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Abstract
This thesis presents an adaptive controller for regulating the speed of a permanent
magnet synchronous motor that is robust against changes in moments of inertia.
Model reference adaptive control is used as the approach for the control design. Both
the recursive least squares method and the Kalman filter are presented, evaluated
and discussed regarding their difference in performance when used as parameter
estimation methods in the developed speed control algorithm. The advantages of
an adaptive controller, compared to a PI controller, are demonstrated regarding
disturbance rejection and reference tracking, when the moment of inertia is varying.
The controller is concluded to be highly robust against changes in moment of inertia.
Furthermore, the developed control algorithms are superior to the PI controller
regarding disturbance rejection. When using the Kalman filter a small steady-state
error is appearing which is not the case when using recursive least squares.

Keywords: Adaptive control, PMSM, Synchronous motor, Varying moment of iner-
tia, MRAC, Speed control, Electric drive control
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1
Introduction

1.1 Problem background

Permanent Magnet Synchronous Motors (PMSM) are widely used in motor appli-
cations today due to their positive features, such as long life span as well as high
efficiency and power density [1]. Aros electronics is a company that specializes in
custom PM motor solutions that satisfy their customers’ requirements. The most
commonly used method for PMSM speed control, and the one used by Aros elec-
tronics, is a cascaded PI control system. This strategy is performing well during
known circumstances. In some applications, however, such as in conveyor belts and
robotic arms, the moment of inertia may be varying. With a varying moment of
inertia, the dynamics of the system varies and hence a classical PI-controlled system
will change its behavior. The changed operating condition is not what the PI con-
troller was tuned for, which will lead to decreased performance [2]. An alternative
controller that is more robust for cases when the moment of inertia is unknown or
varying would be favorable in such applications. In order to better provide solu-
tions for applications with changing dynamics, Aros is interested in developing a
controller that has this feature. The design of such a controller is treated in this
thesis.

1.2 Aim

The aim of the project is to develop a well-performing and robust PMSM speed
controller that efficiently can compensate for changes in moment of inertia. The goal
is that the resulting controller in this regard performs better than the PI regulator
design that Aros is currently using. The quality of the controller is measured by
the speed reference tracking considering step response qualities such as rise time,
overshoot and settling time. Furthermore, an important factor is the ability to
compensate for torque load and the disturbance rejection will thus be regarded as
well.

1



1. Introduction

1.3 Method

As a start, a rigorous literature study is performed, where the focus lies on the
structure of, and existing control strategies for, the PMSM. With this information, a
mathematical model of the PMSM is developed to be used for simulation purposes as
well as during the control development. In order to make the simulation resemble the
true system as accurately as possible, a system identification of the motor parameters
is done. The developed model is then implemented in Matlab/Simulink, which is the
tool used for simulation. The development of the control design is first carried out by
analytically derive an expression for the control algorithm. The design procedure
then enters an iterative process, improving the design by continuously test it in
simulation and modifying the algorithm to achieve better results. In order to fairly
and easily compare the different controllers and evaluate their performance, the test
cases should be formed such that both the step response and disturbance rejection is
examined for various moments of inertia. Once a controller with satisfying behavior
is found from simulations, it is implemented in the physical system to be tested there.
The iterative process is still carried out, now testing the controller both in simulation
and the physical system. When a final control algorithm has been developed, a fine
tuning of control parameter is performed before the final experiments are made.
Finally, to evaluate the performance of the developed controller when implemented
on the motor of subject, experiments are performed in a motor test bench.

1.4 Scope and boundaries

The focus of this project lies on developing a speed controller for a PMSM in the
case of unknown or varying moment of inertia. The controller will regulate the speed
of the motor using the voltage levels over the three phases as control signals. The
transformation from desired voltage signal to phase voltage pulse width modulation
(PWM) is already implemented in the programming library at Aros and this is
utilized in the project. A hall-effect position sensor is used in order to measure the
rotor position. The regulator is designed for a motor provided by Aros which is
controlled using an Aros constructed microcontroller unit (MCU) with the central
processing unit (CPU) Infineon XMC4500. The motor is modelled for simulation
purposes and for use in the control design phase. However, the developed controller
should be easy to adapt to other motors. The computational power of the CPU,
along with the existing necessary code for motor control, provides the limitations for
controller complexity. To optimize computational time for the implementation of the
controller, such as using only integers, is not within the scope of the project. Only
control development and implementation as a proof of concept is considered.

2



1. Introduction

1.5 Outline

First, in Chapter 2 some background theory is given about the PMSM, the control
scheme for model reference adaptive control as well as two different parameter es-
timation methods. In Chapter 3, the mathematical model of the PMSM is derived
and identification of the motor parameter is presented. Chapter 4 describes the
control design, where the development of the final controller is presented step by
step. The results obtained from simulation and physical testing can be found in
Chapter 5. In Chapter 6 the results and possible future work are discussed. Lastly,
a conclusion of the project outcome can be found in Chapter 7.
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2
Theory

In this chapter some background theory is presented for the reader to get an under-
standing of the system and the underlying methods used in the control algorithm.
First, the operating principle of the permanent magnet synchronous motor is briefly
described in Section 2.1. The concept of model reference adaptive control is then ex-
plained in Section 2.2. Finally, the recursive leasts squares method and the Kalman
filter is covered in Section 2.3 and in Section 2.4, respectively.

2.1 Permanent magnet synchronous motor

2.1.1 Motor structure and operation

The PMSM is a three-phase machine and can be visualised as three static coils
that are placed in a circle around a permanent magnet with 120° spacing. The
magnet, called the rotor, can turn around its center. The three coils form the stator
windings and are here denoted as phase a, b and c. Each winding can be modelled
as an inductance in series with a resistance [3]. In this report, a motor with Y-
configuration is used. Figure 2.1 shows a simple electrical diagram of the stator
windings using this configuration. When a current runs through a coil, it creates
a magnetic field according to Faraday’s law [4]. The permanent magnet has its
own magnetic field and the interaction of these fields creates a torque if the fields’
opposite poles are not exactly aligned. Simplified, one could say that this effect is
the strongest when the magnetic field created by the coils is 90 degrees ahead of the
permanent magnet’s north pole direction [3]. The idea is to make the two magnetic
fields constantly repel each other in order to keep the rotor spinning.

2.1.2 Space vectors

Due to the placement of the coils, the phase currents can be illustrated in a phasor
diagram as shown in Figure 2.2. By combining sign and magnitude of these currents,
it is possible to create a current angle in any direction. However, it can easily be
seen from Figure 2.1 and using Kirchoff’s current law that the currents are linearly
dependent according to

ia + ib + ic = 0 (2.1)

Because of this, it is possible to represent the three-phase motor using a two-phase

5



2. Theory

vc

ic

R c

L c

va ia

R
a

L
a

vb
ibRbLb

Figure 2.1: Stator windings diagram. Each phase can be modelled as a resistor in
series with an inductance.

system with perpendicular axes. In the phasor diagram these are denoted α and β.
It is convenient for modelling purposes to consider these as the real and imaginary
axes in a complex plane, and the current vector becomes is = iα + jiβ, called
the space vector. The superscript s here denotes that the coordinates are stator
fixed. It can however be seen as a real-valued vector is =

[
iα iβ

]T
. This form is

better suited for controller implementation, since imaginary numbers in this way
are avoided. Transformation between the three-phase system and the αβ-system is
straightforward with phasor arithmetic using

iα + jiβ = 2
3K[ia + ej2π/3ib + ej4π/3ic] (2.2)

where K is a scaling constant that can be chosen arbitrarily [5]. It is used to make
calculations easier in the two-phase system depending on the application. The three
common choices are Peak-value scaling (K = 1), RMS-value scaling (K = 1√

2) and
Power-invariant scaling (K =

√
3
2). Throughout this report, the Power-invariant

scaling is used. For the real-valued space vector the transformation is done with a
constant transformation matrix

[
iα
iβ

]
= K

[2
3 −

1
3 −1

3
0 1√

3 − 1√
3

] iaib
ic

 (2.3)

2.1.3 dq-coordinates

For constant speed, the current vector in the phasor diagram is desired to rotate
with the same speed as the rotor and have a phase lead of approximately 90 degrees
compared to the rotor heading. For control purposes, it would be beneficial to use
rotor-fixed coordinates since such a coordinate system would rotate with the same

6
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ib

ia

ic

α

β

Figure 2.2: Phasor diagram. The total current vector resulting from the current in
phase a, b and c can also be expressed as a vector in the 2-dimensional αβ coordinate
system.

speed as the rotor. A simpler model of the system can then be constructed where
the currents are constant at constant speed rather than oscillating which is the case
for the αβ-system. By defining the rotated current vector

i = e−jθr is , id + jiq (2.4)

this can be achieved [5]. This is denoted as the dq coordinate system, where id is
the current in the rotor heading direction and iq is the current in the perpendicular
direction, always 90 degrees ahead of the magnet’s north pole. Hence, iq is the
torque-creating current. Figure 2.3 shows the relation between the stator fixed αβ
coordinate system and the rotor fixed dq coordinate system. In (2.4), θr is the
electrical angle, which is proportional to the rotor angle, θm, with the number of
pole pairs, np. The rotor angle is defined as the angle between the rotor heading
and the stator fixed α-axis. In order to go from the αβ-system to the dq-system, the
rotor angle, θm, must hence be known. The transformation between these systems
is a simple rotation as in (2.4) or for the real-valued vector representation using the
rotational matrix [

id
iq

]
=
[

cos(θr) sin(θr)
− sin(θr) cos(θr)

] [
iα
iβ

]
(2.5)

Since the rotor-fixed dq-frame is convenient for control purposes and makes calcula-
tions more straightforward, it will be used throughout the rest of this report.

2.2 Model reference adaptive control

In model reference adaptive control (MRAC), the idea is to form a reference model
with the desired closed-loop dynamics of the system. The control law is then formed
to make the actual system behave as the reference model, given the same reference
signals. Here, model reference control (MRC) is first explained where the system

7
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α

β

θm

d

q

Figure 2.3: The dq coordinate system is rotor fixed with the d-axis aligned with
the magnetic north pole.

dynamics are assumed to be static and known. Secondly, MRAC is presented,
where the assumption of static and known dynamic parameters is removed. Only
MRAC for first order systems is described, since this is sufficient for the reader to
understand.

