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Göteborg, Sweden July 2014



Abstract

Radio-frequency identification (RFID) is being increasingly used for different types
of applications. These applications need protocols that can provide the service and
security needed. Currently, there exist distance-bounding protocols that can be
used to set an upper limit on how far away a prover can be of a verifier, and
grouping-proof protocols that can create a proof of two or more provers being
present at the same time. But there exists no protocol that provides both of these
security parameters.

The purpose of this thesis is to investigate existing protocols and use the infor-
mation found to create a new type of protocol, a distance-bounding grouping-proof
protocol, that provides the security of both the distance-bounding and grouping-
proof protocols. This was done by doing a research in the area of both types of
protocols, and use the research results to design a stronger grouping-proof proto-
col, and three different distance-bounding grouping-proof protocols. All protocols
were analysed in terms of security and privacy. A simulation framework was devel-
oped, in which some of the protocols were implemented. They had their efficiency,
false rejection, and attack resistance evaluated under different conditions.

The main conclusion of this thesis is that it was possible to design a protocol
that provides the security of both distance-bounding and grouping-proof protocols.
The simulation results show that the security can be greatly increased with low
impact on the efficiency, and that the current method to tolerate noise is not
adequate.
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1
Introduction

1.1 Background

Radio-frequency identification (RFID) is a wireless communication technology
that, as the name states, uses radio-frequency to transfer data. The technology is
used in many different types of applications, where two of the main purposes are
identification and tracking of objects.

In the authentication application, the user (prover) often has a physical key
in the form of an RFID tag, used as an authentication token to an RFID reader
(verifier). In such setting, the reader will communicate with the tag, using an
authentication protocol, to get its identity and decide whether the tag, and thus
the user, should be approved or not. When it comes to tracking of objects, an
RFID tag is attached to the object being tracked, and RFID readers are then used
to scan the tag and can log that it has been seen. Tracking objects is often done
using bar codes and bar code readers (e.g. U.S Postal Service for mail tracking
[1]), a technique to which RFID is superior. RFID has many advantages over the
bar code systems, such as that the tag does not have to be in the line of sight of
the reader, and that the tag is also able to store more information than a bar code.

RFID tags are generally computationally weak and limited in what compu-
tations they can carry out. The RFID tags considered in this thesis are low-cost
RFID tags, which are not capable of performing any standard cryptography primi-
tives, but only XORing, pseudo-random number generator, and simpler hash func-
tions. It has been shown though, that elliptic curve cryptography (ECC) can be
realised on RFID tags, using a special-purpose processor [2, 3].

Some common situations in which RFID are currently used or could be used
are: wireless access control in automobile systems, or even in the ignition of cars;
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CHAPTER 1. INTRODUCTION

building access control; to make sure a patient has got its medicine in a hospital;
to prove that a patient had a prescription for the medicine sold; in meetings to
have a proof of who was there; toll collection to register cars passing by; and many
more. To handle these different situations properly and securely, different protocols
have been designed. This thesis covers two of these protocols, which are known as
distance-bounding and grouping-proof, and will now be briefly described.

Distance-Bounding Protocols A distance-bounding protocol is used to make
sure that a prover is in the proximity of a verifier. It allows for an upper limit to
be set on the physical distance between a prover and a verifier, and tries to make
sure that this cannot be faked.

The concept of distance-bounding protocols was first introduced by Brands
and Chaum in 1994 [4]. Their protocol was built by using first a lazy phase, in
which the prover and verifier exchange some session data. This is followed by a
distance-bounding phase - a rapid-bit exchange - in where the verifier determines
the distance between itself and the prover. In the distance-bounding phase, short
(one bit) challenge messages are sent to the prover, who then replies using the
session data previously exchanged. The prover measures the time it takes between
sending a challenge and receiving a response, and uses this to approximate the
distance between them, considering that a message cannot travel faster than the
speed of light. This is repeated for a number of rounds, in which the verifier also
checks that the response is correct, and finally it either approves or rejects the
prover.

Grouping-Proof protocols A grouping-proof protocol is used to make sure
that two or more provers are scanned simultaneously and thus being present at
the same time. It is designed so that the verifier will create a proof of the two
provers being present at the same time. A proof that then can be verified at some
later time. It shall also make sure that it is not possible to fake the presence of a
prover.

In 2004, Juels introduced the “yoking-proof” protocol in [5]. The protocol was
designed to create a proof of the fact that exactly two provers were present at the
same time. This laid the foundation for the simultaneous scanning protocols. A
year later, in 2005, Saito and Sakurai further developed the protocol by Juels and
presented a “grouping-proof” protocol [6]. This grouping-proof protocol, unlike
the yoking-proof protocol, creates a proof of two or more provers being scanned
simultaneously at the same time. The main idea of this type of protocols is that
the verifier starts by generating some random data that is then sent to one of
the provers, the prover then uses the received data and computes his response
and replies; this reply is then known as that prover’s partial proof. This is then

2



CHAPTER 1. INTRODUCTION

repeated for all the provers within some pre-defined time delta, and finally the
verifier creates the proof by storing all these provers partial proofs.

1.2 Problem Description

Many of the protocols that have been proposed as solutions for the distance-
bounding are vulnerable to many of the known attacks, some with higher proba-
bility of being successful than others. The grouping-proof protocols have also been
shown vulnerable to a set of attacks, and new attacks seem to keep coming. The
research on protocols that uses ECC is also fairly new and unexplored.

There is no protocol that combines the distance-bounding and grouping-proof pro-
tocols, into one protocol that gives the security of both these types of protocols.
This type of protocol could be used when even higher security is needed; when
insurance of having all provers present at the same time and being in the close
proximity of a verifier is necessary. One such case could be safety deposit boxes,
where the bank official’s key and the customer’s key needs to be present at the
same time and within the proximity of the reader, to open the safety deposit box.

1.3 Purpose and Limitations

The purpose of this study is to analyse existing distance-bounding and grouping-
proof protocols, and then use the information to create distance-bounding grouping-
proof protocols. The protocols that are created will be of two types:

• A basic type that is limited to work with the computational restrictions of
a regular RFID tag, which only allows it to use computations such as XOR,
pseudo-random number generators, and simple hash functions.

• A more advanced type that has the same restrictions as the basic type, but
is allowed to use ECC, which has been shown possible to use on RFID tags
using a special-purpose processor [2, 3].

The created protocols should be secure against the known attacks. For attacks
where it is possible, any vulnerability that can be exploited to perform an attack
should be disabled. Where it is not possible to entirely disable an attack, the
probability to succeed should be as low as possible.

The protocol should also aim to preserve the privacy of the provers as far as
possible.

3



CHAPTER 1. INTRODUCTION

1.4 Contribution

This thesis provides a new type of protocol: the distance-bounding grouping-proof
(DBGP) protocol. The DBGP protocol is a combination of the distance-bounding
and grouping-proof protocols and aims to achieve the security of both.

Three DBGP protocols have been designed. Two basic types that can be
implemented on regular RFID tags, and a more advanced and secure type that
makes use of the ECC, which needs a special-purpose processor to be implemented
on an RFID tag.

This thesis also proposes a new grouping-proof protocol that is built using the
ECC. This protocol is shown to be more secure than other ECC protocols that
have been proposed in the literature.

The thesis also provides a simulation framework that can be used to implement
and simulate protocols. The framework simulates an RFID reader and RFID tags,
and allows to test and evaluate protocols under different conditions, e.g., noise in
the communication channel, attacks against the protocol.

1.5 Method

The work of this thesis has been worked out as follows:

1. An initial research was done to find already existing distance-bounding and
grouping-proof protocols, as well as to investigate known vulnerabilities and
attacks against such protocols. The found protocols were then analysed with
respect to functionality, security, and privacy.

2. An ECC based grouping-proof protocol was created, to be used when de-
signing the advanced distance-bounding grouping-proof protocol.

3. Two basic and one advanced distance-bounding grouping-proof protocols
were designed. Their designed was based on the analysed, existing proto-
cols found in the initial research, and combined the useful parts of them, and
also by using the designed ECC based grouping-proof protocol.

4. The designed protocols were then analysed in terms of security and privacy,
to see how they resist possible attacks against them.

5. Finally, the protocols were tested and evaluated in a simulated environment.
They had their efficiency, false rejection, and attack resistance tested under
different conditions.

4



CHAPTER 1. INTRODUCTION

1.6 Outline

In Chapter 2, all the technical details that are needed to be known for the reader
to understand the thesis are described. The chapter starts by listing all notations
that are used throughout the report. Following that, a deeper introduction to the
distance-bounding and the grouping-proof protocols is given, where the basics of
the protocols, attacks, etc., is described. The choices made on which protocols
that will be used in this thesis are then justified, and the protocols themselves are
then described in detail.

Chapter 3 starts by describing the methods that have been used when design-
ing the protocols. Following that are all the, in this thesis, proposed protocols and
their respective security and privacy analysis presented.

In Chapter 4, the simulation framework that has been built is presented. Following
that is a description of the test system and the protocols that will be simulated.
Finally, the results from evaluating the protocols in the simulation experiments
are presented.

Chapter 5 presents a discussion, on both the used method and the results, as well
as on possible future work. The thesis then ends with some conclusions, presented
in Chapter 6.

5



2
Technical Background

This chapter provides the technical background on which this thesis is based on.
The chapter begins by presenting the basics of the distance-bounding and grouping-
proof protocols, as well as attacks and other considerations that affects them. The
chapter ends with a discussion about the protocols that have been chosen for this
thesis, and a detailed description of these protocols.

2.1 Notations

This section presents the common notations that will be used when describing
protocols in the rest of the thesis. Some notations might be slightly different than
how they are presented in the original papers. This is to keep a consistent use of
the notations in this thesis.

Common Notations

k A shared key between a verifier and a prover.
r Randomly generated value.
c A counter value.
⊕ Bit-wise XOR function.
h[M ] A pseudo-random function, outputs a hash of M .
MAC[M ] MAC function, outputs MAC of M .
PRNG[M ] Pseudo-random number generator.
Fk[M ] A function F , keyed using key k.
ID Identifier of some prover.

6



CHAPTER 2. TECHNICAL BACKGROUND

Distance-Bounding Specific Notations

n Number of rapid-bit exchange rounds.
i Denotes the round i of the distance-bounding phase.
ci,ri Challenge and response for round i, respectively.
Outv Result of the protocol.
B Probability calculation considering noise.

Grouping-Proof Specific Notations

m Number of provers in proof.
j Denotes the j-th prover.
Nun Lightweight hash function, used to create pseudonyms [7].
Tj Prover j.
P1,..,m A proof generated for provers 1,...,m.
bj Partial proof for prover j.
[k|c]j v Key or counter of prover j, stored in verifier.
[k|c]j ori First initiated value (original) of key or counter of prover j.

ECC Notations

P Base point (generator).
aP Scalar multiplication of a and point P .
xj,Xj = xjP Private and public key for prover j.
y,Y = yP Private and public key for verifier.
rj,x Random number x, for prover j.

2.2 Distance-Bounding Protocols

This section will give a brief introduction to the basic techniques that are used
to build a distance-bounding protocol. Common attacks and how a noisy channel
affects the security of a protocol will also be presented.

2.2.1 Protocol Basics

A popular protocol that shows the general concept of how a distance-bounding
protocol works, was presented by Hancke and Kuhn in [8]. The HK-protocol was
proposed in 2005 and has been shown vulnerable to attacks [9]. Later on, more
secure protocols have been proposed [10–12]. However, the HK-protocol is a good
example to present the general idea of distance-bounding protocols. The protocol
is presented in Figure 2.1, and a detailed description of the protocol is presented
below.

7



CHAPTER 2. TECHNICAL BACKGROUND

Verifier V Prover P

Initialisation phase

Pick random rV
rV−−−−−−−−−−−−→ Pick random rP
rP←−−−−−−−−−−−−

a0||a1 = hk[rV ,rP ] a0||a1 = hk[rV ,rP ]

Distance-bounding phase
for i = 1 to n

Pick ci ∈ {0,1}
Start clock

ci−−−−−−−−−−−−→
ri = acii

Stop clock
ri←−−−−−−−−−−−−

Store ri and ∆i

end for
Check all rounds’ ri and ∆i

Outv−−−−−−−−−−−−→

Figure 2.1: The distance-bounding protocol proposed by Hancke and Kuhn.

Description The protocol begins with the verifier generating a random nonce
rV and sends to the prover, which in turn generates its own random nonce rP and
sends it back to the verifier. Then, both the verifier and the prover generates the
response vector a using the pseudo-random function, keyed with their shared secret
k, on the nonces: a = hk[rV ,rP ]. The response vector is split into two response
vectors a0 and a1, each of equal length: |a0| = |a1| = n.

The distance-bounding phase runs for a pre-defined, n, number of times. In
each of these rounds, the verifier starts by picking a random challenge value ci ∈
{0,1}, starting its clock, and sends the challenge ci to the prover. When the prover
receives the challenge it responds with ri = acii , i.e. the i-th bit of the response
vector that matches ci. Then, when the verifier receives the response, it stops the
clock and calculates the time delta ∆i. It then stores the received value ri and
the ∆i. When all rounds are done, the verifier checks if ri, for each round i, has
the expected value and that each round’s ∆i is less than or equal to a pre-defined
maximum value ∆max. Finally, based on the verification step, the verifier will
output 1 if the protocol succeeded, else 0.

8
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2.2.2 Attacks on Distance-Bounding Protocols

The most common known attacks against distance-bounding protocols are:

Distance Fraud A malicious prover tries to convince the reader that it is closer
than it actually, to pass the distance-bounding protocol without being close
enough.

Mafia Fraud An adversary relays messages between a far away honest prover
and a verifier, trying to convince the verifier that the prover is closer than it
actually is [13].

