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Multi-user Driving Simulation
Jiahui Liu and Yanni Xie
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Functionalities of a supportive and autonomous car need to be tested in the con-
text of traffic scenarios. However, due to time and space limitations, real scenario
testings are usually unpractical for design and refine purpose. In this case, virtual
testing including software simulation is a pretty good alternative. This thesis aims
to implement a real-time cross-platform multi-user driving simulation under a spe-
cific scenario for the convenience of testers.

In this thesis, we firstly give an introduction on several important concepts about
driving simulation as well as the simulation platforms that we used. The driving
simulation is mostly conducted in Unity which is a user-friendly game engine with
high flexibility on development and good visualization effects on rendering. The
scope of the thesis is also proposed in details in the first section. Then we present
the implementation process of the simulation. The focus of the simulation is on
the coordination and communication among distributed vehicle objects on different
entities. A modified client-server network architecture is applied and a network-
ing algorithm is developed to simulate the coordination. To build communication
links over the network, we propose a protocol denoted as the SimS protocol which
is based on User Datagram Protocol (UDP) in the simulation. In addition, some
smoothing strategies to improve the visualization performance of the simulation,
e.g., interpolation and extrapolation, are introduced and implemented as well. In
the third section of the thesis, we present the simulation results, performing some
analysis together with doing comparisons with regard to different settings of simula-
tion parameters. The simulation is firstly conducted within Unity and then extended
to cross-platform, namely the integration between Unity and VIRES Virtual Test
Drive (VIRES VTD). Finally, we conclude the work and propose some potential
future work on network time protocol (NTP) to further improve the simulation per-
formance.

Keywords: Driving simulation, Unity, Real time, Networking, Client-server model,
UDP, SimS protocol, Extrapolation, Cut-in scenario.
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1
Introduction

1.1 Background

1.1.1 Multi-user Driving Test

Functionalities of supportive and autonomous cars need to be tested in the context
of traffic scenarios. In perspective of software test, this kind of simulation is typi-
cally done by modeling one human-controlled vehicle denoted as ego vehicle, and a
number of predefined virtual road users denoted as dummy vehicles [1, 2]. However,
there is a growing need for including two or more ego vehicles in the same scenario.
One case is a head-to-head exploratory simulation test where two testers sit next
to each other manipulating their own ego-vehicle object via different simulators. In
this way they can communicate easily on tuning specific maneuvers, which brings
benefits to function tests, feature explorations and system demonstrations.

The real-time multi-user driving simulation presented above is much similar to the
concept of multi-player computer games. In a simulation session of multiple ego
vehicles, the distributed simulators are connected either into a Local Area Network
(LAN) when there is a physically short range among them or via the Internet for a
long distance case. These two cases are similar to the design of multi-player LAN
games and online games, respectively. Hence, it’s promising to investigate real-time
interaction solutions in game industry and build new solutions to the multi-user
driving simulation in automotive industry.

1.1.2 Simulation Platform

To begin with, we need to select a simulation platform. From the perspective of visu-
alization, a game engine provides a decent user interface in 3D animation. Moreover,
a game engine provides both high level and low level application programming in-
terfaces (APIs), making it quite flexible to develop. Therefore, a game engine is
very appropriate to be a driving simulation platform. The most two popular ones
nowadays are Unity [3] and Unreal [4] Engine. A comparison of them is shown in
Table 1.1.

1



1. Introduction

Game
Engine

Programming
Languages

Graphical
Capabilities

Hardware
Demands Cross-platform

Unity C#, JavaScript Strong Lower Yes
Unreal C++, Blueprints More Powerful Higher Yes

Table 1.1: Comparison between Unity and Unreal Engine

As is shown above, Unity uses C# and JavaScript as programming language while
Unreal Engine uses Blueprints Visual Scripting for novice programmers and C++
for further developments[5, 6]. In terms of graphic visualization, Unreal Engine has
a more graphically intensive shading model than Unity’s standard shader, which
means Unreal has better graphics potential and is more artist friendly. And Unreal
Engine relies more on hardware due to its editor, C++ compiling, and material
building, which means Unity is faster and cleaner. Both of them are cross-platform
game engine supporting multiple platforms such as Windows, Linux and PlaySta-
tion, but Unity makes the development process for mobile games a lot easier than
Unreal. In addition, Unity provides a wide assets store and many tutorials for per-
sonal development and its editor is more user friendly. Considering the case of use
and our focus on function realization rather than graphics, we choose Unity for the
development in our project. The user interface of Unity editor is shown in Figure 1.1

Figure 1.1: The User Interface of Unity Editor

1.1.3 Integrated Development Environment
Visual Studio is an integrated development environment (IDE) [7]. One can use Vi-
sual Studio to write code with the language of C++, C#, Visual Basic, JavaScript,

2



1. Introduction

TypeScript, Python, and more[7, 8]. Visual Studio is used in our project to support
C# code as Unity utilizes C# scripts to describe the behaviour of objects.

1.1.4 Multi-platform Integration
Besides game engines, there are many other driving simulation platforms. For ex-
ample, Hardware-in-the-loop (HIL) dSPACE simulator which is shown in Figure
1.2, as a real-time simulator including processors and input/output cards, together
with VIRES Virtual Test Drive (VIRES VTD) desktop application for visualization
is widely used as a simulation platform in the automotive industry. It would be
powerful putting a bunch of virtual vehicle objects from different driving simulation
platforms into the same network and making them communicate with each other.
To realize this kind of integration including real-time communications and coordi-
nations, a common protocol defining the communication regulations and specifying
rules on data exchange, named as Simulation Scenarios (SimS) protocol in our case,
needs to be designed.

Figure 1.2: HIL dSPACE Simulator

1.1.5 Simulation Scenarios
Scenario is a repeatable and executable setup of scene, traffic and various kind of
deterministic actions. In our case, scenarios are written in Extensible Markup Lan-
guage format and can be edited in any text editor. Several driving scenarios are quite
representative and essential to the test of autonomous driving functions and will be
used in our project, such as the cut-in scenario and the highway-merge scenario.
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1. Introduction

The static objects included in these simulation scenarios, such as the road network
and the traffic events for dummy vehicles, will be defined by OpenSCENARIO files.