2.2.1 Model reference control

Consider a discrete first order system

y(k) = ady(k − 1) + bdu(k − 1) (2.6)

where y is the output signal, u is the control signal and where ad and bd are the
dynamic parameters of the process. In MRC, a reference model is formed that
models the desired dynamics from reference signal to output signal of the closed-
loop system. In order to guarantee that the resulting controller becomes causal, the
time delay of the closed-loop system needs to be at least the same as the delay of
the open-loop system. A simple design of the reference model is to use the same
order as the actual system model. That is,

yref(k) = arefyref(k − 1) + brefr(k − 1), (2.7)

where r is the reference signal, yref is the reference model output and aref and bref are
the dynamic parameters designed to make the model respond to reference signals as
desired. To design the control law, the system model (2.6) is rearranged as [7]

y(k) = arefy(k − 1) + (ad − aref)y(k − 1) + bdu(k − 1). (2.8)

Since the aim in model reference control is to follow the reference model as close as
possible, the tracking error, e(k) = y(k) − yref(k), is of interest. The dynamics for
the tracking error can be calculated by subtracting (2.7) from (2.8) giving

e(k) = arefe(k − 1) + (ad − aref)y(k − 1) + bdu(k − 1)− brefr(k − 1) (2.9)

8



2. Theory

As the reference model parameter aref will be chosen such that the dynamics become
stable, a sufficient condition to make the error converge exponentially to zero is to
make the error dynamics become

e(k) = arefe(k − 1) (2.10)

This is achieved if the term (ad − aref)y(k − 1) + bdu(k − 1) − brefr(k − 1) is zero
which leads to the control law formulation

u(k) = (aref − ad)
bd

y(k) + bref

bd
r(k) (2.11)

2.2.2 MRAC

Using the control law (2.11) would give the same behaviour of the real system as the
reference model. However, this is under the assumption that the process parameters
ad and bd are exactly know. This is not the case in reality and to overcome this
problem the certainty equivalence principle can be used [7]. This simply means that
the unknown parameters are substituted by their estimations. The control law then
becomes

u(k) = (aref − âd)
b̂d

y(k) + bref

b̂d
r(k) (2.12)

where âd and b̂d are the estimated values of ad and bd respectively. Estimation
of these parameters is therefore necessary. The estimation is performed online,
meaning the parameters are updated continuously as the controller is running. This
means that the control law changes during operation. The adaptation law may
be performed in different ways, such as using the MIT rule [8], Lyapunov function
analysis [9], Kalman filters, least squares methods or other filtering approaches. In
this report, the recursive least squares method (RLS) and the Kalman filter are
treated.

2.3 Recursive least squares

The method of least squares is a common concept to use when parameters for overde-
termined systems are to be estimated. In this thesis, system models that are linear
in parameters will be considered. The model for these types of systems can be
expressed as

y(k) = ϕT (k)θ + ε(k) (2.13)

Here y is the measured system output and ϕ is the regressor vector containing the
known system signals that y depends on. The parameters that are to be estimated
are contained in θ and ε is called the prediction error, which contains the difference
between the predicted and actual output.

9



2. Theory

According to least squares, if there are N discrete time samples available, θ should
be chosen such that the sum of all squared prediction errors

J(θ) = 1
2

N∑
k=1

ε2(k) (2.14)

is minimized. However, in time-varying systems the parameters are not fixed at
one true value but depend on time instance. The most recent errors are therefore
more relevant than old ones. To account for this, a forgetting factor λ ∈ (0, 1)
is introduced in the optimization problem as a weighing of the errors. The cost
function (2.14) now becomes

J(θ) = 1
2

k∑
τ=1

λk−τε2(τ), (2.15)

where it can be seen that older error samples receive a higher exponent, making
them less relevant. Since (2.15) is a convex function the minimum can be found by
differentiation [10] according to

dJ(θ)
dθ

=
k∑
τ=1

λk−τ
dε(τ)
dθ

ε(τ) =
k∑
τ=1

λk−τϕ(τ)[y(τ)− ϕT (τ)θ] = 0 (2.16)

where the last equality can be realized from (2.13). The expression in (2.16) can be
rewritten as

k∑
τ=1

λk−τϕ(τ)y(τ)−
k∑
τ=1

λk−τϕ(τ)ϕT (τ)θ = 0 (2.17)

which leads to the RLS estimate

θ̂(k) =
[ k∑
τ=1

λk−τϕ(τ)ϕT (τ)
]−1 k∑

τ=1
λk−τϕ(τ)y(τ). (2.18)

Now, introduce the notation of the first term

P (k) =
[ k∑
τ=1

λk−τϕ(τ)ϕT (τ)
]−1

(2.19)

which can be proven to be the covariance matrix of the estimate [11]. It can be seen
that its inverse is

P−1(k) =
k∑
τ=1

λk−τϕ(τ)ϕT (τ)

= λ
k−1∑
τ=1

λk−1−τϕ(τ)ϕT (τ) + ϕ(k)ϕT (k)

= λP−1(k − 1) + ϕ(k)ϕT (k).

(2.20)

P−1(k) can thus be updated recursively using only its previous value and the new
data, ϕ(k). Using this information and the matrix inversion lemma, the recursive
update of the covariance matrix can be shown to be [12]

P (k) = 1
λ

(
P (k − 1)− P (k − 1)ϕ(k)ϕT (k)P (k − 1)

λ+ ϕT (k)P (k − 1)ϕ(k)

)
(2.21)
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2. Theory

Now, with notation according to (2.19), the previous estimate can in accordance
with (2.18) be written as

θ̂(k − 1) = P (k − 1)
k−1∑
τ=1

λk−1−τϕ(τ)y(τ)

⇔
k−1∑
τ=1

λk−1−τϕ(τ)y(τ) = P−1(k − 1)θ̂(k − 1).
(2.22)

With the use of this, and the fact that λP−1(k − 1) = P−1(k) − ϕ(k)ϕT (k) from
(2.20), (2.18) can be rewritten as

θ̂(k) = P (k)
(
λ
k−1∑
τ=1

λk−1−τϕ(τ)y(τ) + ϕ(k)y(k)
)

(2.23)

= P (k)
(
λP−1(k − 1)θ̂(k − 1) + ϕ(k)y(k)

)
(2.24)

= P (k)
((
P−1(k)− ϕ(k)ϕT (k)

)
θ̂(k − 1) + ϕ(k)y(k)

)
(2.25)

= θ̂(k − 1) + P (k)ϕ(k)
(
y(k)− ϕT (k)θ̂(k − 1)

)
. (2.26)

The resulting RLS algorithm for each iteration can therefore be described as

θ̂(k) = θ̂(k − 1) +K(k)ε(k)
ε(k) = y(k)− ϕT (k)θ̂(k − 1)
K(k) = P (k)ϕ(k)

P (k) = 1
λ

(
P (k − 1)− P (k − 1)ϕ(k)ϕT (k)P (k − 1)

λ+ ϕT (k)P (k − 1)ϕ(k)

) (2.27)

2.4 Kalman filter

A widely used estimation method is the Kalman filter. It was first presented by
R.E. Kalman and R.S. Bucy in [13] and is the optimal filter for a stochastic linear
process with additive white Gaussian noise. The filter is based on a description of the
process as a Markov chain, i.e. a discrete process where the next state of the system
depends solely on the current, perturbed by a Gaussian error signal. Furthermore, a
measurement model describing how the available measurement depends on the state
is needed. Also, the measurement is modelled with a perturbation of a Gaussian
noise signal. Hence, the dynamic and measurement models are defined as

x(k) = Fk−1x(k − 1) + w(k) (2.28)
y(k) = Hkx(k) + v(k) (2.29)

Here x is the state that is estimated, w(k) ∼ N (0, Q) is the process noise and
v(k) ∼ N (0, R) is the measurement noise. The matrix Fk−1 is the state transition
matrix and Hk is the observation model matrix. The Kalman filter is the optimal
state estimator for this kind of system and can be divided into the following two

11



2. Theory

steps for each recursion [14].
Prediction step:

x̂−(k) = Fk−1x̂(k − 1) (2.30)
P−(k) = Fk−1P (k − 1)F T

k−1 +Q (2.31)

Update step:

ε(k) = y(k)−Hkx̂
−(k) (2.32)

S = HkP
−(k)HT

k +R (2.33)
K = P−(k)HT

k S
−1 (2.34)

x̂(k) = x̂−(k) +Kε(k) (2.35)
P (k) = P−(k)−KSKT (2.36)

The filter at each iteration computes the current optimal estimate, x̂(k), and the
estimate covariance, P (k), given the new measurement, y(k). For a thorough deriva-
tion of the Kalman filter equations, the reader is referred to [13].
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3
Modelling

In Section 2.1, the operating principle for the PMSM and the dq coordinate system
was described. Using this as background information, the model of the PMSM,
which is used for the control design and in simulations, is presented in this chapter.
The mathematical model is first derived in Section 3.1 and in Section 3.2 the process
of motor parameter identification is presented.