Distance Hijacking An adversary makes use of honest provers to make the
verifier accept a dishonest prover [14].

Terrorist Fraud An adversary collaborates with a dishonest prover to some
extent, in order for the adversary to pass the protocol without revealing the
secret key [13].

All these attacks aims to pass the distance-bounding phase of the protocol, and
since an adversary can try to guess the responses, protocol designers try to lower
the probability for any of the attacks to succeed.

2.2.3 Calculating Attack Probabilities

The probability of an attack to succeed against a distance-bounding protocol is
what defines how secure or insecure the protocol is against the attack. Therefore,
to analyse the protocols, some methods to calculate the probability must be used.
The methods to calculate the probability for distance fraud, mafia fraud, and
terrorist fraud are therefore presented here. The methods presented here calculate
the probability to pass the distance-bounding in one round. This value can then
be used to calculate the overall probability of passing all rounds in the attack, by
simply raising it to the power of n, or, when considering noisy channels, follow the
instructions in Section 2.2.4.

Distance fraud

For a malicious prover P ∗ to be able to pass the distance-bounding part of the
protocol and have the verifier believe it is closer than it is, it must send responses
in advance to the verifier. This is done by having P ∗ guessing the challenge that
will be received, calculating the response, and then sending the response to the
verifier in advance, i.e. before P ∗ actually has received the real challenge.

9
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To calculate the probability for a distance fraud to succeed, the probabilities to suc-
cessfully pass a distance-bounding round when the responses takes certain values
are calculated, and then the overall probability is calculated using these separate
case probabilities.

Mafia fraud

In a mafia fraud, an adversary has two ways to get the correct response ri for some
round i, which are:

1. Guess the challenge ci and send to prover P , who then will answer with the
response ri for the sent ci, which is then replayed to the verifier V .

2. Guessing the round’s response ri and send to V .

An adversary may use both these cases by first guessing the challenge ci, send to
P , get the response ri and then replay it to V , if ci was correctly guessed. If the
guessed ci was wrong, the received ri is discarded and the adversary must instead
guess ri and send it to V .

To calculate the total probability, the two cases are added: Pr[MF]i = Pr[case 1]+
Pr[case 2], which gives the probability to succeed in one round. The total proba-
bility to succeed in a mafia fraud attack over all rounds is then (Pr[MF ]i)

n.

Terrorist fraud

To analyse the protocols with respect to the terrorist fraud, it is first determined on
the design whether they allow for a terrorist fraud to be mounted. If an illegitimate
prover P ∗ is able to give the entire response vector to an adversary A, without A
being able to recover P ∗’s secret key, the probability to succeed in a terrorist fraud
is per definition 100 %.

2.2.4 Noise

In order to guarantee accurate distance-bounding, a communication channel with
minimal latency and no error correction codes is used. With no error correction
codes, the protocol must, in a practical use, allow for some rounds to be incorrect
due to the noise in the channel, i.e. bit errors [8].

Allowing for some rounds to be incorrect will imply that an adversary would
only have to guess those τ out of n rounds that must be correct, instead of all n
rounds. Therefore, the probability calculations presented in Section 2.2.3 need to
be slightly modified when calculating the probability to pass all distance-bounding
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rounds. When allowing for errors, the binomial distribution B(n,τ,q) in Equa-
tion 2.1 is used, which gives the probability of successfully guessing τ of n rounds,
given that one round is guessed correctly with probability q.

B(n,τ,q) =
n∑
i=τ

(
n

i

)
qi(1− q)n−i (2.1)

It has also been shown by Hancke in [15], that allowing for errors in the distance-
bounding phase opens up for terrorist frauds against some protocols. It affects the
protocols that masks their response vector with their secret key, as a malicious
prover simply could give τ bits of the response vector. That would not reveal the
secret key, but still allow an adversary to pass.

2.3 Grouping-Proof Protocols

In this section, the basic methods that are mainly used when designing grouping-
proof protocols will be presented. Following this, the known attacks against
grouping-proof protocols, as well as guidelines that have been developed to avoid
or resist these attacks, are presented.

2.3.1 Protocol Basics

To give a simple overview of how a grouping-proof protocol is designed, the protocol
proposed by Bolotnyy and Robins in [16], seen in Figure 2.2, will be described.
Although the protocol has been shown to have vulnerabilities [17], it still gives an
easy understanding of the grouping-proof protocol basics. Following the figure is
a detailed description of how the protocol is carried out.

11
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Prover 1 Verifier V
Query←−−−−−−−−−

r1 = hk1 [c1] Prover 2
a1=(ID1,c1,r1)−−−−−−−−−→ a1−−−−−−−−−→

r2 = MACk2 [c2,a1]
a2=(ID2,c2,r2)←−−−−−−−−−

.

.

.
Prover m

aj−1−−−−−−−−−→
Prover 1 rk = MACkm [cm,aj−1]

am←−−−−−−−−− aj=(IDm,cm,rm)←−−−−−−−−−−
m = MACk1 [a1,am]

s−−−−−−−−−→

P1,...,m = (ID1,ID2,...,IDm,c1,c2,...,cm,s)

Figure 2.2: The grouping-proof protocol proposed by Bolotnyy and Robins.

Description The protocol begins with the verifier querying some prover, which
will be denoted as the first prover (this does not need to be any special prover).
This first prover computes r1 = hk1 [c1] and sends a1 = (ID1,c1,r1) back to the
verifier.

The verifier then sends a1 to the next prover, which then computes r2 =
MACk2 [c2,a1] and responds with a2 = (ID2,c2,r2) back to the verifier. This step
is repeated for all m provers that are present in the proof, such that the verifier
sends aj−1 to prover j, which then computes rj = MACkj [cj,aj−1] and responds
with aj = (IDj,cj,rj).

When the last prover, IDm, has been scanned, the verifier sends am to the first
prover. The first prover then computes m = MACk1 [a1,am] and sends to the veri-
fier. The verifier now generates the proof P1,...,m = (ID1,ID2,...,IDm,c1,c2, ...,cm,s)
of all provers identities, counters and the last generated s. The proof can then be
verified by some verifier that has access to all the provers secret keys, by simply
doing the same calculations in the same order of the provers.
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2.3.2 Attacks on Grouping-Proof Protocols

In recent years, many grouping-proof protocols have been proposed [5–7, 16–24].
The articles proposing new protocols have often found vulnerabilities, privacy is-
sues or new attacks against previously proposed protocols. The most important
attacks that have emerged from this are (where anonymity, traceability, and for-
ward security attacks concern privacy of the protocols):

Replay Attack Valid data that has been used in previous sessions is reused
maliciously by repeating it, acting as the other part when creating a proof
[6, 18].

Subset Replay Attack Maliciously generating a fake proof by using a portion
of a legitimate proof [25].

Multiple Impersonation Attack To impersonate a prover, an adversary can
eavesdrop a legal run of a protocol and save the created proof. This proof
can then be used to create a new, malicious proof between one of the provers
in the legal proof and any other prover that was not in the original proof
[7, 25].

Anonymity Attack If provers send their identifiers in public, they violate the
privacy and an adversary can simply see the provers’ identities.

Traceability Attack For provers that send their identifiers in public, and also
provers that use some pseudonym that does not change instead of their iden-
tifier, an adversary is able to associate a physical prover to some identifier
or pseudonym. This is also a violation of a prover’s privacy [7, 25].

Forged Proof This attack is performed by eavesdropping the communication of
a prover in a proof session. That information can then be used to impersonate
the prover in some other session, i.e. it leaks sensitive information that can
be re-used [25].

Forward Security If some prover is physically compromised, i.e. an adversary
gets hold of its private key, a breach on forward security then allows an
adversary to identify and track the prover in historical proof sessions [17].

Race Conditions A prover may store temporary data in its memory during a
proof session while waiting for new instructions from the verifier, information
that is to be used again in the proof. If a prover then interacts with two or
more verifiers, a race condition can occur, as the prover does not know to
which of the verifiers the temporary data belongs to [26].
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Denial of Proof (m-DoP) By putting some malicious provers among the legit-
imate ones, an adversary can have the grouping-proof invalid. m-DoP stands
for a denial of proof attack made by m malicious provers [17].

Denial of Service (DoS) Trying to make a prover useless. This attack can be
launched against provers that have to be synchronised in some way with the
verifier. For instance, this is the case when keys are updated in each round.

2.3.3 Guidelines to Resist Attacks

Along with the attacks being presented, many papers have also presented guidelines
that should be followed to protect the protocol against being vulnerable to certain
attacks. The guidelines that have been presented for the attacks are:

Replay Attacks To protect against replay attacks, each session must be unique.
This can be achieved by letting the verifier generate some nonce on which
the proof is based on. To protect the nonce from being predicted in any way,
it is suggested that the nonce is generated by letting the verifier encrypt a
timestamp [25].

Subset Replay Attacks and Multiple Impersonation Attacks To avoid
an adversary to mount a subset replay attack, there must be a dependency
between the provers in the proof, that is also dependent on the current proof
session. This is done by making a prover’s partial proof depend on some
value from another prover. This value should be unique for that session, for
instance it can depend on the verifier’s first nonce [25].

Anonymity Attacks To have a prover anonymous, its ID can not be sent in
clear to the verifier. Instead, a pseudonym that can identify the prover
should be used, which may encrypt or hide the ID in some way. Using a
static pseudonym, however, may still allow traceability attacks [25].

Traceability Attacks To protect against an adversary being able to track a
prover, the prover needs to use some dynamic pseudonym for identification
to the verifier instead of some static identifier [7].

Forged Proofs To disallow an adversary from forging proofs, the protocol must
be carefully designed. For instance, running the protocol must not leak any
information that an adversary may use to create an own, modified proof in
any way [25].
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Forward Security A protection against an attack on forward security can be
achieved by updating the key that is shared between a prover and a verifier in
each iteration of the protocol. This disallows an adversary from regenerating
old keys [17].

Race Conditions A race condition can be avoided by simply not having the
prover store any data during a proof session, and instead just do static cal-
culations based on the incoming data [17].

Denial of Proof (m-DoP) When using an online (which is assumed in this
thesis), trusted verifier, the verifier can authenticate each prover during the
proof session. The verifier will then be able to discover a fake prover imme-
diately and thus disallow it from breaking the proof [17].

Denial of Service (DoS) The easiest way to protect against DoS attacks is by
not having any need of synchronisation between the verifier and the provers.
However, when they need to be synchronised in some way, some data can be
sent along the messages that allows them to synchronise, such as a counter.

2.3.4 Current State of Grouping-Proof Protocols

Table 2.1 presents the current state of the grouping-proof protocols’ resistance to
the known attacks against them. “Y” denotes that the protocol is secure against
the attack, “N” denotes that the protocol is not secure against the attack, and “-”
denotes that the state is unknown.

Replay Subset Multiple Anonymity Traceability Forged Forward Race m-DoP DoS

Impersonation Proof Security Conditions

Juels [5] N [25] Y [25] N [25] N [25] N [25] Y [25] N [17] N [17] N [17] N [25]

Saito and Sakurai [6] N [25] N [25] N [25] Y [25] Y [25] Y [25] N [17] N [17] N [17] N [25]

Bolotnyy and Robins [16] Y [25] N [25] Y [25] Y [25] Y [25] Y [25] N [17] Y [17] Y1 [17] N [25]

Piramuthu [18] Y [25] Y [25] Y [25] N [25] N [25] Y [25] N [17] N [17] N [17] N [25]

Peris-Lopez et al. [7] Y [25] Y [25] Y [25] Y [25] Y [25] Y [25] N [17] N [17] N [17] N [25]

Cho et al. [19] Y [25] Y [25] Y [25] N [25] N [25] Y [25] - - - N [25]

Lien et al. [20] Y [25] Y [25] Y [25] N [25] N [25] Y [25] N [17] Y [17] N [17] N [25]

Burmester et al. [21] Y [25] Y [25] N [25] Y [25] Y [25] Y [25] - - - Y [25]

Chien and Liu [22] Y [25] Y [25] Y [25] Y [25] N [25] Y [25] - - - Y [25]

Huang and Ku [23] Y [25] Y [25] Y [25] N [25] N [25] N [25] - - - N [25]

Chien et al. [24] Y [25] Y [25] Y [25] N [25] N [25] N [25] - - - N [25]

Lo and Yeh [17] Y [17] Y [17] Y [17] Y [17] Y [17] Y [17] Y [17] Y [17] Y [17] Y [17]

ECC-GP2 Y Y Y Y Y Y Y Y Y Y
1 Can resist when m = 1, i.e. one malicious tag.
2 Proposed in this thesis, in Section 3.4.

Table 2.1: Current state of grouping-proof protocols attacks resistance.
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2.4 Justifying Choices

This section will describe which protocols that have been identified as more suitable
for the design of a distance-bounding grouping-proof protocol. A brief description
justifying each chosen protocol will also be given.

Distance-Bounding Protocols

The Modified Swiss-Knife protocol, presented by Fischlin and Onete in [11], and
the SKI protocols, presented by Boureanu et al. in [12], are considered to be
among the latest and most provable secure protocols in distance-bounding [27].
They are both light-weight and can be implemented on RFID tags. They are
built slightly different and provide different security against the known distance-
bounding attacks.

The most recent distance-bounding protocol that builds on ECC is presented
by Hermans et al. in [28]. Besides that it is built around the ECC technology, the
main difference in this protocol compared to the previously mentioned protocols, is
that it provides strong privacy. The provers are both anonymous and untraceable
for any adversary.

Grouping-Proof Protocols

Among all the presented grouping-proofs that have been presented, the protocol
presented by Lo and Yeh in [17] seems to be one of the most secure. It follows the
guidelines that have been presented and claims to be secure against all the known
attacks against grouping-proof protocols. The protocol is also fairly easy to follow,
as it follows the general grouping-proof protocol design.

