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Abstract
Power meters are vital for a cyclist during training and competitions as a tool for
evaluation and improvement. Expanding their application to other sports would
help athletes train better during workouts and maximize performance. In cross-
country skiing, power comes from the poles and highly depends on skiing technique
used. Thus, in order to predict power, it is important to predict which technique
is being used. This thesis focuses on evaluating two machine learning methods to
predict techniques in cross-country skiing. Data is collected in collaboration with
Skisens AB who provided the sensors and Ulricehamn’s skidgymnasium who helped
in collecting data and experimental planning. Data was collected on a treadmill and
on roller skis in an outdoor setting to get a balanced set of data and evaluations.
Random forests and LSTM networks were selected as the two methods for evaluation.
10 fold cross validation was performed on each model after hyperparameter tuning
and the overall accuracy, balanced accuracy and MCC score were recorded. Random
forests with a reduced feature set achieved an overall accuracy of 74.4%, while the
accuracy of treadmill data and outdoor data was 89.8% and 85.8% respectively. The
LSTM model achieved an overall accuracy of 86.2%, while the accuracy of treadmill
data and outdoor data was 86.5% and 84.1% respectively.

Keywords: Cross country skiing, machine learning, random forest, neural network,
force, analytics, data science, sports, gait analysis, skiing techniques, science, engi-
neering.
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1
Introduction

1.1 Overview
Power, or work-rate, is probably the most fundamental key indicator for comparison
of human physical performance. In contrast to other metrics, e.g., speed, it is a
robust measure to compare performance under various environmental conditions,
e.g., wind or slope. It can also be viewed as a measure of absolute intensity that can
be used for capacity analysis and for comparing different individuals. In contrast,
measures such as heart rate, only provide the relative performance for an individual.
With the use of power meters in cycling, some of the benefits mentioned above
have been realized during training and competitions as a tool for evaluation and
improvement of performance. Expanding the application of power meters to other
sports would help athletes train better during workouts and maximize performance.

Another sport that has physical requirements very similar to cycling is cross-
country skiing. In contrast to cycling, cross-country skiing has propulsion from both
the poles and skis, and the power that comes from these poles is highly dependent
on the skiing technique used. Thus, in order to assess the full-body power, it is
important to identify which skiing technique (or gear) is being used. Gait analysis
is a widely used technique that enables the study of body movement under various
conditions and help identify patterns that can explain specific behavior, postures,
etc. [1, 2, 3]. In cross-country skiing, gait analysis of an individual has usually
involved IMUs mounted on the body at various locations and processing that data
for analysis [4]. However, having sensors in ski-pole handles would enable data
collection whenever and wherever a person is skiing, without the need for a separate
IMU device.

Skisens1 is a start-up company from Chalmers, that has developed a ski pole han-
dle comprising of integrated sensors including a strain-gauge based load cell for force
measurements and a 9 axis IMU for detection of the pole’s angle versus the sagittal
plane. This information is vital to identify the rhythm, speed, force of a skier as
they ski in multiple gears. The handle is capable of processing and transmitting the
information wirelessly to a smart phone for further analysis, training and potentially
for performance improvement. If we successfully could identify skiing techniques us-
ing only the sensors in the ski pole, this would eliminate the need for additional

1https://skisens.se/en-produkten/
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1. Introduction

IMUs and create new opportunities in athlete training as they will now be able to
gather data beyond just training facilities.

Now, if a machine learning method can be developed that would continuously
learn from this readily available information, it could be used to assist skiers to
improve their techniques, analyze current performance or provide recommendations
for elite skiers and non-skiers alike. In the longer term, such a model could improve
iteratively, the more frequently a skier uses the information to train and calibrate
for their style of skiing. All this information could be made available directly on a
mobile phone via interactive visualizations.

1.2 Literature Survey
Micro-sensor units that contain a combination of accelerometer2, gyroscope and
GPS sensors are being widely used in sports for gait analysis [5, 6, 7]. Even in
cross-country skiing, such a unit mounted on the upper-back has helped identify
the different skiing techniques (Marsland et al. [8]). These sensors measured 6
features - linear acceleration along the x,y,z-axis and angular acceleration along the
x,y,z-axis. Using all these features, it was possible to identify cyclical patterns for
each technique. It was also possible to observe skiing patterns unique to a skier
by analyzing these patterns. This study was carried out in uncontrolled conditions
with respect to speed, slope etc. due to which it was not possible to study the effect
of these factors on the skiing patterns. However, another study [9] adds to this by
controlling speed and slope on a treadmill and using five accelerometers attached to
the hip, both the poles and boots. They were able to identify differences between
skiing techniques and that even though the patterns may vary across skiers, a skier
was still able to reproduce their pattern of skiing across training sessions within the
same day or after 4 months.

Machine learning methods could leverage data from such sensors to predict and
analyze performance. Neural networks such as Long Short Term Memory Networks
(LSTM) is a popular machine learning method used for prediction of sequential
data by learning long-term dependencies. LSTMs have been used previously to
analyze cross country skiing techniques (Jang et al. [10]), where they used up to 17
sensors mounted on the body. Multiple models were trained using data from different
number of sensors at specific positions on the body. Their study was performed on
data collected by 3 skiers (1 male, 2 female) outdoors on flat and natural surfaces.
They used a CNN-LSTM based deep learning model to test the different sensor
configurations. It was observed that as the number of sensors reduced, the accuracy
declined, but 5 sensors was the ideal balance between accuracy and lesser sensors.
These 5 sensors were in similar positions as the previous work [9]. Here, the model
performance was dependent on the location of the sensors, resulting in low accuracy
even when a lot of sensors were used but located at inefficient positions. They

2https://www.analog.com/media/en/technical-documentation/application-notes/
AN-1057.pdf
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1. Introduction

achieved a mean accuracy of 80% when trained over two skiers and tested over the
third skier considered as unseen data.

Another study [11] made use of a single accelerometer inside a mobile phone that
was mounted on the skiers chest. Data was collected for 11 skiers (7 male, 4 female)
and a Markov-chain based machine learning model was employed that achieved an
accuracy of 86.0% ± 8.9%. Here, it was found that the majority of the incorrect
classification occurred while switching between gears. Some studies have tried to
improve accuracy of a model by separately labeling these phases of time where a
skier is switching between two skiing techniques so that they can be predicted as
separate classes [12]. In this study, the classical style of skiing was considered and 6
sensors collectively measured data on the sternum, lower back and wrists, and with
sensors directly on the pole handle itself using velcro straps. The skiers performed
low intensity and high intensity runs on an outdoor track that enabled them to utilize
most of the techniques available. Recorded data was split into cycles of strokes and
supplied as input to a classification algorithm that achieved an accuracy >90%.

A pilot study was also conducted with Skisens using a neural-network-based ap-
proach [13], with the help of an earlier version of their ski-pole handle to identify
skiing techniques using CNN, LSTM and Bidirectional-LSTM models. In this study,
two different experiments were carried out - one where the model was trained on
a subset of data containing samples from all skiers and tested on an unseen sub-
set; and a second experiment where the model was trained on data from two skiers
and tested on unseen data from a third skier. In the first experiment, the LSTM
model yielded 95% accuracy and it was able to identify techniques accurately for
all the skiers. However, the second experiment experienced a drop in performance
resulting in an overall accuracy of 78%. It was suggested that a larger dataset with
more skiers could potentially improve these results and such a model could gener-
alize more effectively, as a model generally drops in performance when dealing with
unseen data.

1.3 Objective
The objective of this thesis is to evaluate the performance of two machine learning

methods to identify cross-country skiing techniques - specifically, 3 classical cross-
country skiing techniques. The results obtained in this study could set a base for
further development of applications that assist in training casual and elite skiers.
Through this study, we want to assess if it is possible to predict skiing techniques us-
ing only two force sensors embedded in the ski pole handles. Compared to previous
studies that use up to 6 inputs from each sensor (linear acceleration along the x,y,z-
axis and angular acceleration along the x,y,z-axis), could a machine learning model
using just 2 force measurements predict skiing techniques as accurately? Addition-
ally, since data is being collected both indoors and outdoors, we want to assess how
well the machine learning models can generalize and predict skiing techniques per-
formed indoors and outdoors. It is important to identify the right machine learning

3



1. Introduction

method that would work well with time-series data and identify nuances in tech-
niques either from available information or from additional calculated fields. The
calculated fields would be created by leveraging domain knowledge in order to ex-
tract useful features of a skiing stroke. This would allow us to evaluate whether such
calculated features could help understand the data and predictions more effectively.
Lastly, we explore the feasibility of filtering methods to refine and group prediction
results in such a way that results visually match real-world skiing scenarios better.

4



2
Background

This chapter provides background information that would be useful to understand
the experimental setup and results. It begins by introducing the basic concepts of
cross-country skiing and the techniques that are a part of this thesis. It covers details
about the sensors and the machine learning algorithms used in the experiments. The
metrics used to evaluate the the performance of the machine learning models are
also discussed.