3.1 Mathematical model of PMSM

A mathematical model of the PMSM is given below, expressed in the rotor bound
dq coordinate system, covered in section 2.1.3. The electrical dynamics, derived in
Section 3.1.1, is combined with the mechanical dynamics, handled in Section 3.1.2,
to result in the full dynamical expressions given in Section 3.1.3

3.1.1 Electrical dynamics

The input signal to a PMSM is the voltage over the stator windings. The voltage that
does not dissipate in the winding resistance will produce a magnetic flux, according
to the law of induction. The voltage equation can thus be written as [5]

vs −Rsis −
dΨs

s

dt
= 0 (3.1)

where the superscript s denotes that the vectors are expressed in the stator bound
coordinate system. Here, the stator flux Ψs

s is given by

Ψs
s = Lsis + Ψs

R (3.2)

where Ls is the stator inductance and Ψs
R is the rotor flux linkage created by the

permanent magnets. The rotor flux vector in the stator coordinate system depends
on the electrical angle of the rotor, θr, according to

Ψs
R = ψRe

jθr (3.3)

where the flux modulus ψR can be seen as a constant which depends on the perma-
nent magnet. The derivative of the stator flux can, by inserting (3.3) into (3.2), be
found to be

dΨs
s

dt
= Ls

dis

dt
+ jωrψRe

jθr . (3.4)

13



3. Modelling

where ωr is the time derivative of θr, i.e. electrical angular speed. Now, (3.1) can
be expressed as

Ls
dis

dt
= vs −Rsis − jωrψRejθr . (3.5)

As described in Section 2.1.3 it is convenient to use synchronous, i.e. rotor fixed,
coordinates when designing a controller for the PMSM. The electrical dynamics in
(3.5) is therefore transformed into dq-coordinates by rotating all stator coordinates
with the angle θr, giving

Ls
d(ejθr i)
dt

= jLsωre
jθr i + Lse

jθr
di
dt

= ejθrv−Rse
jθr i− jωrψRejθr (3.6)

or equivalently

Lse
jθr
di
dt

= ejθrv−Rse
jωr i− jLsθrejθr i− jωrψRejθr . (3.7)

For convenience, (3.7) is multiplied with e−jθr leading to

Ls
di
dt

= v−Rsi− jLsωri− jωrψR (3.8)

which is described as a complex equation were i = (id + jiq). That is, the imaginary
numbers represents the q-direction of the current and real numbers represents the d-
direction. As stated in Section 2.1.2 a real-valued vector representation is favorable
for control implementation and (3.8) can instead be expressed as

Ls
d

dt

[
id
iq

]
=
[
vd
vq

]
−Rs

[
id
iq

]
− Lsωr

[
−iq
id

]
−
[

0
ψRωr

]
. (3.9)

The resistance in both directions can be modelled as equal, but the stator inductance
cannot. The magnets in the rotor are not uniformly distributed over the whole
surface, yielding sinusoidally varying inductance. The inductance on the d and q
axes is defined as Ld and Lq respectively and Ls can therefore be expressed as a
matrix according to

Ls =
[
Ld 0
0 Lq

]
. (3.10)

3.1.2 Mechanical dynamics

The rotor speed dynamics depend, according to Newton’s second law, on the applied
torques and the moment of inertia, J . The torques affecting the rotor are the
produced electrical torque, τe, the load torque, τL and the frictional torque that is
modelled to be proportional to the speed with the friction constant, b. Hence, the
speed dynamics can be written as

J
dωm
dt

= τe − bωm − τl (3.11)
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Here ωm is the mechanical rotor speed in rad/s, which is directly proportional to
the electrical speed of the rotor, ωr, by the number of pole pairs, np

ωr = npωm (3.12)

The produced electrical power can be written as [5]

Pe = ωrIm{Ψ∗Ri} (3.13)

Since power is the torque times the angular speed [16], the torque can be obtained
by

τe = Pe
ωm

= np Im{Ψ∗Ri} = np Im{(ψd − jψq)(id + jiq)}

= np(ψdiq − ψqid).
(3.14)

All the magnetic flux from the rotor is directed in the magnet’s north pole, i.e. in

d-direction and since Ls is a matrix, the stator flux, ψs =
[
ψd
ψq

]
, can, in accordance

with (3.2), be written as

ψs = Lsi+
[
ψR
0

]
=
[
Ldid + ψR
Lqiq

]
. (3.15)

Finally, this leads to the electrical torque equation

τe = np(ψdiq − ψqid) = np[ψRiq + (Ld − Lq)idiq]. (3.16)

3.1.3 Total dynamical equations

Inserting (3.16) into (3.11) and (3.10) into (3.9) leads to the final dynamical equa-
tions for the PMSM

J
dωm
dt

= np(ψR + (Ld − Lq)id)iq − bωm − τL (3.17)

ωr = npωm (3.18)

Ld
did
dt

= vd −Rsid + Lqωriq (3.19)

Lq
diq
dt

= vq −Rsiq − Ldωrid − ψRωr (3.20)
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3. Modelling

3.2 System identification

To make the behaviour of the simulation as similar as possible to the physical system,
it is important to know the motor parameters well. The rotor moment of inertia,
96 × 10−6 kgm2, was supplied with enough accuracy to be used directly, but other
data was either unavailable or inaccurate and those parameters therefore needed to
be estimated.

3.2.1 Resistance

The resistance in the dynamical model developed is assumed to be equal for all
stator phases. In order to estimate the stator resistance, two of the phases were
connected to form one node. A current source was connected between this node
and the third phase. The resulting electrical circuit can be seen in Figure 3.1. The
resistance from node A to node B can, by the assumption Ra = Rb = Rc ≡ Rs, be
expressed as

1
1
Rs

+ 1
Rs

+Rs = 3
2Rs. (3.21)

Ohm’s law applied between node A and node B gives the relationship between
the voltage, V , the current induced by the current source, I, and the total resis-
tance

V = 3
2RsI (3.22)

or equivalently
Rs = 2V

3I . (3.23)

The resistance can thus be estimated by setting a fixed current and measure the
voltage using a voltmeter. When a current of 3 A was fed through the motor, a
voltage of 87.6 mV was measured giving a resistance of 0.0195 ohm.

B
Ra La

LbRb

LcRc

A

I

Figure 3.1: Electrical circuit for resistance identification.

3.2.2 Inductance

For identification of the inductances Ld and Lq, two of the phases are again connected
to form an electrical circuit equivalent to Figure 3.2. According to [15], Ld can
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be found from the relationship Ld = 2
3LAB when the electrical angle is zero, i.e

θr = 0°. Similarly, Lq is found when the electrical angle is 90°, i.e Lq = 2
3LAB at

θr = 90°. In practice, this means that Lq is the highest value of LAB when rotating
the rotor for one period and Ld is the lowest. By measuring the inductance LAB
using an LCR meter, the rotor bound inductance was found to be Ld = 83 µH and
Lq = 170 µH.

B
Ra La

LbRb

LcRc

A

Figure 3.2: Electrical circuit for inductance identification.

3.2.3 Flux modulus

The flux modulus, or back-emf constant, can be determined by externally rotate the
rotor while measuring the resulting back-emf voltage. At steady state, (3.5) can be
rewritten as

VL−N −Rsiss − ωrψR = 0 (3.24)

where VL−N is the voltage over one phase to the neutral point. Since the voltage
drop over the winding resistance is very small it can be neglected, resulting in the
relationship

ψR = VL−N
ωr

. (3.25)

However, it can be difficult to reach the neutral point of the motor. Instead, the
line to line voltage, VL−L can be used which relates to the line to neutral voltage
according to VL−L =

√
3VL−N giving

ψR = VL−L√
3ωr

(3.26)

Using a power drill to rotate the rotor at a constant speed, the electrical frequency
and the voltage was measured with an oscilloscope. In this way, the flux modulus
was found to be 0.0091 Wb.

3.2.4 Frictional constant

The frictional coefficient, b, is a measure on how much breaking torque is created
from an angular speed of the rotor and is modelled as a constant. From (3.17),

17
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it can be seen that at steady state, i.e. constant currents and constant speed, we
have

np(ψR − (Ld − Lq)id)iq − bωm − τL = 0. (3.27)

By not applying any load torque, the friction constant, b, can be found to be

b = np(ψR − (Ld − Lq)id)iq
ωm

. (3.28)

When the rotor was running at a constant speed, id and iq was measured and the
frictional factor could, using (3.28), be calculated to 4.2281× 10−5 Nms/rad.

3.2.5 Measurement noise

When finding the magnitude of the measurement noise, a constant voltage vector was
applied in order to get a constant rotational speed. The speed was then measured
through the motor controller hardware, using the encoder. Over a sequence of 998
samples, or 33.7 seconds, the speed variance was 1.17 RPM when the mean speed
was 992 RPM. The measurement noise variance is assumed to be independent on
the mean speed and was thus identified as 1.17 RPM.
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4
Control Design

This chapter presents the development of the controller. In Section 4.1, the general
control structure is presented. The motor dynamics are used to obtain the system
time constants, which indicates that the electrical and mechanical dynamics can be
decoupled. In Section 4.1.1, the decoupled current controller is briefly described
and in Section 4.1.2 the control signal remapping from torque setpoint to current
setpoints is explained. The main work is presented in Sections 4.2 and 4.3, where
the speed controller is described.

4.1 Control structure

The aim of the controller is to make the rotational speed of the PMSM, ωm, follow a
speed setpoint, ω∗m, using the rotor bound voltage levels, vd and vq, as control signals.
As can be seen in the dynamic equations for the PMSM in (3.17)-(3.20) the control
signals do not have a direct impact on the rotational speed but instead an indirect
influence through the currents id and iq. In (3.17) the produced electromagnetic
torque can be extracted as

τe = np(ψR + (Ld − Lq)id)iq (4.1)

Inserting (4.1) into (3.17) leads to the expression

J
dωm
dt

= τe − bωm − τL (4.2)

By considering τL an input disturbance, the model is in this way formulated as a
first order single-input single-output system with transfer function

ωm(s)
τe(s)

=
1
b

J
b
s+ 1

(4.3)

Hence, the mechanical time constant can be found as T ωs = J
b

= 0.686. In a similar
manner, the electrical time constants can be derived to T ds = Ld

R
= 0.0043 and

T qs = Lq

R
= 0.0087. As the electrical time constants are two orders of magnitudes

smaller than the mechanical time constant, a separation of the controller into a
cascaded control system can be done in order to simplify the control design. The
inner loop controls the currents using the voltages as control signals, while the outer
loop controls the speed using torque setpoint as control signal. The mechanical
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time constant depends on the moment of inertia and an extra load inertia would
thus change it. However, since only an increase of the moment of inertia is possible,
the time constant may only become larger and it is therefore no problem for the
cascaded setup. Since the two controllers are decoupled, different sampling times
can and should be used. The sampling time of the current controller is set to 250
µs, almost 20 times faster than the fastest time constant of the current dynamics.
The speed controller is set to a sampling period that is ten times longer, i.e. 2.5 ms.
This leads to a faster controller relative to the system time constant than for the
current controller. This is motivated by the desire to quickly be able to compensate
for torque loads.