There are also grouping-proof protocols presented that are built using ECC
[29, 30], in which the latest and most secure seems to be the protocol presented
by Hermans and Peeters in [30]. However, I have chosen not to use this protocol.
The reason for this is that it barely follows the guidelines that have been created
for grouping-proof protocols (presented in Section 2.3.3). The most critical about
this, in my opinion, is that it does not chain the provers’ partial proofs. This
makes all provers’ partial proofs independent, as they are generated from random
numbers and a value from the verifier, and has nothing that depends on the other
provers. For a protocol to be secure, it needs to chain the partial proofs [25].

Instead, I will propose a new grouping-proof protocol that makes use of the
ECC, which will be used to create a more secure distance-bounding grouping-
proof protocol. The protocol will be built based on the ECC methods seen in the
distance-bounding protocols, and it should follow the guidelines for grouping-proof
protocols.
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2.5 Chosen Protocols

This section presents in detail the protocols that have been chosen as the base
when designing the distance-bounding grouping-proof protocols.

2.5.1 The SKI Protocols

The SKI protocols are different lightweight protocols that all use the same protocol
structure, but with different settings to achieve different levels of security. First,
the structure of the protocol will be described, then the setting of the protocol
that will be used.

Protocol Structure

The general protocol structure of the SKI protocols is presented in Figure 2.3,
and a more detailed description is presented after the figure. It is slightly more
advanced than the basic protocol that was presented in Section 2.2.1 and does thus
have some more, special notations that varies between different settings, it makes
use of:
L,L L is a chosen linear transformation from a set L.
t The number of choices of challenges.
F Response function, used to calculate the response.

Verifier V Prover P

Initialisation phase

Choose L ∈ L rP←−−−−−−−−−−−− Pick random rP

Pick random rV and a
k′ = L[k]

M = a⊕ fk[rP ,rV ,L]
M,L,rV−−−−−−−−−−−−→ k′ = L[k]

a = M ⊕ fk[rP ,rV ,L]

Distance-bounding phase
for i = 1 to n

Pick ci ∈ {1, . . . , t}
Start clock

ci−−−−−−−−−−−−→ if ci /∈ {1, . . . , t}: halt

Stop clock
ri←−−−−−−−−−−−− ri = F (ci,ai,k

′
i)

Store ri and ∆i

end for
Check all rounds’ ri and ∆i

OutV−−−−−−−−−−−−→

Figure 2.3: The SKI distance-bounding protocols’ general structure.
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Initialisation phase Before the steps that are seen in Figure 2.3 are carried
out, it is assumed that the verifier gets the identity of the prover, in order to be
able to use the correct shared key k.

The protocol begins with the prover generating a random nonce rP and sends
it to the verifier. The verifier then chooses a linear transformation from a pre-
defined set of transformations, generates a nonce rV and the response vector a. A
second key k′ is computed by applying the chosen transformation to the shared
key k. The verifier then prepares a message M , containing the response vector a
encrypted by XORing the output of the keyed one-way function fk with a. Finally,
the encrypted message M , the chosen transformation L, and the nonce rV is sent
to the prover. The prover uses the received transformation to also compute k′, and
decrypts the message M to obtain the response vector a.

Distance-bounding phase The verifier starts its clock and chooses a challenge
ci from the set of possible challenges {1,...,t} and sends this to the prover. The
prover will then first check that the challenge is an allowed challenge. If the
challenge is invalid, it will abort. Else, the prover computes the response ri using
the response function F (ci,ai,k

′
i) and sends the result back to the verifier. When

the response is received, the verifier stops its clock and stores the time delta ∆i

and response ri for the round. The described steps here are repeated for n times.

Verification When the distance-bounding phase is over, the verifier checks that
at least τ of the responses were correct and that none of them took longer time
than ∆max.

Settings

The two main instances of the SKI protocols presented in [12] are SKIlite and
SKIpro. Both are considered lightweight, but they differ in execution and on the
security level they provide. Since the RFID devices considered in this thesis have
very limited computation, the lite setting of the protocol, which is more lightweight
than the pro setting, is more interesting and will only be used. Readers interested
in the other setting are referred to [12].

The SKIlite does however not offer any protection against terrorist fraud. Be-
cause of that, neither of the transformed key k′ nor the transformation L (i.e.
L = ∅) are used. The other settings in SKIlite are:

q = 2 Only using bits.
t = t′ = 2 The challenge is considered being a bit as well.
F = FXOR With t′ = 2 and not using k′, the response function will work as

F (ci,ai) = acii .
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2.5.2 The Modified Swiss-Knife Protocol

The Modified Swiss-Knife Protocol presented in [11] by Fischlin and Onete, is a
protocol that basically extends the original Swiss-Knife protocol [10], by using a
second key k′, which makes it, as they present it, GameTF-secure.

GameTF-security can be simplified as: An adversary A that runs a terrorist
fraud with a verifier V and a prover P ∗ will have an end view V of the run,
containing all known data from the run. For a protocol to be GameTF-secure, this
end view V should not be of any help to another adversary A′ that runs a mafia
fraud attack on V and P .

The protocol is presented in Figure 2.4 and is followed by a more detailed
description.

Verifier V Prover P

Initialisation phase

Pick random rV
rV−−−−−−−−−−−−→ Pick random rP

a0 = fk[rV ||rP ]
rP←−−−−−−−−−−−− a0 = fk[rV ||rP ]

a1 = a0 ⊕ k′ a1 = a0 ⊕ k′

Distance-bounding phase
for i = 1 to n

Pick ci ∈ {0,1}
Start clock

ci−−−−−−−−−−−−→
ri = acii

Stop clock
ri←−−−−−−−−−−−−

Store ri and ∆i.
end for

V←−−−−−−−−−−−− V = fk[transcript]

Check V and all round’s ri and ∆i
Outv−−−−−−−−−−−−→

Figure 2.4: The Modified Swiss-Knife (MSK) distance-bounding protocol.

Initialisation phase As with the SKI protocols, it is also assumed here that,
before the protocol runs, the verifier gets the identity of the prover in order to be
able to use the correct shared keys k and k′.

The protocol begins with the verifier generating a random number rV , which
is then sent to the prover. Upon reception of rV , the prover generates a random
number rP and sends back to the verifier. Following this, they both compute the
response vectors a0 = fk[rV ||rP ] and a1 = a0 ⊕ k′.
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Distance-bounding phase For n number of rounds, the verifier picks a chal-
lenge ci ∈ {0,1}, starts a clock and sends ci to the prover. The prover responds to
the challenge immediately by taking the i-th bit of the response vector matching
the challenge: ri = acii . When the verifier receives the response, it stops the clock
and stores the response ri and time delta ∆i.

Verification When the distance-bounding phase is over, the prover will send
a hash of the transcript (all messages carried out through the protocol session)
V = fk[transcript] to the verifier. The verifier will then check the validity of the
received transcript and also check so that, for each round, the response is correct
and that it took at most ∆max. Following this, it will output whether the prover
is accepted or not.

2.5.3 The Efficient Online Verifier Based Protocol

The Efficient Online Verifier Based Protocol (EOBVP) was proposed by Lo and
Yeh in [17]. The protocol runs different procedures for the first tag (which can
be any tag) and all the other tags, and is therefore separated and presented in
different figures. Figures 2.5 shows how it is run for the first prover and Figure 2.6
shows how it is run for the rest of the provers. Following the figures is a more
detailed description of the protocol. The description here is a bit different from
how it is presented in the original article, since it in this case is assumed that the
prover and verifier are the same entity.

Verifier V Prover 1

1. Query−−−−−−−−−−−−→ Generate random r1

k1 = PRNG[k1 ⊕ ID1]

c1 = c1 + 1

If P1 /∈ DB: abort
2. P1,r1,c1←−−−−−−−−−−−− P1 = Nun[ID1,r1]

Generate k1 v

TS = enc[timestamp]

s1 = TS ⊕ k1 v
3. s1−−−−−−−−−−−−→ TS = s1 ⊕ k1
4. b1←−−−−−−−−−−−− b1 = MACk1 [TS,ID1]

Figure 2.5: The Efficient Online Verifier Based (EOVBP) grouping-proof protocol
for the first prover.
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The first prover In Figure 2.5, the proof generation step for the first prover is
seen, and it works as follows:

Step 1 The verifier sends a Query to one of the provers, which, in this session,
will be the first prover.

Step 2 When the prover receives the Query, it will generate a random number
r1, update its key using k1 = PRNG[k1⊕ID1], update its counter value
c1 = c1 + 1 and calculate its pseudonym P1 = Nun[ID1,r1]. The prover
then sends a response containing P1,r1, and c1 back to the verifier.

Step 3 Verification: The verifier identifies the prover by computing
Nun[IDj,r1] for all provers that are stored in its database and com-
pares each calculated value with P1. If the verifier does not find a
match, the proof session is terminated. Else, it moves forward.
Get prover’s current key : To derive the key, the verifier compares the
stored counter value c1 v with the received value c1. If c1 v > c1, then
the verifier needs to compute them from their initial values, i.e. set
c1 v = c1 ori and k1 v = k1 ori. Then, to generate the current key, the
verifier performs the key update computation k1 v = PRNG[k1 v⊕ID1]
and c1 v = c1 v + 1, and does these computations c1− c1 v times, so that
c1 v = c1, which is also when k1 = k1 v.
Generate response: The verifier reads the current timestamp and en-
crypts it TS = enc[timestamp], and calculates the response value
s1 = TS ⊕ k1 v. The verifier then sends the encrypted s1 to prover
1 and starts a time out mechanism.

Step 4 When the prover receives s1 it uses its own key to decrypt TS through
TS = s1 ⊕ k1. The prover then computes its partial proof b1 =
MACk1 [TS, ID1], and finally responds with b1 to the verifier.

Verifier V Prover j (for j = 2,...,m)

1. bj−1−−−−−−−−−−−−→ kj = PRNG[kj ⊕ IDj]

cj = cj + 1
Pj = Nun[IDj,b1]

2. bj ,Pj ,cj←−−−−−−−−−−−− bj = MACkj [b1,IDj]

3. P = (s1,P1,b1,c1,...,Pj,bj,cj,...,Pm,bm,cm)

Figure 2.6: The Efficient Online Verifier Based (EOVBP) grouping-proof protocol
for provers 2 to m.
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Prover j (for j = 2,...,m) In Figure 2.6, the proof generation step for all the
other provers 2 to m is seen, and it works as follows:

Step 1 The verifier sends b1 to prover j.
Step 2 The prover updates its key kj = PRNG[kj⊕IDj] and its counter value

cj = cj + 1. Then it calculates its pseudonym Pj = Nun[IDj,b1] and its
partial proof bj = MACkj [b1,IDj]. Finally, it sends a response to the
verifier that contains the data Pj,bj, and cj.

Proof verification When the session is finished and the proof P1,...,m is created,
the verifier will verify by performing the following steps:

Step 1 Verify that the time for the proof generation is less than some pre-
defined time period ∆2, i.e. (current timestamp− TS) ≤ ∆2.

Step 2 Identify provers : To identify and find all provers that was present in
the proof, the verifier calculates Nun[IDj,b1] for all provers stored in
database and compare against all Pj in the proof P1,...,m.
Verification: The verifier derives the key for all provers in the same
way that was done in step 3 of the first prover. Once the key is derived,
the verifier calculates MACkj v

[b1,IDj v] and compares it against bj to
verify each prover.
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2.5.4 The Hermans-Peters-Onete Protocol

The protocol presented by Hermans et al. in [28], will in this report be denoted as
the Hermans-Peters-Onete Protocol (HPO). The HPO protocol is an ECC based
distance-bounding protocol. The protocol is presented in Figure 2.7 and a detailed
description follows the figure.

Verifier V Prover P

r3 ∈ Z∗ r1,r2 ∈ Z∗

R3 = r3P
R3−−−−−−−−−−−−→ R1 = r1P,R2 = r2P

R1,R2←−−−−−−−−−−−−
a0||a1 = [xcoord(r3,R1)]2n a0||a1 = [xcoord(r1,R3)]2n
c = [e]n, e ∈ Z∗

Distance-bounding phase
for i = 1 to n

Start Clock
ci−−−−−−−−−−−−→

ri = acii
Stop Clock

ri←−−−−−−−−−−−−
Store ri and ∆i

end for
Check all round’s ri and ∆i

e−−−−−−−−−−−−→
Verify cn−1||..||c1||c0 == [e]n
d = xcoord(r2Y )
s = xj + er1 + r2 + d

s←−−−−−−−−−−−−
d′ = xcoord(yR2)
X ′ = (s− d′)P − eR1 −R2

Verify X ′ ∈ DB
OutV−−−−−−−−−−−−→

Figure 2.7: The Hermans-Peters-Onete (HPO) distance-bounding protocol.

Initialisation phase The protocol begins with the verifier generating a number
r3 ∈ Z∗, multiplies the number with the base point P and sends the new point
to the prover. The prover then generates two numbers r1,r2 ∈ Z∗, which then
are also multiplied with the base point P and are then sent back to the verifier.
Following that, both the verifier and the prover takes the x-coordinate out of the
point r3R1 = r1R3 = r1r3P , using the xcoord-function [31]. Then they generate
the response vectors by taking the first 2n bits of that x-coordinate. The verifier
then sets up the challenge vector by taking the first n bits from some randomly
selected number e ∈ Z∗.
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Distance-bounding phase For each round i of the distance-bounding phase,
the verifier starts a clock and sends the i-th bit of the challenge vector to the
prover. The prover responds with the i-th bit of the matching response vector:
ri = acii . When the verifier receives the response, it stops the clock and stores the
time delta and response for later verification.

Verification and Authentication After the distance-bounding phase, the ver-
ifier checks for each round, that ∆i is smaller than ∆max and that the received
response ri is correct for the challenge sent.