2.1 Cross-Country Skiing
Cross-Country Skiing (abbreviated as xc-skiing) is a popular form of skiing, espe-
cially in the Scandinavian countries like Sweden, Finland and Norway. This form of
skiing is typically done in landscapes comprising of flat terrains, gentle ascents and
descents. Apart from competitive events, cross-country skiing is also popular among
people who like to explore the outdoors whether they are seasoned professionals or
beginners. Cross-country skiing requires basic equipment such as boots, skis and
ski poles. Ski poles used in cross-country skiing are longer than usual as they aid in
stability of the skier.
The skis are long and skinny, attaching to the boots only at the front part of the
foot. This enables freedom of movement using the heels for specific maneuvers. This
form of skiing requires the use of arms extensively as one tries to keep the body in
motion and move forward specifically in ascents and flat terrains.
There are two main styles of cross-country skiing - Classical and Freestyle. This
thesis focuses on identifying only the Classical techniques. For this thesis, three
classical techniques were selected to analyze and identify using machine learning
methods - Double Pole, Step Double Pole and Diagonal Stride.

2.1.1 Double Pole
The Double Pole (DP) technique is the most critical and commonly used technique
in cross-country skiing. This technique can be broken down into three phases -
Push-off, Glide and Weight Transfer. Fig. 2.1 depicts one stroke of the double pole
technique. The stroke begins with the push-off phase where hands are held high,
about a foot away from the shoulders with the elbows bent at a 90-degree angle (Fig.
2.1(a)). Once the skis are planted to the ground, the the upper and lower body is
engaged to propel forward, by flexing the abs, knees and ankles (Fig. 2.1(b)-(f)).
This is followed by the glide phase when the skier glides forward for a period of time

5



2. Background

that is dependent on factors such as terrain, wind conditions etc. As the skier is
nearing the end of the gliding duration, they enter the weight transfer phase where
they move up and forward by extending the upper and lower body that was flexed
earlier.

(a) (b) (c)

(d) (e) (f)

Figure 2.1: Double Pole Skiing Technique : Represented as a series of images going
from (a) through (f)

2.1.2 Diagonal Stride

The Diagonal Stride (DS) is the oldest and most basic cross-country skiing tech-
niques. It is a versatile technique characterized by fluid arm and leg movements
that help power the skier across flats and uphills. Since these arm and leg move-
ments are similar to walking, the diagonal stride serves as a good entry point into
cross country skiing. The two basic elements of the diagonal stride are - a Kick,
followed by a Weight Transfer. It begins by a downward facing back kick with right
foot and swinging the right arm forwards and left arm backwards, while ensuring
that the poles are angled backwards (Fig. 2.2(a)). The right pole must be planted
in line with the left foot to facilitate gliding on the left ski (Fig. 2.2(b)-(c)). Then,
the right foot must be brought back near the left foot to begin a kick with the left
foot (Fig. 2.2(d)). This time, instead of the right foot, the left foot performs a kick
while the left arm is swung forward enabling a glide on the right ski (Fig. 2.2(f)).
The left foot is brought near the right foot and all the above steps are repeated
again.

6



2. Background

(a) (b) (c)

(d) (e) (f)

Figure 2.2: Diagonal Stride Skiing Technique : Represented as a series of images
going from (a) through (f)

(a) (b) (c)

(d) (e) (f)

Figure 2.3: Step Double Pole Skiing Technique : Represented as a series of images
going from (a) through (f)

7



2. Background

2.1.3 Step Double Pole

The Step Double Pole (SDP) technique comprises of a double pole push and a
single kick. It is a suitable middle ground between double pole and diagonal stride.
A diagonal stride is a fast technique at high speeds with the risk of throwing the
skier off balance, while the double pole may demand a lot of arm-strength that
could get difficult for some skiers to keep up. The step double pole begins with a
double pole push (2.3(a)-(c)) followed by a leg push as the skier is returning from
the double pole (2.3(d)-(f)). The leg that is pushed backward recovers and returns
to its original position as the skier prepares for the next double pole push. The kick
is very prominent in this technique and needs to be timed accurately, in line with
the forward swing of the arm of the double pole.

2.2 Power-Meters and Force Sensors

In sports such as cycling, devices called power-meters are used extensively. They
are used to measure the power output of a rider and comprise of force sensors that
deform upon application of force by a cyclist. Using this force measurement one can
calculate the power (in Watts). Power meters are vital in enabling efficient training
and performance improvement.
These force sensors consist of a load cell that typically measures a point force. In
the ski handles provided by Skisens AB, the force sensor is embedded in the handle
and it measures the force exerted by the skier during each pole push. The sensors
have a sampling rate of 100 Hz and yield files that can be read by a MATLAB code/
dedicated mobile application. The ski pole handles provided by Skisens are shown
in Fig. 2.4. Fig. 2.5 shows these sensors attached to the ski poles, ready to be used.

(a) Top view of the ski
pole

(b) Side view of the ski pole handles

Figure 2.4: Ski pole handles with force sensors, provided by Skisens. 2.4a shows a
button to activate and pair handle to the app.

8



2. Background

Figure 2.5: Ski pole handles attached to ski poles

2.3 Machine Learning Methods
The machine learning methods selected for the thesis were - Random Forest Classifier
and Long Short-Term Memory (LSTM) neural network. Random forests are known
to be good classifiers and can work with high dimensional data. They can also
be tuned to reduce over-fitting and can generalize well. Additionally, there has
been limited use of random forests in other gait analysis applications [14, 15] and
it would be interesting to see how random forests perform for this application. On
the other hand, neural networks such as LSTM’s, have been used earlier to predict
skiing techniques with different types of experimental setups. However, most of the
projects made use of multiple body mounted sensors or worked with limited amount
of data. In this case, data from just two handle based sensors will be used in
addition to collecting data across different locations which could result in different
performance of the model and the generalization capability of the model can be
assessed.

2.3.1 Random Forest Classifier

Tree 1 Tree 2 Tree 3

Feature A

Feature A

Feature AFeature B Feature B Feature C Feature C

Input Data

Tree 1 :

Tree 2 :

Tree 3 :

Tree Predictions

Random Forest
Prediction

Figure 2.6: Example of a simple random forest classifier

Random forest classifiers are algorithms that build a group of ‘Decision Trees’ called
‘Forests’, and combine them together to create more stable and accurate predictions
[16]. Decision trees resemble flowcharts such that each node represents a condition
or test on a feature of the input dataset. Based on the result of the test, the node
branches into further nodes. This is repeated at each node until no further splitting
is possible a final node known as the terminal node is reached that contains the class
label. Random forests contain numerous such decision trees where instead of using
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the most important feature to split a node, it selects the best feature from a random
subset of features. This variability results in more accurate/stable predictions.

Random forest classifiers are also popular for providing an attribute called ’Feature
Importance’ that measures the relative importance of each feature on the prediction.
using the Python programming language, this attribute is automatically calculated
using inbuilt functions and scales the results so the sum of all importance is equal to
one. Feature Importance can play an important role in deciding which features to
include or exclude based on how much they impact the predictions. This can come
handy to avoid the problem of over-fitting - where the model is tailored too much
towards the training data.

2.3.2 Long Short-Term Memory (LSTM) Neural Network
Long short-term memory (LSTM) [17] networks are recurrent neural networks that
are used for classification and prediction of time series data where the network may
learn dependencies in sequential data. Recurrent neural networks (RNN), are used
for analysis of time-dependent data and work well with short term dependencies.
However, RNN’s are unable to understand context and learn long term dependencies
with back-propagation as the computations can cause the gradient to tend to zero
or infinity. These are called the vanishing gradient and exploding gradient problems
respectively. This is where an LSTM comes in, as it is capable of learning long-term
dependencies. A common LSTM unit is composed of a cell, an input gate, an output
gate and a forget gate. The cell remembers values over arbitrary time intervals and
the three gates regulate the flow of information into and out of the cell.

2.4 Evaluation Metrics
In order to effectively quantify the performance of a machine learning model, evalua-
tion metrics are used. They give an insight into the predictive capabilities of a model
by computing various measures using the original/true labels and the predicted la-
bels. There are different kinds of evaluation metrics and using multiple metrics can
give a better estimate of the model performance as a model may perform well for
one metric but not the other. This section describes the evaluation metrics that
were selected for the purpose of this thesis.

Confusion Matrix
A confusion matrix is a widely used method to evaluate the performance of a clas-
sification model. It is an N x N matrix where N is the number of labels that are
predicted. The true labels are depicted on one axis and the predicted labels on the
other that assist in calculating other evaluation metrics. Fig. 2.7 depicts a simple
confusion matrix for a binary classification problem. Fig. 2.8 represents confusion
matrices for a multi-class classification problem where each sub-figure denotes the
confusion matrix with respect to a specific label.

10
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True Positive

This value represents the number of true values matching the predicted values for
the positive label.

False Positive

This value represents the number of values that were predicted incorrectly, i.e., when
the predicted value was positive but the true value was negative.

True Negative

This value also represents the number of true values matching the predicted values,
but for the labels that are not used for calculation of true positive, i.e., the number
of true negatives matching the number of predicted negatives.

False Negative

This value represents the number of values that were predicted incorrectly, i.e., when
the predicted value was negative but the true value was positive.