1.2 Aims and Scope

1.2.1 Aims
In a nutshell, the aim of this project is to build up a pilot driving simulation sys-
tem where multiple ego and dummy vehicles join together in a common simulation
session such that some functions in autonomous driving could be tested in a easier
way. The illustration of the whole architecture is shown in Figure 1.3.

Figure 1.3: Pilot System Setup

As is shown in Figure 1.3, the system is mainly composed of two parts. The first
part is to build up the network of distributed simulators which only simulates ego
vehicles in Unity applications. There are many choices that need to be done about
network setups including communication range of the network, concurrent users,
network architecture and transport layer protocols. Some of them are limited by
the scope below. The second part is to realize the integration between Unity and
the other simulation platforms, which in our case is HIL dSPACE simulator together
with VIRES VTD application that simulates some other ego vehicles and dummy
vehicles. The SimS protocol used by the whole system needs to be defined. Mean-
while, the simulation scenario of this pilot system is controlled by OpenSCENARIO
files.

The aims of this project are described in details as below:

4



1. Introduction

• Discover the challenges in coordination and interactions between distributed
simulators in real-time system. Investigate the corresponding solutions to the
networking of multiple players in video game industry. Find benefits and lim-
itations of different strategies with regard to latency and robustness under
various network setup cases.

• Explore the differences on requirements between our automotive simulation
session and pure multi-player games. Design the networking of multiple simu-
lated ego vehicles within standalone Unity applications. Evaluate the perfor-
mance by measuring the latency.

• Define and realize the common protocol denoted as SimS protocol that is used
by the whole pilot driving simulation system. The protocol includes message
type, package structure, package payload, the way to communicate and so on.

1.2.2 Scope
The choices on network setups have a direct effect on the networking solution to
real-time system. The range of the choices is limited in this part. There are four
combinations in total with regard to the range of the network and concurrent users.
The former is a reflection of the system tolerance on delay while the latter affects
communication capacity and the choice on network architecture. The category in
details is shown in Table 1.2.

Network
Concurrent users 2 >2

Local Area Network (short range) 3

the Internet (long range)

Table 1.2: The set up of the system

Among the four cases, although the one with two concurrent users connecting to
LAN might be the most common setup in the sense of the practical manipulation
environment, we’ll mainly focus on the one where more than two concurrent users
are connected into LAN because it would be more flexible and could be easily scaled
down. However, the other three cases are under discussion to some extent in this
thesis.

1.3 Methodology
The thesis is carried out by two students. We cooperate and discuss with each other
all the time. We work in parallel in most of the phases using different methods so
that each of us could have a comprehensive understanding on the topic and a better

5



1. Introduction

way together with a backup plan could always be found.

The whole process of this thesis are mainly divided into three phases, namely the
strategy study phase, the implementation phase, and the phase of test and further
improvements. These phases are conducted in a serial sequence while there could
be overlaps between the phases.

There are some differences between building a console app using visual studio and
building a Unity app using visual studio. Most of the functions in the thesis work
are firstly built in console apps. When they are tested to work properly, they are
added to Unity development.

1.4 Outline
In Chapter 2 we present the whole implementation part of the thesis work in depth.
Strategies, algorithms and key methods to realize a function are included. As indi-
cated in the aims and scope part, the implementation starts from networking within
Unity then expands to Unity adaptation to the common protocol. In Chapter 3 we
show the simulation results and perform some analysis with regard to these results.
In Chapter 4 we draw a conclusion of the thesis topic and describe the related future
work for further improvements.
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2
Implementation

2.1 Network Configuration
This section defines the network behaviour of multiple users within Unity, dealing
with communication and state synchronization issues between multiple terminals.

Subsection 2.1.1 lists advantages and limitations of two kinds of network architec-
ture and explains the reason to choose client-server model as the proper one for this
project. Some modifications based on the typical client-server model in this project
are mentioned as well. Subsection 2.1.2 presents the selection of the proper com-
munication protocol for the network on transport layer. Subsection 2.1.3 explains
several techniques and the whole algorithm applied in building up this network. The
techniques include asynchronous methods, ring buffers, non-authoritative server, etc.

2.1.1 Network Architecture and Synchronization
The simulation is ultimately run on different computers and manipulated by mul-
tiple end users, which means it is a distributed application. When it comes to a
distributed system, synchronization on the states between multiple machines be-
comes vital. The way to conduct synchronization depends on network architecture
which refers to how the computers are organized and how the workload is parti-
tioned in distributed computing. Two basic architectures that are widely used are
peer-to-peer (P2P) networking [9] and client-server model [10]. The illustration of
them is shown in Figure 2.1.

For peer-to-peer networking, as shown in Figure 2.1 (a), there is no central entity
and peers exchange information among each other in a fully connected mesh topol-
ogy. Each peer controls its own state and works as a mealy machine where the
output state is determined by the current state and the current inputs. Ensured
the same initial state and inputs each time, all the peers will end up with the same
status, which is the key to synchronize.

Although this kind of network seems to be easy to implement because of the iden-
tical role of each peer, there could be several limitations. Firstly, it could actually
be very hard to make it stable because it’s exceptionally difficult to ensure that the
simulation is completely deterministic [11]. (A process is deterministic means that
the next state could be predicted based on the data in the present state.) Only
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2. Implementation

(a) Peer-to-peer Networking (b) Client-server Model

Figure 2.1: Illustration of Two Network Architectures

tiny difference, such as the difference between peers on computation, will result in
complete out-of-synchronization over time. Secondly, in order to synchronize the
states, a peer within the network needs to wait until all the users’ commands for
that turn are received before simulating that turn. This means that each user has
the latency that equals to the most lagged user within a turn. Thirdly, it’s hard
for a user to join a simulation in the middle of a process because it’s very hard to
decide the initial state of the inserted user in practice.

Being different from peer-to-peer networking, there is a central entity (the author-
itative server) that controls the whole status in client-server model, as is shown in
Figure 2.1 (b). Except for the server, all the other entities are called clients and they
don’t exchange information with each other. According to the star topology, every
client connected to the server constantly sends requests to the server and receives
updates from the server, locally creating a representation of the simulation state. In
this way, it is only the server that deals with all the user inputs and conducts the
computation, thus guaranteeing the state synchronization by sending identical data
to all the clients within each update.

