>0

ms. (4.42)

Using this to rewrite (4.39), we have

E(z, s) = 2ζ(2s)ys + 2
√
πζ(2s− 1)

Γ(s− 1/2)

Γ(s)
y1−s

+
√
y
∑′

n

4
πs

Γ(s)
|n|s−1/2

σ1−2s(n)Ks−1/2(2π|n|y)e2πinx.
(4.43)

By simply comparing this expression to (4.29), we get the s-dependence of the Fourier coefficients:

C1(s) = 2ζ(2s)

C2(s) = 2
√
πζ(2s− 1)

Γ(s− 1/2)

Γ(s)

an(s) = 4
πs

Γ(s)
|n|s−1/2

σ1−2s(n),

(4.44)

thus completing the work of finding the Fourier expansion of the non-holomorphic Eisenstein series.

We will now take a closer look at an(s), which is the numerical (i.e. z-independent) part of the Fourier

coefficient for n 6= 0, and show that it contains hidden Schur polynomials.

4.4 Euler Products

As stated when introducing modular forms, we intend to relate them to the six-vertex model by finding

Schur polynomials, earlier seen in the partition functions of the aforementioned model, in the Fourier

coefficients of the Eisenstein series. To do this, we will need the following results, proving that the

n-dependent parts of the Fourier coefficients can be written as Euler products.

Theorem 4.2: The Riemann-zeta function ζ(s) can, with Re(s) > 1, n ∈ N and s ∈ C be written as

ζ(s) :=

∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s
(4.45)

where the last product is taken over all prime numbers.

Proof: First, consider one term in the product and expand it as an infinite geometric series.

1

1− p−s
= 1 +

1

ps
+

1

p2s
+ ... (4.46)
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Now, consider a product of two terms.

1

1− p−s
1

1− q−s
= (1+

1

ps
+

1

p2s
+...)(1+

1

qs
+

1

q2s
+...) = 1+

1

ps
+

1

(qp)s
+...+

1

p2s
+

1

(qp)2s
+... (4.47)

The rearrangement of the terms is legitimate given that the series converge for Re(s) > 1. We remark

that for any n with prime factorization n = paqb for some a, b ∈ N, 1
ns occurs exactly once in this

sum. Now, set some upper limit r and consider

ζ(s)−
∏
p<r

1

1− p−s
, (4.48)

where the product is over all primes smaller than r. By the reasoning above, this product can be

written as a sum where, for all natural numbers that can be factored into primes smaller than r, 1
ns

occurs exactly once. Thus, the expression above is a sum of 1
ns where the n’s have a prime factor of r

or bigger, a set of numbers we will call S. To complete the proof, it is enough to show that this sum

goes to zero as r goes to infinity. This can easily be done, since∣∣∣∣∣ζ(s)−
∏
p<r

1

1− p−s

∣∣∣∣∣ =

∣∣∣∣∣∑
n∈S

1

ns

∣∣∣∣∣ ≤∑
n∈S

∣∣∣∣ 1

ns

∣∣∣∣ ≤∑
n≥r

∣∣∣∣ 1

ns

∣∣∣∣ =
∑
n≥r

1

nRe(s)
−→ 0, as r −→∞ (4.49)

where we in the last equality used that |na+ib| = |e(a+ib) logn| = ea logn = na. Thus, we have verified

the stated theorem. �

We now turn to the n-dependent part of the coefficient an(s), which is where we will find the Schur

polynomials.

4.4.1 Schur Polynomials

We will now, for the first time, catch a glimpse of the promised connection to the six-vertex model

by proving that the numerical part of the Fourier coefficient, i.e. an(s), can be written as a product

of Schur polynomials. Since we will focus only on the part of an(s) that depends on the summation

variable n in the Fourier expansion, we introduce

κs(n) := |n|sσ−2s(n). (4.50)

Doing so, we may rewrite the Fourier coefficient from equation (4.44) as

an

(
s+

1

2

)
= 4

πs+1/2

Γ
(
s+ 1

2

)κs(n). (4.51)

The reason we study the coefficient for the parameter s+ 1
2 instead of simply s is that the expression

for the n-dependent part, i.e. κs(n), becomes slightly easier to work with.

Remark: In some literature on the subject, e.g. [9], the so-called normalized Eisenstein series is

introduced as

E∗(z, s) =
1

2
π−sΓ(s)E(z, s). (4.52)
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Then, the numerical part of the Fourier coefficient, a∗n(s), satisfies the convenient expression

a∗n

(
s+

1

2

)
= 2κs(n). (4.53)

We will now show how κs(n) can be written as a Schur polynomial for an arbitrary value of n. The

fundamental theorem of arithmetic states that every integer greater than 1 either is a prime itself or

uniquely can be written as a product of prime numbers, i.e. n =
∏
i<∞ paii where pi are primes with

the multiplicity ai in the factorization of n.