Figure 2.7: Simple confusion matrix for binary classification

11



2. Background

(a) Confusion Matrix for
Label 0

(b) Confusion Matrix
for Label 1

(c) Confusion Matrix for
Label 2

Figure 2.8: Confusion matrix for multi-class classification

Accuracy
Accuracy is the number of correct predictions made by the model out of the total
predictions made. From the confusion matrix, the correct predictions are represented
by the true positives and true negatives. The complete formula is given by Eq.
2.1. For a multi-class classification problem, the accuracy is given the sum of true
positives of every class divided by the total number of predicted values. However,
accuracy is highly sensitive to class imbalance. It does not take into account the
disparity in the number of values in each class and the overall accuracy can be
skewed towards any major class.

Accuracy = TP + TN

TP + TN + FP + FN
(2.1)

Balanced Accuracy
Balanced accuracy takes class imbalance into account to give a better estimate of
the models performance. It can be calculated as the mean of the accuracy of each
of the classes calculated individually.

Matthews Correlation Coefficient
Matthews Correlation Coefficient (MCC) is an evaluation metric considered to be
reliable and informative as it takes into account values from all four categories in
the confusion matrix. Eq. 2.2 depicts the MCC formula for binary classification. It
yields a high score only if the model performs well in all these categories. It also
provides as added advantage of handling class imbalance well. Similar to correlation
coefficients, this metric returns a value between −1 and 1 where a high value (close
to 1) means that classes are predicted well and a low value (close to −1) implies a
total disagreement between true value and prediction. An MCC score of 0 means
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that the classifier is no better than a random flip of a fair coin.

MCC = TP × TN − FP × FN√
(TP + FP ) (TP + FN) (TN + FP ) (TN + FN)

(2.2)
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3
Methods

This chapter describes the data and introduces the machine learning models used to
carry out the experiments. It explains the process of collecting real world data from
skiers and performing additional processing steps so that it is ready to be input to the
machine learning models. The preliminary observations and patterns are discussed
as part of the exploratory data analysis to assist in performing the experiments.
Finally, both the machine learning models are introduced covering aspects such as
- type of input data, hyperparameter tuning and model architecture.

3.1 Data Collection
Data collection was carried out in collaboration with Skisens who supplied the sen-
sors and Ulricehamn’s skidgymnasium that has a treadmill allowing skiing under
controlled conditions. High-school athletes at Ulricehamn’s skidgymnasium assisted
with data collection and experimental planning. Additionally, video footage was
also made available of the indoor treadmill runs in order to monitor consistency in
the sensor readings and user actions. This helped in understanding if there was any
drift in the sensor data and if there was a need to apply any correction for the same.
For the purpose of the thesis, data was collected in the following scenarios:

1. Indoors : Controlled data collection based on pre-defined protocol in an in-
door environment on a treadmill. The treadmill protocol defined the duration,
speeds, slopes and techniques to be used by a skier while collecting data. The
protocol was defined to be 23 minutes long, with a change in slope and/or
speed every 30 seconds. At pre-defined times the skier would switch between
techniques thereby ensuring that all techniques are covered. The detailed
treadmill protocol is provided in Appendix. A.1.

2. Outdoors : Free-form data collection performed outdoors on roller-skis. In
this scenario, the duration, speed, slope and techniques used was dependent
on the skiing location. Given the variable geographical nature of the location,
it is not possible to adhere to a pre-defined protocol. However, the skiers
attempted to capture all techniques as best as possible. The techniques used
while collecting this data was labeled by the skiers after each session.

Since the skiing techniques vary in intensity, it was not possible to get the same
number of strokes for each technique. Thus, instead of attempting equal number of
strokes for each technique, the dataset was balanced during the machine learning
process.
A total of 14 skiers volunteered for data collection by collecting 21 sets of data for
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analysis. On the treadmill, 11 skiers - 6 Male and 5 Female collected data based
on the treadmill protocol and 3 Male skiers collected data outdoors. Some of the
skiers provided multiple data sets, such as the outdoor data collection where 3 skiers
collected data across 3-4 sessions each. No skier collected data across both treadmill
and outdoor sessions. Table 3.1 provides the details of skiers for each session. The
height and weight distribution of the skiers is represented in Fig. 3.1.

Table 3.1: Skiers Profile for Data Collection

Ski
Session

Skier
Name Gender Mass

(kg)
Height
(cm)

Pole Length
(cm)

Ski
Location

1 Skier A Male 90 190 160 Treadmill
2 Skier B Male 75 190 160 Treadmill
3 Skier C Male 75 175 145 Treadmill
4 Skier D Male 75 175 145 Treadmill
5 Skier E Female 71 179 149 Treadmill
6 Skier F Female 56 158 140 Treadmill
7 Skier G Male 86 187 157 Treadmill
8 Skier H Male 77 177 149 Treadmill
9 Skier I Female 60 172 148 Treadmill
10 Skier J Female 60 173 148 Treadmill
11 Skier K Female 49 156 135 Treadmill
12 Skier L Male 65 175 147 Outdoor
13 Skier L Male 65 175 147 Outdoor
14 Skier L Male 65 175 147 Outdoor
15 Skier M Male 73 180 150 Outdoor
16 Skier M Male 73 180 150 Outdoor
17 Skier M Male 73 180 150 Outdoor
18 Skier M Male 73 180 150 Outdoor
19 Skier N Male 80 180 150 Outdoor
20 Skier N Male 80 180 150 Outdoor
21 Skier N Male 80 180 150 Outdoor
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Figure 3.1: Height and weight distribution of skiers

3.2 Pre-Processing Data
The force data was stored in ‘.bin’ files which were converted to ‘.csv’ files using a pre-
existing MATLAB program provided by Skisens so that the Python code could work
with the data effectively. The ‘.csv’ files comprised of the force and timestamp data
along with other parameters such as slope, speed in cases where the data collection
was carried out on a treadmill. For data collected outdoors, the columns for slope
and speed were left blank as that data was not available. For the purpose of this
thesis, only the force data is of interest. Table 3.2 highlights the fields available for
analysis. The ‘.csv’ fields are further detailed in Appendix. A.2.
In addition, additional calculated fields were created - identifying the time interval
between strokes from the left and right hand, frequency of the strokes, duration of
the stroke when the pole was in contact with the ground and/or air, etc. These
additional features would be useful while evaluating non-neural network methods
such as Random Forest Classifiers. Depending on the method we choose for building
each of the models, we could either use a time-series data directly, or input feature
properties derived from the time-series to non-neural network models.

Table 3.2: Data collected for analysis

Measure Description

Time Left (min) Timestamp of the left ski pole

Time Right (min) Timestamp of the right ski pole

Force Left (N) Force of the left ski pole
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Force Right (N) Force of the right ski pole

Slope (%) Slope angle of surface

Speed (km/h) Speed of Skier

Technique Technique used by Skier

3.2.1 Data Cleaning
Upon plotting the force values over time, it was observed that there were long
periods of inactivity recorded in the poles. This was more prevalent with the outdoor
datasets where it was more likely that a skier would not be using the poles at certain
intervals due to the skiers own momentum, or while going down a gradual slope.
However, these inactive intervals were labeled as ‘Double Pole’. This mislabeled
data would have affected the prediction performance of the model as it does not
belong to any particular technique and was thus removed. This resulted in a more
compact dataset comprising of force data only from the techniques performed by
the skiers. The neural network models used this cleaned data for identifying the
skiing techniques.

3.2.2 Creating Calculated Features
The sensors had a sampling rate of 100Hz, i.e., capturing 100 force values every
second which resulted in an extremely large dataset. Random forests are known to
not scale well to large datasets making it difficult to use forests on our dataset in its
current form. Thus, calculated features that give information about multiple aspects
of a stroke were created using the force data, thereby reducing the size of the dataset
and creating meaningful features. This also provided the opportunity to compare
the different skiing techniques based on the calculated features and understand if
there are major differences in the way these techniques are performed.

Figure 3.2: Sample force profile from the left ski pole of a skier on a treadmill
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Figure 3.3: Zoomed-in view of force profile highlighting calculated features

Figure 3.4: Superimposed force profile of both the pole sensors highlighting calcu-
lated features that use data from the left and right poles

The force data from the left pole of a skier on a treadmill is shown in Fig. 3.2
where each color represents the different techniques the skier performed over the
time steps. Since the dataset is too large, this figure shows a small sample of data
for visualization.

Upon zooming into each of the strokes closely, the force curves can be visualized
individually as shown in Fig. 3.3. Here, the first four strokes of the left ski pole
can be seen - characterized by four peaks, each representing the peak force the skier

19



3. Methods

applied when planting the pole to the ground. Each cycle comprised of one stroke
which was counted from the time the skis were planted to the ground to the next
time the skis were planted to the ground again. This figure also highlights other
properties of a stroke that were extracted as calculated features discussed in detail
below. Features were extracted using the python signal processing library SciPy .

Ground Contact Duration (Tground)

Duration of time that the pole is in contact with the ground, such that a force is
applied. The force is visible as a curve with a peak signifying the maximum force
applied during the contact. The duration is highlighted in pink with green at ground
contact start and orange at ground contact end in Fig. 3.3.

Air Time Duration (Tair)

Duration of time that the pole is in the air, and no force is applied. The force is a
straight flat line measured from the orange marker of previous ground contact end
to the green marker of the next ground contacts start in Fig. 3.3.