A schematic diagram of the control structure is shown in Figure 4.1. In addition to
the two controllers, a transformation from torque setpoint to current setpoints must
be done between them. This transformation is described in Section 4.1.2.

Speed
Controller

Setpoint
Mapping

Current
Controllers PMSM

ω∗m τ ∗e i∗d i
∗
q vd vq

id iqωm

Figure 4.1: Control structure. A cascaded control is used with inner loop control-
ling current and outer loop controlling rotor speed. A mapping from torque setpoint
to current setpoints between the speed and current controller is made.

4.1.1 Current controller

When the system dynamics are well-known, good performance for speed control of
the PMSM system can be achieved with a PI regulator implementation in both the
current and speed controller. The presumption is that only the moment of inertia
is unknown and from (3.19) and (3.20) it can be seen that the electrical dynamics
are not affected by a change in moment of inertia. With this as motivation, it
is decided to stick with a PI regulator as current controller for both the d- and
q-current loop.

4.1.2 Setpoint mapping

The control signal for the speed controller is a torque setpoint for the electrome-
chanical torque. This desired torque is obtained by regulating the currents so that
the actual torque

τe = np(ψR + (Ld − Lq)id)iq (4.4)

tracks the torque setpoint. The currents are controlled by the current controllers,
which need setpoint values for the currents, id and iq. A mapping from torque
setpoint to current setpoints is thus needed. For optimal use of the electrical power,
the desired torque should be achieved by as low total current as possible. In other
words, an optimization problem to minimize i2d + i2q with the constraint (4.4) should
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4. Control Design

be solved for the mapping. However, the term (Ld−Lq) is about one hundred times
smaller than ψR and high currents in d-direction are therefore needed for this term
to have a considerable impact on the resulting torque. A simple rule for the current
setpoints is therefore to use all the current in the torque-creating q-direction instead.
This leads to the mapping

i∗d = 0

i∗q = τ ∗e
npψR

(4.5)

4.2 Speed controller version 1

Using (4.2) as a model for the speed control, it can be seen that the relation from
total resulting applied torque, τtot = τe − τL, to speed, ωm, is through a first order
system with transfer function

ωm(s)
τtot(s)

=
1
J

s+ b
J

. (4.6)

An exact discretization of this model with sample time Tω leads to the difference
equation

ωm(k) = e−
b
J
Tωωm(k − 1)− 1

b
(e− b

J
Tω − 1)τtot(k − 1) (4.7)

By introducing ad = e−
b
J
Tω and bd = −1

b
(e− b

J
Tω − 1), (4.7) can be written as

ωm(k) = adωm(k − 1) + bdτtot(k − 1)
= adωm(k − 1) + bdτe(k − 1)− bdτL(k − 1)

(4.8)

This expression can then be used to parametrize the equation.

4.2.1 Control law using three parameters

To design an MRAC based on the model presented in (4.8), a reference model of
the same order is needed. The reference model is thus constructed as

ωref(k) = arefωref(k − 1) + brefω
∗
m(k − 1) (4.9)

which will give a behavior of a first order system from the speed setpoint, ω∗m, to
the speed of the reference model, ωref. The reference model can be described by the
transfer function

ωm(z)
ω∗m(z) = bref

z − aref
. (4.10)

Since a steady state gain of amplitude 1 from setpoint to actual speed is desired,
the relationship bref = 1 − aref must hold. Hence, only the pole placement of aref
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is needed when designing the reference model. Subtracting the term arefωm(k − 1)
from both sides in (4.8) gives

ωm(k)− arefωm(k − 1) = (ad − aref)ωm(k − 1) + bdτtot(k − 1). (4.11)

The error dynamics for the tracking error, e(k) = ωm(k)−ωref(k), can be calculated
by subtracting (4.9) from (4.11)

e(k)− arefe(k − 1) = (ad − aref)ωm(k − 1) + bdτe(k − 1)
− bdτL(k − 1)− brefω

∗
m(k − 1).

(4.12)

In order to make the error dynamics become

e(k) = arefe(k − 1) (4.13)

and hence make the error go to zero (since the reference model parameter aref will
be chosen such that the dynamics are stable) the control law can be formed as

τ ∗e (k) = 1
bd

(
(aref − ad)ωm(k) + brefω

∗
m(k) + bdτL(k)

)
. (4.14)

In order for the control law (4.14) to be realizable, the unknown values of ad, bd and
τL(k) must be estimated. By introducing a vector of regressors

ϕT (k) = [ωm(k − 1) τ ∗e (k − 1) − 1] (4.15)

and a parameter vector

θT (k − 1) = [ad bd bdτL(k − 1)], (4.16)

(4.8) can be written as
ωm(k) = ϕT (k)θ(k − 1). (4.17)

With this parametrization it is possible to iteratively estimate the unknown pa-
rameters ad, bd and bdτL(k − 1). The control signal is then calculated according
to the control law (4.14) using the latest available estimates (4.16) of the unknown
parameters. That is

τ ∗e (k) = 1
θ̂2(k)

(
(aref − θ̂1(k))ωm(k) + brefω

∗
m(k) + θ̂3(k)

)
(4.18)

where θ̂1(k), θ̂2(k) and θ̂3(k) are the first, second and third elements in θ̂(k) respec-
tively.

4.2.2 RLS based MRAC

The parameter estimation can be made using the RLS algorithm described in Section
2.3. The parameter vector (4.16) is thus estimated at each iteration using the
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Figure 4.2: Performance of the speed controller using the RLS algorithm to esti-
mate the parameters. The controller setup is λ = 0.99, aref = 0.95, P0 = 100I and
θ̂0 = [1 100 0]T . The actual speed (solid blue line) follows the reference model speed
(dashed red line) very well with the exception for the seconds right after the torque
load step.

regressor vector (4.15) according to the RLS-algorithm

ε(k) = ωm(k)− ϕT (k)θ̂(k − 1) (4.19)

P (k) = 1
λ

(
P (k − 1)− P (k − 1)ϕ(k)ϕT (k)P (k − 1)

λ+ ϕT (k)P (k − 1)ϕ(k)

)
(4.20)

K(k) = P (k)ϕ(k) (4.21)
θ̂(k) = θ̂(k − 1) +K(k)ε(k) (4.22)

The responsiveness of the controller toward changed process dynamics and torque
load is tuned using the forgetting factor λ. A lower value of λ gives a quicker
response to changed dynamics and torque load but will at the same time lead to
a controller that is less robust against noise. Furthermore, initial values for the
estimated parameters, θ̂0, and the covariance matrix, P0, are needed.

By simulating the system when using the RLS based MRAC, it becomes evident
that the controller performs quite well. Figure 4.2 shows the rotor speed, ωm, during
the simulation which starts with a setpoint step change to 2000 rpm with only the
moment of inertia of the rotor, Jr, as the total moment of inertia, J . After 5 seconds
a torque load step with amplitude 0.1 Nm is added. At 10 seconds a load inertia of
24Jr is added making the total moment of inertia to 25Jr. After another 2 seconds,
the setpoint is changed to 2800 rpm. It can be stated that the rotor speed follows
the reference model speed, ωref, well for the whole sequence, with the exception for
the seconds right after the torque load step.
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4.2.3 Kalman filter based MRAC

In the RLS-algorithm the forgetting factor, λ, reflects the rate of adaptation for
the parameters. However, speed control performance requires a faster response time
towards changes in torque loads than in moment of inertia. It would therefore be
beneficial to assign different adaptation rates for the parameters. This is possible
using the Kalman filter, described in Section 2.4, by assigning different variances for
the parameters in the process noise matrix, Q. As the changes in the parameters
are unknown, a random walk model is used to describe their transition, leading to
the dynamic model and measurement model according to

θ(k) = θ(k − 1) + w(k) (4.23)
ωm(k) = ϕT (k)θ(k) + v(k) (4.24)

Here w(k) ∼ N (0, Q) captures the variations of the parameters and v(k) ∼ N (0, R)
the measurement noise. Applying these models for the Kalman filter equations
(2.30)-(2.36) leads to the following algorithm.
Prediction step:

P−(k) = P (k − 1) +Q (4.25)

Update step:

ε(k) = ωm(k)− ϕT (k)θ̂(k − 1) (4.26)
S = ϕT (k)P−(k)ϕ(k) +R (4.27)
K = P−(k)ϕ(k)S−1 (4.28)
θ̂(k) = θ̂(k − 1) +Kε(k) (4.29)
P (k) = P−(k)−KSKT (4.30)

The measurement noise variance in the filter, R, is set according to the estimated
value in Section 3.2.5 so that the only tuning parameter for the filter is the process
noise matrix, Q. The control law derived in Section 4.2.1 is still used but now with
the parameter estimation algorithm carried out according to (4.25)-(4.30).

With the possibility to assign different adaptation rates for the parameters, a quicker
response for disturbance rejection can be obtained, as indicated by Figure 4.3, which
shows the same simulation as Figure 4.2 but now with the Kalman filter as estimation
method.