If the verification was correct, the verifier sends the number e to the prover.
Upon reception, the prover verifies that the challenges received matches the n first
bits of e. It then takes the x-coordinate of the point r2Y = yR2 = r2yY , which
is used along with the prover’s private key x and previous information, to create
a number s = x + er1 + r2 + d. This s number is then sent to the verifier for
authentication.

After receiving s, the verifier computes the same x-coordinate and then applies
the same computations done to s, to points, so that it can compute the point
X ′ = x′P , i.e. the public key of the prover. The verifier then checks if this point
X ′ is in the database. If it is, then the prover has been verified to be legitimate.

24



3
Designed Protocols

This chapter will introduce three versions of a new type of protocol: the Distance-
Bounding Grouping-Proof (DBGP) protocol. The chapter will begin with a brief
description of how the protocols have been designed. Following that is a presen-
tation of the protocols proposed in this thesis, along with security and privacy
analyses of them. The presentation of the proposed protocols will start with the
two basic DBGP protocols, i.e. the protocols designed to work on normal RFID
tags. After that, the ECC based grouping-proof protocol is presented, followed by
the ECC based DBGP protocol, designed for more powerful RFID tags.

3.1 Protocol Design Methods

This section will present the general method used when designing the DBGP pro-
tocols, security and privacy improvements that have been made to the EOVBP,
and a description of how the security and privacy analyses have been carried out.

3.1.1 Combining Protocols

In general, the DBGP protocols have been designed by merging the distance-
bounding and the grouping-proof protocols. After the merging of the two different
types of protocols, there were things that could be improved to make them more
efficient. The efficiency improvements that have been made, have been done on
parts of the original protocols that could be merged in the combined DBGP pro-
tocol. Things such as sending more data in one message instead of having several
messages and re-use data when possible in functions instead of generating new
data for each function.
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3.1.2 Security and Privacy Improvements

The EOVBP was the only protocol in which the security and privacy could be
enhanced, as no issues were found in the other protocols. The security improvement
of EOVBP was to fix the lack of prover dependencies, and the privacy improvement
was to strengthen the pseudonyms.

Prover Dependencies

In the EOVBP, the partial proof of each prover (for provers 2,...,m) is computed
by bj = MACkj [b1,IDj], and the information from this prover that is stored in
the proof is Pj, bj, and cj. If the proofs are stored for long time and should be
available for verification afterwards, the stored proof is vulnerable to modification.
An adversary with access to the database could simply delete a prover’s entry from
the proof (except the first prover), and the modified proof would still be accepted.
To prevent this, each prover’s partial proof now depends on the previous prover’s
partial proof: bj = MACkj [bj−1,IDj]. This disallow verification if a prover’s entry
is removed, as verifying prover bj+1 is impossible without bj.

Strengthen the Pseudonyms

In the EOVBP, each pseudonym is computed by Pj = Nun[IDj,b1]. If there are
m provers in a proof, an adversary would only have to do one exhaustive search
over all possible values for IDj, and thus get the ID and pseudonym for all m
provers that were in the proof. Therefore, the pseudonym has been changed to be
computed by Pj = Nun[IDj,bj−1], which forces an adversary to do one exhaustive
search for each prover it wants to find the ID for, as bj−1 will be different for each
prover. Thus, the cost of finding the ID for all provers is increased by a factor of
the number of provers, m.

3.1.3 Security and Privacy Analyses

All protocols that have been designed have been analysed with respect to the
relevant attacks, using the following methods:

Distance-Bounding Attacks To analyse the protocols with respect to the
distance-bounding attacks, presented in Section 2.2.2, the methods presented in
Section 2.2.3 have been used to calculate the probabilities of the attacks being
successful.
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Grouping-proof attacks To analyse the protocols with respect to the grouping-
proof attacks, presented in Section 2.3.2, the guidelines that were presented in
Section 2.3.3 have been used. Each protocol was reviewed for each of the guidelines,
to determine to what extent the protocol follows them.

3.2 The Distance-Bounding Grouping-Proof Ba-

sic 1 Protocol

In this section, the first Distance-Bounding Grouping-Proof Basic protocol (from
now on called DBGP-B1) is presented, as well as a security and privacy analysis
of it. The protocol is mainly built on the distance-bounding protocol SKI, in its
lite setting, presented in Section 2.5.1, and the grouping-proof protocol EOVBP,
presented in Section 2.5.3.

3.2.1 Description

The DBGP-B1 protocol, as the grouping-proof protocol it is built on, use slightly
different methods for the first prover, compared to the rest of the provers. There-
fore, the protocol is described in two figures; Figure 3.1 describes how the protocol
is run for the first prover and Figure 3.2 describes how the protocol is run for all
other provers that are participating in the proof.

Following the figures is a more detailed description of how the protocol works.
Specific details for some of the computations that are the same as in the original
protocols have been left out of this description, and the reader is instead referred
to Section 2.5.1 and Section 2.5.3 for those details.
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Verifier V Prover 1

Initialisation phase
Query−−−−−−−−−−−−→ Generate random r1

k1 = PRNG[k1 ⊕ ID1]

c1 = c1 + 1

If not P1 ∈ DB: abort
P1,r1,c1←−−−−−−−−−−−− P1 = Nun[ID1,r1]

Generate k1 v from c1 v

Generate a = a0||a1

TS = enc[Timestamp]

s1 = TS ⊕ k1 v
M = a⊕ fk1 [r1,TS]

s1,M−−−−−−−−−−−−→ TS = s1 ⊕ k1

a = M ⊕ fk1 [r1,TS]
b1←−−−−−−−−−−−− b1 = MACk1 [TS,ID1]

Distance-bounding phase

for i = 1 to n

Pick ci ∈ {0,1}
Start clock

ci−−−−−−−−−−−−→
ri = acii

Stop clock
ri←−−−−−−−−−−−−

Store ri and ∆i

end for

Check all rounds’ ri and ∆t
OutV−−−−−−−−−−−−→

Figure 3.1: The Distance-Bounding Grouping-Proof Basic 1 (DBGP-B1) protocol
for the first prover.
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Verifier V Prover j (for j = 2,...,m)

Initialisation phase
bj−1−−−−−−−−−−−−→ Generate random rj

kj = PRNG[kj ⊕ IDj]

cj = cj + 1

Pj = Nun[IDj,bj−1]

If not Pj ∈ DB: abort
Pj ,bj ,rj ,cj←−−−−−−−−−−−− bj = MACkj [bj−1,IDx]

Generate kj v from cj v

Generate a = a0||a1

M = a⊕ fkj v
[rj,bj−1]

M−−−−−−−−−−−−→ a = M ⊕ fkj [rj,bj−1]

Distance-bounding phase

for i = 1 to n

Pick ci ∈ {0,1}
Start clock

ci−−−−−−−−−−−−→
ri = acii

Stop clock
ri←−−−−−−−−−−−−

Store ri and ∆i

end for

Check all rounds’ ri and ∆t
OutV−−−−−−−−−−−−→

When all provers are done:

P1,...,m = (s1,P1,b1,c1,...,Pj,bj,cj,...,Pm,bm,cm)

Figure 3.2: The Distance-Bounding Grouping-Proof Basic 1 (DBGP-B1) protocol
for provers 2 to m.

29



CHAPTER 3. DESIGNED PROTOCOLS

Details The verifier initiates a session by sending a Query to one of the provers,
which will then act as the first prover. The prover generates a random value
r1, updates its key k1 and its counter value c1, and generates its pseudonym P1.
The prover then sends P1, r1, and c1 to the verifier, which, upon receipt, verifies
that P1 is in the database. The verifier then computes the shared key k1 v, an
encrypted timestamp TS (the “nonce”), and encrypts TS with k1 v into s1. The
response vector a is also calculated, and encrypted with the output of fk1 [r1,TS]
into M . Finally, the verifier sends the encrypted messages s1 and M to the prover.
The prover retrieves TS and a from the encrypted messages, computes its partial
proof b1 and sends it back to the verifier. When the verifier receives b1, it will
begin the distance-bounding phase. For n rounds, the verifier starts a clock and
sends a challenge to the prover, which then responds with the response value from
the response vector a, matching the challenge, to the verifier. When the verifier
receives the response ri, it stops the clock and stores the time delta ∆i and the
response ri. After the distance-bounding phase, the verifier will verify that all ∆i

were within the allowed ∆max, and that at least τ responses were correct.
The procedure is almost identical for the rest of the provers. But, instead

of receiving a query as the first message, the other provers will get the previous
prover’s partial proof. A prover then generates all the values as the first prover did,
plus its own partial proof, and sends this to the verifier. Now, however, the verifier
only generates the challenge vector a, and encrypts with the output of fkj v

[rj,bj−1]
into M , and sends M to the prover. Since the prover has already sent its partial
proof, the protocol continues with the distance-bounding phase in the same way
as described for the first prover.

When all provers are finished, the verifier will check that the time taken for the
entire proof has note exceeded some pre-defined maximum time. If the time was
within the boundaries, the verifier saves all data and partial proofs to its database,
from where it later again can be retrieved and verified.

3.2.2 Security and Privacy Analysis

The following section presents the security and privacy analysis of the DBGP-B1
protocol, analysed with respect to the method described in Section 3.1.3.

Distance Fraud

The DBGP-B1 protocol has a challenge ci ∈ {0,1} and a response ri ∈ {0,1}, where
ri is decided by acii . A malicious prover P ∗ may calculate the response values for
each round in advance, for the two values ci can take. From this, it follows that
there are two cases that can happen in each round:
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1. The first case, which also is the best case that can happen for P ∗, is when
a0i = a1i , as the response is the same whatever the challenge is. Since ri can
take only two values, it is easy to see that the probability for this to happen
is 1

2
, as we get: Pr[case 1] = 1 ∗ 1

2
.

2. The other case is when a0i 6= a1i , which also happens with a probability of
1
2
. This time, P ∗ must guess what the challenge will be. As the challenge is

one of two values, the probability that P ∗ makes a correct guess is 1
2
. The

probability for this case to happen and for P ∗ to make a correct guess is
thus: Pr[case 2] = 1

2
∗ 1

2
= 1

4
.

This gives a total probability to pass one round: Pr[DF]i = Pr[case 1]+Pr[case 2] =
1
2

+ 1
4

= 3
4
, and to pass the distance-bounding phase in all rounds: Pr[DF] = (3

4
)n.

Mafia Fraud

As described in Section 2.2.3, there are two ways to get the correct reponse in a
mafia fraud:

1. The probability for the first case, guessing the challenge correctly, is Pr[case 1] =
1
2
, as the challenge can be of only two values.

2. The probability of making an incorrect guess about the challenge is 1 − 1
2
,

and in this case, the adversary needs to guess the response value and send to
the verifier. The probability of guessing the correct response is 1

2
, and thus,

it follows that the total probability of succeeding in this case is Pr[case 2] =
1
2
∗ 1

2
= 1

4
.

The total probability for succeeding in one round is then Pr[MF]i = Pr[case 1] +
Pr[case 2] = 1

2
+ 1

4
= 3

4
, and to pass the distance-bounding phase in all rounds:

Pr[MF] = (3
4
)n.

Terrorist Fraud

The protocol does not protect against terrorist frauds. A malicious prover P ∗

can give away the information needed to pass the protocol, the a vector, without
revealing its secret key.

Giving away a allows the adversary to retrieve fkj [rj,bj−1], but this will not
give the adversary any advantage to pass the protocol in a future session, since:

1. fkj [M ] is a one-way function, producing a hash of M , keyed with kj. This
disallows recovering kj from the hashed output.
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2. fkj [rj,bj−1] is unique for this prover and this session only. In any future
session, the values rj and bj−1 will be different.

3. a is randomly generated for this distance-bounding phase and will be different
in any future run of the protocol.

Replay Attacks

The protocol follows the guidelines and makes use of an encrypted timestamp to
have each session unique. This prevents an adversary from predicting the nonce
or pre-calculating timestamps. The first prover builds its partial proof b1 on this
timestamp, and every prover that follows builds their partial proof from the partial
proof of the prover preceding it. This makes each prover’s proof dependent on the
timestamp, which is unique for this session, and thus disallows for any data to be
replayed in another session.

Subset Replay Attacks and Multiple Impersonation Attacks

The description of how the protocol resists replay attacks also shows that it can
resist subset replay and multiple impersonation attacks, as it clearly states that
the provers have a dependency between them, and to the current session.

Anonymity Attacks

The protocol follows the guidelines on hiding the identifier of a prover. Instead of
sending a prover’s real ID, a pseudonym, created with the Nun function is being
sent. As the Nun function is a one-way hash function, and the input to it is the ID
of the prover, which is unknown for an adversary, there is no way for an adversary
to calculate the value and compare.

Traceability Attacks

The pseudonym Pj is created by applying the Nun function to the prover’s ID
and the random number rj that has been generated by the prover for this session.
This makes the pseudonym of a prover unique for each prover and session, and it
can thus not be tracked by an adversary.

Forged Proofs

To impersonate a prover and be able to create a partial proof using that prover’s
data, an adversary A would need to get possession of the prover’s key kj, counter
cj, and identifier IDj.
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The counter value is needed in order to be synchronised with the verifier and it
can easily be achieved as it is sent in clear to the verifier.

The identifier must be known in order to create a valid pseudonym Pj and a
valid partial proof bj. The identifier is never sent in clear, and both Pj and bj
are created using one-way functions. The only way for A to get these values is by
brute forcing Pj or bj, which, given that they are of enough length, is infeasible.

The key must be known to create the partial proof bj and to be able to retrieve
the response vector a. Both of these values are the output of one-way functions,
in which kj is used to create keyed output values. This means that they cannot
be reversed, and thus, the only way to retrieve the key is by brute force, which,
given that proper hash length is used, is infeasible.