Theorem 4.3: The product κs(n) := |n|sσ−2s(n) may for an arbitrary n =
∏
i<∞ paii be written as

the Schur polynomial

κs(n) =
∏
i<∞

s(ai,0)(p
s
i , p
−s
i ). (4.54)

Proof: We will begin by calculating κs(p
a), with p being a prime number. Since the positive divisors

of pa are simply 1, p, p2, ..., pa−1, pa, we have

κs(p
a) = |pa|sσ−2s(p

a) = pas(1 + p−2s + p−4s + ...+ p−2as) = pas
1− p−(a+1)2s

1− p−2s

=
pas − p−s(2+a)

1− p−2s
.

(4.55)

This can be written as a Schur polynomial, since we can see from definition 2.4 that

s(a,0)(p
s, p−s) =

det

(
(ps)a+1 (p−s)a+1

1 1

)

det

(
ps p−s

1 1

) =
p(a+1)s − p−(a+1)s

ps − p−s
=
pas − p−s(2+a)

1− p−2s
. (4.56)

Next, we will verify that κs(p
aqb) = κs(p

a)κs(q
b) with p and q being prime numbers, i.e. that κ(n) is a

multiplicative function. Since the positive divisors of paqb are piqj , with i = 0, 1, ..., a and j = 0, 1, ..., b,

we can write

κs(p
aqb) = |paqb|sσ−2s(p

aqb)

= |paqb|s(1 + p−2s + p−4s + ...+ p−2as + q + p−2sq + p−4sq + ...+ p−2asq−2bs)

= |pa|s(1 + p−2s + ...+ p−2as)|qb|s(1 + q−2s + ...+ q−2bs)

= |pa|sσ−2s(p
a)|qb|sσ−2s(q

b)

= κs(p
a)κs(q

b),

(4.57)

which we wanted to show. Combining the two results above for an arbitrary n = pa11 pa22 ..., applying

the multiplicative property repeatedly, we obtain the desired result

κs(n) = |pa11 pa22 ...|sσ−2s(p
a1
1 pa22 ...) = |pa11 |s|p

a2
2 |s...σ−2s(p

a1
1 )σ−2s(p

a2
2 )...

=
∏
i<∞

(
|paii |

sσ−2s(p
ai
i )
)

=
∏
i<∞

κs(p
ai
i ) =

∏
i<∞

s(ai,0)(p
s
i , p
−s
i ).

(4.58)

�
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Remark 4.2: When writing the divisor sum as an Euler product, the so-called p-adic norm is con-

ventionally used. For our purposes, we can use the following simplified definition of the p-adic norm,

which is equivalent to the actual definition when only integers are considered.

Definition 4.4: The p-adic norm of an integer n, denoted |n|p, is defined as

|n|p =

p−a, if p is a prime factor of n with multiplicity a

1, otherwise.
(4.59)

Using the p-adic norm, the Euler product for κs(n) is

κs(n) =
∏
p<∞

|n|−sp − p−2s|n|sp
1− p−2s

. (4.60)

We note that, if a given prime p is not a prime factor of n, the p-adic norm will simply be 1, whereby

the corresponding factor in the product will be

1− p−2s

1− p−2s
= 1,

whereas if p is a prime factor of n with multiplicity a, the p-adic norm is p−a, thereby contributing a

factor
pas−p

−s(2+a)

1− p−2s
= s(ai,0)(p

s
i , p
−s
i ).

Thus, this version of the Euler product equals the one in theorem 4.3.

We can now rewrite the Fourier coefficients from (4.44) by substituting |n|s−1/2σ1−2s(n) = κs−1/2(n),

ζ(2s) and ζ(2s− 1) according to the results in theorems 4.2 and 4.3. This yields

C1(s) = 2
∏

p prime

1

1− p−2s
(4.61)

C2(s) = 2
√
π

Γ(s− 1/2)

Γ(s)

∏
p prime

1

1− p−2s+1
(4.62)

an(s) = 4
πs

Γ(s)

∏
i<∞

s(ai,0)(p
s−1/2
i , p

1/2−s
i ), (4.63)

showing that the Schur polynomials once again appear. This will make it possible to connect the

non-holomorphic Eisenstein series to the partition functions from the six-vertex model, as we desire.

This will be done in the next chapter.
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Chapter 5

Intertwining Results

In this chapter we will connect the subjects that have been studied in the earlier chapters. First of

all we will illustrate how the Eisenstein series can be elegantly related to the seemingly more abstract

studies on group- and representation theory from chapter 3. A key role in this process will be played by

the character formula. Further on, we will investigate the connection between the partition functions

of crystals and the Eisenstein series, which is one of the main purposes of this thesis.