It’s obvious that the client-server model could solve some of the limitations men-
tioned above in the peer-to-peer part. It is not necessary to ensure the simulation
being completely deterministic. The latency is shortened much if the server sits
in a data center with a high-performance backbone connection. The server could
always provide the most recent state of the simulation so that it’s easier for a new
client to join in the middle. However, client-server model has some limitations with
regard to the other aspects as well, such as the required bandwidth. Bandwidth
plays an important role in communication. The problem is that the server needs
to propagate every detail needed to be synchronized to all the clients within each
update. In contrast, a peer only needs to send its own user input to another, thus

8



2. Implementation

saving bandwidth a lot.

The overall comparison between these two architectures is shown in Table 2.1. Note
that the disadvantages of peer-to-peer networking can be enlarged with the increase
of concurrent users. Peers are easier to be out of synchronization [12]. In game
industry, this architecture is only applied for turn-based (round-based) games be-
cause those cases are not affected that much by latency. Considering our driving
simulation is in real time which means it’s sensitive to latency, and more than two
concurrent users in the simulation as mentioned in the thesis scope, client-server
model is more suitable for this simulation. Thankfully Unity supports client-server
model.

Network
Architecture

Stable
Synchronization Latency Join in the

Middle
Bandwidth
Requirement

Peer-to-peer Harder Higher Harder Lower
Client-server Easier Lower Easier Higher

Table 2.1: Comparison between Peer-to-peer Networking and Client-server Model

Note that we don’t use a typical client-server model, instead modifying it in some
ways. The server in the typical client-server model is totally authoritative, which
means clients are nothing but a way for the user inputs to be sampled and for the
objects to be locally rendered. In this case clients have to wait for the server’s
response and the round-trip-time would lead to a delay between user inputs and
corresponding changes on the screen, which should be improved in our real-time
driving simulation. An inspiration from game industry is that a client could sim-
ulate its next movement locally while waiting for the instructions from the server
and then correct the result when it isn’t consistent with that from server’s update.
However, in contrast to multi-player game, there is no cheating behaviour in our
multi-user driving simulation. A client has the authority to decide its own states
and don’t require the correction from the server. Therefore, a better way to balance
state synchronization and visualization delay here is that a client directly reports
its current status to the server after local calculation rather than sends requests or
commands to the server and lets the server make the decision. Then the server is
responsible for multicasting the message to the other clients as soon as it receives a
message.

2.1.2 Communication Protocols on Transport Layer
When it comes to data exchange among the server and a bunch of clients, communi-
cation protocol shall be the focus. Communication protocol usually defines rules that
govern the communication system, including syntax, semantics, synchronization of
communication and possible error recovery methods. A classic conceptual model
for a communication system is the Open Systems Interconnection (OSI) model [13].
It characterizes and standardizes the communication functions for the purpose of

9



2. Implementation

systems interconnection. The functions are mapped into the layers, and each layer
solves a distinct class of problems relating to, for instance: application-, transport-,
internet- and network interface-functions[13, 14]. A communication system could
be divided into seven layers as indicated in Figure 2.2. One layer provides services
to the layer above it and requests services from the layer below it.

Figure 2.2: The Open Systems Interconnection (OSI) Model

To transmit a message, a protocol has to be selected in each layer. Among the seven
layers, the physical layer is the most basic one that is responsible for the trans-
mission and reception of unstructured raw data between a device and a physical
transmission medium. Two protocols here that are commonly used in laboratories
are Ethernet and WiFi. A comparison between their effects to the final results will
be shown in subsection 3.2.2. With regard to the layers above, we select protocols
from the Internet protocol suite. A foundation protocol chosen on the network layer
is the Internet Protocol (IP) and our project doesn’t focus on that too much. In-
stead our focus is on the transport layer.

The transport layer provides end-to-end communication services for applications[15,
16]. The User Datagram Protocol (UDP) is the basic transport layer protocol provid-
ing an unreliable datagram service while the Transmission Control Protocol (TCP)
provides flow-control, connection establishment, and reliable transmission of data.
The comparison of these two protocols is clearly shown in Table 2.2.

10



2. Implementation

Protocol Data Format Data in Order Re-transmission Reliable Real-time
UDP Datagram No No No Yes
TCP Segment Yes Yes Yes No

Table 2.2: Comparison between UDP and TCP

TCP provides reliable transmission service by detecting the lost data and retrans-
mitting it. It could also guarantee a correct order of data by adding a sequence num-
ber to identify each byte of data. In contrast, UDP doesn’t have a retransmission
mechanism because it provides a connectionless datagram service that emphasizes
reduced latency over reliability, which means that UDP is more suitable for real-
time applications. Considering the goal for the project is to carry out the multi-user
driving simulation in real time, UDP is selected to be the base of our transport layer
protocol. Its defects on data reliability could be compensated by some techniques
mentioned in the section 2.3.

With regard to the application layer, real-time transport protocol (RTP) whose im-
plementations are mostly built on UDP seems to be a good choice. However, RTP is
typically used to deliver multimedia data, including audio and video data while the
information we actually need to transmit in this project is requests and responds.
A simulation frame is calculated according to the inputs in each update and then
rendered rather than being delivered from the server side directly. Hence, SimS
protocol will be developed based on UDP and used instead of RTP.

2.1.3 Network Algorithm
Based on the above part, the network setups within Unity platform could be de-
scribed as Figure 2.3. In this part, the networking workflow is explained in details.

Figure 2.3: Illustration of the Network within Unity
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2. Implementation

In Unity, except for the physical game objects which include ego vehicles, road
networks and cameras in our project to be rendered in the scene, an empty game
object i.e., game object without physical shape or characteristics, being responsible
for managing networking shall be created in the hierarchy of Unity editor. More-
over, the corresponding script shall be attached to this object as its component in the
game object inspector. In this way, the empty game object could act as a network
manager, controlling the network behaviour using the attached script. Therefore,
how Unity scripts work should be figured out firstly.

In Unity scripting, there are a number of event functions that get executed in a
predetermined order as a script executes [17]. This execution order is described in
Figure 2.4. A customized function could be written inside a specific event function
so that it will get called by Unity at a specific stage in run-time.