4.2.4 Perturbation signal

As stated earlier, the derived controllers seem to perform well at first glance. How-
ever, a problem arises at steady state when the setpoint and torque load is kept
constant and the dynamics do not change. This can be seen in Figure 4.4, where
the parameter estimations are shown for a simulation with setpoint kept at 2000 rpm
and no torque load is added. Here, an exponential drift in the parameters appear,
which in the end leads to an unstable behavior for the system. The drift can be
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Figure 4.3: Performance of the speed controller when Kalman filter is used as
parameter estimator for the standard test case. The controller setup is R = 0.01,
Q = diag{0.0012, 0.12, 0.12}, aref = 0.95, P0 = 100I and θ̂0 = [1 100 0]T . The
actual speed (solid blue line) is now less affected by the load step at 5 seconds. The
reference model speed is showed as a dashed red line.

explained by an insufficient excitation of the system [17], since at steady state the
direction of the regressor vector, ϕ, does not change. In order to get a regressor vec-
tor that is richer in variations, a perturbation signal, δτ , is added to the calculated
torque setpoint. The perturbation should affect the ideal closed-loop performance
as little as possible while still ensuring persistent excitation of the system. A few
different noise characteristics were investigated in order to achieve enough excita-
tion while minimizing speed variance in steady state. The rather short cyclic torque
perturbation signal

δτ =
[
0 1 −2 −1 2 0 −1 2 1 −2

]
× 10−3 Nm (4.31)

was found to yield the most desirable result of the ones investigated, see Figure
4.5. The signal has zero mean and results in a low speed variance. One may
argue that a more random signal would be favorable, and hence a pseudo-random
number generator (PRNG) to distribute the perturbation signal was tested. The
random variates from the PRNG was mapped to achieve different distributions of
the perturbation signal, such as uniform and normal distribution. However, when
the PRNG was used no improvement on the parameter estimates was found and the
steady state speed variance increased, compared to when using the cyclic sequence.
The sequence in Figure 4.5 was therefore chosen as perturbation signal.

The adaptive speed controller following this design is presented in Figure 4.6. The
control law block computes the unperturbed control signal, τue , according to (4.18)
which is added to the perturbation signal, δτ , to form the torque setpoint, τ ∗e . The
parameter estimation is performed according to (4.19)-(4.22) for the RLS based
MRAC and (4.25)-(4.30) for the Kalman filter based MRAC with the regressor
vector formed as in (4.15).
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Figure 4.4: Parameter estimates during steady state at 2000 rpm using an unper-
turbed control signal. The estimated parameters are shown in solid blue lines and
the true values in dashed red. Both θ̂2 and θ̂3 show an exponential drift.
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Figure 4.5: Perturbation signal sequence added to the control signal to ensure
excitation of the system.

With the same simulation setup as for Figure 4.4, the drift of estimated parameters
does not occur when the perturbation signal has been added, see Figure 4.7. Fur-
thermore, the performance of the controller in the standard test case is the same as
when not adding any perturbation.
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Figure 4.6: Speed controller scheme.
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Figure 4.7: Parameter estimates during steady state at 2000 rpm when a pertur-
bation is added to the control signal. The estimated parameters are shown in solid
blue lines and the true values in dashed red.

4.3 Speed controller version 2

The controller derived in Section 4.2 showed very good performance in simulations,
but when implementing it on the real system the parameter estimations escalated
to large numbers leading to an unstable system. Since the only considered changes
in the system are the moment of inertia and torque load, it should be possible
to capture these variations in only two parameters. A two parameter estimator
would also make the controller easier to tune and reduce its complexity. Still, the
parameter estimations are performed using either the RLS described in Section 4.2.2
or the Kalman filter described in Section 4.2.3. The perturbation signal in Section
4.2.4 is also used to ensure persistence of excitation.

4.3.1 Control law using two parameters

To achieve a model using only two parameters some rearrangement of the original
speed dynamics model (4.7) is needed. First, it should be noted that bd can be
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expressed as
bd = 1

b
(ad − 1). (4.32)

In the new parametrization, the speed difference between each sample is modelled
instead of the actual speed. To achieve a model for the speed difference, the previous
speed, ωm(k − 1), is subtracted from (4.7). This, together with (4.32), leads to the
expression

ωm(k)− ωm(k − 1) = (ad − 1)ωm(k − 1)− 1
b

(ad − 1)(τe(k − 1)− τL(k − 1))

= (ad − 1)
(
ωm(k − 1)− 1

b
τe(k − 1)

)
+ 1
b

(ad − 1)τL(k − 1).
(4.33)

By assuming that an estimation of the frictional constant b is available, the regressor
vector and parameter vector can be formed according to

ϕT (k) =
[1
b̂

ωm(k − 1)− 1
b̂
τe(k − 1)

]
(4.34)

θT (k) =
[
(ad − 1)τL(k − 1) (ad − 1)

]
(4.35)

and the prediction of the rotor speed becomes

ωm(k) = ωm(k − 1) + ϕT (k)θ(k). (4.36)

Again using the MRAC approach to construct a control law, a reference model as in
(4.9) is used. In order to obtain the tracking error dynamics, the term arefωm(k− 1)
is subtracted from the expression (4.36) to get

ωm(k)− arefωm(k − 1) = (1− aref)ωm(k − 1) + ϕT (k)θ(k). (4.37)

A subtraction of the reference model (4.9) then leads to the tracking error dynam-
ics

e(k)− arefe(k − 1) = (1− aref)ωm(k − 1) + ϕT (k)θ(k)− brefω
∗
m(k − 1). (4.38)

In the same way as in (4.12), the right hand side is desired to be set to zero, i.e.

(1− aref)ωm(k − 1) + θ1(k)
b̂

+ θ2(k)
(
ωm(k − 1)− 1

b̂
τe(k − 1)

)
− brefω

∗
m(k − 1) = 0.

(4.39)
Solving (4.39) and inserting the parameter estimates leads to the control law

τue (k) = b̂

θ̂2(k)

(θ̂2(k) + 1− aref)ωm(k)− brefω
∗
m(k) + θ̂1(k)

b̂

 . (4.40)

The structure of the speed controller is still as shown in Figure 4.6, but now using
(4.40) as control law and the parametrization according to (4.34) and (4.35).
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To get a better understanding of how the estimates affect the control law, a refor-
mulation can be done. Using the relationship of the model reference parameters,
bref = 1− aref, (4.40) becomes

τue = b̂

θ̂2(k)

(θ̂2(k) + 1− aref)ωm(k)− (1− aref)ω∗m(k) + θ̂1(k)
b̂


= b̂(aref − 1)

θ̂2(k)

(
ω∗m(k)− ωm(k)

)
+ b̂ωm(k) + θ̂1(k)

θ̂2(k)
.

(4.41)

The controller can hence be inferred to have three essential parts: a proportional
gain of the speed error, b̂(aref−1)

θ̂2(k) , a feedback gain of the speed, b̂, and a feedforward

of the estimated torque load, θ̂1(k)
θ̂2(k) . The estimate of θ1 is therefore only important in

its relation to θ̂2, while the magnitude of θ̂2 determines the proportional gain.

4.3.2 Upper limit of θ

When implementing the controller in the real system, a problem arose when ap-
plying very large and quickly changing load torques. The estimation of θ2 drifted
towards zero and whenever it reached non-negative values the system became unsta-
ble. When examining the parameter ad, it becomes obvious that the condition

ad = e−
b
J
Tω < 1 (4.42)

holds since b, J and Tω all are strictly positive values. From (4.42) and the definition
θ2 = ad − 1, it can be concluded that θ2 must be negative. With this in mind, a
condition of negativeness for updating the estimate of θ2 is applied. In other words,
if the next estimation for θ2 is non-negative, only θ̂1 is updated while θ̂2 is kept at
its previous value. Furthermore, θ1 = θ2τL and it is assumed that the load torque
has a breaking effect on the rotor, i.e. τL ≥ 0. The upper bound for θ1 is thus zero.
In the same manner as for θ̂2, a condition on updating θ̂1 can be used in order to
ensure that it never reaches potive values. The upper bound for θ̂1 is important
especially for the RLS based controller when a torque load step is applied. Without
the bound, an oscillation of the control signal appears in the transient.

Inspecting (4.41) again, it can be seen that b̂(aref − 1) is negative. Since a positive
proportional gain is desired, the necessity of a negative value for θ̂2 also becomes
evident.

4.3.3 Final control algorithm

The final controller follows the MRAC scheme presented in Section 4.3.1 with control
law (4.40) and the parametrization according to (4.34) and (4.35). The calculated
torque setpoint is then perturbed using the perturbation signal described in Section
4.2.4 in order to ensure excitation of the system. The parameter estimates are
guaranteed to stay below their upper bounds using the conditions for updating their
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values described in Section 4.3.2. Two different methods are used for the parameter
estimation, RLS and Kalman filter, which are described in Sections 4.2.2 and 4.2.3
respectively. The RLS based MRAC (RLS-MRAC) is described in Algorithm 1 and
the Kalman filter based MRAC (KF-MRAC) is presented in Algorithm 2.

Algorithm 1: RLS based MRAC (RLS-MRAC)
Input: ωm(k), λ, P0, θ̂0, aref, bref, b̂
Output: τ ∗e (k)
Memory: θ̂(k), P (k), ωm(k − 1), τ ∗e (k − 1)
Initialization: P (k) = P0, θ̂(k) = θ0, ωm(k − 1) = 0, τ ∗e (k − 1) = 0

1 Construct regressor vector as ϕT (k) = [ 1
b̂

ωm(k − 1)− 1
b̂
τe(k − 1)]

2 Compute estimation error ε = ωm(k)− ϕT (k)θ̂(k − 1)
3 Update covariance matrix

P (k) = 1
λ

(
P (k − 1)−KϕT (k)P (k − 1)

)
4 Calculate correction gain

K = P (k)ϕ(k)
5 Update parameter estimate

θ̂(k) = θ̂(k − 1) +Kε

6 Ensure non-positiveness for θ̂1

if θ̂1(k) > 0 then
θ̂1(k) = θ̂1(k − 1)

end
7 Ensure negativeness for θ̂2

if θ̂2(k) ≥ 0 then
θ̂2(k) = θ̂2(k − 1)

end
8 Compute unperturbed torque setpoint

τue (k) = b̂
θ̂2(k)

(
(θ̂2(k) + 1− aref)ωm(k)− brefω

∗
m(k) + θ̂1(k)

b̂

)
9 Add perturbation to the calculated torque setpoint

τ ∗e (k) = τue (k) + δτ , δτ as in (4.31)
10 Set ωm(k − 1)← ωm(k), τ ∗e (k − 1)← τ ∗e (k), θ̂(k)← θ̂(k + 1) and