The key is sent within a non one-way function for the first prover in the protocol:
s1 = fkv [TS] ⊕ k1. The only way to retrieve k1 from s1 would be if an adversary
got hold of the encrypted timestamp. This value, however, is never sent in clear
and is only known by the verifier and the first prover, which only makes use of it
in a one-way function.

Thus, there is no feasible way to retrieve either a prover’s identifier nor the
private key.

Forward Security

The protocol supports for partial resistance to forward security. If an adversary
gets hold of a prover, there is no way to retrieve the old keys that have been used in
previous protocols, as they are updated through a non-reversible pseudo-random
number generator.

An adversary gaining access to the prover’s stored values will be able to track
the prover in historical sessions. The values Pj, bj, and rj are all sent in clear and
stored with the proof, for the verifier to be able to verify and identify the prover.
As the pseudonym Pj is calculated by Pj = Nun[IDj,rj], it would then be possible
for an adversary to calculate Pj when it is in possession of the prover’s IDj, and
thus check a proof for the presence of the prover.

Race Conditions

The protocol is partially resistant to race conditions. The provers do not store
any information during the lazy phases, i.e. all phases but the distance-bounding
phase. Therefore, it would not be possible for the protocol to be desynchronised
during this time. A prover does however store the response vector a, to use in the
distance-bounding phase. This is in the nature of the distance-bounding protocols
and can not be removed.
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Denial of Proof (m-DoP)

Any m-DoP attack against the protocol would fail, since the verifier is in online
mode and each prover is verified in the beginning of the verifier-prover communi-
cation.

Denial of Service (DoS)

An adversary that attacks a prover and has its key desynchronised with the verifier
is not a problem. When the verifier wants to communicate with the prover, the
counter allows the key to be updated and synchronised.

3.3 The Distance-Bounding Grouping-Proof Ba-

sic 2 Protocol

This section will describe the second Distance-Bounding Grouping-Proof Basic
protocol (DBGP-B2), as well as a security and privacy analysis of it. The pro-
tocol is built on the distance-bounding protocol MSK, presented in Section 2.5.2,
and the same grouping-proof protocol as DBGP-B1 - the EOVBP protocol from
Section 2.5.3.

3.3.1 Description

The protocols do, just as DBGP-B1, work differently for the first prover and the
rest of the provers. Therefore, this protocol is also described in two figures; Fig-
ure 3.3 describes how the protocol is run for the first prover and Figure 3.4 describes
how the protocol is run for the rest of the provers. Details on computations that
have been described in the original protocols are left out of the descriptions. The
reader is referred to Section 2.5.2 and Section 2.5.3, for those details.

34



CHAPTER 3. DESIGNED PROTOCOLS

Verifier V Prover 1

Initialisation phase
Query−−−−−−−−−−−−→ Generate random r1

k1 = PRNG[k1 ⊕ ID1]

c1 = c1 + 1

If P1 /∈ DB: abort
P1,r1,c1←−−−−−−−−−−−− P1 = Nun[ID1,r1]

Generate k1 v from c1 v

TS = enc[Timestamp]

s1 = TS ⊕ k1 v
s1−−−−−−−−−−−−→ TS = s1 ⊕ k1

a0 = PRFk1 v [r1||TS] a0 = PRFk1 [r1||TS]

a1 = a0 ⊕ k′1 v a1 = a0 ⊕ k′1
Distance-bounding and verification phase

for i = 1 to n

Pick ci ∈ {0,1}
Start clock

ci−−−−−−−−−−−−→
ri = acii

Stop clock
ri←−−−−−−−−−−−−

Store ri and ∆i

end for

b1 = MACk1 [TS,ID1]
V,b1←−−−−−−−−−−−− V = PRFk1 [transcript]

Verify b1, V , and all rounds’ ri and ∆i.
Outv−−−−−−−−−−−−→

Figure 3.3: The Distance-Bounding Grouping-Proof Basic 2 (DBGP-B2) protocol
for the first prover.
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Verifier V Prover j (for j = 2,...,m)

Initialisation phase
bj−1−−−−−−−−−−−−→ Generate random rj

kj = PRNG[kj ⊕ IDj]

cj = cj + 1

If Pj /∈ DB: abort
P1,r1,c1←−−−−−−−−−−−− Pj = Nun[IDj,bj−1]

Generate kj v from cj v

a0 = PRFkj v
[rj||bj−1] a0 = PRFkj [rj||bj−1]

a1 = a0 ⊕ k′j v a1 = a0 ⊕ k′j
Distance-bounding and verification phase

for i = 1 to n

Pick ci ∈ {0,1}
Start clock

ci−−−−−−−−−−−−→
ri = acii

Stop clock
ri←−−−−−−−−−−−−

Store ri and ∆i

end for

bj = MACkj [bj−1,IDj]
V,bj←−−−−−−−−−−−− V = PRFkj [transcript]

Verify bj, V , and all rounds’ ri and ∆i.
Outv−−−−−−−−−−−−→

When all provers are done:

P1,...,m = (s1,P1,b1,c1,...,Pj,bj,cj,...,Pm,bm,cm)

Figure 3.4: The Distance-Bounding Grouping-Proof Basic 2 (DBGP-B2) protocol
for provers 2 to m.
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Details The verifier initiates a session by sending a Query to one of the provers,
which then will work as the first prover. The prover generates a random value
r1, updates its key k1 and its counter value c1, and generates its pseudonym P1.
The prover then sends P1, r1 and c1 to the verifier, which, upon receipt, verifies
that the prover is in the database. The verifier then computes the shared key k1 v,
an encrypted timestamp TS, and encrypts TS with k1 v into s1, and sends to the
prover. Then, both the verifier and the prover generate the response vectors a0 and
a1. Following this, the distance-bounding phase begins. In n rounds, the verifier
starts a clock and sends a challenge to the prover. When received by the prover,
the prover immediately responds with the response ri from the matching response
vector to the verifier. The verifier stops the clock when it receives the response and
stores the response ri and the time delta ∆i. After the distance-bounding phase,
the prover sends its partial proof b1 and a hash of the transcript, V . The verifier
will verify that all rounds’ ∆i were within the allowed ∆max, and that at least τ
responses were correct and that the transcript is correct.

The procedure is almost identical for the rest of the provers. But, instead of
receiving a query as the first message, they get the previous prover’s partial proof.
Each prover then generates all the values as the first prover did, and sends this
to the verifier. After this, they both compute the response vectors a0 and a1 and
proceeds in the same way as for the first prover with the distance-bounding phase
and verification.

When all provers are finished, the verifier will check that the time taken for the
entire proof has not exceeded some pre-defined maximum time. If the time was
within the boundaries, the verifier saves all data and partial proofs to its database,
from where it later again can be retrieved and verified.

3.3.2 Security analysis

The following section presents the security and privacy analysis of the DBGP-B2
protocol, analysed with respect to the method described in Section 3.1.3. As the
protocol is built on the same grouping-proof protocol as DBGP-B1, all of the attack
analyses done on grouping-proof attacks in Section 3.2.2 are valid here as well, and
are therefore left out of the text. The response vectors are built using sensitive
private, but they do not reveal any information that changes the grouping-proof
attack analyses done for DBGP-B1.

Distance Fraud

The DBGP-B2 protocol has a challenge ci ∈ {0,1} and a response ri ∈ {0,1},
where ri is decided by ri = acii . As the challenges and responses are the same as
in the DBGP-B1 protocol, the distance fraud calculation done in Section 3.2.2 is
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valid here. It will be the exact same cases, which will exact same probabilities
to happen. Therefore, the probability to success with a distance fraud in one
round is Pr[DF]i = 3

4
, and to pass the distance-bounding phase in all rounds:

Pr[DF] = (3
4
)n.

Mafia Fraud

As described in Section 2.2.3, there are two ways to get the correct reponse. How-
ever, in the DBGP-B2 protocol, the transcript is sent after the distance-bounding
phase. This disallows an adversary from passing the protocol if a challenge is
guessed wrong and sent to the prover, as that would break the transcript. Because
of this, only the first case can be used by an adversary here, as an erroneously
guessed challenge would break the proof.

The probability for the first (and only possible) case, guessing the challenge, is
simply 1

2
. This is also the total probability of succeeding in one round Pr[MF]i = 1

2
,

which gives the probability to pass the distance-bounding phase in all rounds:
Pr[MF] = (1

2
)n.

Terrorist Fraud

The protocol does not protect against terrorist frauds. A malicious prover P ∗

can give away the information needed to pass the protocol, the vectors a0 and a1,
without revealing its secret key. The second key, k′, can, however, be retrieved by
an adversary, but it would be of no help in any future proof sessions, as stated in
the analysis in [11].

3.4 The ECC Grouping-Proof Protocol

The following section presents the proposed grouping-proof protocol that has been
designed in this thesis, using ECC methods, as well as a security and privacy
analysis of it. The protocol will be referred to as ECC-GP.

3.4.1 Description

The protocol is designed with respect to the guidelines to resist attacks against
grouping-proofs, presented in Section 2.3.3. As the verifier works a bit differently
depending on whether it is the first prover or any of the other provers, the proto-
col will be presented in two figures. The run of the protocol for the first prover
is presented in Figure 3.5, and the run of the protocol for all other provers in the
proof, is presented in Figure 3.6.
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Verifier V Prover 1

ts = enc[Timestamp] ∈ Z∗
ts,Y−−−−−−−−−−−−→

Generate random r1,1,r1,2 ∈ Z∗

R1,1 = r1P

R1,2 = r2P

d1,1 = xcoord[r1,1Y ]

d1,2 = xcoord[r1,2Y ]

b1 = ts+ x1 + d1,1 + d1,2

d′1,1 = xcoord[yR1,1]
b1,R1,1,R1,2←−−−−−−−−−−−−

d′1,2 = xcoord[yR1,2]

X ′1 = (b1 − d′1,1 − d′1,2)P − tsP
Check that X ′1 ∈ DB

Figure 3.5: The ECC Grouping-Proof (ECC-GP) protocol for the first prover.

Verifier V Prover j (for j = 2,...,m)

bj−1,Y−−−−−−−−−−−−→

Generate random rj,1, rj,2 ∈ Z∗

Rj,1 = rj,1P

Rj,2 = rj,2P

dj,1 = xcoord[rj,1Y ]

dj,2 = xcoord[rj,2Y ]

bj = bj−1 + xj + dj,1 + dj,2

d′j,1 = xcoord[yRj,1]
bj ,Rj,1,Rj,2←−−−−−−−−−−−−

d′j,2 = xcoord[yRj,2]

X ′j = (bj − d′j,1 − d′j,2)P − bj−1P
Check that X ′j ∈ DB

When all provers are done:

P1,...,m = (ts,b1,R1,1,R1,2,...,bj,Rj,1,Rj,2,...,bm,Rm,1,Rm,2)

Figure 3.6: The ECC Grouping-Proof (ECC-GP) protocol for provers 2 to m.
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Assumptions It is assumed that the verifier and the provers are setup to use
the same domain parameters for the ECC. It is also assumed that the provers’
public keys are known to the verifier in advance and stored in a database, else
they cannot be verified. For higher security, the public key Y can be initiated
to each prover instead of being sent. This would make the prover belong to one
verifier though, as the prover must know the verifier’s Y to participate in a proof.

Prover 1
The protocol begins by the verifier generating an encrypted timestamp ts =
enc[Timestamp], which is then sent along with its public key to the first prover.
When received by the prover, the prover generates two random numbers r1,1 and
r1,2, two points R1,1 = r1,1P and R1,2 = r1,2P , the x-coordinate of two points d1,1 =
xcoord[r1,1Y ] and d1,2 = xcoord[r1,2Y ], and its partial proof b1 = ts+x1+d1,1+d1,2.
The prover then sends b1, R1,1 and R1,2 back to the verifier. The verifier computes
the public key X ′1 of the prover and checks if it is in the database. If it is in the
database, the prover is verified and the protocol continues. Else, it will abort.

Prover j (for j = 2,...,m)
The verifier sends the partial proof of the previous prover, bj−1, and its pub-
lic key to prover j. Upon receiption, the prover generates two random num-
bers rj,1 and rj,2, two points Rj,1 = rj,1P and Rj,2 = rj,2P , the x-coordinate of
two points dj,1 = xcoord[rj,1Y ] and dj,2 = xcoord[rj,2Y ], and its partial proof
bj = bj−1 + xj + dj,1 + dj,2. The prover then sends bj, Rj,1 and Rj,2 back to the
verifier. The verifier computes the public key X ′j of the prover and checks if it is
in the database. If it is in the database, the prover is verified and the protocol
continues. Else, it will abort.

Proof
When all provers are done, the verifier checks so that current time− timestamp
is within some pre-defined maximum time. If it is, the verifier stores the proof
P1,...,m = (ts, b1, R1,1,R1,2, ..., bj, Rj,1,Rj,2, ..., bm, Rm,1,Rm,2) to its database. This
proof can later be validated again by someone who knows the secret key, y, of the
verifier.

Verification
To verify that the prover is in possession of the secret key, and is who it claims to
be, some mathematical computations can be done on the proof. These computa-
tions allows for the verifier to verify the prover, without being able to recover the
private key. It can be seen that:

bjP = bj−1P + xP + dj,1P + dj,2P ⇐⇒ Xj = bjP − dj,1P − dj,2P − bj−1P
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This allows the verifier to calculate the public key in the following way (for the
first prover: replace bj−1 with ts):

Xj = bjP − dj,1P − dj,2P − bj−1P = (bj − dj,1 − dj,2)P − bj−1P

3.4.2 Security and Privacy Analysis

This section presents a security and privacy analysis of the ECC-GP protocol. The
analysis is done using the methods described in Section 3.1.3.