Figure 2.4: Execution Order of Event Functions in Unity Scripts [3]

To ensure multiple users staying in synchronization, we take the principle that the
server and all of the clients execute the same code from the same scripts on the same
game objects at the same time. To control the flow of logic, for example to assign
a specific function only to the server or client, the bool value isServer could be set
up and checked. As is shown in Figure 2.4, to control the initialization stage in run-
time, code could be written inside the Awake function. This function is always called
for the active game objects during start up before the first frame update and is only

12



2. Implementation

called once. Another important task is to keep track of the simulation parameters in
run-time, including logic and interactions, animations, camera positions, etc. The
common way is to write this part of code inside the Update function which is the
main workhorse function of frame updates. This function is called once per frame,
allowing one to monitor inputs and other events regularly and take appropriate ac-
tion. Moreover, there are other event functions in Unity we can use for updating,
such as FixedUpdate. The difference will be discussed in the following chapter.

A basic task for a network in the initial stage is to settle up its configuration, which
means to figure out the connecting users for a point within the network. A contact
list indicating the IP addresses of the communication destinations could be applied
for either the server or a client. According to the illustration in Figure 2.3, the only
communication destination for a client is the server IP while the server’s contact
list should include all the IP endpoints that have talked to it so far. Therefore, the
contact list of a client shall be fixed in the Awake function while the list of the server
could be updated at any time in run-time.

When it comes to the network communication which is based on UDP as mentioned
above, two main operations are sending and receiving messages. Actually there are
several methods to implement these two process for UdpClient class in C# . How-
ever, some of them are blocking method which means another task is blocked and
unable to execute until the first task has finished. In this case, an instance can’t
execute sending and receiving at the same time. One solution could be applying
multithreading to ensure the concurrent tasks. By this way an end-point could
output messages whenever it needs to without waiting until some data come in.
Meanwhile, there is another solution to simplify the problem called asynchronous
method. Asynchronous method allows the code to start an operation in a way that
does not hold up the entire thread of execution. The framework calls you back when
it’s done [18]. Related events will be triggered in the callback function when being
indicated that the response is available.

We choose to apply the asynchronous method for convenience of resolving the con-
current process here. Take the receiving process as an example. Firstly a UdpClient
instance calls its asynchronous method BeginReceive. BeginReceive method will
start a receiving operation that does not block the main thread. When there is
something to receive, BeginReceive method invokes another callback method On-
Receive and pass its asynchronous receive result in object format to OnReceive as
inputs. A byte array containing the datagram data will be accessible then by ap-
plying the corresponding asynchronous method EndReceive. Subsequent events will
be triggered according to the received information and the UdpClient instant needs
to start the receiving process again. This loop will be executed from the very begin-
ning (in Awake function) till the end of the simulation application. The pseudo-code
about this part is shown as Algorithm 1.

Next, we discuss the flow of dual-way network communications within Unity. Note
that there are two kinds of objects (vehicles) being rendered on a client’s side. The
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Algorithm 1 Asynchronous Receive Process
1: procedure BeginReceive(Callback OnReceive, Object Null)
2: end procedure
3: procedure OnReceive(AsyncResult ar)
4: ByteArray buffer← EndReceive(AsyncResult ar, IPEndPoint remoteEP)
5: Do some judgments and trigger some events
6: BeginReceive(Callback OnReceive, Object Null)
7: end procedure

ego-vehicle controlled by the client itself is called a local vehicle and can be handled
directly according to the instant inputs from keyboards. This part is discussed in
the mono-behaviour part in Section 2.2. In contrast to the local vehicle, the other
ego-vehicles controlled by the other clients are called remote vehicles. To control
the movements of the remote vehicles, information is updated by the packets sent
from the server.

To render the simulation, on one hand, a client is responsible for sending continuous
status report of its local vehicle to the server. The status includes information about
the ego vehicle’s position, orientation, etc. Details about the format of the message
are discussed in Section 2.2. This kind of message should be sent once per frame
for refreshing the simulated graph. Therefore this sending process is done in the
Update function. On the other hand, once the server gets an update message from
a client, it is responsible for delivering this message to all the other clients to keep
the corresponding vehicle being rendered correctly on all the clients. This update
information should be sent out from the server immediately once it’s received for
the purpose of reducing latency.

When a client receives messages from the server which contain the status informa-
tion about the remote vehicles, a key point is to apply a ring buffer for storing
the current message and processing messages smoothly. The storage of the current
message is realized as below: The ring buffer has a maximum size and works as
a message queue. A newly received message is added to the queue while a mes-
sage that has already been processed is deleted from the queue. If there are several
remote vehicles being rendered on a client simultaneously, several message queues
should be created and handled in parallel because we need to assign the updated
state information to the corresponding remote vehicle for simulating. It means these
message queues could be distinguished by the vehicle ID and there is an ID list being
responsible for the registration of the active vehicle IDs. The illustration about the
ring buffer is shown in Figure 2.5.

Then comes the part of processing messages in the queue. Before a message is
added to a message queue, there is a pre-operation: Parse the message from a byte
array to the object format which could be called object packet below. To check
the available (unprocessed) packets stored in the buffer, a loop over all the existing
message queues could be applied. A client shall deal with the available packets as
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many as possible in a frame. This process occurs within Update function as well.
If there is no packet to deal with in a frame because of network latency or lost
datagram caused by UDP, extrapolation method would be applied. This function
is discussed in Section 2.3. Otherwise just do the object synchronization, rendering
the corresponding remote vehicle object according to the status data contained in
the packet. Note that if the vehicle ID is identified as new, it means a new client
has just joined the network. To simulate this new remote vehicle, firstly we should
create the vehicle object in correct state.