P (k)← P (k + 1)
11 At next iteration, start over from step 1
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Algorithm 2: Kalman filter based MRAC (KF-MRAC)
Input: ωm(k), Q, R, P0, θ̂0, aref, bref, b̂
Output: τ ∗e (k)
Memory: θ̂(k), P (k), ωm(k − 1), τ ∗e (k − 1)
Initialization: P = P0, θ̂ = θ0, ωm(k − 1) = 0, τ ∗e (k − 1) = 0

1 Construct regressor vector as ϕT (k) = [ 1
b̂

ωm(k − 1)− 1
b̂
τe(k − 1)]

2 Compute estimation error ε = ωm(k)− ϕT (k)θ̂(k − 1)
3 Perform prediction step in Kalman filter

P−(k) = P (k − 1) +Q
4 Perform update step in Kalman filter

S = R + ϕT (k)P−(k)ϕ(k)
K = P−(k)ϕ(k)S−1

P (k) = P−(k)−KSKT

θ̂(k) = θ̂(k − 1) +Kε

5 Ensure non-positiveness for θ̂1

if θ̂1(k) > 0 then
θ̂1(k) = θ̂1(k − 1)

end
6 Ensure negativeness for θ̂2

if θ̂2(k) ≥ 0 then
θ̂2(k) = θ̂2(k − 1)

end
7 Compute next torque setpoint

τue (k) = b̂
θ̂2(k)

(
(θ̂2(k) + 1− aref)ωm(k)− brefω

∗
m(k) + θ̂1(k)

b̂

)
8 Add noise to the calculated torque setpoint

τ ∗e (k) = τue (k) + δτ , δτ as in (4.31)
9 Set ωm(k − 1)← ωm(k), τ ∗e (k − 1)← τ ∗e (k), θ̂(k)← θ̂(k + 1) and

P (k)← P (k + 1)
10 At next iteration, start over from step 1
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5
Results

This chapter presents the project results, evaluating the closed-loop performance
for the developed controllers as well as for a PI controller. In Section 5.1, the
simulation results can be found. The two MRAC approaches, presented in Section
4.3.3, are compared to the PI controller in terms of setpoint tracking and disturbance
rejection. Since the true parameter values are known in simulation and not in the
physical experiment, especially the estimation abilities of the two different methods
are of interest. In Section 5.2, the controllers are compared more in depth when
implemented and run on the physical system. Besides the setpoint tracking and
disturbance rejection for different cases of moment of inertia, the sensitiveness of
frictional constant estimation, b̂, is investigated.

5.1 Simulation results

Figure 5.1 shows the rotor speed from a simulation of the system using the RLS-
MRAC described in Algorithm 1, the KF-MRAC described in Algorithm 2 and a
PI controller. The simulation starts with a setpoint step change to 2000 rpm with
only the moment of inertia of the rotor, Jr, as the total moment of inertia, J . After
5 seconds a torque load step with amplitude 0.1 Nm is added. At 10 seconds a
load inertia of 24Jr is added making the total moment of inertia to 25Jr. After
another 2 seconds, the setpoint is changed to 2800 rpm. In this case, aref is set
to 0.8 leading to a rise time (10% to 90%) for the reference model of 0.025 s and
the PI controller is tuned to have the same rise time when the moment of inertia
is Jr. Initial values for the estimation are P0 = I and θ̂0 = [0 − 0.01]T and the
estimation of b is perfect, i.e. b̂ = b. The Kalman filter measurement noise matrix R
is set to the identified measurement noise in Section 3.2.5, i.e. 0.01. The parameters
λ = 0.985 and Q0 = [10−4 10−6] have been tuned to get the best performance for
each controller.

The rise time and overshoot for the three controllers, both for the first and second
setpoint step change, are presented in Table 5.1. The two adaptive controllers both
quickly show the required step response, with a rise time of 0.025 s and adjust the
dynamics after the changed moment of inertia. No overshoot appears at the second
setpoint step and the rise time is only slightly longer. However, the step response
using PI control after changed moment of inertia is much slower with the rise time
of 0.38 s and results in an overshoot of 47.5%. This clearly indicates that the two
adaptive controllers can compensate for changed moment of inertia and retain the
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Figure 5.1: Rotor speed during standard test case using KF-MRAC (solid red
line), RLS-MRAC (dashed blue line) and PI (dotted black line). Setpoint speed
changes from 2000 to 2800 after 12 seconds.

Controller Rise time 1 [s] Overshoot 1 [%] Rise time 2 [s] Overshoot 2 [%]
KF-MRAC 0.025 0.2 0.035 0
RLS-MRAC 0.025 0.1 0.030 0
PI 0.025 0.1 0.38 47.5

Table 5.1: Step response characteristic values for the three controllers for the
standard test case for step 1 from 0 to 2000 rpm at 0 seconds and step 2 from 2000
to 2800 rpm at 12 seconds.

desired closed-loop dynamics, something that the PI controller is incapable of.

The big difference between the two adaptive controllers is the disturbance rejection,
where the KF-MRAC has the better performance. This can more clearly be seen in
Figure 5.2 which shows a close-up look on the speed when the torque load is applied
and by examining Table 5.2 which presents recovery time (time from load step to
99% of the steady-state speed is reached) and speed drop. The KF-MRAC both
have a shorter recovery time, 0.025 s compared to 0.3 s, and a smaller speed drop,
94 rpm compared to 277 rpm.

The quick response for the KF-MRAC can be understood by examining the param-
eter estimations for the simulated sequence, shown in Figure 5.3. The parameter
containing the information of the torque load, θ1, is rapidly changed at 5 seconds
when the load step is applied and the Kalman filter estimate adjusts immediately.
A closer look at θ1 right after the load step can be seen in Figure 5.4 where this

Controller Recovery time [s] Speed drop [rpm]
KF-MRAC 0.025 94
RLS-MRAC 0.300 277
PI 2.019 372

Table 5.2: Values for disturbance rejection for the three controllers. Recovery time
is the time from load step to 99% of the setpoint speed is reached. Speed drop is
the maximum deviation of the speed from setpoint speed.
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Figure 5.2: A closer look at the speed drop when the load step is applied. There
is a clear performance difference of the KF-MRAC (solid red line), the RLS-MRAC
(dashed blue line) and the PI (dotted black line).
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Figure 5.3: Parameters estimated in simulation using KF-MRAC (solid blue line)
and RLS-MRAC (dash-dotted red line). The true parameters are shown as a dashed
yellow line.

quick response becomes obvious. Looking again at Figure 5.3 it can be noted that
the Kalman filter estimates seem more accurate shortly after a setpoint change or
torque load step has occurred. However, when the system reaches steady state,
the estimates start to drift down until settling at an offset from the true value.
The RLS estimates move more slowly towards the true parameter values after a
change but later on settle closer to the true values compared to the Kalman filter
estimates.
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Figure 5.4: Estimation of θ1 after the added torque load using Kalman filter (solid
blue line) and RLS (dash-dotted red line). The true parameters is shown as a dashed
yellow line.

5.2 Experimental results

The control design was tested using a motor test bench at Aros electronics. The
test bench consisted of a motor that could apply load torques. The PMSM to be
tested was attached to the axis of the test bench using a spring. With the additional
motor, the inertia of the system was changed and thus now unknown. The total
moment of inertia can be described as

J1 = Jr + Jl (5.1)

where Jr is the known moment of inertia of the subjected test rotor and Jl is the
added moment of inertia of the load motor, which is estimated to be about the
same size as Jr. In order to get a fair comparison between the controllers, the PI
was tuned to get a step response similar to the reference model for the moment of
inertia J1. A reference model with aref = 0.985 was used, leading to a rise time of
about 0.4 seconds. The initial values for the parameter estimates in both adaptive
controllers were θ0 = [0 − 0.01]T and P0 = 10−6I. The Kalman filter was tuned to
R = 0.01, Q = diag{10−13, 5 × 10−12} and the forgetting factor for the RLS was
λ = 0.985. The estimation of b was set according to the identified value in section
3.2.4, i.e. 4.2281× 10−5.

To investigate the performance of the controllers for varying moment of inertia, the
tests were performed using two different cases. First the tests were performed with
the moment of inertia of the two rotors, J1. For the second part of the tests, a steel
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Controller Rise time [s] Overshoot [%] Settling time [s]
KF-MRAC 0.38 0 0.94
RLS-MRAC 0.47 0.14 1.38
PI 0.36 0.59 0.83

Table 5.3: Step response characteristic values for the three controllers when the
moment of inertia is J1.

disc was attached to the axis in order to increase the moment of inertia. The added
moment of inertia was 24 times bigger than the test rotor inertia, giving a total
moment of inertia

J2 = 25Jr + Jl ≈ 13J1. (5.2)

The controllers were evaluated by their ability to follow the setpoint signal. This was
done by comparing their steady-state speeds, their step responses and their ability
to compensate for a torque load. The purpose of the tests was to demonstrate the
ability of the developed controller to compensate for a varying moment of inertia
and retain the original dynamics.

5.2.1 Step response

During the first test case, which can be seen in Figure 5.5, the moment of inertia
was J1 and a setpoint of 2000 rpm was given. Both the adaptive controllers directly
follow the desired response, but a slightly slower response to reach the final value
can be seen for the RLS-MRAC. As the PI controller is tuned to have the same rise
time as the reference model for this moment of inertia, the similar behavior for the
three controllers is expected. The rise time, overshoot and settling time (time to
reach and stay within 1% of final value) for each controller are presented in Table
5.3. From this table, the similar dynamics for all controllers are easily seen.

However, a closer look at the steady-state speed, shown in Figure 5.6, reveals a prob-
lem with the KF-MRAC. Here it can be seen that the KF-MRAC produces a steady
state speed offset of almost 10 rpm. This behavior has been present throughout the
entire testing procedure, where the offset seems to have a linear relationship with
the speed leading to an offset of about 0.5% of the setpoint. The cause for it has
not been found, but a possible reason for the different steady-state behavior of the
two estimation strategies is that they settle at different parameter estimation values.
This can be seen in Figure 5.7 which illustrates the parameter estimates in the step
response sequence. This difference in parameter estimation was also present in the
simulation, as can be seen in Figure 5.3, where it showed that the RLS settled closer
to the true parameter values.