5.1 Eisenstein Series and the Weyl Character Formula

The goal of this section is to study the connection between the non-holomorphic Eisenstein series and

the character formula for sl(2). This connection appears when studying κs(n), which was defined in

equation (4.50). κs(n) is the n-dependent part of an(s), which in turn is the numerical part of the

Fourier coefficient of the aforementioned Eisenstein series, where n is the summation variable in the

Fourier expansion. Since the parameter s is fixed for a given Eisenstein series, κs(n) is sometimes

referred to as the non-constant part of an(s) [9]. In theorem 4.3 we proved that, for an arbitrary

n =
∏
i<∞ pkii where all pi are primes, κs(n) can be written as a product of Schur polynomials,

according to

κs(n) := |n|sσ−2s(n) =
∏
i<∞

s(ki,0)(p
s
i , p
−s
i ). (5.1)

(The notation of the multiplicity of the primes has been changed from ai to ki in order for upcoming

results to coincide with customary notation.) We are now going to prove how this result can also be

reached by the use of our studies on characters of representations, and particularly the Weyl character

formula, from section 3.5. In order to complete the derivation we will, however, need to introduce a

few additional concepts.

From section 3.5 we know that we can always find an irreducible representation Vn of sl(2), by finding

the irreducible representation of some highest weight n in accordance with theorem 3.1. However,

these are not the only irreducible representations. For every Vn there are also an infinite number of

so-called symmetric powers, which are also irreducible representations. The symmetric power of Vn
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of order k = 2, 3, ... is denoted Symk(Vn). Exactly how these are defined and how they look in detail

is not of importance for this thesis, but they have one significant property that we will need to be

familiar with.

Lemma 5.1: If the matrix A ∈ SL(2, C) has the eigenvalues α and β in the standard representation

Vn, then the matrix Symk(A) – i.e. the “same” group element but in the representation Symk(Vn) –

has the eigenvalues αk, αk−1β,..., αβk−1 and βk.

To reach the desired result we also need to give an alternative definition of the character of a repres-

entation.

Definition 5.1: The character χρ of a representation ρ is defined as

χρ(g) := tr(ρ(g)),

where g is some group element and tr denotes the trace.

One can naturally show that this definition is equivalent to the one given in definition 3.25, in sec-

tion 3.5.

Now, we can write down an expression for the character of an arbitrary irreducible representation

Symk(A) of some matrix in sl(2, C). Here, k = 1 corresponds to the standard representation we have

been working with exclusively in this report, whereas k = 2, 3, ... corresponds to a symmetric power of

that representation. From the definition given above we know that

χk(A) = tr(Symk(A)) =
∑

k1+k2=k

αk1βk2 , (5.2)

assuming the matrix A has the eigenvalues α and β. In the last step we used lemma 5.1 and the well-

known fact from linear algebra that the trace of a matrix is equal to the sum of its eigenvalues.

We now want to relate this result to κs(n), the non-constant part of the numerical Fourier coefficient,

given in equation (5.1). Simply expanding the sum that the divisor function σ−2s(n) in κs(n) represents

yields, for n = pk, that

κs(p
k) = |pk|sσ−2s(p

k) = pks ·
∑
K|pk

K−2s = pks
(

1−2s + p−2s + ...+ (p(k−1))−2s + (pk)−2s
)

=

= pks + p(k−2)s + ...+ p(2−k)s + p−ks.

(5.3)

If we now set α = ps and β = p−s in the expression for the character in equation (5.2) we obtain

χk(A) =
∑

k1+k2=k

psk1p−sk2 = psk + ps(k−1)p−s + ...+ psp−s(k−1) + p−ks =

= pks + p(k−2)s + ...+ p(2−k)s + p−ks.

Note that this is exactly equal to κs(p
k) in equation (5.3). Hence, we can conclude that if A is a matrix

with eigenvalues ps and p−s we can write

κs(p
k) = χk(A) = χk

((
ps

p−s

))
. (5.4)
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The expression in the right-hand side simply denotes that we take the character of some matrix with

the eigenvalues ps and p−s.

For an arbitrary n =
∏
i<∞ pkii , we use that κs(n) is a multiplicative function (which was shown in

equation (4.57)) to write

κs(n) =
∏
i<∞

κs(p
ki
i ) =

∏
i<∞

χki

((
psi

p−si

))
, (5.5)

where we in the last step used the result from equation (5.4). Equation (5.5) is an important res-

ult relating the Fourier coefficients of the non-holomorphic Eisenstein series to the character of an

arbitrary irreducible representation of sl(2). However, we still have not used what we learned on ir-

reducible representations from the Weyl character formula in section 3.5.1. Doing so we can simplify

equation (5.5) substantially, and thereby relate it to equation (5.1) which we derived in section 4.3 by

Fourier expansion of the Eisenstein series.