Figure 2.5: Illustration for the Ring Buffers on a Client’s Side

From the above we could see that the server and clients do the same operations,
sending and receiving messages in the dual-way communication, but the happening
time and the triggered events are different to some extents. Although the code is
the same for all the instances, different execution parts could be distinguished by
the bool value isServer. With regard to the happening time of sending messages,
clients send message each frame in the Update function while the server forwards
the message as soon as it receives in the OnReceive callback. With regard to the
events triggered by the received information, the cases are shown as below:

1. The UDPClient instance plays a role as the server:
It should firstly check the remote IP-endpoint that sends the message to find
if it is a new client joining the network. If it’s true, the server needs to update
its contact list by adding the new IP-endpoint. Otherwise the server could
just keep its current contact list. Then the server should multicast its received
data i.e., the byte array, to all the clients listed in its contact list except for
the sender. Note that the sender does not need the data again from the server
because it has the authority to update the status of its local vehicle. If it
accepts the data from the server again, there would be a latency gap which
could lead to its newly rendered local vehicle jumping forth and back.

2. The UDPClient instance plays a role as a client:
It should firstly parse the received byte array to the format of independent
object packets. Then register the vehicle ID and add the packet to the corre-
sponding message queue i.e., the ring buffer, according to the ID.
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Overall, the illustration for the whole network work-flow could be seen in Figure 2.6.

Figure 2.6: The Network Work-flow

2.2 Communication Protocol (SimS Protocol)

To communicate not only within Unity applications, but in a wider range together
with the other platforms, such as HIL dSPACE simulator and VIRES VTD desktop
application, a communication protocol specifying the communication rules needs to
be defined. As indicated in Subsection 1.1.4, the common protocol is denoted as
SimS protocol. It should regulate the exchanged message format and specify the
ports for data exchange as well. With regard to the message format, we need to note
that programming languages applied in different platforms could be different. For
example, Unity uses C# as programming language while VIRES uses C++. They
both come with built-in serialization functionality for entire object. But this func-
tionality is not common. It varies according to the corresponding programming
language, thus limiting its applicability. Therefore the exchanged message format
should be defined on the level of primitive types in binary.

To achieve the integration, the logic is that the central communication is only among
servers and it is the server that distributes the external messages to the clients. In
terms of Unity, the external messages are received on Unity server and then ex-
ternal objects are rendered on all Unity clients. To be specific, when Unity server
identifies the coming external messages as effective according to SimS protocol, it
will instantly multicast the messages to the Unity clients that are currently on its
contact list. Meanwhile, Unity server should have added the external server to its
contact list so that it could send Unity internal messages to the external server,
VIRES server in this case, as well.
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2.2.1 Vehicle Mono-behaviour
The communication contents used for realizing coordination among distributed ego-
vehicle objects highly depend on the vehicle’s mono-behaviour contents. Therefore,
we should have a good understanding on vehicle mono-behaviour.

In general, vehicle movements should follow physical laws, such as applying gravity.
So a rigidbody component is added to the ego-vehicle object. The vehicle simulation
animation follows vehicle dynamics and is basically reflected on a vehicle’s position,
rotation and velocity. A vehicle’s rotation includes both body rotation and wheel
rotations. We apply the arrow keys on the keyboard as inputs to control the status
of a vehicle object while the vehicle’s reaction corresponding to the inputs is defined
in player controlling script.

Besides the vehicles, another important object would be the camera which records
the visualization view of the user. In most cases, the camera in a standalone Unity
application looks at the center of the local ego-vehicle and follows its movement. In
this view, related remote vehicles and road networks within a range are included
as well. There could be another case where the user wants to have a bird view to
visualize all the objects included in the simulation session. In this case, the camera
could be attached to a fixed position and adjust the graph resolution by scrolling
the mouse.

2.2.2 Runtime Data Bus (RDB)
This thesis project is in collaboration with the Simulation Scenarios project which
includes development on VIRES part. A protocol called Runtime Data Bus (RDB)
developed by VIRES VTD has already been developed [19]. RDB distributes run-
time data about objects, vehicle states etc. to any data consumer periodically. The
interface could be configured to run via TCP, UDP, shared memory or loopback
port [19]. Therefore, RDB is a good reference for SimS protocol and SimS inherits
most characteristics of the RDB protocol.

We then explain the SimS protocol in details. The regulations on message format-
ting are mentioned in Subsection 2.2.3. The regulations on communication ports
used within this network are mentioned in Subsection 2.2.4. Although SimS protocol
is an interface among different driving simulation platforms, which means it could
be used among Unity server and other servers, it is used among different standalone
Unity applications i.e., Unity server and Unity clients, as well in this project for
simplicity.

2.2.3 Package Structure
A message is conveyed in the unit of a package. A typical package is composed of
headers and payloads. A header refers to supplemental data which is placed at the
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beginning of a block of data. It is vital that there must be a clear and unambiguous
specification or format in header composition, being beneficial to parse process. The
data following the header is denoted as payload which represents the actual intended
message.

To describe the status of a vehicle object completely, multiple types of contents need
to be conveyed inside one package. Therefore, our package should contain several
data blocks and each block describing one type of content is composed of a block
header and its corresponding payload. This kind of block header is denoted as the
entry header. Note that there is a type of special entry header defining the boundary
of a frame, followed by no payload. Typically, a message vector for a complete simu-
lation frame should be enclosed by START_OF_FRAME and END_OF_FRAME
[19]. Besides entry headers, we also need another kind of header, denoted as mes-
sage header, in the beginning of our package to mark the package as the desired
one, distinguishing it from the other packages. In general, headers as management
structures are introduced for the purpose of parsing the actual elements easily. They
mainly contain information about the header size and the following data size. In
addition, message header needs to enclose some extra information regarding to the
whole simulation, such as the frame number and the simulation time.

General Category Specific Category Length (bytes)
MSG_HDR MSG_HDR 24

MSG_ENTRY_HDR START_OF_FRAME (Id = 1) 16
MSG_ENTRY_HDR OBJECT_STATE (Id = 9) 16

EntryOfObjectState 208
MSG_ENTRY_HDR WHEEL_INFO (Id = 14) 16

EntryOfWheel1 44
EntryOfWheel2 44
EntryOfWheel3 44
EntryOfWheel4 44

MSG_ENTRY_HDR END_OF_FRAME (Id = 2) 16

Table 2.3: Package Structure

The details of the package structure are listed in Table 2.3. We could see there
are several kinds of entry headers which could be identified by block IDs. The ID
indicates the type of following contents. As mentioned in the section of vehicle
mono-behaviour, vehicle body status and wheel status are the focus. Hence, we
allocate one block of object state to describe the former and one block of wheel in-
formation to describe the latter. Object state mainly contains information about the
user ID, vehicle type, vehicle geometry, absolute coordinates in the virtual world,
orientation of vehicle body. Extra information could be included as an extended
part to improve the rendering performance with regard to accuracy, such as vehicle
velocity, acceleration and accumulated travel distance. With regard to the wheel
information, each of the four wheels (we assume that the vehicle is not a truck)
makes an equal contribution and they are distinguished by the wheel ID. The wheel
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information mainly includes the user ID, wheel ID, tire radius, spring compression,
steering angle and rotation angle.