Figure 5.8 demonstrates the step response for the same test but now with the mo-
ment of inertia changed to J2. This clearly shows the changed behavior of the PI
controller while the step responses for the adaptive controllers are similar to the
previous case, thus indicating that the adaptive controllers have retained their dy-
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Figure 5.5: Step response for the case when the moment of inertia is J1 using
KF-MRAC (solid blue line), RLS-MRAC (dashed red line) and PI controller (dash-
dotted black line).

6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8 8.2 8.4

Time [s]

1984

1986

1988

1990

1992

1994

1996

1998

2000

2002

2004

R
o
to
r
sp
ee
d
[r
p
m
]

KF-MRAC
RLS-MRAC
PI

Figure 5.6: Steady-state speed for the KF-MRAC (solid blue line), the RLS-MRAC
(dashed red line) and PI (dash-dotted black line). The controller using Kalman filter
for estimation settles at an offset of about 10 rpm from the setpoint value.
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Figure 5.7: Parameter estimates during the step response sequence. The Kalman
filter estimates (solid blue lines) settles at about twice the value of the RLS estimates
(dashed red lines).

Controller Rise time [s] Overshoot [%] Settling time [s]
KF-MRAC 0.45 0.14 0.91
RLS-MRAC 0.44 0.23 1.16
PI 0.66 12.02 3.78

Table 5.4: Step response characteristic values for the three controllers when the
moment of inertia is J2.

namics. The step response characteristic values are presented in Table 5.4. While
difference in rise and settling time for the adaptive controllers is small, PI has an
increase in rise time and settling time from 0.359 to 0.656 and from 0.827 to 3.78
respectively. Furthermore, the overshoot for the PI becomes 12 % while the adaptive
controllers have a negligible overshoot.

5.2.2 Disturbance rejection

To evaluate the controllers’ ability to reject load disturbances, a test was carried
out where the motor was running at 2000 rpm and a torque load step was applied.
For the case with the lower moment of inertia, J1, a torque of 0.1 Nm was applied
and for the bigger moment of inertia, J2, a torque of 0.2 Nm was applied.

Figure 5.9 shows the test with moment of inertia J1 and Table 5.5 presents perfor-
mance values for the test. The test with moment of inertia J2 is shown in Figure 5.10
and performance values for this test are presented in Table 5.6. From this, it is clear
that both the MRACs are significantly better than the PI regarding disturbance
rejection, even when moment of inertia is J1 - the case which the PI controller was
tuned for. Also here, the robustness against changed moment of inertia, when using
the developed controllers, becomes obvious as the responses for the two cases of J1
and J2 are very similar. The response using the PI, however, is worse for the case
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Figure 5.8: Step response for the case when the moment of inertia is J2 using the
KF-MRAC (solid blue line), the RLS-MRAC (dashed red line) and PI controller
(dash-dotted black line).

Controller Recovery time [s] Speed drop [rpm]
KF-MRAC 0.36 86
RLS-MRAC 0.44 40
PI 1.9 200

Table 5.5: Values for disturbance rejection of a load step for the three controllers
when the moment of inertia is J1. Recovery time is the time from load step to 99%
of the steady-state speed is reached. Speed drop is the maximum deviation of the
speed from setpoint speed.

with higher inertia and again shows the dependency on moment of inertia.

The KF-MRAC is faster to fully compensate for the load, especially when moment of
inertia is J2, but the RLS-MRAC has a smaller speed drop. The fast compensation
for the KF-MRAC can be understood by investigating the parameter estimates.
From 4.41 it is clear that the estimation of torque load is τ̂L = θ̂1

θ̂2
. This factor is

plotted in Figure 5.11, where the load step is made at 1 second. The Kalman filter
estimate quickly finds the new higher value, while the RLS estimate more slowly
converges to it. Still, the RLS-MRAC is able to reject the load better regarding

Controller Recovery time [s] Speed drop [rpm]
KF-MRAC 0.36 105
RLS-MRAC 0.75 38
PI 3.00 390

Table 5.6: Values for disturbance rejection of a load step for the three controllers
when the moment of inertia is J2. Recovery time is the time from load step to 99%
of the steady-state speed is reached. Speed drop is the maximum deviation of the
speed from setpoint speed.
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Figure 5.9: Load disturbance rejection for the case when the moment of inertia is
J1 using the KF-MRAC (solid blue line), the RLS-MRAC (dashed red line) and PI
controller (dash-dotted black line).
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Figure 5.10: Load disturbance rejection for the case when the moment of inertia
is J2 using the KF-MRAC (solid blue line), the RLS-MRAC (dashed red line) and
PI controller (dash-dotted black line).
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Figure 5.11: Load torque estimation during the load step. The Kalman filter
estimation (dashed blue line) quickly settles at the new higher load value. The RLS
estimation (solid red line) more slowly converge to the new load value.

the speed drop. The reason for this is its high increase of proportional gain. The
proportional gain is b̂(aref−1)

θ̂2
, as seen in (4.41). In Figure 5.12 the proportional gain is

shown, again the load step is made at 1 second. The gain shows a dramatic increase
for the RLS-MRAC at the time of load step. This leads to a very aggressive controller
against changes in speed which results in the small speed drop.

The high proportional gain, however, leads to a more nervous control signal. This
can be seen in Figure 5.13 where the control signals for the three speed controllers
are shown. Both the MRACs increase their torque reference more aggressively when
the load step occurs, compared to the control signal of the PI. The KF-MRAC
has a peak in the beginning but quickly settles at the new steady-state, while the
RLS-MRAC oscillates more around it until the torque load estimate has settled and
proportional gain has reduced.

5.2.3 Changed moment of inertia during runtime

In Section 5.2.1 the step response for different values of moment of inertia was
investigated. However, to test the ability to adjust to changed moment of inertia
when the motor is running and the estimates thus have settled for a certain moment
of inertia, a different test is needed. For practical reasons, it was not possible to
actually change the moment of inertia during runtime but instead an alternative
test was performed to resemble this as good as possible. First, with the moment of
inertia being J1, the motor was run at 2000 rpm using the MRAC until the estimates
settled at steady values. The parameter estimates and the covariance matrix were
then saved. Then, the moment of inertia was changed to J2 and the motor was
again run at 2000 rpm, now using the PI as controller. With initial values for the
MRAC set to the previously saved values for J1, the motor controller was switched
from PI to the MRAC. Two seconds after the switch, a setpoint step to 2500 rpm
was performed. This was done for both the RLS-MRAC and the KF-MRAC. The
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Figure 5.12: Proportional gain in control signal during the load step for the case
of moment of inertia J1. For the RLS-MRAC (dashed red line), the highest value
during the transient is about 30 times its steady-state proportional gain. The KF-
MRAC (solid blue line) show a less dramatic increase, reaching at most 5 times its
steady-state value.

test was thus designed to resemble a sequence where the motor is run at 2000 rpm
with the moment of inertia J1, at a point the moment of inertia is changed to J2
and two seconds after the change, a setpoint step to 2500 rpm is made.

To get a good picture of the sequence, the data from the first sequence using MRAC
is merged with the second sequence. The first three seconds is with J1 as moment of
inertia running at steady state with a setpoint of 2000 rpm and from three seconds
the moment of inertia is J2. In Figure 5.14 the rotor speed is shown for the merged
sequences. No deviation in speed from the steady-state value is appearing when the
moment of inertia is changed for any of the controllers. Furthermore, they both
react on the setpoint step change with satisfying dynamics. The rise time for the
RLS-MRAC is exactly as desired, i.e. 0.4 seconds, while the KF-MRAC shows a
somewhat slower behavior having a rise time of 0.43 seconds.

Figures 5.15 and 5.16 illustrates the parameter estimates for the merged sequences.
The change of moment of inertia at 3 seconds is not immediately captured by any of
the estimation methods, since a change of moment of inertia by itself will not affect
the torque required to uphold the rotational speed. However, after five seconds when
the setpoint step change occurs, the controllers quickly find new estimates. As can
be seen in Figure 5.14, correct dynamics are obtained as a result. It is interesting to
note that the same behaviour for the parameter estimates as in simulation can be
seen when changing setpoint. At that time instant both the Kalman filter estimates
and the RLS estimates jump up to about the same value. In simulation, this was
known to be the true parameter value and this can be suspected to be the case also
for the physical system. With the inertia J2 and frictional constant b̂, the expected
estimate would be θ2 = −1.4× 10−4. Comparing this value with Figure 5.16, it can
be seen that the estimates approach this value immediately after the setpoint step
change. The Kalman filter estimate rises to −2.1 × 10−4 and the RLS estimate to
−1.5× 10−4. After the step, the estimates drift down to settle at values below the
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Figure 5.13: Torque setpoint signal during the load step. Both the KF-MRAC
(solid blue line) and RLS-MRAC (dashed red line) has a more aggressive response
to the load than the PI (dash-dotted black line). The control signal from the RLS-
MRAC shows an oscillatory behaviour during the transient period after the load
step.
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Figure 5.14: Rotor speed during a sequence of changed moment of inertia. At 3
seconds the moment of inertia is changed from J1 to J2 and at 5 seconds a setpoint
step from 2000 rpm to 2500 rpm is made. Both the KF-MRAC (solid blue line) and
the RLS-MRAC (dashed red line) show high robustness against changed moment of
inertia.
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Figure 5.15: Estimation of θ1 during the sequence of changed moment of inertia.
At the time of the setpoint step both estimates directly rise to nearly the same value.
Quickly after the step, the Kalman filter estimate (solid blue line) drifts down to
the same offset as before. The RLS estimate (dashed red line) more slowly settles
at its offset, which is at a higher level than the Kalman filter estimate.

assumed true value. The Kalman filter estimate settles further below than the RLS
estimate.