For sl(2) the Weyl character formula yielded

χλ = eλ + eλ−2 + ...+ e2−λ + e−λ = s(λ,0)(e
−1, e). (5.6)

Simply applying this formula to each of the characters in the product in equation (5.5) yields

κs(n) =
∏
i<∞

s(ki,0)(p
s
i , p
−s
i ). (5.7)

Note that this is the same expression as the one in equation (5.1), which was obtained in section 4.4.1

by Fourier expansion of the non-holomorphic Eisenstein series. Thus, this calculation shows how the

Fourier coefficients of these Eisenstein series are related to the character formula for sl(2). More

precisely, one can identify κs(n), i.e. the non-constant part of the numerical Fourier coefficient, by the

character of the representation of sl(2) one is using, as in equation (5.5). This is an important and

intriguing property of the non-holomorphic Eisenstein series.

Deeper studies in the subject show that the result reached above is only a special case of a more general

result called the Casselman-Shalika formula. In order to remotely understand this formula we need

to be aware of the so-called metaplectic Eisenstein series. These are generalizations of the Eisenstein

series we have been working with, from SL(2) to all of the so-called reductive group [9, 16]. In the case

of Lie groups, a reductive group is a Lie group whose corresponding Lie algebra has a fully reducible

adjoint representation (see chapter 3 for definitions of these notions). This condition is for instance

satisfied by all semisimple Lie algebras, e.g. the general linear groups GL(n) which include the special

linear groups SL(n). In the generalization of the Eisenstein series, the notion of Fourier coefficients

is replaced by that of the so-called Whittaker coefficients. The Casselman-Shalika formula states that

the values of these Whittaker coefficients may be captured by characters of representations, for all

reductive groups. For GL(n), this implies that the characters may be expressed in terms of Schur

polynomials [9, 16]. It is this property that we proved for SL(2) above.

Finally, it is interesting to make some observations on what the different quantities in the character

formula correspond to in the expression for κs(n) from the Fourier expansion. Comparing equation (5.6)

with (5.7) for some fixed number i, we see that the basis e in the formal exponentials in the character
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formula corresponds to psi in the Fourier coefficient expression, where pi is a prime and s is the

parameter of the Eisenstein series. Furthermore, we see that λ – i.e. the weight of the representation

of which we take the character – corresponds to the multiplicity ki of the prime pi in the prime

factorization of n. These are non-trivial connections which would have been very hard to find without

performing the calculation above.

5.2 The Connection Between Crystals and Modular Forms

We are now interested in combining our results on the partition functions of crystals from chapter 2

with the results from chapter 4, on Eisenstein series. As we have already hinted, this connection is

constituted by the Schur polynomials. We now want to investigate for which crystals, with respect

to size and choice of Boltzmann weights, the exact same Schur polynomials appear as in the Fourier

expansion of the non-holomorphic Eisenstein series.

In section 4.4.1 we found that the non-constant part of the numerical Fourier coefficients of the Eis-

enstein series is given by

κs(n) =
∏
i<∞

s(ki,0)(p
s
i , p
−s
i ), (5.8)

where n =
∏
i<∞ pkii .

From theorem 2.1 we know that the partition function of any crystal constructed from a vector λ can

be written as

Z(Sλ) =

[
r+1∏
k=1

(
a

(k)
1

)λ1
c
(k)
2

∏
i<j

(
a

(j)
1 a

(i)
2 + b

(i)
1 b

(j)
2

)]
sλ

(
b
(1)
2

a
(1)
1

,
b
(2)
2

a
(2)
1

, ...,
b
(r+1)
2

a
(r+1)
1

)
, (5.9)

provided that the Boltzmann weights satisfy the free fermion condition a
(i)
1 a

(i)
2 + b

(i)
1 b

(i)
2 = c

(i)
1 c

(i)
2 . We

now want to relate this result to equation (5.8). Since the interesting connection is constituted by the

Schur polynomial, the product of Boltzmann weights in front of the Schur polynomial is disregarded

in this section. One can, however, control the value of this product with the choice of the Boltzmann

weights that do not appear in the Schur polynomial, i.e. a2, b1 and c2.

The first observation we make is that in order for the Schur polynomial in equation (5.9) to be able

to be the same as the one in (5.8), we must have r = 1 and λ = (ki, 0). The former of these

conditions makes sure that the Schur polynomials have the same number of arguments, but note that

this condition actually follows from the second one since the number of entries in the vector λ is

always r + 1, according to definition 2.1. From definition 2.3, where we learned how to construct

a crystal corresponding to a certain λ, it follows that λ = (ki, 0) yields a crystal with two rows and

ki+2 columns. Hence, we can conclude that the connection between crystals and the non-holomorphic

Eisenstein series only appears for crystals with two rows.