Stroke Duration (Tstroke) = (Tground + Tair)

Each stroke is one cycle of ground contact followed by air time. It is the duration
of time between the beginning of two ground contacts.

Stroke Frequency (1/Tstroke)

It is the inverse of stroke duration.

Peak Force

Peak force is defined as the maximum force applied by the skier during each stroke
when the ski pole is planted to the ground. This attribute is calculated individually
for each pole and it is extracted by calculating the highest peak in a window of
values supplied to a function in the SciPy library. The peak force can seen as a
red ‘x’ in Fig. 3.3 on top of each of the curves.

Area Under Curve

Measured as the force area during the ground contact. It is calculated using the
maximum peak force and ground contact duration. It is represented as the green
hatched area in Fig. 3.3.

Time to other pole

It is defined as the time to the nearest peak for the opposite pole. It is measured
from the peak force of the stroke on one pole to the peak force of the stroke on the
other pole. It is visually represented in Fig. 3.4 where the force profiles of the left
and right poles are superimposed on top of each other and the measured distance is
depicted.
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Difference in peak force between poles

It is defined as the difference in the peak forces between the peak of one pole to the
nearest peak of the opposite pole. It is also measured from the peak force of the
stroke on one pole to the peak force of the stroke on the other pole. Fig. 3.4 depicts
the peak force difference between the two poles.

3.3 Exploratory Data Analysis
Once the data is cleaned and prepared, some exploratory data analysis is performed
on the dataset before being input into the machine learning models. The idea
was to understand if there are any patterns or if any observations can be made
regarding the skiing techniques that could help understand the techniques better
and by extension, probably the machine learning models as well. For the purposes
of effective visualization, major outliers have been excluded from the dataset that is
used to generate the plots. In order to understand if a machine learning model can
generalize effectively, it could be useful to see if there are major differences in the
skiing style between male and female skiers, or between skiing on a treadmill and
skiing outdoors. In each of the figures in this section, the mean is represented by a
dashed line in the middle of each distribution, and the dotted line above and below
the mean represent the quartiles of the distribution.

Figure 3.5: Comparison of Peak forces between male and female skiers across
skiing techniques

Assessing Male Skiers versus Female Skiers
In this section, only data collected on the treadmill will be considered as there is no
female skier data available from outdoors. Using the treadmill data also provides a
relatively balanced split of data (6 male skiers and 5 female skiers).
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Comparing Peak Forces Fig. 3.5 represents the distribution of peak force be-
tween male and female skiers for each technique. It is evident from the figure that
the peak forces applied by the female skiers are generally much lower than those of
the male skiers in Double Pole (DP) and Step Double Pole (SDP) techniques. This
could likely be due to males in general having much more muscle mass on the upper
body/arms, which would be most pronounced in double poling, as all force come
from arms/upper body in that technique. There is even lesser difference in peak
force applied by male and female skiers in Diagonal Stride (DS), represented by the
smaller margin between their means.

Comparing Calculated Skiing Parameters From the discussion above (Fig.
3.5), a question that arises is - do male and female skiers have a similar way of skiing
even though there is a difference in forces? In order to answer this, we can analyze
the calculated skiing parameters to gain insight into their skiing styles, shown in
Fig. 3.6.

Male and female skiers appear to have fairly similar duration of ground contact
across all techniques (Fig. 3.6(a)). Although, looking at Fig. 3.6(b) for Double
Pole (DP), female skiers have a lower air time duration and higher stroke frequency
than male skiers. However, the overall duration of the stroke is quite similar for all
skiers (Fig. 3.6(c)). Thus, irrespective of gender, the skiers appear to be skiing in a
similar fashion. Additionally, as expected, the area under the curve (Fig. 3.6(e)) is
considerably lower for females as they apply lower forces.
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Figure 3.6: Comparison of calculated skiing parameters between male and female
skiers across skiing techniques

Assessing Treadmill versus Outdoor Skiing

In this section, all collected data will be considered for analysis. It also provides a
relatively balanced split of data (11 treadmill sessions and 10 outdoor sessions).
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Comparing Peak Forces Fig. 3.7 represents the distribution of peak force while
skiing on a treadmill and skiing outdoors. In this case, the peak forces applied
while skiing outdoors is generally much higher than on a treadmill in Double Pole
(DP) and Step Double Pole (SDP) techniques. External environmental factors could
likely be the reason for applying higher forces as compared to skiing on a treadmill.
As was the case earlier, here too, there is little difference in peak force applied in
Diagonal Stride (DS) on a treadmill and outdoors.

Comparing Calculated Skiing Parameters Now, we analyze the calculated
skiing parameters to gain insight into the treadmill and outdoor skiing styles, shown
in Fig. 3.8. Fig. 3.8(a) shows that the ground contact duration is quite similar across
the three techniques - represented by the small difference between their means.
However, the air time duration is longer when skiing outdoors (Fig. 3.8(b)). These
scenarios are likely due to the momentum the skier carries outdoors, in the open, as
opposed to a limited track on a treadmill that requires continuous skiing in order
to stay on the treadmill. Additionally, the treadmill data was always recorded on a
range of slopes that were predominantly uphill. Skiing outdoors, in comparison has
varied geography that would consist of uphill as well as gradual downhill and flat
terrain. The skier would carry more momentum skiing on a flat or downhill terrain
thus requiring the skier to perform the strokes less often, resulting in lesser ground
contact time and a longer air time duration. This also translates into longer stroke
duration skiing outdoors (Fig. 3.8(c)).

Figure 3.7: Comparison of Peak forces between skiing on a treadmill and skiing
outdoors across skiing techniques
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Figure 3.8: Comparison of calculated skiing parameters between skiing on a tread-
mill and skiing outdoors across skiing techniques
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Figure 3.9: Distribution of calculated skiing parameters for all techniques

Assessing Difference in Skiing Techniques
Based on the analysis above, we can see that event though male and female skiers
apply different amounts of force, their way of skiing is similar. On the other hand,
there is a difference in the peak force and the style of skiing while skiing outdoors
versus skiing on a treadmill. Thus, in order for a machine learning model to be able
to generalize and predict skiing techniques performed anywhere, training the model
on a mix of treadmill and outdoor data could be useful.
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This section looks at the entire dataset together to observe any distinct patterns
in the skiing parameters for the skiing techniques. Fig. 3.9(a) shows that the
shortest ground contact time is during the Double Pole (DP) technique and is easily
identifiable while the ground contact duration is relatively similar for the other two
techniques. The air time duration in Fig. 3.9(b) is spread more for double pole than
the other two techniques. Fig. 3.9(e) shows the significant difference in the area
under the curve for each of the techniques which could be useful in predicting the
technique.

3.4 Random Forest Classifier
This section outlines the random forest classification experiment for the identifica-
tion of skiing techniques. The random forest model does not scale well for very
large amounts of data, so using the force data from the poles directly would not be
feasible. Instead, the model used the calculated skiing parameters that were defined
in Section 3.2.2. The model is created using the scikit-learn 1 Python library.

3.4.1 Data Preparation
The input dataset has 8 feature columns that include the calculated parameters
defined earlier - Ground Contact Duration, Air Time Duration, Stroke Duration,
Stroke Frequency, Area Under Curve, Time to other pole, Peak Height Difference,
Pole. Each row represents one stroke having values for each of the features and a
corresponding label that needs to be predicted.

As discussed in Section 3.3, the model was trained on a mix of treadmill and
outdoor sessions. The entire dataset was split into 80% Training data and 20%
Test data. An equal number of sessions from treadmill data and outdoor data were
selected to achieve a fair balance between the two. It is important to note that
although the split is fairly even between treadmill and outdoor sessions, there was
still an imbalance in the classes within each session - as the Double Pole (DP) tech-
nique was performed for a considerably longer duration than the other techniques.
To account for this imbalance, the model made use of class weights. Table 3.3 sum-
marizes the number of treadmill and outdoor skiing sessions used for training and
testing.

Table 3.3: Number of sessions by skiing location used for evaluating Random
Forest model

Treadmill Outdoor Total
Training 9 8 17
Test 2 2 4

1https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html
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3.4.2 Hyperparameter Tuning
Hyperparameters refer to the parameters that can be adjusted manually before the
training process starts. They are used to optimize model performance according to
the data that the model is being trained on. Hyperparameter tuning has signifi-
cant benefits when it comes to random forests as they help regulate the size and
complexity of the trees in the forest leading to improved memory management.

The following hyperparameters were selected for tuning:
1. Number of estimators : Range of number of trees in the random forest
2. Criterion : Function to measure the quality of a split
3. Maximum depth : Range of maximum number of levels/depth in a tree
4. Minimum samples to split : Range of Minimum number of samples required

to split a node
5. Minimum samples in a leaf : Range of Minimum number of samples required

at each leaf node
6. Bootstrap : Whether to use bootstrap samples or not when building trees

For this model, hyperparameter tuning was performed using the RandomizedSearchCV
function from the scikit-learn library. This function selects a random combi-
nation of hyperparameters in an attempt to find the best performing set for the
task. Although it may lead to high variance in the results during the search, it is
also likely that it finds the optimal parameters because of the random search pa-
rameters. Since there were a lot of hyperparameters and their values for tuning,
it was feasible to use a random search as it reduces the computation time as well.
The above parameters were input to the function and 100 different combinations
were sampled. 5-fold cross validation was performed on each combination and the
parameters were evaluated based on the overall accuracy.