The length of each part is shown in the third column in Table 2.3. According to
that, the total length of a basic package which only includes the information of one
ego-vehicle is 472 bytes. However, the SimS protocol could be flexible. The status
of two or more vehicles could be transmitted in one package as well. In that case, all
payloads are extended to contain more information from different vehicles while all
the headers are kept the same. The length of a package may vary then depending
on the amount of vehicles included in the package.

2.2.4 Port Specification
Besides the package structure, SimS protocol regulates the ports used in the com-
munication among multiple users as well. Note that the port we discuss here is at
the software level. It is capable of identifying a specific process. When being binded
to an IP address and a transport layer protocol (UDP in this case), a port conveys
the origin or destination network address of a message.

SimS protocol defines that a host uses one port for sending process and another
one for receiving process, and the two port numbers used on all clients’ side are the
same. However, these two port indicators for the two processes should be opposite
on the server’s side. For example, if we specify 48190 as the port number dealing
with outgoing messages on the clients’ side, it plays as the port number dealing
with incoming messages on the server’s side. In an ideal case, two port numbers are
enough for the whole simulation. The specification is illustrated in Figure 2.7. De-
fault port numbers are 48190 and 48191. Note that the default port numbers could
be changed, but it is important to keep the rules mentioned above. All consumers
need to adapt accordingly then.

Figure 2.7: Port specification
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There could be another case where a server application and a client application are
run together on one host. However, a port could only deal with one process at one
time. If we still utilize only two ports on this host, each port number would be used
for two processes concurrently, leading to an overload. Therefore, two more port
numbers need to be utilized in this case.

2.2.5 Serialization and Parsing
When packetizing data according to the package structure defined in Section 2.2.2,
there is a need to write the data to a binary stream or byte array. When a package
is detected and received, the actual data, such as object state and wheel informa-
tion, needs to be extracted from the binary stream and used to update the status
of the corresponding remote vehicle. In this section, we have a discussion on the
serialization and parsing process.

It is convenient that C# language provides some useful classes for the translation
between primitive types and binary streams or byte arrays, such as BinaryWriter,
BinaryReader and BitConverter. Here we take the first two classes as an example.

As indicated in Table 2.3, a message is composed of several basic categories. Note
that we do not write a package in the unit of primitive types e.g., Char, Single,
Double, Int, String, etc. Instead, we define some structs, that correspond to the
basic categories firstly and write the package in the unit of these structs. The con-
version between a struct which is a managed type and a block of binary data which
is an unmanaged type could be completed by Marshal class. This way, one struct
could be reused several times, thus forming the binary data efficiently. Moreover, a
BinaryWriter instance could then serialize the binary data to a stream buffer with
an expandable capacity created by a MemoryStream instance.

Similarly, we parse the message in the unit of structs as well. A BinaryReader
instance is used to read the received binary stream stored in a non-resizable Memo-
ryStream instance block by block. A block of binary stream corresponds to a basic
category. The translation from a block of binary data to a specific struct could be
completed by the Marshal class as well. There is another method to split the whole
binary stream to blocks. We could use Buffer.BlockCopy method to transfer a seg-
ment of data from the source to a temporary buffer and then parse it. However, in
this way we need an offset pointer to find the right beginning position of each block.
On the contrary, BinaryReader class does not need an offset pointer because it has
the advantage of reading the binary stream continuously, finding out the beginning
position of each block automatically.

In addition, as mentioned in Subsection 2.2.3, we could transmit multiple vehicles’
status in one package as an extension since SimS protocol is flexible. To parse the
extended package in this case, we could reform it to several basic packages firstly.
Different information segments from the same vehicle could be stored together to a
basic package according to the user ID.
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2.3 Smoothing Strategy

As indicated in Subsection 2.1.3, there are two kinds of vehicle objects being ren-
dered on a client’s side. A client updates the status of its local vehicle right after
sensing the request sampled from the keyboard. In this way any input could be ren-
dered instantly so that the local vehicle moves smoothly on the screen. In contrast
to this, a client could only update the status of its remote vehicles based on the
received messages from the server. Note that there is a trade-off between reliability
and latency for network transport layer protocol. We chose to use UDP to guar-
antee the real-time characteristic of the multi-user driving simulation. The obvious
drawback would be no reaction on the lost or delayed messages. So a client may
have no package to deal with for a remote vehicle object in an update period, which
will lead to the vehicle teleporting from one point to another [21]. In this section
we will introduce some local prediction strategies to mitigate this phenomenon for
a better visualization performance of the simulation.

2.3.1 Extrapolation

A strategy would be to use extrapolation which means to move the remote vehicle
object locally based on its current state. Extrapolation strategy assumes that the
object dose not change its current route for a while, so it predicts the movements
according to the object’s current direction and velocity [21]. For instance, the new
position calculation follows

P1 = P0 + V0 ∗∆t, (2.1)

where P0, P1 represents the predicted position and the latest position respectively.
V0 represents the latest velocity and ∆t is the time of last frame. Parameters such
as latest positions and velocities for all the remote vehicle objects are stored in lists.
The lists are updated each frame so that the newest parameters could be accessed
anytime. If the latency is not too high, the extrapolation would accurately repro-
duce the object’s expected movement until a new update message arrives, resulting
in a smooth movement pattern [21].