This result agrees with earlier studies on the subject that have tackled it from a more group theoretical

point of view. For example, the authors of [9] conclude that for an arbitrary value of r, which

corresponds to crystals with r+ 1 rows, connections can always be found with modular forms that are

invariant under the group SL(r+ 1). Since the non-holomorphic Eisenstein series that we are working
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with is invariant under SL(2) (this was shown in equation (4.15)), we find connections to crystals

with two rows. Crystals with more than two rows instead have connections to the aforementioned

metaplectic Eisenstein series, which are generalizations of the Eisenstein series that we have been

studying. A crystal with r′ + 1 rows (where r′ > 1) simply has connections to the metaplectic

Eisenstein series that are invariant under SL(r′ + 1) [9].

After having concluded what dimensions the crystals should have in order for the connection to modular

forms to possibly appear, we now also want to investigate what Boltzmann weights we should choose.

In order for the Schur polynomials in equation (5.8) and (5.9) to be equal, we need to have

b
(1)
2

a
(1)
1

= psi ,
b
(2)
2

a
(2)
1

= p−si . (5.10)

These are important and non-trivial conditions on the Boltzmann weights. Note, however, that equa-

tion (5.8) contains a product of Schur polynomials, whereas (5.9) contains only one Schur polynomial.

Thus, these conditions are not sufficient in order to obtain the exact same expressions. Then we

need to form the product of a countably infinite number of partition functions, each with the weights

chosen differently. More precisely, the weights should be chosen in accordance with equation (5.10)

with i = 1, 2, ... respectively. Also note that the crystal corresponding to partition function i should

have 2 rows and ki + 2 columns. Thus, the crystals may be of different dimension. Finding a physical

interpretation of this far from trivial connection between crystals and the Fourier expansion of the

non-holomorphic Eisenstein series is most probably a difficult task. This is something we will not be

able to accomplish in this thesis, but we encourage further research on the subject.

Although we could not find a physically realistic situation where we obtain partition functions on the

exact same form as κs(n) (the non-constant part of the numerical Fourier coefficients of the Eisenstein

series), we have still been able to expose a connection between crystals and modular forms, constituted

by the Schur polynomials. This is due to the SL(2)-invariance of the Eisenstein series, and have deep

connections to group theory. For an investigation on the subject from a more group theoretical point

of view, we recommend the work of Brubaker, Bump and Friedberg [8, 9, 10].
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Chapter 6

Conclusions and Future

Directions

String theory is an attempt to unify many of today’s leading physical theories. Among these are

general relativity and quantum mechanics, and it is this connection that is of interest in this thesis. As

stated in earlier chapters, modular forms have important applications in string theory. In this chapter

we will study this connection a bit closer. We will also summarize our work and give some directions

for future research in the field.

6.1 An Outlook to String Theory

The following calculation will outline how the Eisenstein series appear in string theory. It is not

intended to be a rigorous derivation, nor an entry point to string theory. We will glance over large

areas of both physics and mathematics, and equations will show up without much motivation. Still it

may be enough to get some understanding of how Eisenstein series can be useful in string theory.

In special relativity an important object is the Minkowski metric ηµν where µ and ν range from 1 to

4: 3 spatial dimensions and 1 time dimension. It is a constant matrix which is used similarly to the

unity matrix. The metric is needed in the unification of space and time. The Minkowski metric is

applicable in a flat space, that is, one that is not distorted by gravity.

In general relativity however, the metric is no longer constant but a function of the spacetime coordin-

ates x. The metric is then written as gµν(x). There is no need to restrict this to 4 dimensions, so

instead let µ and ν range from 0 to d. The theory then operates in a spacetime with d+ 1 dimensions,

out of which one is a time dimension.

gµν is restricted by Einstein’s equation

Rµν(gµν)− 1

2
gµνR(gµν) = 16πGTµν (6.1)
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where Rµν is the Riemann tensor, R is the Ricci tensor, G is Newtons constant and Tµν specifies

a distribution of mass. When a distribution of mass is introduced, this alters gµν according to this

equation. This is called that the spacetime curves and gives rise to gravity.

Instead of working with this equation, it is often more useful to use the action principle. To understand

this it is first necessary to define a functional. A functional S is a map

S : {fields} → R. (6.2)

Example 6.1

An example of a functional J is

J(y) =

∫ x2

x1

f

(
y(x),

dy(x)

dx
, x

)
dx (6.3)

where f is a fixed function and x1 and x2 are constant. The argument of the functional

is the function y.

Functionals can be derivated similarly to ordinary functions. However, to discern these cases, functional

derivatives are written as
δJ

δy

using δ instead of d. Functions y that gives δJ/δy = 0 are called stationary points analogous to

ordinary functions. This is most often simply written as δJ = 0.