The hyperparameters that yielded the best results are summarized below:
1. Number of estimators : 500
2. Criterion : gini
3. Maximum depth : 10
4. Minimum samples to split : 4
5. Minimum samples in a leaf : 2
6. Bootstrap : True

The ‘criterion’ parameter specifies the function used to measure the quality of
a split. ‘Gini’ refers to the Gini impurity which is the probability of incorrectly
classifying a randomly chosen element in the dataset if it were randomly labeled
according to the class distribution in the dataset2. The gini gain is calculated by
subtracting the weighted impurities of the branches from the original impurity. It is
possible to choose the best split in a tree by maximizing the gini gain. The model
was saved as a binary file with .sav format using the pickle library that saved

2https://victorzhou.com/blog/gini-impurity/
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the entire model architecture. This made it easy to reload the model and re-use it
when required.

3.5 LSTM Neural Network Classification
This section defines the experimental setup for the identification of skiing techniques
using LSTM neural networks. For this model, the force values data from both the
ski poles was used as input to predict the skiing techniques. The neural network
model is created using the TensorFlow Python library.

3.5.1 Data Preparation
The input dataset is 2-dimensional, but LSTM requires a 3-dimensional input in
the form of (Samples, Time Steps, Features) . Here, a sample is a sequence or
batch of one or more time steps. Each time step is one row in our input dataset
and there are two feature columns representing force, one for each hand (left and
right). In order for the LSTM to read input data, the 2D data is converted to 3D
data by creating batches of the input data. By manual inspection of the input data,
it was determined that the batch size should be 150 consecutive time steps, each
batch representing one stroke as best as possible. The label for each of the sequences
was determined by a majority vote that assigned the label of the most frequently
occurring label in the sequence to it. The result was a 3D input dataset of shape
(n, 150, 2) with n sequences, of 150 time steps each having 2 features.

The same split and the same dataset was carried forward from the random forest
classifier to train and evaluate the neural network model as well, so that the results
can be compared effectively. However, for the neural network model, in addition
to a training and test dataset, there was also a validation dataset created that was
~10% of the training dataset to evaluate performance of the model during training.
Similar to the random forest model, class weights are used to balance the labels
in the dataset. Table 3.4 summarizes the number of treadmill and outdoor skiing
sessions used for training, validation and testing.

Table 3.4: Number of sessions by skiing location used for evaluating LSTM neural
network

Treadmill Outdoor Total
Training 8 7 15
Validation 1 1 2

Test 2 2 4
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3.5.2 Hyperparameter Tuning

Figure 3.10: Distribution of calculated skiing parameters for all techniques

Fig. 3.10 represents the LSTM model used for prediction of skiing techniques.
It consists of an LSTM input layer connected to a fully connected layer and a
dropout layer followed by a fully connected output layer. In order to optimize the
model and achieve maximum performance, hyperparameter tuning was performed
and visualized using Tensorflow’s 3 visualization toolkit - TensorBoard .

The following hyperparameters were selected for tuning:
1. LSTM Layer : Number of neurons
2. Fully Connected Hidden Layer : Number of neurons
3. Dropout Layer : Dropout rate
4. Batch Size : Number of samples to evaluate before updating the model
5. Epochs : Number of times the model is executed to learn about the data
6. Optimizer : Method used to update the model weights and reduce losses

The range of values for each of the hyperparameters was selected based on trial
and error and subsequent narrowing down of the values was done based on the
model performance in terms of accuracy. Multiple combinations of hyperparam-
eters were selected and run in phases to save on execution time instead of run-
ning hundreds of unique combinations every run. Fig. 3.11 represents one such
example where a set of hyperparameters from above were tuned. For all combi-
nations, the model uses a Softmax activation function in the output layer and a
categorical cross entropy loss function since it is a multi class classification
problem.

3https://www.tensorflow.org/

30

https://www.tensorflow.org/


3. Methods

Figure 3.11: TensorBoard Screenshot showing the accuracy of a model using
different value combinations of hyperparameters. num_units represents the number
of neurons in fully connected hidden layer, lstm_units represents the number of
neurons in LSTM layer.

Figure 3.12: Architecture of the LSTM Neural network showing the input and
output in green and the neural network layers in gray. The number of neurons and
dropout rate are mentioned in brackets.

After multiple iterations of hyperparameter tuning, the model represented in Fig.
3.12 performed the best and was finalized for identification of skiing techniques. The
hyperparameters are summarized below:

1. LSTM Layer : 512 Neurons
2. Fully Connected Hidden Layer : 32 Neurons
3. Dropout Layer : 0.2 Dropout rate with 32 Neurons
4. Batch Size : 64
5. Epochs : 50
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6. Optimizer : Adam Optimizer
7. Loss function : Categorical cross entropy

The model was saved as a HDF5 file with .h5 format that saved the entire model
architecture, weights values and compile() information. This enables the model
to be reused for future research purposes and potentially for transfer learning by
building on this treating it as a pre-trained model.
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Results

This chapter describes the setup to carry out the experiments and share the results.
It details the steps taken to evaluate the machine learning models and shares the
prediction results of each model with their respective evaluation metrics.

4.1 Experiment Setup
Initial creation of ‘.csv’ files was performed in MATLAB1 on a Windows laptop with
an Intel Core i3-5005u 2.0 GHz processor and 8GB of memory. All the experiments
were performed on Google Colaboratory Pro2 and its GPU resources were utilized
while evaluating the neural network model.

The following steps were taken for both the models while evaluating the model
performance and recording the results. Any deviation from the below or additional
steps taken specific to a machine learning model has been described in their respec-
tive sections.

• The models were trained and tested on a mix of treadmill and outdoor datasets
using 10-fold cross-validation.

• The results were recorded for the entire test data set, and separately for the
treadmill component and outdoor component of the test dataset. This was
done to understand whether the overall test prediction was indicative of pre-
dicting skiing techniques in both the scenarios or was heavily skewed due to
its predictive performance in either the treadmill or outdoor scenario.

• An additional step to refine the predicted results was also performed. From
preliminary analysis, it was observed that the predicted labels for the strokes/-
time step sequences next to each other were switching between values fre-
quently and such high variation in technique in a small window of observations
is not realistically possible, as a skier will not be switching between gears so
often. So, the predicted labels were further refined by applying a majority
filter.
Single Majority Filter: In the single majority filter, a window size of 5

observations was defined, where for every label, the filter calculates the
most commonly occurring label around the current label and updates the
current label to that value. This way, if there are outliers within a range
of observations, they could be ’corrected’ using the majority filter.

1https://se.mathworks.com/products/matlab.html
2https://colab.research.google.com/notebooks/intro.ipynb?utm_source=scs-index
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Multiple Majority Filter: A second variation of the majority filter was
also used, which made multiple passes on the predicted labels using win-
dows of varying lengths. This filter resulted in a cleaner grouping of the
predicted labels and eliminated any remaining outliers from the Single
Filter.

• For each of these experiments, a confusion matrix with the accuracy score of
each label was calculated. This helped in understanding the patterns in pre-
diction and identify potential areas of improvement. Additionally, the profile
of the true skiing technique labels was plotted against the predicted values to
visualize the quality of predictions made.

4.2 Baseline Model
We begin by considering a simple baseline model to help assess whether our more
complex solution with hyperparameter tuning performs better than the baseline
model or not. The baseline model we consider uses information from Fig. 3.9 to
visually select features that can help distinguish between the skiing techniques. The
Double Pole technique is the most dominant class in the dataset followed by Step
Double Pole and then Diagonal Stride in terms of number of strokes. Thus, for this
classification problem we will begin by labeling all strokes as Double Pole by default
and then work our way towards predicting the step double pole and diagonal stride
strokes from that dataset. Thus anything that is not predicted as SDP or DS is
automatically DP by default.

Upon visual inspection we can see from Fig. 3.9b,d that the SDP technique has a
longer air time duration and lower stroke frequency than DS. Similarly, we can see
from Fig. Fig. 3.9a,b and e that DS has a longer ground contact duration, shorter
air time duration and considerably lower area under curve than DP and SDP. Using
these calculated features, it should be possible to predict the skiing techniques by
filtering the dataset based on the values. Values between the 25th and 75th quantile
±0.5 IQR were considered for each feature and the rows that satisfied these criteria
for SDP and DS were labeled respectively in that order.