The illustration of extrapolation is shown in Figure 2.8. Say client A has received
packages k−2, k−1 consecutively. These packages are used for updating the status
of remote vehicle B. Client A will receive package k + 1 in the future, but package
k is lost when being transmitted. In the current frame n which is being rendered,
client A will do extrapolation for vehicle B to make up for the contents included in
package k.
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Figure 2.8: Illustration for Extrapolation

2.3.2 Interpolation
As mentioned in the subsection above, extrapolation has the limitation of assuming
the object not changing its current route in a short time. Nevertheless, there might
be exemptions where one find it hard to do predictions. For instance, the route of
an object may change sharply, thus being non-deterministic. In this case, we do not
simulate the remote vehicles forward in time. Instead, we choose to render the local
vehicle in the present time while rendering the remote vehicles in the past times.
The past time could refer to one or two frames before. To render the object in
past times, we just need the update messages that have already been received, thus
making no external predictions.

Similarly, the messages that have been received could be non-consecutive as well
because of the UDP characteristic of no acknowledgment, retransmission, or time-
out. For instance, client A wants to render the status of remote vehicle B in the
past time. Say the current frame is n and the past time refers to two frames before,
i.e., n − 2. Client A has received package k − 3 and k − 1, but it needs the lost
package k− 2 for rendering the update. In this case, we could apply the strategy of
interpolation which means to construct new data point within the range of known
data points. In the example above, the known data points could be position points
and are parsed from package k − 3 and k − 1. As a result, vehicle B will smoothly
move between those points. The illustration of interpolation is shown in figure 2.9.

Figure 2.9: Illustration for Interpolation
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Interpolating points could be done either in a linear way or a non-linear way. Having
decided the initial position and the target position, the interpolated position depends
on the parameter t which is clamped to the range [0, 1] in the linear method. For
the non-linear method, the goal is to achieve an effect of some spring-damper-like
function. Parameter t in formula 2.1 is replaced by some other information here,
such as the current velocity and the expected time to reach the target. Usually, the
linear method is enough to move a vehicle object smoothly. The most common use
for the non-linear method would be smoothing a follow camera, which is explained
in the next subsection.

2.3.3 Smooth Camera Follow
As mentioned in Subsection 2.2.1, it is the camera object that captures and displays
the view to each user. The most common case is that it follows its local ego-vehicle
object around the play field. Therefore, the camera should frequently adjust its posi-
tion according to the following object. To make the visualization better, the camera
should move from the current position towards the target position smoothly. There-
fore, the non-linear interpolation method could be applied here to gradually change
the camera’s position towards a desired goal over time.
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3
Results and Analysis

In this chapter, we present the result of the multi-user driving simulation. On one
hand, the simulation itself can not be presented in a static way. A live demo and
some video clips are shown in the final presentation. We only enclose some screen-
shots in the report. On the other hand, results related to the data collection of the
simulation are included. Some analysis and comparison in terms of the simulation
performance according to these results are shown as well.

3.1 Simulation Results
The multi-user driving simulation is firstly conducted within Unity desktop ap-
plications and then adapted to the integration among multiple driving simulation
platforms which are Unity applications and HIL dSPACE simulator together with
VIRES VTD desktop application in our case. Hence, the simulation results are
divided to these two parts.

3.1.1 Simulation within Unity
The simulation within Unity is conducted in two stages. The first stage is to ensure
the network we built using client-server model actually works. It means that some
simple messages, such as strings and the system time, could be sent from a client
and received on another one successfully. This kind of simple message does not need
to be parsed. The second stage is to make sure the contents included in a package
are serialized and parsed correctly. The communication within the network is based
on UDP and SimS protocol.

The start up of the simulation within Unity is shown in Figure 3.1. The simulated
vehicle model is Volvo S90 and the simulated road is Jolengatan in Gothenburg.
One server and two clients are included in the test session. The server together
with one client runs on the right laptop and the other client runs on the left laptop.
Note that the server application is the small window on the right laptop and no ego-
vehicle object is controlled by the server. As a result, two ego-vehicle objects should
be seen from each part’s view. The car in blue represents the local vehicle and the
car in red represents the remote vehicle on each side. We could see clearly that the
scenes and relative position of the vehicles on three applications are synchronized,
which means the simulation is successful.
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Figure 3.1: Illustration for Multi-user Driving Simulation within Unity

In the process of the simulation, a client continually renders the movements of its
local vehicle according to the keyboard inputs and transmits the message of its local
vehicle’s newest status in the meantime. The update message should be parsed cor-
rectly on the other client’s side and used for rendering to keep the synchronization
of vehicles’ status. We would like to show the comparison of the parsed information
and the transmitted information here. We take the position information as an ex-
ample. Say vehicle A is the local vehicle of client A and the remote vehicle of client
B. Figure 3.2 shows the trajectories of vehicle A rendered on the two clients. In
Unity world, y axis points upward; z axis points forward; and x axis points to the
right direction. We ignore the trajectories on y dimension and only present them
on the z-x plane. Ideally, the two trajectories should be exactly the same if the
serialization and parsing processes are done in a correct way.
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Figure 3.2: Vehicle A’s Trajectories on the Two Clients
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According to Figure 3.2, we see these two trajectories completely overlap with each
other, which means the serialization and parsing processes are implemented cor-
rectly.

3.1.2 Simulation on Multiple Platforms
In this section, the multi-user driving simulation is done cross-platform. Here we
drive the vehicles under a real-world scenario not only to make the simulation more
real but to test the functionalities of autonomous car. The illustration of the chosen
scenario called "extended cut-in scenario" is shown in Figure 3.3.

Figure 3.3: Illustration of Extended Cut-in Scenario

According to Figure 3.3, four vehicles in total are included in the set-up of this
scenario. The vehicle called Ego is controlled by HIL dSPACE simulator and ren-
dered in VIRES VTD application, serving as an autonomous car equipped with
the adaptive cruise control (ACC) function which aims to maintain a safe distance
from the vehicles ahead by automatically adjusting the ego-vehicle’s speed [20]. The
VIRES_car4 vehicle is a dummy vehicle generated by VIRES server, serving as a
trigger for the scenario. These two vehicles in red are the external ones for Unity
platform. The other two vehicles in blue called Object1_Heidi and Object2_Yanni
are Unity internal vehicles coming from two Unity clients respectively. The initial
relative positions of these four vehicles are shown as Figure 3.3.