Functionals are very important in physics because many theories can be expressed using stationary

points of functionals. One extremely important case comes from the Lagrangian L = T − V , where

T = 1
2mẋ is the kinetic energy and V (x) is the potential energy [29]. It can then be shown that

Newton’s laws of motion are equivalent to stationary points of the functional S(x(t)), i.e.

δS = δ

∫ t2

t1

L(x, ẋ)dt = 0. (6.4)

This case is known as Hamilton’s principle.

One reason that functionals are useful is that they only take scalar values. This means that they are

invariant under all symmetries. In general relativity the action that we are interested in is

S(gµν) =

∫
dDx
√
−gR(g) (6.5)

where g = det(gµν). This is known as the Einstein-Hilbert action and is equivalent to equation

(6.1).

The remainder of this calculation is based on [5]. From string theory, which operates in D = 10

dimensions, one can derive quantum corrections to this action. The first non-trivial one of these

is ∫
d10x
√
−gf(φ, χ)R4(g) (6.6)
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where φ and χ are scalar fields corresponding to the particles dilaton and axion respectively. Now

define

gs = eφ (6.7)

which is known as the string coupling. It is now possible to calculate f(φ, χ) as a series in gs.

The first two terms in the weak-coupling limit gs → 0 can be shown to be

2ζ(3)g−3/2
s

and

2ζ(2)g1/2
s .

It turns out that there are no higher order terms. These two terms are called perturbative effects

because they can be written as a series in gs. However, there can be non-perturbative effects which

can not be found like the first two. That is because f is somewhat analogous to the function e1/x. If

you try to do a Taylor expansion of this function around 0 you will see that this is not possible since

all derivatives vanish. We can conclude that f must be on the form

f(φ, χ) = 2ζ(3)g−3/2
s + 2ζ(2)g1/2

s +O(e−1/gs). (6.8)

To further determine f , a different approach must be taken. It turns out that string theory has an

exact SL (2, Z)-symmetry. For this symmetry to apply to equation (6.6), f must be invariant under

SL(2, Z). It is also possible to show that f must be an eigenfunction to ∇H with eigenvalue 3/4.

There is a unique such function, namely

f(φ, χ) = f(τ) =
∑′

(m,n)∈Z2

y3/2

|mz + n|3
(6.9)

where τ = χ+ ie−φ = x+ iy. Note that y = g−1
s . We recognize this function as the Eisenstein series

E(τ, 3/2). From equation (4.43) we thus get the Fourier expansion of f as

f(τ) = 2ζ(3)y3/2 +
√
πy−1/2 Γ(1)

Γ(3/2)
ζ(2) +

4π3/2√y
Γ(3/2)

∑′

n∈Z
|n|σ−2(n)K1(2π|n|y)e2πinx. (6.10)

Using Γ(x + 1) = xΓ(x) and Γ(1/2) =
√
π we get Γ(3/2) = 1

2

√
π [34]. Inserting this into the above

equation yields

f(τ) = 2ζ(3)y3/2 + 2ζ(2)y−1/2 + 8π
√
y
∑′

n∈Z
|n|σ−2(n)K1(2π|n|y)e2πinx. (6.11)

We recognize the first two terms from equation (6.8).

Let us now look at the remaining terms in the weak-coupling limit gs → 0, corresponding to y →∞.

In this limit, the Bessel function expands to

K1(2π|n|y) ≈ e−2π|n|y

2
√
|n|y

(1 +O(1/y)) . (6.12)

Insert this into (6.11) and exchange y for gs and we get

f(τ) = 2ζ(3)g−3/2
s + 2ζ(2)g1/2

s + 4π
∑′

n∈Z

√
|n|σ−2(n)e2π(inx−|n|/gs) (1 +O(gs)) . (6.13)
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Note that the sum is suppressed by the term e2π|n|/gs , just as stated in (6.8). These are the non-

perturbative terms.

It turns out that the non-perturbative terms corresponds to the effects of particles known as instantons.

In each term the number n is called the instanton charge and the divisor function σ−2(n) is called

the instanton measure. The instanton measure counts the number of microstates the instanton can be

in.

6.2 Concluding Remarks

In this thesis we have primarily investigated how modular forms are connected to the partition functions

of two-dimensional models of certain crystals, such as ice. By studying the Fourier expansion of the

non-holomorphic Eisenstein series, we have been able to identify the connection between this particular

modular form and the two-dimensional crystals. In doing so, we were able to determine conditions

on the size and Boltzmann weights of the crystals in order for the sought-after connection to appear.

For example, we proved that the connection to the non-holomorphic Eisenstein series only appear for

crystals consisting of two rows. We have also glanced at the world of string theory, where modular

forms once again are of great importance. In this part, we have illustrated how the Eisenstein series

emerge when studying the quantum corrections to the Einstein-Hilbert action.