Table 4.1 summarizes the performance of the baseline model. The baseline model
has an accuracy of 61.2%, a balanced accuracy of 58.8% and an MCC score of 0.370.
The confusion matrix in Fig. 4.1 depicts the prediction accuracy using the baseline
model for each skiing technique where a high number of strokes were incorrectly
classified as Double Pole, mostly because it was the default value and due to the
limited range of values considered to identify the other two techniques. However, it
is interesting to note that even in this baseline model we were able to distinguish
between DS and SDP quite effectively with DS being predicted with 58% accuracy.
Additionally, the DP and SDP technique were incorrectly classified as each other
most frequently, which is in line with the expectation as the two techniques have
some common movements. Neither of these techniques were confused significantly
in with Diagonal Stride, which is promising and can potentially be improved further.
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Table 4.1: Evaluation Metrics for the Baseline Random Forest Model

Accuracy Balanced Accuracy MCC Score
0.612 0.588 0.370

Figure 4.1: Confusion matrix for prediction accuracy of the baseline random forest
model

4.3 Random Forest Classifier

Feature Importance

Figure 4.2: Feature importance score for the entire feature set used to train the
random forest model

10-fold cross-validation was run on the random forest model and the results were
recorded. Since random forest classifiers also calculate feature importance as a
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measure, it was interesting to visualize it as in Fig. 4.2 and evaluate if there are any
features that could potentially be reduced. The area under the curve, the ground
contact and air time duration were determined to be the most important features
of the model while the difference in the peak forces between the poles and the pole
label were the least important features. It is likely that the lesser important features
could be adding noise to the data resulting in reduced performance of the model.
For instance, the pole label would not be relevant as the same movement is done
by both arms in synchronization and thus generating similar force profiles for either
pole. Similarly, the difference in the peak forces between the poles would not be
of importance as similar force is being exerted by the skier on each pole, making
the difference in the peak forces insignificant. Thus, in addition to evaluating the
random forest classifier, an additional step of reducing the feature set was done and
performance evaluated. The results for both these experiments were recorded to
observe any difference/improvement in performance.

4.3.1 Model with complete feature set
As mentioned above, the first experiment was to run the random forest model using
the entire feature set and record the results. The results from the 10-fold cross
validation were recorded for the entire test data set and for the treadmill and outdoor
components of the test dataset as well. The results are summarized in the below
tables. The values denoted for every evaluation metric are the average of the 10-fold
cross validation with the standard deviation within the brackets.

Cross-validation summary

Table 4.2 summarizes the results from the entire test dataset. The model yielded
72.7% overall accuracy and 70.7% balanced accuracy. The standard deviation was
however, large and the values seemed to vary highly across different cuts of the
data during cross validation. The MCC score for each of the scenarios was not very
high. On passing the predicted labels through a single majority filter, there was an
average improvement of ~3-4% across all evaluation metrics, with similar standard
deviation as without the filter. Passing the predicted labels through multiple ma-
jority filters yielded similar performance with minimal gains compared to the single
filter. However, the advantage of a multi filter is that it achieves a cleaner grouping
visually by grouping even the minor outliers that were left by the single filter into
larger uniform groups. This is explained further in the subsequent sections visually.

Table 4.2: Cross-validation summary for Random Forest Model. Table depicts
average across folds, with standard deviation in brackets.

Model Results
Only

Model Results
Passed Through
Single Filter

Model Results
Passed Through
Multiple Filters

Accuracy 0.727 (0.056) 0.760 (0.058) 0.769 (0.053)
Balanced Accuracy 0.707 (0.049) 0.740 (0.050) 0.740 (0.047)
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MCC Score 0.573 (0.078) 0.626 (0.081) 0.638 (0.072)

Visualizing model performance

The results were visualized as below to look for any additional patterns and obser-
vations that can be made. Confusion matrices (Fig. 4.3) were used to assess the
classification performance between skiing techniques. Comparison plots (Fig. 4.4)
were used to visualize the profile/order the skiing techniques performed and super-
impose the predicted labels to see how well the classification performed. Although
cross-validation had certain folds with very high accuracy than the average, but for
generalization purposes, the folds that performed nearest to the average value are
visualized below.

The confusion matrices are given in Fig. 4.3 for the entire test data set represent-
ing classification accuracy for each experiment. The model classified Double Pole
and Step Double Pole skiing techniques the most accurately. In these plots, Diago-
nal stride was confused with Step Double Pole the most frequently. This may not
necessarily be the case in general, but would require further investigation of confu-
sion matrices from every fold evaluated. This was followed by fairly equal incorrect
classifications between DP and SDP.

The comparison of true skiing techniques and corresponding predictions are given
in Fig. 4.4. The predictions from the model are depicted in Fig. 4.4a where a lot
of predicted labels are spread across different techniques in a small window. As this
is not possible in practice, it was important to try to clean some of these labels to
group them better. Passing the predicted labels through the single filter yields a
cleaner grouping of skiing techniques as visible in Fig. 4.4b. Using the majority
filter on the predicted labels removes even the other outliers from Fig. 4.4b and
improves them as in Fig. 4.4c. It was also interesting to see the strokes between
4000-5000 in this figure where SDP was grouped well, but seemed to be offset by a
few stroked from the true labels.
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(a) Model Results Only

(b) Model Results Passed Through Single
Filter

(c) Model Results Passed Through Multiple
Filters

Figure 4.3: Confusion matrix for accuracy of Random Forest model38
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(a) Model Results Only

(b) Model Results Passed Through Single Filter

(c) Model Results Passed Through Multiple Filters

Figure 4.4: Comparison of true skiing techniques vs. predicted skiing techniques

Assessing Model Performance for Treadmill and Outdoor Data

In this section, we will use the same model to test separate datasets comprising of
only treadmill data and only outdoor data, using 10-fold cross validation.

Table 4.3 summarizes the results from just the data that was collected on the
treadmill. The random forest performed really well on this part of the dataset,
yielding 89.1% overall accuracy and 88.7% balanced accuracy, implying that the
classification across all techniques was more accurate. Even the standard deviation
was comparatively small, varying ~4% for all evaluation metrics across the exper-
iments. The MCC score for each of the scenarios was closer to 1. As the model
had classified accurately, passing the predicted labels through a single or multiple
majority filter, resulted in a further improvement of ~2-3% across all evaluation
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metrics.

Table 4.4 summarizes the results from just the data that was collected outdoors.
The random forest yielded 84.6% overall accuracy and 74.2% balanced accuracy,
with fairly high standard deviation of ~7-10% in accuracy and balanced accuracy
but a low deviation in MCC score (~6%). The significantly lower balanced accuracy
when compared to the overall accuracy implies that the model was unable to predict
all the labels equally well. Passing the predicted labels through a single majority
filter improved the evaluation metrics by ~2%. The multiple majority filter, however,
resulted in a decrease in the evaluation metrics. This was because the larger window
sizes of the multiple majority filter caused a lot of the labels from the minority classes
to be re-labeled to the dominant class, i.e., Double Pole. This resulted in the labels
grouped continuously without outliers, but at the expense of accuracy. Comparing
tables 4.3 and 4.4, we can see that outdoor data has more variability compared to
treadmill data potentially since it was not collected in a controlled environment like
the treadmill data.

Table 4.3: Cross-validation summary for Random Forest Model on Treadmill Test
Data. Table depicts average across folds, with standard deviation in brackets.

Model Results
Only

Model Results
Passed Through
Single Filter

Model Results
Passed Through
Multiple Filters

Accuracy 0.891 (0.041) 0.920 (0.040) 0.912 (0.031)
Balanced Accuracy 0.887 (0.045) 0.917 (0.043) 0.906 (0.033)

MCC Score 0.837 (0.060) 0.883 (0.057) 0.871 (0.044)

Table 4.4: Cross-validation summary for Random Forest Model on Outdoor Test
Data. Table depicts average across folds, with standard deviation in brackets.

Model Results
Only

Model Results
Passed Through
Single Filter

Model Results
Passed Through
Multiple Filters

Accuracy 0.846 (0.079) 0.867 (0.077) 0.808 (0.064)
Balanced Accuracy 0.742 (0.098) 0.768 (0.102) 0.557 (0.063)

MCC Score 0.678 (0.142) 0.721 (0.141) 0.552 (0.118)

4.3.2 Model with reduced feature set

As mentioned in the beginning, using the feature importance plot (Fig. 4.2), it was
decided to remove the two lowest important features from the dataset and evaluate
the model performance to gauge any improvements. Thus, the first six features from
the plot were considered for the below experiment.
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Cross-validation summary

Fig. 4.5 summarizes the results from the entire test dataset. There is an improve-
ment in overall accuracy by 1.7% to 74.4% and increase in balanced accuracy by
2.4% to 73.1%. The standard deviation was lower by 1% as well varying between
~3.5-4.5%. The MCC score, however, still remained low but was an improvement
from the model using the entire feature set by 0.025. Passing the predicted labels
through a single and multiple majority filter, resulted in an average improvement
of ~3-4% from the results of the model across all evaluation metrics. Passing the
predicted labels through multiple majority filters yielded similar performance with
minimal gains compared to the single filter.

Table 4.5: Cross-validation summary for Random Forest Model with reduced fea-
tures. Table depicts average across folds, with standard deviation in brackets.