Replay, Subset Replay, and Multiple Impersonation Attacks

The protocol follows the guidelines to resist these attacks. Each session is started
by the verifier generating an encrypted timestamp, which then is used by the first
prover when it generates its partial proof. Each succeeding prover then builds
its partial proof using the partial proof from the preceding prover, which makes
all proofs chained all the way back to the encrypted timestamp. This makes
all provers’ proofs dependent on the timestamp, as well as on preceding provers’
proofs, and thus all the proofs are dependent on this unique session.

Anonymity Attacks

The prover never sends any ID nor pseudonym to the verifier at all. Instead, a
prover is identified by its public key Xj, which is calculated from its partial proof
bj. A verification process that can only be performed by the verifier, as it is the
only one that can make use of the partial proof from the prover.

To be able to calculate the prover’s public key, Xj, and thus be able to identify
the prover, xjP must be extracted from bj. To be able to get the point Xj = xjP
from bjP , both dj,1 and dj,2 must be known, so that they can be deducted from the
proof. Both of these values are calculated by dj,x = xcoord[rj,xY ]. As the points
Rj,x = rj,xP are sent to the verifier, which is in possession of the private key y,
the verifier is able to calculate dj,x also, since rj,xY = yRj,x. Since only the verifier
knows the private key y, this disallows for any adversary to calculate dj,x, hence
no one but the verifier can identify the prover.

Traceability Attacks

The way bj is calculated makes the protocol resistant to traceability attacks. All
data but the key xj is different in each sessions, thus making bj different for each
prover in every run of the protocol.
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Forged Proofs

To impersonate a prover and be able to create a partial proof using that prover’s
data, an adversary A would need to be able to calculate a valid proof bj. In order to
do this, A would need to get possession of the prover’s private key xj, as everything
else is randomly selected and dependent on the current session. However, getting
in possession of xj is impossible without physical access to the prover.

Forward Security

This protocol provides forward security. If an adversary would get physical access
to some prover j, it could get access to the prover’s private and public keys xj and
Xj. In the following proof, it is also assumed that the adversary has the data from
the proof: bj−1, bj, R1,1, and R1,2.

To see if the prover j was in this proof bj, the adversary must re-calculate the
proof and see if it matches. Using the proof calculation bj = bj−1 + xj + dj,1 + dj,2,
it follows clearly that it is impossible to reverse the calculation, as both dj,1 and
dj,2 are unknown to the adversary.

As Rj,1 and Rj,2 are points, it may look possible to use point multiplication to
reverse the calculation. This, however, will not work either, as it is the x-coordinate
of the points rj,1Y and rj,2Y that needs to be used, and not the points Rj,1 and
Rj,2. To get the x-coordinates of the correct points, the private key y of the prover
must be known and multiplied with the points Rj,1 and Rj,2.

Race Conditions

The protocol is resistant to race conditions. The provers are static and are only
called once in each proof session. To create their proof, they receive some infor-
mation, process this information and immediately send a response when they are
done.

Denial of Proof (m-DoP)

Any m-DoP attack against the protocol would fail, since the verifier is in online
mode and each prover is verified immediately after the verifier gets the prover’s
partial proof.

Denial of Service (DoS)

The provers are static and store no data between sessions, nor do they update
any data before or after a session. Thus, there is nothing in a prover that can be
desynchronised.
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3.4.3 Comparison With Other ECC Grouping-Proof Pro-
tocols

This section will give a brief discussion that compares the ECC-GP protocol to the
other two ECC grouping-proof protocols seen in the literature, which are presented
in [29] and [30].

Discussion The analysis in Section 3.4.2 shows that the ECC-GP protocol fol-
lows the guidelines for each of the known attacks, and that it is not vulnerable to
any of the security or privacy attacks.

The protocol proposed by Batina et al. in [29] has been shown to be insecure
against two attacks by Hermans and Peeters in [30].

The other protocol, that looked more secure, was proposed by Hermans and
Peeters in [30]. The protocol does not have any dependencies between the provers
in the protocol, and does thus not follow the guidelines that have been setup to tol-
erate the subset replay and the multiple impersonation attacks (see Section 2.3.3).
Not following the guidelines does not automatically make the protocol vulnerable
to the attacks, and the protocol needs to be further reviewed. However, Peris-
Lopez et al. clearly points out the importance of following the guidelines, as they
write that they “... should be followed by protocol designers to preclude past
errors” [25].

On the contrary, the protocol proposed in [30] is vulnerable to race conditions.
The protocol begins with the provers generating two random numbers r1 and r2
each, and then send these as points to the verifier. The verifier then sends an
“exam”e to the provers. Upon reception, the provers create a proof s = e∗x+r1+r2
and sends back to the verifier. If two verifiers contact a prover at the same time,
the prover will generate two sets of random numbers and not know to which of the
verifiers they belong, and the proof may thus be corrupted.

Conclusion The conclusion drawn from this is that the ECC-GP protocol is
more secure than the other two protocols seen in the literature. The ECC-GP
protocol has been proven to be secure against all the known security and privacy
attacks, something the other two protocols have been proven not to be.
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3.5 The Distance-Bounding Grouping-Proof Se-

cure Protocol

The following section will present the Distance-Bounding Grouping-Proof Secure
protocol (DBGP-S), as well as a security and privacy analysis of it. The proto-
col is built by combining the distance-bounding protocol HPO, presented in Sec-
tion 2.5.4, and the grouping-proof protocol proposed in this thesis, the ECC-GP
protocol, presented in Section 3.4.

3.5.1 Description

As the verifier works differently for the first prover and the rest of the provers, the
presentation of the protocol is split into two figures. The run of the protocol for
the first prover is presented in Figure 3.7 and the run of the protocol for all other
provers in the proof is presented in Figure 3.8. Technical descriptions that have
not changed from the original protocols are left out of the text. For details about
these, the reader is referred to Section 2.5.4 and Section 3.4.

Verifier V Prover 1

Initialisation phase
ts = enc[Timestamp]
Generate random rv

Rv = rvP
ts,Rv ,Y−−−−−−−−−−−−→ Generate random r1,1, r1,2

R1,1 = r1,1P
R1,1,R1,2←−−−−−−−−−−−− R1,2 = r1,2P

a0||a1 = [xcoord(rvR1,1)]2n a0||a1 = [xcoord(r1,1Rv)]2n
c = [e]n, e ∈ Z∗

Distance-bounding and verification phase
for i = 1 to n

Start clock
ci−−−−−−−−−−−−→ ri = acii

Stop clock
ri←−−−−−−−−−−−−

Store ri and ∆i

end for
Check all ri and ∆i

e−−−−−−−−−−−−→ Verify cn−1||..||c1||c0 == [e]n

d1,2 = xcoord[r1,1Y ]
d1,2 = xcoord[r1,2Y ]

d′1,1 = xcoord[yR1,1]
b1←−−−−−−−−−−−− b1 = ts+ x1 + e+ d1,1 + d1,2

d′1,2 = xcoord[yR1,2]
X ′1 = (b1 − d′1,1 − d′1,2)P − tsP − eP
Verify X ′1 ∈ DB

OutV−−−−−−−−−−−−→

Figure 3.7: The Distance-Bounding Grouping-Proof Secure (DBGP-S) protocol
for the first prover.
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Verifier V Prover j (for j = 2,...,m)

Initialisation phase
Generate random rv

Rv = rvP
bj−1,Rv ,Y−−−−−−−−−−−−→ Generate random rj,1, rj,2

Rj,1 = rj,1P
Rj,1,Rj,2←−−−−−−−−−−−− Rj,2 = rj,2P

a0||a1 = [xcoord(rvRj,1)]2n a0||a1 = [xcoord(rj,1Rv)]2n
c = [e]n, e ∈ Z∗

Distance-bounding and verification phase
for i = 1 to n

Start clock
ci−−−−−−−−−−−−→

ri = acii
Stop clock

ri←−−−−−−−−−−−−
Store ri and ∆i

end for
Check all ri and ∆i

e−−−−−−−−−−−−→ Verify cn−1||..||c1||c0 == [e]n

d1,2 = xcoord[rj,1Y ]
d1,2 = xcoord[rj,2Y ]

d′j,1 = xcoord[yRj,1]
bj←−−−−−−−−−−−− bj = bj−1 + x1 + e+ dj,1 + dj,2

d′j,2 = xcoord[yRj,2]

X ′j = (bj − d′j,1 − d′j,2)P − bj−1P − eP
Verify X ′j ∈ DB

OutV−−−−−−−−−−−−→
When all provers are done:
P = (ts,b1,R1,1,R1,2,...,bj,Rj,1,Rj,2,...,bm,Rm,1,Rm,2)

Figure 3.8: The Distance-Bounding Grouping-Proof Secure (DBGP-S) protocol
for provers 2 to m.

Details The protocol begins by the verifier generating an encrypted timestamp
ts, a random number rV , and a point RV = rV P . The point RV , the timestamp
ts, and the verifier’s public key Y is then sent to some prover, noted as the first
prover. Upon reception, the prover will generate two random values r1,1 and r1,2,
two points R1,1 = r1,1P and R1,2 = r1,2P , and then send these two points to the
verifier. Following that, both the verifier and the prover will calculate the response
vectors a0 and a1, by taking the first 2n bits from the x-coordinate of the point
rvR1,1 = r1,1RV = rvr1,1P . The verifier will also compute the challenge vector,
by taking the first n bits from some random number e. Following that comes the
the distance-bounding phase. For n rounds, the verifier will start a clock and send
the i-th bit of the challenge vector c to the verifier. The prover will immediately
respond with the i-th bit of the response vector that matches challenge: ri = acii .
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When the verifier receives the response, it will stop the clock and store the response
ri as well as the time delta ∆i of the round. When the distance-bounding phase is
over, the verifier verifies that ri for each round was correct, and that each round’s
∆i was within the allowed ∆max. The verifier then sends the random number e
to the prover. The prover then verifies e against the challenges received and, if
it was carried out with no problem, creates the partial proof b1, which is sent
as response to the verifier. The verifier then verifies the proof by calculating the
public key of the prover and checks if the calculated public key is in its database.
This calculation also assures that e has not been tampered with.

The run of the protocol for all the other provers proceeds in the same way,
with one difference. Instead of generating an encrypted timestamp and send to a
prover, the verifier will send the previous prover’s partial proof. The rest of the
protocol runs exactly as described for the first prover.

When all provers are done, the verifier will check that the entire protocol was
run within some maximum allowed time delta, and then store all data and partial
proofs to its database, from where it later may be retrieved and verified again.

3.5.2 Security and Privacy Analysis

The following section presents the security and privacy analysis of the DBGP-S
protocol, analysed using the methods described in Section 3.1.3.

Distance Fraud

The DBGP-S protocol has the challenge ci ∈ {0,1} and the response ri ∈ {0,1},
where the response is decided by ri = acii . As in the previous distance fraud
analyses, there are two cases:

1. The best case for some malicious prover P ∗ is when a0i = a1i . The response is
the same whether ci is 0 or 1. The probability to be successful in this case is
100% and the probability for this to happen is 1

2
. Thus, the total probability

for having this case and being successful is: Pr[case 1] = 1 ∗ 1
2
.

2. The other case, when a0i 6= a1i , happens with probability 1− 1
2

= 1
2
. This time,

P ∗ needs to guess the response. As the response can take two values, the
probability of P ∗ making a correct guess is 1

2
. The probability for this case

to happen and that P ∗ makes a correct guess is then: Pr[case 2] = 1
2
∗ 1

2
= 1

4
.

This gives a total probability to pass one round: Pr[DF]i = Pr[case 1]+Pr[case 2] =
1
2

+ 1
4

= 3
4
, and to pass the distance-bounding phase in all rounds: Pr[DF] = (3

4
)n.
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Mafia Fraud

From Section 2.2.3, we know that there are two cases in which an adversary can
succeed with a mafia fraud. However, the first case of guessing the challenge ci
and send in advance to P cannot be used, as the challenges are verified after the
distance-bounding phase. If the adversary would send a challenge to the prover
that is different from what the verifier sent, this will be seen by the prover after
it has received e and calculated the challenge vector, and compares against the
challenges received. The adversary cannot change e either to match what was
maliciously sent, as the received e is used to create the prover’s partial proof. If it
has been changed, the verifier will not be able to verify the prover. The adversary
is thus stuck to only being able to guess the responses. With two possible response
values, the probability of making a correct guess is 1

2
.

The total probability for succeeding in one round is then Pr[MF]i = 1
2
, and to

pass the distance-bounding phase in all rounds: Pr[MF] = (1
2
)n.

Terrorist Fraud

This protocol does not protect against terrorist frauds. A malicious prover could
simply give away the vectors a0 and a1 to an adversary, without revealing its secret
key.

The values are obtained from a0||a1 = [xcoord(rj,1rvP )]2n, i.e. 2n bits of the
x-coordinate of the point rj,1rvP . This will not give the adversary any future
help at all, since both rj,1 and rv are two randomly chosen values. These were
chosen between this verifier and this prover for this session. In the next run of the
protocol, they will not be the same.

Grouping-Proof Attacks

The security and privacy analysis that was made in Section 3.4.2 is still valid for the
attacks against this protocol, except the race condition attack. The race condition
attack, however, can not be fully protected against when the protocol has distance-
bounding properties, as the response vectors for the distance-bounding phase must
be calculated in advance, and be unique for the prover and the verifier for that
session only.

For the replay, subset replay, multiple impersonation, m-DoP, and DoS attacks,
it follows clearly that none of the new parameters added affects them. But for
the other attacks, it is not as obvious. Therefore, descriptions of how the added
values and calculations (a0, a1, and e) do not affect the security against the other
grouping-proof attacks are described.
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Implication of the response vectors a0 and a1

The one main thing that can be seen to impact the security in some way is the
response vectors a0 and a1, as they are calculated using some data that is also
used when creating a prover’s partial proof. However, the way a0 and a1 are
calculated, they do not reveal any information about the variables involved, nor
is the variable rv used in any other point than this. The response vectors are
calculated by taking 2n bits of the x-coordinate of the point rj,1rvP . As the
discrete logarithm assumption states, there is no way to reverse the values of rj,1
or rv.