5.2.4 Sensitivity for various b̂

Since b̂ is a part of the regressor vector, the parameter estimations depend on it. It
is thus important to have a reasonable estimation of the frictional constant, b. To
investigate how sensitive the controllers are for different values of b̂, a step response
test was performed using various values. The step response is shown in Figure
5.17 and Figure 5.18 using KF-MRAC and RLS-MRAC, respectively. Besides the
identified value of b, 4.2281× 10−5, the estimate is set to both two times as big and
half the value. In both cases the controller behaves similarly when b̂ is approximately
b and 0.5b, with just a little bit slower step response for b̂ ≈ 0.5b. Another difference
can be found by closely examining the steady-state offset for the KF-MRAC which
is 3 rpm bigger for b̂ ≈ 0.5b. For b̂ ≈ 2b the offset becomes positive and an overshoot
also occurred in the step response. This was also the case for the RLS-MRAC when
b̂ ≈ 2b, seen in Figure 5.18. However, this offset is still smaller than the one received
using KF-MRAC. When larger or smaller values of b̂ is used, such as 4b and 0.25b,
the system becomes unstable.
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Figure 5.16: Estimation of θ2 during the sequence of changed moment of inertia.
The behavior is similar to the one for θ̂1. Both the Kalman filter estimate (solid blue
line) and the RLS estimate (dashed red line) rise to a value close to the expected
true value, −1.4× 10−4, at the time of setpoint change.
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Figure 5.17: Step response from 2000 to 2500 rpm using KF-MRAC for different
b̂.
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Figure 5.18: Step response from 2000 to 2500 rpm using RLS-MRAC for different
b̂.
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6
Discussion and Future Work

The two controllers developed in the project perform equally well regarding the step
response and adapt to big changes in moments of inertia in a way that a PI controller
cannot do. With the ability to estimate the plant dynamics, the defined reference
model can always be traced closely, meaning that the behavior toward changes in
setpoint is independent on the moment of inertia.

When it comes to torque load compensation, the MRACs show a much better per-
formance than the PI. It can be concluded that the KF-MRAC is faster to fully
compensate for an applied torque load, which is due to its ability to quickly es-
timate the new load. With the RLS-MRAC, however, the speed drop is smaller
because of the high increase of proportional gain. This comes with the price of
a more nervous control signal in the transient period after the load step. The PI
controller has the smoothest control signal, but this also leads to a much slower re-
sponse to added torque load. For an increased moment of inertia, the PI controlled
motor shows an even deeper speed drop and is slower on its way back to the speed
setpoint. This dependence on moment of inertia is not something that is apparent
for the adaptive controllers. Here, again, the developed controllers thus show their
ability to retain the dynamics for varying moment of inertia. The reason for the
quality difference in disturbance rejection for the two adaptive controllers can be
explained by the possibility to assign different adaptation rates for the two param-
eters in the Kalman filter. By modifying the RLS to make the tuning of different
adaptation rates possible, the disturbance rejection may be enhanced to faster re-
gain its speed. In [18] an RLS scheme is presented where multiple forgetting factors
are used, leading to more degrees of freedom for tuning the adaptation rates which
might make this possible.

The KF-MRAC has a steady state speed offset at constant speeds. The offset is not
very big, about 0.5% of the setpoint for all of the speed span, but it is nonetheless
an important drawback. In some applications, the robustness against changed mo-
ment of inertia and quick response to torque loads may be more important, but for
applications where good steady-state tracking of the speed is crucial the KF-MRAC
presented here is not an alternative. An explanation for this behavior has not been
established, but one hypothesis is that the different parameter estimations for the
two controllers is the reason. The estimates using Kalman filter and RLS settle at
different values and simulations indicate that the RLS estimates are closer to the
true values. In simulation, the parameter offset for the Kalman filter did not result
in any offset in speed but when applied on the actual system this was the case. In
the physical experiments, when physical phenomena that are not modelled appear,
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6. Discussion and Future Work

the effect of the estimation offset may become more important leading to tracking
errors. For stable parameter estimation, excitation of the system is necessary and
the added perturbation signal is crucial. However, the system might still not be ex-
cited enough. When significant changes was made for the system, such as setpoint
steps and torque load changes, the true parameter values were temporarily found
but the estimates then quickly started to drift to an offset. This indicates that more
excitation of the system leads to better estimations. A possible improvement can be
made by thoroughly investigating the role of the perturbation signal, with the goal
to excite the system while ensuring minimal disturbance on the output. Another
possible fix could be to only estimate θ2 (and indirectly the moment of inertia) when
a setpoint step change occurs, since changes in moment of inertia are difficult to de-
tect at constant speeds. This method would lock the moment of inertia estimate
shortly after the new speed setpoint is reached, i.e. when the value is believed to be
close to the true value. Yet another solution for the steady-state offset might be to
introduce integrating effect in the control law. This may, however, worsen its quick
responsiveness to disturbances.

For the two controllers presented in this report an estimate of the frictional constant,
b, is needed. The choice of b̂ has a considerable effect on the behaviour of the
controller and the identification of b thus becomes rather important. In the real
system, the frictional constant may not actually be constant but rather dependent on
the rotor speed. Since b is considered constant in the controllers and the controllers
are fairly sensitive to different values for b̂, it becomes obvious that the nonlinear
traits of the friction may be an issue. One possible solution for this is to use lookup
tables for b̂ for different speeds, in an effort to obtain better performance for the
entire speed range. A possibly even better solution for getting rid of the sensitivity
of b̂ would be to estimate it online. The first version of the speed controller did not
rely on any identification of the frictional constant, but instead indirectly estimated
it using a third parameter. In simulations, the desired closed-loop performance
using this controller was successfully achieved. Despite the promising behavior in
simulations, no stable controller was found when trying to implement this method
on the real system. As it would be highly advantageous to not rely on an estimation
of the frictional constant, further investigations on the implementation issues are of
interest.
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7
Conclusion

The two developed motor control methods, RLS-MRAC and KF-MRAC, are much
more robust against changes in moment of inertia compared to a PI controller.
With both methods, a defined reference model can be followed accurately for a
large span of moments of inertia. They also perform very well against torque load
disturbances, where the RLS-MRAC has the lowest speed drop while the KF-MRAC
has a slightly bigger drop but is instead faster to regain its speed. The KF-MRAC
has a more stable control signal, compared to the RLS-MRAC control signal which
is prone to oscillations immediately after a load change. Excitation of the system is
crucial in order for the parameter estimates not to drift and make the closed-loop
system stable. A perturbation signal is added to the torque setpoint in the presented
algorithms, leading to stable parameter estimation. Even so, a steady-state speed
offset is appearing for the KF-MRAC. This is a drawback that the RLS-MRAC does
not have.

49



7. Conclusion

50



Bibliography

[1] Chandler, J. "PMSM technology in high performance variable speed applica-
tions." Control Design White Paper, 2006

[2] Su, Y.X., Chun H.Z., Bao Y.D. "Automatic disturbances rejection controller
for precise motion control of permanent-magnet synchronous motors." IEEE
Transactions on Industrial Electronics 52.3: 814-823, 2005

[3] Krishnan, R. "Permanent magnet synchronous and brushless DC motor drives".
CRC Press, 2010

[4] Dobbs, E. R. "Basic Electromagnetism". Springer Netherlands, 1993

[5] Harnefors, L. "Control of variable-speed drives". Applied Signal Processing and
Control, Department of Electronics, Mälardalen University, 2002.

[6] Egardt, B. "Nonlinear and adaptive control". Department of Signals and Sys-
tems, Chalmers University of Technology, 2016

[7] Ding, Z. "Nonlinear and adaptive control systems". Vol. 84. IET, 2013.

[8] Khoshnood, A., Roshanian, J., Khaki-Sedig A. "Model reference adaptive con-
trol for a flexible launch vehicle." Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Engineering 222.1: 49-55,
2008

[9] Rastogi, E.,Prasad L.B. "Performance Analysis of Model Reference Adaptive
Control Using Lyapunov Approach for A Dynamical System." i-Manager’s Jour-
nal on Electrical Engineering 9.2, 2015

[10] Andréasson, N., Evgrafov, A., Gustavsson, E., Nedelková, Z., Patriksson, M.,
Sou, K.C., Önnheim, M. "An Introduction to Continuous Optimization, 3rd
edition", Studentlitteratur, 2013

[11] Sjö, A. "Updating techniques in recursive least-squares estimation", 1992

[12] Swanson, D.C. "Signal Processing for Intelligent Sensor Systems with MAT-
LAB®". CRC Press, 2011

[13] Kalman, R.E., Bucy, R.S. "New results in linear filtering and prediction theory."
Journal of basic engineering 83.3: 95-108, 1961

51



Bibliography

[14] Särkkä, S. "Bayesian filtering and smoothing. Vol. 3". Cambridge University
Press, 2013

[15] Bobek, V. "Pmsm electrical parameters measurement." Freescale Semiconduc-
tor, 2013.

[16] Rashid, M.H. "Power electronics handbook: devices, circuits and applications".
Academic press, 2010

[17] Åström, K.J., Wittenmark, B. "Adaptive control". Courier Corporation, 2013

[18] Vahidi, A, Stefanopoulou, A. Peng, H. "Recursive least squares with forgetting
for online estimation of vehicle mass and road grade: theory and experiments."
Vehicle System Dynamics 43.1: 31-55, 2005

52


	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Problem background
	Aim
	Method
	Scope and boundaries
	Outline

	Theory
	Permanent magnet synchronous motor
	Motor structure and operation
	Space vectors
	dq-coordinates

	Model reference adaptive control
	Model reference control
	MRAC

	Recursive least squares
	Kalman filter

	Modelling
	Mathematical model of PMSM
	Electrical dynamics
	Mechanical dynamics
	Total dynamical equations

	System identification
	Resistance
	Inductance
	Flux modulus
	Frictional constant
	Measurement noise


	Control Design
	Control structure
	Current controller
	Setpoint mapping

	Speed controller version 1
	Control law using three parameters
	RLS based MRAC
	Kalman filter based MRAC
	Perturbation signal

	Speed controller version 2
	Control law using two parameters
	Upper limit of 
	Final control algorithm


	Results
	Simulation results
	Experimental results
	Step response
	Disturbance rejection
	Changed moment of inertia during runtime
	Sensitivity for various 


	Discussion and Future Work
	Conclusion
	Bibliography