Model Results
Only

Model Results
Passed Through
Single Filter

Model Results
Passed Through
Multiple Filters

Accuracy 0.744 (0.045) 0.778 (0.042) 0.784 (0.028)
Balanced Accuracy 0.731 (0.036) 0.764 (0.035) 0.757 (0.025)

MCC Score 0.598 (0.076) 0.648 (0.075) 0.651 (0.056)

Visualizing model performance

Confusion matrices (Fig. 4.6) were used to assess the classification performance
between skiing techniques. Comparison plots (Fig. 4.5) were used to visualize the
profile/order the skiing techniques performed and superimpose the predicted labels
to see how well the classification performed. Similar to the previous experiment,
the folds that performed nearest to the average value are visualized below. In Fig.
4.6 the classification accuracy of Double Pole and Diagonal Stride skiing techniques
was predicted most accurately. The model was confused the most often between DP
and SDP, with SDP being predicted least accurately. Using knowledge of the skiing
techniques, there was some truth to the fact that the model was getting confused
between DP and SDP as they have similar movements except for a kick in SDP.
Looking at the high accuracy scores of DP and DS, but low score for SDP, one can
understand why this model had such low balanced accuracy.
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(a) Model Results Only

(b) Model Results Passed Through Single Filter

(c) Model Results Passed Through Multiple Filters

Figure 4.5: Comparison of true skiing techniques vs. predicted skiing techniques
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(a) Model Results Only

(b) Model Results Passed Through Single
Filter

(c) Model Results Passed Through Multiple
Filters

Figure 4.6: Confusion matrix for accuracy of Random Forest model with reduced
feature set
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Assessing Model Performance for Treadmill and Outdoor Data

In this section, we will use the same model to test separate datasets comprising of
only treadmill data and only outdoor data, using 10-fold cross validation.

Table 4.6 summarizes the results from just the data that was collected on the
treadmill. The random forest performed really well on this part of the dataset,
yielding 89.8% overall accuracy and 89.7% balanced accuracy, improving upon the
accuracy from the previous random forest by 1%. However, the standard deviation
was significantly lower than the earlier model (↓ by 2%). The MCC score was
similar and on passing the predicted labels through a single or multiple majority
filter, resulted in a further improvement of ~2-4% across all evaluation metrics.

Table 4.7 summarizes the results from just the data that was collected outdoors.
The random forest yielded 85.8% overall accuracy (↑ by 1%) and 70.5% balanced
accuracy (↓ by 4%), with slightly lower standard deviation of ~4-7% in accuracy
and balanced accuracy but a high deviation in MCC score (~10%). As earlier,
the significantly lower balanced accuracy when compared to the overall accuracy
implies that the model was unable to predict all the labels equally well. Passing the
predicted labels through a single majority filter improved the evaluation metrics by
~2%. The multiple majority filter, however, resulted in a decrease in the evaluation
metrics.

Table 4.6: Cross-validation summary for Random Forest Model with reduced fea-
tures on Treadmill Test Data. Table depicts average across folds, with standard
deviation in brackets.

Model Results
Only

Model Results
Passed Through
Single Filter

Model Results
Passed Through
Multiple Filters

Accuracy 0.898 (0.023) 0.931 (0.021) 0.916 (0.020)
Balanced Accuracy 0.897 (0.025) 0.929 (0.022) 0.911 (0.021)

MCC Score 0.847 (0.035) 0.896 (0.031) 0.875 (0.029)

Table 4.7: Cross-validation summary for Random Forest Model with reduced fea-
tures on Outdoor Test Data. Table depicts average across folds, with standard
deviation in brackets.

Model Results
Only

Model Results
Passed Through
Single Filter

Model Results
Passed Through
Multiple Filters

Accuracy 0.858 (0.046) 0.880 (0.044) 0.835 (0.019)
Balanced Accuracy 0.705 (0.079) 0.718 (0.093) 0.565 (0.036)

MCC Score 0.678 (0.103) 0.722 (0.103) 0.606 (0.055)
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4.4 LSTM Neural Network
Using the data setup mentioned in 3.5.1, 10-fold cross-validation was run on the
tuned LSTM model and the results were recorded. A similar setup to that of the
random forest is used in this case and results were recorded for a test dataset and
its treadmill and outdoor components separately as well.

Cross-validation summary

Table 4.8 summarizes the results from the entire test dataset. The model yielded
86.2% overall accuracy and 85.6% balanced accuracy implying good accuracy scores
across all skiing techniques. The standard deviation was low as well (~2-3%). The
MCC score was relatively high and further improved in the filter results. On passing
the predicted labels through a single and multiple majority filter, there was an
improvement of ~4-5% in accuracy.

Table 4.8: Cross-validation summary for LSTM Model. Table depicts average
across folds, with standard deviation in brackets.

Model Results

Only

Model Results

Passed Through

Single Filter

Model Results

Passed Through

Multiple Filters

Accuracy 0.862 (0.019) 0.908 (0.0170) 0.894 (0.022)

Balanced Accuracy 0.856 (0.027) 0.901 (0.028) 0.880 (0.034)

MCC Score 0.785 (0.036) 0.856 (0.031) 0.836 (0.035)

Visualizing model performance

Confusion matrices (Fig. 4.8) were used to assess the classification performance
between skiing techniques. Comparison plots (Fig. 4.7) were used to visualize the
profile/order the skiing techniques performed and superimpose the predicted labels
to see how well the classification performed. Similar to the previous experiment, the
folds that performed nearest to the average value are visualized below. Similar to
the random forest with reduced feature set, in Fig. 4.8 the classification of accuracy
Double Pole and Diagonal Stride skiing techniques was predicted most accurately.
Here too, the model was confused the most often between DP and SDP, with SDP
being predicted least accurately. This can be expected considering the similarity
in the style of skiing between both these techniques where they both comprise of
a component of double pole push. The diagonal stride is performed differently
compared to these two techniques and thus is confused the least with DP and SDP.

The comparison of true skiing techniques and corresponding predictions are given
in Fig. 4.7. The predictions from the model are depicted in Fig. 4.7a and passing
the predicted labels through the single filter yields a cleaner grouping of skiing
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techniques as visible in Fig. 4.7b. The model was able to identify even the smaller
duration of DS strokes towards the end of the plots.

(a) Model Results Only

(b) Model Results Passed Through Single Filter

(c) Model Results Passed Through Multiple Filters

Figure 4.7: Comparison of true skiing techniques vs. predicted skiing techniques
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(a) Model Results Only

(b) Model Results Passed Through Single
Filter

(c) Model Results Passed Through Multiple
Filters

Figure 4.8: Confusion matrix for accuracy of LSTM model 47
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Assessing Model Performance for Treadmill and Outdoor Data

Table 4.9 summarizes the results from just the data that was collected on the tread-
mill. The model performed similarly to the overall performance, yielding 86.5%
accuracy, 86.6% balanced accuracy and a high MCC score of 0.8. There was a low
standard deviation of ~2-3%. Passing the predicted labels through a single or mul-
tiple majority filter, resulted in a significant improvement of ~5% in accuracy and
balanced accuracy. The MCC score increased by 0.07.

Table 4.10 summarizes the results from just the data that was collected outdoors,
with 84.1% accuracy but lower balanced accuracy of 74.9%, implying skewed accu-
racy between classes. It had a higher standard deviation of ~4-5% across overall
and balanced accuracy, but a higher deviation of 8% in MCC Score. When the
results were passed through the single majority filter. accuracy improved by 3%
and balanced accuracy by 2%. However, passing the results through multiple ma-
jority filters performed poorly with the performance dropping to 81.9% accuracy
and 57.4% balanced accuracy. From Tables 4.9, 4.10 and 4.8 we can see that the
LSTM model performed similarly across all datasets, with a minor dip in predictive
performance and increase in variability when dealing with outdoor data only.

Table 4.9: Cross-validation summary for LSTM Model on Treadmill Test Data.
Table depicts average across folds, with standard deviation in brackets.

Model Results
Only

Model Results
Passed Through
Single Filter

Model Results
Passed Through
Multiple Filters

Accuracy 0.865 (0.022) 0.916 (0.023) 0.917 (0.025)
Balanced Accuracy 0.866 (0.022) 0.916 (0.023) 0.917 (0.025)

MCC Score 0.800 (0.032) 0.875 (0.033) 0.878 (0.035)

Table 4.10: Cross-validation summary for LSTM Model on Outdoor Test Data.
Table depicts average across folds, with standard deviation in brackets.

Model Results
Only

Model Results
Passed Through
Single Filter

Model Results
Passed Through
Multiple Filters

Accuracy 0.841 (0.046) 0.874 (0.057) 0.819 (0.082)
Balanced Accuracy 0.749 (0.058) 0.777 (0.081) 0.574 (0.058)

MCC Score 0.647 (0.085) 0.725 (0.107) 0.570 (0.139)
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5.1 Discussion
Both the machine learning methods outperform the baseline model. Overall, the

LSTM model performs better (accuracy ↑ by 11.7%) than the random forest model
with the reduced feature set. There was low variability in the evaluation metrics
(↓ by 2.5%) across multiple folds and a significant increase in the MCC Score (↑
by 0.187). The LSTM model was able to reproduce high accuracy results more
consistently across skiing techniques, highlighted by the higher balanced accuracy
of 85.6%. The LSTM model also performed equally well on treadmill and outdoor
data and their performance was much closer to the overall performance of the model.
Thus, the LSTM model would be able to generalize well if supplied with data col-
lected at any skiing location. The LSTM model performed as well as the random
forest with reduced features on outdoor data, but the LSTM edges the random forest
in terms of balanced accuracy. The random forest model with the reduced features
was definitely the better of the two random forest models as it eliminated the extra
features that seemed to be adding noise to the model.