The use of only 2n bits of the point’s x-coordinate makes it even more useless
for an adversary, as it would first need to reverse the function to get the point,
which then, as shown, would be of no use anyway.

Implications of adding e to the partial proof

Adding the e vector to the partial proofs does not change anything that would
invalidate the security and privacy analysis that was done for the ECC-GP in
Section 3.4.2. As the e variable is added by simple addition, it does in no way help
an adversary to extract dj,1 or dj,2, nor helps in being able to use Rj,1 and Rj,2 for
verification.

If an adversary would be able to forge the value of e sent to the prover, there
is no value it can be set to that would give any advantage to the adversary. The
values dj,1 and dj,2 still makes the partial proof non-static and totally random for
this session. Thus, setting e to some value used in a previous session would not
work, as the values dj,1 and dj,2 were different in that session.

With the above description of the impact of the value e to the partial proof, it
follows that the protocol still is secure against anonymity and traceability attacks,
gives no information that makes it possible for an adversary to create forged proof,
and still provides forward security.
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3.6 Protocols Comparison

Table 3.1 shows an overview of the protocols proposed in this thesis. It shows the
success probabilities for the distance-bounding attacks and whether the protocols
are secure against the grouping-proof attacks or not. As the ECC-GP is a grouping-
proof protocol, the success probabilities of the distance-bounding attacks are not
applicable.

Protocol ECC-GP DBGP-B1 DBGP-B2 DBGP-S

Distance Fraud - (3
4
)n (3

4
)n (3

4
)n

Mafia Fraud - (3
4
)n (1

2
)n (1

2
)n

Terrorist Fraud - 1 1 1

Replay attacks Y Y Y Y

Subset attacks Y Y Y Y

Multiple impersonation attacks Y Y Y Y

Anonymity attacks Y Y Y Y

Traceability attacks Y Y Y Y

Forged proofs Y Y Y Y

Forward security Y N N Y

Race conditions Y N N N

m-DoP attacks Y Y Y Y

DoS attacks Y Y Y Y

Table 3.1: Comparsion of the protocols designed in this thesis. Shows the distance-
bounding attack success probabilities and whether or not they are secure against the
grouping-proof attacks.
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4
Simulation and Test Results

This chapter will present the simulation framework that has been built to simulate
the protocols, and its implementation details. Following that comes a presentation
of the results from the simulation of the protocols, which have been tested in
efficiency, false rejections, and security.

4.1 Simulation Implementation

In order to simulate the protocols, a simulation framework was developed. The
framework does not provide a genuine RFID environment, but it enables to test
whether a protocol can run, how it is affected by noise and different tolerated noise
levels, and how it withstands distance fraud and mafia fraud attacks. This section
will first give an overview of how the implementation was built. Following that is
a more detailed description of some, for the test results, more crucial parts.

4.1.1 Framework

The simulation framework is built so that it provides the basic functionality needed
to simulate a reader and tags. To use the framework and simulate a protocol, a user
creates classes that extends the framework’s basic classes, and adds the specific
tag and reader code. This extended code is then what is run by the simulation
framework. This allows for a user implementing a protocol to only care about the
protocol-specific code, and not need to care about how readers and tags are set up
and how they connect, as it is provided by the framework.
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Framework Class Details The module simulator is the base of the simulation
program. This module has three classes: Reader, Tag and Simulator. The Reader
class contains all the basic functionality needed for a reader to work, which is:
sending and receiving data from a tag, check for tags, connect to a tag, run the
extended class’s code when connected to a tag, and call a function to print a
summary when done. The Tag class is much simpler, and contains methods for:
sending and receiving data, running the extended class’s code when connected to
a reader, and terminating the tag. The Simulator class is the one containing
all simulation information. The constructor of the class needs information about
the extending classes that implement the protocols and the settings under which
the simulation will be run. This class contains the run method, which starts the
simulation. When the method is invoked, the simulator will create a reader object,
and objects for all tags, and have them run as own processes.

4.1.2 Noise

To simulate the noise, a special code is run on the reader process when sending and
receiving data. This code is only run when executing the distance-bounding phase,
as the other phases are considered to have error correcting code. The pseudo code
in Listing 4.1 shows the implementation of noise when the reader sends a challenge
to the tag, and the pseudo code in Listing 4.2 when a response is received, i.e. when
the tag sends to the reader.

Listing 4.1: Pseudo code for noise when sending data.

1 Send(challenge):

2 if use_noise and db_phase_runs:

3 rand := Random integer between 0 - 10^6

4 if rand <= Reader_Noise:

5 challenge := (challenge + 1) % 2

6

7 Do_Send(challenge)

Listing 4.2: Pseudo code for noise when receiving data.

1 Receive(response):

2 if use_noise and db_phase_runs:

3 rand := Random integer between 0 - 10^4

4 if rand <= Tag_Noise:

5 response := (response + 1) % 2

6

7 Do_Receive(challenge)
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4.1.3 Attacks

To simulate the distance fraud and the mafia fraud attacks, special methods for
each of them were created. When simulating the attacks, the corresponding
method is run on the tag, instead of the regular distance-bounding code. The
pseudo code for the distance fraud attack is seen in Listing 4.3.

Listing 4.3: Pseudo code for the distance fraud attack.

1 Distance_Fraud(round):

2 if a0[round] == a1[round]:

3 response := a0

4 else:

5 response := Random integer between 0 - 1

6

7 Send(response)

To simulate the behaviour of an adversary executing a mafia fraud attack, when it
is possible to send a challenge in advance to the tag, the pseudo code in Listing 4.4
is used. Line 2 represents the adversary guessing a challenge and “sending to the
tag”. Then, line 3 is where the adversary “receives” the response from the tag.

Listing 4.4: Pseudo code for the mafia fraud attack when querying the tag.

1 Mafia_Fraud(round , challenge):

2 guessed_challenge := Random integer between 0 - 1

3 tag_response := a[guessed_challenge ][round]

4

5 if guessed_challenge == challenge:

6 response := tag_response

7 else:

8 response := Random integer between 0 - 1

9

10 Send(response)

Listing 4.5: Pseudo code for the mafia fraud attack when not querying the tag.

1 Mafia_Fraud(round , challenge):

2 response := Random integer between 0 - 1

3

4 Send(response)
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4.2 Test Setup

This section will present which protocols that have been tested and what test
system that has been used.

4.2.1 Tested Protocols

Only the two protocols DBGP-B1 and DBGP-S have been implemented and tested.
The reason why only these two protocols were implemented is that they cover all
interesting test cases:

• Efficiency This tests aims to see the efficiency difference between the basic
protocol, designed for regular RFID tags, and the ECC based protocol, de-
signed for more powerful RFID tags. Therefore, testing only DBGP-B1 and
DBGP-S is sufficient enough to see how using ECC affects the efficiency.

• False Rejections This test can be run on any of the protocols and does not
differ in different protocol implementations. The only thing that concerns
this test is the communication channel noise, which is handled the same for
all implementations.

• Security An adversary has a success probability of 3
4

in both a distance fraud
and a mafia fraud attack against the DBGP-B1 protocol. Against the DBGP-
S protocol, an adversary has a success probability of 3

4
in a distance fraud

attack, and a success probability of 1
2

in a mafia fraud attack. The success
probabilities against the DBGP-S protocol is the same for the DBGP-B2
protocol. As the attacks would be created in the same way for the DBGP-S
and the DBGP-B2 protocols, it is sufficient enough to only test them against
the DBGP-S protocol.

Testing the attacks against both DBGP-B1 and DBGP-S thus covers all
success probabilities against all protocols designed in this thesis, although
the protocols are different.
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4.2.2 Test System

The crucial system components and program versions of the test system on which
all efficiency tests have been run can be seen in Table 4.1.

CPU Intel Core i7-2700k, clocked to 4.6GHz.

Ram 16GB.

Hard Drive SSD.

Operating System Arch Linux (x64).

Kernel version: 3.14.1-1-ARCH.

Python version 3.4.0.

sqlite3 version 3.8.4.3 2014-04-03 16:53:12.

Table 4.1: Test system used for efficiency tests.

4.3 Test Results

In this section, the simulation results of the DBGP-S and DBGP-B1 protocols,
using the simulation framework created, will be presented. The test data for all
results presented in this section can be found in Appendix A.

4.3.1 Efficiency

To test the efficiency of the protocols, the implementations of them have been run
with different number of tags and distance-bounding rounds, 1,000 times for each
setup. For each run, the time it took to run the simulation program has been
measured and the average value has been calculated over all 1,000 runs. The test
system used for all tests can be seen in Section 4.2.2.

Both the DBGP-B1 and the DBGP-S protocols were tested when using 3, 10,
25, and 50 tags, to see how the protocols are affected by an increasing number of
tags. For each number of tags, the protocols were tested with both 50 and 100
distance-bounding rounds, to see how much the number of rounds affects the time
it takes to run the protocol. The results can be seen in Figure 4.1. The x-axis is the
number of tags used, and the y-axis is the time it took to execute the simulation
program, measured in seconds.
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Figure 4.1: Simulation results of protocol efficiency. Total time it takes to run the
two protocols with x tags, when using 50 or 100 distance-bounding rounds.

The numbers (exact number can be seen in Appendix A.1) shows that going from
50 to 100 distance-bounding rounds, gives a 2% − 8% run time increase for the
DGBP-S protocol, and a 2%− 12% run time increase for the DBGP-B1 protocol.
The relative time difference between 50 and 100 distance-bounding rounds gets
lower as the number of tags increases, for both protocols.

Comparing the DBGP-S protocol with the DBGP-B1 protocol, it can be seen
that for 50 distance-bounding rounds the DBGP-B1 protocol is 29%− 41% faster.
With 100 distance-bounding rounds, the DBGP-B1 protocol is 29%− 35% faster.
As the number of tags increases, the overhead of starting up the simulation frame-
work gets lower. It is therefore interesting to see that both protocols are around
29% − 30% faster for both 50 and 100 distance-bounding rounds when using 25
and 50 tags.

4.3.2 False Rejections

When there is noise in the communication channel, there is always a possibility
that a prover will be a victim of a false rejection, i.e. denied even though it is legit.
This might happen even though the protocol is set up to tolerate noise to a certain
level. Figure 4.2 shows the results when testing for false rejections, on a protocol
that is set up to tolerate 10% noise. The x-axis is the number of rounds and the
y-axis is the probability that a legit user is falsely rejected. In tests that resulted
in no false rejections, the result is excluded from the figure. That is why the brown
and the red lines stops at 20 and 80 distance-bounding rounds, respectively.
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Figure 4.2: Simulation that shows how the probability of a legitimate prover to be
falsely rejected is affected by noise in the communication channel, when protocol is
set up to tolerate 10% noise.

With communication noises lower than 0.1%, no test resulted in a false rejection.
As seen in the figure, with 0.1% noise, no legitimate prover got rejected when
using more than 20 distance-bounding rounds. For 1% noise, no legitimate user
got rejected when using more than 80 distance-bounding rounds.

With 10% communication noise, the false rejection rate starts at 42% when
using 10 distance-bounding rounds, and increases up to 84% when using 100
distance-bounding rounds. The blue line, which shows when there is 10% noise,
has an opposite behaviour compared to the other lines. As the number of distance-
bounding rounds increases, the false rejection rate also increases in this case. For
1% noise and lower, the false rejection rate decreases. An important note here,
is that a protocol tolerating 10% noise is set up to accept a prover if 90% of the
distance-bounding rounds were correct. At the same time, having 10% noise in
the communication channel means that there is a 10% chance that a bit is being
modified, both when being sent and received by the reader.

4.3.3 Security

In order to determine how secure the protocols are, simulated distance fraud and
mafia fraud attacks have been tested against them. The results of simulating these
attacks show to what success probability an adversary or a malicious tag can pass
the protocol. This success probability is what defines how secure they are.
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Both protocols have been set up to tolerate a noise level of 10%. They have then
been tested against the two attacks with different levels of noise in the communica-
tion channel, to see how the security is affected by this. The noise on the channel
has in all tests ranged from 0% to 10%.

Distance Fraud

Figure 4.3 shows the results when testing the distance fraud attack. As the results
were nearly the same when testing for distance fraud against the DBGP-S and
DBGP-B1 protocols, only the results from the DBGP-S are shown (the results for
DBGP-B1 are available in Appendix A.3.1). There is no value for the 10% noise
and 100 distance-bounding rounds, as none of the attack attempts succeeded. The
black, theoretical line without noise, is calculated by using Equation 2.1 as follows
B(n, 0.9n, 3

4
).
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Figure 4.3: Simulation of how the success probability of a distance fraud attack
against the DBGP-S protocol, set-up to tolerate 10% noise, is affected by different
levels of noise in the communication channel.

From the simulation results, it is easy to see that with higher noise on the channel,
the success probability for a malicious tag decreases. The blue line, that shows
the probability when having 10% noise on the channel, is far below the black,
theoretical line. Also the red line, that shows the probability when having 1%
noise on the channel, is a bit below the theoretical line. As the noise decreases,
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the success probability increases. This is seen by all the lines getting closer to the
theoretical line, as the noise gets lower.

Mafia Fraud

Figure 4.4 shows the results when testing mafia fraud attacks against the protocols.
With 10% noise in the communication channel, there were no successful attempts
when using 90 or 100 distance-bounding rounds. For the DBGP-S protocol though,
regardless of the noise, no successful attempts were made when using more than
30 distance-bounding rounds. All tests that resulted in no successful attempt have
been excluded from the figure, which is why some lines stops at earlier than 100
distance-bounding rounds.