By doing the above we have hopefully demonstrated the importance of modular forms in physics, both

today and tomorrow. In string theory, they will keep playing a key role in the search for unification of

quantum mechanics and general relativity. But as we have illustrated in this thesis, they also appear in

other fields, such as statistical mechanics. Thus, our studies indicate that there may exist some hidden

connection between the seemingly well separated fields of crystals and string theory. In the future search

for this connection, we would recommend a thorough investigation of how the partition functions of

crystals of arbitrary size are related to modular forms. This should partly include further studies of

the metaplectic Eisenstein series on higher-dimensional groups, but more importantly it should also

include a clarification of the physical interpretation. In string theory, numerous interpretations of the

different parts of the Fourier expansion of the Eisenstein series have already been identified, as we saw

in section 6.1. The divisor function σs(n) is the instanton measure which counts the microstates, n is

the instanton charge and the parameter s of the Eisenstein series need to be chosen to 3/2 in order for

the sought-after connection to appear. Finding similar interpretations and conditions for the partition

functions of crystals might be the key to understanding their connection to string theory.

Whether a connection between crystals and string theory exists or not will for the time being remain

uncertain. The importance of modular forms in future mathematical physics is, however, not.



Appendix A

Star-Triangle Identity

The weights of the six-vertex model can be written as Rθγνβ where connection between the weights and

the indices can be seen below:

Rθγ
νβ

β

ν θ

γ

R

β

ν

θ

γ

R

Using this we may rewrite (2.46) as∑
δφψ

Tψδτβ S
ψα
σδ R

θρ
φψ −

∑
γ,µ,ν

RνµστS
θγ
νβT

ρα
µγ = 0. (A.1)

Now arrange the weights in a matrix as following:

R =


a1

b1 c1

c2 b2

a2

 . (A.2)

We may view R as an endomorphism on the vector space V ⊗ V where V is a vector space spanned

by v+ and v−. The ordering of the base vectors is then v+ ⊗ v+, v+ ⊗ v−, v− ⊗ v+ and v− ⊗ v−. R

then operates on a state by

R(vν ⊗ vβ) =
∑
θ,γ

Rθγνβvθ ⊗ vγ . (A.3)

Now define Rij as an endomorphism on the space V ⊗ V ⊗ V where R acts on the components i and

j. For example if R = R′ ⊗ R′′ then R13 = R′ ⊗ I ⊗ R′′. This also means that R12 = R ⊗ I and
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R23 = I ⊗R. We have

R12(vν ⊗ vβ ⊗ vµ) =
∑
θ,γ

Rθγνβvθ ⊗ vγ ⊗ vµ

R13(vν ⊗ vβ ⊗ vµ) =
∑
θ,γ

Rθγνµvθ ⊗ vβ ⊗ vγ

R23(vν ⊗ vβ ⊗ vµ) =
∑
θ,γ

Rθγβµvν ⊗ vθ ⊗ vγ

. (A.4)

Define the Yang-Baxter commutator as

[[φ, ψ, χ]] = φ12ψ13χ23 − χ23ψ13φ12. (A.5)

We now claim that the vanishing of [[R,S, T ]] is equivalent to the star-triangle identity.

R12S13T23(vσ ⊗ vτ ⊗ vβ)− T23S13R12(vσ ⊗ vτ ⊗ vβ) =

R12S13

∑
ψ,δ

Tψδτβ vσ ⊗ vψ ⊗ vδ − T23S13

∑
ν,µ

Rνµστvν ⊗ vµ ⊗ vβ =

R12

∑
ψ,δ,φ,α

Tψδτβ S
φα
σδ vφ ⊗ vψ ⊗ vα − T23

∑
ν,µ,θ,γ

RνµστS
θγ
νβvθ ⊗ vµ ⊗ vγ =

∑
ψ,δ,φ,θ,ρ,α

Tψδτβ S
φα
σδ R

θρ
φψvθ ⊗ vρ ⊗ vα −

∑
ν,µ,γ,θ,ρ,α

RνµστS
θγ
νβT

ρα
µγ vθ ⊗ vρ ⊗ vα =

∑
θ,ρ,α

∑
ψ,δ,φ

Tψδτβ S
φα
σδ R

θρ
φψ −

∑
ν,µ,γ

RνµστS
θγ
νβT

ρα
µγ

)
vθ ⊗ vρ ⊗ vα = 0

∑
ψ,δ,φ

Tψδτβ S
φα
σδ R

θρ
φψ −

∑
ν,µ,γ

RνµστS
θγ
νβT

ρα
µγ = 0 (A.6)

This is exactly how we wrote the star-triangle identity in equation (A.1).

To study the vanishing of [[R,S, T ]] we want to write Rij as a matrix. Begin by determining R23 =

I ⊗R.