Comparing the confusion matrices of the reduced random forest and the LSTM
model, similar patterns were observed. The DP and SDP techniques are similar
in hand movements and thus were most frequently confused. SDP was the least
accurately predicted technique in the random forests and impacted the overall per-
formance of the models. As expected, DS was easily distinguishable from DP and
SDP considering the difference in movements between DS and DP,SDP. DP was the
most prevalent skiing technique across the dataset and thus many strokes were in-
correctly classified as DP. By extension, when the filtering techniques were applied,
DP being the most frequently predicted class, ended up impacting the majority fil-
ters causing some of the correct classification to be incorrectly classified as well, for
the sake of grouping the close labels together.

Looking at the filtering techniques used, the use of a single majority filter consis-
tently yielded higher performance than the multiple majority filter. However, the
multiple majority filter was better at grouping the techniques together as it had
multiple passes of varying window length. This cost the model some accuracy, and
resulted in smaller groups of labels being re-classified into the dominant class. This
can probably be attributed to the basic nature of the design of the filter that could
be improved in the future by smarter grouping methods such as distance based clus-
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tering or other filters that could yield better results. But, looking at the distribution
of the predicted labels it was evident that such an application could make use of an
additional refinement step that can improve the interpretation of the results.

Both the machine learning methods performed excellently on data collected on
the treadmill. This could be due to the highly controlled environment in which
the data was collected. It contained equal duration of each skiing technique and
was more likely to be labeled more accurately than the outdoor data as the skiers
were following a time-bound test script to switch between the skiing techniques.
However, it is also interesting to note that even though there were 11 different skiers
that collected data on the treadmill, the models were able to predict the techniques
very accurately, potentially across skier attributes such as height, weight and gender.
The random forest methods were slightly better than LSTM model in predicting the
treadmill data, but had a lower accuracy overall.

5.2 Related Work
An LSTM based approach by Jang et al. [10] suggested 5 sensors as the ideal
balance between low number of sensors and a high mean accuracy of 80% for the
classical style. When using one sensor on the hip, they observed the overall mean
performance dropped to 44.10%. In comparison, with efficient positioning of sensors,
such as two sensors in the pole handles, it was possible for us to achieve a high mean
accuracy of 86.2%. It highlights the importance of positioning the sensors in ideal
locations such that measurements can be taken to help distinguish between skiing
techniques. Sandbakk et al. [12] worked with classical style of skiing and tried to
improve accuracy of a model by separately labeling the phases of time where a skier
is switching between two skiing techniques so that they can be predicted as separate
classes. Separating the transitions during prediction and then integrating the results
of those transition phases into the skiing techniques yielded an accuracy >90%. In
contrast, our study did not separate transition phases from the actual techniques,
but instead used the filtering methods to re-label incorrectly classified techniques
across the entire skiing duration. Overall, our LSTM model was able to achieve its
best overall accuracy of 90.8% with a balanced accuracy of 90.1% implying great
performance across all the classes. Even with a lesser efficient multiple filter method,
the model achieved an accuracy of 89.4%.

On the other hand, the pilot study with Skisens [13] had a similar setup as our
study, but with the machine learning models predicting freestyle skiing technique
as opposed to the classical style of skiing we considered. Their study analyzed the
time series by extracting skiing strokes of fixed length and padding the beginning
and end of the stroke for a shorter stroke duration. For our study, batches of fixed
length were considered, however, the time-series was divided without padding every
individual stroke. We collected data from a larger number of skiers (14) in both
indoor and outdoor scenarios as opposed to only treadmill data. Their study yielded
an accuracy of 78% when tested on data from an unseen skier, and we achieved an
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accuracy of 86.2% on unseen data. Our LSTM model also achieved a mean accuracy
of 86.5% on the unseen treadmill data, even when all treadmill skiers were unique
with varying heights and weights, thus being able to handle unseen data well.

It is important to note that we were able to achieve comparable results to previous
works we surveyed, but with a larger dataset, lesser sensors and lesser input data
i.e., only two force measurements. There is also a lot of potential in this approach
of skiing technique prediction that uses just two sensors located inside the ski pole
handles, as compared to having multiple sensors mounted on the body and equip-
ment of the skiers. These ski pole handles enable zero setup time and a skier is ready
to go without having to attach sensors separately. Combining such versatility with
a suitable machine learning method could enable skiers to measure and evaluate
performance easily and effectively.

5.3 Conclusion
In conclusion, we can say that we were able to fulfill the objectives of the thesis
we outlined in the beginning. We have seen that it is possible to achieve high
accuracy to predict classical skiing techniques using machine learning models that
make use of just two force measurements as input. Both the methods have shown
promise in predicting skiing techniques. LSTM Neural networks can be trained with
a few more improvements but are usually harder to tune and consume a lot of time
and resources to get right. Random forest methods have had limited application
in gait analysis, but with the right features, it is possible to develop a machine
learning model to address such problems. Random forests are interpretable and
have hyperparameters that can be tuned relatively easily. But with larger random
forests, interpretability can be difficult when trying to analyze specific scenarios.
However, with new tools such as those available in TensorFlow decision forests1, it
can be possible to investigate behavior of random forests in greater detail.

We also saw that the LSTM model can generalize well, predicting treadmill and
outdoors skiing data equally well. The random forest performed exceptionally for
treadmill data but decreased in performance and had high variability when handling
outdoor data. The LSTM model would be our recommendation for future work to
fine-tune the existing setup and potentially integrate into applications.

We can confirm that it is useful to create calculated features that could help
understand the data and predictions more effectively. Looking at the feature im-
portance plot, we were able to confirm the initial assumptions of the baseline model
where we distinguished between techniques using ground contact duration, airtime
duration, area under curve and stroke frequency. These features were identified by
the random forest model as the most important features to predict the skiing tech-
niques as well. The calculated features are helpful in understanding the nuances of

1https://www.tensorflow.org/decision_forests
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the skiing techniques such as observing the similarities between DP, SDP and dis-
similarities between DS and DP,SDP. It helped shed some light on what to expect
when performing predictions using the machine learning methods.

Lastly, we saw the benefit of employing filtering methods to refine and group pre-
diction results in such a way that results visually match real-world skiing scenarios
better. There was a consistent improvement in prediction when a single majority
filter was applied across all machine learning methods. With the help of a simple
filter, we may potentially not need additional labels, features to predict transitions.

The structured and unstructured data that has been collected for the purposes
of these experiments can be used in the future to build upon the findings from
here. It can become part of a larger dataset that potentially comprises of more
classical techniques and freestyle data so that models can be trained to cover more
cross-country skiing techniques. Data could also be collected in the future for one
technique at a time and help train models using the same for applications such as
training and calibration to a skiers style of skiing.

Having such predictive power in the form of an application that is used by casual
and elite skiers could be beneficial in evaluating performance. The LSTM model can
be used as a pre-trained neural network for transfer learning and further improve the
performance of prediction. This data could also be used for biomechanical analysis
in skiing and identify any other patterns that can differentiate between techniques
and thus help in better predictions as well.
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A
Appendix

A.1 Data Collection : Treadmill Protocol
Pre-defined protocol for data collection on the treadmill.

Table A.1: Treadmill Protocol

Time
(min)

Slope
(%)

Speed
(km/h) Technique

0 2 14 Double Pole
0.5 2 16 Double Pole
1 2 18 Double Pole
1.5 2 20 Double Pole
2 2 22 Double Pole
2.5 2 24 Double Pole
3 2 14 Double Pole
3.5 4 10 Step Double Pole
4 4 12 Step Double Pole
4.5 4 14 Step Double Pole
5 4 16 Step Double Pole
5.5 4 18 Step Double Pole
6 4 20 Step Double Pole
6.5 4 18 Double Pole
7 4 16 Double Pole
7.5 4 14 Double Pole
8 5 14 Double Pole
8.5 6 14 Double Pole
9 7 14 Double Pole
9.5 3 14 Double Pole
10 3 12 Step Double Pole
10.5 4 12 Step Double Pole
11 5 12 Step Double Pole
11.5 6 12 Step Double Pole
12 7 12 Step Double Pole
12.5 8 12 Step Double Pole
13 9 10 Step Double Pole
13.5 10 10 Step Double Pole
14 6 8 Diagonal Stride
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14.5 8 8 Diagonal Stride
15 10 8 Diagonal Stride
15.5 12 8 Diagonal Stride
16 14 8 Diagonal Stride
16.5 16 8 Diagonal Stride
17 6 9 Diagonal Stride
17.5 6 10 Diagonal Stride
18 7 11 Diagonal Stride
18.5 8 12 Diagonal Stride
19 9 13 Diagonal Stride
19.5 8 14 Diagonal Stride
20 7 15 Diagonal Stride
20.5 7 15 Step Double Pole
21 7 15 Double Pole
21.5 7 11 Diagonal Stride
22 6 10 Diagonal Stride
22.5 6 8 Diagonal Stride

A.2 Data Collection : Description of CSV file

Table A.2: Description of fields recorded in the csv files

Field Name Field Description
t_prot (min) Timestamp recorded on the treadmill
t_left (min) Timestamp recorded on the left pole sensor
t_right(min) Timestamp recorded on the right pole sensor
f_left (N) Force measured on the left pole sensor
f_right (N) Force measured on the right pole sensor
slope (%) Inclination of the treadmill
speed (km/h) Speed of the treadmill
gear Skiing technique performed
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