The black, theoretical lines without noise, are calculated by using Equation 2.1
as follows B(n, 0.9n, q). The solid black line, representing the theoretical success
probabilities against DBGP-S, was calculated with q = 1

2
, and the dashed black

line, representing the theoretical success probabilities against DBGP-B1, was cal-
culated with q = 3

4
.
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Figure 4.4: Simulation of how the success probability of a mafia fraud attack
against the DBGP-S and the DBGP-B1 protocols, set-up to tolerate 10% noise, is
affected by different levels of noise in the communication channel.
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It is easy to see that the DBGP-S protocol is more secure than the DBGP-B1
protocol against the mafia fraud attack. This was expected though, as the DBGP-
S protocol provides better security by its design (see comparison in Section 3.6).

The success probability for the DBGP-S protocol, shown in solid lines, can
be interpreted as not being affected by noise in the communication channel. The
lines representing the different communication channel noise settings all follow the
theoretical, black line very closely. The DBGP-B1 protocol, shown in dashed lines,
on the other hand, is notably affected by the noise. It is easy to see as the blue line,
showing the success probability with 10% noise in the communication channel, is
located far below the other lines for this protocol. The success probability of the
attack can be interpreted as being lower the more noise there is on the channel,
just as in the case of the distance fraud attack. It is easy to interpret it that way,
as the lines gets closer to the theoretical line, the less noise there is.

Comparing the security of the two protocols against each other shows a clear
advantage for the DBGP-S protocol. The success probability also decreases faster
for the DBGP-S protocol than the DBGP-B1 protocol, something that the num-
bers, seen in Appendix A.3.2, clearly show. With 1% noise in the communication
channel, 1,015 of 100,000 attempts were successful against the DGBP-S protocol,
when using 10 distance-bounding rounds. For the DBGP-B1 protocol, the num-
ber of successful attempts were 22,636 at the same settings. This gives success
probabilities of 1.015% and 22.64%, for the DBGP-S and the DBGP-B1 protocols,
respectively. A 22 times higher rate for the DBGP-B1, compared to the DBGP-S.
With the same noise setting, at 20 distance-bounding rounds, only 15 of 100,000
attempts against the DBGP-S protocol were successful. That gives a success rate
of 0.015%. For the DBGP-B1 protocol, using 20 distance-bounding rounds re-
sulted in 8,026 successful attempts, which gives a success rate of 8.026%. That is
535 times more than for the DBGP-S protocol.
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5
Discussion

In this chapter, a discussion about the method, the results, and future work will
be presented.

5.1 Method

Finding and reading published articles about the two types of protocols that have
been used in this thesis have had both advantages and disadvantages. The advan-
tages are that many good researchers have been studying this area and published
their results, which others then can use. As I have seen there are new protocols
presented all the time, as they seem to find vulnerabilities in previous ones. Hav-
ing the opportunity to find the latest and best, and use them in this thesis have
been of great importance. The disadvantages of using this research method is that
not all articles that are published seem to be of high quality. It can be hard to
distinguish which articles that are the most relevant, which in turn can lead to
using something that is not the latest state of the art research.

Creating a simulation framework to simulate protocols on RFID tags and an
RFID reader has been an adequate way to tell whether the protocols can be im-
plemented. It has also been of good use to realistically test how the protocols
stand the implemented attacks, how different levels of noise affects them, and how
different techniques affects the efficiency of the protocols. It is hard though, to tell
whether the protocols can be realised on real RFID tags and readers. Even if they
theoretically can be implemented, it is hard to tell whether they will be efficient
enough when having the constraints that a real RFID tag has. To get an answer
to this, more constraints need to be added to the simulation framework, e.g., used
hardware, communication speeds, noise in different environments.
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5.2 Results

This section discusses the results of this thesis. It starts with a discussion about
the protocols that have been created, which is followed by a discussion of the
simulation results.

5.2.1 Designed Protocols

In this thesis, a new type of protocol has been proposed: the distance-bounding
grouping-proof (DBGP) protocol. The DBGP protocol is designed by combin-
ing the distance-bounding and the grouping-proof protocols, allowing for an even
higher security than any of the protocols alone can provide. As seen in the security
analyses, the DBGP protocols that have been designed provide the same security
as the distance-bounding protocols they were built on, and almost the same secu-
rity as the grouping-proof protocols (only the protection against the race condition
attack was lost) they were built on.

Three DBGP protocols have been proposed. Two simpler ones that can be im-
plemented on regular RFID tags, and a stronger one, that can be implemented on
RFID tags using an ECC special-purpose processor. They show different ways of
how DBGP protocols can be designed using distance-bounding and grouping-proof
protocols.

A grouping-proof protocol was also designed, using the ECC technology. The
security analysis of the DBGP-S protocol, built on the ECC-GP protocol, shows
that the use of ECC and its techniques resulted in higher privacy for the DBGP-S
protocol, when compared to the basic DBGP protocols. The ECC-GP protocol
is also stronger against the grouping-proof attacks than the other grouping-proof
protocols proposed in the literature, as described in Section 3.4.3.

Compared to the other, simpler grouping-proof protocols that are using the
Nun function for privacy, ECC-GP is also more efficient on the reader side. After
the public key is computed, it can be looked up in constant time in the database.
Using the Nun function, the pseudonyms must be calculated for all tags and a
linear search over all provers is needed.
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5.2.2 Simulation and Test Results

The simulation results on the efficiency of the tags show that the DBGP-B1 pro-
tocol is faster than the DBGP-S protocol. This is probably affected by how the
implementation is made, as the ECC computations in the DBGP-S protocol takes
more time to compute than the computations for the DBGP-B1 protocol.

The small increase in the time it takes when doubling the distance-bounding
rounds looks very promising. This can be interpreted as the security easily can be
increased, without any major impact on the efficiency of the protocol. But, it must
be noted that in the simulation framework, the communication is instantaneous.
In a real application, the communication channels will be slower and the protocol
may thus spend more time in the distance-bounding phase.

The false rejections simulation was rather interesting. The tests run with 1%
or lower noise in the communication channel follow the expected pattern: more
distance-bounding rounds makes the noise less substantial. But when testing with
10% noise in the communication channel, the false rejections increased with more
rounds. This probably is due to the fact that 10% noise on the communication
channel may flip the bit in both directions, with a probability of 10% in each di-
rection. So, the actual probability of having the challenge or response corrupted,
must be higher than 10%.

The simulation of the attacks adds up quite good with the theoretical values.
Simulating the distance fraud attack against both protocols, and the mafia fraud
attack against the DBGP-B1 protocol, when actually using noise on the channel
gave some interesting results. With increased noise, the probability of an attack be-
ing successful decreases. This is probably because, even if the attacker has guessed
the correct bit, the probability is higher that it will be corrupted. It cannot be
said that the protocol is more secure in a noisy environment though, as the lower
success probability is strongly related to the false rejections rate for the noise level.

It is not surprising to see that the mafia fraud attack against the DBGP-S
protocol does not seem to be affected by the noise at all. An adversary launching
this attack has no information about any round and must guess all responses with
a probability 1

2
. The noise might then just as well flip a correct guessed bit as a

wrong guessed bit, and does thus not change the probability at all.
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5.3 Future Work

Since the first protocols were designed, new attacks against both distance-bounding
and grouping-proof protocols have constantly arisen. It would therefore be relevant
to anticipate that new attacks will continue to arise. If a new attack would affect
any of the designed protocols, the protocol would need to be updated to be kept
secure.

As the technology moves forward, the computation power on new RFID de-
vices will increase. That may provide opportunities to use more powerful and
secure methods, and the presented protocols should be updated to use these meth-
ods.

The simulation framework that has been developed provides a good foundation
for simulating protocols, attacks, and noise on an RFID reader and RFID tags.
It can advantageously be further developed, beneficially by someone with deeper
knowledge about the RFID hardware. It would then be possible to have a more
realistic environment, by adding constraints and define which methods that are
allowed when implementing and simulating protocols.
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6
Conclusions

A new type of protocol have been proposed. This new distance-bounding grouping-
proof protocol provides the security of both the distance-bounding and the grouping-
proof protocols, and can be used when the security of the either one of them by
itself is not enough.

Three designed protocols of this new type have been proposed, showing that
they are possible to implement and that they do provide the security of both the
distance-bounding and the grouping-proof protocols they are built on.

If the results of the efficiency tests reflects how it work in reality, it is easy to
motivate for more distance-bounding rounds to ensure a higher security. The
results show that doubling the number of distance-bounding rounds gives a low
increase in computation time, while security is highly increased, as seen in the
security tests.

From the tests on the false rejections, a conclusion about tolerating noise can
easily be made. Having a protocol tolerating some X% level of noise, by allowing
only that X% of the distance bounding rounds to be incorrect, is not sufficient
enough. It must be taken into consideration that the data may become corrupted
when being sent in both directions.

It can be seen in the results from the security tests that the lower probability
the DBGP-S protocol has on the mafia fraud, compared to the DBGP-B1 protocol,
makes a big difference in the success probability of an adversary. The methods
that are used to give this lower probability, should be employed in any protocol
that want to achieve a high security.
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A
Test Data

This appendix contains all the raw test data that has been used to create the plots.

A.1 Efficiency

Number of times run for each setting: 1,000.
Table A.1 shows the results for the DBGP-S protocol and Table A.2 shows the
test results for the DBGP-B1 protocol.

Tags 50 DB Rounds 100 DB Rounds
3 1.65 s 1.79 s
10 5.52 s 5.76 s
25 13.52 s 14.08 s
50 26.83 s 27.36 s

Table A.1: Average time to execute the DBGP-S protocol in 1,000 executions,
using different number of tags and distance-bounding rounds.

Tags 50 DB Rounds 100 DB Rounds
3 1.21 s 1.35 s
10 3.91 s 1.27 s
25 10.48 s 10.78 s
50 20.74 s 21.25 s

Table A.2: Average time to execute the DBGP-B1 protocol in 1,000 executions,
using different number of tags and distance-bounding rounds.
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A.2 False Rejections

Table A.3 shows the number of false rejects, out of 150,000 attempts, with different
communication noise levels and different number of distance-bounding rounds.

Round 0% noise 0.01% noise 0.1% noise 1% noise 10% noise
10 0 0 13 1344 63310
20 0 0 1 437 81604
30 0 0 0 136 93275
40 0 0 0 53 101696
50 0 0 0 5 107906
60 0 0 0 2 113242
70 0 0 0 0 116994
80 0 0 0 1 120739
90 0 0 0 0 123897
100 0 0 0 0 126669

Table A.3: DF against DBGP-S protocol.

71



APPENDIX A. TEST DATA

A.3 Security

A.3.1 Distance Fraud Attacks

Table A.5 and Table A.4 show the number of successful distance fraud attack
attempts, out of 100,000 attempts, that were successful against the DBGP-S and
the DBGP-B1 protocols, respectively.

Round 0% noise 0.01% noise 0.1% noise 1% noise 10% noise
10 24419 24572 24302 23350 15171
15 7834 7959 7943 7328 3456
20 9166 9192 9162 8313 3634
25 3077 3163 3204 2884 880
30 3746 3658 3771 3250 983
40 1649 1520 1559 1370 256
50 686 721 671 537 81
60 306 301 286 249 23
70 138 144 143 91 8
80 75 62 69 46 3
90 19 27 42 27 1
100 12 12 13 7 0

Table A.4: Successful distance fraud attacks against the DBGP-S protocol, setup
to tolerate 10% noise, out of 100,000 attempts, using different number of distance-
bounding rounds and levels of communication noise.

Round 0% noise 0.01% noise 0.1% noise 1% noise 10% noise
10 24151 24541 24593 23148 14835
15 7851 7953 7846 7384 3586
20 9374 9153 9147 8462 3577
25 3256 3168 3201 2780 871
30 3842 3732 3716 3206 952
40 1580 1591 1531 1329 275
50 723 675 678 547 77
60 340 344 294 255 23
70 144 147 141 113 7
80 76 49 66 42 1
90 34 41 23 16 1
100 15 15 14 12 0

Table A.5: Successful distance fraud attacks against the DBGP-B1 protocol, setup
to tolerate 10% noise, out of 100,000 attempts, using different number of distance-
bounding rounds and levels of communication noise.
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A.3.2 Mafia Fraud Attacks

Table A.7 and Table A.6 show the number of successful mafia fraud attack at-
tempts, out of 100,000 attempts, that were successful against the DBGP-S and
the DBGP-B1 protocols, respectively.

Round 0% noise 0.01% noise 0.1% noise 1% noise 10% noise
10 1070 1145 1062 1015 1086
15 64 50 51 37 65
20 14 29 16 15 12
25 0 1 0 1 1
30 1 0 1 1 1
40 0 0 0 0 0
50 0 0 0 0 0
60 0 0 0 0 0
70 0 0 0 0 0
80 0 0 0 0 0
90 0 0 0 0 0
100 0 0 0 0 0

Table A.6: Successful mafia fraud attacks against the DBGP-S protocol, setup
to tolerate 10% noise, out of 100,000 attempts, using different number of distance-
bounding rounds and levels of communication noise.

Round 0% noise 0.01% noise 0.1% noise 1% noise 10% noise
10 24362 24469 24099 22636 12097
15 8035 8088 7965 7051 2570
20 8883 9068 9015 8026 2395
25 3206 3149 3141 2687 538
30 3712 3681 3718 3100 503
40 1594 1632 1565 1211 109
50 721 680 661 504 39
60 333 360 295 216 13
70 141 147 125 83 5
80 59 64 66 48 1
90 34 30 25 12 0
100 10 13 11 5 0

Table A.7: Successful mafia fraud attacks against the DBGP-B1 protocol, setup
to tolerate 10% noise, out of 100,000 attempts, using different number of distance-
bounding rounds and levels of communication noise.
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