I ⊗R =

(
1

1

)
⊗


a1

b1 c1

c2 b2

a2

 =



a1

b1 c1

c2 b2

a2

a1

b1 c1

c2 b2

a2


(A.7)
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Similarly for R12

R⊗ I =


a1

b1 c1

c2 b2

a2

⊗
(

1

1

)
=



a1

a1

b1 c1

b1 c1

c2 b2

c2 b2

a2

a2


. (A.8)

To determine R13 we will need the twist map τ defined by τ(v ⊗w) = w⊗ v. That means that τ acts

on R by rearranging the basis vectors as
v+ ⊗ v+

v+ ⊗ v−
v− ⊗ v+

v− ⊗ v−

→


v+ ⊗ v+

v− ⊗ v+

v+ ⊗ v−
v− ⊗ v−

. (A.9)

Note that this can be seen as changing the order of the second and third basis vector. We can then

write

τ(R) =


1

1

1

1

×R×


1

1

1

1

 = T ×R× T. (A.10)

Using this we can write R13 as τ23(R12)

R13 = (I ⊗ T )(R⊗ I)(I ⊗ T ) =



a1

b1 c1

a1

b1 c1

c2 b2

a2

c2 b2

a2


. (A.11)

We now have all we need to check the vanishing of [[R,S, T ]]. Choose the weights in R as in table 2.2

and let S contain the weights of row i and T the weights of row j. Insert these into

[[R,S, T ]] = R12S13T23 − T23S13R12

and we find that we obtain 0. That means that the Star-Triangle Identity holds for the set of weights

in table 2.2.
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Appendix B

Partition Function for λ = (2, 1, 0)

Assume we want to calculate the partition function corresponding to λ = (2, 1, 0).

First, we use definition 2.3 to find the boundary conditions that all states must satisfy. This yields the

crystal in figure B.1.

Figure B.1: The boundary conditions for λ = (2, 1, 0).

We continue by identifying all states that satisfy these boundary conditions. This gives a total number

of 26 states. Two of them are illustrated in figure B.2. The particularly interested reader is encouraged

to contact any of the authors for a list of all possible states.

In order to obtain manageable equations we now make the choice to work with the weights given in

equation (2.31). We then calculate the weights of each of the 26 states by simply multiplying the

Boltzmann weights of the 15 vertices in each crystal. For the states in figure B.2 this yields

w(x1) =
(
a

(1)
1

)2(
b
(1)
1

)2
c
(1)
2 · b

(2)
1 a

(2)
1 c

(2)
2

(
b
(2)
2

)2 · c(3)
2

(
b
(3)
2

)4
= t21t2z

2
2z

4
3

w(x2) = b
(1)
1 a

(1)
1 c

(1)
2 b

(1)
2 a

(1)
2 · b

(2)
1

(
a

(2)
1

)3
c
(2)
2 · c

(3)
2

(
b
(3)
2

)4
= t1z

2
1t2z

4
3 .

After calculating the weights of all 26 states, we simply summarize them to obtain the partition function

Z(Sλ). With the help of the command Factor in Mathematica we then simplify the obtained partition

function, yielding

Z(Sλ) = (z1 + z2)(z1 + z3)(z2 + z3)(z1 + t1z2)(z1 + t1z3)(z2 + t2z3). (B.1)
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Figure B.2: Two of the 26 possible states for λ = (2, 1, 0).

We may also want to control that theorem 2.1 is satisfied. Since the vector λ = (2, 1, 0) has r = 2,

equation (2.32) – which is equation (2.30) in theorem 2.1 with our choice of Boltzmann weights inserted

– yields

Z(Sλ) =
∏
i<j

(tizj + zi)sλ(z1, z2, z3) = (t1z2 + z1)(t1z3 + z1)(t2z3 + z2)s(2,1,0)(z1, z2, z3). (B.2)

The Schur polynomial can be found from the definition as

s(2,1,0)(z1, z2, z3) =

∣∣∣∣∣∣∣
z4

1 z4
2 z4

3

z2
1 z2

2 z2
3

1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
z2

1 z2
2 z2

3

z1 z2 z3

1 1 1

∣∣∣∣∣∣∣
=

(z2
1 − z2

2)(z2
1 − z2

3)(z2
2 − z2

3)

(z1 − z2)(z1 − z3)(z2 − z3)
= (z1 + z2)(z1 + z3)(z2 + z3),

where we first used equation (2.27) to simplify the denominator and then used that we can see in the

determinant expression that the nominator must be equal to the denominator after the substitution

zi → z2
i for i = 1, 2, 3. In the last step we used the formula for the difference of squares. Insertion of

this result into equation (B.2) yields

Z(Sλ) = (z1 + z2)(z1 + z3)(z2 + z3)(z1 + t1z2)(z1 + t1z3)(z2 + t2z3),

which is identical with the expression in equation (B.1). Hence, we have shown that theorem 2.1 is

satisfied.
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