At the beginning of this scenario, Object1_Heidi follows Ego smoothly and Ego fol-
lows Object2_Yanni on the same lane. At this time, Ego locks at Object2_Yanni
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as the target for the ACC function. Meanwhile, the dummy vehicle VIRES_car4
comes from the opposite direction on the adjacent lane. When VIRES_car4 passes
by Ego, the two Unity internal vehicles are triggered to speed up instantly. Ob-
ject2_Yanni is supposed to go far away finally and Object1_Heidi overtakes Ego,
called a cut-in. During this process, Ego should re-lock at Object1_Heidi as the
target so that it could automatically speed down to maintain a safe distance when
Object1_Heidi brakes.

As indicated in the above sections, it is the VIRES server that talks to the Unity
server directly. Besides the management on the internal messages, they both are
responsible for receiving the external messages and multicasting them to the in-
ternal clients as well. A screenshot of the video clip recording the cross-platform
multi-user driving simulation under the extended cut-in scenario is shown in the
Figure 3.4. The screenshot catches the moment when Object1_Heidi was going to
make a cut-in. VIRES_car4 had already passed by all the other three vehicles at
this time, so it was no longer in the view of the others. The laptop with label 1 of
the graph runs as the VIRES server. The one with label 2 runs as a Unity client
while running the Unity server in the background and the one with label 3 runs as
the other Unity client. Being the same as the last subsection, the vehicle in blue
represents the local vehicle and the vehicle in red represents the remote vehicle on
each side. Note that the view in the laptop with label 3 is some kind of like a bird
view. We could see clearly that the scenes and relative positions of all vehicles on
three screens are synchronized, which means the simulation is successful.

Figure 3.4: The synchronization among different simulation platforms
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3.2 Performance Comparison

3.2.1 Effects of Extrapolations
As mentioned in Subsection 2.3.1, the extrapolation strategy could be applied to
smoothen the movements of vehicle objects and get a better visualization effect.
We do not apply the interpolation strategy because we consider the movements of
the vehicle objects in this project predictable. The effect of extrapolation could
be quantified as shown in Figure 3.5. Say vehicle A is a remote vehicle on client
B. The two subplots illustrate the simulated trajectories of vehicle A along x axis
and z axis respectively with time going on. The red curves represent the case of us-
ing extrapolation while the blue curves represent the case of not using extrapolation.
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Figure 3.5: Illustration of Extrapolation Effects

Comparing the two curves in each subplot of Figure 3.5, we could see that the blue
curves have fluctuations due to the fact that some packages are delayed or lost when
being transmitted via UDP. Without extrapolation leads to the remote vehicle ob-
ject staying at the last position in these frames. In contrast, the red curves are much
smoother because extrapolation could compensate the drawback of UDP on data
reliability.

3.2.2 WiFi and Ethernet
The reactions of the system should be in real time, which means the case with a
lower latency is a better choice. As mentioned in Subsection 2.1.2, the simulation
could be conducted via the connection of either WiFi or Ethernet in laboratories
under LAN. We need to make a comparison between these two connections to find
a better choice. The average latency could be reflected on the rate of delayed or lost
package. A comparison on this rate under two types of connections is presented in
Figure 3.6. The tests on each case are conducted 20 times randomly during several
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working days at different laboratory places and 2000 - 4000 packages are transmit-
ted each time so that we can collect a large amount of data and get the average
behaviour. Although the specific collected data presented below is not repeatable,
the conclusion according to the average performance is generic.
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Figure 3.6: Illustration of the Rate of Delayed or Lost Package under WiFi and
Ethernet Connections

As shown in Figure 3.6, the red line represents the case of using WiFi connection
and the blue line represents the case of using Ethernet connection. The rate is
calculated according to the equation below.

Error rate = Number of delayed or lost packages

Number of total transmitted packages
(3.1)

The average behaviour could be reflected on the dashed lines in Figure 3.6 and Table
3.1 which records the summation of 20 times’ tests.

Connections Total
Transmitted Packages

Total Delayed
or Lost Packages Rate

Ethernet 59386 5701 9.60 %
WiFi 65532 7033 10.73 %

Table 3.1: Comparison on Average Behaviour between WiFi and Ethernet

From Figure 3.6, we could see that the rate of delayed or lost package in the sim-
ulation under Ethernet connection is lower than that under WiFi connection most
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of the time. According to the average behaviour, we find that Ethernet is a better
choice with low latency for the simulation.
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4.1 Conclusions
In the thesis project, we find that Unity as a game engine is proper to develop driv-
ing simulations because it is capable of rendering 3D scenes with a high quality and
is highly flexible for developers providing both high level and low level APIs.

Some ideas of the multi-user driving are inspired from game industry. However the
differences between them are presented as well, such as the authority of the server
and the communication platforms. Therefore we choose to implement the network
from scratch and use low level APIs rather than high level APIs provided by Unity
on communication.

To achieve real-time communication over the network, we find it proper to transmit
messages via UDP under a modified client-server framework. Asynchronous meth-
ods shall be applied to process multiple tasks concurrently and ring buffers could
make the simulation more stable. Under laboratory environment, we find that Eth-
ernet connection is a better choice than WiFi in terms of reducing latency.

SimS protocol regulates communication rules as well as message formatting. Some
improvements could be done upon the headers to reduce communication bandwidth
if large amount of vehicle objects are included in a test session.

To achieve a good visualization effect on object synchronization, some smoothing
strategies have been applied depending on the possibility of making correct predic-
tions. However there were still some twitches in the simulation sometimes. Further
improvements could be on time synchronization which are mentioned in the next
subsection.

4.2 Future Work
As mentioned in the conclusions, there are still some twitches in the driving sim-
ulation sometimes. It could be caused by hardware issues regarding to operating
speed. It could also be caused by the inconsistency between camera following and
the rendering on remote vehicle’s transform. More exploration on the event func-
tions such as Update and FixedUpdate provided by Unity should be made in this
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case. Another possibility would be the unavoidable latency on the communication.
To reduce this kind of effect, network time protocol (NTP) for time synchronization
should be applied. It aims to limit the time difference among multiple simulators
within a few milliseconds.

Another aspect is that the open simulation interface (OSI) could be applied in the
future. It aims for easier compatibility of virtual testing for automated driving func-
tions.
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